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Abstract

Many practical applications require the analysis of elastic wave propagation in a homogeneous isotropic
media in an unbounded domain. One widely used approach for truncating the infinite domain is the so-
called method of Perfectly Matched Layers (PMLs). Most existing PML formulations are developed for
finite difference methods based on the first-order velocity-stress form of the elastic equations and they are
not straight-forward to implement using standard finite element methods on unstructured meshes. Some
of the problems with these formulations include the application of boundary conditions in half-space
problems and in the treatment of edges and/or corners for time-domain problems. Several PML formu-
lations which do work with finite element methods have been proposed, although most of them still have
some of these problems and/or they require a large number of auxiliary nodal history /memory variables.
In this work we develop a new PML formulation for time-domain elastodynamics on a spherical domain,
which reduces to a two-dimensional formulation under the assumption of axisymmetry. Our formulation
is well-suited for implementation using finite element methods, where it requires lower memory than
existing formulations and it allows for natural application of boundary conditions. We solve example
problems on two- and three-dimensional domains using a high-order discontinuous Galerkin discretization
on unstructured meshes and explicit time-stepping. We also study an approach for stabilization of the
discrete equations and we show several practical applications for quality factor predictions of microme-
chanical resonators along with verifying the accuracy and versatility of our formulation.

Keywords: PML; perfectly matched layer; elastodynamics; Discontinuous Galerkin; stabilization.
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1 Introduction

The analysis of wave propagation in an unbounded domain is of interest in many fields, such as geotechnical
engineering and electromechanics. Due to the unboundedness, these problems do not allow for direct appli-
cation of standard numerical schemes such as finite element methods which require a finite computational
domain. Therefore, they require new methodologies or a mapping of the problem to a finite domain. Within
the class of mapped methods, the so-called perfectly matched layer (PML) methods have become popular
due to their simplicity of implementation, accuracy, and versatility. In the PML method, the unbounded
domain is truncated and an artificial PML region is attached, resulting in a finite physical domain. In a
continuous setting, provided that the PML region is of infinite depth, outgoing waves travel into the PML
with no spurious reflections back into the physical domain and they rapidly attenuate within the PML do-
main. While reflections do arise in numerical computations due to discretization effects as well as finite
depth effects, relatively shallow PMLs usually suffice to achieve a satisfactory level of accuracy, as has been
widely seen in many fields over the last two decades.

This paper focuses on an efficient PML formulation for time-domain elastodynamics on spherical domains
in 3-D, or axisymmetric domains in 2-D. Our main motivation is the development of an efficient high-fidelity
radiation boundary condition suitable for anchor-loss simulations of MEMS-resonator systems [1, 2, 3], where
a set of resonating bodies is attached to an unbounded substrate via a cylindrical posts with small radii.
These types of structures emits elastic waves almost spherically into the substrate from the bottom-end of
the support posts/anchors. Therefore, it is natural to truncate the substrate spherically around the posts,
resulting in a semi-half sphere, since PMLs exhibit best absorption for waves of normal incidence. On the
other hand, for applications such as seismic-wave propagation caused by a fault-rupture which often takes
place along a plane, the radius of truncation must be large enough to include all the rupture-surface. Our
spherical PML might then not give as good efficiency, since it will also include a large portion of the domain
that is less relevant.

The PML method was developed by Berenger [4] for time-domain electromagnetics on an unbounded
domain. The electromagnetic fields are decomposed into non-physical components according to their spatial
derivatives and artificial damping terms are added to a set of so-called split equations outside the domain
of interest such that outgoing waves are absorbed. The addition of artificial damping was later identified
by Chew and Weedon as a complex coordinate transformation in the frequency-domain [5], where one could
readily inverse-transform the resulting system into the time-domain without producing computationally
expensive convolution integrals. The idea of field-splitting followed by a complex transformation of coordinate
systems was soon adopted in time-domain elastodynamics written in the first-order velocity-stress form!
[6, 7, 8, 9]; It was observed, however, that the classical complex transformation functions in [5] tended to

Tt should be noted that the PML formulations thus obtained involve non-physical splitting of the equations and also involve
the use of stresses as primary unknowns, both of which can make enforcement of boundary conditions quite difficult.



produce large spurious reflections into physical domains if waves were strongly evanescent and/or hit the
PML with grazing incident angles. To resolve these issues, the Complex-Frequency-Shifted PML (CFS-
PML) method was proposed in [10]. This is a class of PMLs that uses more general complex transformation
functions than those in [5]. We will denote PML formulations that uses the original transformation functions
as ‘Classical-PMLs’ as opposed to CFS-PMLs.

The traditional PML formulation that employs splitting of the fields, however, is not suitable for CFS-
PML since it requires convolutions for the inverse-transformation into the time-domain. Furthermore, split-
ting of the fields introduces two distinct sets of equations on the physical and the PML domains, requiring
a special treatment of the interface between the two. To circumvent these issues and employ CFS-PML,
unsplit convolution-PML (C-PML) was developed by Roden and Gedney [11] and it has been used as an
alternative to the traditional field-splitting PML. C-PML is based on a direct inverse Fourier transform of
the complex-transformed equations into the time-domain which produces convolutions. These convolutions
are then approximated by the recursive convolution method [12], where they are evaluated by introduc-
ing additional unknowns and solving second-order recursions at each time-step. C-PML was first used for
time-domain electromagnetics in [11] and since then it has been adopted for time-domain elastodynamics in
[13, 14, 15]; it has been demounstrated that CFS-PML used with C-PML exhibits considerable improvement
in accuracy against evanescent and grazing waves over Classical PML. Auxiliary-differential-equation PML
(ADE-PML) uses differential equations instead of recursions and surpasses C-PML in the point that it can
be arbitrarily high-order in time. It was first applied to electromagnetics with Classical PML in [16] and
with CFS-PML in [17]. Tt has also been applied in elastodynamics with CFS-PML in [18, 19, 20].

It is worth noting that the ADE-PML formulations in [18, 19, 20] can be regarded as perturbations of the
original velocity-stress formulation of elastodynamics; i.e., the physical domain is governed by the same set
of equations as the PML domain with all auxiliary variables set to zero, which leaves the standard velocity-
stress formulation in the physical domain and makes the implementation easier. It should also be noted that
all these formulations, when applied to three-dimensional elastodynamics, have 9 degrees of freedom (DOF's)
in the physical domain, 15 on the faces, 21 on the edges, and 27 at the corners. In addition, extra effort is
required to apply traction-free boundary conditions on free-surface PML boundaries as mentioned in [20].

All of these PML formulations for elastodynamics are based on the first-order velocity-stress formulation,
which is well-suited for discretization using finite difference methods. However, for computational domains
with complex geometries, numerical methods based on fully unstructured meshes such as finite element
methods are often preferred. Several efforts have been made to develop such PML formulations in the
frequency-domain [21, 22] and in the time-domain [23, 24, 25, 26, 27, 28, 29, 30]. Among the time-domain
formulations, those developed in [26, 27, 29, 30] possess a strong advantage over others including the ones
based on the velocity-stress formulation. By not decomposing the divergence operator, they yield explicit
boundary traction integrals in their weak formulations as a result of the divergence theorem. Thus Neumann
boundary conditions can be naturally applied. This makes the implementation considerably easier when
an unbounded half-space is to be truncated by a PML and a traction-free boundary condition has to be
applied on a surface of the PML. However, a common drawback of these formulations is that they require a
large number of auxiliary nodal history /memory variables. For example, the formulation in [27] applied on
a three-dimensional rectangular domain requires memory for displacement, velocity, strain, strain-history,
stress-history, history of stress-history, and, at corners, displacement-history, for a total of 33 DOFs at a
corner region in the PML and 30 DOFs elsewhere in the PML domain. Further, these formulations have
two distinct structures in the physical and the PML domains, which necessitates a special treatment of the
interface between the two.

Here, we present a PML formulation that is developed for three-dimensional domains which are truncated
with a spherical boundary in which a complex-coordinate transformation is performed solely in the radial
direction. Although transformations are usually done in directions parallel to the Cartesian coordinate axes,
for many applications it is advantageous to do it along radial axes since this does not involve edges or corners
which require specialized treatments in the time-domain. Our formulation is based on the frequency-domain
formulation presented in [22] and it is compatible with standard finite element methods and discontinuous
Galerkin methods on unstructured meshes. The formulation uses only 6 DOF's in the physical domain and



12 DOFs in the PML domain for three-dimensional elasticity written as a first-order system in time. The
physical domain is governed by the same equation as in the PML domain with the auxiliary variables turned
off, as is the case in [18, 19, 20]. Physical traction-free boundary conditions are naturally applied on PML
surfaces as in [26, 27, 29, 30]. Moreover, using a discontinuous Galerkin method with second-derivatives
based on the Compact Discontinuous Galerkin (CDG) scheme, the mass matrices can be explicitly inverted
with small computational effort which enables the use of explicit time-integrators such as explicit Runge-
Kutta methods without the loss of accuracy that typically accompanies explicit time stepping methods that
employ traditional mass lumping schemes. The complex transformation functions used in our formulation
lie between Classical-PML and CFS-PML. Although it is less general than CFS-PML, our examples show
its high ability to absorb quite complex waves. In our numerical examples, we observe long time exponential
error growth on coarse meshes for the straight-forward Galerkin discretization using the CDG scheme. To
rectify this, we propose an artificial viscosity based approach to stabilize the formulation and we show that
this stabilization is only required on coarse meshes.

We derive our new formulations in Sec. 2, explain the discontinuous Galerkin discretization procedure in
Sec. 3, and demonstrate its accuracy and versatility through examples in Sec. 4.

2 PML for elastodynamics

2.1 Basic concept

We briefly introduce the concept of PMLs through a one-dimensional problem in the frequency-domain using
the e'“? convention (i=+/—1). Consider the vibration of a semi-infinite (z > 0) string on an elastic base [31]
with a source located at © = 0 and suppose we are interested in the solution for x € [0, z]. An approximate
solution to this outgoing-wave problem is obtained by solving a PML system truncated at x = xpm; > o:

Find u(z) on z € [0, Zpm] such that:

d*u
. \2
(iw)” pu — Tﬁ + ku =0, (1a)
u (0) =1, (1b)
U (Tpmi) = 0, (1c)
where the complex-valued coordinate
Z(x)=x +/ fe(s)ds+ %/ fP(s)ds, =z €[0,zpmi], (2)
0 0

and fP(z) and f¢(x) are real functions of = defined such that

fpafe:() lfOSSCSSCO, (3)
fP.fe>0 ifx > xg,

for some constants xg > 0 and wg > 0. The constant wq is introduced merely for non-dimensionalization.
The complex transformation function (2) was also used as an alternative to CFS-PML in [26, 27, 29, 30].
There are two possible types of solutions to system (1) — a propagating wave solution and an evanescent
wave solution depending on the sign of k& — pw?:

cTexp [—iye — iy [y fo(s)ds —v<2 [ fP(s)ds]

+ 7 exp [+iva + iy [ fe(s)ds + <2 [ fP(s)ds] if k — pw? <0,
ctexp [—yz —7 [ f(s)ds — 7% [y fP(s)ds]

+emexp [z 47 [y f(s)ds + 72 [ fP(s)ds]  if k— pw? >0,

u(r) =



where we define 7 and ¥ as:

k — pw _
—_— = —’y2 = '72.

Note that because of definition (3), u(x) on 0 < z < ¢ coincides with the solution to the original half-space
problem we are trying to model provided that ¢t = 1 and ¢~ = 0. In reality, the Dirichlet boundary condition
at ¢ = xpy, produces a small amount of spurious reflection which pollute the solution on 0 < z < zy. The
amount of reflection due to the termination of the PML is quantified by a reflection coefficient termination
defined as the ratio |¢=/cT|:

{ exp [~2y42 fo%ml 7 (s)ds] if k — pw? <0,
Ttermination =

exp [—25Tpmi] - exp [—27 [;7™ fe(s)ds] if k — pw?® > 0. )
From this it is clear that fP(x) and f¢(x) control the absorption of propagating and evanescent waves,
respectively, and Ttermination — 0, and thus ¢t — 1 and ¢~ — 0, as one increases f?(z), f¢(x), and/or Zpm;.
In a continuous setting, the reflection due to termination can be made arbitrarily small with no additional
computational effort by increasing fP(z) and/or f¢(x), but in approximate numerical computations another
type of reflection arises due to the spatial discretization, denoted by rgiscretization- With rapid changes of
fP(x) and f¢(x) in space, Tdiscretization increases. Therefore, one has to find a compromise between these
competing effects in order to minimize the total reflection in an actual numerical solution.

For later application we rewrite Eqn. (1a) in terms of z to obtain a total system:

Find u(z) on x € [0, Zpm] such that:

(iw)? pu — %% (éj—;) + ku =0, (5a)
u(0) =1, (5b)
U (Tpm1) = 0, (5¢)
where
s(2) = L+ (@) + T2/ (a). (6)

This PML system is the actual form that one discretizes for numerical solutions.

2.2 General formulation

Next, we present a general formulation of PMLs for time-harmonic elasticity following [22]. This formulation
will be the starting point for our new developments. We consider the problem of elasticity on an unbounded
domain (21, x2,23) € Qs in which we are interested in the solution on Qy C Qu, where vol(Qg) < oo.
Qo is truncated and a PML region is attached to the artificial truncation boundary, producing a finite
computational domain 2 D y. The problem statement is given as:

Find w(x1, x2, x3) for (21, x2,23) € Q such that:

(iw)y’pu—Vv-6" = f, (7a)
o=C:g, (7b)
€= %[@u + VauT], (7c)
u=1au on 0¥,



where 0, U 09y = 99 and 09, N O = ¢, n is the outward normal to 92, C is the stiffness tensor, and
@, € and o are the gradient operator, the strain tensor, and the stress tensor in the Z-coordinate system.
Analogous to Eqn. (2), a complex-valued transformation of the coordinate system is defined with a set of
functions x; as:

iizxi(xl,xg,xg), i:1,2,3, (8)

where x; = x; for (z1,x2,23) € Qp. We denote Q = {(Z1, &2, #3) : (1,72, 23) € Q}. The Jacobian of the
transformation (8) is denoted by A so that

V =AV, (9)

where V is a tangent vector in R? and V is its image under the coordinate transformation (8). A is assumed
to be everywhere continuous and everywhere invertible for (x1, za,23) € Q.

As was done in Sec. 2.1, Eqn. (7a) is rewritten in terms of x;. To this end, it is simpler to rewrite
Eqn. (7a) in a weak form by applying a test function w and integrating the equation over Q. Applying the
divergence theorem, this gives:

(iw)2/ pw-udQ—i—/ Vw : 67d0

Q Q

—/w-&Tﬁdf:/w-fdQ, Vaw, (10)
T Q

where I = 9. Given the transformation rules for volumes, d2 = det AdS, and for gradient operators,
Vu=Vu- A", (11)

Eqn. (10) can be transformed into the z-coordinate system as:
(iw)? / pw - udet AdQ + / (Vw-A™") : 67 det Ad
Q Q

—/(detA)w-&TA*Tndrz w- fdet AdQ, Vuw,
T Q

which by the localization theorem, yields
(iw)?pudet A — V- [(det A)A™' - &]T = fdetA, xcQ. (12)

The coordinate transformation of Eqns. (7b) and (7c) are straightforward using Eqn. (11).

2.3 Spherical PML

We now specialize Eqn. (12) for a spherical coordinate system. Note that while we develop our formulation in
a spherical coordinate system, the actual implementation is done in a standard Cartesian coordinate system.
In other words, spherical coordinates are only used to facilitate the theoretical developments.

Since we only apply the complex transformation in the radial direction, we let:

(z1,22,23) = (1,0, ),
(Z1,%2,%3) = (7,0, P).

The complex transformation is defined as:

pert [ a2 [ (13)



where

Py, fe(r)>0 ifrg<r,

and rg is such that Qo = {(r,6,¢) : 0 < r < ro}. For convenience, we will denote [; f¢(r)dr and [ f7(r)dr
as F°(r) and FP(r), respectively. We now express Equs. (7b), (7¢), and (12) in the standard orthonormal
spherical basis {e,, eg,e,}. The simplest way to compute the Jacobian transformation A is taking the
differentials of position vectors, € = re, and & = 7(r)e,, using the same basis for &. Simple differentiations
give the relation:

{ fpgr),fe(r):() if 0 <r <r,

. dr T
dz = | —e,®e, + —(egReg + e4®ey) | dx,

dr r
from which one obtains the Jacobian by Def. (9) as:

&7 -
A= d—:er®er+;(eg®eg+e¢®e¢). (14)

Using relations (13), (14), and (11), Eqns. (12), (7b), and (7¢) are combined into the compact equation:
(iw)?pudet A — V-[o + X7 = fdet A, (15)

where o(Vu) is a conventional stress tensor for elasticity and ¥ is an unsymmetric tensor whose components
i (4,7 = r,0,¢) are functions of iw and (Vu)i (k,1 = r,0,$). We note that on Qy, ¥ =0 and A = I,
the identity tensor. Thus Eqn. (15) reduces to the conventional elastic equation in the part of the domain
where we desire the solution. For isotropy the stiffness tensor is given by:

Cijrt = N0ijOry + pdindjy + pdudse 4,5,k =1,0,4. (16)

The components of ¥ in the spherical basis for isotropy in the frequency-domain are given in Appendix A.1.

We now inverse transform Eqn. (15) into the time-domain. This requires transforming each component
of 3 as well as the other iw-dependent terms in Eqn. (15), i.e., udet A and fdet A. We first note that,
since f = 0 in the PML domain, fdet A = f holds everywhere and we do not need any special treatment
for this term. On the other hand, u det A contains %u which results in an inverse transformation integral.

This motivates the definition of a vector of auxiliary functions h as:

h = ,iu,
iw
which permits the inverse transformation of 3;;(i = 6, ¢, j = 1,0, ¢) as well as udet A without the explicit
need for inverse transformation integrals. The expressions for ¥,;(j = r,0,¢) have yet another factor
1/(iw + Cp) which produces convolution integrals upon inverse transformation. Among other possibilities,
we define three additional auxiliary functions:

g1 = (Cg% +C5 ” i Co %) (V) pp, (17a)
1 1 1

ga2 = (CQZ + Cjs W+ Co E) (VU)QT, (17b)
1 1 1

g3 = (CQZ +C5 wice E) (V) or, (17¢)

which result in a time-domain system to be solved for u, h, g1, g2, and g3. Auxiliary equations corresponding
to these three additional unknowns are obtained by multiplying both sides of Eqns. (17) by iw + Cy and



inverse-transforming. The resulting problem is summarized as follows. For convenience, we make the system
first-order in time by introducing v = u, resulting in a system of 12 equations for 12 unknowns:

Find w, v, h, g1, g2, g3 on Q such that:

u =, (18a)
pCy0 — V-[o + 2|7 = —p(Csv + Csu + Crh) + f, (18b)
h=u, (18¢)
g'1 = —Cogl + CQ(VU)TT + (COCQ + 03)(vh)rra (18d)
g2 = —Coga + C2(Vu)g, + (CoCs + C3)(Vh)gr, (18e)
g3 = —Cogs + C2(Vu) g + (CoC2 + C3)(Vh) o, (18f)
where
u=u on J,,
c+3"n=t ond,
and
oc=C:¢e (Cgiven in Eqn. (16)),
1 T
€=3 [Vu+ Vu']
Co,C1,- -+ ,Cr are functions of r but constant in time. Precise expressions are given in Eqns. (27) and

(29) and the expressions for ¥;;(i,j = r,0, ¢), which are obtained by transforming Equns. (26), are given in
Equs. (28); see Appendix A.2. As is often done in practice we set @ = 0 on the outer boundary of the PML.

Since Eqn. (18b) inherits the structure of the conventional elasticity equation, Eqn. (18b) can be readily
discretized by standard finite element methods or discontinuous Galerkin methods on unstructured meshes.
A boundary integral [ w[o + 3]Tndl’ in a weak formulation of Eqn. (18b) is naturally treated; e.g. on a
traction-free boundary of the PML, this term is simply set zero.

Since it is often convenient to resolve system (18) in a standard Cartesian basis {e,, e,, e, } for implemen-
tational purposes, the components of X in the spherical basis {e,, eg, €4} should be transformed according
to the basis transformation rules between the two frames as well as the components of Vu, Vv, and Vh.

Note that by defining auxiliary functions as in Eqns. (17), one can ensure stability of the system (18) in
the case of f,,, F,, = 0, since it keeps the structure of the standard second-order formulation of elasticity with
real coordinate-stretching. Furthermore, since the auxiliary functions (17) allow for individual inversions of
(V)yr, (V)gr, and (Vu) g, and thus & according to Eqns. (7b) and (7c), our PML formulation may find
possible applications to anisotropic problems without introducing any additional auxiliary functions.

For axisymmetric problems, the spherical PML formulation above can be reduced to an axisymmetric
PML formulation; see Appendix B for details.

3 Discretization

3.1 Spatial discretization

For the numerical discretization of Eqns. (18) or its axisymmetric counterpart (30), we closely follow the
procedure presented in [32]. Here we only give a brief description of the methods, mainly emphasizing the
differences due to our PML formulation. For further details we refer to [32].

For the spatial discretization of Eqns. (18), we use a second-order discontinuous Galerkin method [33]
with numerical fluxes according to the Compact Discontinuous Galerkin (CDG) scheme [34]. Let the com-
putational domain  be discretized by a set of non-overlapping elements 75, = { K'}. Introduce the piecewise



polynomial finite element spaces V;” and 3%:
VP ={ve [L*(Q)]": |v|k € [Pp (K)]" VK € Tp},
P ={r e [L2()]"" |7l € [Py (K)™™ VK € Th},

where P,(K) is the space of polynomial functions of degree at most p > 1 on K, n = 12 is the number of
solution components, and m = 3 is the space dimension. We first rewrite Eqns. (18) as a system of first-order
equations:

m%—?—i—V-F(u,H):S(u,H)—l—f, (19a)

H—Vu=0, (19b)

where (with an abuse of notation) u now represents an array of the unknown functions u, v, h, g1, g2, and
gs; m, F S, and f are tensors representing generalized mass, stresses, sources, and body forces. The finite
element formulation is then given as:

Find uj, € V and Hj, € ¥} such that for all K € Ty,

/ (m% — S(uh,Hh)) -vdx —/ F (up,H},) : Vodx
K ot K

+[9Kt(uh,Hh)~vds/I<f~vdm, Yo € [P, (K)]",

/ H, :‘rda:+/ ’u,h~(V~T)d.’137/ (Up®@n):1ds =0, VYt €[P,(K)" ™.
K K oK

We specify appropriate numerical fluxes u; and f(uh, H ) on all element boundaries, eliminate Hj, locally
from the system, and assemble a semi-discrete system of equations for uy as:

d
Md—[tj — _KU+F, (20)

where U is a vector of nodal variables, M is the mass matrix, K is the stiffness matrix, and F' is the force
vector. Again the details are given in [32] and thus omitted here. Finally, we set the stabilization parameter
of the CDG scheme to C11 = 200/ hinin, where Ay, is the smallest edge length of a triangle/tetrahedron.

The mass matrix M in Eqn. (20) from the DG discretization is block-diagonal and can therefor be
explicitly inverted to obtain:

dU

dt
This system of ODEs can be integrated numerically for U using any time-integration scheme. Here we use
the standard explicit fourth-order Runge-Kutta method.

— M 'KU+ M~'F. (21)

3.2 Stabilization

We note here that Eqn. (18b) involves first-order spatial derivatives of g1, g2, and g3, and Eqns. (18d), (18e),
and (18f) involve first-order derivatives of w and h. These terms add an advective character to the PML
system, which requires special consideration for the numerical discretization. Existing PML formulations for
elasticity have similar equations (see e.g. [19]) but to our knowledge their advective character has attracted
little attention. One symptom of advection is numerical instability; for coarse meshes we indeed observe
exponential solution growth in time when the PML functions f¢ and f? increase rapidly with r. These
instabilities can be removed by refining the mesh or by adding artificial diffusion in the form —V - eVwv to
the left-hand side of Eqn. (18b). Here ¢ is defined as:

gocos? (552emr) ifrg — k<1 <71+ K,
E= "f .
0 otherwise,



where g ~ hwo(f€ + fP)mae and & is chosen sufficiently large. Addition of artificial diffusion to the axisym-
metric problem (30) is done in an obvious manner.

We observe in our numerical examples that PML functions which provide good accuracy in the sense of
small reflection coefficients are long-time stable and artificial diffusion is not needed in such cases. However,
on coarser meshes it is required for stability. Many other strategies have been proposed for stabilization of
Galerkin formulations, such as upwinded Petrov-Galerkin schemes [35] or modified numerical fluxes in the
discontinuous Galerkin formulation. However, we have found that our simple artificial diffusion approach is
sufficient for our applications, and produces well-behaved computations on coarse discretizations.

4 Numerical examples

In this section we present several examples in two and three spatial dimensions. We consider an isotropic
media with mass density 4.127[Mg/m?], Young’s modulus 139[GPa], and Poisson’s ratio 0.28. The domain
is discretized using the DistMesh mesh generator [36] for two-dimensional problems, which generates highly
regular unstructured triangular meshes, and by netgen for three-dimensional problems utilizing unstructured
tetrahedral meshes. For both the two- and the three-dimensional problems, we use the discontinuous Galerkin
method with the CDG scheme implemented in the 3DG software package [37] (a general purpose software
package for continuous/discontinuous Galerkin methods) for spatial discretization and a fourth order explicit
Runge-Kutta method (RK4) for temporal discretization unless otherwise noted.
The PML-complex-transformation functions are assumed to have parabolic profiles:

2
T —To
= (2 <
Tpml — T0
T—T0
=5 (25 £
Tpml —T0

where P and ¢ are the values of fP(r) and f¢(r) on the outer boundary of the PML.

4.1 Axisymmetric problems
4.1.1 Stability study

We first study the stability properties of our PML formulation using an axisymmetric test problem. The
setup of the problem is given in Fig. la. The edge R = 0 is the axis of symmetry. The surface z = 0 is
traction-free, and a uniform Gaussian pressure pulse

t—a

F) = (5 a=6, w=001/f, (23)

is applied along the inner hole, where we set fy = 0.0613[GHz] in this example. The average displacement
over the entire domain in the R-direction @ is measured up to 7" = 10,000[ns]. Note that the transit time
for a P-wave traveling a distance ro is about 0.30[ns].

The domain is truncated at 7o = 2.0[pm] and surrounded by a PML of depth rp, — 179 = 1.5[pm],
modeling an unbounded domain which extends to » — +o00. The outer boundary of the PML is clamped.
Discretization of the domain is performed by DistMesh; see Fig. (1a). The smallest edge length of a triangle
Rmin 18 set t0 hpmin = 0.50[pum], and polynomials of degree p = 4 are used. In this example problem, we set
wo = 4w and ¢ = 0 and use three different P: 4,400, and 4000. We note that in this setting the optimum
BP in the sense of reflection is estimated as P =~ 4 by our PML parameter choosing heuristics; see Appendix
C. Artificial diffusion of € = 1 is added as needed for stabilization. For simplicity in this example, we use a
continuous Galerkin method in space and a trapezoidal method in time. The time-step At is set to 1[ns].

Fig. 1b shows plots of log,, g versus time. Without stabilization, the scheme is stable for S = 4 and
400, but unstable for P = 4000. One can see, however, that addition of artificial diffusion removes this
instability. This example demonstrates the ability of artificial diffusion to stabilize our numerical scheme
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Figure 1: (a) Problem setup for a stability study. (b) Plots of computed @ versus time on a semi-log scale.

when needed. Though it should be noted that P = 4000 is a very high value and the mesh is exceedingly
coarse. When using mesh sizes that provide reasonable accuracy and using optimal PML parameters (see
Appendix C), we find that stabilization is unnecessary.

4.1.2 Accuracy study

We next validate the accuracy of our proposed axisymmetric PML formulation. The setup of the problem
is given in Fig. 2. The edge R = 0 is the axis of symmetry. The surface z = 0 is traction-free, and
uniform Gaussian pressure pulses (23) with fo = 0.0613[GHz] are applied along the edges of the inner holes,
generating a complex wave pattern. The domain is truncated at ro = 8.0[um] and surrounded by a PML of
depth 7pm; — ro = 1.5[pum].

The domain is again discretized using DistMesh; see Fig. (2). The smallest edge length of a triangle is
set t0 hunin = 0.50[um] and again fourth-order elements are used.

Considering the nature of the excitation and the discretization, we set wy = 47 and P = 4 based on
a one-dimensional parameter study; see Appendix C. We use two different values for g¢, i.e. f¢ = 0 and
B¢ = 4, to see its effect on the accuracy.

Finally, we use a fixed time-step of 1-1073[ns] for time-integration. Displacements in the R- and z-
directions are recorded up to 10[ns] at the sensor located right on the PML interface (R,z) = (r9,0) as
depicted in Fig. 2, which are compared with reference solutions U eference cOmputed on an extended domain.

Figs. 3a and 3b show plots of computed ur and u, against time, respectively, each of which compares four
solutions — a reference solution, PML solutions with (8P, 8¢) = (4,0) and (87, 5°) = (4,4), and a solution
obtained by applying the classical Lysmer-Kuhlemeyer damper (LK-damper) [38] on 7 = rp,,; without any
PML elements. The plots clearly demonstrates that both types of PML behave much better than the LK-
damper, and show good agreement with the reference solution. Figs. 3c and 3d plot absolute differences
between the PML solutions and the reference solutions, where a slight improvement can be observed due to
the the additional parameter 3¢. The relative errors of the PML solutions are about 0.5%, which we regard
as satisfactory considering the complex nature of the problem. We note that the value of the parameter 3¢
is chosen rather arbitrarily and its optimization has yet to be studied.
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Figure 2: Problem setup for an accuracy study: Hole centers are located at r = 0.85r and at angles m/12
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4.1.3 Axisymmetric resonator

As a final two-dimensional example we test the use of our PML formulation for the computation of the
quality factor @ of two MEMS resonators [22, 32]. In the standard approach for computing resonator quality
factors, a generic eigenvalue solver is used to directly compute the complex-valued resonant frequencies
(eigenvalues) of the system from which the quality factor Q can be computed. However as shown in [32], this
is only practical for systems with a relatively small number of degrees of freedom. For full three-dimensional
problems, a transient dynamical approach can be shown to scale well, where eigenvalues are extracted from
time-series data by filter diagonalization [39]. Good behavior, notwithstanding method, will always rely on
a high quality radiation (non-reflecting) boundary condition.

To assess the impact of our PML formulation on this type of problem we consider two axisymmetric
resonators as shown in Fig. 4. Resonator A as shown in Fig. 4a has a disk of radius Ry = 32[um] attached to
a semi-infinite substrate by a cylindrical post of radius 1.0[um] and height 0.70[um]. Resonator B as shown
in Fig. 4b has an additional mushroom-like structure on top of the disk. Mushroom caps are an artifact
of a popular manufacturing process for MEMS resonators [1, 40]. In our case, the modeled cap has radius
6.5[pm] and thickness 2.0[um] and sits on a post of radius 1.0[um] and height 1.0[um]. The thickness of the
32[pm] disk varies from 1.2[um] to 1.8[um] and the sensitivity of the quality factors to the thickness variation
is studied. The surfaces of these resonators are assumed to be traction-free. Each semi-infinite substrate
is truncated at radius ro = 8.0[um] and a PML of depth 7pm; — 10 = 1.5[um] is attached surrounding
the resulting finite domain. As before, unstructured triangular meshes are generated by DistMesh with
himin = 0.50[pm] and element orders of 4 as shown in Fig. 4. We set wo = 47 and (67, 8°) = (4,4) for the
PML parameters.

The quality factor corresponding to a mode with eigenvalue iw is defined as:

jwl
@ 2Im (w) (24)
The fundamental angular frequency w* of the disks can be estimated as [41]:
* o
Westimate — 204R_d (25)
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(a) Resonator A (b) Resonator B

Figure 4: Geometry and triangular mesh of (a) a resonator with flat top (b) a resonator with mushroom-like
structure.

where ¢o = 6.045[um/ns] is the plane-stress radial wave speed. We thus find an eigenvalue of M 'K in the
semi-discrete system (21) whose imaginary part is closest to iw; e and compute the corresponding quality
factor using Def. (24) for various film-thicknesses between 1.2 and 1.8[um]. We first compute eigenvalues
directly using a generic eigenvalue solver. Plots of quality factor versus film-thickness are shown in solid and
dashed lines in Fig. 5a for resonators A and B, respectively. Note that resonator A exhibits a wild swing in
Q@ around a thickness of 1.48[um], while resonator B shows little sensitivity to the thickness of the film.
Direct eigenvalue computation, however, is only applicable to a small system due to its high memory
requirements. In [32] an alternative transient methodology to compute the quality factors of the fundamental
modes was proposed and its accuracy and scalability were demonstrated through three-dimensional problems
of resonators using LK-dampers. For later application of our PML formulation to full three-dimensional
resonator problems, we also adopt the methodology presented in [32] to our axisymmetric resonator problems
to compute the quality factors. Specifically, we apply a broadband Gaussian pulse (23) with fo = Wi nate/ 27T
radially on the edge of the disk, solve system (21) using a fourth-order explicit Runge-Kutta method with
At = 1-10"3[ns] up to 5,000[ns], and record a time-series of average radial displacement %z over the
entire domain. Next a filter diagonalization method [39] is applied to this time-series data using the harminv
software [42], which extracts for each excited mode its frequency, rate of damping, and quality factor. We
pick the quality factor corresponding to a mode whose frequency is closest to0 wWliimate- 11 USing harminv,
we cut off the first 10[ns] of the time-series, store data at every 200th time-step, and specify a broad range
of frequencies 107%-10[GHz] over which we expect to find the fundamental mode. Quality factors thus
obtained are plotted in Fig. 5a as black dots, which show good agreement with values obtained by the
eigenvalue solver. Fig. 5b shows relative errors of quality factors computed by harminv compared to the ones
obtained by exact eigenvalue analysis. We note that experimental data shows such wild swings in flat top
resonators [2] and that experience shows these swings are absent in resonators with mushroom caps [43].

4.2 Three-dimensional problems

One of the main impetuses for the development of our spherical PML formulation was the accurate simulation
of three-dimensional resonator systems where eigenvalue extraction is only feasible via time-series analysis
coupled to filter diagonalization [39, 32]. In this setting computational cost reduction is of paramount
importance. In this section we look at the numerical properties of our proposed method as well as demonstrate
its use on a large scale problem.

4.2.1 Convergence study

First, we validate the spatial and temporal convergence rates of our DG formulation in conjunction with
a RK4 time-integrator for three-dimensional problems. We consider a hollow sphere with inner and outer
radii of 1.0 and 2.0, respectively, which has material properties of A = 1.0, 4 = 1.0, and p = 3.0. The inner
boundary is clamped and the outer boundary is traction-free. As output quantity for the error calculation,
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Figure 7: The double-disk resonator with its semi-infinite substrate replaced by the PML-bowls. A tetrahe-
dral mesh is also shown.

we study the average x-displacement 4, on the outer boundary.

To demonstrate the spatial convergence, we compute steady-state displacements of the hollow sphere
subject to a body-force of f = (¢*,0,0)T. A sequence of uniformly refined unstructured meshes and poly-
nomial degrees of ¢ = 1,...,4 are used. The coarsest mesh has a single layer of tetrahedral elements across
the thickness and a total of 381 tetrahedra. We refer to this element-size as h = 1. Each tetrahedron is
then repeatedly split into 8 similar tetrahedra to produce a sequence of meshes of element-sizes h, = 1/2",
r =0,...,4. Fig. 6a shows an example mesh corresponding to » = 2 generated by netgen. Considering the
output quantity corresponding to hy = 1/16 and ¢ = 4 as the “exact solution” @y exact, €rTOIS |Uy — Uy, exact|
are computed for ¢ = 1,2, 3 and plotted in Fig. 6b against element-size h on a log-log scale. We note that
the slopes are close to the expected g + 1 order of convergence.

To confirm the expected temporal convergence rate, we consider the mesh of r = 4 and ¢ = 4. We
multiply the body-forces by a smooth Gaussian profile in time:

b(t) = (e*(%fﬁ,o,o)T

and integrate until time 7" = 1 using four different time-steps At = 4-107%/2° s = 0,...,3. The solution
corresponding to the finest time-step is considered as “exact”. Fig. 6¢ shows plots of errors at T' = 1 against
time-step At on a log-log scale and we can observe the expected fourth-order rate of convergence for the
€rror.

4.2.2 Double-disk resonator

As our last example we compute the quality factor of a full three-dimensional double-disk resonator which is
anchored to a semi-infinite substrate. Each disk has a radius of Rq = 8.0[pum] and a thickness of 1.1[um]| and
is anchored to the substrate by a cylindrical post which has a radius of 1.0[um] and a height of 0.50[pm].
These two disks are separated from each other by 20[um] in the z-direction and connected by a bar with
a width of 1.0[um] and a height of 1.1[um]. The material properties are the same as were used for the
axisymmetric resonator example.

To analyze this problem on a finite domain, we truncate the unbounded substrate and attach PMLs. In
this type of problems, our spherical PML shows several advantages over other existing PMLs. First, the
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Figure 8: Plots of computed @g versus time for the double-disk resonator problem.

system does not allow for structured meshes, so PML formulations that work with finite element methods
on unstructured meshes are required. Existing formulations which do work with finite element methods,
however, introduce a large number of nodal variables, which adds significant computational cost for large
three-dimensional problems. For instance, the formulation proposed in [27] requires about 2.5 times more
memory storage for the PML domains than our formulation. Moreover, while most formulations are based on
Cartesian PMLs, spherical PMLs better match this type of problems since resonating disks emit elastic waves
almost spherically into the substrate via the small cylindrical posts. Finally, the existence of edges and corners
as would be required for Cartesian based PMLs would add significant complexity to the implementation.

Here, the substrate is truncated to leave half spheres of radii 4.0[um] and “PML-bowls” of thickness
1.5[pm] are attached on the surfaces of truncation; see Fig. 7. The outer boundaries of the PML-bowls are
clamped and other boundaries are traction-free.

To compute the quality factor of this resonator, we employ the transient dynamical approach introduced
in Sec. 4.1.3. The estimate of the fundamental frequency w’ .t 1S computed using Eqn. (25) as 1.541 x
10%[rad/s]. We apply a Gaussian pulse (23) with fo = W ;mate/27 uniformly along the edge of the left
disk and record a time-series of the average displacement in the z-direction over the entire domain @, up
to 250[ns]. We then apply harmonic-inversion via filter-diagonalization to this time-series via harminv and
extract the eigenvalue corresponding to the fundamental radial mode of vibration.

We use netgen to construct an uniform tetrahedral mesh with h & 0.50[pm]; see Fig. 7. It produces a total
of 55,644 elements among which 24,888 are in the PML, which for our polynomial degree of 3 gives about
9.7 million dofs. We set At = 8-10~4[ns] to satisfy the CFL-condition. The same set of PML-parameters is
used as in Sec. 4.1.3 since the nature of the problem is similar.

Fig. 8 shows a time-series of @i,. In using harminv, we cut off the first 1[ns] of the time-series, store data
at every 125th time-step, and specify a broad range of frequencies 10~4-10*[GHz]. The resulting eigenvalue
—0.003879 + 1.529i corresponds to a quality factor of Q = 197.0. This example problem demonstrates the
applicability of our spherical PML to a full real-world three-dimensional problem.

5 Conclusion
A new PML formulation was developed for time-domain analysis of elastic waves on three-dimensional spher-

ical domains or two-dimensional axisymmetric domains. Since our spherical PML formulation is developed
based on the regular second-order elastic equation instead of the first-order velocity-stress system, it readily
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works with standard finite element methods as well as discontinuous Galerkin methods on unstructured
meshes. It is monolithic and simple to implement; it involves no edges or corners as in existing time-domain
formulations of Cartesian PMLs which require special treatment. It also allows for a natural application of
traction-free boundary conditions, taking advantage of the second-order formulation which is well-suited for
elastodynamics. Furthermore, our formulation requires a smaller number of variables than other existing
formulations, which is an advantage when solving large three-dimensional problems where memory-usage can
be demanding. The formulation was demonstrated using high-order Discontinuous Galerkin discretizations
with a CDG scheme on unstructured meshes and a fourth-order explicit Runge-Kutta time-integrator, which
showed the high accuracy of the method as well as its ability to solve large three-dimensional problems.
Finally, we were able to successfully apply our methods to a large scale resonator problem and extract
“damped” eigenvalues using explicit time-integration and a harmonic-inversion technique.
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A Tensor components and constants

A.1 Frequency-domain formulation

In the frequency-domain, the components of 3 in Eqn. (15) in the spherical basis {e,, eq, €4} are given by:

1 1
Err = (A 2 T rr
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where Cy, C1, Cs, and C5 are temporally constant and defined as:
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A.2 Time-domain formulation

In the time-domain, the components of 3 in Eqn. (18b) in the spherical basis {e,, eg, €4} are given by:

Y= A+ 20)C1 (V) + (A + 21) 01

# 2 (Z UTudon + (Tl + 2 [(Tho + (TH)os]). (250)
S0 = HCy(Vu)ay + <§(Vu> ol (Vh»e) T g, (28b)
Sro = HC1 (Vg + (?(Vum + ‘”OTFpWh)m) + s, (28¢)
Sar = (FE(Tu)0 -+ a0 (Vo + 2 (T + 225 (V) ) (284

i = X (Tl + 2 (TR 4 (T + (T
+ ()\ + 2,u) (fe(vu)ee + wofp(Vh)gg) (286)
Bop = 1 (f[(Vu)og + (Vu)go] + wo P [(VR)oy + (Vh)ge]) , (28f)
Fe F

= (T 02T+ (ST + 2 ), (288)
e (f1(Vu)ag + (VU)¢9] +wo [P [(Vh)eg + (Vh)gel) , (28h)

Do =X (?(W»T SO (e ) + A (Vg + (T
+ (A4 20) (f(Vu)gg +wofP(Vh)gs) , (281)

where g1, g2, and g3 are auxiliary functions defined in Eqns. (18d)-(18f).
Also, the temporal constants Cy, C5, Cg, and Cr introduced in Eqns. (18) are defined as:
e 2
Cy=(1+7f% <1 + FT> , (29a)
052(1—1—?) (wofp (1+§)+2(1+f6)onFp)a (29b)
g = o (2w0fp (1 + ﬁ) +(1+f9) WO—FP) , (29¢)
r r r
2

07 = wofp (wofp) . (29d)

B Axisymmetric PML

In this section, we present an axisymmetric formulation of our spherical PML. If the problem is axisymmetric,
one can set uy = 0 and 6%(-) = 0 in the spherical problem (18). Then all r¢-, ¢r-, 0¢-, and ¢f-components
of Vu, Vv, and Vh, and thus o and X, vanish. It is convenient to resolve problem (18) in the standard
cylindrical coordinate system (R, z,¢) with the orthonormal cylindrical basis {er, e, ey}, where one finds
that R¢-, ¢R-, z¢-, and ¢z- components of Vu etc. are zero. Then, one is left with 8 non-trivial equations
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for 8 unknowns:

Find UR, Uz, VR, Uz, hR7 hZ7 g1, g2 O1 (2 such that:

’llR = VR, (30&)
Uy = vy, (30Db)
pRC4or — [{R(0rr + XRR)} R+ {R(0:r + X.R)} ]
= —pR(Csvg + Ceur + C7hr) — (U¢¢ +X60) (30c)
pRC4’[)z - [{R (URZ + ERZ)},R + {R (Uzz + Ezz)},z]
= —pR (Csv, + Csu, + C7h,), (30d)
iLR = UR, (306)
hy = u., (30f)
g1 = —Cog1 + Co(Vu)rr + (CoCh + C3)(VA) (308)
g2 = —Coga + C2(Vu)gr + (CoC2 + C3)(Vh)gr, (30h)
and
UR = UR, Uy =1U, on 0,
R(orr +Xgr) R(0r.+ XR:) " ng _Jtr on 99
R (UZR + EZR) R (Uzz + Zzz) nz z b
where

orr =2 (Vu)pr + A ((VU)RR + (Vu),, + (Vu)w) :
0on = 200 (V). + A (V) g + (Vo) + (V) )

Opp = 20 (V) 4 + A ((VU)RR + (Vu),, + (Vu)w) ,

or: = 0 = ((Vu) g, + (Vu),g),
w

(vw)RR = WR,R; (Vw)zz = Wz,2, (Vw)d)d) = fR’

(Vw)p, =wrz,  (Vw),p =w:r, (w=u, v, h),

where ng and n, are the R- and z-components of the outward normal vector to 0€2;. The coefficients Cp,
..., and C7 are given in Eqns. (27) and (29) and components of 3 are defined in Eqn. (28); see Appendix
A.2. Problem (30) inherits the boundary conditions from the original problem (18).

C Parameter choice

C.1 One-dimensional PML parameter optimization on frequency-domain

A procedure of finding an optimum set of PML parameters was studied in detail for a one-dimensional wave
equation in the frequency-domain in [44]. We first summarize the procedure in [44] and introduce heuristics
of choosing time-domain parameters using our example in Sec. 4.

We discretize Eqn. (5a) with & = 0 on = € [0, Zpm:], in which the PML domain corresponds to ¢ < x,
using finite element methods of order ¢ with

s(a) = 1+ 1 /7(@), (32)

23



which is obtained by setting f¢(x) = 0 and “2 = 1 in Eqn. (6). We further restrict the profile of f?(z) to
polynomials as:

m
#7(z) = P (&) (33)
Tpmi — To

where m and (P are the order and end-value of the polynomials, respectively. On solving problem (5a), one
can nondimensionalize the problem to obtain a set of five independent parameters: nypmi, m, B2, Nppw,
and ¢, where nypmi and nyp, are number of wavelengths in the PML and number of nodes per wavelength,
respectively. Then, for select sets of m, nnpw, and g, we vary 8P and nypm; from 0 to 10 and plot contours
of reflection coefficients. The procedure to compute the reflection coefficients are briefly explained in the
following. On each element in the elastic region, 0 < a < zy, Eqn. (5a) produces an element-wise discrete
wave operator upon finite element discretization:

O:= —k*m. + ke, (34)

where m. and k. are element mass and element stiffness matrices and k = w/c is the wave number. The
wave operators (34) are then assembled to form a global stiffness matrix K. Further, a set of ¢ nodal
displacements in the jth element is denoted by u; and concatenated to form a global solution vector U. The
structures of K and U are schematically shown for ¢ = 3 in Fig. 9. Three successive nodal displacement
vectors in the elastic domain, w;_1, u;, and w41, satisfy a homogeneous system of discrete wave equations
which characterizes wave propagation on an unbounded domain:

BTu; | + Au; + Buj, 1 =0, (35)

as shown in Fig. 9. Substituting u; = &/v in the homogeneous system (35), one obtains a quadratic eigenvalue
problem:

[BT +,5A+§QB} v=0,

for which there exist two nonzero eigenvalues ¢+ and £~ and corresponding eigenvectors v and v~, the
former representing outgoing and the latter representing incoming waves so that the total solution on the
homogeneous elastic media should be represented as:

w=[ey o 7] (). (36)

We now compute the solution to the PML problem (5) by a standard linear solver and extract two solution
vectors u; and w;41 to solve for ¢t and ¢~ in Eqn. (36). Specifically, we have

< - ) - [ <«£$+) ! o (555)3 i:: r ( e > (37)

where T represents pseudo-inverse. The reflection coefficient r is given by the ratio |¢c~/cT|. Note that
since we project the solution onto discrete modes and consider the ratio of the discrete incoming wave to the
discrete outgoing wave, r represents the reflection due to discretization of the PML as well as its termination.

Figures 10a, 10b, 10c and 10d show contour plots of log;yr for m = 1,2, 3,4, respectively, with fixed
g =4 and nppy = 12 on a grid of (Nypmi, 67) = [0, 10] x [0, 10]. With knowledge of ¢ and 1y, and with an
allowed level of total reflection in mind, one can readily read off an optimum set of PML parameters, nypmi,
BP, and m, which can achieve the desired level of accuracy with smallest npm;.

These contour plots characterize the two kinds of reflections 7termination and Tdiscretization Mentioned in
Sec. 2.1. As a specific example, focus on Fig. 10c with n.pm fixed at 4. Increasing 5P from zero, one observes
a rapid decrease of log,, r up to 8P ~ 1 to achieve log;, = —6. If one further increase g?, log;,r gradually
increases. This suggests that in the first phase rtermination given in Eqn. (4) surpasses rdiscretization, While in
the second phase Tqiscretization SUIDASSES Ttermination- Indeed, on the region of small 8P and large nypmi, a
curve of a constant r, say 7, almost coincides with a curve produced by Eqn. (4) with rtermination fixed at 7,
which verifies that r & Ttermination 111 this region of parameter space. See [44] for further elaboration.
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Uj+1

Figure 9: Schematic of one-dimensional discrete wave equation in frequency-domain on elastic medium with
cubic (¢ = 3) interpolation polynomials. Each square with solid sides represents an element-wise stiffness
matrix.

C.2 Parameter choice heuristics on time-domain

Heuristics for choosing PML parameters for elastodynamics in the time-domain for a given level of discretiza-
tion and an order of element ¢ are summarized below:

e Choose an characteristic frequency (wo in Eqn. (6)) and wave speed c¢p and compute a characteristic
wavelength Ag.

o Compute Nppw, Where nyp,, denotes the number of nodes per characteristic wavelength.

e Given allowed total reflection coefficients raowed, read off an optimum pair of parameters n.,pm; and
BP for an optimum m from contour plots for the desired ¢ and n,p., Where nypm; denotes the number
of characteristic wavelengths in the PML.

A time-domain PML thus obtained ensures that the reflection coefficient should be raoweqa for a mode of
frequency wy since Eqn. (6) reduces to Eqn. (32) when w = wo.

For our problems in Sec. 4, we choose wy = 47 considering the pattern of the waves generated by the
excitation (23). Setting ¢y = c¢s, where ¢, is the shear wave velocity, we obtain nppw & 12. Tallowed 1S set
to 1072 as is often done in practice. We then look at Figs. 10a-10d for m = 1,2, 3,4 with fixed n,p, = 12
and ¢ = 4. According to these figures, the minimum possible n,m; required to achieve r = 1072 for m = 1,
2, 3, and 4 are about 1.0, 0.5, 0.6, and 0.7, respectively, so we choose to use m = 2. The corresponding
parameters are nypmi ~ 0.5 and S? ~ 4. Also we make a conservative choice of 7pm; — ro = 1.5[um] which
gives Nypmi ~ 0.8. In summary, we use wy = 47, m = 2, Nypmt ~ 0.8, and BP = 4.
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