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Abstract

Zero and Ultra-Low-Field Nuclear Magnetic Resonance Spectroscopy Via Optical Magnetometry

by

John Woodland Blanchard

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Alexander Pines, Chair

Nuclear magnetic resonance (NMR) is among the most powerful analytical tools available to
the chemical and biological sciences for chemical detection, characterization, and structure elu-
cidation. NMR experiments are usually performed in large magnetic fields in order to maximize
sensitivity and increase chemical shift resolution. However, the high magnetic fields required for
conventional NMR necessitate large, immobile, and expensive superconducting magnets, limiting
the use of the technique. New hyperpolarization and non-inductive detection methods have recently
allowed for NMR measurements in the inverse regime of extremely low magnetic fields. Whereas
a substantial body of research has been conducted in the high-field regime, taking advantage of the
efficient coherent control afforded by a spectroscopy dominated by coupling to the spectrometer,
the zero- and ultra-low-field (ZULF) regime has remained mostly unexplored. In this dissertation,
we investigate the applicability of ZULF-NMR as a novel spectroscopic technique complimentary
to high-field NMR.

In particular, we consider various aspects of the ZULF-NMR experiment and the dynam-
ics of nuclear spins under various local spin coupling Hamiltonians. We first survey zero-field
NMR experiments on systems dominated by the electron-mediated indirect spin-spin coupling
(J-coupling). The resulting J-spectra permit precision measurement of chemically relevant infor-
mation due to the exquisite sensitivity of J-couplings to subtle changes in molecular geometry
and electronic structure. We also consider the effects of weak magnetic fields and residual dipolar
couplings in anisotropic media, which encode information about nuclear magnetic moments and
geometry, and further resolve topological ambiguities by lifting degeneracies. By extending the
understanding of the interactions that contribute to ZULF-NMR spectra, this work represents a
significant advancement towards a complete description of zero- and ultra-low-field nuclear mag-
netic resonance spectroscopy.
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Symbols and Physical Constants

Symbols
→ Relates source and target sets of a map, e.g. φ : A→ B

7→ Relates a typical source element and its target element, e.g. f : x 7→ x2

∃ “There exists”

∀ “For all”

× Product; rarely, the vector cross product

⊗ Tensor product

∧ Exterior product

◦ Interior product

∈ Relates an element to its set, such as x ∈ R

⊂ Set inclusion, such as A ⊂ B

V,V∗ A vector space, and its dual

ei Basis vectors

f i Dual basis vectors

y′ Differentiation of a function with respect to its argument

ẏ Differentiation of a function with respect to time

‖ ‖ Norm on a vector space

AT Transpose of the matrix A

R The set of real numbers

C The set of complex numbers

H The set of quaternions

( · ) Metric inner product

g or ηµν Metric tensor

S n Surface of an (n + 1)-dimensional sphere

[A, B] Commutator of operators A and B; rarely, the Lie bracket of two vector fields

{A, B} Anti-commutator of operators A and B

∇ 3-vector differential operator “del”

δ
αβ
µν Kronecker delta - may contain any number of upper indices, with an equal number

of lower indices

εi jk Levi-Civita permutation symbol

〈 ji j2m1m2|JM〉 Clebsch-Gordan coefficients
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C jm
j1m1 j2m2

Clebsch-Gordan coefficients, alternative form{
j1 j2 j3

j4 j5 j6

}
Wigner 6- j symbols

j1 j2 j3

j4 j5 j6

j7 j8 j9

 Wigner 9- j symbols

D j
m′m (α, β, γ) Wigner D-matrix

d j
m′m (β) Reduced (Wigner) rotation matrix

|ψ〉 A “ket” vector in a quantum mechanical Hilbert space

〈ψ| A “bra” dual vector in a quantum mechanical Hilbert space

ρnm = cnc∗m|n〉〈m| A “density matrix” describing an ensemble quantum state; note the assumed
summation over repeated indices

| ↑↑〉 A vector in a 2-spin uncoupled basis, may be generalized to any number of
spins with additional arrows

|S 0〉 A vector in a 2-spin coupled basis with zero total spin angular momentum

|T0,±1〉 Vectors in a 2-spin coupled basis with total spin angular momentum 1

R(Ω) A 3D Euler rotation

θ Polar angle, with respect to the z-axis

φ Azimuthal angle, with respect to the x-axis

H Hamiltonian or total energy operator of a system

HD Direct dipolar coupling Hamiltonian

HRDC Residual dipolar coupling Hamiltonian remaining in a partially ordered medium

HJ Indirect spin-spin coupling Hamiltonian

HCS A Chemical shift anisotropy Hamiltonian

HQ Quadrupolar Hamiltonian

B Magnetic field vector

B0 Amplitude of a static magnetic field

Ii Spin operators

γi Gyromagnetic ratio of spin Ii

Ji j J-coupling tensor between spins Ii and I j

Jαβ,(i j) Components of the J-coupling tensor between spins Ii and I j, covariant form

Jiso
i j Isotropic J coupling between spins Ii and I j



xiv

D jk Residual dipolar coupling between spins Ii and I j

T (k)
q,q′

Rank-k spherical tensor

r Spatial vector, typically the one joining two nuclei

T1 Spin-lattice relaxation rate constant

T2 Spin-spin relaxation rate constant

t1 Evolution time in the indirect dimension of 2D experiment

t2 Evolution time in the direct dimension of 2D experiment

ω1 Indirect dimension in 2D experiment

ω2 Direct dimension in 2D experiment

Physical Constants
h Planck constant (quantum of action), 6.626 176 × 10−34 J · s

~ Reduced Planck constant ~ = h/2π

kB Boltzmann constant, 1.380 662 × 10−23 J/K

e Electron charge, 1.602 177 × 10−19 C

me Electron rest mass, 1.672 622 × 10−27 kg

mp Proton rest mass, 9.109 383 × 10−31 kg

µ0 Vacuum permeability, 4π × 10−7 V · s/(A ·m)

ε0 Vacuum permittivity, 8.854 187 × 10−12 C2 · N−1 ·m−2

gs Electron g-factor = −2.002 319 304 361 53 ±2.6 × 10−13

µB Bohr magneton, (e~)/(2me) = 9.274 × 10−24 J/T

µN Nuclear magneton, (e~)/(2mp) = 5.051 × 10−27 J/T

GF Fermi coupling constant, 4.5437 × 1014 J−2 = 1.1664 × 10−5 GeV−2
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Chapter 1

Introduction

Nuclear magnetic resonance (NMR) experiments are conventionally performed in large mag-
netic fields in order to increase chemical shift resolution and to maximize signal via higher nuclear
spin polarization and improved inductive detection sensitivity. Zero-field NMR is an alternative
magnetic resonance modality where measurements are performed in the absence of an applied
magnetic field. Unlike conventional NMR, in which “external” spin interactions - couplings to
fields originating from the experimental apparatus - are dominant, zero-field NMR presents a
regime dominated by “internal” spin interactions - couplings to fields originating from the sample
itself.

Specifically, in zero- and ultra-low-field nuclear magnetic resonance (ZULF-NMR) the Zee-
man interaction is negligible or small enough that it can be treated as a perturbation on the “local”
J-coupling and dipole-dipole interactions. In this regime, the internal spin-spin coupling Hamil-
tonians are not truncated by the imposed symmetry of a large magnetic field, so all chemical
and structural information encoded in the interaction tensors is preserved. Whereas the high-field
weak-coupling regime is optimal for chemical shift measurements, the “inverse weak coupling”
regime of zero-field is the natural environment for the observation of spin-spin couplings. These
local interactions are exquisitely sensitive to subtle changes in geometry, conformation, and elec-
tronic structure, thus serving as a valuable source of chemical and structural information.

This dissertation describes the current state of the art in zero- to ultra-low-field nuclear mag-
netic resonance (ZULF-NMR). Chapter 2 provides a theoretical background covering topics from
the fundamental nature of spin to specific Hamiltonians involved in ZULF-NMR. Chapter 3 serves
as an introduction to the operational principles and instrumentation involved in the optical detection
of low-frequency magnetic resonance signals. Chapter 4 describes the means by which observable
signals are generated in terms of non-equilibrium spin polarizations and magnetic field pulses.
Chapter 5 discusses the interpretation of zero-field J-spectroscopy in terms of perturbation theory.
Chapter 6 details the effects of small magnetic fields on ultra-low-field NMR spectra in terms of a
Zeeman perturbation on the J-coupling Hamiltonian. Chapter 7 considers the effect of anisotropy
via the introduction of residual dipolar couplings as perturbations on the J-coupling Hamiltonian.
Chapter 8 further emphasizes consequences of working in the ZULF regime by describing the
formation of long-lived heteronuclear spin states. Finally, Chapter 9 summarizes current results,
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describes ongoing experiments, and proposes future directions for ZULF-NMR.
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Chapter 2

Theoretical Preliminaries

So I guess this is where we begin –
As we ponder the nature of spin:

Those Pauli matrices
Provide relative ease,

But what symmetry added them in?

This chapter will provide essential (and at times, perhaps non-essential) background to facilitate
understanding of later chapters. We will begin with a discussion of relevant symmetries and their
effect on physical phenomena. This will be followed by a brief introduction to quantum mechanics,
which is then applied to examples in nuclear magnetic resonance (NMR). The chapter will finish
with an elucidation of definitions and conventions necessary for the discussion of zero- and ultra-
low-field NMR.

Please note that while Sections 2.1 and 2.2 provide a deeper understanding of spin as a con-
sequence of symmetry, the only essential result for the rest of the thesis will be that protons and
neutrons are spin- 1

2 particles. While I hope that the road to this result may be an entertaining di-
version, many readers may prefer to instead begin their journey with Section 2.3, which presents
a summary of quantum mechanics in terms relevant to nuclear magnetic resonance. Section 2.4
includes definitions and naming conventions that will be important going forward.
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2.1 Axioms, Conventions, and Other Assumptions
For convenience, we will avoid much in the way of metamathematics. That is, we will make

a number of assumptions that are rarely, if ever, questioned outside of courses on set theory along
the lines of

Postulate 2.1.1 ∃x(x = x)

or

Postulate 2.1.2 ∃x(x is reading this thesis)

both of which seem to be readily acceptable assumptions, even if they can’t be proven by anything
other than life experience. The reader who may now otherwise feel abandoned in an abyss of
abstract absurdity is referred to Zermelo–Fraenkel set theory [1, 2] (for a finitely axiomatizable
theory, see von Neumann–Bernays–Gödel set theory [3]) and/or the works of Camus [4] and Sartre
[5], as appropriate.

One assumption worth considering is the existence of the Universe, which we can define as the
place where experimental measurements are made. One might complain that this is another trivial
abstract assumption, but beyond defining a domain of discourse, this assumption and definition
of the Universe allows us to avoid further distractions by avoiding what cannot or has not been
observed. Specifically, we will only consider Lorentz-invariant systems governed by the symme-
tries described in the next section. Furthermore, we will generally consider only systems in flat
space-time for which the Standard Model provides a satisfactory description. We will not concern
ourselves with questions of why the fine structure constant or gravitational constant are what they
are, or why the apparent consequence of nothing nothing-ing is the existence of everything.

Additional postulates are defined as follows, beginning with five that are necessary for a proof
of the spin-statistics theorem [6, 7]:

Postulate 2.1.3 Lorentz Covariance: All physical quantities transform under some representation
of the Lorentz group.

Furthermore, the Lagrangian of any field theory is a Lorentz scalar, and is thus a Lorentz invariant
(i.e. we are working with gauge theories). That is, the laws of physics remain the same, regard-
less of the given rest frame. The continuous symmetries are those of temporal translation, spatial
translation, spatial rotation, and Lorentz boosts. More specifically, these are all space-time trans-
formations that are isometries of Minkowski space-time. The requirement of Lorentz covariance
(and the slightly stronger requirement of Poincaré covariance) will have a variety of additional uses
in this section.

Postulate 2.1.4 Locality: An object can only be affected by interactions with its immediate sur-
roundings.

Postulate 2.1.5 Causality: A given event can only be affected by those events that occur in the past
light-cone of the given event. Similarly, space-like separated field operators must either commute
or anticommute.
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Postulate 2.1.6 Finite mass: All particles have finite mass, and thus propagate.

This is important because infinitely massive particles are totally non-relativistic, which as we will
see would cause problems in describing the spin of such particles.

Postulate 2.1.7 Positive Definite: Particles are real objects, and thus the states describing such
particles possess a positive definite norm.

This last assumption is further tied to the postulates of quantum mechanics, which largely serve to
define a means by which linear algebra can be used to study quantum mechanics. The remaining
crucial postulates are as follows:

Postulate 2.1.8 A physical system is associated with a complex Hilbert space, H.

A Hilbert space is a special type of vector space, which will be defined in the next section.

Postulate 2.1.9 The space of a complex system is the tensor product of component Hilbert spaces.

For example, if the space of one particle is H1 and the space of another is H2, the space of a system
consisting of the two particles is H12 = H1 ⊗ H2.

Postulate 2.1.10 The physical state of a quantum system is associated with one-dimensional sub-
spaces (rays) within H.

Equivalently, the state is designated by a vector in a projective Hilbert space, PH.

Postulate 2.1.11 Observables are represented by Hermitian matrices on H.

This is essentially equivalent to the requirement that measurements must yield positive definite
eigenvalues.

Theorem 2.1.12 Wigner’s Theorem: transformations via physical symmetries act on H as either
unitary or antiunitary operators. [8]

Conjecture 2.1.13 Gell-Mann’s Totalitarian Principle: “Anything not forbidden is compulsory”
[9, 10].

Specifically, as Gell-Mann wrote it, “any process which is not forbidden by a conservation law
actually does take place with appreciable probability.” He continues to note that relying on “this
principle is somewhat dangerous, since it may be that while the laws proposed in this communica-
tion are correct, there are others, yet to be discussed, which forbid some of the processes that we
suppose to be allowed.” [9]. This may be reformulated to say that any particle, state, or transition
that is not forbidden by symmetry does exist or will occur and the absence of any apparently al-
lowed particle, state, or transition is then evidence that there exist additional symmetries that have
not been considered.

We also point out that covariant and contravariant tensor indices are denoted with subscripts
and superscripts, respectively. For notational convenience, we will sometimes follow the Einstein
summation convention, omitting explicit summation symbols for the case of repeated indices. This
is primarily for Section 2.2, after which we will try to be more explicit to avoid confusion for
readers who may have less experience with tensor analysis.
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2.2 Physics→ Symmetry: Symmetry→ Physics
At a fundamental level, physics is based on geometry. The basic building blocks of the Universe

– particles and fields – may be understood as geometric objects, and the properties of these objects
are directly related to how they transform under symmetry operations.

2.2.1 Group Theory Basics
In order to effectively discuss the symmetries involved in physics, we now introduce the math-

ematical tools of group theory. The first natural first step is to define what a group is.

Definition A group G is a set of elements {a, b, c, . . . } which includes a composition rule and is
closed such that if a ∈ G and b ∈ G, then the product ab ∈ G.

Furthermore, the composition rule must be associative, i.e. (ab)c = a(bc), and the group must
contain a unique identity element e such that ae = ea = a. In order for the group to be closed,
there must also exist an inverse a−1 for each element a ∈ G such that aa−1 = a−1a = e. If a group
is commutative, i.e. ab = ba, then the group is said to be abelian.

There exists a prodigious literature on the fundamentals of group theory, so we will not attempt
to expound too thoroughly on the topic. We will instead simply define a few terms that will be
useful going forward.

Definition A homomorphism is a structure-preserving map between two groups (or more gener-
ally, between any two algebraic structures). Given two groups (G, ∗) and (H, ·) a group homomor-
phism from (G, ∗) to (H, ·) is a function h : G → H such that for all a, b ∈ G, h(a ∗ b) = h(a) · h(b).

Definition An isomorphism is a bijective homomorphism.

Definition An endomorphism is a homomorphism from a mathematical structure onto itself. So
a group endomorphism would be f : G → G, an endomorphism of a factor space is a linear map
f : V → V , etc.

Definition An automorphism is an isomorphism from a mathematical structure onto itself. Be-
cause an automorphism is a bijective mapping of a structure onto itself while preserving its struc-
ture, automorphisms correspond to symmetries of mathematical structures. The automorphism
group is the set of all automorphisms of a mathematical structure. In the case of a topological
space endowed with a metric, an isometry is an automorphism between metric spaces that pre-
serves distance.

Definition The general linear group of degree n over a field F is the set of n×n invertible matrices,
together with the group operation of matrix multiplication, denoted GLn(F). More generally, the
general linear group of a vector space V is the automorphism group of V . For n dimensional V
over F, GL(V) is isomorphic to GLn(F). The special linear group is the subgroup of the general
linear group consisting of matrices with unit determinant.
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Definition A Lie group is a group that is also a differentiable manifold, in which the group opera-
tions of multiplication and inversion are smooth maps. Lie groups are deeply connected to physics
and symmetry, but before we can describe this connection further, we need to first focus on a few
other basic geometric concepts.

2.2.2 Vectors, Forms, Tensors, etc.
The careful (or, perhaps, confused) reader may notice that many of the postulates that were

introduced earlier made mention of things called vector spaces, without providing any explanation
of what these mysterious mathematical entities actually are. Having moved past the somewhat
philosophical overview, we will now remedy this situation.

Definition A vector space over a field F is a set, V , that includes the operations of vector addition
(which maps two elements of V into a third element of V) and scalar multiplication (which multi-
plies an element of F by an element of V to yield another element of V). Furthermore, the vector
addition must be associative and commutative, and there must exist an inverse (and thus an identity
element). The scalar multiplication must also be distributive with respect to both vector and field
addition.

Definition A vector, v, vi, or |a〉 is an element of a vector space V .

Definition A scalar is an element of the field, F, over which V is defined.

It should be noted that these are “mathematical” definitions, and are thus very general. The
definitions used in classical physics are somewhat more specific, referring to geometric vectors. In
order to we will need to define a few more concepts.

Definition A dual space V∗ is a set of linear functionals that map the elements of V into elements
of F, (φ : V → F).

Definition A covector or 1-form, α, α j, or 〈b| is an element of a dual space V∗. When using
the bold-face symbol representation, we will try to use Greek letters to distinguish 1-forms from
vectors.

If the vector space V is endowed with an inner product operation, ( · ) : V × V → F
that maps two vectors into a scalar, then that vector space is referred to as a Hilbert space. As a
consequence of this property of the space, there is then a bijective correspondence between vectors
in V and the 1-forms in V∗. Because we can define an orthonormal basis of vectors such that
(|a′〉 · |a〉) = 1 if |a′〉 = |a〉 and (|a′〉 · |a〉) = 0 otherwise, we can then identify a 1-form 〈a| that
operates the exact same way on vectors as (|a′〉· ) does. Then we can rewrite the inner product
(|a′〉 · |a〉) = 〈a′|a〉 with the same properties.

If the vector space is also endowed with a metric, ηµ,ν, the inner product between aµ and bν may
also be written as aµηµ,νbν, implying a metric-dependent correspondence between 1-forms aµ and
bν such that aµbν = aµηµ,νbν. In the case of Euclidean space, the metric is simply the 3 × 3 identity
matrix, so we may then write aµbν = δ

µ
ν
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Definition A tensor is a multilinear map, T : V∗ × · · · ×V∗ ×V × · · · ×V → F, that transforms un-
der rotations as T i1···in

in+1···im
7→ (R−1)i1

j1
· · · (R−1)in

jn
R jn+1

in+1
· · ·R jm

im
T j1··· jn

jn+1··· jm
, where summation over repeated

indices is assumed. An order-m tensor of type (n,m − n), having n contravariant indices and m − n
covariant indices maps n copies of V∗ and m copies of V onto F.

Here we point out that geometric vectors, covectors, and scalars are actually all examples of
geometric tensors, differing only by their rank. A vector is a type (1, 0) tensor, a covector is a type
(0, 1) tensor, and a scalar can be thought of as a type (0, 0) tensor. It is also immediately apparent
that a scalar is invariant under rotations, as the definition above becomes T 0

0 7→ T 0
0 for a type (0, 0)

tensor. We also see that the product of a covector with a vector is a scalar, as expected from the
definition of a covector, because T 0

i T i
0 7→ (R−1)i

jR
j
i T

0
j T

j
0 = T 0

j T
j

0.

Reducible Cartesian Tensors

This (Cartesian) approach to tensor analysis does, however, have certain limitations, as some
potentially intuitive aspects of the geometric interpretation become muddled. For example, the
identity matrix (of any rank, in any number of dimensions) is by definition a tensor, but it is also
invariant under rotations, which makes it seem rather more like a scalar. Another common example
is that of a “dyadic,” an easily constructed tensor of the form aib j. In Euclidean 3-space, this may
be written as

aib j =

a
1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 . (2.1)

Clearly aib j is a rank-2 tensor. However, while the entire tensor transforms as a rank-2 tensor
should, it can be rewritten as

aib j =
aib j + a jbi

2
+

aib j − a jbi

2
, (2.2)

where the first term is symmetric under exchange of indices, and the second is antisymmetric. This
may be extended further to write

aib j =
aib jδ

j
i

3
+

aib j − a jbi

2
+

aib j + a jbi

2
−

aib jδ
j
i

3

 , (2.3)

where the first term transforms as a scalar, the second term transforms as an antisymmetric rank-1
tensor, and the third term transforms as a symmetric and traceless rank-2 tensor. The first term has
only one independent component, the second has three independent components, and the third has
five independent components. Our dyadic tensor is therefore reducible to three different tensors
that transform differently under rotations! The idea of tensors that may also be referred to as scalars
is somewhat disconcerting, and furthermore, easily leads to major confusion (particularly for those
of us who are not mathematicians). While this may not necessarily be a common issue in quantum
mechanical practice, it still seems that a resolution of this increasingly opaque problem is needed.
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More on Tensors

As we attempt to clarify our definitions, we will adapt some of the language from Misner,
Thorne, and Wheeler’s seminal book on differential geometry (and, of course, general relativity)
[11], where tensors are defined as “machines” that take a certain set of inputs to produce a certain
kind of output. Vectors can then be treated as any kind of object satisfying earlier definitions,
including arrows pointing between two points in Euclidean space (or two events in space-time),
a tangent vector, basis states of a quantum system, etc.. A 1-form is then a machine that takes
a vector as its input and outputs a number (specifically, an element of the field over which the
vector space is defined). Conveniently, we can also define vectors and 1-forms in a coordinate-free
fashion such that a vector v = viei or a 1-form α = αi f i, where ei are the basis vectors (which,
potentially confusingly, are 1-forms) and f i are the basis 1-forms (again, note that they are vectors)
for a given rest frame. A tensor of type (n,m) is a linear machine with “slots” for n 1-forms and m
vectors. In a specific rest frame, we can define basis vectors and 1-forms such that the components
of the tensor S are

S αβ
γ ≡ S( fα, f β, eγ), (2.4)

where S is a type (2, 1) tensor. Then the output for actual 1-forms and vectors is

S(φ,ψ, v) = S(φα fα, ψβ f β, vγeγ) = φαψβvγS( fα, f β, eγ) = S αβ
γ φαψβv

γ. (2.5)

That the output of Eq. (2.5) is a scalar reinforces a fact about tensors that may have been missed
previously: a tensor of any rank other than zero may be contracted to a tensor of lower rank by
summing over repeated indices. For example the type (3, 1) tensor R with components Ri jk

i is by
definition equivalent to the type (2, 0) tensor with components R jk.

There are several other ways to produce tensors from other tensors – we will only discuss a
few relevant ones, while others are listed in Ref. [11]. One method that we have already used
implicitly is the tensor product, defined for two vectors as T = u⊗ v, which produces a tensor with
components T i j = uiv j. As with the dyadic example, this can be written in terms of a symmetric
product and an antisymmetric product: T = 1

2 (u ⊗ v + v ⊗ u) + 1
2 (u ⊗ v − v ⊗ u).

The antisymmetric term of the tensor product is also referred to as the exterior product and may
be written as u∧v = u⊗v−v⊗u. When the exterior product acts on two vectors, it produces a bivec-
tor, which may be visualized as an oriented two-dimensional surface. The orientation is dependent
on the ordering of the terms, so u ∧ v = −v ∧ u. Because orientation implies a sense of rota-
tion, bivectors are related to rotations in that bivectors generate rotations through an exponential
map (more specifically, they generate rotations in three-dimensions and Lorentz transformations in
four-dimensional Minkowski space-time). Furthermore, the bivector algebra is isomorphic to the
quaternion algebra, which is unsurprising considering the connection to rotations. Bivectors are
also associated with axial vectors (or pseudovectors) by way of an isomorphism provided by the
Hodge dual. That is to say that both bivectors and pseudo vectors transform like rotations under
proper rotations, but change sign relative to vectors under improper rotations, such as reflections.

The exterior product of two 1-forms is a 2-form given by α ∧ β = α ⊗ β − β ⊗ α. 2-forms
are somewhat more difficult to visualize, but may be thought of as a machine that takes a surface
(consider the connection to bivectors) as an input and outputs a scalar. While we will not make
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significant use of such objects in this thesis, two-forms are of immense value in the relativistic
theory of the electromagnetic force. For example, the electromagnetic field tensor is defined as
F = 1

2 Fαβ dxα ∧ dxβ (where dxα are basis 1-forms in the language of the exterior calculus of
differential forms), allowing the electromagnetic field equations to be written succinctly as dF = 0
and d∗F = 4π ∗J where ∗F is the dual of F, and ∗J = 1

6 Jαεαβγσdxβ∧ dxγ∧ dxσ is the current 3-form.
The symmetric interior product of two vectors is given as u ◦ v = u ⊗ v + v ⊗ u. The symbol ◦

is used to differentiate the interior product, which produces a rank-2 tensor that transforms like a
scalar, from the inner product, which produces an actual scalar. The tensor produced by the interior
product may be transformed into the scalar produced by the inner product by contraction with the
metric.

Irreducible Spherical Tensors

Having now established some of the tools of tensor analysis, we return to the problem of
our reducible tensors that seem confusingly to sometimes also be vectors or scalars. The answer,
perhaps unsurprisingly, lies in the awareness that the Cartesian basis is not generally well-suited for
describing rotational symmetry – describing tensors in the spherical basis is far more appropriate!
We will denote contravariant spherical tensors of rank (k) and index q as T(k)

q . A vector v, which in
three-dimensional Euclidean space can be expressed as

v = vxex + vyey + vzez (2.6)

can be expressed in the spherical basis as

v = v+e+ + v−e− + v0e0, (2.7)

where the spherical basis vectors may be written in terms of the Cartesian basis vectors as

e0 = ez,

e± = ∓
1
√

2

(
ex ± iey

)
. (2.8)

A spherical tensor T(k)
q may then be written by simply constructing it out of spherical vectors (a

similar procedure may be used to produce covariant or mixed-type spherical tensors by including
spherical 1-forms). For the dyadic tensor aibi we can then write the irreducible tensor components
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as

T (0)
0 =

(a+b− + a−b+ − a0b0)
3

,

T (1)
0 =

(a+b− − a−b+)
2

,

T (1)
±1 =

(a±b0 − a0b±)
2

, (2.9)

T (2)
0 =

(a+b− + 2a0b0 + a−b+)
√

6
,

T (2)
±1 =

(a±b0 + a0b±)
√

2
,

T (2)
±2 = a±b±.

We will consider additional details of spherical tensors, in terms of quantum mechanical spher-
ical tensor operators in Section 2.3.7.

2.2.3 Representation Theory Basics
In order to connect the abstract notions of group theory to more concrete physical systems,

we consider representations of group elements as linear transformations of vector spaces. This
effectively transforms group theory into linear algebra, which is generally more cognitively com-
fortable. Formally, a representation ρ of a group G on a vector space V is a group homomorphism
from G to the general linear group on V , i.e.

ρ : G → GL(V)

such that
ρ(g1g2) = ρ(g1)ρ(g2), ∀g1g2 ∈ G

For example, consider the finite point group C2v, which is composed of four symmetry op-
erations: the identity operation (E), a twofold symmetry axis (C2), and two orthogonal mirror
planes (σv and σ′v). We can then define ρm as a representation of this group over three-dimensional
Euclidean space such that each operation corresponds to a 3 × 3 matrix:

C2v E C2 σv σ′v

ρm

1 0 0
0 1 0
0 0 1


−1 0 0

0 −1 0
0 0 1


1 0 0
0 −1 0
0 0 1


−1 0 0

0 1 0
0 0 1

 .
As another example, consider the infinite group of 2 × 2 orthogonal matrices with determinant

+1, which is referred to as SO(2). This group may be represented as the set of two-dimensional
rotation matrices,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.
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Note that as SO(2) is an infinite group, this representation is also infinite. Additionally, the repre-
sentations are parametrized by the angle θ, which may be smoothly varied to give any representa-
tion of the group. Multiplication in SO(2) corresponds to simply adding the angles, and inversion
corresponds to a rotation in the opposite direction (i.e. by a negative angle), both of which are
differentiable maps. SO(2) is thus an example of a Lie group.

2.2.4 Some Comments on Topology
For a more complete description of topics in algebraic topology, the reader is referred to Naka-

hara’s Geometry, Topology, and Physics[12], Nash and Sen’s Geometry and Topology for Physi-
cists[13], and Frankel’s The Geometry of Physics: An Introduction[14]. Here we only briefly touch
on a few relevant definitions to help clarify a few relatively opaque topics that will influence our
discussion in the next section.

A manifold is a topological space that is locally Euclidean, so that each point of an n-dimensional
manifold has a neighborhood that is homeomorphic to Rn. Then there is a chart at each point which
is an invertible map between the manifold in neighborhood of said point and Rn. The set of charts
covering a manifold is called an atlas. As an example, the plane R2 is an example of a manifold,
which may be charted by polar coordinates (with the exception of the positive x-axis and origin).

A smooth manifold (or differentiable manifold) is a manifold for which overlapping charts
are smoothly compatible in such a way that the manifold is locally similar enough to a linear
space to allow for differential calculus to be performed. That is, the transition between charts is
differentiable, so the manifold must have a globally defined differential structure.

Lie groups are an important example of groups that are also differentiable manifolds. As a
result, one can define a space of infinitesimal linear elements of the group localized at the identity
element of the group, which is the corresponding Lie algebra of the group. Specifically, this may
be treated as the tangent space at the identity. Because the elements of the Lie algebra have a
differential relationship to the Lie group, the Lie algebra g can be thought of as the elements X
for which exp(tX) ∈ G for all t. Because of this connection, there is a one-to-one correspondence
between the representations of a Lie algebra and the representations of the corresponding Lie
group. The center of a Lie algebra g consists of all elements x ∈ g such that [x, g] = 0 for all g ∈ g.

We can also define the connectivity of a manifold (or any topological space). A connected
space is a topological space that cannot be represented as the union of two or more disjoint
nonempty open subsets. A path-connected space is a topological space where any two points in the
space can be connected by a continuous function, or path. A topological space is simply connected
if it is path-connected and every path between any two points can be continuously transformed
within the space into any other path without moving the endpoints (the paths are then homotopic
and the mapping between one path and another is a homotopy). An equivalent definition is that a
space is simply connected if any closed path (i.e. a loop) can be smoothly contracted to a point.
For example, the surface of a 3-dimensional ball is simply connected, but a torus is not simply-
connected (imagine contracting a string tied around a donut such that the string goes through the
hole).1

1I feel that I am obligated by topological tradition to point out that in terms of connectivity and homotopy, a donut
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It is also possible to define a continuous map p from a topological space C to a topological
space X such that each point in X has an open neighborhood evenly covered by p. The topological
space C is then called the covering space of X, and the homeomorphic copies in C of an evenly
covered neighborhood U are called the sheets over U. One example is that every space is trivially
a cover of itself (with a single sheet). A more useful example is that SU(2) is the double cover of
SO(3) (double cover meaning that there are two sheets). If a covering space is simply connected,
it is a universal covering space. If X is a Lie group, then so is its universal covering group,
and the mapping p is a group homomorphism. This is useful for quantum mechanics because
representations of the universal covering group are projective representations of the classical group
X.

We will also mention an interesting theorem from algebraic topology: there is no nonvanishing
continuous tangent vector field on even-dimensional n-spheres [15].2 As a result, it is not possible
to define a smooth set of frames in all tangent spaces on even-dimensional n-spheres, so such
manifolds (e.g. S 2) cannot be a Lie group manifold. We will see the influence of this theorem
indirectly in our search for the symmetry-based origins of spin.

2.2.5 Spin and the Poincaré Group
One of the most fascinating developments in physics and mathematics of the 20th century is

that particle Hilbert spaces are group representations of the symmetry group, G, of the universe
(technically, projective Hilbert spaces are projective group representations of G, but one may gen-
erally neglect this minor subtlety). Because each type of particle corresponds to a representation
of G, if we can classify the group representations of G, we can develop a powerful intuition about
the possibilities and properties of particle Hilbert spaces, and thus the kinds of particles that can
exist. This very connection between symmetry and physics is the basis for virtually all of modern
particle physics, particularly the Standard Model. In fact, it essentially means that all we need to
do to fully understand fundamental physics is to fully understand the symmetry of the universe.

Of course, the fact that not all problems in physics have been solved, and physicists are still do-
ing research is fairly strong evidence that we do not, in fact fully understand fundamental physics.
By extension, we can conclude that we do not fully understand the symmetry of the universe.
While this may be disheartening to readers who were hoping that one small section of a chemistry
Ph.D. dissertation would present a conclusive unified theory of physics, it is not at all surprising
– the universe is notoriously difficult to understand, so we do not know all of the symmetries of
the universe, or, for that matter, how the symmetries that we do know about all fit together. We
have, however, determined a large number of apparent symmetries, which we may use to inform
our current understanding of physics.

The symmetry group in which we are particularly interested for the purpose of this section is
the group of isometries of space-time. For those of us who try to spend as little time as possible
a long distance away from black holes or other particularly massive objects, we may generally
approximate our local space-time geometry as Minkowski space [16] (technically, local space-

and coffee cup are topologically equivalent.
2This is often stated in more amusing language as “you can’t comb flat the hair on a coconut.”



2.2. PHYSICS→ SYMMETRY: SYMMETRY→ PHYSICS 14

time geometries are always isomorphic to Minkowski space so long as one avoids singularities
or non-simply connected locales). We may define this space as a 4-dimensional manifold where
distances between points are computed in terms of the differential length

ds2 = −de2
0 + de2

1 + de2
2 + de2

3, (2.10)

where e0 is the basis vector corresponding to time (which may be written e0 = c · t for those who
prefer to set the speed of light to something other than c = 1), and ei are the spatial basis vectors.

The group of isometries that leave ds2 invariant is called the Poincaré Group [17], and is made
up of ten basic group generators: translations in time, translations in one of the three spatial di-
mensions, rotations about any of the three spatial axes, or Lorentz boosts in any of the three spatial
dimensions. Following the group axioms presented earlier, the product of any two isometries is
also an isometry, and there is always an inverse that can be applied to an isometry to yield the
identity. The Lie algebra of the Poincaré group is the Poincaré algebra, given by the following
commutation relationships: [

Pµ, Pν

]
= 0,[

Mµν, Pρ

]
= ηµρPν − ηνρPµ, (2.11)[

Mµν,Mρσ

]
= ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ,

where P is the generator of translations, M is the generator of Lorentz transformations, and η is the
Minkowski metric. If we write rotations as Ji = εimnMmn/2 and boosts as Ki = Mi0, we can write
this in a potentially more understandable form

[Jm, Pn] = iεmnkPk,

[Ji, P0] = 0,
[Ki, Pk] = iηikP0,

[Ki, P0] = −Pi, (2.12)
[Jm, Jn] = iεmnkJk,

[Jm,Kn] = iεmnkKk,

[Km,Kn] = −iεmnkJk.

The Poincaré algebra has two Casimir invariants, PµPµ and WµWµ, where Pµ is the four-
momentum (the generator of translations), and Wµ is the Pauli-Lubanski pseudovector, defined
as

Wµ ≡
1
2
εµνρσJνρPσ, (2.13)

where Jνρ is the angular momentum tensor, which should not be confused with the Ji of Eq. (2.12).
The Casimir invariants are members of the center of the universal enveloping algebra and, by def-
inition, commute with all other elements of the Poincaré algebra. Because in any irreducible rep-
resentation of a Lie algebra the Casimir operators are proportional to the identity (Schur’s Lemma
[18]), the constant of proportionality can be used to classify the representations of said Lie algebra,
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and by extension, its Lie group. In other words, the eigenvalues of the Casimir operators of a Lie
algebra serve as indices of the irreducible representations of the Lie group.

In the case of the Poincaré algebra, the first Casimir invariant PµPµ has eigenvalues of mass, so
one of the indices of the irreducible representations of the Poincaré group is mass, corresponding
to the rest mass of a particle. In fact, we can write

PµPµ = ηµνPµPν = |p|2 −
E2

c2 = −m2c2, (2.14)

where p is the 3-momentum, showing that the invariance of PµPµ directly leads to conservation of
mass!

In the case of a massive particle, the Casimir invariant WµWµ has eigenvalues WµWµ = −m2s(s+
1), where s is some kind of mysterious parameter that we refer to as “spin.” The reason for its name
is that if we look at the rest frame of the particle, W i = Ji and W0 = 0, so WµWµ = −m2J2, showing
the connection to the 3-dimensional rotation group SO(3), which has Casimir invariant J2.

For massive particles in their rest frame, i.e. the non-relativistic case, we may consider spin
in terms of SO(3). Perhaps the most important aspect for our purposes is that SO(3) is not simply
connected, 3 so unlike geometric vectors, the irreducible representations that we are looking for are
actually sensitive to the different homotopy classes of the underlying topology. Therefore, in order
to determine the irreducible representations of SO(3), we consider the universal covering group,
SU(2), which is diffeomorphic to the sphere S 3 (the 3-dimensional surface of a 4-dimensional
ball), and is thus simply connected. More specifically, we will consider su(2), the Lie algebra of
SU(2), which is spanned by three elements J+, J−, and Jz with Lie brackets[

Jz, J+

]
= J+,

[
Jz, J−

]
= −J−, [J+, J−] = Jz. (2.15)

We may then generalize the notion of eigenvalues of the representations of the algebra, called
weights. If x is an eigenvector with weight α, then

Jz[x] = αx,
Jz[J+[x]] = (α + 1)x, (2.16)
Jz[J−[x]] = (α − 1)x,

showing that J± may simply be treated as ladder operators, and Jz used to read out the weight. As
stated earlier, J2 = J2

z + J+J− + J−J+ is a Casimir invariant, and commutes with all other generators
of the algebra. Furthermore, the action of J2 is proportional to the identity map for irreducible
representations, with this proportionality constant written as λ(λ+1). For the representation x with
the greatest weight, α1, such that J+[x] = 0, it is easily shown that(

J2
z + J+J− + J−J+

)
x = (α2

1 + α1)x = λ(λ + 1)x = J2x, (2.17)

3To see this, consider holding a half-filled glass of whiskey in your hand. It is possible to rotate the glass by 360◦,
without spilling any of your whiskey, by rotating your arm at the elbow such that your forearm passes either above or
below your elbow, leaving your arm twisted. It is in fact impossible to smoothly deform your arm back to its untwisted
state without rotating more about your elbow, or spilling your whiskey (obviously unacceptable). The only options to
return to the original state are to rotate backward for an overall rotation of 0◦, or to continue the rotation forward for
an overall rotation of 720◦.
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so that α1 equals either λ or −(λ + 1). For the representation x with the lowest weight, α2, where
J−[x] = 0, it may be similarly shown that (α2

2 − α2)x = λ(λ + 1)x, so α2 equals either −λ or λ + 1.
For irreducible finite-dimensional representations, the highest weight must be greater than the

lowest weight, and the difference between the two must be an integer. Considering the possible
values for α1 and α2, this means that the highest weight must be λ and the lowest weight must be
−λ. Based on these constraints, it is immediately apparent that the smallest non-zero weight repre-
sentation of SU(2), and thus SO(3), is the fundamental representation with λ = 1

2 . It may be easily
shown that states that transform under this representation acquire a phase shift following a rotation
by 360◦, and are only returned to their initial state by a 720◦ rotation [see, for example, Ref. [19]],
thus corresponding to spin- 1

2 fermions. Representations with λ = 1 (the adjoint representations)
are also faithful representations of SO(3), and correspond to massive spin-1 particles as well as
3-dimensional rotations. All representations with higher λ are faithful representations of SO(3),
and are generally used to refer to composite particles/states.

The reader curious about the representations of spin not in the particle’s rest frame4 is referred
to Section 19.3 of Frankel’s The Geometry of Physics: An Introduction[14], which considers the
topology of the Lorentz group.5 The essential result is that the Lorentz group has double cover
SL(2,C). Also, the complexification of the Lie algebra of the Lorentz group, so(3, 1)C is isomor-
phic to sl(2,C) ⊕ sl(2,C) [20]. The representations π(m,n) : so(3, 1) → gl(V) are given in terms of
the generators of rotations Ji and of boosts Ki by

π(m,n) (Ji) = 1(2m+1) ⊗ J(n)
i + J(m)

i ⊗ 1(2n+1) (2.18)

π(m,n) (Ki) = i
(
1(2m+1) ⊗ J(n)

i − J(m)
i ⊗ 1(2n+1)

)
, (2.19)

where the J(n) =
(
J(n)

1 , J(n)
2 , J(n)

3

)
are the (2n + 1)-dimensional irreducible spin-n representations of

su(2) and 1n is the n-dimensional identity matrix (see Section 5.6 of Ref. [21]). Then π(0,0) is the
Lorentz scalar representation and π( 1

2 ,
1
2 ) is the four-vector representation. π( 1

2 ,0) is the left-handed
Weyl spinor representation, π(0, 1

2 ) is the right-handed Weyl spinor representation, and π( 1
2 ,0)⊕π(0, 1

2 ) is
the Dirac bispinor representation [22]. The left- and right-handed representations are particularly
important when considering the weak nuclear force, which only interacts with left-handed particles
and right-handed antiparticles [23, 24, 25].

2.2.6 Nucleon Spin
All matter that is stable enough to be studied by chemistry consists of atoms having nuclei

composed of two kinds of nucleons, protons and neutrons. Protons and neutrons are baryons,
4Generally not of practical importance for NMR, except for in cases where the weak nuclear force plays a role

(important for possible measurements of parity violation), or of course, in cases where the sample and magnet are
moving at relativistic speeds with respect to each other. The author is unaware of any examples of such a configuration,
though it would be an impressive sight. Measurement of astronomical phenomena involving relativistic spins in strong
magnetic fields (e.g. near to magnetars or supermassive black holes) may be possible, though strong gravitational
effects altering space-time topology would have to be considered.

5For the mathematically talented (or masochistic) reader, Section 19.5 considers spin topology in curved space-
time.
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meaning that their properties are primarily determined by three valence quarks. Furthermore,
protons and neutrons exist in the ground state having baryons angular momentum L = 0, so the
total angular momentum of either nucleon is determined by its spin, which must be based on its
constituent quarks. Quarks are massive spin-1

2 fundamental particles which possess an electric
charge (weak hypercharge in the electroweak theory), a weak isospin, and a strong color charge,
thus allowing quarks to interact with all four known fundamental forces. There are six different
types of quark (up, down, strange, charm, top, and bottom), but the valence quarks of protons and
neutrons are only up or down quarks. An up quark has electric charge +2

3e (e is the charge of
an electron) and a down quark has electric charge −1

3e. Specifically, a proton has two up valence
quarks and a down valence quark, yielding a total electric charge of +e, and a neutron has one up
valence quark and two down valence quarks, and so has a total electric charge of 0.

The total spin of a baryon is determined by the total spin of its constituent quarks. If one
assumes that all “sea quarks” (non-valence quarks) are paired, then a baryon may only have a total
spin of 1

2 or 3
2 . Indeed, protons and neutrons are both spin-1

2 particles, though recent results from
deep inelastic scattering experiments on polarized nuclear targets [26] indicate that the projections
of valence quark spins add up in such a way that valence quarks only account for around one-third
of the total proton spin, showing that the naive model is insufficient. In fact, it appears that one
must include the relativistic motion of the valence quarks, the pion cloud of the nucleon, and the
virtual excitation of anti-quarks in low energy p-states through the one-gluon-exchange hyperfine
interaction in order to understand the quark contribution to the proton spin [27]. The remaining
spin is presumably carried by polarized gluons and quark/gluon orbital angular momentum, though
the question remains open [28].

As such, though it is clearly the case that both protons and neutrons are spin- 1
2 particles, it is not

yet possible to completely determine the sources of this spin. This becomes particularly important
when trying to determine the source of nuclear magnetic moments. For example, the magnetic
moment of the up and down quarks, as fundamental spin-1

2 particles, should be

µu =
gse
3mu

S,

µd = −
gse
6md

S, (2.20)

where we have assumed that the g-factor should be the same as for the electron, being determined
entirely by quantum electrodynamics. The difficulty is that these equations imply “free” quarks,
which cannot be measured due to asymptotic freedom, a property of the strong nuclear force. Re-
lated to this issue is the difficulty in accurately measuring masses for quarks, which are generally
poorly defined due to the strong confinement by the fields of quantum chromodynamics. In fact,
the majority of the mass of the proton is due to massless gluons, which contribute to the quantum
chromodynamics binding energy, with valence quark mass (due to the Higgs mechanism) con-
tributing only about 1% of the total mass. Even if the quark masses were known well, the strong
coupling in the low-energy regime of quantum chromodynamics makes calculations much more
complicated than simply adding up apparent quark magnetic moments. While advances in Lattice
QCD may eventually yield ab initio calculations in agreement with nucleon magnetic moments,
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calculations for larger nuclei may remain non-trivial, so for the foreseeable future we will express
nuclear magnetic moments in terms of the nuclear magneton, µN:

µI =
gIµNI
~

, (2.21)

where gI is the g-factor of the nuclear spin I.
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2.3 Nuclear Magnetic Resonance
Now we return to a much more tangible reality, introducing quantum mechanics as needed for

the description of nuclear magnetic resonance experiments. Comments and tangents related to the
preceding sections will generally be confined to footnotes for the convenience of the casual reader,
as the deeper fundamental mathematical understanding is useful, but not necessary. For a more
complete introduction to quantum mechanics, the reader is referred to Sakurai’s Modern Quantum
Mechanics[19], which is recommended in particular due to the exceptional treatment of angular
momentum and symmetry.

2.3.1 Nuclear Spin States
Nuclei are composed of protons and neutrons, which are spin-1

2 particles. Thus nuclei with
unpaired nucleons will themselves possess spin. The term nuclear spin refers to the total angular
momentum of a nucleus, which may be determined from the nuclear shell model [29], which mod-
els nuclear structure via a deformed harmonic oscillator potential including spin-orbit coupling.
For a trivial example, the unpaired proton of 1H is in the 1s1/2 state, so the total nuclear spin is
1
2 . Similarly, for 13C, the six protons are are all paired, with two in the 1s1/2 state and four in the
1p3/2 state. Six of 13C’s neutrons are also paired (in the same 1s1/2 and 1p3/2 states), but the sev-
enth neutron is unpaired in a 1p1/2 state, yielding a nuclear spin of 1

2 . In general, one needs only
consider the last unpaired nucleon (or nucleons), as all other spins will pair up. For example, the
spin of 27Al is 5

2 because the 13th proton is in a 1d5/2 state, and all 14 neutrons are paired. It is also
important to consider the case where a nucleus has an odd number of both protons and neutrons,
such as 14N, which has nuclear spin 1 because the seventh proton and the seventh neutron are both
in 1p1/2 states. The nuclear magnetic moment of a nucleus with non-zero spin is then given by
Eq. (2.21). However, in NMR it is typically convenient to rewrite the nuclear magnetic moment in
terms of a nucleus’ gyromagnetic ratio,

γI =
gIµN

~
, (2.22)

where gI is the nuclear g-factor and µN is the nuclear magneton, such that the magnetic moment
may be written in condensed form as

µI = γII. (2.23)

The state of a spin-1
2 nuclear spin may be written as a two-component spinor,

|ψ〉 =

(
α
β

)
, (2.24)

where α is the projection of the state onto the basis spinor

|α〉 =

(
1
0

)
, (2.25)
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and β is the projection of the state onto the basis spinor

|β〉 =

(
0
1

)
, (2.26)

such that

|ψ〉 = α

(
1
0

)
+ β

(
0
1

)
. (2.27)

α and β are in general complex scalars, and are typically normalized such that |α|2 + |β|2 = 1. In this
notation, |ψ〉 is called a ket, and |α〉, |β〉 are the basis kets for the vector space H. By defining an
inner product operation, thus making our vector (ket) space a Hilbert space, we can further show
that our basis is orthonormal,

|α〉 · |β〉 = δαβ. (2.28)

We may also define a dual space with elements

〈ψ| =
(
α∗ β∗

)
, (2.29)

where α∗ is the projection of the covector onto the basis form

〈α| =
(
1 0

)
, (2.30)

and β∗ is the projection of the covector onto the basis form

〈β| =
(
0 1

)
, (2.31)

such that
〈ψ| = α∗

(
1 0

)
+ β∗

(
0 1

)
. (2.32)

Here 〈ψ| is called a bra, and 〈α|, 〈β| are the basis bras for the dual space H∗. Furthermore, having
defined the inner product space before, we can establish a correspondence between the bra and ket
spaces such that

〈α|β〉 = |α〉 · |β〉 = δαβ. (2.33)

The dual correspondence is generally defined in terms of the Hermitian conjugate, such that 〈ψ| =
|ψ〉† and α∗ and β∗ are the complex conjugates of α and β, respectively.

The Hilbert space describing a composite system of two (or more) spins is simply formed by
the tensor product of the component spaces. For two spins, H12 = H1 ⊗ H2, so the the basis kets
may be defined in terms of

|αα〉 = |α〉⊗|α〉 =


1
0
0
0

 , |αβ〉 = |α〉⊗|β〉 =


0
1
0
0

 , |βα〉 = |β〉⊗|α〉 =


0
0
1
0

 , |ββ〉 = |β〉⊗|β〉 =


0
0
0
1

 , (2.34)

and the basis of the dual space H∗12 may be readily formed via Hermitian conjugation of these basis
vectors.
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2.3.2 Operators
An operator, Â, is a function over the state of physical states. Any physical observable, A

is associated with a self-adjoint linear operator with real eigenvalues, otherwise referred to as a
Hermitian operator.6 An operator may also be thought of as a “machine” that acts on a state vector
to yield another state vector multiplied by a scalar. For an eigenket |φ〉 of Â,

Â |φ〉 = a |φ〉 , (2.35)

where a is the eigenvalue of Â, corresponding to the measured value of the observable A on the
state |φ〉. The expectation value of the observable A for a physical state |ψ〉 is

〈A〉 =

〈
ψ|Â|ψ

〉
〈ψ|ψ〉

, (2.36)

where the denominator is equal to one may be omitted if the state vector is normalized. This
condition is not generally necessary, but it does substantially clean up notation, so we will typically
endeavor to use normalized vectors whenever possible.

It should be noted that operators may act on either bras or kets, acting on bras to the operator’s
left and on kets to the operator’s right. So for an eigenket |φ〉 of Â with eigenvalue a, there also
exists an eigenbra 〈φ| such that

〈φ| Â = a 〈φ| , (2.37)

due to the dual correspondence between the bra and ket spaces.
An important detail about operators is that they do not in general commute, so ÂB̂ |ψ〉 , B̂Â |ψ〉.

There is a super-operator, called the commutator that acts on operators such that[
Â, B̂

]
= ÂB̂ − B̂Â. (2.38)

If the commutator of Â and B̂,
[
Â, B̂

]
= 0, then Â and B̂ are said to commute. It is worth noting

that the commutator of two operators is itself an operator,[
Â, B̂

]
|ψ〉 = ÂB̂ |ψ〉 − B̂Â |ψ〉 , (2.39)

an important detail that will be of use in the study of angular momenta.
A particular operator that will be of fundamental importance is the Hamiltonian, H , corre-

sponding to the total energy of the system. Its eigenvalues are the energy levels and its eigen-
states are the energy eigenstates of the system. This may be expressed as the time-independent
Schrödinger equation:

H |n〉 = En |n〉 . (2.40)

The Hamiltonian is also extremely important for the description of a system’s dynamics, because
it is in general the generator of time-evolution, as per the time-dependent Schrödinger equation:

−i~
∂

∂t
|ψ〉 = H |ψ〉 . (2.41)

6Outside of this section, we will frequently drop the “hat” from operators for notational convenience where there
is no ambiguity between an observable and the corresponding operator.
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From Wigner’s Theorem, symmetry transformations on a quantum mechanical Hilbert space
are represented by either unitary or antiunitary operators.7 A unitary operator Û is defined such
that

Û†Û = ÛÛ† = 1, (2.43)

where 1 is the identity operator. An equivalent definition also includes the fact that a unitary
operator Û preserves the inner product of the Hilbert space,8 such that

Û |φ〉 · Û |ψ〉 = 〈φ| Û†Û |ψ〉 = 〈φ|ψ〉 = |φ〉 · |ψ〉 . (2.44)

For infinitesimal transformations, a unitary operator may be written in the form

Û(ε) = 1 + εĜ + O
(
ε2

)
, (2.45)

where 1 is the identity operator, ε is an infinitesimal parameter, Ĝ is called the generator of the
transformation, and we can comfortably neglect higher order terms in ε. A finite transformation
may then be expressed in terms of an infinite product of infinitesimal transformations,

Û(θ) |ψ〉 = lim
N→∞

[
1 +

(
θ

N

)
Ĝ
]N

|ψ〉 , (2.46)

which can be rewritten as an exponential:

Û(θ) |ψ〉 = eθĜ |ψ〉 . (2.47)

We will return to this definition of transformations as unitary operators later in Section 2.3.6.9

7An antiunitary operator Υ̂ is a bijective antilinear map such that

Υ̂ |φ〉 · Υ̂ |ψ〉 = |ψ〉 · |φ〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗ . (2.42)

The only notable antiunitary operator that shows up with any frequency in quantum mechanics is the time-reversal
symmetry operator, which will not be used much in this dissertation.

8It should be pointed out for the mathematically interested reader that unitary operators therefore represent auto-
morphisms of the Hilbert space, because they preserve the structure of the space and map from the Hilbert space to
itself.

9We would also be remiss if we were to fail to comment on the immensely important connection from unitary
transformation operators and their generators to Lie groups and Lie algebras. Because they are built from infinitesimal
transformations, these unitary operators necessarily form a group that is also a differentiable manifold. By the defi-
nitions of Eqs. (2.45) and (2.46), multiplication and inversion must be smooth maps, so the group of transformations
Û(θ) is a Lie group. Then the operator Ĝ is a generator of the corresponding Lie algebra g, such that the exponentiation
in Eq. (2.47) is precisely the exponential map from a Lie algebra to the Lie group. The effects of multiple symmetry
transformations may thus be studied in terms of the corresponding Lie algebras. This is particularly useful when the
Lie bracket corresponds to the commutator of Eq. (2.38), such as for the study of three-dimensional rotations, where
the generators are angular momentum operators, which generate a Lie algebra isomorphic to su(2).
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2.3.3 Density Matrix
Most NMR measurements are concerned not with the state of a single spin (or composite spin

system), but with an ensemble of spins (or composite spin systems) large enough to be described
by statistical distributions. If |ψi〉 is some set of normalized kets, where i is a discrete index to
which probabilities fi ≥ 0 are assigned such that∑

i

fi = 1, (2.48)

then the expectation value of an arbitrary operator is given by

〈A〉 =
∑

i

fi 〈ψi|A|ψi〉 . (2.49)

This expectation value can be rewritten in terms of the density operator ρ, defined in the discrete
case by

ρ =
∑

i

fi |ψi〉 〈φi| , (2.50)

so that
〈A〉 = Tr(ρA). (2.51)

Despite the apparent simplicity of this definition, the density operator contains a complete and
minimal description of the information available about a given ensemble of identically prepared
systems.

For a pure spin- 1
2 state with ms = + 1

2 , the density operator is ρ = |α〉 〈α|, which may be written
as the outer product of the vector in Eq. (2.25) and the covector in Eq. (2.30):

ρ =

(
1 0
0 0

)
. (2.52)

An equal mixture of up and down spin states, on the other hand, would have the density operator

ρ =

( 1
2 0
0 1

2

)
, (2.53)

which, it is worth noting, is proportional to the identity matrix, and thus invariant to rotations.
It should also be pointed out that the density operator is Hermitian, nonnegative definite, and

has unit trace. One may then consider its eigenkets |n〉 with eigenvalues pn, such that

ρ |n〉 = pn |n〉 . (2.54)

Also, because ρ is nonnegative definite, we can write

〈n| ρ |n〉 = pn ≥ 0, (2.55)
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and because Tr ρ = 1, ∑
n

pn = 1. (2.56)

As a result, we can treat these nonnegative numbers, pn that sum to unity as probabilities, so an
arbitrary density operator can be expressed in terms of a discrete orthonormal set of pure states.

We can also describe coherent superpositions of energy eigenstates in terms of a pure state of
the form

|ψ〉 =
∑

n

cn |n〉 . (2.57)

The density operator is then
ρ = |ψ〉 〈ψ| =

∑
nm

cnc∗m |n〉 〈m| , (2.58)

which, it should be noted, differs from our previous definition due to the inclusion of off-diagonal
terms. It can be shown (see Section 2.3.6) that the time evolution of such a state can be written in
terms of the time evolution of the coefficients cn,

cn(t) = cn(0)e−iEnt/~, (2.59)

where En is the energy eigenvalue of state |n〉. The density matrix may then be written as

ρ(t) =
∑
nm

|cn(0)| |cm(0)| e−i(En−Em)t/~ |n〉 〈m| . (2.60)

For the diagonal terms, En − En = 0, meaning that they do not experience coherent evolution.
For this reason, the diagonal terms of the density matrix are commonly referred to as populations,
while the off-diagonal terms are called coherences. In the absence of other interactions, coherences
should persist more or less indefinitely, but in practice, incoherent fluctuations of the energy eigen-
values En and Em lead to a randomization of the phase, so that averaging over the entire ensemble
leads to an elimination of coherences at thermal equilibrium. This process is commonly referred
to as dephasing of the coherence.

At thermal equilibrium, the density operator for an ensemble with Hamiltonian H is in an
incoherent superposition of energy eigenstates,

ρ =
e−

H
kBT

Tr e−
H

kBT

=
∑

n

e−
En

kBT

Ξ
|n〉 〈n| , (2.61)

where kB is the Boltzmann constant, T is the temperature of the system, and Ξ = Tr e−H/kBT is the
partition function of the ensemble.

For nuclear spins in a magnetic field, the population difference between the ms = ±1
2 states is

given by the Boltzmann distribution, and is worked out in Chapter 4. For convenience, we will just
refer to the polarization as P0 such that the density matrix for an ensemble of uncoupled thermally
polarized nuclear spins is

ρ =
1
2

[
(1 + P0) |α〉 〈α| + (1 − P0) |β〉 〈β|

]
=

1
2

(|α〉 〈α| + |β〉 〈β|) +
P0

2
(|α〉 〈α| − |β〉 〈β|) , (2.62)
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which may be rewritten in terms of spin operators as

ρ =
1

2
+ P0Iz, (2.63)

where 1 is the identity operator, and

Iz =
1
2

(
1 0
0 −1

)
(2.64)

is the nuclear spin projection operator on the z axis (equivalent to the Pauli matrix σz multiplied by
one-half). Because thermal polarization in a magnetic field yields populations that can be described
by Iz, it should be pointed out that coherences can then be described by a linear combination of Ix

and Iy, defined as

Ix =
1
2

(
0 1
1 0

)
, Ix =

1
2

(
0 −i
i 0

)
, (2.65)

which leads to the semi-classical description of NMR in terms of precessing vectors.10

2.3.4 High-Field and Zero-Field Energy Eigenstates
In order to ensure that the diagonal elements of a density operator do in fact represent stationary

populations under the Hamiltonian of a given system, it is necessary that the density operator is
defined in terms of the energy eigenstates. That is, it is preferable that the density matrix is defined
ρ =

∑
nm cnc∗m|n〉〈m| where |n〉 and |m〉 are eigenstates of H . For illustration we will consider an

ensemble of two coupled nuclei I and S with γI , γS , in two different conditions: in the presence
of a large external magnetic field (high-field), and in the absence of an applied field (zero-field).11

The high-field basis consists of the eigenstates of the high-field Hamiltonian, of which the
Zeeman interaction is dominant. The high-field Hamiltonian may be written as

HZ +HCS = −~
∑

j

γ jI j · (1 − σ) · B0 (2.66)

where
HZ = −~

∑
j

γ jI j · B0, (2.67)

10It is occasionally noted that the ability to write a density operator in terms of the identity matrix and Pauli spin
operators is trivial, because the density operator is a Hermitian operator and the set composed of the identity matrix and
the Pauli matrices is the minimal basis for the construction of Hermitian operators. Moreover, any Hermitian matrix
of any size may be constructed from tensor products of these four matrices. What is noted much less frequently is that
this means that because any quantum mechanical ensemble has a Hermitian density operator and interacts according
to a Hermitian Hamiltonian, the NMR spin formalism is totally general and can be extended to any system. Of course,
while it would certainly work, it won’t necessarily make anything easier. Still, once it’s worked out, the ability to
visualize a system’s dynamics in terms of precessing spins can afford a powerful intuitive understanding of the system.

11The necessity of considering different basis constructions for the coupling of angular momenta in different pertur-
bative regimes has been treated extensively in the past, a notable example being L-S vs. j-j coupling in the spin-orbit
coupling of atomic states. There is also a particularly strong correspondence between the treatment presented here and
that used to describe the Paschen-Back effect [30].



2.3. NUCLEAR MAGNETIC RESONANCE 26

where γ j is the gyromagnetic ratio of I j and B0 is the external magnetic field, is the Zeeman
Hamiltonian for a bare nucleus, which is modified by the chemical shift

HCS = ~
∑

j

γ jI j · σ · B0, (2.68)

where the chemical shielding tensor σ describes the effect of electrons producing counteracting
magnetic fields that “shield” the nucleus from the external field. Because HCS is typically 5-6 or-
ders of magnitude smaller thanHZ, and we will not be particularly concerned with the interpreta-
tion of high-field NMR spectra, we can safely consider the high-field Hamiltonian to be dominated
byHZ. For two spins in a field aligned along the z-axis,

HZ = −~ (γI Iz + γS S z) B0 (2.69)

Because the interaction with the magnetic field is much stronger than the interaction between the
spins, the uncoupled basis is most appropriate, which has states written as |MI MS 〉 that we will
frequently done with up/down arrows as |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. The energies of these states are
then

〈↑↑|HZ |↑↑〉 = −~ (γI + γS ) B0

〈↑↓|HZ |↑↓〉 = −~ (γI − γS ) B0

〈↓↑|HZ |↓↑〉 = ~ (γI − γS ) B0 (2.70)
〈↓↓|HZ |↓↓〉 = ~ (γI + γS ) B0.

To describe the general elements of a high-field density matrix for two coupled spins, we need a
total of 16 operators. These are comprised of the identity operator, six one-spin operators, and nine
two-spin operators. The one-spin operators, in terms of the 2 × 2 Pauli matrices are

Ix = 1
4σx ⊗ 1 Iy = 1

4σy ⊗ 1 Iz = 1
4σz ⊗ 1

S x = 1
4σx ⊗ 1 S y = 1

4σy ⊗ 1 S z = 1
4σz ⊗ 1

(2.71)

and the two-spin operators are

IxS x = 1
4σx ⊗ σx IyS x = 1

4σy ⊗ σx IzS x = 1
4σz ⊗ σx

IxS y = 1
4σx ⊗ σy IyS y = 1

4σy ⊗ σy IzS y = 1
4σz ⊗ σy

IxS z = 1
4σx ⊗ σz IyS z = 1

4σy ⊗ σz IzS z = 1
4σz ⊗ σz

. (2.72)

At zero magnetic field, the primary interaction for an isotropic liquid is the J-coupling (de-
scribed more thoroughly in the next section), so the Hamiltonian has the form

HJ = ~JIS I · S, (2.73)

which, unlike Eq. (2.69), is spherically symmetric. Because there is no longer an external field to
impose axial symmetry on the system, the zero-field density matrix should not be diagonal in the



2.3. NUCLEAR MAGNETIC RESONANCE 27

z projection of each spin, but in the total angular momentum F2 = (I + S)2, and the projection of
F onto a conveniently chosen axis, Fz. The eigenstates ofHJ are related to the high-field basis by
the Clebsch-Gordan coefficients 〈IS mImS |FmF〉,

|FmF〉 =
∑
mImJ

|IS mImS 〉 〈IS mImS |FmF〉 , (2.74)

such that the zero-field eigenstates are the singlet and triplet states:

|T+〉 = |↑↑〉 |T0〉 = 1
√

2
(|↑↓〉 + |↓↑〉) |T−〉 = |↓↓〉

|S 0〉 = 1
√

2
(|↑↓〉 − |↓↑〉)

, (2.75)

where the triplet states have total angular momentum F = 1 and the singlet has total angular
momentum F = 0. Writing

F2 = (I + S) = I2 + S2 + 2I · S (2.76)

allows us to write the rewrite the zero-field Hamiltonian as

HJ =
~JIS

2

(
F2 − I2 − S2

)
, (2.77)

so that the energies may be calculated as

〈FmF |HJ |FmF〉 =
~JIS

2
[F(F + 1) − I(I + 1) − S (S + 1)] =

~JIS

2

[
F(F + 1) −

3
2

]
. (2.78)

Thus the three triplet states are degenerate with energy ET = ~JIS /4, and the singlet has energy
ES = −3~JIS /4. Most of the systems studied so far in ZULF-NMR have a Hamiltonian dominated
by a strong one-bond J-coupling, so we will generally make use of coupled bases of this form.

2.3.5 NMR Spin-Coupling Hamiltonians
We will now consider the Hamiltonians for some of the spin-coupling interactions that we will

encounter in the remainder of this dissertation.

Direct Dipolar Spin-Spin Coupling

The Hamiltonian describing the direct dipole-dipole coupling of nuclear spins is in general
given by

HD = ~
∑

N;N′>N

IN · DNN′ · IN′ , (2.79)

where DNN′ is a rank-2 symmetric tensor. Because the interaction is purely geometric, it is rarely
specified in terms of the tensor itself, but expanded as

HD = −~2 µ0

4π

∑
N;N′>N

γNγN′

r3
NN′

[3 (IN · r̂NN′) (IN′ · r̂NN′) − IN · IN′] , (2.80)
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where γN and γN′ are the gyromagnetic ratios of the two nuclei N and N′, and rNN′ is the vector
connecting the two nuclei.

For two spins I and S, the dipolar coupling may be further expanded in terms of irreducible
spherical tensors:

HD = −~2µ0γIγS

4πr3
IS

(
D(2)

0 + D(2)
+1 + D(2)

−1 + D(2)
+2 + D(2)

−2

)
(2.81)

where

D(2)
0 =

(
3 cos2 θ − 1

2

) [
2IzS z −

1
2

(I+S − + I−S +)
]
, (2.82)

D(2)
±1 =

3
2

sin θ cos θe∓iφ (IzS ± + I±S z) , (2.83)

D(2)
±2 =

3
4

sin2 θe∓2iφI±S ±, (2.84)

where θ is the polar angle and φ is the azimuthal angle of rIS in spherical coordinates, with the prin-
ciple axis defined by the geometry of the system (e.g. the magnetic field axis in high-field NMR,
or the molecular principle axis system in ZULF-NMR). It is worth noting that the only component
of the dipolar coupling Hamiltonian that commutes with the high-field Zeeman Hamiltonian in
general is D(2)

0 , and for heteronuclear systems, the so-called “flip-flop” term, 1
2 (I+S − + I−S +), does

not commute, leaving only

H
HF, hetero
D = −~2µ0γIγS

4πr3
IS

(
3 cos2 θ − 1

)
IzS z, (2.85)

where θ is the angle between the magnetic field axis and rIS .
This truncation does not occur in ZULF-NMR, so the form ofHD is determined entirely by the

geometry of the sample. The case of weak alignment in anisotropic media is discussed in Chapter
7. In all other cases, the dipole-dipole coupling is averaged to zero by rapid isotropic molecular
motion.

Indirect Spin-Spin Coupling

For the purpose of this dissertation, the most important spin-spin interaction is the electron-
mediated indirect spin-spin coupling, typically referred to as the J-coupling. The J-coupling may
be thought of as a second-order hyperfine effect, where one nucleus N affects the electronic state
of a molecule through hyperfine couplings to the molecular electron density, and this perturbation
is then transmitted from the molecular electronic state to a second nucleus N′ through its hyperfine
interaction with the molecular electron density. The Hamiltonian may be written in the form

HJ = ~
∑

N;N′,N

IN · JNN′ · IN′ , (2.86)

where IN and IN′ are the spins of nuclei N and N′, and JNN′ is the second-rank J-coupling tensor.
JNN′ may in general be represented as a sum of irreducible spherical tensors

JNN′ = Jiso
NN′ + Janti

NN′ + Jsym
NN′ , (2.87)
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where the isotropic component Jiso
NN′ transforms as a scalar, the antisymmetric component Janti

NN′

transforms as a bivector (or pseudovector), and the symmetric component Jsym
NN′ transforms as a

symmetric rank-2 spherical tensor. The reason that the J-coupling is of particular value for ZULF-
NMR (and, for that matter, HF-NMR) is that the isotropic component persists in liquid samples
where rapid molecular tumbling averages higher-order tensors to zero. There is also substantial in-
terest in the possibility of measuring the antisymmetric component of the tensor because the sense
of rotation of a bivector may permit absolute measurements of chirality, although such experiments
have not yet been conducted.

In order to focus on the influence of electronic structure on the indirect coupling tensor, we
define the isotope-independent reduced indirect coupling tensor,

KNN′ =
4π2JNN′

hγNγN′
, (2.88)

where γN and γN′ are the gyromagnetic ratios of the two nuclei N and N′. The elements of the
reduced indirect spin-spin coupling tensor may be identified as the mixed second derivatives of
the total electronic energy of the system with respect to the magnetic moments of nuclei N and N′

[31]:

KNN′ =
∂2E

(
µN ,µN′ , · · ·

)
∂µN∂µN′

∣∣∣∣∣∣
µN=µN′=···=0

(2.89)

The contributions to KNN′ may be broken down into the four “Ramsey” terms [32], the dia-
magnetic spin-orbit operator hDSO

NN′ , the paramagnetic spin-orbit operator hPSO
N , the Fermi-contact

operator hFC
N , and the spin-dipole operator hSD

N . These are given, in atomic units, as [33]

hDSO
NN′ = α4

∑
k

1 rkN · rkN′ − rkNrkN′

r3
kNr3

kN′
, (2.90)

hPSO
N = −iα2

∑
k

rkN × ∇k

r3
kN

, (2.91)

hFC
N =

8πα2

3

∑
k

δ (rkN) sk, (2.92)

hSD
N = α2

∑
k

3rkN · rkN − r2
kN

r5
kN

sk, (2.93)

where α is the fine-structure constant, rkN is the position of electron k relative to nucleus N, 1 is
the 3 × 3 identity matrix, δ (rkN) is the Dirac delta function, and sk is the spin of electron k.

One may then calculate KNN′ for the non-relativistic closed-shell case using second-order per-
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turbation theory [32]:

KNN′ =

〈
0
∣∣∣∣hDSO

NN′

∣∣∣∣0〉 − 2
∑
nS,0

〈
0
∣∣∣∣hPSO

N

∣∣∣∣nS

〉 〈
nS

∣∣∣∣hPSO
N′

∣∣∣∣0〉
EnS − E0

− 2
∑
nT

〈
0
∣∣∣∣hFC

N + hSD
N

∣∣∣∣ns

〉 〈
ns

∣∣∣∣ (hFC
N′

)T
+

(
hSD

N′

)T ∣∣∣∣0〉
EnT − E0

, (2.94)

where |0〉 is the ground state, |nS 〉 are excited singlet states, |nT 〉 are excited triplet states, and
superscript T denotes the tensor transpose.

For the isotropic case,
H iso

J = ~
∑

N;N′,N

Jiso
NN′IN · IN′ , (2.95)

we are only concerned with Kiso
NN′ = 1

3 Tr KNN′ , which is generally dominated by the Fermi-contact
interaction. The mixed Fermi-contact – spin-dipole and spin-dipole – Fermi-contact terms only
contribute to the anisotropic part of KNN′ , and can thus be omitted when considering the isotropic
Hamiltonian.

Quadrupolar Coupling

The quadrupolar coupling Hamiltonian has the form

HQ(Θ) =
eQ

2I(2I − 1)
I · V(Θ) · I, (2.96)

where e is the electric charge, Q is the nuclear quadrupole moment, I is the nuclear spin quantum
number, and V(Θ) is the electric field gradient tensor for an arbitrary molecular orientation Θ [34].
As a rank-2 interaction, the quadrupolar coupling is non-zero only for nuclei with spin I ≥ 1. This
is one of the notable advantages of studying spin-1

2 nuclei, because the the coupling of quadrupolar
nuclei to the electric field gradient is a major source of relaxation, leading to short coherence times
and thus to broad resonance lines.

Of particular use is the first-order quadrupolar Hamiltonian, which is used in Chapter 7 to
obtain information about molecular alignment in anisotropic media from the quadrupolar splitting
of deuterated molecules:

H
(1)
Q (Θ) =

 3eQVzz

2I(2I − 1)

 1
6

[
3I2

z − I(I + 1)1
]
, (2.97)

where Vzz denotes the average of the electric field gradient component Vzz over molecular motion.
Vzz may be rewritten as

Vzz =

〈
3 cos2 θ − 1

〉
2

Vzz = S zzVzz, (2.98)

where S zz is the order parameter quantifying the anisotropic effect of the alignment medium on the
molecular motion. More specifically, S zz describes the extent to which the z-axis of the molecular
principal axis system aligns with the lab-frame z-axis.
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2.3.6 Time-Evolution
The time-evolution of a quantum can be described using unitary operators corresponding to

the symmetry transformation of temporal translation. The unitary operator for time-evolution can
easily be constructed using Eqs. (2.45)-(2.47), coupled with the knowledge that the generator of
time-evolution is proportional to the Hamiltonian of the system. Specifically, the operator for an
infinitesimal translation forward in time is

U(ε) = 1 −
iε
~
H + O

(
ε2

)
, (2.99)

and the finite time evolution may be written as

U(t) |ψ〉 = e−iH t/~ |ψ〉 . (2.100)

In general, we are more interested in the evolution of a density operator, which at initial time
t0 may be written

ρ(t0) =
∑

i

fi |ψi (t0)〉 〈ψi (t0)| . (2.101)

Applying the time-evolution operator of Eq. (2.100) to the kets and its Hermitian conjugate to the
bras, the density operator at a time t is then

ρ(t) =
∑

i

fi |ψi (t)〉 〈ψi (t)| = U(t)

∑
i

fi |ψi (t)〉 〈ψi (t)|

 U(t)† = U(t)ρ(t0)U(t)†. (2.102)

Differentiating this result, it can be shown that we can then write the time evolution of the density
matrix in a form analogous to that of the classical Liouville equation:

i~
∂ρ

∂t
= [H , ρ]. (2.103)

For time-independent Hamiltonians, this is easily solved in terms of Eq. (2.102), such that we can
write the value of the density operator at time t as

ρ(t) = e−iH t/~ρ(t0)eiH t/~. (2.104)

In the case of time-dependent Hamiltonians, a path integral formalism is necessary [35], but fortu-
nately for us, most NMR experiments can be described piecewise using Eq. (2.104).12

12A deeper understanding of the evolution of a quantum system can be extracted from Eq. (2.103) if the density
operator and Hamiltonian can both be written in terms of the generators of a Lie algebra – for NMR, this is usually
su(2) – in which case the commutator corresponds directly to the Lie bracket. In this case, the evolution of the system
is fully described by the Lie algebra.
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2.3.7 Rotations and the Wigner-Eckart Theorem
The generators of spatial rotations are the angular momentum operators J, so the unitary oper-

ator describing an infinitesimal rotation about a unit vector n̂ is

Uε(n̂) = 1 −
iε
~

n̂ · J, (2.105)

allowing us to define the operator for a finite rotation θ as

U(n̂, θ) = e−i n̂·J/~. (2.106)

In the standard angular momentum basis, we may write the irreducible representations of the
rotation operators as

D j
mm′(n̂, θ) = 〈 jm|U(n̂, θ)| jm′〉. (2.107)

With this definition in hand, we can define an irreducible tensor operator of rank k as a set of 2k +1
operators T (k)

q for q = −k, · · · ,+k that satisfy

UT (k)
q U† =

∑
q′

T (k)
q′ Dk

q′q(U), (2.108)

for all rotation operators U. Because this must hold for infinitesimal rotations, we may define a
scalar operator as an operator K such that

[J,K] = 0. (2.109)

Similarly, a vector operator V must satisfy[
Ji,V j

]
= i~εi jkVk. (2.110)

For a general irreducible tensor operator, we may write the following commutation relations
with the components of the angular momentum operator:[

Jz,T (k)
q

]
= ~qT (k)

q , (2.111)[
J±,T (k)

q

]
= ~

√
(k ∓ q)(k ± q + 1)T (k)

q±1, (2.112)∑
i

[
Ji,

[
Ji,T (k)

q

]]
= ~2k(k + 1)T (k)

q . (2.113)

We write the matrix elements of an irreducible spherical tensor operator using the Wigner-
Eckart theorem: 〈

jm
∣∣∣∣T (k)

q

∣∣∣∣ j′m′〉 =
〈

j
∥∥∥T (k)

∥∥∥ j′
〉 〈

j′km′q
∣∣∣ jm〉

, (2.114)

where
〈

j′km′q
∣∣∣ jm〉

is a Clebsch-Gordan coefficient, and
〈

j
∥∥∥T (k)

∥∥∥ j′
〉

is the reduced matrix element,
which depends only on j, j′, and k. The Clebsch-Gordan coefficient in Eq. (2.114) allows us to
define selection rules for the matrix element based on the symmetry rules for Clebsch-Gordan
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coefficients. The selection rules are that
〈

jm
∣∣∣∣T (k)

q

∣∣∣∣ j′m′〉 = 0 unless m′ = m + q and j′ takes one

of the values, | j − k|, · · · , j + k − 1, j + k. For the useful special case of a scalar operator,13 T 0
0 ,

k = q = 0, so 〈
jm

∣∣∣∣T (0)
0

∣∣∣∣ j′m′〉 =
〈

j
∥∥∥T (0)

∥∥∥ j′
〉
δ j′ jδm′m. (2.115)

2.3.8 Example: Evolution of Two Coupled Spins in High-Field and Zero-
Field Regimes

We will make use of some of these quantum mechanical tools to compare the evolution two
coupled spins in the two natural regimes for NMR measurements, high-field and zero-field. In both
cases, we will begin with the high-field thermally polarized density matrix:

ρ0 =
1

4
+
γI B0

kBT
Iz +

γS B0

kBT
S z, (2.116)

where γI is the gyromagnetic ratio of nucleus I, and γS is the gyromagnetic ratio of nucleus S. For
the case of 1H and 13C, γH/γC ≈ 1/4.

Two Coupled Spins in High Field

In a large applied magnetic field, the spin Hamiltonian is

HHF = −~ (γI Iz + γS S z) B0 + ~JIS IzS z, (2.117)

where we have neglected the effect of chemical shift, and we have included only the component of
the J-coupling Hamiltonian that commutes with the dominant Zeeman term. In a typical high-field
NMR experiment, a resonant RF pulse is applied that transforms the density matrix by effectively
applying a π/2 rotation about the y axis (in the rotating frame) to the I nuclei.14 This yields a new
density operator,

ρ1 =
1

4
+
γI B0

kBT
Ix +

γS B0

kBT
S z, (2.118)

where the only difference is a rotation of Iz into Ix. As discussed previously, the Ix element of the
density operator corresponds to a coherence, so this term evolves according to Eq. (2.103):

ρ(t) = e−iH t/~ρ1eiH t/~ =
1

4
+
γI B0

kBT
e−iH t/~IxeiH t/~ +

γS B0

kBT
S z. (2.119)

Considering first the effect of the Zeeman Hamiltonian,HZ = −~ (γI Iz + γS S z) B0, this yields

ρ(t) =
1

4
+
γI B0

kBT

[
Ix cos (γI B0t) − Iy sin (γI B0t)

]
+
γS B0

kBT
S z, (2.120)

13This is a particularly useful case due to the fact that the Hamiltonian for any isolated system is necessarily a scalar
operator.

14Because of the resonant condition, S nuclei are unaffected.
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where one might note that the identity term is unaffected, along with the term corresponding to
nucleus S. Including the effect of the J-coupling,HJ,HF = ~JIS IzS z,

ρ(t) =
1

4
+
γI B0

kBT

[
Ix cos (γI B0t) cos (πJIS t) − Iy sin (γI B0t) cos (πJIS t)

+ IyS z cos (γI B0t) sin (πJIS t) + IxS z sin (γI B0t) sin (πJIS t)
]

+
γS B0

kBT
S z. (2.121)

The detectable signal is then

S(t) = Tr (ρI+) =
γI B0

4
√

2kBT

[
ei(γI B0+πJIS )t + ei(γI B0−πJIS )t

]
, (2.122)

which, after Fourier transformation, yields the expected doublet centered at ω = γI B0, with the
peaks separated by a frequency JIS . The same experiment may be carried out by pulsing RF
resonant with S nuclei, and detecting S + coherences.

Two Coupled Spins in Zero Field

As shown in Chapter 4, the non-identity components15 of the density matrix in Eq. (2.116) after
adiabatic transfer to zero-field may be rewritten in the zero-field basis as

ρ0 = δ (Iz + S z) − ε2(IxS x + IyS y), (2.123)

which we may rewrite in terms of “zero-quantum operators,”

Zx = 2(IxS x + IyS y),
Zy = 2(IxS y − IyS x),
Zz = (Iz − S z), (2.124)
Dz = (Iz + S z) ,

yielding
ρ0 = δDz − εZx. (2.125)

In a typical zero-field NMR experiment, a magnetic field pulse of length tp is applied in the z
direction, yielding

ρz = δDz − ε(cosαZx + sinαZy), (2.126)

where α = 2πBztp(γI − γS ), and the Dz term is unaffected. Evolution under the full J-coupling
Hamiltonian

HZF = ~JIS I · S, (2.127)
15One can generally disregard the identity component, because it commutes with everything and will thus never

give rise to observable signal.
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which persists at zero-field, yields

ρz(t) = δDz − ε
[

cosαZx + sinα cos (2πJIS t) Zy − sinα sin(2πJIS t)Zz

]
. (2.128)

The observable magnetization is then

Mz(t) = Nh Tr{ρ(t)(γI Iz + γS S z)} =
Nh
2
ε(γS − γI) sinα sin(2πJIS t), (2.129)

which, after Fourier transformation, yields a single peak at JIS .
The reader might note that this description of the evolution of two coupled spins at zero mag-

netic field is very similar to the one-spin case in high magnetic fields, replacing the high-field
Zeeman Hamiltonian with Zx, the RF pulse with a DC z pulse, Ix with Zy, and Iy with Zz. This
is indeed the motivation for the introduction of the zero-quantum operators – the commutation
relations for Zx, Zy, and Zz are identical to those for Iz, Ix, and Iy, so the algebra of the operators
is exactly the same. Furthermore, the evolution of zero-quantum coherences for a system com-
posed of two coupled spins in zero-field NMR is isomorphic to the evolution of a single spin in
high-field NMR!16 While the evolution of the zero-field coherences does not actually correspond
to precession in physical 3-dimensional space, the description of the evolution as procession in the
zero-quantum space provides a valuable visualization heuristic for ZULF-NMR experiments.

2.3.9 Chemical vs. Magnetic Equivalence
Two spins are chemically equivalent if they have the same precession frequency and are ex-

changed by a molecular symmetry operation. In high-field NMR, chemically equivalent spins are
defined as having identical chemical shifts. Because this thesis is concerned with the zero- and
ultra-low-field regime where chemical shift is negligible, we use a more general definition. It is,
however, worth pointing out that in the absence of magnetic field, all spins have the same preces-
sion frequency, because ω = γ(1 − σ)B0 = 0 regardless of chemical shielding or gyromagnetic
ratio.

Two spins are magnetically equivalent if they are (1) chemically equivalent, (2) have the same
gyromagnetic ratio, and (3) have identical couplings to all other spins in the molecule. This def-
inition is important for the interpretation of ZULF-NMR spectra because J-couplings between
magnetically equivalent spins are unobservable.

2.4 Zero- and Ultra-Low-Field NMR Definitions and Conven-
tions

2.4.1 What is “Zero-Field”? What is “Ultra-Low-Field”?
“Zero-field” is defined as the regime of magnetic fields where the Zeeman Hamiltonian has no

discernible effect on the coherent evolution of nuclear spins that gives rise to the NMR spectrum.
16For those keeping score, both operator algebras are isomorphic to su(2), and exponentiation of the infinitesimal

rotations in either space produces the group of SU(2) rotations.
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To quantify this further, we may say that in the zero-field regime, the sum of all Larmor frequencies
is substantially less than the inherent linewidth of spectral peaks, which is proportional to the
inverse of the spin-spin relaxation time, T2. That is, the magnetic field is small enough such that

|B0|
∑

j

γ j �
1
T2
. (2.130)

In other words, the ”zero-field” regime refers to magnetic field strengths where there is no practical
or experimental difference between the given situation and a situation where the magnetic field is
identically zero.

“Ultra-low-field” is defined as the regime of magnetic fields where the Zeeman Hamiltonian
may be treated as a first-order perturbation on the dominant spin-spin interaction Hamiltonian. In
this dissertation, the dominant spin interaction is generally the J-coupling, so we may define the
ultra-low-field regime for fields that satisfy

|B0|
∑

j

γ j � JAX, (2.131)

where JAX is the largest heteronuclear J-coupling in the system (typically a one-bond coupling).

2.4.2 Naming Conventions for Spin Systems
Because the chemical shift vanishes at zero field, such that all spins have equivalent Larmor

frequencies ω j = γ jB0 = 0, all zero-field spin systems are at the strong-coupling limit. As a
result, the standard Pople nomenclature [36, 37, 38] for high-field NMR no longer suffices. The
simplest systems observable in ZULF-NMR consist of a set of magnetically equivalent spins An

(typically 1H nuclei) coupled to a heteronucleus X (e.g. 13C, 15N, 31P, etc.) with γA , γX by a
J-coupling JAX, and are denoted XAn spin systems. Chapter 5 describes the zero-field J-spectra
for such systems, along with other systems in which the XAn energy levels are perturbed by an
additional set of magnetically equivalent spins Bm with γA = γB. The perturbative description suf-
fices when the condition JAX � JBX, JAB, and such systems are denoted (XAn)Bm. The spin system
within parentheses is the “strongly coupled” system, and the spins outside of the parentheses in-
teract perturbatively with the strongly coupled system. Thus a system consisting of three strongly
coupled spins X, A, and B, weakly coupled to three magnetically equivalent spins C3 would be
denoted (XAB)C3. Chemically equivalent spins that are not magnetically equivalent are denoted
Bm B′m′ , such that benzene-13C is an (XA)BB′CC′D spin system and ethylene glycol-13C2 is an
(XA2)(X′A′2) spin system.

The spin operator for nucleus X is S, with eigenvalue S (typically S = 1
2 , with a few exceptions,

such as 14NH+
4 ) and the total angular momentum spin operators for An, Bm, etc. nuclei are KA =∑

j IA, j, KB =
∑

j IB, j, with eigenvalues KA, KB. The total angular momentum of the strongly
coupled system (XAn) is FA = KA + S, and the total angular momentum of an (XAn)Bm is F =

FA + KB.
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Chapter 3

Detection of Zero-Field NMR

In order to keep our signals high,
Rotating light measures spins alkali.

There is some affection
For inductive detection,

By at low-field it just won’t comply.

This chapter explains the techniques by which ZULF NMR signal may be measured. This
includes a brief overview of the challenges involved in zero-field detection, along with some of the
techniques have historically been employed to overcome these challenges. The bulk of the chapter
then focuses on optical magnetometry using alkali vapor cells, and some of the specifics of our
ZULF NMR spectrometer apparatus. This chapter includes content from:

• Blanchard, J.W. and Budker, D. Zero-Field NMR. Encyclopedia of Magnetic Resonance. In
Preparation.
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3.1 NMR Detection

3.1.1 Inductive Detection
One of the primary difficulties in measuring magnetic resonance at zero field is that J-coupling

and dipolar coupling frequencies are many orders of magnitude smaller than the Larmor frequency
in high-field NMR. That this is an issue becomes apparent when considering Faraday’s law of
induction,

|ε | ∝
dΦ

dt
∝ ωMx, (3.1)

where ε is the electromotive force on an inductive coil and Φ is the magnetic flux through the
coil, which for the case of NMR is proportional to the product of the precession frequency ω and
the transverse magnetization Mx. At high field, inductive coils are sensitive detectors of oscillating
magnetic fields because the Larmor frequency is proportional to the magnetic field, but at zero field,
where 1H-13C J-coupling frequencies are on the order of hundreds of Hz and dipolar couplings
are on the order of tens of kHz, inductive detection is not sensitive enough to observe magnetic
resonance signals. Moreover, the magnetization Mx is typically proportional to the magnetic field,
as discussed in Chapter 4.

3.1.2 History of Zero-Field NMR Detection: Field Cycling
When zero-field NMR was first introduced in 1983 [39], experiments were performed by

preparing sample magnetization in a high-field instrument, transferring the sample to a zero-field
region, allowing the magnetization to evolve at zero-field for some time τ, and then returning the
sample to high-field to measure the signal resulting from zero-field evolution over a time τ [40].
Acquisition of the full evolution thus required that the sample be cycled between high-field and
zero-field many times, detecting the signal point-by-point.

3.1.3 History of Zero-Field NMR Detection: SQUIDs
The situation is radically different for magnetometers that do not rely on Faraday induction.

A notable example is the superconducting quantum interference device (SQUID), described in
great detail in [41]. Implementation of SQUID-detected zero-field NMR fundamentally changed
the way that zero-field NMR was performed, eliminating the need to cycle between zero-field
and high-field, thus increasing the accessibility of zero-field NMR. Such methods are still used
for low-field NMR [42, 43, 44], and, particularly, for imaging applications [45, 46, 47, 48]. One
drawback, however, is that SQUIDs must operate at cryogenic temperatures, limiting the potential
for miniaturization and portability.
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Figure 3.1: Energy levels of rubidium-87 including spin-orbit interactions (i.e. fine structure) and
the hyperfine coupling to the nuclear spin.

3.2 Optical Magnetometry
Historically, the first non-inductive detector was an atomic magnetometer, where polarized 3He

atoms in a glass cell were detected via optically pumped Rb atoms in an adjacent cell [49]. Recent
years have seen a revival of atomic magnetometry detection in NMR stimulated by developments
in magnetometer technology. For NMR applications, the advent of spin-exchange relaxation free
(SERF) magnetometry, allowing for unprecedented high sensitivity with a relatively small sensor,
has been particularly influential [50].

3.2.1 Atomic States
The ground state and nearest excited state atomic energy levels for Rb-87 are shown in Fig. 3.1.

The ground state valence electron is in a 5s orbital, and the lowest energy unoccupied orbital is 5p.
Including the effect of spin-orbit interactions, the 5s state is unaffected, but is relabeled using the
term symbol 2S 1/2, and the 5p level splits into 2P1/2 and 2P3/2 states. The transition between 2S 1/2

and 2P1/2 corresponds to light with a wavelength of 795 nm and is referred to as the D1 transition.
Additional small splittings arise due to hyperfine coupling involving the Rb-87 nucleus, which has
nuclear spin I = 3/2. For the purpose of this thesis, we may generally neglect the Rb-87 hyperfine
effects.
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Figure 3.2: Optical pumping of the rubidium electron spin with D1 σ+ circularly polarized light.

3.2.2 Optical Pumping
A general schematic diagram of the optical pumping process for rubidium atoms is shown in

Fig. 3.2. 795 nm light directed in the +y direction is used to excite the D1 transition from the 2S 1/2

ground state to the 2P1/2 excited state. If the light is circularly polarized (here we describe σ+ polar-
ization, but the opposite handedness merely changes the sign), the photons carry +1 unit of angular
momentum, so the only allowed transition is from mJ = −1

2 to mJ = + 1
2 , due to conservation of

angular momentum. From the 2P1/2 mJ = + 1
2 state, the system may undergo collisional mixing to

populate the 2P1/2 mJ = −1
2 state, and quenching through interactions with buffer N2 gas returns the

Rb atoms to the ground state, conserving mJ. The rates of change of the spin state populations are

d
dt
ρ

(
−

1
2

)
= −2ROP ρ

(
−

1
2

)
+ 2(1 − a)ROP ρ

(
−

1
2

)
, (3.2)

d
dt
ρ

(
+

1
2

)
= +2aROP ρ

(
−

1
2

)
, (3.3)

where ROP is the optical pumping rate and a is the optical pumping efficiency parameter, which can
generally be set equal to 1/2, corresponding to the case of complete collisional mixing.
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We may also define the spin polarization〈
S y

〉
=

1
2

[
ρ

(
+

1
2

)
− ρ

(
−

1
2

)]
(3.4)

such that
d
dt

〈
S y

〉
=

1
2

ROP

(
1 − 2

〈
S y

〉)
, (3.5)

where we have set a = 1
2 . If we include spin relaxation, this becomes

d
dt

〈
S y

〉
=

1
2

ROP

(
1 − 2

〈
S y

〉)
− Rrel

〈
S y

〉
, (3.6)

where Rrel is the relaxation rate. The equilibrium value is then〈
S y

〉
=

1
2

ROP

ROP + Rrel
(3.7)

3.2.3 Magnetic Field Detection via Optical Rotation
In the presence of a magnetic field, an electron spin precesses as

d
dt

S =
gsµB

~(2I + 1)
B × S, (3.8)

where gs is the electron g-factor, µB is the Bohr magneton, and the factor (2I + 1) is the “nuclear
slowing down factor” due to coupling between the electron and nuclear spins.

The overall equation for the evolution of the atomic spin may then be written as

d
dt

S =
1

2I + 1

[
gsµB

~
B × S + ROP

(
1
2

sŷ − S
)
− RrelS

]
, (3.9)

including the competing effects of optical pumping along the pumping axis (y), spin relaxation
randomizing the spin direction, and spin precession induced by the magnetic field.

In the absence of a magnetic field, the equilibrium spin polarization is

S 0 =
sROP

2 (ROP + Rrel)
. (3.10)

In the limit of slowly varying magnetic fields (i.e. dS/dt = 0), the steady state solution of Eq. (3.9)
yields the following components of the spin:

S x = S 0
βz + βxβy

1 + β2
x + β2

y + β2
z

(3.11)

S y = S 0
1 + β2

y

1 + β2
x + β2

y + β2
z

(3.12)

S z = S 0
−βx + βxβz

1 + β2
x + β2

y + β2
z
, (3.13)
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where, following Ref. [51], we have introduced the dimensionless magnetic field parameter β to
clean up our notation,

β =

[
gsµB

~(ROP + Rrel)

]
B. (3.14)

For a small field Bz orthogonal to the pump and probe directions, the steady state solution has
the average atomic spin rotated a small angle

θ̃ ≈
S x

S 0
'

gsµB

~(ROP + Rrel)
Bz, (3.15)

from the pumping direction into the x direction, proportional to the strength of the magnetic field
Bz. Equivalently, we may describe the spin polarization in the x direction as

Px = 2〈S x〉 =
gsµBsROP

~(ROP + Rrel)2 Bz. (3.16)

It can be shown [51] that the plane of polarization of linearly polarized light with frequency ν
rotates by an angle

θ =
πνl
c

[n+(ν) − n−(ν)] , (3.17)

after traveling a distance l through a birefringent medium with n+(ν) , n−(ν).
For light at the D1 transition frequency, the indices of refraction of an alkali vapor are

n±(ν) = 1 + ρ

(
∓

1
2

) (
nrec2 fD1

4ν

)
Im[V(ν − ν0)], (3.18)

where n is the alkali vapor density, re is the classical electron radius, fD1 ≈ 1/3 is the oscillator
strength of the D1 resonance, and Im[V(ν − ν0)] is the imaginary component of the Voigt profile
of the pump laser beam [52]. Thus when Px = 2 〈S x〉 = ρ

(
+1

2

)
− ρ

(
−1

2

)
, 0, the alkali vapor is

birefringent. Combining Eqs. (3.17) and (3.18) yields

θ = −
π

2
l n re c fD1PxIm[V(ν − ν0)]. (3.19)

Plugging in Px from Eq. (3.16) finally leads us to

θ = −
πgsµBs

2~
l n re c fD1Im[V(ν − ν0)]

ROP

(ROP + Rrel)2 Bz. (3.20)

If we approximate the Voigt profile with a Lorentzian,

Im[V(ν − ν0)] '
1

π(ν − ν0)
, (3.21)

and rewrite Eq. (3.20) as

θ = −
πgsµBs

2~
l n re c fD1

ROP + Rrel

(ROP + Rrel)2 +
(

gsµBBz
~

)2 Bz, (3.22)



3.2. OPTICAL MAGNETOMETRY 43

we see the full dependence of the rotation of the probe beam polarization on all parameters. For
the purpose of NMR detection, we may summarize all of this as

θ ∝ Bz, (3.23)

showing that measurement of the rotation of polarized light is equivalent to the measurement of a
magnetic field. Because we are much more interested in measuring the dynamics of nuclear spins
than in measuring absolute magnetic field strengths, we generally do not need to worry about the
proportionality constant, except for when considering limitations on the signal-to-noise ratio.

3.2.4 The Spin-Exchange Relaxation-Free Regime
The fundamental sensitivity of an atomic magnetometer due to spin projection noise is given

by [53]

δB =
~

gsµB

1
√

nVT2τ
, (3.24)

where n is the alkali vapor density, V is the alkali vapor volume, T2 is the spin decoherence (relax-
ation) correlation time, and τ is the measurement time. Thus, in order to maximize the magnetic
field sensitivity per

√
s of a magnetometer of given volume, it is desirable to maximize the product

of the density and relaxation time. Increasing the alkali vapor density is straightforward – one
needs only increase the temperature of the vapor cell to increase the number of atoms in the vapor
phase. The relaxation time, however, is affected by several factors, including pumping rates from
the pump and probe beams, wall collisions, spin-destruction collisions, and spin-exchange colli-
sions. Furthermore, the contribution of spin-exchange collisions to the overall rate of decoherence
increases as the vapor density increases, counteracting the benefit of having a higher vapor density!

All is not lost, however, as Happer and coworkers discovered that spin-exchange relaxation
vanishes at extremely high alkali densities [54]. The effect may be described as akin to motional
narrowing [55], where if the spin exchange rate is much faster than the precession frequency, indi-
vidual atoms precess very little between collisions, and rapidly sample all ground-state sublevels,
statistically weighted by the spin-temperature distribution. Considering hyperfine effects, atoms
in two hyperfine levels may be thought of as “locked together” as they precess, so spin-exchange
collisions no longer cause spin relaxation because the entire alkali ensemble precesses coherently
[51].

Thus maximum sensitivity is obtained at high vapor densities and low magnetic fields, where
the spin-exchange collision rate is much greater than the precession frequency. This is referred
to as the Spin-Exchange Relaxation-Free (SERF) regime. Alkali vapor atomic magnetometers
operating in this regime frequently reach sensitivities less than 1 fT/

√
Hz [56] and have reached

sensitivities of 160 aT/
√

Hz [57]. Chip-scale SERF magnetometers have also been microfabricated
[58, 59], with sensitivities on the order of 5-20 fT/

√
Hz [60], sufficient for ZULF-NMR.
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3.3 Zero- and Ultra-Low-Field NMR Apparatus

3.3.1 Overview
A schematic of the ZULF NMR apparatus is shown in Fig. 3.3. Alkali atoms in a 0.6 × 0.6

× 1.0 cm3 87Rb vapor cell1 are pumped by a circularly polarized laser beam at the D1 transition
propagating in the +y direction, and magnetic fields are measured by the rotation of a linearly
polarized pump beam propagating in the x direction, such that the magnetometer is primarily
sensitive to fields along the z axis, which is vertical in the lab frame. The magnetometer cell
is affixed to a column of hexagonal boron nitride, which attains a stable temperature between
180-200◦C by resistive heating. Magnetic fields are attenuated by 4-6 layers of µ-metal magnetic
shielding. The most sensitive configuration also includes a ferrite shield to minimize thermal
Johnson noise from the µ-metal shields, which otherwise limit sensitivity to ∼40-50 fT/

√
Hz. A

set of three orthogonal coils sits within the innermost layer of shielding for residual magnetic field
compensation. Three additional low-inductance coils serve to apply magnetic field pulses.

In field-cycling experiments, samples are polarized in a permanent 2 T Halbach magnet, then
shuttled pneumatically down to the zero-field detection region. Depending on the particular con-
figuration, sample temperatures may be controlled by flowing dry nitrogen through either a cold
bath or heated coil, and then to the bottom of the pneumatic shuttling tube. In this configuration,
the backing pressure from the top of the shuttling tube must be carefully calibrated to ensure effi-
cient sample transport. A “guiding field” solenoid may also be wound around the shuttling tube to
ensure adiabatic transfer of the sample between the polarizing field region down to the zero-field
region.

3.3.2 Polarimetry Optics
Two different methods for measuring the polarization of the probe beam have been employed in

our ZULF-NMR experiments, one involving a balanced polarimeter and a polarizing beam splitter,
and one employing a photoelastic modulator (PEM). In both cases, the pump beam optics are
the same. First the pump beam is expanded using either collimation optics or a telescopic beam
expander, after which the polarization of the beam is cleaned up using a linear polarizer, which is
rotated so as to maximize optical transmission. The linearly polarized beam then passes through
a quarter waveplate, producing circularly polarized light. Rotation of the quarter waveplate’s fast
vs. slow axes with respect to the linear polarizer can yield either right- or left-handed circular
polarization.

The experimental optics configuration for polarimetry using a balanced polarimeter is shown
in Fig. 3.4. The probe beam is passed through a linear polarizer to clean up the laser polarization,
and then through a half waveplate, which serves to rotate the plane of the linearly polarized light,
which should generally be at 45◦ to the polarizing beam splitter. After passing through the vapor
cell, the probe beam is split into its vertical and horizontal components by a polarizing beam

1Microfabricated millimeter-scale cells have been used in the past, though we have since transitioned to larger cells
manufactured by Twinleaf LLC.
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Figure 3.3: Schematic of the zero-field NMR apparatus.
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Figure 3.4: Experimental optics configuration using a balanced polarimeter.

splitter, and the intensity of each component beam is measured by a photodiode. The signals of
the two photodiodes are fed into a differential amplifier, the output of which is proportional to
the angle of rotation of the probe beam. It is in general necessary to balance the polarimeter by
rotating the half waveplate to ensure that the output of the differential amplifier is zero when no
field is applied. A quarter waveplate may also be placed after the half waveplate and before the
cell in order to compensate for any ellipticity of the probe beam induced by the glass walls of the
vapor cell.

The experimental optics configuration for polarimetry using a photoelastic modulator (PEM) is
shown in Fig. 3.5. The probe beam is again passed through a linear polarizer and a half waveplate
in order to yield polarization at 45◦ relative to the PEM. After passing through the vapor cell and
experiencing a rotation of the linear polarization θ ∝ Bz, the beam is then passed through a quarter
waveplate aligned parallel to the initial beam polarization, so any rotation of the linear polarization
is transformed into ellipticity. If the beam does not experience rotation of the linear polarization
in the vapor cell, the beam polarization is modulated by the PEM symmetrically between left- and
right-handed circular polarization at the characteristic frequency of the PEM oscillation (typically
around 50 kHz). If the beam experiences optical rotation in the cell, the modulation of the beam
by the PEM is asymmetric so that after passing though a linear polarizer set at 90◦ relative to the
initial polarization, the intensity of the light reaching the photodiode is

I = I0 sin2 [
θ + β sin (ωPEMt)

]
, (3.25)

so that for small rotations θ and modulation amplitudes β, the Fourier component of the detected
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Figure 3.5: Experimental optics configuration using a photoelastic modulator.

intensity is proportional to the rotation angle,

I (ωPEM) ≈ 2I0θβ, (3.26)

which is read out by feeding the photodiode signal into a lock-in amplifier referenced to the PEM
modulation frequency. Because the measurement is performed at high frequency, polarimetry
measurements performed using a PEM benefit from separation from 1/ f and other low-frequency
noise [51].

3.3.3 Vapor Cell Heating
To maximize sensitivity, our magnetometer cells are heated to 180-200 ◦C to obtain a high

alkali vapor density. Higher temperatures are avoided due to breakdown of resistive heating ele-
ments and an increased likelihood of reactions between alkali atoms and the glass of the cell. The
general design of the heater is shown in the lower view of Fig. 3.3, where 22 gauge copper wire
(folded over and tightly twisted to minimize magnetic field noise) is wrapped around a column of
hexagonal boron nitride (hBN) on which the vapor cell is affixed. Because of the high thermal con-
ductivity of hBN, it is possible to separate the heating coil from the cell by multiple centimeters,
further minimizing magnetic noise from the heater.

AC heating has been shown to be preferable to DC heating because it allows us to isolate
magnetic noise from the heater at high frequencies outside of the detection bandwidth, and it
minimizes temperature-dependent variations of the magnetometer signal. Further details of the
current apparatus are given in Ref. [61].
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Figure 3.6: Photograph of Phase-II magnetometer inner shields and coil housing.

3.3.4 Magnetic Field Pulses
Magnetic field pulses are applied by passing current pulses through low-inductance coils within

the magnetic shields, as in Fig. 3.3. See Ref. [62] for a detailed description of coil and pulse circuit
design. Major challenges involve pulse consistency, homogeneity, field strength, and rise time –
most, if not all, of these should be solved by using commercially available instrumentation, such
as high-frequency gradient amplifiers used in high-field magnetic resonance.

3.3.5 Phase-II Magnetometer Photographs
Figure 3.6 shows the innermost shields of the Phase-II magnetometer. The twisted purple wires

are used for degaussing the magnetic shields. The insulation between the two innermost shields is
substantially damaged by early unfocused heating methods.

Figure 3.7 shows several views of the Phase-II magnetometer’s vapor cell housing. The top-
most photograph shows the glass cell mounted on top of the white boron nitride heater, with a
thermocouple affixed between the heater and cell. The pump beam enters the cell via the optical
access channel from the top of the page, opposite the cell’s stem (present in order to add rubidium
to the cell). The probe beam propagates in the orthogonal direction. The second photograph shows
the cell through the probe beam channel, and the third photograph shows the same view with the
upper portion of the sample holder in place. The fourth photograph shows the top view of the
cell housing including the hole bored most of the way to the vapor cell position, with ∼ 1 mm of
material remaining to prevent samples from smashing the cell during shuttling.
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Figure 3.7: Photographs of Phase-II magnetometer cell holder.
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3.3.6 Magnetic Field Compensation
Compensation Based on Magnetometer Response

Based on Eq. (3.11), the sensitivity of the magnetometer is linear in the z direction, and bilinear
in the x and y directions. In order to zero the magnetic field in the z direction, one may simply
balance the polarimeter (such that the DC offset due to the polarization optics is zero) with the
pump beam blocked, and then readjust the z field to remove any DC offset upon unblocking the
pump beam. If we apply small field modulations about the x and y axes such that [63]

βx = β0
x + βmod

x sin (ωxt)

βy = β0
y + βmod

y sin
(
ωyt

)
, (3.27)

where β0
x and β0

y are components of the static ambient magnetic field, and βmod
x and βmod

y are the
modulation amplitudes, then Eq. (3.11) may be expanded as

S x ≈ S 0

[
βz − β

0
xβ

0
y − β

0
xβ

mod
y sin

(
ωyt

)
− β0

yβ
mod
x sin (ωxt)

]
. (3.28)

Then lock-in amplifiers referenced to ωy and ωx yield signals proportional to β0
x and β0

y , respec-
tively. Thus the magnetic field along x (y) may be zeroed by minimizing the signal arising from a
field modulation in the y (x) direction.

Compensation Based on Zeeman Splittings

One can also eliminate magnetic fields by measuring Zeeman splittings of the J-coupling spec-
trum induced by non-zero magnetic fields. In fact, the absence of observable Zeeman perturbation
is, by definition, evidence that the sample is in the zero-field regime. By arraying the applied field
strength, one can determine the parameters that correspond to zero magnetic field in terms of the
equations listed in Chapter 6. Magnetic fields in the x and y directions will cause a splitting of the
1JCH peak in 13C-labeled formic acid, so eliminating this splitting ensures that the sample is not
affected by x or y fields. Furthermore, the center peak at 1JCH will reappear if a z field is applied
while the spectrum is split by x or y fields, so minimizing the central peak in the presence of x or
y fields allows one to zero the magnetic field in the z direction.

It should be noted that field compensation based on Zeeman splittings is generally the preferred
method for fine-tuning to the zero-field condition, because we are generally more interested in the
ambient field present at the sample than that present at the magnetometer cell, which are not neces-
sarily the same. This is a notable difference between NMR measurements, where we are primarily
interested in the spin dynamics of our sample, and precision fundamental physics measurements,
where one is more often attempting to measure fields with a greater spatial homogeneity.
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Chapter 4

Preparing Nuclear Spin Magnetization in
Zero-Field NMR

NMR measures magnetization,
As per Boltzmann’s exponentiation.

Though in ZULF-NMR,
This is lower by far,

So we need hyperpolarization.

This chapter describes the methods by which zero-field NMR signal is generated. Because
thermal spin polarization is negligible in the absence of a magnetic field, the production of observ-
able signal in ZULF NMR requires the formation of so-called “hyperpolarized” spin states, having
spin polarization much greater than thermally equilibrated states. We will also consider the ef-
fects of magnetic field pulses to transform static states into superposition states yielding oscillating
magnetization. This chapter includes content from the following publications:

• Blanchard, J.W. and Budker, D. Zero-Field NMR. Encyclopedia of Magnetic Resonance. In
Preparation.

• Emondts, M., Ledbetter, M.P., Pustelny, S., Theis, T., Patton, B., Blanchard, J.W., Butler,
M.C., Budker, D., and Pines, A. Long-Lived Heteronuclear Spin-Singlet States in Liquids at
a Zero Magnetic field. Phys. Rev. Lett. 112 (7), 077601. (2014)

• Butler, M.C., Kervern, G., Theis, T., Ledbetter, M.P., Ganssle, P.J., Blanchard, J.W., Budker,
D., and Pines, A. Parahydrogen-Induced Polarization at Zero Magnetic Field. J. Chem. Phys.
135 (9), 234201. (2013)
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• Theis, T., Ledbetter, M.P., Kervern, G., Blanchard, J.W., Ganssle, P.J., Butler, M.C., Shin,
H.D., Budker, D., and Pines, A. Zero-Field NMR Enhanced by Parahydrogen in Reversible
Exchange. J. Am. Chem. Soc. 134 (9), 3987-3990. (2012)
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4.1 Overview: Spin Polarization and Hyperpolarization
As described in the previous chapter, detection of a ZULF NMR signal amounts to the mea-

surement of the magnetic field produced by nuclear spins in a sample, which is proportional to the
net magnetization of those nuclear spins. The magnetic moment of a single spin S may be written

µ = ~γS, (4.1)

where ~ is the reduced Planck constant and γ is the gyromagnetic ratio of the nuclear spin S. The
total magnetization of an ensemble of spins can then be written as

M = N~γSP0, (4.2)

where N is the number density of nuclear spins, and P0 is the ratio of the spin state population
difference to the total population, generally referred to as the spin polarization. Explicitly, for
spin- 1

2 nuclei,

P0 =
n↑ − n↓
n↑ + n↓

, (4.3)

where n↑ is the fraction of spins with ms = +1
2 , and n↓ is the fraction of spins with ms = −1

2 . These
populations are given by the Boltzmann distribution,

n↑ = e
−E+
kBT

n↓ = e
−E−
kBT (4.4)

where E± is the energy of the state with ms = ±1
2 , kB is the Boltzmann constant, and T is the

temperature of the system. In a large magnetic field, the dominant energy term is the Zeeman
interaction,

HZ = −~γB0 · S, (4.5)

where B0 is the applied magnetic field. For a magnetic field in the z direction, the energy is

E = −~γB0ms, (4.6)

so Eq. (4.3) may be written as

P0 =
e
~γB0
2kBT − e−

~γB0
2kBT

e
~γB0
2kBT + e−

~γB0
2kBT

P0 = tanh
(
~γB0

2kBT

)
. (4.7)

Under practically achievable conditions, this may be approximated by the leading term of the
Taylor expansion of the hyperbolic tangent,

P0 ≈
~γB0

2kBT
, (4.8)
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such that

M ≈
N~2γ2B0

2kBT
S. (4.9)

Thus the magnitude of the observable NMR signal is dependent not only on the spin density and
gyromagnetic ratio, but also varies linearly with the magnetic field strength.

The thoughtful reader may rightly realize that this result is rather disturbing for zero-field
NMR, as Eq. (4.9) suggests that there should be no observable magnetization in the absence of
a magnetic field! It is true that in the ZULF regime, the dominant spin interaction is no longer
the Zeeman Hamiltonian, but is instead the J-coupling Hamiltonian,1 which persists down to zero
field. This interaction is, however, very small compared to the high-field Zeeman interaction, and
does not produce much in the way of observable magnetization. For example, while the thermal
equilibrium of 1H nuclei in a 9.4 T magnet yields part-per-million spin polarization due to a 400
MHz splitting between energy levels, thermal polarization at zero field due to a J-coupling of only
hundreds of Hz yields a spin polarization roughly a million times smaller, which is beyond the
limit of the most sensitive detectors.

The solution is, however, rather straightforward: if the equilibrium spin polarization is insuf-
ficient for ZULF NMR, we clearly need some kind of non-equilibrium spin polarization. In the
following sections, we explore some of the methods for generating so-called “hyperpolarized”
states where the polarization level substantially exceeds that obtained by thermal polarization.

Also, much as high-field NMR is not actually sensitive to the static magnetization aligned with
the field, but to the transverse magnetization precessing in the orthogonal plane, we must consider
how to transform static magnetization at zero-field into an evolving magnetization that yields useful
information. In high-field NMR, the static equilibrium magnetization corresponds to an eigenstate
of the Zeeman Hamiltonian, so it is necessary to apply a resonant radio-frequency pulse to “rotate”
the density matrix into a superposition state that will precess under the Zeeman Hamiltonian to
produce observable magnetization in the xy plane. Similarly, in zero-field NMR, the initial state
will generally be an eigenstate of the J-coupling Hamiltonian and must be transformed into a
superposition state that will evolve under the J-coupling Hamiltonian to produce an observable
oscillating magnetization. As we will see in the following sections, this may be achieved using DC
magnetic field pulses.2

4.2 Field Cycling, or “Pneumatic Hyperpolarization”
The most commonly used polarization scheme in ZULF NMR is cycling (e.g. by pneumatic

shuttling) a sample from a high-field polarization region to a zero-field region, after which co-

1That is, in isotropic liquids. In solids, the direct dipole-dipole or quadrupolar couplings typically dominate. While
the dipolar coupling Hamiltonian is also generally insufficient for the generation of measurable spin polarization, the
quadrupolar coupling is typically on the order of MHz, leading to the possibility of measurement without the need for
alternative polarization methods. It is for this reason that nuclear quadrupole resonance (NQR) is sometimes referred
to – somewhat erroneously – as “zero-field NMR.”

2A DC magnetic field pulse may be considered the equivalent of a resonant radio-frequency pulse with zero fre-
quency because at zero field, the Larmor frequencies ω = γB0 of all nuclei are identically zero.
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herences are generated and observed. In a typical experiment,[64, 65, 66, 67] a sample inside of
normal 5 mm NMR tubes are polarized in a 2 T permanent Halbach cylinder magnet located on
top of the ZULF NMR apparatus, outside of the magnetic shielding, as shown in Fig. 3.3. The
sample is then shuttled out of the polarizing field and down into the zero-field region for detection.
During the shuttling, a “guiding field” may be applied in the vertical direction (z axis in Fig. 3.3)
by a solenoid wrapped around the shuttling tube – upon reaching the detection region, the field is
suddenly turned off. Alternatively, the sample may be shuttled slowly in the absence of a guiding
field, providing an adiabatic transition.

For illustration, we examine the case of a coupled heteronuclear spin-1
2 pair, I and S, following

the approach laid out in the Supporting Information of Ref. [67]. For simplicity, we include only
the J-coupling in the local Hamiltonian, and we neglect relaxation effects. We will also work in a
unit system with ~ = 1.

At the beginning of the experiment, in the polarizing field, the eigenstates of the spin system
are given by the uncoupled basis |MI MS 〉, which we further denote using up/down arrow notation
as |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. The populations of these states PMI ,MS = 〈MI MS | ρ |MI MS 〉 are given
by the Boltzmann distribution:

PMI ,MS =
1
4

e
Bp(γI MI +γS MS )

kT ≈
1
4

(1 +
γI

kT
Bp · I +

γS

kT
Bp · S), (4.10)

where Bp is the strength of the polarizing field, k is the Boltzmann constant, and MI and MS are
±1

2 . We then write the populations of each state as

P↑↑ =
1
4

+ δ, P↑↓ =
1
4

+ ε, P↓↑ =
1
4
− ε, P↓↓ =

1
4
− δ, (4.11)

where δ = Bp(γI + γS )/(8kT ) and ε = Bp(γI − γS )/(8kT ).
At zero field, the local Hamiltonian is HJ = JI ·S, and the eigenstates consist of the singlet and

triplet states, |S 0〉, |T0〉, and |T±1〉, which are indexed by the total angular momentum F = I + S.
Note that the formalism is similar to that used for atomic hyperfine coupling [68]. In terms of the
high-field states, these are written as

|T+1〉 = |↑↑〉 , |T0〉 =
1
√

2
(|↑↓〉 + |↓↑〉) , |T−1〉 = |↓↓〉 ,

|S 0〉 =
1
√

2
(|↑↓〉 − |↓↑〉) . (4.12)

4.2.1 Adiabatic Transition to Zero Field
Following adiabatic transport to zero field, the populations of the high-field states |↑↑〉, |↓↑〉,

|↑↓〉, and |↓↓〉 are converted to populations of the zero-field states |T+1〉, |T0〉, |S 0〉, and |T−1〉, respec-
tively. Henceforward, we will represent these populations using the operators T0,±1 =

∣∣∣T0,±1
〉 〈

T0,±1

∣∣∣
and S 0 = |S 0〉 〈S 0|. For convenience, we express these populations in the spin-operator formalism:
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Figure 4.1: Magnetic field experienced by the sample during pneumatic shuttling for (a) adiabatic
transfer, (b) sudden transfer.
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S 0 = 1/4 − I · S, T0 = 1/4 + IxS x + IyS y − IzS z, T±1 = 1/4 ± (Iz + S z)/2 + IzS z. The initial density
matrix following adiabatic transport to zero field can then be written as

ρ0 = δ(Iz + S z) − 2ε(I · S − IzS z). (4.13)

We also introduce a set of zero-quantum and double-quantum operators:

Zx = 2(IxS x + IyS y),
Zy = 2(IxS y − IyS x),
Zz = (Iz − S z), (4.14)
Dz = (Iz + S z) .

In terms of these operators, the initial density matrix can be written as

ρ0 = δDz − εZx. (4.15)

The reason for using these operators becomes apparent when considering the commutation
relations with the scalar-coupling Hamiltonian:

[Zx,HJ] = [DZ,HJ] = 0,
[Zz,HJ] = −iJZy, [Zy,HJ] = iJZz. (4.16)

For the purpose of visualization, these commutation relations define an algebra identical to that of
the single-spin operators in high-field NMR, with the J-coupling Hamiltonian viewed as “parallel”
to Zx in place of the high-field Zeeman Hamiltonian. Thus Zz coherences evolving into Zy (and vice
versa) under HJ can be viewed as analogous to the evolution of spins precessing about a magnetic
field.

Because all terms in the initial density matrix in Eq. (4.15) commute with HJ, it is necessary
to transform the density matrix into a state that will evolve in order to generate an NMR signal.
Analogous to high-field NMR, this is done by applying a magnetic-field pulse. However, in this
case, it is a DC pulse rather than RF, because the Larmor frequency in the absence of magnetic field
is zero. The Hamiltonian for a magnetic-field pulse in the z-direction is the Zeeman Hamiltonian,

Hz = Bz (γI Iz + γS S z) , (4.17)

and the commutation relations with the pulse Hamiltonian are

[Zz,Hz] = [Dz,Hz] = 0,
[Zy,Hz] = iBz(γI − γS )Zx, (4.18)

[Zx,Hz] = −iBz(γI − γS )Zy.

Thus applying a magnetic field in the z direction causes evolution between Zx and Zy, analogous
to a high-field RF x pulse rotating magnetization from Iz into Iy. Following a z pulse of duration
tp, the density matrix is

ρz = δDz − ε(cosαZx + sinαZy), (4.19)
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Figure 4.2: Visualization of the evolution of a two-spin system during the pulse and detection pe-
riod. As described in the text, the initial state is an eigenstate of HJ, depicted here as a pseudospin
collinear with HJ. The Hamiltonian describing a magnetic-field pulse in the z direction is perpen-
dicular to HJ and rotates the pseudospin through an angle of π/2 into −Zy. Following the pulse,
the pseudospin then evolves under HJ, depicted here as precession about the Zx axis. Adapted with
permission from Ref. [69]. c©2013 American Institute of Physics.

where α = 2πBztp(γI − γS ).
Evolution under the J-coupling Hamiltonian yields

ρz(t) = δDz − ε
[

cosαZx + sinα cos (2πJt) Zy − sinα sin(2πJt)Zz

]
. (4.20)

The sample magnetization in the z direction is Mz(t) = Nh Tr{ρ(t)(γI Iz + γS S z)}, where N is
the molecular number density and h is Planck’s constant. Inserting Eq. (4.20) and ignoring the Dz

term, which does not evolve, we obtain

Mz(t) =
Nh
2
ε(γS − γI) sinα sin(2πJt). (4.21)

We can also apply a magnetic-field pulse in the x (or, equivalently, y) direction. Working
with pulses orthogonal to z is less convenient, as the pulse Hamiltonian does not have a simple
projection onto the operators in Eq. (4.14), but it can be shown that an x (y) pulse converts the
term of the density operator proportional to ε into magnetization oscillating in the x (y) direction.
Because the magnetometer is only sensitive to z magnetic fields, we can ignore this part and focus
instead on the term proportional to δ, which is of the form Iz +S z. Using the standard commutation
relations for angular momentum, we find that, following the pulse, the relevant part of the density
matrix is

ρx = δ

[
Dz
√

2
(cos θI + cos θS ) +

Zz
√

2
(cos θI − cos θS )

]
, (4.22)

where θI,S = BxtpγI,S . As before, Dz commutes with HJ and so does not evolve. Zz does not,
however, commute with HJ, so it will evolve and give rise to a time-dependent magnetization:

Mz(t) =
Nh
2
δ(γI − γS )(cos θI − cos θS ) cos(2πJt). (4.23)
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Figure 4.3: Dependence of ZULF NMR signal amplitude on the “pulse area” Bztp for pulses of
magnetic field in the x and z directions for a model two-spin system, formic acid-13C. The solid
curves overlaying the data are fits to Eqs. (4.21) and (4.23). Adapted with permission from Ref.
[67]. c©2014 American Physical Society.

So a pulse in the x or y direction generates an signal evolving as cos(2πJt) proportional to δ,
the population difference between the |T+1〉 and |T−1〉 states, and a pulse in the z direction generates
a signal evolving as sin(2πJt) proportional to ε, the population difference between the |T0〉 and |S 0〉

states. Following Fourier transformation, these produce spectral features described by absorptive
and dispersive peaks, respectively.

4.2.2 Sudden Transition to Zero Field
The initial density operator following a sudden transition to zero-field is obtained by projecting

the high-field density operator onto the zero-field basis:

ρ0 = δDz + εZz. (4.24)

In this case, the Zz term will begin to evolve immediately, without any pulses, yielding a time-
dependent magnetization signal:

Mz(t) =
Nh
2
ε(γI − γS ) cos(2πJt). (4.25)

As shown in Eq. (4.18), both terms in the initial density operator commute with a magnetic field
pulse in the z direction, so such a pulse has no effect. However, as shown in Eq. (4.22), a pulse in



4.3. PARAHYDROGEN-INDUCED POLARIZATION 60

the x direction interconverts the Dz and Zz populations

ρx = Dz

[
δ
√

2
(cos θI + cos θS ) +

ε
√

2
(cos θI − cos θS )

]
+ Zz

[
δ
√

2
(cos θI − cos θS ) +

ε
√

2
(cos θI + cos θS )

]
(4.26)

The Zz term then produces an oscillating magnetization due to evolution under HJ:

Mz(t) =
Nh
2

[
δ
√

2
(cos θI − cos θS ) +

ε
√

2
(cos θI + cos θS )

]
cos(2πJt). (4.27)

This is particularly useful in cases where δ > ε, i.e. when γI and γS are of the same sign, as a
pulse length selected such that cos θI = − cos θS generates a signal proportional to δ, whereas the
sudden transition alone generates a signal proportional to ε.

4.3 Parahydrogen-Induced Polarization
While zero-field NMR has been demonstrated for many systems using thermal polarization in

a permanent magnet, the signal is typically too small for anything other than isotopically labeled
liquids. Alternatively, significant nuclear spin polarization can be achieved via parahydrogen-
induced polarization (PHIP). Because the ground state of molecular hydrogen has a symmetric
rotational wavefunction, the Pauli Exclusion Principle requires that it possesses an antisymmetric
singlet nuclear spin state. This nuclear spin state of hydrogen is referred to as parahydrogen, and
the symmetric triplet spin state is referred to as orthohydrogen. The energy spacing between the
ground state and the next lowest rotational state is equivalent to approximately 170 K, so a nearly
pure singlet nuclear spin state of molecular hydrogen can be prepared by cooling H2 substantially
below this temperature (for example, 98% para-enriched at 30 K). This process is impractically
slow (∼ 2 weeks) in pure hydrogen [70], so in practice a magnetic catalyst is used to break the
local magnetic symmetry of the molecule. If the catalyst is confined to a low temperature region,
hydrogen may then be flowed through the catalyst to produce parahydrogen, which may then be
stored at room temperature for multiple days without substantial loss of para-enrichment.

When parahydrogen reacts with a substrate (e.g. addition across a double bond), the nuclear
spin states formed by the coupling of the singlet state to the other spin angular momenta in the
molecule have substantially higher populations than those formed by coupling with the triplet
states. However, the state formed by addition of angular momenta to the singlet state has no
magnetic moment and thus produces no NMR signal. Yet if the substrate contains at least one
spin- 1

2 nucleus S with γS , γH, the symmetry is broken and observable coherences can be excited
by a DC magnetic field pulse in the z-direction. While heteronuclear couplings are still necessary
for the generation of observable magnetization, PHIP leads to a signal enhancement of up to 4
orders of magnitude over high-field thermal polarization, allowing for detection of dilute samples
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at natural isotopic abundance. Zero-field PHIP using catalytic hydrogenation has been reported
previously in Ref. [71] and is described in-depth in Ref. [61].

4.3.1 Non-Hydrogenative Parahydrogen-Induced Polarization
While hydrogenative PHIP generates very large polarization at zero magnetic field, it is far

from generalizable, and furthermore requires modification of the analyte, which is often unde-
sirable for analytical techniques. It is, however, possible to transfer the non-equilibrium singlet
spin order from parahydrogen to an analyte without chemical modification using a technique ap-
propriately called non-hydrogenative parahydrogen-induced polarization (NH-PHIP), sometimes
referred to as signal amplification by reversible exchange (SABRE) [73]. The basic principle be-
hind NH-PHIP is the transfer of spin order through the J-coupling network of a transient complex
formed between a parahydrogen molecule, a metal center, and the molecule of interest, usually
making use of an iridium-based “polarization transfer catalyst” such as Crabtree’s catalyst, (1,5-
cyclooctadiene)(pyridine)-(tricyclohexylphosphine)-iridium(I) hexafluorophosphate.

We have demonstrated NH-PHIP at zero magnetic field for the polarization of pyridine-15N,
yielding single-shot spectra of samples at natural isotopic abundance [72]. The general mechanism
for the NH-PHIP spin order transfer mechanism is shown in Fig. 4.4(a). Hydrogen and pyridine
bind reversibly to the catalytic intermediate and singlet spin order is transferred from parahydrogen
to pyridine through the J-coupling network. This then yields spectra like those of Fig. 4.4(b) in
a single scan for unenriched pyridine-15N, corresponding to a 40 mM concentration of the actual
analyte. For comparison, Fig. 4.4(c) shows the spectrum of neat isotopically-enriched pyridine-
15N (14 M concentration) thermally polarized in a 1.6 T magnet, after averaging 128 transients.
Factoring in the differences in concentration and the number of averages, NH-PHIP yields a signal
enhancement of ∼ 1.7 × 104. The limit of detection in a single scan was shown to be ∼ 6mM,
demonstrating that NH-PHIP extends the capability of ZULF-NMR even to reasonably dilute sam-
ples. Furthermore, for an enriched sample of pyridine-15N, NH-PHIP, the resulting magnetization
was on the order of 10−10 T, within the detection range of less-sensitive magnetometers such as
those based on nitrogen-vacancy centers in diamond.

In the case of pyridine-15N polarized by NH-PHIP, the density matrix may be treated as a sum
of two-spin singlet states,

ρ0 =
∑
j,k

p jkI j · Ik, (4.28)

where p jk is a population weight for each spin pair population produced by incoherent averaging
during the bubbling phase of the experiment.3 Based on the treatment in the previous section,
this may be modeled as a sum of two-spin density matrices which in zero-field may be mapped

3This is related to the fact any density matrix can be described in terms of tensor products of the Pauli spin matrices,
and the “spread of non-thermal singlet order” terminology used in PHIP literature generally refers to the increased
population of two-spin singlet operators. This is expected because the singlet order is spread by the J-coupling
Hamiltonian of the transient complex with the polarization transfer catalyst, which should leave the geometric form
of the parahydrogen density matrix invariant, simply distributing the increased population amongst states of the same
symmetry. This can be seen in Ref. [69], where the generator of the algebra describing the redistribution of singlet
order for a three-spin system corresponds to a pseudoscalar operator that does not decrease the sum of the amplitudes
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Figure 4.4: (a) NH-PHIP transfer mechanism – polarization is transferred from parahydrogen to
pyridine via J-couplings during reversible binding to the iridium polarization transfer catalyst.
Demonstration of NH-PHIP signal enhancement comparing (b) a single shot spectrum of a 40 mM
solution of pyridine-15N polarized using NH-PHIP to (c) the average of 128 transients of a 14 M
solution of pyridine-15N polarized thermally in a 1.6 T permanent magnet. Adapted from Ref. [72].
c©2012 American Chemical Society.
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Figure 4.5: Dependence of zero-field NH-PHIP signal amplitude on the z magnetic field pulse
length for pyridine-15N. The pulse length is given in terms of the rotation angle experienced by
a proton, calibrated in terms of a pulse train producing an alternating magnetization in a water
sample, as described in Ref. [61]. The curve is a fit to sin (ηNHθH), where ηNH = − (γ1H − γ15N) /γ1H

and θH is the proton rotation angle.

onto Zx, such that the magnetization in the z direction following a z magnetic field pulse may be
described in terms of some product of sine functions that feature the same dependence on pulse
length as that described in Eq. (4.21). Evidence that this model is consistent in describing the
NH-PHIP experiment is provided in Fig. 4.5, showing the dependence of the zero-field NH-PHIP
signal amplitude on the z field pulse length for pyridine-15N. The behavior is analogous to that
of the z pulses on formic acid-13C in Fig. 4.3, supporting the validity of treating the pyridine-15N
NH-PHIP polarized density matrix as a direct product of two-spin singlet states.

4.4 Other Hyperpolarization Schemes
In addition to the techniques discussed above, many other spin-polarization methodologies

are applicable to zero-field NMR. One example is dynamic nuclear polarization (DNP), where
a much higher electron spin polarization is transferred to nuclear spins [74]. One disadvantage
of DNP is that it typically requires a separate expensive and immobile instrument based on a
superconducting magnet to achieve high electron polarization, eliminating the potential portability

of the two-spin operators because the algebra contains no representations corresponding to higher-order operators
other than the Γ = I1 · I2 × S pseudoscalar. For the sake of posterity, it may be worth pointing out that because the Γ

operator in Ref. [69] is a pseudoscalar, it changes sign under parity inversion, so chiral molecules may demonstrate
different polarization dynamics for different enantiomers.
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of ZULF-NMR. Another difficulty is that the presence of paramagnetic radicals in DNP samples
is necessary to provide accessible electron polarization, and these paramagnetic species would
likely lead to dramatically reduced coherence times in ZULF-NMR due to paramagnetic relaxation
effects.

One could also imagine transferring polarization from optically pumped nuclear spins, such
as 129Xe [75] or 13C nuclei near to nitrogen-vacancy centers in diamond [76, 77, 78], via the
nuclear Overhauser effect [79, 80] or low-field thermal mixing due to dipole-dipole coupling [81,
82, 83]. These techniques do not require the contamination of samples with paramagnetic species,
are miniaturizable [84], and operate near to room temperature.

Another possibility is photochemically induced dynamic nuclear polarization (CIDNP) [85],
which relies on spin selection rules in the decay of photo-excited triplet radical pairs [86] and
often achieves optimal signal enhancement at low magnetic fields [87]. Similar techniques have
been used to generate long-lived states at variable magnetic field, which were studied via field
cycling for high-field NMR detection [88]. By eliminating the need for high-field detection, and
thus allowing for more coherent control over the hyperpolarized spin system, ZULF-NMR may be
particularly useful for the study of systems hyperpolarized by CIDNP.

Furthermore, future experiments using miniaturized detectors (e.g. nitrogen-vacancy defect
centers in diamond) to detect a small number of nuclear spins [89] may be able to acquire spectra
without the need for sample polarization, instead relying on spin noise [90]. Spin noise is usually
small compared to other sources of signal, but in the limit of extremely small samples, statisti-
cal fluctuations are dominant [91]. An related statement is that a single spin is always perfectly
polarized, because it can only point in one direction. Similarly, a sample of, say 11 spins, has a
minimum polarization of 1/11 ≈ 9% – for sufficiently small samples, the statistical polarization
is actually larger than the equilibrium polarization achievable even in the most powerful supercon-
ducting magnets.
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Chapter 5

J-Spectroscopy

At low-field there’s no chemical shift,
So are chemists to be left adrift?

Electrons still have sway,
So our spectrum’s from J –

Now to just make the analysis swift...

This chapter will provide a description of the current state of the art in the interpretation of
zero-field NMR J-spectra. We will begin with spin systems having simple XAn topologies, and
perturbation theory will be used to extend to more complicated (XAn)Bm spin topologies. In order
to demonstrate the further applicability to more complex topologies, necessary for chemical anal-
ysis, we will conclude with a discussion of benzene derivatives, where the consistent perturbation
of the phenyl ring protons yields a clear spectral fingerprint. This chapter includes content from
the following three publications:

• Theis, T., Blanchard, J.W., Butler, M.C., Ledbetter, M.P., Budker, D., and Pines, A. Chemical
Analysis Using J-Coupling Multiplets in Zero-Field NMR. Chem. Phys. Lett. 580, 160-165.
(2013)

• Butler, M.C., Ledbetter, M.P., Theis, T., Blanchard, J.W., Budker, D., and Pines, A. Multi-
plets at zero magnetic field: The geometry of zero-field NMR. J. Chem. Phys. 138 (18),
184202. (2013)

• Blanchard, J.W., Ledbetter, M.P., Theis, T., Butler, M.C., Budker, D., and Pines, A. High-
Resolution Zero-Field NMR J-Spectroscopy of Aromatic Compounds. J. Am. Chem. Soc.
135 (9), 3607-3612. (2013)
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In the absence of magnetic fields, the Zeeman interaction, and thus the chemical shift, van-
ishes, leaving an isotropic fluid system to evolve only under electron-mediated scalar couplings
(J-couplings) between spins in a molecule. Even in the absence of chemical shifts, the high sensi-
tivity of J-couplings to subtle changes in geometry and electronic structure makes them a valuable
source of chemical information. Owing to continued progress in quantum chemical calculations
of spin–spin couplings [92, 31, 93], there now exists a number of techniques for analysis and in-
terpretation of J-coupling constants, ranging from empirical Karplus[94]-type equations to newer
techniques involving spin–spin coupling density surfaces [95, 96], double finite perturbation the-
ory calculations [97], and decomposition of J-couplings and the Ramsey [32] terms (Fermi con-
tact, spin dipole, diamagnetic spin orbit, and paramagnetic spin orbit) into orbital contributions
[98, 99]. Using these techniques, it has been possible to solve problems of molecular configura-
tion [100, 101, 102, 103], bond character [104], molecular motion [105, 106], and intermolecular
interactions [107, 108].

This section will detail a method for the interpretation of zero-field J-spectra wherein a pre-
ferred basis set for the spins is determined by the one-bond coupling between two heteronuclei,
and smaller long-range couplings are treated as perturbations on this primary zeroth-order interac-
tion. For systems consisting of three sets of magnetically equivalent spins, this analysis leads to
simple analytical expressions that fully describe the zero-field spectra. In order to demonstrate the
viability of J-spectroscopy for chemical fingerprinting, high-resolution zero-field J-spectra for a
series of labeled aromatic molecules have been measured. The general qualitative structures of the
spectra are consistent with patterns for simpler spin systems, and furthermore, the spectra for dif-
ferent molecules are unique and easily distinguished from one another. The narrow linewidths (as
low as 11 mHz for benzene-13C1) permit precise measurement of long-range J-couplings, which
encompass a wealth of chemically relevant information.

5.1 XAn Systems

5.1.1 Energy Levels
In Section (4.2) we discussed the eigenstates for a two-spin system, XA, which consist of three

triplet states and a singlet state separated by the J-coupling energy. We now demonstrate how to
obtain the eigenstates and energies for XAn systems. For XAn spin systems in isotropic solutions,
the J-coupling Hamiltonian is written as

H (0) = ~JAXKA · S, (5.1)

where KA =
∑

j IA, j is the total angular momentum of spins A and S is the angular momentum of
spin X.

The eigenstates ofH0 are those of F2
A and FA,z, where

FA = KA + S (5.2)
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Figure 5.1: Eigenstates, energies, and allowed transitions for XAn spin systems. Right panel
shows geometric model for the addition of angular momenta and precession about the total angular
momentum. Double lines represent degenerate energy levels. For clarity, only a single transition
is shown for each frequency.
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is the total spin angular momentum, and may be written as |KA, S , FA,mFA〉 where KA, S , FA,
and mFA are the eigenvalues of KA, S, F2

A, and FA,z, respectively. KA and S are only kept for
bookkeeping purposes, and will generally be omitted for clarity.

In order to compute the scalar product in Eq. (5.1), we write

F2
A = (KA + S)2 = K2

A + S2 + 2KA · S, (5.3)

so that the scalar product may be written as

KA · S =
1
2

(
F2

A −K2
A − S2

)
. (5.4)

Using Eq. (5.4) in Eq. (5.1), we find that the states |FA,mFA〉 have energy

E(0) =
JAX

2
〈
FA,mFA

∣∣∣ (F2
A −K2

A − S2
) ∣∣∣FA,mFA

〉
=

JAX

2
[FA(FA + 1) − KA(KA + 1) − S (S + 1)] (5.5)

and degeneracy 2FA + 1. The energy levels for XA, XA2, and XA3 systems are shown in Fig. 5.1,
along with a geometric model for the addition of angular momenta and precession about the total
angular momentum.

5.1.2 Selection Rules and Amplitudes

Because the detected magnetization, Mz(t) ∝ Tr
[
ρ(t)

∑
j γjIj,z

]
, is a sum of vector operators with

magnetic quantum number zero, observable coherences only arise between states that differ by one
quantum of total angular momentum FA, ∆FA = 0,±1 with ∆mFA = 0. The equivalence of the
spins An imposes an additional selection rule, ∆KA = 0, because the Hamiltonian commutes with
K2

A. Using these considerations, one may derive [109] that the spectrum for an XA system consists
of one peak at JAX, the spectrum for an XA2 system consists of one peak at 3

2 JAX, and the spectrum
for an XA3 system consists of two peaks at JAX and 2JAX.

Relative amplitudes can be determined by comparing the transition matrix elements,

Anm =

〈
n

∣∣∣∣∣∣∣∑j

γ jI j,z

∣∣∣∣∣∣∣ m
〉2

, (5.6)

where |m〉 and |n〉 are shorthand for the initial (|KA, S , F′,mF〉) and final (|KA, S , F,mF〉) states,
respectively. The transition matrix elements may then be computed in terms of the uncoupled
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basis as

Anm =

[ ∑
mKA mS
m′KA

m′S

〈FAmFA |KAS mKAmS 〉〈KAS mKAmS |Bz(γAKA,z + γAS z)|KAS m′KA
m′S 〉

×〈KAS m′KA
m′S |F

′
AmFA〉

]2

=

 ∑
mKA mS

〈KAS mKAmS |FAmFA〉〈KAS mKAmS |F′AmFA〉(γAmKA + γS mS )


2

, (5.7)

where 〈KAS mKAmS |FAmFA〉, etc. are the Clebsch-Gordan coefficients, and where we have made
use of the selection rules ∆K = ∆S = ∆mS = ∆mKA = ∆mFA = 0.

5.1.3 Example XAn Spectra
Figure 5.2 shows spectra for formic acid-13C, an XA system; formaldehyde-13C, an XA2 sys-

tem; and methanol-13C, an XA3 system. The formic acid spectrum consists of a single peak at
1JCH = 221.1 Hz, as expected for an XA system. Formaldehyde, an XA2 system, has a single peak
at 3

2 ×
1JCH = 245.8 Hz. The methanol spectrum consists of two peaks at 1JCH = 141.0 Hz and

2 × 1JCH = 282.0 Hz, as predicted by the previous sections for an XA3 spin system. The specific
transitions are those depicted in Fig. 5.1.

5.1.4 14NH+
4 and 15NH+

4 : Variations on XA4

An interesting example of basic zero-field J-spectroscopy is given by the ammonium ion NH+
4 ,

an XA4 system where X may be either spin-1 or spin-1
2 if the nitrogen nucleus is 14N or 15N,

respectively. The tetrahedral symmetry of NH+
4 prevents rapid quadrupolar relaxation from the

14N nucleus, yielding one of very few cases where sharp zero-field spectra may be measured for
molecules containing quadrupolar nuclei. Figure 5.3 shows the zero-field J-spectrum for a roughly
60:40 mixture of 15NH4Cl and 14NH4Cl dissolved in an acidic aqueous solution (∼ 6 M NH4Cl,
∼ 1 M HCl).

The spectrum in Fig. 5.3 is readily understood through application of Eq. (5.5) for the possible
states that can be formed via angular momentum addition rules. For an XA4 system, KA = 0, 1, 2
yielding in all cases three separate angular momentum manifolds due to the ∆KA = 0 selection rule
discussed previously. For 15NH+

4 , S = 1/2, so the possible states are KA = 0, FA = 1
2 ; KA = 1,
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Figure 5.2: Zero-field J-spectra of formic acid-13C, formaldehyde-13C, and methanol-13C, as ex-
amples of XA, XA2, and XA3 spin systems, respectively.
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Figure 5.3: Zero-field J-spectra of a mixture of 14NH4Cl and 15NH4Cl, as examples of XA4 spin
systems containing spin-1 and spin-1

2 heteronuclei, respectively.
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FA = 1
2 ,

3
2 ; KA = 2, FA = 3

2 ,
5
2 . The energies of these states are

E(0)
(
KA = 0, S =

1
2
, FA =

1
2

)
= 0,

E(0)
(
KA = 1, S =

1
2
, FA =

1
2

)
= −JAX,

E(0)
(
KA = 1, S =

1
2
, FA =

3
2

)
=

1
2

JAX, (5.8)

E(0)
(
KA = 2, S =

1
2
, FA =

3
2

)
= −

3
2

JAX,

E(0)
(
KA = 2, S =

1
2
, FA =

5
2

)
= JAX.

Then applying the selection rules from section 5.1.2, there are two allowed transitions, one in the
KA = 1 manifold between FA = 1

2 ↔ FA = 3
2 states with frequency ν = 3

2 ×
1J15N−H, and one in the

KA = 2 manifold between FA = 3
2 ↔ FA = 5

2 states with frequency ν = 5
2×

1J15N−H. For the spectrum
in Fig. 5.3, these frequencies are

∣∣∣ 3
2 ×

1J15N−H

∣∣∣ = 110.45 Hz and
∣∣∣5
2 ×

1J15N−H

∣∣∣ = 183.58 Hz.
For 14NH+

4 , S = 1, and the possible states are KA = 0, FA = 0, 1; KA = 1, FA = 0, 1, 2; KA = 2,
FA = 1, 2, 3. The energies of these states are

E(0) (KA = 0, S = 1, FA = 0) = −JAX,

E(0) (KA = 0, S = 1, FA = 1) = 0,
E(0) (KA = 1, S = 1, FA = 0) = 2JAX,

E(0) (KA = 1, S = 1, FA = 0) = −JAX, (5.9)
E(0) (KA = 1, S = 1, FA = 2) = 0,
E(0) (KA = 2, S = 1, FA = 1) = −3JAX,

E(0) (KA = 2, S = 1, FA = 2) = −JAX,

E(0) (KA = 2, S = 1, FA = 3) = 2JAX.

There are then five transitions, one in the KA = 0 manifold, two in the KA = 1 manifold, and
two in the KA = 2 manifold. The KA = 0 transition is between FA = 0 ↔ FA = 1 states with
frequency ν = 1J14N−H. The KA = 1 transitions are between FA = 0↔ FA = 1 states with frequency
ν = 1J14N−H and between FA = 1 ↔ FA = 2 states with frequency ν = 2 × 1J14N−H. The KA = 2
transitions are between FA = 1 ↔ FA = 2 states with frequency ν = 2 × 1J14N−H and between
FA = 2↔ FA = 3 states with frequency ν = 3× 1J14N−H. The transitions at 1J14N−H and 2× 1J14N−H of
course overlap, so Fig. 5.3 has three peaks arising from 14NH+

4 at frequencies 1J14N−H = 52.41 Hz,
2 × 1J14N−H = 104.82 Hz, and 3 × 1J14N−H = 157.23 Hz.

The difference in the 14N−H and 15N−H J-coupling frequencies is primarily due to the different
gyromagnetic ratios of the two nuclei. From multiple measurements of the same NH4Cl sample,
the ratio of the J-couplings is |J15N−H/J14N−H| = 1.4012 ± 0.0002, as compared to |γ15N−H/γ14N−H| =

1.4027. The small difference between the ratios of |J15N−H/J14N−H| and |γ15N−H/γ14N−H| is likely due
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to the different vibrational energies of 14NH+
4 and 15NH+

4 , leading to a slight difference in electron
densities.

Additionally, the 14N lines are generally 1.36±0.05 times broader than the 15N lines, suggesting
that the T2 for 14NH+

4 is slightly shorter than for 15NH+
4 . A rough measurement of T1 times was

performed by varying the sample polarization time between 5 and 40 s, yielding T1(14N) = 12.5 s,
T1(15N) = 15.5 s.
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5.2 (XAn)Bm Systems

5.2.1 First-Order Energy Levels
Because one-bond J-couplings are generally substantially larger than couplings to more distant

spins, many molecular spin systems can be decomposed into an (XAn) subgroup and another group
of spins with smaller couplings to the X and An spins [110]. An illustrative example are spin
systems of the form (XAn)Bm where JAX � JAB, JBX. To zeroth-order, where JAB and JBX are
neglected, the system is described by H0, with energy levels as described in the previous section.
The first-order perturbing Hamiltonian is then

H (1) = JBXKB · S + JABKA ·KB. (5.10)

In the same way that the evolution of XAn systems can be visualized in terms of vectors S and
KA precessing about FA, we can visualize (XAn)Bm systems to first order in terms of FA and IB

precessing about the total angular momentum [110],

F = FA + KB. (5.11)

Because the motion of S and KA about FA is much faster than that of FA and IB about F, the effect
of the perturbing Hamiltonian is truncated so that, to first order, only the “parallel” components
are preserved. This geometric picture corresponds to the formal description where the vectors are
replaced with spin operators:

H (1) = JXBS‖ ·KB + JABK‖A ·KB, (5.12)

where

S‖ =
〈S · FA〉

〈FA · FA〉
FA (5.13)

and
K‖A =

〈KA · FA〉

〈FA · FA〉
FA (5.14)

are the projections of S and KA onto FA. Following algebraic manipulations along the lines of Eqs.
(5.2)-(5.5), the perturbing Hamiltonian can then be written as

H (1) =
(
J‖XB + J‖AB

)
FA ·KB, (5.15)

where

J‖BX = JBX

[
FA (FA + 1) + S (S + 1) − KA (KA + 1)

2FA (FA + 1)

]
,

J‖AB = JAB

[
FA (FA + 1) + KA (KA + 1) − S (S + 1)

2FA (FA + 1)

]
(5.16)
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|KA, FA,KB, F〉 E(0) ∆E(1) ∆E(2)∣∣∣1
2 , 1,

3
2 ,

5
2

〉
1
4 JAX +3

4 (JBX + JAB) 0∣∣∣1
2 , 1,

1
2 ,

3
2

〉
1
4 JAX +1

4 (JBX + JAB) 0∣∣∣1
2 , 1,

3
2 ,

3
2

〉
1
4 JAX −1

2 (JBX + JAB) 15(JBX−JAB)2

16JAX∣∣∣1
2 , 1,

1
2 ,

1
2

〉
1
4 JAX −1

2 (JBX + JAB) 3(JBX−JAB)2

16JAX∣∣∣1
2 , 1,

1
2 ,

1
2

〉
1
4 JAX −5

4 (JBX + JAB) 0∣∣∣1
2 , 0,

3
2 ,

3
2

〉
−3

4 JAX 0 −
15(JBX−JAB)2

16JAX∣∣∣1
2 , 0,

1
2 ,

1
2

〉
−3

4 JAX 0 −
3(JBX−JAB)2

16JAX

Table 5.1: Energy levels for an (XA)B3 system (e.g. methyl formate-13C) from first and second
order perturbation theory.

are couplings scaled by the projections of S and KA onto FA. The first-order energy corrections are
then

∆E(1) =
1
2

(
J‖BX + J‖AB

)
[F(F + 1) − FA (FA + 1) − KB (KB + 1)] . (5.17)

As an example, we consider methyl formate-13C, an (XA)B3 spin system, the spectrum for
which is shown in Fig. 5.4(a). To zeroth order, the 13C and formyl proton form an XA system,
with 1JCH = 226.8 Hz [110] and energy levels as shown in Fig. 5.4(b). The three equivalent methyl
protons are coupled to the XA system via 3JCH = 4.0 Hz and 4JHH = −0.8 Hz [110]. Assuming
that these protons possess a single spin KB = 3/2 yields the energy levels shown in Fig. 5.4(c),
and the KB = 1/2 case yields those shown in Fig. 5.4(d). The spectrum simulated using first-
order perturbation theory largely agrees with the experimental spectrum, through full numerical
diagonalization reveals higher-order effects that cause small frequency shifts and lift degeneracies
between some of the energy levels.
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(a)

Frequency (Hz)

(d)

2 4
0

222 224 226 228 230

H

13C

O

O
CH3

(b) (c) KB = 3/2 KB = 1/2

Figure 5.4: (a) Comparison of zero-field J-spectrum of methyl formate-13C to the predicted spec-
trum simulated using first-order perturbation theory (dashed lines) and exact numerical diagonal-
ization (solid lines). Eigenstates and allowed transitions are shown for (b) an unperturbed XA spin
system (13C-H) and an XA spin system perturbed by three equivalent methyl protons (B3) with (c)
KB = 3/2 and (d) KB = 1/2. Double lines represent degenerate energy levels due to the existence
of two KB = 1/2 representations of the methyl protons. Adapted with permission from Ref. [110].
c©2013 American Institute of Physics.
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|KA, FA,KB, F〉i |KA, FA,KB, F〉 f Transition Frequency 2nd Order Correction

ν1

∣∣∣1
2 , 1,

1
2 ,

1
2

〉 ∣∣∣1
2 , 1,

1
2 ,

3
2

〉
0 + 3

4 (JBX + JAB) −
3(JBX−JAB)2

16JAX

ν2

∣∣∣1
2 , 1,

3
2 ,

1
2

〉 ∣∣∣1
2 , 1,

3
2 ,

3
2

〉
0 + 3

4 (JBX + JAB) +
15(JBX−JAB)2

16JAX

ν3

∣∣∣1
2 , 1,

3
2 ,

3
2

〉 ∣∣∣1
2 , 1,

3
2 ,

5
2

〉
0 + 5

4 (JBX + JAB) −
15(JBX−JAB)2

16JAX

ν4

∣∣∣1
2 , 0,

3
2 ,

3
2

〉 ∣∣∣1
2 , 1,

3
2 ,

1
2

〉
JAX −

5
4 (JBX + JAB) +

15(JBX−JAB)2

16JAX

ν5

∣∣∣1
2 , 0,

1
2 ,

1
2

〉 ∣∣∣1
2 , 1,

1
2 ,

1
2

〉
JAX −

1
2 (JBX + JAB) +

3(JBX−JAB)2

8JAX

ν6

∣∣∣1
2 , 0,

3
2 ,

3
2

〉 ∣∣∣1
2 , 1,

3
2 ,

3
2

〉
JAX −

1
2 (JBX + JAB) +

15(JBX−JAB)2

8JAX

ν7

∣∣∣1
2 , 0,

1
2 ,

1
2

〉 ∣∣∣1
2 , 1,

1
2 ,

3
2

〉
JAX + 1

4 (JBX + JAB) +
3(JBX−JAB)2

16JAX

ν8

∣∣∣1
2 , 0,

3
2 ,

3
2

〉 ∣∣∣1
2 , 1,

3
2 ,

5
2

〉
JAX + 3

4 (JBX + JAB) +
15(JBX−JAB)2

16JAX

Table 5.2: Transition frequencies for an (XA)B3 system (e.g. methyl formate-13C) from first and
second order perturbation theory.
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5.2.2 General Matrix Elements
While the “geometric” approach presented above for understanding the first-order perturbation

theory for (XAn)Bm is formally accurate and conveniently intuitive, it is also worthwhile to es-
tablish a more rigorous method for calculating the effect of the perturbing Hamiltonian. To this
end, we will briefly review the derivation of analytical expressions for the matrix elements of the
perturbing Hamiltonian for a general (XAn)Bm system. As before, we work in the basis eigenstates
that are also eigenstates of S2, K2

A, K2
B, F2

A, F2, and Fz. We denote these states as |KAS (FA)KBFmF〉,
though we will drop the S index for all systems where S is a spin- 1

2 nucleus, and we will neglect
mF because the energy levels at zero field only depend on KA, FA, KB, and F. Beginning with the
term 〈JBXKB · S〉,〈

KAS (FA)KBFmF |JBXKB · S|KAS (F′A)KBF′m′F
〉

=∑
F′′,m′′F ,F

′′
B

F′′′,m′′′F ,F′′′B

〈
KAS (FA)KBFmF |KAS KB(F′′B )F′′m′′F

〉
×

〈
KAS KB(F′′B )F′′m′′F

∣∣∣ JBXKB · S
∣∣∣KAS KB(F′′′B )F′′′m′′′F

〉
×〈

KAS KB(F′′′B )F′′′m′′′F |KAS (F′A)KBF′m′F
〉

(5.18)

where we have introduced FB = KB+S. We can reduce some of our indices using some handy delta
functions

〈
KAS (FA)KBFmF |KAS KB(F′′B )F′′m′′F

〉
∝ δF′′

F δ
m′′F
mF and we use KB · S = 1/2(F2

B −K2
B − S2)

to write〈
KAS KB(F′′B )FmF |KB · S|KAS KB(F′′′B )F′m′F

〉
=

1
2

[
F′′B (F′′B + 1) − KB(KB + 1) − S (S + 1)

]
δF′

F δ
F′′′B
F′′B
,

thus obtaining〈
KAS (FA)KBFmF |JBXKB · S|KAS (F′A)KBF′m′F

〉
=

JBX

2

∑
F′′B

〈KAS (FA)KBFmF |KAS KB(FB)FmF〉 ×
[
F′′B (F′′B + 1) − KB(KB + 1) − S (S + 1)

]
×〈

KAS KB(F′′B )F′m′F |KAS (F′A)KBF′m′F
〉
δF′

F δ
m′F
mF . (5.19)

For the sake of more comfortable notation we make the change F′′B → FB, and transform between
bases with the Wigner 6- j symbols,〈

KAS (FA)KBFmF |JBXKB · S|KAS (F′A)KBF′m′F
〉

=

JBX

2

∑
FB

(−1)KA+KB+S +F
√

(2FA + 1)(2FB + 1)
{

KA S FA

KB F FB

}
×

[FB(FB + 1) − KB(KB + 1) − S (S + 1)]×

(−1)KA+KB+S +F′
√

(2F′A + 1)(2FB + 1)
{

KA S F′A
KB F′ FB

}
δF′

F δ
m′F
mF . (5.20)
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This can then be simplified to〈
KAS (FA)KBFmF |JBXKB · S|KAS (F′A)KBF′m′F

〉
=

JBX

2

∑
FB

(2FB + 1)
√

(2FA + 1)(2F′A + 1)
{

KA S FA

KB F FB

}
×

{
KA S F′A
KB F′ FB

}
×

[FB(FB + 1) − KB(KB + 1) − S (S + 1)] δF′
F δ

m′F
mF . (5.21)

The same procedure may be used for the 〈JABKA ·KB〉 term:〈
KAS (FA)KBFmF |JABKA ·KB|KAS (F′A)KBF′m′F

〉
=

JAB

2

∑
KAB

(2KAB + 1)
√

(2FA + 1)(2F′A + 1)
{

KA S FA

KB F KAB

}
×

{
KA S F′A
KB F′ KAB

}
×

[FB(FB + 1) − KB(KB + 1) − S (S + 1)] δF′
F δ

m′F
mF , (5.22)

where KAB is the combined angular momentum of the A and B spins. However, as KAB is only used
as a summation index, its physical meaning is of little consequence.

Note that the perturbing Hamiltonian is diagonal in KA, KB, S , F, and mF , but not in FA. In
terms of perturbation theory, the off-diagonal terms mix states with different FA, leading to second-
order energy shifts, as discussed in the next subsection. First order shifts in the general basis are
given as

∆E(1) =
〈
KAS (FA)KBFmF |

(
JBXKB · S + JABKA ·KB

)
|KAS (F′A)KBFmF

〉
(5.23)

and are readily computed by making use of Eqs. (5.21) and (5.22). Adventurous ZULF NMR
practitioners could in principle extend this method to larger systems using 9- j, 12- j symbols, etc.
(for N sets of equivalent spins X, An, Bm, Cr, Ds etc., the 3(N − 1)- j symbols are necessary).

5.2.3 Second-Order Corrections
Terms inH (1) that connect states with the same KA, S , KB, F, but with different FA give rise to

second-order energy shifts, which may be calculated using non-degenerate perturbation theory:

∆E(2)(n) =
∑
m,n

〈n| H (1) |m〉2

〈n| H (0) |n〉 − 〈m| H (0) |m〉
(5.24)

where |m〉 , |n〉 are states
∣∣∣KA, FA,KB, F

〉
,

∣∣∣K′A, F′A,K′B, F′〉, written in contracted form for conve-
nience. For all (XAn)Bm systems that we have studied, second-order perturbation theory appears
to reproduce exact numerical simulations almost perfectly.
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5.2.4 Selection Rules and Transition Amplitudes
The selection rules for (XAn)Bm systems are simply a generalization of those presented in

section 5.1.2, and are equivalently based on the calculation of non-zero elements of the transition
matrix in Eq. (5.6).

Anm =

[ ∑
mS mKA mKB

〈FA,KB,mFA ,mKB |F,mF〉〈KA, S ,mKA ,mS |FA,mFA〉

× 〈F′A,KB,mFA ,mKB |F
′,mF〉〈KA, S ,mKA ,mS |F′A,mFA〉(γAmKA + γBmKB + γS mS )

]2

=

[ ∑
mS mKA mKB

〈FA,KB,mKA + mS ,mKB |F,mF〉〈KA, S ,mKA ,mS |FA,mFA〉 (5.25)

× 〈F′A,KB,mKA + mS ,mKB |F
′,mF〉〈KA, S ,mKA ,mS |F′A,mFA〉(γAmKA + γBmKB + γS mS )

]2

,

where 〈KAS mKAmS |FAmFA〉, etc. are the Clebsch-Gordan coefficients. The relevant selection rules
are ∆KA = ∆KB = ∆S = ∆mF = 0, ∆FA = 0,±1, and ∆F = 0,±1
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5.2.5 Example (XAn)Bm Spectra
(XA2)B: Formamide-15N

The zero-field J-spectrum and energy levels for formamide-15N, an (XA2)B system, are shown
in Fig. 5.5, along with spectra predicted using first-order perturbation and exact numerical diago-
nalization. The J-coupling values used in the simulation are JAX = −89.3 Hz, JBX = −13.5 Hz,
and JAB = 8 Hz. Analytical expressions for the (XA2)B energy levels from first and second order
perturbation theory are listed in Table 5.3. The frequencies of allowed transitions are listed in Table
5.4, including corrections up to second order.

|KA, FA,KB, F〉 E(0) ∆E(1) ∆E(2)∣∣∣1, 3
2 ,

1
2 , 2

〉
1
2 JAX +1

4 JBX + 1
2 JAB 0∣∣∣1, 3

2 ,
1
2 , 1

〉
1
2 JAX − 5

12 JBX −
5
6 JAB +

4(JBX−JAB)2

27JAX∣∣∣0, 1
2 ,

1
2 , 1

〉
0 +1

4 JBX 0∣∣∣0, 1
2 ,

1
2 , 0

〉
0 −3

4 JBX 0∣∣∣1, 1
2 ,

1
2 , 1

〉
−JAX − 1

12 JBX + 1
3 JAB −

4(JBX−JAB)2

27JAX∣∣∣1, 1
2 ,

1
2 , 0

〉
−JAX +1

4 JBX − JAB 0

Table 5.3: Energy levels for an (XA2)B system (e.g. formamide-15N) from first and second order
perturbation theory.
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KB = 1 / 2(b) (c)

FA = 3 / 2

FA = 1 / 2

FA = 1 / 2

F = 1

F = 0

F = 2
F = 1

F = 1
F = 0

(a)

ν1

ν2

ν3

ν5 ν4 ν6

ν1

ν2

ν3

ν4

ν5

ν6

Figure 5.5: (a) Comparison of zero-field J-spectrum of formamide-15N to the predicted spectrum
simulated using first-order perturbation theory (solid lines) and exact numerical diagonalization
(dashed lines). Eigenstates and allowed transitions are shown for (b) an unperturbed XA2 spin
system (15N-H2) and (c) an XA2 spin system perturbed by a single proton (B) with KB = 1/2. Blue
lines denote states with KA = 0, black lines denote states with KA = 1. Adapted with permission
from Ref. [66]. c©2013 Elsevier.
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|KA, FA,KB, F〉i |KA, FA,KB, F〉 f Transition Frequency 2nd Order Correction

ν1

∣∣∣1, 3
2 ,

1
2 , 2

〉 ∣∣∣1, 3
2 ,

1
2 , 1

〉
−2

3 JBX −
4
3 JAB +

4(JBX−JAB)2

27JAX

ν2

∣∣∣0, 1
2 ,

1
2 , 0

〉 ∣∣∣0, 1
2 ,

1
2 , 1

〉
+JBX 0

ν3

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 1
2 ,

1
2 , 0

〉
+1

3 JBX −
4
3 JAB +

4(JBX−JAB)2

27JAX

ν4

∣∣∣1, 1
2 ,

1
2 , 0

〉 ∣∣∣1, 3
2 ,

1
2 , 1

〉
3
2 JAX −

2
3 JBX + 1

6 JAB +
4(JBX−JAB)2

27JAX

ν5

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 3
2 ,

1
2 , 2

〉
3
2 JAX + 1

3 JBX + 1
6 JAB +

4(JBX−JAB)2

27JAX

ν6

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 3
2 ,

1
2 , 1

〉
3
2 JAX −

1
3 JBX −

7
6 JAB +

8(JBX−JAB)2

27JAX

Table 5.4: Transition frequencies for an (XA2)B system (e.g. formamide-15N) from first and second
order perturbation theory.

(XA2)B3: Ethanol-1-13C

The zero-field J-spectrum and energy levels for ethanol-1-13C, an (XA2)B3 system, are shown
in Fig. 5.6, along with spectra predicted using first-order perturbation and exact numerical diag-
onalization. The J-coupling values used in the simulation are JAX = 141 Hz, JBX = −4.65 Hz,
and JAB = 7.1 Hz. Analytical expressions for the (XA2)B3 energy levels from first and second
order perturbation theory are listed in Table 5.5. The frequencies of allowed transitions are listed
in Table 5.6, including corrections up to second order.
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(a)

KB = 1 / 2 KB = 3 / 2(b) (c) (d)

FA = 3 / 2

FA = 1 / 2

FA = 1 / 2

F = 3

F = 2
F = 1

F = 1

F = 2

F = 1

F = 0

F = 2F = 1
F = 0

F = 2
F = 1

F = 1
F = 0

ν1

ν2

ν3

ν10 ν14 ν12

ν3
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ν6 ν7
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ν16
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ν12
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Figure 5.6: (a) Comparison of zero-field J-spectrum of ethanol-1-13C to the predicted spectrum
simulated using first-order perturbation theory (solid lines) and exact numerical diagonalization
(dashed lines). Eigenstates and allowed transitions are shown for (b) an unperturbed XA2 spin
system (13C-H2) and an XA2 spin system perturbed by three equivalent methyl protons (B3) with
(c) KB = 3/2 and (d) KB = 1/2. Blue lines denote states with KA = 0, black lines denote states
with KA = 1. Double lines represent degenerate energy levels due to the existence of two KB = 1/2
representations of the methyl protons. Adapted with permission from Ref. [66]. c©2013 Elsevier.
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|KA, FA,KB, F〉 E(0) ∆E(1) ∆E(2)∣∣∣1, 3
2 ,

3
2 , 3

〉
1
2 JAX +3

4 JBX + 3
2 JAB 0∣∣∣1, 3

2 ,
3
2 , 2

〉
1
2 JAX −1

4 JBX −
1
2 JAB +

2(JBX−JAB)2

3JAX∣∣∣1, 3
2 ,

3
2 , 1

〉
1
2 JAX −11

12 JBX −
11
6 JAB +

10(JBX−JAB)2

27JAX∣∣∣1, 3
2 ,

3
2 , 0

〉
1
2 JAX −5

4 JBX −
5
2 JAB 0∣∣∣1, 3

2 ,
1
2 , 1

〉
1
2 JAX − 5

12 JBX −
5
6 JAB +

4(JBX−JAB)2

27JAX∣∣∣1, 3
2 ,

1
2 , 0

〉
1
2 JAX −3

4 JBX −
3
2 JAB 0∣∣∣0, 1

2 ,
3
2 , 1

〉
0 −5

4 JBX 0∣∣∣0, 1
2 ,

1
2 , 0

〉
0 −3

4 JBX 0∣∣∣0, 1
2 ,

1
2 , 1

〉
0 +1

4 JBX 0∣∣∣0, 1
2 ,

3
2 , 2

〉
0 +3

4 JBX 0∣∣∣1, 1
2 ,

3
2 , 2

〉
−JAX −1

4 JBX + JAB −
2(JBX−JAB)2

3JAX∣∣∣1, 1
2 ,

3
2 , 1

〉
−JAX + 5

12 JBX −
5
3 JAB −

10(JBX−JAB)2

27JAX∣∣∣1, 1
2 ,

1
2 , 1

〉
−JAX − 1

12 JBX + 1
3 JAB −

4(JBX−JAB)2

27JAX∣∣∣1, 1
2 ,

1
2 , 0

〉
−JAX +1

4 JBX − JAB 0

Table 5.5: Energy levels for an (XA2)B3 system (e.g. ethanol-1-13C) from first and second order
perturbation theory.

(XA3)B2: Ethanol-2-13C

The zero-field J-spectrum and energy levels for ethanol-2-13C, an (XA3)B2 system, are shown
in Fig. 5.7, along with spectra predicted using first-order perturbation and exact numerical diago-
nalization. The J-coupling values used in the simulation are JAX = 125.4 Hz, JBX = −2.2 Hz, and
JAB = 7.0 Hz. Analytical expressions for the (XA3)B2 energy levels from first order perturbation
theory are listed in Table 5.7. The frequencies of allowed transitions are listed in Table 5.8.
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|KA, FA,KB, F〉i |KA, FA,KB, F〉 f Transition Frequency 2nd Order Correction

ν1

∣∣∣1, 3
2 ,

3
2 , 0

〉 ∣∣∣1, 3
2 ,

3
2 , 1

〉
1
3 JBX + 2

3 JAB +
10(JBX−JAB)2

27JAX

ν2

∣∣∣0, 1
2 ,

1
2 , 0

〉 ∣∣∣0, 1
2 ,

1
2 , 1

〉
+JBX 0

ν3

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 1
2 ,

1
2 , 0

〉
+1

3 JBX −
4
3 JAB −

4(JBX−JAB)2

27JAX

ν′3
∣∣∣1, 3

2 ,
3
2 , 1

〉 ∣∣∣1, 3
2 ,

3
2 , 2

〉
+1

3 JBX −
4
3 JAB +

8(JBX−JAB)2

27JAX

ν4

∣∣∣0, 1
2 ,

3
2 , 2

〉 ∣∣∣0, 1
2 ,

3
2 , 1

〉
−2JBX 0

ν5

∣∣∣1, 3
2 ,

3
2 , 1

〉 ∣∣∣1, 3
2 ,

3
2 , 3

〉
JBX + 2JAB −

2(JBX−JAB)2

3JAX

ν6

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 1
2 ,

1
2 , 0

〉
+1

3 JBX −
4
3 JAB −

4(JBX−JAB)2

27JAX

ν7

∣∣∣1, 1
2 ,

3
2 , 1

〉 ∣∣∣1, 1
2 ,

3
2 , 2

〉
−2

3 JBX + 8
3 JAB −

8(JBX−JAB)2

27JAX

ν8

∣∣∣1, 1
2 ,

3
2 , 2

〉 ∣∣∣1, 3
2 ,

3
2 , 1

〉
3
2 JAX −

2
3 JBX −

17
6 JAB +

28(JBX−JAB)2

27JAX

ν9

∣∣∣1, 1
2 ,

3
2 , 2

〉 ∣∣∣1, 3
2 ,

3
2 , 2

〉
3
2 JAX + 3

2 JAB +
4(JBX−JAB)2

3JAX

ν10

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 3
2 ,

1
2 , 1

〉
3
2 JAX −

1
3 JBX −

7
6 JAB +

8(JBX−JAB)2

27JAX

ν11

∣∣∣1, 1
2 ,

3
2 , 2

〉 ∣∣∣1, 3
2 ,

3
2 , 3

〉
3
2 JAX + JBX + 1

2 JAB +
2(JBX−JAB)2

3JAX

ν12

∣∣∣1, 1
2 ,

1
2 , 1

〉 ∣∣∣1, 3
2 ,

1
2 , 2

〉
3
2 JAX + 1

3 JBX + 1
6 JAB +

4(JBX−JAB)2

27JAX

ν13

∣∣∣1, 1
2 ,

3
2 , 1

〉 ∣∣∣1, 3
2 ,

3
2 , 0

〉
3
2 JAX −

5
3 JBX −

5
6 JAB +

10(JBX−JAB)2

27JAX

ν14

∣∣∣1, 1
2 ,

1
2 , 0

〉 ∣∣∣1, 3
2 ,

1
2 , 1

〉
3
2 JAX −

2
3 JBX + 1

6 JAB +
4(JBX−JAB)2

27JAX

ν15

∣∣∣1, 1
2 ,

3
2 , 1

〉 ∣∣∣1, 3
2 ,

3
2 , 1

〉
3
2 JAX −

4
3 JBX −

1
6 JAB +

20(JBX−JAB)2

27JAX

ν16

∣∣∣1, 1
2 ,

3
2 , 1

〉 ∣∣∣1, 3
2 ,

3
2 , 2

〉
3
2 JAX −

2
3 JBX + 7

6 JAB +
28(JBX−JAB)2

27JAX

Table 5.6: Transition frequencies for an (XA2)B3 system (e.g. ethanol-1-13C) from first and second
order perturbation theory.
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Figure 5.7: (a) Comparison of zero-field J-spectrum of ethanol-2-13C to the predicted spectrum
simulated using first-order perturbation theory (solid lines) and exact numerical diagonalization
(dashed lines). Eigenstates and allowed transitions are shown for (b) an unperturbed XA3 spin
system (13C-H3) and an XA3 spin system perturbed by two equivalent methyl protons (B2) with (c)
KB = 0 and (d) KB = 1. Blue lines denote states with KA = 1/2, black lines denote states with
KA = 3/2. Double lines represent degenerate energy levels due to the existence of two KA = 1/2
representations of the methyl protons. Adapted with permission from Ref. [66]. c©2013 Elsevier.
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|KA, FA,KB, F〉 E(0) ∆E(1)∣∣∣3
2 , 2, 1, 3

〉
3
4 JAX +1

2 JBX + 3
2 JAB∣∣∣3

2 , 2, 1, 2
〉

3
4 JAX −1

4 JBX −
3
4 JAB∣∣∣3

2 , 2, 1, 1
〉

3
4 JAX −3

4 JBX −
9
4 JAB∣∣∣3

2 , 2, 0, 2
〉

3
4 JAX 0∣∣∣1

2 , 1, 1, 2
〉

1
4 JAX +1

2 JBX + 1
2 JAB∣∣∣1

2 , 1, 1, 1
〉

1
4 JAX −1

2 JBX −
1
2 JAB∣∣∣1

2 , 1, 1, 0
〉

1
4 JAX −JBX − JAB∣∣∣1

2 , 1, 0, 1
〉

1
4 JAX 0∣∣∣1

2 , 0, 0, 0
〉

−3
4 JAX 0∣∣∣1

2 , 0, 1, 1
〉

−3
4 JAX 0∣∣∣3

2 , 1, 1, 2
〉

−5
4 JAX −1

4 J + 5
4 JBX∣∣∣3

2 , 1, 1, 1
〉

−5
4 JAX +1

4 JBX −
5
4 JAB∣∣∣3

2 , 1, 1, 0
〉

−5
4 JAX +1

2 JBX −
5
2 JAB∣∣∣3

2 , 1, 0, 1
〉

−5
4 JAX 0

Table 5.7: Energy levels for an (XA3)B2 system (e.g. ethanol-2-13C) from first order perturbation
theory.

(XA)B4: Glycerol-2-13C

The zero-field J-spectrum and energy levels for glycerol-2-13C, an (XA)B4 system, are shown
in Fig. 5.8, along with spectra predicted using first-order perturbation and exact numerical diago-
nalization. The J-coupling values used in the simulation are JAX = 142.9 Hz, JBX = −3.1 Hz, and
JAB = 6.3 Hz. Analytical expressions for the (XA)B4 energy levels from first order perturbation
theory are listed in Table 5.9. The frequencies of allowed transitions are listed in Table 5.10.

In general, one might expect the spin system of glycerol-2-13C to be (XA)B2B′2 rather than
(XA)B4, with the magnetic equivalence broken by the four-bond 4JHH coupling between the two
methylene groups. However, rotations about molecular bonds at frequencies much greater than
4JHH average away this symmetry-breaking effect, restoring magnetic equivalence. This does not
occur in molecules with a more rigid topology, and it is possible that at lower temperatures, intra-
molecular hydrogen bonding in glycerol could hinder rotation sufficiently to make the two methy-
lene groups magnetically inequivalent.
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|KA, FA,KB, F〉i |KA, FA,KB, F〉 f Transition Frequency

ν1

∣∣∣1
2 , 1, 1, 1

〉 ∣∣∣1
2 , 1, 1, 2

〉
JBX + JAB

ν2

∣∣∣1
2 , 1, 1, 1

〉 ∣∣∣1
2 , 1, 1, 1

〉
1
2 JBX + 1

2 JAB

ν3

∣∣∣3
2 , 1, 1, 0

〉 ∣∣∣3
2 , 1, 1, 1

〉
−1

4 JBX + 5
4 JAB

ν4

∣∣∣3
2 , 2, 1, 1

〉 ∣∣∣3
2 , 2, 1, 2

〉
1
2 JBX + 3

2 JAB

ν5

∣∣∣3
2 , 2, 1, 2

〉 ∣∣∣3
2 , 2, 1, 3

〉
3
4 JBX + 9

4 JAB

ν6

∣∣∣3
2 , 1, 1, 1

〉 ∣∣∣3
2 , 1, 1, 2

〉
−1

2 JBX + 5
2 JAB

ν7

∣∣∣1
2 , 0, 1, 1

〉 ∣∣∣1
2 , 1, 1, 0

〉
JAX − JBX − JAB

ν8

∣∣∣1
2 , 0, 1, 1

〉 ∣∣∣1
2 , 1, 1, 1

〉
JAX −

1
2 JBX −

1
2 JAB

ν9

∣∣∣1
2 , 0, 0, 0

〉 ∣∣∣1
2 , 1, 0, 1

〉
JAX

ν10

∣∣∣1
2 , 0, 1, 1

〉 ∣∣∣3
2 , 1, 1, 2

〉
JAX + 1

2 JBX + 1
2 JAB

ν11

∣∣∣3
2 , 1, 1, 2

〉 ∣∣∣3
2 , 2, 1, 1

〉
2JAX −

1
2 JBX −

7
2 JAB

ν12

∣∣∣3
2 , 1, 1, 2

〉 ∣∣∣3
2 , 2, 1, 2

〉
2JAX − 2JAB

ν13

∣∣∣3
2 , 1, 1, 1

〉 ∣∣∣3
2 , 2, 1, 1

〉
2JAX − JBX − JAB

ν14

∣∣∣3
2 , 1, 0, 1

〉 ∣∣∣3
2 , 2, 0, 2

〉
2JAX

ν15

∣∣∣3
2 , 1, 1, 2

〉 ∣∣∣3
2 , 2, 1, 3

〉
2JAX + 3

4 JBX + 1
4 JAB

ν16

∣∣∣3
2 , 1, 1, 0

〉 ∣∣∣3
2 , 2, 1, 1

〉
2JAX −

5
4 JBX + 1

4 JAB

ν17

∣∣∣3
2 , 1, 1, 1

〉 ∣∣∣3
2 , 2, 1, 2

〉
2JAX −

1
2 JBX + 1

2 JAB

Table 5.8: Transition frequencies for an (XA3)B2 system (e.g. ethanol-2-13C) from first order
perturbation theory.
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Figure 5.8: (a) Comparison of zero-field J-spectrum of glycerol-2-13C to the predicted spectrum
simulated using first-order perturbation theory (solid lines) and exact numerical diagonalization
(dashed lines). Eigenstates and allowed transitions are shown for (b) an unperturbed X spin system
(13C-H) and an XA spin system perturbed by four equivalent protons (B4) with (c) KB = 0, (d)
KB = 1, and (e) KB = 2. Double/triple lines represent degenerate energy levels due to the existence
of two KB = 1 and three KB = 2 representations of the B4 protons. Adapted with permission from
Ref. [66]. c©2013 Elsevier.
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|KA, FA,KB, F〉 E(0) ∆E(1)∣∣∣1
2 , 1, 2, 3

〉
1
4 JAX +(JBX + JAB)∣∣∣1

2 , 1, 2, 2
〉

1
4 JAX −1

2 (JBX + JAB)∣∣∣1
2 , 1, 2, 1

〉
1
4 JAX −3

2 (JBX + JAB)∣∣∣1
2 , 1, 1, 2

〉
1
4 JAX

1
2 (JBX + JAB)∣∣∣1

2 , 1, 1, 1
〉

1
4 JAX −1

2 (JBX + JAB)∣∣∣1
2 , 1, 1, 0

〉
1
4 JAX −(JBX + JAB)∣∣∣1

2 , 1, 0, 1
〉

1
4 JAX 0∣∣∣1

2 , 0, 2, 2
〉

−3
4 JAX 0∣∣∣1

2 , 0, 1, 1
〉

−3
4 JAX 0∣∣∣1

2 , 0, 0, 0
〉

−3
4 JAX 0

Table 5.9: Energy levels for an (XA)B4 system (e.g. glycerol-2-13C) from first order perturbation
theory.

5.3 More Complex Systems: Benzene Derivatives
In order to demonstrate the viability of J-spectroscopy for chemical fingerprinting, we mea-

sured high-resolution zero-field J-spectra for a series of labeled aromatic molecules: benzene-
13C1, benzaldehyde-α-13C1, benzyl alcohol-α-13C1, toluene-α-13C1, and acetophenone-β-13C1. The
general qualitative structures of the spectra are consistent with patterns reported previously for
simpler spin systems, and furthermore, the spectra for different molecules are unique and easily
distinguished from one another. The narrow linewidths (as low as 11 mHz for benzene-13C1) permit
precise measurement of long-range J-couplings, which encompass a wealth of chemically-relevant
information.

5.3.1 General XAn Structures
The zero-field J-spectra for the indicated compounds are shown in Fig. 5.9. For ease of compar-

ison, the vertical axis has been normalized. The signal-to-noise ratio in the benzyl alcohol spectrum
is somewhat lower on account of broader lines, which we suspect is related to hydrogen-bonding.
The spectrum for each molecule is dominated by a strong 1-bond heteronuclear J-coupling, which
is then perturbed by long-range couplings involving the phenyl-ring protons. Differences in molec-
ular structure (i.e. functional groups) give rise to significantly different spectra, with little overlap
between spectra for different molecules. The general qualitative structure, being dependent on
the strong one-bond coupling, provides information about the substituent functional group (peaks
around 1JCH for CH, 3/2 × 1JCH for CH2, and two sets of peaks around 1JCH and 2 × 1JCH for CH3),
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|KA, FA,KB, F〉i |KA, FA,KB, F〉 f Transition Frequency

ν1

∣∣∣1
2 , 1, 1, 0

〉 ∣∣∣1
2 , 1, 1, 1

〉
1
2 (JBX + JAB)

ν2

∣∣∣1
2 , 1, 1, 1

〉 ∣∣∣1
2 , 1, 1, 2

〉
JBX + JAB

ν3

∣∣∣1
2 , 1, 2, 2

〉 ∣∣∣1
2 , 1, 2, 3

〉
3
2 (JBX + JAB)

ν4

∣∣∣1
2 , 0, 2, 2

〉 ∣∣∣1
2 , 1, 2, 1

〉
JAX −

3
2 (JBX + JAB)

ν5

∣∣∣1
2 , 0, 1, 1

〉 ∣∣∣1
2 , 1, 1, 0

〉
JAX − (JBX + JAB)

ν6

∣∣∣1
2 , 0, 2, 2

〉 ∣∣∣1
2 , 1, 2, 2

〉
JAX −

1
2 (JBX + JAB)

ν7

∣∣∣1
2 , 0, 0, 0

〉 ∣∣∣1
2 , 1, 0, 1

〉
JAX

ν8

∣∣∣1
2 , 0, 1, 1

〉 ∣∣∣1
2 , 1, 1, 2

〉
JAX + 1

2 (JBX + JAB)

ν9

∣∣∣1
2 , 0, 2, 2

〉 ∣∣∣1
2 , 1, 2, 3

〉
JAX + 3

2 (JBX + JAB)

Table 5.10: Transition frequencies for an (XA)B4 system (e.g. glycerol-2-13C) from first order
perturbation theory.

and the measurement of splittings from long range J-couplings provides quantitative information
about electronic structure and molecular configuration, as discussed below. Because nearly all
peaks are resolved (with the exception of the peaks in acetophenone, where the couplings to the
methyl group are small), the high-frequency portion of the spectrum (generally 100 – 300 Hz)
is sufficient to fully determine all coupling frequencies without the need for consideration of the
lower frequency peaks, which are often affected by low-frequency noise and potentially by spectral
overlap in mixtures.

The basic qualitative structures of these spectra are consistent with previous work, with peaks
at non-zero frequency arising due to J-couplings in molecules containing spins with at least two
different gyromagnetic ratios. The simplest examples include 13C-1H in formate (13CHOO−), 13C-
1H2 in formaldehyde (13CH2O), and 13C-1H3 in methanol (13CH3OH). We refer to these systems
as XA, XA2, and XA3, respectively, where X is 13C and An represents a set of equivalent protons.
Neglecting all couplings other than 1JCH, the molecules in this study have spectra that correspond
to these simple XAn systems. The energy levels are given by Eq. (5.5)

Because the observable in our experiment is a vector operator, the selection rule for observable
coherences is ∆FA = 0,±1. Also, because the zero-field Hamiltonian commutes with both K2

and S2, ∆K = ∆S = 0. As a result, the allowed non-zero transition frequencies are 1JCH for XA
systems, 3/2 × 1JCH for XA2 systems, and both 1JCH and 2 × 1JCH for XA3 systems. Similarly,
the structure of the zero-field J-spectra for benzene-13C1 and benzaldehyde-α-13C1 both of which
are zeroth-order XA systems consists of a cluster of peaks near 1JCH . The spectrum for benzyl
alcohol-α-13C1, to zeroth-order an XA2 system, consists of peaks near 3/2 × 1JCH, and the spectra
of toluene-α-13C1 and acetophenone-β-13C1, which are zeroth-order XA3 systems, consist of peaks
near 1JCH and 2 × 1JCH.
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Figure 5.9: J-spectra of a series of benzene derivatives, highlighting the effects of different 13CHn

groups and their increasing displacement from the aromatic ring. Clusters of peaks appear at J
for CH groups, at 3J/2 for CH2 groups, and at J and 2J for CH3 groups. The spread of the peaks
within the clusters decreases as the distance of the 13C label from the aromatic ring increases.
Signals at multiples of 60 Hz are the result of line noise. c©2013 American Chemical Society.
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Figure 5.10: Experimental (upper trace) and simulated (lower trace) spectrum of benzene-13C1

in the neighborhood of 1JCH. Inset shows fitting of two high-frequency peaks with 11 mHz half-
width at half-maximum, consistent with Fourier resolution limited by 80 s acquisition time. c©2013
American Chemical Society.

5.3.2 High Resolution from Narrow Resonances
The experimental spectra are in excellent agreement with simulations (performed via numer-

ical diagonalization of the density matrix), as demonstrated in Figure 2 for the high-frequency
portion of the zero- field J-spectrum of benzene-13C1. The simulated spectrum fully reproduces
the multiplet structure, with peak frequencies in agreement to within ∼10 mHz. Achieving this
level of agreement between experiment and simulation required the use of precise values of the
benzene J-coupling constants presented in Ref. [111], which include the influence of 13C isotope
effects. Small frequency differences are likely artifacts of limited precision in the literature val-
ues for the coupling constants or slight differences in sample preparation. Peak intensities are
well-reproduced, with small variations likely arising due to insufficient prepolarization time or
nonadiabatic shuttling between the prepolarization field and the detection region.

Because we operate in zero magnetic field, the absolute field homogeneity is exceptional, and
extensive magnetic-field shimming is not required. Inhomogeneous broadening is negligible and
spectral lines are extremely narrow, which allows for very precise measurements of line positions
and coupling parameters. The zoomed inset in Fig. (5.10) shows the two peaks at 167.089 Hz
and 167.179 Hz fit to the sum of two Lorentzians, each with a half-width at half-maximum of 11
mHz. This linewidth is comparable to the Fourier resolution of the spectrum, which is limited by
the 80 s acquisition time. It is likely that the intrinsic linewidth is actually narrower, as the near-
zero-field T?

2 of unlabeled benzene has been measured on the same instrument to be 21 s [112],
corresponding to a half-width at half-maximum of ∼7.6 mHz. Since the zero-field T?

2 is probably
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C-H Couplings (Hz) H-H Couplings (Hz)
1JCH = 158.354 3JHH(H1,H2) = 7.540

3JCH = 1.133 3JHH(H2,H3) = 7.543
4JCH = 7.607 4JHH(H3,H4) = 7.535

5JCH = −1.296 4JHH(H1,H3) = 1.380
4JHH(H2,H4) = 1.377
5JHH(H2,H6) = 1.373
5JHH(H3,H5) = 1.382
5JHH(H1,H4) = 0.661
5JHH(H2,H5) = 0.658

Table 5.11: Spin-spin couplings in benzene-13C1, from Ref. [111].

similar to this value, we expect that the intrinsic linewidth is less than 10 mHz.

5.3.3 The Phenyl Perturbation
Beyond the zero-order structure of the zero-field spectra, additional splittings arise due to cou-

plings between the XAn spin systems and the ring protons. Because all couplings involving the
ring protons are at least 15 times smaller than 1JCH (see Tables (5.11)-5.13), these couplings may
be treated as a perturbation to the XAn system. In keeping with notation described previously,
the molecules studied in this report may be considered (XAn)BB′CC′D spin systems, where B
and B′ are the ring protons in the ortho positions, C and C′ are the protons in the meta positions,
and D is the proton in the para position. It is apparent from Fig. (5.9) that as the 13C label is
further displaced from the aromatic ring, the spreading of the peaks decreases, with the greatest
peak spreading for benzene-13C1, in which the label is part of the ring, and almost no spreading for
acetophenone-β-13C1, in which the label is four bonds from the nearest spin on the ring.

For the -13C(=O)H functional group (XA subsystem) and -13CH3 functional group (XA3 sub-
system), addition of angular momentum yields states with K = 1/2 and FA = 0, 1. The zero-order
spectrum of these groups includes a peak at frequency 1JCH , which corresponds to a transition with
∆FA = ±1 between states with K = 1/2. When the spins of either functional group are weakly
coupled to the spins of a phenyl group, the perturbation splits this peak into a consistent multiplet
pattern. To demonstrate that the effect of the ring proton perturbation is qualitatively similar for
different functional groups, Fig. (5.11) shows a comparison of the K = 1/2 peaks in the spectra of
benzaldehyde-α-13C1 (red trace) and toluene-α-13C1 (blue trace), with the benzaldehyde spectrum
shifted without scaling to lower frequency for the purpose of illustration. The smooth black traces
show simulated spectra, obtained by smoothly interpolating J-coupling parameters, as discussed
below. While there are small differences in the multiplet structures, many features are present in
the spectra of both molecules for example, the three peaks at the lower-frequency end of the spec-
trum (around 123 Hz for toluene) and the three larger peaks at the higher-frequency end (around
128 Hz for toluene). The multiplets have a similar structure because the network of couplings
involving the ring couplings is (BB′CC′D) is topologically identical for any molecule containing a
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Figure 5.11: Comparison of K = 1/2 peaks of benzaldehyde-α-13C1 (red trace) and toluene-α-
13C1 (blue trace) spectra. The benzaldehyde-α-13C1 spectrum has been shifted to lower frequency
by 48.86 Hz for the purpose of illustration, but it has not been scaled. Intermediate simulated
spectra are produced by incrementally varying the long-range substituent-to-ring 13C–1H and 1H–
1H coupling constants by a uniform fraction of the differences between the values for the two
molecules (∆). The general structure of the peaks is similar because of the identical spin topology,
with small quantitative differences arising due to geometric differences and substituent effects.
The fit is in reasonable agreement with the benzaldehyde spectrum, even when adjustments to the
intraring couplings constants are not included. c©2013 American Chemical Society.
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phenyl group The qualitative similarity of the multiplet patterns facilitates chemical fingerprinting
analysis. Variations in the splittings and central frequencies of multiplets allow for differentiation
between the spectra of similar molecules.

5.3.4 Differences between Toluene and Benzaldehyde Spectra
The differences that arise between the K = 1/2 multiplets in the benzaldehyde-α-13C1 and

toluene-α-13C1 spectra are associated with important differences between the two molecules. Specif-
ically, the J-coupling constants depend on electronic structure, which in turn depends on substituent
electron-donating/withdrawing effects and the spatial orientation of the substituent with respect to
the plane of the ring. The variation in the nJCH couplings is primarily dependent on the electroneg-
ativity of the substituent, with a more strongly-electron-withdrawing substituent leading to a larger
coupling between the substituent 13C and ring protons. The nJCH couplings in benzaldehyde-α-
13C1 are thus larger than in toluene–α-13C1, as the more electronegative aldehyde substituent more
strongly attracts the -electron density of the aromatic ring, increasing the overlap with the 13C
nucleus. The nJHH benzylic couplings between the substituent protons and the aromatic protons
have been studied, [113, 114, 115, 116] and they feature a dependence on the angle by which the
substituent protons are rotated out of the plane of the ring. The couplings are given as

4J(H,CHn) = 6.90p〈sin2 θ〉 − 0.32〈cos2 θ〉, (5.26)

5J(H,CHn) = 5Jπ〈sin2 θ〉 + 5Jσ〈sin2(θ/2)〉, (5.27)

and
6J(H,CHn) = 6J90〈sin2 θ〉, (5.28)

where θ is the angle by which the substituent C-H bond twists out of the benzene plane, p is the
mutual atom-atom polarizability, 5Jπ is the σ − π electron contribution to the 5J(H,CHn) coupling,
5Jσ is the σ-electron component, and 6J90 is the value of 6J(H,CHn) when the substituent C-H
bond is perpendicular to the plane of the benzene ring. Key differences between the toluene and
benzaldehyde nJHH couplings arise because of differences in these parameters. The most strik-
ing differences are related to the angle θ, and the 6J(H,CHn) coupling is an illustrative example.
Because the methyl group in toluene rotates freely, the expectation value of 〈sin2 θ〉 is 0.5, for a
coupling of -0.52 Hz, whereas in benzaldehyde, the formyl proton is essentially in the benzene
plane, and the coupling is only -0.018 Hz.

The intermediate calculated spectra in Fig. (5.11) were produced by varying the nJCH and nJHH

couplings in linear fractional increments between the values for toluene-α-13C1 and benzaldehyde-
α-13C1, leaving the intra-ring couplings constant. The agreement with the benzaldehyde spectrum
is good, with the simulation fully reproducing the multiplet structure. Slight disagreements are the
result of minute differences in intra-ring couplings that are affected by differences in aromatic ring
electron densities induced by substituent effects. Including these effects, which cause changes of
0.02 0.2 Hz (the effects are strongest for the four-bond couplings, followed by the three- and then
five-bond couplings) gives full agreement, as indicated by the uppermost traces in Fig. (5.11).
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J-couplings measured in these zero-field experiments agree with the values determined by
high-field NMR [Figs. (5.12-5.13)], though the zero-field experiments provided greater resolution
and thus higher precision. Because the zero-field spectra generally have enough peaks to determine
all J-coupling frequencies and thus provide enough information for chemical identification and
elucidation of electronic structure, topology, and spatial configuration the presence of chemical
shifts may not always be necessary for chemical identification and analysis.

5.3.5 Materials and Methods
Sample Preparation

Benzene-13C1, benzaldehyde-α-13C1, benzyl alcohol-α-13C1, toluene-α-13C1, and acetophenone-
β-13C1 were obtained from Cambridge Isotopes Laboratory. Samples were degassed via several
freeze-thaw cycles under vacuum and flame-sealed in 5 mm NMR tubes.

Zero-Field NMR Measurements

Samples were thermally polarized in a 2 T magnet and pneumatically shuttled into a zero-field
detection region where the field of the nuclear spins was measured using an alkali-vapor atomic
magnetometer. As the sample was shuttled to the detection region, a solenoid produced a guiding
field in order to keep the initial magnetization aligned vertically. Once the sample reached the
detection region, the solenoid was turned off and a DC magnetic field pulse with area γH Bt ≈ 4π
was applied in an orthogonal direction to maximize the Iz − Sz components of the density matrix,
thus maximizing the signal.

Spectra for benzene-13C1, benzaldehyde-α-13C1, toluene-α-13C1, and acetophenone-β-13C1 were
acquired without heating or cooling the sample, at roughly 35◦C. To avoid hydrogen-bonding line-
broadening effects in benzyl alcohol-α-13C1, the spectrum was taken at 70◦C. The benzene-13C1

spectrum is the result of averaging 220 transients, each with 100 s polarization time and 80 s ac-
quisition time. The benzaldehyde-α-13C1 spectrum was the result of averaging 256 transients, each
with 60 s polarization time and 40 s acquisition time. The toluene-α-13C1 spectrum was the re-
sult of averaging 222 transients, each with 60 s polarization time and 40 s acquisition time. The
acetophenone-β-13C1 spectrum was the result of averaging 1180 transients, each with 20 s polariza-
tion time and 16 s acquisition time. The benzyl alcohol-α-13C1 spectrum was the result of averaging
2300 transients, each with 20 s polarization time and 8 s acquisition time. It is worth noting that
while these experiments require several hours of signal averaging using thermal polarization at 2
T, improvements in magnetometric sensitivity and sample polarization may significantly reduce
acquisition times.

High-Field NMR Measurements

High-field NMR spectra [Figs. (5.12)-5.13] of labeled benzaldehyde and toluene were col-
lected on a Bruker Avance 300 MHz (7.04 T) spectrometer with a Bruker 5 mm 1H/13C liquids
probe. No 13C or 1H decoupling was performed. Careful FID shimming was performed in order
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C-H Couplings (Hz) Benzylic Couplings (Hz) Intra-Ring Couplings (Hz)
1JCH = 174.85 4JHH = −0.152 3JHH(H2,H3) = 7.695

3JCH = 4.92 5JHH = 0.431 3JHH(H3,H4) = 7.443
4JCH = 0.72 6JHH = −0.018 4JHH(H2,H4) = 1.333
5JCH = 0.69 4JHH(H2,H6) = 1.738

4JHH(H3,H5) = 1.236
5JHH(H2,H5) = 0.624

Table 5.12: Spin-spin couplings in benzaldehyde-α-13C1. Determined by manual refinement, using
values from Ref. [117] and high-field 13C spectrum [see Fig. 5.12] as a starting point.

C-H Couplings (Hz) Benzylic Couplings (Hz) Intra-Ring Couplings (Hz)
1JCH = 125.99 4JHH = −0.69 3JHH(H2,H3) = 7.655

3JCH = 4.53 5JHH = 0.30 3JHH(H3,H4) = 7.417
4JCH = 0.63 6JHH = −0.52 4JHH(H2,H4) = 1.273
5JCH = 0.56 4JHH(H2,H6) = 1.902

4JHH(H3,H5) = 1.442
5JHH(H2,H5) = 0.610

Table 5.13: Spin-spin couplings in toluene-α-13C1. Determined by manual refinement, using values
from Ref. [113] and high-field 13C spectrum [see Fig. 5.13] as a starting point.

to maximize resolution for the observation of JCH/JHH splitting patterns. Long acquisitions (4 s)
were performed and negative Lorentzian line-broadening (−0.1 Hz) was applied to enhance spec-
tral resolution. The same degassed samples used for the low-field measurements were used for the
high-field measurements.

Simulations

Zero-field J-spectra were simulated by numerical diagonalization of the density matrix. The
time-dependent magnetization was determined by evolving the initial thermally-polarized density
matrix under the J-coupling Hamiltonian as described in Ref. 29. Specific J-coupling frequencies
were either taken directly from the literature (as in the case of benzene-13C1) or were determined
by manually refining literature and/or measured values to optimize agreement with experimental
spectra (for benzaldehyde JCH and toluene JCH). No iterative fitting algorithms were used, though
such methods may allow for easier extraction of high-precision J-coupling frequencies in the fu-
ture.



5.3. MORE COMPLEX SYSTEMS: BENZENE DERIVATIVES 100

[ppm] 302  300  298 

[ *
1e

6]
 0

 
 2

00
 

 4
00

 
 6

00
 

 8
00

 
 1

00
0 

 1
20

0 

29
9.

39
80

29
9.

38
96

29
9.

38
11

29
9.

37
28

29
9.

33
26

29
9.

32
41

29
9.

31
52

29
9.

30
67

29
9.

26
71

29
9.

25
84

29
9.

24
98

29
9.

24
13

29
7.

07
72

29
7.

06
71

29
7.

05
81

29
7.

05
00

29
7.

01
06

29
7.

00
16

29
6.

99
27

29
6.

98
49

29
6.

94
45

29
6.

93
59

29
6.

92
69

29
6.

91
79

1

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

2

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

3

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

4

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

5

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

6

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

Benzaldehyde  2  1  /opt/topspin  John

[ppm] 302  300  298 

[ *
1e

6]
 0

 
 2

00
 

 4
00

 
 6

00
 

 8
00

 
 1

00
0 

 1
20

0 

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

SHIFT: 298.1585 ppm

L3:  M=2, J=175.2627 Hz
L2:  M=3, J=4.9539 Hz
L1:  M=4, J=0.5081 Hz

SHIFT: 298.1585 ppm

L1:  M=2, J=175.26 Hz
L2:  M=3, J=4.95 Hz
L3:  M=4, J=0.51 Hz

[ppm] 299.4  299.3  299.2 

CHO13

Figure 5.12: Benzaldehyde-α-13C1 high-field (7 T) 13C spectrum without 1H-decoupling. The
overall structure of the multiplet is a doublet of triplets of doublets of triplets, though it appears to
be a doublet of triplets of quartets because 4JCH and 5JCH are too close to be resolved at high field.
The chemical shift axis is referenced arbitrarily, as we are only concerned with the J-coupling
multiplet structure and splittings. c©2013 American Chemical Society.
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Figure 5.13: Toluene-α-13C1 high-field (7 T) 13C spectrum without 1H-decoupling. The overall
structure of the multiplet is a quartet of triplets of doublets of triplets, though it appears to be a
doublet of triplets of quartets because 4JCH and 5JCH are too close to be resolved at high field. The
chemical shift axis is referenced arbitrarily, as we are only concerned with the J-coupling multiplet
structure and splittings. c©2013 American Chemical Society.
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Figure 5.14: Overlay of benzaldehyde-α-13C1 experimental spectrum (top, red trace), spectrum
simulated using couplings in Table S1 with linewidth set so as to best reproduce experiment (mid-
dle, blue trace), and simulated spectrum with decreased linewidth to show substructure (bottom,
black trace). c©2013 American Chemical Society.
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Figure 5.15: Overlay of toluene-α-13C1 experimental spectrum (top, red trace), spectrum simu-
lated using couplings in Table S2 with linewidth set so as to best reproduce experiment (middle,
blue trace), and simulated spectrum with decreased linewidth to show substructure (bottom, black
trace). c©2013 American Chemical Society.
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5.4 Conclusions: Zero-Field NMR for Chemical Analysis
Zero-field NMR J-spectroscopy has been demonstrated for a series of molecules with var-

ious spin topologies, yielding unique, well-resolved, and information-rich spectra that are well
suited for chemical fingerprinting. Long relaxation times and consistent field homogeneity give
rise to extremely narrow resonance linewidths and enhanced resolution. The narrow linewidths
allow for measurement of J-coupling frequencies with greater precision than is typically achieved
using other techniques. Conveniently, in the molecules studied here, zero-field spectra are all
non-overlapping, which facilitates analysis of mixtures without the need for higher-dimensional
spectroscopy.

The existence of consistent qualitative spectral patterns allows for quick assignment of spin
system topology [(XAn), (XAn)Bm, (XAn)BB′CC′D, etc.], so that implementation of search al-
gorithms with zero-field simulations should yield precise J-coupling values. While all samples
measured so far consist of molecules selectively labeled with spin- 1

2 heteronuclei, ideally one
would have the capability to measure samples with 13C, 15N, etc. in natural abundance. This
may be achieved by incorporating hyperpolarization techniques or by improvements in magneto-
metric sensitivity. Regarding the latter, we estimate that the fundamental limits of sensitivity are
100 times lower than the present noise level [53]. Implementation of hyperpolarization techniques
should extend the applicability of zero-field NMR experiments to more normal (dilute, natural
abundance) samples, as has been demonstrated for systems amenable to parahydrogen-induced
polarization [71, 72].

Combining this new technique for the precise measurement of electron-mediated scalar cou-
plings with quantum chemistry calculations should provide detailed information about molecular
conformation and electronic structure. This contribution supports the development of zero-field
NMR as a technique complementary to high field NMR, enabling precision measurement of cou-
plings. Furthermore, the absence of superconducting magnets in zero-field NMR facilitates cost
effectiveness and portability.
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Chapter 6

Near-Zero-Field NMR: The Zeeman
Perturbation

When probing the chemist’s creation,
Zeeman splittings can assuage frustration.

It’s no chemical shift,
But degen’racies lift,

So the spectrum yields more information.

In this chapter, we consider the effects of small magnetic fields on ultra-low-field NMR spec-
tra. In the regime where the Zeeman effect can be treated as a perturbation, we observe high-
resolution spectra with easy-to-understand splitting patterns that are in good qualitative and quan-
titative agreement with first-order perturbation theory. This may be thought of as a dualistic com-
pliment to conventional high-field NMR, where heteronuclear couplings are almost always treated
as a small perturbation to the much larger Zeeman interaction. Thus analogous to J-splitting in
spectra dominated by the chemical shift, we see Zeeman splitting of near-zero-field J-spectra. We
also examine the case in which the Zeeman interaction is of comparable strength to the J-coupling,
resulting in spectra of maximal complexity. These results have been published previously:

• Ledbetter, M.P., Theis, T., Blanchard, J.W., Ring, H., Ganssle, P., Appelt, S., Blümich, B.,
Pines, A., and Budker, D. Near-Zero-Field Nuclear Magnetic Resonance. Phys. Rev. Lett.
107 (10), 107601. (2011)

• Ledbetter, M.P., Pustelny, S., Budker, D., Romalis M.V., Blanchard, J.W., and Pines, A.
Liquid-State Nuclear Spin Comagnetometers. Phys. Rev. Lett. 108 (24), 243001. (2012)
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6.1 Motivation
As shown in the previous chapter, the J-coupling Hamiltonian encodes a great deal of useful

chemical information which can be accessed in zero-field NMR spectra, but some ambiguity does
remain due to the absence of any direct measurement of which nuclei are present [118]. For
example, the zero-field J-spectrum of an XA2 spin system composed of a 15N nucleus bound
to two 1H nuclei consists of a single peak at 3

2 JNH, which – based on the coupling strengths of
formamide-15N presented in the previous chapter – will appear around 140 Hz. Alternatively, the
zero-field J-spectrum of an XA system composed of a 13C nucleus bound to a 1H nucleus far from
any electron-withdrawing groups will consist of a single peak at JCH, which is also around 140 Hz.
Thus zero-field NMR is incapable of differentiating between even these two substantially different
systems!

It turns out that it is possible to remove this ambiguity by applying weak magnetic fields,
which results in splitting of the zero-field lines, restoring information about gyromagnetic ratios
that is otherwise lost by operating at zero magnetic field. The perturbation also reveals specific
information about the topology of the angular momentum manifolds involved in the transitions
corresponding to each peak in the zero-field spectrum. By operating near to zero field, the atomic
magnetometer still operates in the SERF regime, and coupling between the nuclear spins in the
sample and the alkali spins in the detector is enhanced by better matching the electron Larmor
frequency to the J-coupling frequency.

6.2 Theory
The Hamiltonian in the presence of J-couplings and a magnetic field is

H = ~
∑
j;k> j

J jkI j · Ik − ~
∑

j

γ jI j · B. (6.1)

Here I j represent both like and unlike spins with gyromagnetic ratio γ j and J jk is the scalar coupling
between spins j and k. In the absence of magnetic fields, the spherical symmetry of the Hamiltonian
dictates that eigenstates |φa〉 are also eigenstates of f2 and fz, where f is the total angular momentum
f =

∑
j I j, with energy Ea, and degeneracy 2 f + 1. Application of a magnetic field Bz lifts this

degeneracy, splitting the ZF NMR lines.
The signal in our experiment is the x component of the magnetization

Mx(t) = n~Tr

ρ(t)
∑

j

γ jI jx

 , (6.2)

where ρ(t) is the time dependent density matrix and n is the molecular density. The initial density
matrix ρ0 can be expressed in terms of the operators |φa〉〈φb|, each of which evolves as eiωabt, where
ωab = (Ea − Eb)/~. Equation (6.2) can be rewritten

Mx(t) = n~
∑
a,b, j

γ j

2
ρab〈φb|

(
I j+ + I j−

)
|φa〉e−iωabt, (6.3)
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where ρab = 〈φa|ρ0|φb〉 and I j± = I jx ± iI jy are the usual raising and lowering operators. For
arbitrary scalar-coupling networks and arbitrary magnetic fields, eigenstates and eigenvalues can be
calculated numerically. In the limit where the magnetic field is very small, such that |γiBz| � |J jk|

for all values of i, j, and k, its effects on the spectra can be calculated analytically using first-order
perturbation theory, lending considerable physical insight to the problem.

We first examine the effects of very small magnetic fields on a 13CHn system, with n equiva-
lent protons, using perturbation theory. In zero field, the unperturbed energy levels are given by
E(F,K) = J/2[F(F + 1) − K(K + 1) − S (S + 1)], [109] where K = 1/2, 1, 3/2... are the possible
spin quantum numbers of the operator K describing the sum of the equivalent proton spins, and
S = 1/2 is the spin quantum number associated with the operator S, representing the 13C spin. To
first order in Bz, eigenstates are those of the unperturbed Hamiltonian, and Zeeman shifts of the
eigenvalues can be read from the diagonal matrix elements of the Zeeman perturbation. One finds:

∆E (F,K,mF) = −〈FmF |Bz(γhKz + γcS z)|FmF〉,

= −
∑

mKmS
m′Km′S

〈FmF |KS mKmS 〉〈KS mKmS |Bz(γhKz + γcS z)|KS m′Km′S 〉〈KS m′Km′S |FmF〉

= −
∑

mK ,mS

Bz〈KS mKmS |FmF〉
2(γhmK + γcmS ). (6.4)

Here γh and γc are the proton and 13C gyromagnetic ratios, and 〈KS mKmS |FmF〉 are the Clebsch-
Gordan coefficients. The observable in our experiment is the total x magnetization, Mx(t) ∝
Trρ(t)

∑
j I jxγ j, where ρ(t) is the time dependent density matrix. Writing I jx in terms of the rais-

ing and lowering operators, we obtain selection rules for observable coherences: ∆F = 0,±1 and
∆mF = ±1, valid in the limit where |γ jB| << |J|. In the case at hand with n equivalent protons, there
is an additional selection rule, ∆K = 0, since, in the absence of chemical shifts, the Hamiltonian
commutes with K2.

For n = 1, K = 1/2, and the zero-field levels are a singlet with F = 0 and a triplet with F = 1.
In the presence of a small magnetic field, the singlet level is unperturbed, while the triplet levels
split,

E
(
0,

1
2
, 0

)
= −3J/4,

E
(
1,

1
2
,mF

)
= J/4 − mF Bz (γh + γc) /2. (6.5)

as shown by the manifolds on the left of Fig. 6.1(a). In the following, νF′,m′F
F,mF

denotes the frequency
of transitions between the states |F,mF〉 and |F′,m′F〉. Employing Eq. 6.4 and the selection rules,
one finds a single line for transitions with ∆F = 0 between states with F = 1, and a doublet for
transitions with ∆F = ±1 between states with F = 1 and F = 0:

ν1,mF±1
1,mF

= Bz (γh + γc) /2, (6.6)

ν1,±1
0,0 = J ± Bz (γh + γc) /2. (6.7)
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For the case of n = 2, K is either 0 or 1 (please note that experimental data are presented only
for n = 1 and 3 – we only present the n = 2 case here for completeness). Adding the 13C spin to
the system yields a zero-field manifold with F = 1/2 for K = 0 and unperturbed energy 0. For
K = 1, the zero-field manifolds have F = 3/2, 1/2 with energies J/2 and −J, respectively. A small
magnetic field perturbs these levels according to Eq. 6.4

E
(
1
2
, 0,mF

)
= −mF Bzγc/2 (6.8)

E
(
1
2
, 1,mF

)
= −J − mF Bz (4γh − γc) /3 (6.9)

E
(
3
2
, 1,mF

)
= J/2 − mF Bz (2γh + γc) /3. (6.10)

Thus, there are three lines corresponding to transitions with ∆ f = 0:

ν
1
2 ,mF
1
2 ,mF±1

= Bzγc; K = 0 (6.11)

ν
1
2 ,mF
1
2 ,mF±1

= Bz (4γh − γc) /3; K = 1 (6.12)

ν
3
2 ,mF
3
2 ,mF±1

= Bz (2γh + γc) /3; K = 1. (6.13)

Transitions with ∆ f = ±1 and ∆m f = ±1 between states with f = 1/2 and f = 3/2 for k = 1 yield
four lines, at frequencies given by

ν
3/2,m f±1
1/2,m f

= 3J/2 + 2Bzm f (γh − γc) /3 ∓ Bz (2γh + γc) /3. (6.14)

For the case of n = 3, K is either 1/2 or 3/2. The K = 1/2 transition frequencies are given by
Eq. 6.7. For the K = 3/2 manifolds, evaluating Eq. (6.4), we find

E
(
1,

3
2
,mF

)
= −5J/4 − mF Bz (5γh − γc) /2,

E
(
2,

3
2
,mF

)
= 3J/4 − mF Bz (3γh + γc) /4. (6.15)

The K = 3/2 manifolds are shown on the right of Fig. 6.1(a), and coherences between |F = 1,mF〉

and |F = 2,mF ± 1〉 occur at frequencies given by

ν2,mF±1
1,mF

= 2J + mF
Bz

4
(−7γh + 6γc) ±

Bz

4
(3γh + γc) . (6.16)

There are two additional transitions for states with K = 3/2 with ∆F = 0 that occur near zero
frequency,

ν2,mF±1
2,mF

= (3γh + γc)
Bz

4
; K =

3
2
, (6.17)

ν1,mF±1
1,mF

= (5γh − γc)
Bz

4
; ; K =

3
2
. (6.18)
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Equations. (6.6)-(6.7) and (6.16)-(6.18) constitute a set of eleven transitions, three appearing near
zero frequency, two near J, and six near 2J, representing the NZF NMR spectrum of a 13CH3

group.
In the presently considered limit of small magnetic fields, the amplitude of a peak correspond-

ing to a transition between states |φa〉 and |φb〉 can be found from the coefficients in front of eiωabt in
Eq. (6.3), aab = 〈φa|ρ0|φb〉〈φb|(P+ + P−)|φa〉, where P± =

∑
j γ jI j±. The polarized part of the initial

density matrix corresponding to high-field magnetization with B0 = B0x̂ is ρ ∝
∑

j γ jI jx = P+ + P−.
Hence, amplitudes are given by 〈φb|(P+ + P−)|φa〉

2. These matrix elements can be found using the
Wigner-Eckart theorem for rank 1 vector operators with magnetic quantum number ±1:

〈F,mF |(P+ + P−)|F′,m′F〉
2 = 〈F||(P+ + P−)||F′〉2〈F,mF |F′, 1,m′F ,±1〉2.

In the case of a 1 ↔ 0 transition, the two peaks corresponding to transitions with ∆mF = ±1 have
equal intensities. In the case of a 1/2 ↔ 3/2 transition, the four peaks have intensities in the ratio
of 1:3:3:1. For the 2↔ 1 transitions, we find that the six peaks are in the ratio of 1:3:6:6:3:1.

We now make two observations: (1) Even in more complex molecules with additional non-
equivalent spins, the zero-field eigenstates are also those of F2 and Fz. Therefore, the NZF splitting
patterns can be used to identify the angular momenta of the states involved in the zero-field tran-
sitions: Transitions between levels with F = 0 and 1 will produce doublets, transitions between
levels with f = F and 2 will produce a multiplet with six lines, and so on. (2) The selection rules
presented here break down as the magnetic field becomes large enough to produce significant mix-
ing of the zero-field eigenstates. Reference [118] shows theoretically that the maximum number
of lines for a 13CHn group is (n + 1)2, most clearly visible when |(γh + γc)Bz| ≈ J.

6.3 Zeeman Perturbation on XAn Systems
Experiments were performed using an apparatus similar to that of Refs. [109, 71] and depicted

in Fig. 6.1. Samples (typically ≈ 200 µL) were contained in a 5 mm NMR tube, and pneumatically
shuttled between a 1.8 T prepolarizing magnet and a magnetically shielded enclosure, housing a
microfabricated 87Rb vapor cell, the central component of the atomic magnetometer. The cell
is optically pumped by z-directed, circularly polarized laser light, tuned to the center of the D1
transition, and probed by y-directed, linearly polarized light, tuned about 100 GHz to the blue of
the D1 transition. Optical rotation of the probe light is monitored by a balanced polarimeter. Bias
fields and DC pulses of magnetic field, used to excite NMR spin coherences, are applied via a set
of coils. At zero field, the magnetometer is primarily sensitive to fields in the x direction with
noise floor of about 40 − 50 fT/

√
Hz. As the bias field is increased, the magnetometer response

moves to higher frequencies, compromising the low-frequency sensitivity by about a factor of 5
for Bz = 3 mG. To maintain a quantization axis during transit of the sample, a solenoid provides
a “guiding” field. The guiding field is turned off suddenly prior to acquisition of data, and a pulse
applied in the z-direction with area such that the proton spins rotate through ≈ 4π and the carbon
spins rotate through ≈ π (about 480 µs), maximizing the amplitude of zero-field signals.

ZF and NZF spectra for formic acid (H13COOH) are shown in Fig. 6.2. The ZF spectrum
consists of a single line at J = 222 Hz, as well as a DC component, suppressed here for clarity. The
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Figure 6.1: (a) Energy levels for a 13CH3 group. Energy levels for a 13CH group are given by the
manifold on the left. (b) Experimental setup for near-zero-field spectroscopy, described in the text.
Adapted with permission from Ref. [64]. c©2011 American Physical Society.
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Figure 6.2: Spectra for 13C labeled formic acid, H13COOH, in the indicated magnetic fields. The
spectra are the result of averaging eight transients. The inset shows the splitting of the two lines
centered about J as a function of magnetic field. Adapted with permission from Ref. [64]. c©2011
American Physical Society
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NZF spectrum arising from the 13CH group is as discussed above: a doublet with frequencies J ±
Bz(γh +γc)/2 and an additional line at Bz(γh +γc)/2 ≈ 4.7 Hz. The large peak at 7.5 Hz corresponds
to the uncoupled OH group. The asymmetry in the doublet centered about J, reproduced by a full
numerical calculation, is due to higher-order corrections to the eigenstates. The peaks are well
described by Lorentzians, with half-width at half-maximum ≈ 0.1 Hz, and the locations of the
peaks can be determined with an uncertainty of about 1 mHz. The inset shows the splitting of the
line at J as a function of magnetic field, displaying a linear dependence. The slope is in agreement
with that predicted by Eq. (6.7), (γh + γc), at the level of about 0.1%.

To illustrate the case of a 13CH3 system, ZF and NZF spectra for acetonitrile-2-13C (13CH3CN)
are shown in Fig 6.3. For Bz = 0, the spectrum consists of a zero-frequency peak, a peak at J, and
a peak at 2J. Application of a magnetic field splits the zero-frequency peak into three lines, whose
frequencies are given by Eqs. (6.6),(6.17), and (6.18).1 The line at J splits into a doublet, whose
frequencies are given by Eq. (6.7), and the line at 2J splits into six lines, whose frequencies are
given by Eq. (6.16). The splitting of the lines at J and 2J clearly reveals the degeneracy of the zero-
field levels. As with the formic acid spectrum, there is some asymmetry present in the multiplets
centered about J and 2J, which is reproduced by numerical simulation. Nevertheless, the relative
amplitudes of the lines centered about 2J are roughly in the ratio 1:3:6:6:3:1 as expected from
first-order perturbation theory (see previous section).

6.4 Zeeman Perturbation on Larger Systems
To illustrate the utility of near-zero-field NMR, we examine the case of fully labeled acetoni-

trile (13CH3
13C15N). The zero-field spectrum is shown in the bottom trace of Fig. 6.4. It is not

immediately clear which lines correspond to which zero-field transitions. An expanded view of
the zero-field spectrum in the range of 110 to 180 Hz is provided and compared to the spectrum
obtained in the indicated finite magnetic fields. We see the appearance of doublets centered at
114, 126, and 151 Hz, indicating that these transitions occur between manifolds with F = 0 and
F = 1. It is interesting to note that these doublets display different splittings due to differences in
the Landé g factors for the different manifolds involved in these transitions. The line at 131 Hz
splits first into a doublet, which split into a pair of doublets. One can show that such a splitting
pattern arises for a F = 1 ↔ F = 1 (see Supplementary Information). The small zero-field peak
at 168 Hz splits into four lines, barely above the noise, indicating an additional F = 1 ↔ F = 1
transitions. Finally, the zero-field peak at 155.5 Hz splits into a sextet indicating the transition is
F = 1 ↔ F = 2. The six lines in this multiplet appear “inside-out” compared to the six line
multiplet observed at 2J in 2-acetonitrile due to a reversal in relative magnitude of the Landé g
factor.

The multiplicity of the peaks in this part of the spectrum can be understood as follows: Suppose
we start with a 13CH3 group, and confine our attention to the 1 ↔ 0 transition with total proton
spin = 1/2, yielding transitions in the neighborhood of 1JCH. Addition of the second 13C splits

1An additional peak at 11.2 Hz may correspond to a vibrational resonance of the building or to an uncoupled proton
due to an unknown solvent in the sample
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Figure 6.3: Spectra for singly labeled acetonitrile-2-13C, 13CH3CN in zero-field and in a field
of 2.64 mG. The positions of all peaks are well described by Eqs. (6.6)-(6.18). Adapted with
permission from Ref. [64]. c©2011 American Physical Society
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Figure 6.4: Effects of small magnetic fields on fully labeled acetonitrile 13CH13
3 C15N. The bottom

trace shows the entire zero-field spectrum. The upper traces show an expanded view of the central
part of the zero-field spectrum, as well as the spectra in the indicated finite fields. Adapted with
permission from Ref. [64]. c©2011 American Physical Society
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Figure 6.5: Energy levels for fully labeled acetonitrile with protons in K = 1/2 manifolds. Adapted
with permission from Ref. [64]. c©2011 American Physical Society

these levels: F = 1 splits to 3/2, 1/2 manifolds, and F = 0 manifolds splits to 1/2. Addition of the
15N splits these so we now have Fa = 2 or 1, Fb = 1 or 0, and Fc = 1 or 0. For now, we ignore
transitions between Fa ↔ Fb because they occur at low frequency. Employing the ∆F = 1 rule we
expect three 1 ↔ 0 transitions, producing doublets: Fa = 1 ↔ Fc = 0, Fb = 1 ↔ Fc = 0, and
Fb = 0 ↔ Fc = 1. Transitions between Fa = 2 ↔ Fc = 1 yields a multiplet with six lines, and
transitions with ∆F = 0 between Fa = 1↔ Fc = 1 and between Fb = 1↔ Fc = 1 yield multiplets
with four lines.

For a more rigorous description, we proceed as follows: we have analytically calculated the
first-order corrections to the energy eigenvalues and the splitting patterns for the case of the CHN

group, so we wish to extend this to larger spin systems in a straightforward way. We now proceed
to analyze the case of fully labeled acetonitrile 13CH3

13C15N.
The energy eigenstates |φa〉 can be approximately constructed by iteratively adding additional

spins to the spin pair with the largest spin coupling. This treatment is valid in the limit where the
coupling of each additional spin to the previous spin system is small compared to that of all the
previous couplings. In the following, k is the sum of the equivalent proton spins, S1 is the methyl
13C, S2 is the second 13C, and N is the 15N spin. In zero magnetic field, the eigenstates of the strong
one bond 13CH coupling are those of F2

1 and F1z (here F1 = S + K), which can be expressed in
terms of the uncoupled states via the Clebsch-Gordan coefficients:

|F1,m1〉 =
∑

mK ,mS

〈F1m1|KS 1mKmS 〉|KmK〉|S mS 〉. (6.19)

Adding S2 to F1 yields the states

|F2,m2〉 =
∑

m1,mS 2

〈F2m2; K|F1S 2m1mS 2〉|F1m1〉|S 2mS 2〉. (6.20)

The quantity 〈F2m2; K|F1S 2m1mS 2〉 is the usual Clebsch Gordan coefficient for addition of angular
momenta F1 and S2; the quantum number K is included because the same value of F1 can be
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Figure 6.6: Near-zero-field NMR multiplets arising from several different transitions, as indicated.
The upper three multiplets correspond approximately to those found in the fully labeled acetonitrile
spectra. Trace (d) corresponds to the K = 3/2 transitions of labeled acetonitrile-2, displaying an
“inside-out” pattern compared to the F = 1 ↔ F′ = 2 transition of fully labeled acetonitrile.
Adapted with permission from Ref. [64]. c©2011 American Physical Society



6.5. NOT-SO-NEAR-ZERO-FIELD 116

obtained with different values of K. Finally, adding N to F2 yields the states

|F,m〉 =
∑

m2,mN

〈Fm; F1,K|F2Nm2mN〉|F2m2〉|NmN〉. (6.21)

Now, to find the first-order energy shifts, we calculate the diagonal matrix elements 〈Fm|HZ |Fm〉.
Inserting the expressions for the eigenstates, we find

〈Fm|HZ |Fm〉 = −
∑

m1m2mN

∑
mKmS 1 mS 2

〈Fm; F2F1K|F2Nm2mN〉
2

× 〈F2m2; F1K|F1S 2m1mS 2〉
2〈F1m1; K|KS 1mKmS 1〉

2

×
(
γcmS 1 + γcmS 2 + γnmN + γpmK

)
Bz. (6.22)

We now connect this with the discussion above regarding the fully labeled acetonitrile spec-
trum. The proton spins can be either K = 1/2 or K = 3/2. Confining our attention to the latter,
adding the first carbon S1 to the system yields F1 = 0 and 1, separated by 1JCH. Adding S2 to the
system produces manifolds with F2 = 1/2 and 3/2 for F1 = 1 and F2 = 1/2 for F1 = 0. Finally,
adding the nitrogen spin N to the system produces manifolds with Fa = F = 2, 1 for F2 = 3/2 and
F1 = 1, Fb = F = 1, 0 for F2 = 1/2 and F1 = 1, and Fc = F = 1, 0 for F2 = 1/2 and F1 = 0.
These energy levels are shown schematically in Fig. 6.5, along with small Zeeman shifts. Lines
that occur in the neighborhood of 1JCH must be due to transitions between states with ∆F1 = 1.

The splitting patterns for a particular multiplet can be determined by applying the selection
rules ∆F = 0,±1 and ∆mF = ±1, with amplitudes determined by Eq. (6.19). Traces (a)-(c) in
Fig. 6.6 show the energy levels and splitting patterns for several of the transitions in fully labeled
acetonitrile for protons in the K = 1/2 state. For contrast, trace (d) shows the splitting pattern for
the F = 1 ↔ F = 2 transition for acetonitrile-2 (13CH3CN), displaying an “inside-out” pattern
compared to the F = 1↔ F = 2 transition shown for fully labeled acetonitrile. This is because of
the reversal in relative magnitudes of the Landé g factors for the F = 1 and F = 2 states.

6.5 Not-So-Near-Zero-Field
In systems with small couplings, such as 1-acetic acid (CH3

13COOH) which has a two-bond
coupling, 2JCH = 6.8 Hz, it is possible to explore the regime in which the Zeeman interaction
is comparable to the J-coupling. Figure 6.7 shows experimental spectra for 1-acetic acid for the
indicated magnetic fields. The large peak that does not split is due to the uncoupled OH group,
while the rest of the spectrum corresponds to the CH3

13C part of the molecule. Initially, the
spectrum appears similar to the 2-acetonitrile spectrum, with a doublet at J, and an additional
doublet at 2J composed of several unresolved lines. As the magnetic field is increased, additional
lines in the multiplet at 2J become resolved. At the highest magnetic fields, the spectrum displays
the highest complexity, and is no longer recognizable from the perturbative treatment presented
above. The smooth trace at the top of the plot shows the log of the absorptive component of a high
resolution numerical simulation, reproducing all features of the data, to the extent that lines are
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Figure 6.7: Experimental spectra for 1-acetic acid, (CH3
13COOH) in the indicated magnetic fields.

The smooth curve at the top of the plot presents the result of a full numerical simulation with high
resolution. Adapted with permission from Ref. [64]. c©2011 American Physical Society
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resolved. Careful examination reveals 17 lines, 1 for the OH group and (N + 1)2 = 16 lines, as
theoretically predicted in Ref. [118].

6.6 Significance of Near-Zero-Field NMR
In conclusion, we have investigated near-zero-field nuclear magnetic resonance, where the ef-

fects of magnetic fields can be treated as a perturbation to the scalar J-couplings. This work repre-
sents a new form of NMR spectroscopy, complementary to high-field NMR, in which heteronuclear
scalar couplings are almost always treated as a small perturbation to the dominant Zeeman inter-
action. We find that the presence of small fields produces splitting of zero-field lines. The splitting
patterns have easy-to-understand rules and data are in excellent agreement with the predictions of
first-order perturbation theory. It is interesting to note that the phenomenology observed here is
similar to that of atomic spectroscopy of multi-electron atoms, and intuition developed in the latter
field may be applied to interpretation of NZF NMR spectra. We have also investigated the case
where Zeeman and J-couplings are comparable, resulting in signals with much higher complexity,
potentially useful for NMR quantum computing [118].
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Chapter 7

Zero-Field NMR in Anisotropic Media

This chapter might seem a bit whimsical,
But dipolar terms are certainly critical.

It takes no wizardry
In the ZULF symmetry...

Well at least if the coupling’s residual.

ZULF-NMR permits the measurement of nuclear spin-spin interactions free from effects of
large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamil-
tonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial
information in NMR, though many terms are unobservable in high-field NMR, and the interaction
averages to zero under isotropic molecular tumbling. Under partial orientational ordering, this in-
formation is retained in the form of so-called residual dipolar couplings. This chapter describes
zero- and ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C
aligned in stretched polyvinyl acetate gels. This allows investigation of dipolar couplings as a
perturbation on the indirect spin-spin J-coupling in the absence of an applied magnetic field. As
a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling
Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capa-
bilities of zero- and ultra-low-field NMR and may have applications in chemical analysis, precision
measurement of subtle physical interactions, and characterization of local mesoscale structure in
materials. These results of this chapter have been compiled into a manuscript awaiting submission:

• Blanchard, J.W., Sjolander, T.F., King, J.P., Ledbetter, M.P., Levine, E.H., Budker, D., and
Pines, A. Residual Dipolar Couplings in Zero- to Ultra-Low-Field NMR. In Preparation.
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7.1 Motivation and Overview
Nuclear magnetic resonance (NMR) experiments are conventionally performed in large mag-

netic fields in order to increase chemical shift resolution and to maximize signal via higher nuclear
spin polarization and improved inductive detection sensitivity [119]. Recently, NMR experiments
have been carried out in the opposite regime of very small magnetic fields [120, 118, 64, 121],
taking advantage of advances in hyperpolarization [71, 72, 122, 123] and new detection modalities
[53, 124, 56, 125, 42, 50, 126]. In the zero-field limit, spin dynamics are determined by local spin-
spin interactions, in contrast to conventional high-field NMR where the coupling to the external
field is dominant, so that only truncated parts of the spin-spin interactions can be measured. For
example, in the case of heteronuclear magnetic dipole-dipole coupling at high-field, only terms of
the Hamiltonian that conserve all magnetic quantum numbers are observable. Conversely, at zero-
field, where we are no longer constrained by a uniaxial field geometry, it is in principle possible to
measure all coupling terms. Thus zero-field NMR grants access to additional spectral information
otherwise unavailable in magnetic resonance spectroscopy.

In this section we report the observation of the effect of dipolar couplings as a perturbation on
the indirect spin-spin J-coupling in the absence of an external magnetic field. Dipolar couplings
have long been used in high-field NMR to provide structural information in addition to the chemical
shift. Previously work has demonstrated zero-field J-spectroscopy of several systems for chemical
analysis [65, 66, 110]. Additional information may also be obtained from zero-field NMR spectra
via application of weak magnetic fields [64]. In the regime where dipole-dipole coupling can be
treated as a perturbation to J-coupling, zero- and ultra-low-field (ZULF) NMR allows sensitive
measurement of the dipole-dipole coupling tensor. However, direct dipole-dipole couplings ob-
served in solids are typically on the order of tens of kHz, substantially larger than J-couplings, and
coherence and polarization lifetimes are often too short for current ZULF methodology. Further-
more, all dipole-dipole coupling terms average to zero in isotropic liquids. Smaller, scaled cou-
plings are obtained by weakly aligning the molecule of interest in anisotropic media, such as liquid
crystals [127, 128, 129] or stretched gels [130, 131], where molecular motion is partially restricted,
yielding residual couplings. Such techniques have found widespread use in high-field NMR for
structural measurements of proteins and small organic molecules [132, 133, 134, 135]. Here, we
investigate the effects of residual dipole-dipole couplings (RDCs) on the zero-field spectrum of a
model spin system: acetonitrile-2-13C (13CH3CN) aligned in stretched crosslinked polyvinyl ac-
etate (PVAc) gels.

7.2 Preparation of Stretched Gel Samples
Polyvinyl acetate (PVAc) polymer sticks containing between 1-6% v/v divinyl adipate (DVA)

cross-linker were prepared in 5 mm NMR tubes by adding the radical initiator azobisisobutyroni-
trile (AIBN) to a solution of 60% vinyl acetate and 40% acetone by volume. The presence of
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Figure 7.1: a) Schematic illustration of the change in symmetry that occurs during uniaxial stretch-
ing of the gel environment due to swelling with acetonitrile-2-13C. The change in the order param-
eter is illustrated by the different three-dimensional shapes. b) Energy level structure of a partially
ordered XA3 spin system. F is the total spin angular momentum, K is the total proton angular
momentum, and J is the one-bond 13C – 1H J-coupling. Solid arrows indicate allowed transitions,
dashed lines indicate forbidden transitions.

the acetone was prompted by synthetic considerations.1 Samples with varying alignment strength
were prepared by adding a variable amount of the cross-linker DVA to the mixture before trans-
fer to standard 5mm NMR tubes – increased cross-linking was found to correlate with increased
alignment. The samples were then heated in an oven at 45◦C for 7 days to initiate polymerization
via the thermal decomposition of AIBN, followed by 2 days at 55◦C in order to ensure that the
reaction went to completion.2

Anisotropic gels were prepared by adding acetonitrile to the tubes and allowing the polymers to
swell for 2 weeks. Because the polymers were confined to the NMR tubes in which they were cast,
swelling was uniaxial and equivalent to stretching along the axis of the NMR tube. A schematic
representation of the process is shown in Fig. 7.1(a).

In order to maximize the ZULF NMR signal the samples were prepared using labeled acetonitrile-
2-13C to which was added 5% v/v deuterated acetonitrile for the purpose of high-field NMR char-

1It was found that performing the polymerization reaction without an additional solvent frequently led to cracks or
bubbles in the resulting polymer sticks. Presumably, carrying out the reaction in the presence of acetone allowed the
reaction to continue to completion in an essentially solution phase without nonlinear issues related to phase transitions
occurring during the reaction. The acetone is then easily removed by evaporation.

2After preparing the samples used for this study, additional “backup” polymer samples were prepared via slightly
different means, the most successful of which involved a nearly identical procedure, but with sample heating performed
in a temperature-controlled sand bath. The polymer sticks produced using the sand bath were consistently of high
quality, so we suggest that this method is generally preferable for future applications of this work.
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acterization. The molecular order parameter [136, 137] for acetonitrile in the stretched gel environ-
ment was determined by analyzing the quadrupolar splitting of the deuterium resonance [127, 138]
using a 14.1 T NMR spectrometer with deuterium frequency 92.1 MHz. The value for the electric-
field gradient around the deuterium nuclei in acetonitrile was obtained from the literature [138].

The ZULF-NMR apparatus has been described previously [109, 71, 64]. Samples were pre-
polarized in a 2 T permanent magnet located outside of the magnetic shielding for ≈20 s and then
shuttled pneumatically to the zero-field region over 0.5 - 1 s. NMR signals were detected with an
atomic magnetometer featuring a 0.6 × 0.6 × 1.0 cm 87Rb vapor cell operating at 180◦C. Transient
signals were collected over ≈20 s. The spectra in Fig. 7.2 are the average of between 256 and 1024
transients, and the spectra in Fig. 7.3 are the average of 8 transients.

7.3 Theory of Residual Dipolar Couplings in Zero-Field NMR
The spin Hamiltonian in the presence of J-couplings and dipole-dipole interactions is

H = ~
∑
j;k> j

J jkI j · Ik − ~
2 µ0

4π

∑
j;k> j

γ jγk

r3
jk

[
3
(
I j · r̂ jk

) (
Ik · r̂ jk

)
− I j · Ik

]
, (7.1)

where ~ is the reduced Planck constant, µ0 is the vacuum permeability, γ j and γk are the gyro-
magnetic ratios of spins I j and Ik, and r jk is the internuclear vector connecting the spins. In the
case of isotropic liquids, the dipole-dipole interaction term averages to zero. However, in aligned
samples, such as stretched gels, the motional averaging of the dipole-dipole term is incomplete.
For the system studied here, the swelling of the polymer gel with acetonitrile along the axis of the
NMR tube leads to an orientational probability distribution of the solvent molecules that is slightly
anisotropic, with the preferential alignment axis (the director) determined by the swelling direction
[130, 131]. This axis is collinear with the sensitive direction of the detector, and is denoted z. Be-
cause of the rapid rotation of the acetonitrile methyl group and the axial symmetry of the alignment
medium, the x and y components of the r jk vectors are averaged to zero, and the z components are
scaled by the degree of alignment. Considering these averaging effects on the second term of Eq.
(7.1), the residual dipolar coupling Hamiltonian is

HRDC = −~
∑
j;k> j

D jk

(
3I j,zIk,z − I j · Ik

)
, (7.2)

where

D jk =
µ0

8π
γ jγk~

r3
jk

〈
3 cos2 θ jk − 1

〉
. (7.3)

We may also define the coupling as being directly proportional to the molecular order parameter
Szz = 1

2

〈
3 cos2 θz − 1

〉
[136, 137], a measure of the extent to which acetonitrile’s C3-axis is aligned

with the laboratory z-axis, such that

D jk =
µ0

4π
γ jγk~

r3
jk

(
3 cos2 φ jk − 1

)
Szz, (7.4)



7.3. THEORY OF RESIDUAL DIPOLAR COUPLINGS IN ZERO-FIELD NMR 123

where φ jk is the angle between r jk and the C3 axis, π/2 for DHH and the tetrahedral angle (2 arctan
√

2)
for DCH.

In the regime where D jk � J jk, the residual dipolar couplings may be treated as a perturbation
on the J-coupling. For acetonitrile-2-13C, it is convenient to write the first term of Eq. (7.1) as

H (0) = ~1JCHK · S, (7.5)

where 1JCH is the one-bond J-coupling, K =
∑

j I j is the total proton spin angular momentum, and
S is the 13C spin angular momentum [64]. The eigenstates of H (0) are also eigenstates of F2 and
Fz, where F = K + S is the total spin angular momentum. The eigenstates have degeneracy 2F + 1
and energy

E(0) =
~1JCH

2
[F(F + 1) − K(K + 1) − S (S + 1)] . (7.6)

To explore the effect of the residual dipolar coupling on the J-coupling eigenstates, it is conve-
nient to decompose Eq. (7.2) into two heteronuclear terms,

H (1a) = −3~DCHKzS z (7.7)

and
H (1b) = ~DCHK · S, (7.8)

and a homonuclear term,

H (1c) = −~DHH

∑
j,k

(
3I j,zIk,z − I j · Ik

)
. (7.9)

It is worth noting that Eqs. (7.7) and (7.8) group the terms of the heteronuclear dipolar coupling
Hamiltonian differently from the typical high-field NMR approach, because the only term that
survives at high-field is

H (trunc) = −2~DCHKzS z, (7.10)

wherein a term of the form

HRDC −H
(trunc) =

~

2
(I+S − + I−S +) , (7.11)

is truncated because it does not commute with the high-field Zeeman Hamiltonian. The zero-field
Hamiltonian is untruncated, and thus includes this so-called “heteronuclear flip-flop” term that is
invisible to high-field NMR.

To first order in DCH, the energy shifts due to the heteronuclear residual dipolar coupling are

∆E(1a) = −3~DCH 〈FmF |KzS z |FmF〉

= −3~DCH

∑
mK ,mS

〈KS mKmS |FmF〉
2mKmS , (7.12)
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where 〈KS mKmS |FmF〉 are the Clebsch-Gordan coefficients, and

∆E(1b) = ~
DCH

2
〈FmF |

(
F2 −K2 − S2

)
|FmF〉

= ~
DCH

2

[
F(F + 1) − K(K + 1) −

3
4

]
. (7.13)

For all K = 1
2 states, the homonuclear residual dipolar coupling has no effect, as the rank-

2 spherical-tensor operator of Eq. (7.9) defined in terms of proton angular momentum can only
connect two states having total proton angular momentum K and K′ such that K + K′ ≥ 2. The
total energy shifts for the K = 1

2 states are thus

∆E(1)
(
F = 0,m f = 0

)
= 0, (7.14)

∆E(1)
(
F = 1,m f = 0

)
= ~DCH, (7.15)

∆E(1)
(
F = 1,m f = ±1

)
= −
~

2
DCH. (7.16)

The first-order energy shifts due to the homonuclear residual dipolar couplings for the K = 3
2

may be calculated in a similar method to that of Eqs. (7.12) and (7.13), though the effects of
couplings between equivalent spins must be considered. The total shifts for the K = 3

2 states are

∆E(1) (F = 1,mF = 0) = −
~

2
(DCH − 3DHH) , (7.17)

∆E(1) (F = 1,mF = ±1) =
~

4
(DCH − 3DHH) , (7.18)

∆E(1) (F = 2,mF = 0) =
3~
2

(DCH + DHH) , (7.19)

∆E(1) (F = 2,mF = ±1) =
3~
4

(DCH + DHH) , (7.20)

∆E(1) (F = 2,mF = ±2) = −
3~
2

(DCH + DHH) . (7.21)

Because the observable in this experiment is the z-magnetization Mz(t) ∝ Tr {ρ(t)
∑

j Ijzγj}, the
detectable coherences are those with ∆F = 0,±1 and ∆mF = 0. An additional selection rule,
∆K = 0, arises in the case of equivalent spins (e.g. the methyl protons in acetonitrile) because K2

commutes with the Hamiltonian [109, 64].
It follows that there is one allowed transition between K = 1

2 states, between the |F = 0,mF =

0〉 and |F = 1,mF = 0〉 states with frequency

ν1,0
0,0 =1 JCH + DCH. (7.22)

In addition, there are nominally forbidden (assuming that the detector is only sensitive in the
z-direction) ∆mF = ±1 transitions with frequency

ν1,±1
0,0 =1 JCH −

DCH

2
. (7.23)
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For the transitions between K = 3
2 states, there are allowed transitions with frequencies

ν2,0
1,0 = 21JCH + 2DCH, (7.24)

ν2,±1
1,±1 = 21JCH +

1
2

(DCH + 3DHH) , (7.25)

and nominally forbidden transitions ∆mF = ±1 with frequencies

ν2,±1
1,0 = 21JCH −

1
4

(7DCH + 3DHH) , (7.26)

ν2,±2
1,±1 = 21JCH +

1
4

(5DCH − 3DHH) , (7.27)

ν2,0
1,±1 = 21JCH +

1
4

(5DCH + 9DHH) . (7.28)

If the detector axis is not exactly aligned with the director/quantization axis, the nominally
forbidden transitions become observable.

7.4 Zero-Field Spectra of Acetonitrile-2-13C in Stretched Gels
Zero-field spectra of acetonitrile-2-13C (13CH3CN) in polyvinyl acetate are shown in Fig. 7.2(a)

for increasing values of the order parameter corresponding to the C3 axis. As the order parameter
increases, the K = 1

2 peaks corresponding to the ordered portion of the sample split, while the
K = 1

2 peak corresponding to excess isotropic liquid external to the gel, remains unchanged. The
lower-frequency peak in Fig. 7.2(a) corresponds to the ∆mF = 0 transition described by Eq.
(7.22) and the higher-frequency peak corresponds to the ∆mF = ±1 transition described by Eq.
(7.23). The phase of the ∆mF = ±1 peak is determined by the projection of the initial spin-
state population onto the transverse component of the detection operator, and is thus an arbitrary
signature of imperfections in the experimental configuration. Because the ∆mF = ±1 peaks are
consistently narrower than the ∆mF = 0 peaks in Fig. 7.2(a), it appears that the linewidth is affected
by imperfections in the gel producing an inhomogeneous order parameter and thus a spread in
transition frequencies proportional to DCH.

Figure 7.2(b) shows four K = 3
2 peaks, three from the aligned acetonitrile-2-13C, and one from

the isotropic liquid. The two lower-frequency peaks arise from the ∆mF = 0 transitions described
by Eqs. (7.24-7.25) and the small higher-frequency peak corresponds to the ∆mF = ±1 transition
described by Eq. (7.26). Transitions corresponding to Eqs. (7.27-7.28) are not resolved.

In high-field NMR, terms in the Hamiltonian that do not commute with the Zeeman Hamil-
tonian are neglected, due to their immeasurably small effect on the NMR spectrum. Due to the
absence of a large Zeeman interaction, ZULF NMR provides spectroscopic access to all spin-
coupling terms [140]. In traditional high-field NMR, only part of the heteronuclear dipolar cou-
pling,H (trunc), from Eq. (7.10), yields measurable effects in the spectrum. By itself, this term would
yield no shift of the |F = 0,mF = 0〉 ↔ |F = 1,mF = 0〉 transition. In these data [Fig. 7.2(a)]
the residual dipolar couplings clearly shift the peak relative to the isotropic liquid showing the
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Figure 7.2: Zero-field spectra of acetonitrile-2-13C with different degrees of ordering arising from
the concentration of the cross-linker divinyl adipate (DVA). (a) K = 1

2 and (b) K = 3
2 peaks. (c)

Peak positions as a function of order parameter. The lines are calculated transition frequencies
based on literature values for the electric field gradient [138] and bond lengths [139] with no
free parameters. Solid symbols represent allowed ∆m f = 0 transitions, open symbols represent
transitions with ∆m f = ±1. Dashed lines indicate possible transitions that are not resolved.
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observation of the untruncated Hamiltonian of Eq. (7.2), including the contribution of Eq. (7.11),
an interaction “invisible” to traditional NMR. The absence of truncation that permits observation
of this term has also been demonstrated via the preparation of heteronuclear spin-singlet states in
Ref. [67].

As shown in Fig. 7.2(c), the frequency shift varies linearly with the order parameter. The data
closely match the simulated curves, which are calculated from the order parameter using Eqs. (7.4)
and (7.22-7.28).

In the situation where the sensitive axis of the magnetometer is parallel to the director of the
gel orientation, only the ∆mF = 0 transitions are detected. If the detection axis (or direction of
orientation) is rotated, the ∆mF = ±1 transitions are also observable, leading to peaks at higher
frequency, with intensity dependent on the initial spin state populations and the angle between the
detection and orientation axes. The additional peaks appear in Fig. 7.2 because the measurements
were carried out using a magnetometer configuration that featured a rotated axis of detection due
to a non-zero effective field at the Rb cell. We attribute this effect to imperfections in the mag-
netometer configuration, potentially related to laser alignment, AC Stark shifts, or a combination
of the two. We point out that the effect was diminished after expanding the pump beam (thus
decreasing the laser power density) and subsequently realigning the optics for the experiments in
Fig. 7.3. It is worth noting that the rotation of the detection axis is necessary for the detection of the
higher-frequency peaks only due to the axial symmetry of the system under study, which causes
the terms of the dipolar coupling Hamiltonian that depend on the azimuthal angle to be averaged
to zero. If these terms are not averaged to zero (e.g. in a biaxial ordered phase), they will further
lift degeneracy and yield additional peaks [141].

7.5 Combination of Residual Dipolar Couplings and Zeeman
Perturbation

We have also investigated the effect of applied magnetic fields on the spectrum, as shown in
Fig. 7.3. When the effective detection operator is collinear with the gel director axis, only the
∆mF = 0 transition is observed (corresponding here to a 10 nT applied field). As the field is
increased, however, states with different mF are mixed, and the effects of imperfections in the
magnetometer optics may be amplified via rotation of electron spins. The overall result is that as
the field is increased, the vectors defining the detection operator and the quantization axis cease
to be collinear. This in turn leads to the observation of ∆mF = ±1 transitions, which become
dominant at fields of 60 nT and above, at which point the effective detection operator has been
rotated substantially away from the director axis.

In the regime where the Zeeman interaction strength is on the order of the residual dipolar cou-
pling, the peak frequencies in Fig. 7.3 do not vary linearly with the applied field strength. This is
because the dipole-dipole coupling Hamiltonian does not commute with the Zeeman Hamiltonian,
and thus first-order perturbation is no longer sufficient to describe the system.
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Figure 7.3: Acetonitrile-2-13C K = 1
2 peaks as a function of applied magnetic field.

7.6 Significance and Future Applications
We have detected residual dipolar couplings in zero- and ultra-low-field NMR spectra, includ-

ing terms that are not directly observable in the high-field regime. The results are in strong agree-
ment with a zero-free-parameter simulation utilizing literature values of internuclear distances and
the electric field gradient of acetonitrile, the latter being used to determine the order parameter via
high-field 2H NMR. The sub-Hz resolution of ZULF NMR may be of future use for high-precision
chemical analysis of small molecules.

We have also demonstrated the direct influence of the heteronuclear dipole-dipole coupling
“flip-flop” term on ZULF NMR spectra. In principle, all terms of the spin coupling Hamiltonian
are observable in ZULF NMR, increasing the information potentially available in NMR spectra.
With appropriate systems (e.g. aligned chiral molecules) and continuing improvements in polar-
ization and magnetometer sensitivity, ZULF NMR may be a promising method to measure subtle
interactions such as the as-yet-unobserved antisymmetric components of the J-coupling tensor
[142]. Based on calculations in Ref. [143], measurement of a non-zero antisymmetric J-coupling
could permit the observation of a first-order energy shift arising from parity non-conservation in
the molecular Hamiltonian.

This technique may also find application as a probe of material structure, allowing for the
measurement of interactions with lower than azimuthal symmetry. For example, measurement of
the full anisotropic spin-spin coupling tensor of small molecular probes within porous materials
may provide a more complete description of local geometry than do measurements of total surface
area or average pore diameter.
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Chapter 8

Heteronuclear Singlets

If a state of two spins is beset,
One need not fear the dipolar threat,

Since one state that’s revealed
By removing the field,

Is a heteronuclear singlet

This chapter reports the observation of long-lived spin-singlet states in a 13C −1 H spin pair in
zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet lifetimes as long as 37
s, about a factor of three longer than the T1 lifetime of dipole polarization in the triplet state. In
contrast to common high-field experiments, the lifetime of the observed singlet-triplet coherence,
T2, is found to be longer than T1, where the relaxation times, T1 and T2, are defined appropriately
for the zero-field experiment. Moreover, we demonstrate that heteronuclear singlet states formed
between a proton and a 13C nucleus can exhibit longer lifetimes than the respective triplet states
even in the presence of additional spins that couple to the spin pair of interest. Although long-lived
homonuclear spin-singlet states have been extensively studied, this was the first experimental ob-
servation of analogous singlet states in heteronuclear spin-pairs. These results have been published
previously:

• Emondts, M., Ledbetter, M.P., Pustelny, S., Theis, T., Patton, B., Blanchard, J.W., Butler,
M.C., Budker, D., and Pines, A. Long-Lived Heteronuclear Spin-Singlet States in Liquids at
a Zero Magnetic field. Phys. Rev. Lett. 112 (7), 077601. (2014)
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8.1 Long-Lived Nuclear Spin States
Long-lived spin-singlet states have recently attracted considerable attention both experimen-

tally [144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154] and theoretically [155, 156, 157, 158,
159]. Such states are of practical interest for their ability to store hyperpolarization for more than
an order of magnitude longer than T1 [152, 153] and for their utility in tracking slow chemical
and biological processes [146, 148]. Long-lived spin states offer a wide range of applications to
medicine, materials science, physiology and chemistry such as in vitro targetting of neuroscience
relevant molecules [160], monitoring of protein unfolding [161] and probing of slow motion diffu-
sion of biomolecules [162]. For recent reviews of long-lived states in nuclear magnetic resonance
(NMR), see Refs. [163, 158].

In the case where two coupled spins are magnetically equivalent, the singlet state does not re-
lax through their intramolecular dipole-dipole coupling, often the dominant source of relaxation
in NMR. This is because the dipole-dipole interaction is symmetric with respect to exchange of
particles and therefore cannot produce transitions between the antisymmetric singlet and symmet-
ric triplet states. Other sources of relaxation, such as chemical-shift anisotropy, spin-rotation, and
effects from paramagnetic impurities are also often suppressed for the singlet compared to the
triplet states. As a result, singlet lifetimes can significantly exceed triplet lifetimes. The most
dramatic case of a long-lived nuclear spin singlet state is parahydrogen, which has a lifetime of
weeks, compared to the T1 lifetime of orthohydrogen, which is on the order of seconds under
typical experimental conditions (6 bar hydrogen pressure at room temperature in the absence of
paramagnetic impurities).

8.2 Heteronuclear Spin-Singlet States at Zero Magnetic Field
In high-field NMR such singlet states must be composed of same-species (homonuclear) spin

pairs, since the magnetic field breaks the equivalence of spin pairs formed by two different spin
species. Here we demonstrate the existence of heteronuclear spin singlets at zero magnetic field;
the spin singlet in question is formed by a strongly coupled 13C-1H pair in 13C-labeled formic acid
(13CHOOH).1 We show that the lifetime of this spin singlet, Ts, can exceed the relaxation time of
the triplet-state dipole moment, T1, by a factor of three. Furthermore, the transverse relaxation time
of the singlet-triplet coherence, T2, exceeds the longitudinal relaxation lifetime of the triplet states
T1, an unusual situation in NMR. The zero-field NMR experiments detect transitions between a
triplet state and a singlet state that is protected from relaxation mechanisms; whereas in high-field
NMR the observed transitions generally are between two states equally exposed to all relaxation
mechanisms. We also show that the extended singlet-state lifetimes are not limited to isolated het-
eronuclear pairs. In benzene-13C1, with a strongly coupled heteronuclear spin pair weakly coupled
to several distant spins, we show that the lifetime of manifolds where the strongly coupled spins
are in the singlet state exceeds the lifetime of manifolds where the strongly coupled spins are in

1Note, the carboxyl proton can be ignored because 2- and 3-bond couplings between the 13C −1 H system and the
acidic proton can be neglected due to rapid exchange in protic solvents.
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the triplet states by about a factor of 1.5. An appealing application for long-lived heteronuclear
spin singlets may be in metabolic studies, along the lines of research employing hyperpolarized
13C-labeled pyruvate [164].

In the present experiments the samples are polarized in a permanent magnet and then pneumat-
ically shuttled to zero field immediately next to the detection cell. DC magnetic field pulses are
used to manipulate the polarization in the singlet and triplet manifolds. This is in contrast to the
case of low-field homonuclear singlet spin pairs [145], which require more elaborate multipulse
sequences for the interconversion of singlet and triplet states. In the experiments we present here
the phase of the resulting signals can be used to identify the type of nuclear spin polarization from
which the signal arises. The use of a sensitive alkali-vapor magnetometer as a detector allows us
to directly probe the resulting spin state.

In liquids, inter- and intra-molecular dipolar interactions average to zero due to fast Brownian
motion, hence the Hamiltonian for two spins I and S in the presence of the Zeeman interaction and
scalar coupling is well approximated by

H = JI · S + (γII + γS S) · B. (8.1)

Here, γI and γS are the gyromagnetic ratios of the respective spins, and J is the scalar coupling
between them. In the high-field limit, eigenstates are those of Iz and S z, |MI MS 〉. In zero field, the
eigenstates are those of F2 and Fz where F = I + S is the total angular momentum. We denote the
triplet states with F = 1 as |T+1,0,−1〉, and the singlet state with F = 0 as |S 0〉, where the subscript
indicates the magnetic quantum number, MF . The manifolds are separated in energy by J. In zero
field, the triplets are symmetric and the singlet is antisymmetric with respect to interchange of the
spin labels. Therefore, transitions between the two manifolds due to the symmetric dipole-dipole
interaction are forbidden. As the magnetic field is increased, the |T0〉 and |S 0〉 levels are mixed and
dipole-dipole relaxation is gradually turned on.

The energy levels of this two-spin system are shown as a function of magnetic field in Fig.
8.1. Polarization of the zero-field levels is achieved in our experiment by transferring the sample
from thermal equilibrium in a prepolarizing magnet (20 kG) through a guiding field (solenoid
generating a magnetic field of 10 mG) into the shielded magnetometer to zero field. The rate of
transit (occurring over 1.5 s) is slow compared to J, populations of the thermally polarized high-
field states are adiabatically transferred to those of the low-field states. This results in an excess
population of the |S 0〉 state over the |T0〉 state, and an excess of |T+1〉 state over |T−1〉. The latter
corresponds to the dipole moment of the triplet state oriented in the direction of the quantization
axis (z). We choose the z-direction as the direction of detection such that z-magnetization is defined
as the observable. Also, the magnetic field inside the solenoid, used for adiabatic transfer and
preparation of the probed populations is aligned with z. The x and y directions are transverse to
z. More details of polarization via adiabatic transfer are included in Section 4.2. After adiabatic
transfer from high to zero field, the sample stays in zero field for a certain storage time τ. In order
to preserve the polarization of the sample, the guiding field stayed switched on during storage,
producing a residual field at the sample ∼1 mG. As the Zeeman shifts due to this residual guiding
field are much smaller than the J-coupling, the singlet lifetime Ts as well as the dipole lifetime
T1 stay unaffected, as was verified experimentally by taking data at different values of the guiding
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Figure 8.1: Energy levels for two spins, I and S, I = S = 1/2, in the presence of a scalar coupling
and a Zeeman interaction. Here, J = 220 Hz, and gyromagnetic ratios correspond to carbon and
hydrogen. High-field eigenstates are those of the uncoupled basis, as indicated by the kets on the
right. Adapted with permission from Ref. [67]. c©2014 American Physical Society.

field. The frequency difference between the 1H and 13C nuclei are given as (γ(1H)-γ(13C)·B) = 3.2
Hz at 1 mG. This is sufficiently small compared to the 1H-13C J-coupling of 219.3 Hz, such that
the singlet state remains very close to an eigenstate of the Hamiltonian and does not evolve into
states not protected from relaxation.

DC magnetic-field pulses are used to excite a coherence between zero-field substates and to
manipulate the polarization in the singlet and triplet manifolds. The use of a sensitive alkali-vapor
magnetometer (described in [64]) allows us to directly probe the resulting spin state. We observe
the z component of the nuclear magnetization, proportional to the trace of ρ(γI Iz +γS S z). Since the
term in parenthesis is a vector operator with magnetic quantum number equal to zero, observable
transitions are those with ∆F = ±1 and ∆MF = 0. These are transitions between the |T0〉 and |S 0〉

states, which produce magnetization oscillating in the z direction with frequency J.
Coherences between |T0〉 and |S 0〉 can be established from excess population in the singlet

state by application of a DC pulse of magnetic field in the z direction, resulting in z magnetization
proportional to sin(2πJt). This corresponds to a dispersive peak in the real part of the Fourier
transform of the magnetometer signal. The amplitude of the signal in this case is proportional to
the difference in population between the |T0〉 and |S 0〉 states. Coherences between |T0〉 and |S 0〉 can
also be established from dipole polarization in the triplet state by application of a pulse of magnetic
field in the x direction, resulting in z magnetization proportional to cos(2πJt), corresponding to an
absorptive peak in the real part of the Fourier transform. In this case, the amplitude is proportional
to the difference in population between the |T+1〉 and |T−1〉 states. Note that a y-pulse would have
the same effect as an x-pulse; they are both transverse to the privileged z-direction. Details of
how coherences are produced from the different polarization moments and the resulting signals are
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Figure 8.2: Zero-field NMR signals of formic acid (sample FAIII). The real part of the signal
following a pulse in the z direction originates from an initial population imbalance between the
|S 0〉 and |T0〉 states and is dispersive. The real part of the signal due to a pulse in the x direction
originates from dipole moment in the triplet manifold (excess of |T+1〉 over |T−1〉 states), and is
absorptive. The curves have been vertically offset by +0.075 (z-pulse) and -0.075 (x-pulse) to
avoid overlap. Adapted with permission from Ref. [67]. c©2014 American Physical Society.

presented in Section 4.2.
Figure 8.2 shows the real part of the Fourier transform of the magnetometer signal follow-

ing adiabatic transition of the formic acid sample (FAIII) to zero field and subsequent application
of magnetic-field pulses in either x or z direction. The phase is in agreement with the discus-
sion above, with absorptive and dispersive lineshapes for x and z pulses, respectively. Overlaying
each trace is the real part of a fit to a complex Lorentzian, with half-width at half-max (HWHM)
linewidth equal to about 10 mHz, corresponding to coherence lifetime T2 = 16 s. In both cases
there is a small deviation from Lorentzian line shape. We attribute this to variations in J across the
sample due to temperature gradients.

The amplitude of the zero-field NMR signal as a function of the storage time τ for applica-
tion of magnetic field pulses in the x or z directions is shown in Fig. 8.3 for sample FAIII. The
decay of the signal amplitude obtained by application of x pulses is well described by a single
decaying exponential, with time constant T1 = 11.8(1) s. We note that our definition of T1 de-
viates slightly from the high-field case, which usually corresponds to the lifetime of population
difference between single-particle Zeeman eigenstates. Here, T1 is the lifetime of the difference in
population between the triplet states |T+1〉 and |T−1〉 in the coupled system. The singlet lifetime Ts

was determined by fitting the decay curve (Fig. 8.3) of the signal amplitude after application of
a z pulse. The decay is well described by a double exponential with fast and slow time constants
T f = 10(3) and Ts = 37(2) s. The slow decay is due to transitions between the singlet and triplet
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Figure 8.3: Decay of signal amplitude as a function of storage time for magnetic-field pulses
applied in the indicated directions using sample FAIII. The solid lines overlaying the data are fits
to single (double) exponentials for x (z) magnetic-field pulses. Adapted with permission from Ref.
[67]. c©2014 American Physical Society.

states and reflects the lifetime of the singlet state Ts. The fast decay is a result of equilibration
within the triplet states, which reduces the population imbalance between the |T0〉 and |S 0〉 states.
Single and biexponential decays for relaxation of dipole and singlet polarization are predicted by
a phenomonological rate-equation model, described at the end of this Chapter.

Formic acid samples were mixtures of 13C-labeled formic acid, acetonitrile, and H2O. The
samples were flame sealed in 5-mm NMR tubes after four or five cycles of freezing and thawing
under vacuum in order to remove dissolved gases, in particular oxygen, which can cause additional
relaxation.

Sample and content (FA,A,H2O) T1 (s) T f (s) Ts (s) T2 (s)
FAI (100,0,10) 5.8(1) 2.4(3) 18.4(3) 8.0(5)

FAII (50,100,10) 8.0(5) 8.84(7) 26.5(5) 10.3(3)
FAIII (5,50,5) 11.8(1) 10(3) 37(2) 16.2(4)

Table 8.1: Summary of contents (in µL) and decay times T1, T f , Ts and T2 for several samples. FA
= formic acid, A = acetonitrile.

The main results for three different samples (containing formic acid, acetonitrile and water) are
presented in Table 8.1. Dilution of formic acid with acetonitrile/water mixtures was performed to
reduce intermolecular interactions and to promote fast exchange of the carboxyl proton. As can
be seen in Table 8.1, an increased fractional content of acetonitrile increases the singlet lifetime,
likely due to a reduction in viscosity and decreased correlation times. It is interesting to note that
the lifetime of the singlet-triplet coherence is longer than the T1 relaxation time for all samples
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listed in Table 8.1. This is a situation rarely encountered in high-field NMR because T1 relaxation
in high field corresponds to exchange of populations between two Zeeman eigenstates, and T2

relaxation corresponds to dephasing of a coherence between the Zeeman eigenstates. In the zero
field case at hand, the T1 relaxation of the dipole moment corresponds to relaxation of population
differences between the states |T±1〉, whereas the observed singlet-triplet coherence involves the
states |T0〉 and |S 0〉.

The theory of nuclear spin relaxation in two-spin systems has been studied extensively for the
case of homonuclear spins in low magnetic field [155, 165, 159, 158] and can be found in Ref.
[155]. These formulas can be adapted to heteronuclear systems. Rate expressions for relaxation
due to dipole-dipole interactions or external fluctuating fields can be found in Ref. [155]. In
the case of dipole-dipole relaxation, the ratio of T2 to T1 should be T2/T1 = 9/5. If externally
fluctuating fields due to paramagnetic impurities or other nuclei (for example, the carboxyl proton)
limit the lifetime, we expect a ratio T2/T1 = 2, assuming that the fields are uncorrelated at the two
nuclei. We measure T2/T1 to be 1.28 – 1.37, which indicates that T2 may be limited by temperature
or magnetic-field inhomogeneities.

We suspect that exchange of the carboxyl proton, or possibly some paramagnetic impurity,
ultimately limits the lifetime of the singlet state. This is supported by the observation that all
lifetimes have a roughly linear dependence on temperature. In sample FAII, Ts decreases by about
10% as the temperature is increased in the range of 20 − 60 ◦C, while T f , the fast component of
the relaxation, increases by a similar fractional amount. We observe that T1 increases by about
10% over this range, consistent with the expectation that dipole-dipole relaxation is suppressed by
improved motional narrowing at elevated temperatures.

The increased lifetime of the singlet state is not strictly limited to the case of two-spin systems
[166, 156, 167]. In systems where there are two strongly coupled spins and a series of weaker
couplings, we also observe an extension in the lifetime of the manifolds where the strongly coupled
system is in the spin-singlet state. Singly labeled 13C-benzene is one such example, in which
there is a strongly coupled 1H −13 C system, weakly coupled to a set of distant spins, resulting in
splitting of the single zero-field NMR line. A portion of the zero-field spectrum of singly labeled
13C benzene in the neighborhood of the one-bond J-coupling frequency, acquired after application
of an x directed pulse, is shown inset in Fig. 8.4. A complete discussion of the zero-field spectrum
resulting from 13C-labeled benzene is presented in Ref. [65]. Individual lines are typically about
10 mHz (HWHM). The signal is absorptive as expected from dipole polarization of the triplet
manifolds. Application of a pulse in the z direction produces a signal with the same frequencies and
with dispersive lineshape, as expected from polarization of the singlet state. The decay of the signal
amplitude (for the peak indicated by the arrow in the inset) is given in the main panel for x pulses
(corresponding to triplet polarization) and z pulses (corresponding to singlet polarization). While
multiple decay rates are likely, our signal-to-noise ratio is not sufficient to cleanly differentiate
between them, so we fit these data to single decaying exponentials, as indicated by the solid lines.
The decay times extracted from the fit are T1 = 19(1) s and Ts = 30(2) s, for pulses applied in the
x and z directions, respectively. Decay curves for the other peaks yield similar lifetimes. These
results confirm that the long lifetime of heteronuclear spin singlet states is not limited to the case
of two isolated heteronuclear spins, but can be extended to systems consisting of two strongly
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Figure 8.4: Decay of signal amplitude in benzene-13C1 for magnetic field pulses applied in the x
(circles) and z (triangles) directions (this spectrum is the result of averaging five transients). The
solid lines overlaying the data are fits to single decaying exponentials. The inset shows a portion
of the zero-field spectrum, and the arrow indicates the peak from which these decay curves are
extracted. Adapted with permission from Ref. [67]. c©2014 American Physical Society.

coupled heteronuclear spins with weakly coupled distant spins.

8.3 Significance and Future Directions
We have shown that the lifetime of heteronuclear spin-singlet states in zero magnetic field

can be substantially longer than that of the dipole moment in the triplet state. In 13C-labeled
formic acid, we find that the singlet lifetime is a factor of three longer than the lifetime of the
triplet dipole moment. The extended lifetime of singlet states in homonuclear spin pairs has been
known for some time, but extended lifetime of heteronuclear spin singlets has not been observed
before. One advantage of working with heteronuclear spin-singlets is that they can be manipulated
by DC magnetic-field pulses to produce observable magnetization. The use of sensitive atomic
magnetometers, as employed here, enables direct observation of this magnetization in zero field.
Typically, singlet states are not eigenstates of the high-field Zeeman Hamiltonian, and if a high
degree of symmetry is not present in the molecule of choice, RF spin locking has to be implemented
in order to remove chemical shifts. At zero magnetic field, heteronuclear as well as homonuclear
spin systems are naturally coupled into long-lived eigenstates. This vastly expands the range of
chemical systems which can exhibit long-lived spin order, motivating further research in zero-field
NMR as a valuable spectroscopic tool.
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8.4 Relaxation Rate Equations
In describing the relaxation of the system after it arrives in zero field, we use rate equations

that govern the populations of singlet and triplet states and neglect the possibility that off-diagonal
elements develop between the degenerate states |T−1,0,+1〉 of the triplet manifold. Let us denote the
excess of populations in the |T+1〉, |T0〉, |T−1〉, and |S 0〉 states by a1, a0, a−1, and b0, respectively.
The polarized part of the density matrix following a delay τ after adiabatic transport to zero field
and prior to application of a pulse of magnetic field is devoid of coherences and can be written

ρ(τ) = a1(τ)T1 + a0(τ)T0 + a−1(τ)T−1 + b0(τ)S 0,

where τ is the delay between arrival of the sample in zero field and application of a pulse of mag-
netic field to excite coherences. Prepolarization with adiabatic transfer to zero field as described
above gives the initial values a±1(0) = ±δ0, a0(0) = −ε0, and b(0) = ε0. The rate equations
governing the relaxation of populations in the eigenstates as a function of τ are

ȧ1 = −Γ3(a1 − a0) − ΓT2(a1 − a−1) − Γ2(a1 − b0),
ȧ0 = −Γ3(a0 − a1) − Γ3(a0 − a−1) − Γ1(a0 − b0),

ȧ−1 = −Γ3(a−1 − a0) − Γ4(a−1 − a1) − Γ2(a−1 − b0),
ḃ0 = −Γ2(2b0 − a1 − a−1) − Γ1(b0 − a0). (8.2)

Here, Γ1, Γ2, Γ3, and Γ4 represent the rates of cross relaxation between the states |S 0〉 ↔ |T0〉,
|S 0〉 ↔ |T±1〉, |T0〉 ↔ |T±1〉, and |T−1〉 ↔ |T+1〉, respectively.

As described in Section 4.2 the signal amplitude following a pulse of magnetic field in the z
direction is proportional to the difference in population between the states |T0〉 and |S 0〉, ε. Simi-
larly, the signal amplitude following a pulse of magnetic field in the x direction is proportional to
the difference in population between the states |T±1〉, δ. Thus it will be useful to write the polarized
part of the density matrix as

ρ(τ) = δ(τ)(T1 − T−1) + ε(τ)(S 0 − T0) + η(τ)(T0 + S 0) + γ(τ)(T1 + T−1), (8.3)

where δ = (a1 − a−1)/2, ε = (a0 − b0)/2, η = (a0 + b0)/2, and γ = (a1 + a−1)/2 . The rate equations
(8.2) can now be rewritten

δ̇ = −(Γ2 + Γ3 + 2Γ4)δ (8.4)
ε̇ = −(2Γ1 + Γ2 + Γ3)ε + (Γ2 − Γ3)η − (Γ2 − Γ3)γ (8.5)
η̇ = (Γ2 − Γ3)ε − (Γ2 + Γ3)η + (Γ2 + Γ3)γ (8.6)
γ̇ = −(Γ2 − Γ3)ε + (Γ2 + Γ3)η − (Γ2 + Γ3)γ. (8.7)

With the initial conditions δ(0) = δ0, η(0) = 0, ε(0) = −ε0, and γ(0) = 0, the solutions for δ(τ) and
ε(τ) are

δ(τ) = δ0e−(Γ2+Γ3+2Γ4)τ (8.8)
ε(τ) = ε0/(2A)[−2Γ1 + Γ2 + Γ3 − A]e−{+Γ1+3(Γ2+Γ3)/2+A/2}τ +

ε0/(2A)[−2Γ1 + Γ2 + Γ3 + A]e−{+Γ1+3(Γ2+Γ3)/2−A/2}τ. (8.9)
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Here, A =
√

9(Γ2 − Γ3)2 + (2Γ1 − 2Γ2)(2Γ1 − 2Γ3). We see that the dipole moment in the triplet
state, proportional to δ, decays with a rate equal to 1/T1 = Γ2 +Γ3 +2Γ4. The population difference
between states |T0〉 and |S 0〉, proportional to ε, has a biexponential decay, with fast and slow time
constants given by

1/T f = Γ1 + 3(Γ2 + Γ3)/2 + A/2 (8.10)
1/Ts = Γ1 + 3(Γ2 + Γ3)/2 − A/2. (8.11)

Fitting the decay of signal amplitude for the case of the x pulse (see Fig. 8.3) to Eq. (8.8) yields
1/T1 = (Γ2 + Γ3 + 2Γ4) = 0.0848(7) s−1. Fitting the decay of signal amplitude for the z pulse to
Eq. (8.9) yields Γ1 = 0.0042(36), Γ2 = 0.0081(27), and Γ3 = 0.0294(87) s−1, corresponding to
1/T f = 0.094 s−1 and 1/Ts = 0.027 s−1.
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Chapter 9

Summary and Outlook

Summarizing the results of this dissertation, we have addressed several recent advances in the
study of zero- and ultra-low-field nuclear magnetic resonance (ZULF-NMR) spectroscopy using
optical magnetometry. We have considered the spin dynamics of systems evolving primarily un-
der the influence of electron-mediated indirect spin-spin couplings, with perturbations provided by
weak external magnetic fields, residual dipolar couplings, and weak couplings to other spins. The
resulting spectra yield detailed information about chemical identity, molecular spin topology, elec-
tronic structure, configuration/geometry, and mesoscale material structure. Long relaxation times
give rise to high-resolution spectra, which allows high-precision measurement of local interactions.
The symmetry of the zero-field Hamiltonians permits both the observation of interactions that are
otherwise truncated in high-field NMR, and the formation of long-lived antisymmetric heteronu-
clear singlet-like states that cannot be formed in large external fields. These results point to a bright
future for ZULF-NMR as a complimentary technique to high-field NMR, with a wide range of po-
tential applications in chemical analysis, materials characterization, and precision measurement of
fundamental physical symmetries.

We began by describing the basic principles of ZULF-NMR from the standpoint of quantum
mechanics. Starting with the fundamental origins of nuclear spin, we then considered the density
operator describing an arbitrary ensemble of coupled nuclear spin systems and how the interaction
of the density operator with various spin Hamiltonians leads to spectra from which information
about the spin system can be extracted. We have also summarized the operation of alkali vapor
atomic magnetometers as sensitive detectors of low-frequency magnetic resonance signals. Oper-
ating in the spin-exchange relaxation-free regime, we are able to obtain magnetometer sensitivities
on the order of 10 − 100 fT/

√
Hz, sufficient to yield high signal-to-noise ratios in ZULF-NMR

spectra. We then detailed the means by which observable magnetization signals are produced in
ZULF-NMR experiments, including the generation of non-equilibrium spin polarization and the
transformation of spin order into oscillating magnetization using magnetic field pulses.

In order to extract chemically relevant information in the absence of chemical shifts, we have
described the methods for the interpretation of zero-field J-spectra. A basic qualitative description
of zero-field spectra may be understood in terms of XAn systems, providing topological infor-
mation about simple isotopically labeled functional groups. This was then expanded to (XAn)Bm
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systems, where the perturbation from additional weakly coupled spins leads to additional fine
structure that may be calculated analytically from first and second-order perturbation theory. More
complex molecules, such as benzene derivatives, are interpreted in terms of a larger perturbing
spin space, where the topology of the weakly coupled space is revealed by consistent multiplet
patterns. We have also presented a geometric picture of the perturbation theory calculations in
terms of projections of perturbing spin operators onto the total angular momentum of the strongly
coupled system.

We have also shown that additional information may be encoded in ZULF-NMR spectra by
reintroducing Zeeman and dipole-dipole coupling Hamiltonians as perturbations on the J-coupling.
Applying weak magnetic fields lifts the degeneracy within angular momentum manifolds, allow-
ing us to resuscitate information about gyromagnetic ratios and spin topologies that were otherwise
ambiguous. By preparing anisotropic stretched gel samples with varying degrees of alignment, we
have shown the effects of dipole-dipole coupling as a perturbation on J-spectra, in strong agree-
ment with theoretical predictions without any free parameters. We also revealed a dependence of
the zero-field spectrum on the heteronuclear “flip-flop” term of the dipole-dipole Hamiltonian that
is truncated at high-field and thus invisible to conventional NMR. This suggests that, in principle,
zero-field NMR may be capable of measuring other so-called “non-secular” terms. Taking advan-
tage of the symmetry of zero-field NMR, we have also demonstrated the formation of long-lived
heteronuclear spin-singlet states, overturning the “conventional” viewpoint that singlet states can
only be formed between homonuclear spins.

We will now consider some possible future directions for ZULF-NMR.

9.1 Near Future: Multiple Pulse Zero-Field NMR

9.1.1 Multidimensional Zero-Field Correlation Spectra
Figure 9.1 shows a prototypical two-dimensional zero-field NMR correlation spectrum of a

mixture of ethanol-1-13C and ethanol-2-13C isotopomers, zoomed in on the complex region in-
cluding the KA = 1 peaks of ethanol-1-13C and the KA = 3

2 peaks of ethanol-2-13C. Cross-peaks
are visible for correlated transitions within a given isotopomer, but no intermolecular cross-peaks
appear, as would be expected due to the absence of intermolecular J-couplings.

The spectrum in Fig. 9.1 was obtained by applying a pulse sequence analogous to the high-field
COSY experiment, varying the delay between two magnetic field pulses. Schematically, the pulse
sequence, involving a sudden transfer to zero magnetic field achieved by quickly turning off the
guiding field after shuttling, is

polarize − shuttle − solenoid off − (πx)13C−1H − τ1 − (πx)13C−1H − acquire (τ2) , (9.1)

where τ1 is a variable delay time, (πx)13C−1H is a magnetic field pulse equivalent to a relative rotation
between 13C and 1H nuclear spins of π radians about the x axis, and (πx)13C−1H is a magnetic field
pulse equivalent of equivalent magnitude and opposite polarity (applied with the opposite polarity
in order to account for pulse imperfections). Naively comparing to the two-spin case of Section
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Figure 9.1: 2D Zero-field NMR correlation spectrum of a mixture of ethanol-1-13C and ethanol-2-
13C, zoomed in to show cross-peaks in the area of greatest spectral complexity.
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4.2.2, the (πx)13C−1H would be expected to transform zero-quantum coherence to double-quantum
coherence, which is then allowed to evolve for a time τ1, after which it is converted back to ob-
servable zero-quantum coherence by the (πx)13C−1H pulse. This would lead to cross-peaks appearing
between peaks that are connected by double-quantum coherences. A more complete theory of co-
herence transfer in zero-field NMR is certainly necessary to fully describe the experiment, and to
develop pulse sequences that provide more specific information, but the preliminary results of Fig.
9.1 indicate that current magnetometer sensitivity and pulse fidelity should be sufficient for future
multidimensional experiments.

9.1.2 Decoupling in Zero-Field NMR
The cancellation of residual magnetic fields amounts to the decoupling of all remaining vector

operators from the perspective of the ZULF-NMR density matrix. Symmetrized pulse sequences
that achieve time-reversal of rank-1 spherical tensor operators can be used to generate an average
Hamiltonian that does not contain a Zeeman term. This was demonstrated by some of the early pio-
neers of field-cycling zero-field NMR for homonuclear systems using coherent isotropic averaging
[168] that was used to completely decouple first-rank tensors while scaling second-rank tensors
by about 1/3.1 It should be possible to extend the approach of Refs. [168, 169] to heteronuclear
systems using composite isotropic trajectories

Sufficiently fast decoupling sequences for tensors of various rank could also be used to extend
relaxation times of hyperpolarized systems at zero field by decoupling low-frequency contributions
to the spectral density function, which may be the primary mechanism of relaxation at zero field if
higher frequency components self-decouple. Increasing polarization lifetimes by such means could
be extremely valuable for hyperpolarized spectral imaging techniques if relaxation mechanisms
can indeed be efficiently decoupled.

Spectral editing employing selective heteronuclear or homonuclear decoupling would also per-
mit the study of larger complex systems which might otherwise yield overly complex, overlapping
spectra, making interpretation difficult or impossible.

9.2 Possible Future: Molecular Parity Non-Conservation
ZULF-NMR is particularly well-suited to the measurement of interactions that do not commute

with the high-field Zeeman Hamiltonian. One example of such an interaction is the antisymmetric
J-coupling2, which has not been observed in high-field NMR, but may be observable in ZULF-
NMR. Because Janti transforms as a bivector (or pseudovector), it encodes a sense of rotation,
as well as an orientation, such that it may be treated as a “chiral” interaction. Observing the
effects of Janti in ZULF-NMR experiments could lead to novel techniques for the measurement
and quantification of chirality.

1This essentially amounts to a zero-field spin-echo.
2More specifically, the irreducible rank-1 components of the J-coupling tensor.
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Furthermore, when considering the full molecular Hamiltonian including the parity non-conservation
(PNC) terms due to the weak nuclear force,3, the only first-order PNC contribution to NMR observ-
ables corresponds to an antisymmetric J-coupling [143]. Because Janti has no effect on high-field
NMR spectra, the authors of Ref. [143] did not treat this first-order effect any further beyond writ-
ing the term:

IN · J(1)
PNC · IN′ =

−GF
√

2mc

µ0

4π
e~

(
1 − 4 sin2 θ

)
(IN × IN′)

rN′N

r3
N′N

×

λNγN′〈0|
∑

k

δ (rNk) |0〉 + λN′γN〈0|
∑

k

δ (rN′k) |0〉

 , (9.2)

where GF is the Fermi constant, θ is the Weinberg-Salam angle (sin2 θ = 0.2236), and λN is a
nucleus-dependent factor that is near to unity. rN′N is the vector connecting the two nuclei N and
N′, and rNk is the vector connecting the nucleus N to a given electron k. It is particularly worth
noting that the weak charge QN =

[
Z

(
1 − 4 sin2 θ

)
− N

]
does not appear in Eq. (9.2), so unlike

many other proposed PNC measurements, there is no requirement for nuclei with high atomic
numbers.

9.3 Towards Science Fiction: FUNdamental Physics
Precision measurements of anomalous spin couplings might lead to new limits on fundamental

physical constants, such as nuclear electric dipole moments or relative couplings between matter
and antimatter. Such measurements could further constrain the parameters for possible theoretical
particles predicted by new physics beyond the Standard Model, including – for example – QCD
axions or axion-like-particles, potential dark matter candidates.

9.3.1 Polarized Nuclear Targets Based on ZULF PHIP
It has also been proposed that ZULF-NMR techniques for the manipulation of polarized nuclear

spin states prepared via PHIP4 may be used to prepare polarized nuclear targets. High density
nuclear targets with high spin polarization are desirable for a range of nuclear and particle physics
experiments, particularly those aimed at studying nucleon structure. Additionally, the fast and
robust reversal of polarization is necessary in order to control for systematic effects in sensitive
measurements of fundamental symmetries. It should be possible develop a polarized nuclear target
utilizing parahydrogen-induced polarization that satisfies these parameters and furthermore does
not require cryogenic temperatures or large magnetic fields. The proposed technique is based on
previous zero-field NMR work with parahydrogen [71, 72, 69, 121] as well as the target concept
discussed in Ref. [170].

3Specifically, the neutral current, which involves the exchange of Z0 bosons.
4Parahydrogen-induced polarization – see Section 4.3.
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Figure 9.2: Block diagram of proposed experimental arrangement for the production of a polarized
nuclear target using ZULF-NMR techniques and parahydrogen-induced polarization.
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The general concept of the proposed target, polarized via hydrogenative PHIP, is depicted in
Fig. 9.2. First, pure parahydrogen is prepared by cryogenically cooling hydrogen in the presence
of a magnetic symmetry-breaking catalyst. Depending on overall desired flow rates, this may be
achieved either in a batch or continuous flow mode. The parahydrogen is then mixed with an
unsaturated substrate (containing a double bond), for example, 13C-enriched acetylene (13C2H2).
Because acetylene, along with many other small unsaturated molecules, is extremely reactive,
appropriate measures must be taken to avoid explosion hazards, as acetylene can undergo an ex-
plosive decomposition reaction even in the absence of oxygen.

Following the mixing of the substrate with parahydrogen, a catalytic hydrogenation (e.g. using
dissolved or supported Wilkinson’s catalyst) occurs within a reaction vessel. The product of this
reaction will initially be in a state such that the two proton spins from the parahydrogen molecule
are in a singlet state, and all other spins are thermally polarized. Once the product is formed, the
total spin state (obtained by the coupling of all spin angular momenta in the molecule) will evolve
under the electron-mediated spin-spin coupling (J-coupling), thus spreading the “singlet order”
of the parahydrogen spins throughout the coupled system. Because the hydrogenation reaction
is not instantaneous, and, further, occurs at a distribution of times throughout the sample, the
relevant situation is the incoherently averaged steady state produced by the spread of singlet order.
Subsequently, a DC magnetic field pulse is applied to convert the singlet order into oscillating
magnetization, equivalent to time-dependent reversible nuclear polarization in the pulse direction.

The choice of appropriate substrate, catalyst, and reaction conditions is essential for the design
and optimization of the proposed nuclear target. Because the non-equilibrium spin order is spread
throughout all spins in the molecule, it is preferable to minimize the number of magnetic nuclei
in order to maximize the degree of polarization. However, the high vapor pressure and reactivity
of small unsaturated molecules pose additional challenges in the handling of the materials, and
the choice of reaction mechanisms. It is also necessary that the chosen system possesses a long
polarization relaxation time to maximize the time during which data can be collected using this
target.

Alternatively, polarization may be achieved using non-hydrogenative PHIP, which builds up
polarization in molecules that act as labile ligands with polarization-transfer catalysts. The mech-
anism is similar to that utilized in the signal amplification by reversible exchange (SABRE) tech-
nique, where the spin order of parahydrogen is transferred to target molecules during the formation
of transient complexes with metal catalysts [73]. This method has the advantage of minimizing the
need for chemical regeneration of the target, and the formation of steady-state polarization has
been demonstrated [171].

This project has been proposed to be carried out within the Matter–Antimatter Asymmetry di-
vision at the Helmholtz-Institut Mainz, to interface with the Facility for (Low-Energy) Antiproton
and Ion Research (FAIR/FLAIR).
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[98] Cremer, D & Gräfenstein, J. (2007) Calculation and analysis of NMR spin-spin coupling
constants. Phys. Chem. Chem. Phys. 9, 2791–816.

[99] Wu, A & Cremer, D. (2003) Analysis of multipath transmission of spin–spin coupling
constants in cyclic compounds with the help of partially spin-polarized orbital contributions.
Phys. Chem. Chem. Phys. 5, 4541.

[100] Bifulco, G, Dambruoso, P, Gomez-Paloma, L, & Riccio, R. (2007) Determination of relative
configuration in organic compounds by NMR spectroscopy and computational methods.
Chem. Rev. 107, 3744–79.

[101] Krivdin, L. B. (2007) Recent advances in theoretical calculations of indirect spin–spin
coupling constants. Annu. R. NMR. S. 61, 133–245.

[102] Chernyshev, K. A, Krivdin, L. B, Larina, L. I, Konkova, T. V, Demina, M. M, & Medvedeva,
A. S. (2007) Configurational Assignment of Carbon, Silicon and Germanium Containing
Propynal Oximes by Means of C–1H, 13 C–13C and 15N–1H spin–spin coupling constants.
Magn. Reson. Chem. 45, 661–666.



BIBLIOGRAPHY 153

[103] Krivdin, L. B, Khutsishvili, S. S, Shemyakina, O. A, Contreras, H, Mal, A. G, & Trofimov,
B. A. (2007) Stereochemical study of iminodihydrofurans based on experimental measure-
ments and SOPPA calculations of 13C–13C spin–spin coupling constants. Magn. Reson.
Chem. 45, 758–765.

[104] Sutter, K & Autschbach, J. (2012) Computational Study and Molecular Orbital Analysis
of NMR Shielding, Spin-Spin Coupling, and Electric Field Gradients of Azido Platinum
Complexes. J. Am. Chem. Soc. 134, 13374–13385.

[105] Pietrzak, M, Benedict, C, Gehring, H, Daltrozzo, E, & Limbach, H.-H. (2007) NMR stud-
ies and DFT calculations of the symmetric intramolecular NHN-hydrogen bond of bis-(2-
pyridyl)-acetonitrile: Isotope labeling strategy for the indirect 13C-detection of 15N15N
couplings. J. Mol 844-845, 222–231.
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Appendix A

Appendix: Ethylene Glycol

Appendix haiku
Measuring viscous liquid:

Ethylene glycol

We have also applied ZULF-NMR techniques to the study of a model viscous liquid, ethylene
glycol. These results have been submitted to the Journal of Magnetic Resonance as

• Shimizu, Y., Blanchard, J.W., Pustelny, S., Saielli, G., Bagno, A., Ledbetter, M.P., Budker,
D., and Pines, A. Zero-Field Nuclear Magnetic Resonance Spectroscopy of Viscous Liquids.
Submitted.

The results of this paper are presented as an Appendix to this dissertation because they are by
comparison peripheral to the general narrative, and may perhaps be considered more as a bridge
connecting the current work to my undergraduate work on non-standard liquids [172] and quantum
chemistry calculations of NMR parameters [173].
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A.1 Introduction
Recent developments in zero- and ultra-low-field (ZULF) NMR with superconducting quan-

tum interference devices (SQUIDs) [174, 175, 176] and atomic magnetometers [177, 109, 178, 64]
open new possibilities for imaging and spectroscopy. In conventional NMR spectroscopy, chem-
ical shifts and spin-spin couplings are utilized to distinguish molecular structures [179, 180],
where spin-spin couplings are treated as a first-order perturbation to the Zeeman energy. To
obtain high sensitivity and resolution of chemical shifts, high magnetic fields are convention-
ally used, requiring expensive radio-frequency spectrometers and bulky superconducting mag-
nets with cryogenic cooling. ZULF-NMR with atomic magnetometers utilizing alkali-atom va-
por cells has enabled non-cryogenic, desktop spectroscopy [109, 178, 64]. While chemical shifts
vanish at zero field, ZULF-NMR spectra are governed by indirect nuclear spin-spin couplings
called scalar or J-couplings that depend on the electronic structure and geometry of the molecule
[109, 120]. In contrast to the chemical shift due to diamagnetic current of the occupied orbitals, the
J-coupling is an indirect interaction between nuclear spins through second-order hyperfine effects
[181, 182, 183, 179, 180], and thus serves as a sensitive local probe of molecular geometry and
electronic structure.

Until now, investigations of ZULF NMR with atomic magnetometers have focused on low-
viscosity liquids with simple molecular structures and weak intermolecular interactions [109, 178,
64], achieving half width at half maximum as low as ≈ 0.01 Hz [65, 67, 112] comparable to that
of advanced high-field (HF) NMR. Many materials of practical interest – polymers or proteins,
for example, feature significant van der Waals interactions and hydrogen bonds. Therefore, the
ability to detect such interactions through their J-coupling spectra in ZULF NMR is of significant
importance. Compared to HF-NMR, ZULF NMR may have advantages in resolution because of
the absence of the static and dynamic broadening mechanisms inherent in the spectroscopy of
chemical shifts. For a liquid sample, the linewidth of ZULF NMR is governed by the dynamical
width due to nuclear dipole fields and J-coupling [180]. However, the magnitude of J-couplings
sensitively depends on the molecular conformation and interactions in a way that is not always
straightforward to predict.

Here we use a model system, 13C2-labeled ethylene glycol (EG, HO-13CH2-13CH2-OH), fea-
turing strong intermolecular hydrogen bonds. NMR has been utilized to investigate molecular
dynamics [184, 180, 185] and conformational equilibria of polyalcohols [186, 187, 188, 189, 190,
191, 192, 193]. Among ten non-equivalent isomers of EG with different dihedral angles in one
C-C and two C-O torsion angles, theoretical calculations have shown that two gauche conform-
ers with a C-C torsion angle at possible potential minima, 60◦ and 300◦, are favorable rather than
trans conformers with a torsion angle of 180◦ [194, 195, 196, 197, 198, 199, 200, 201, 202]. The
two-bond J-couplings in 1H NMR measurements support the predominant gauche state [186, 187,
188, 189, 190, 191, 192, 193]. However, NMR studies of EG have been usually made in solution
states [186, 187, 188, 189, 190, 191, 192, 193] possibly due to the broadening of NMR spec-
tra in neat EG, and the effect of intermolecular hydrogen bonding between EG molecules for the
conformations remains insufficiently explored.

In this paper, we study the effect of viscosity on ZULF- and HF-NMR spectra by controlling
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the viscosity through varying temperature and water content of EG solutions. We observe changes
in ZULF-NMR spectra that are due to minute changes in J-couplings that can be attributed to
intermolecular hydrogen bonding and molecular dynamics in bulk EG.

A.2 Experimental Details
The ZULF-NMR apparatus has been described previously in Ref. [64] and references therein.

An EG sample pre-polarized in a permanent 2.0 T magnet situated outside the magnetic shield was
shuttled to the zero-field region through a guiding coil. Because the low frequencies of ZULF-
NMR preclude the use of inductive detection, NMR signals were detected with an atomic magne-
tometer incorporating a Rb vapor cell (87Rb and 1300 torr N2) operating at 180◦C. The alkali vapor
was optically polarized with circularly polarized light tuned to the D1 transition. Magnetic field
measurements were performed by continuously monitoring optical rotation of linearly polarized
light, propagating in a direction perpendicular to the pump beam, tuned about 100 GHz away from
the center of the pressure broadened D1 transition. Optical rotation of the probe beam was moni-
tored by using a balanced polarimeter or by using a polarimetry scheme involving a quarter-wave
plate/photoelastic modulator and a crossed polarizer. In the latter case, phase sensitive detection
was used. ZULF NMR transient signals were collected for 4-12 s following application of a ∼1
ms duration magnetic-field pulse to excite nuclear spin coherences. For the measurements pre-
sented here, 256 or fewer transients were averaged prior to Fourier transformation. The sample
temperature was controlled by flowing hot air and monitored with a thermocouple.

NMR measurements were performed with bulk EG (1,2-13C ethanediol from Sigma Aldrich
with 1-2% water content as measured by Karl-Fischer titration) and dilutions with distilled water
in a 5 mm diameter pyrex tube. The materials were used without further purification. The volume
of EG was 100 µL for the undiluted sample and 50 µL for aqueous solutions. NMR tubes were
sealed with parafilm to reduce evaporation and absorption of water. The spectra were obtained by
Fourier transformation of the free-decay signals after cancellation of phase independent external
noise (e.g., that from power lines) and subtraction of thermal-drift signals of the magnetometer.
To obtain the linewidth and shift of spectral peaks, the ZULF spectra were fitted to a sum of
Lorentzians.

A.3 Computational Method
The optimized structure of each of the ten conformers was obtained via energy minimization

including second-order Møller-Plesset correlation energy corrections [203] and using a triple-ζ
quality correlation-consistent basis set augmented with diffuse functions (MP2/aug-cc-pVTZ). Sol-
vent reaction field of chloroform (dielectric constant ε = 4.7) and ethylene glycol (ε = 37.7) was
included by means of the polarisable continuum model [204]. Electronic energies were corrected
with the addition of enthalpy and entropy corrections at 298 K to obtain the Gibbs free energies.
Subsequent calculations of J-couplings, also in the presence of the solvent reaction field, were run
using density functional theory with the BHandH functional [205] and the pcJ-2 basis set [206],



A.4. RESULTS AND DISCUSSION 165

which is specifically tailored for the calculation of spin-spin couplings. All contributions to J were
included: the Fermi-contact, diamagnetic and paramagnetic spin-orbit and spin-dipole terms. All
calculations were run with the Gaussian09 software package [205]. Following Ref. [207], we la-
bel each structure with three letters representing the HOCC, OCCO and CCOH dihedral angles.
Lower case g, g′, t indicate values around +60◦, −60◦ and 180◦, respectively, while uppercase G
and T refer to the gauche or trans OCCO conformation, respectively. Figures are shown in Sup-
porting Information. Degeneracy of the conformers was taken into account in the calculation of
the population distribution and weighted average J-couplings.

A.4 Results and Discussion
The thermal variations of internuclear interactions were studied by ZULF NMR spectra of bulk

ethylene glycol. Figure 1 shows ZULF NMR spectra at temperatures from 30 to 108 ◦C. To under-
stand these spectra, we first note that an isolated 13CH2 group produces a signal at (3/2)1JCH [109],
corresponding to ≈210 Hz. In EG, two such groups are coupled together via one-bond carbon-
carbon coupling 1JCC, a two-bond proton-carbon coupling 2JCH, and two inequivalent three-bond
proton-proton couplings 3JHH,1 = J (H1,H3) = J (H2,H4) and 3JHH,2 = J (H1,H4) = J (H2,H3).
These additional couplings produce the rich splitting patterns shown in Fig. A.1.

The profile is in qualitative agreement with the simulation obtained from the time-evolution of
the density matrix for six spin-1

2 nuclei [109] evaluated with the values of the coupling constants
obtained from HF NMR [192]. The simulated J-coupling spectra at 76 ◦C, as shown in Fig. A.1
(b-c), were obtained using the following values: 1JCH = 141.2 Hz, 1JCC = 40.0 Hz, 2JCH = −2.0
Hz, 3JHH,1 = 4.0 Hz, and 3JHH,2 = 5.9 Hz. To simulate the potential effects of slow hydroxyl proton
exchange, additional simulations were performed, as shown in Fig. A.1 (d-e), using the calculated
values: 3JHOH = 5.40 Hz, 2JCOH = -3.45 Hz, 3JCOH = 5.03 Hz, 4JHOH = 0.02 Hz, and 5J(OH)(OH) =

0.12 Hz, with these couplings scaled by a dimensionless parameter λ (λ = 0 implies no coupling
to the hydroxyl protons due to fast exchange and λ = 1 implies full coupling, as would be the case
in the absence of hydroxyl exchange). Comparison between the simulations and the experimental
spectra in Fig. A.1 suggests that all couplings to hydroxyl protons are averaged to zero by chemical
exchange. The vicinal proton coupling,2JHH, has no observable effect on the spectrum [192].

As the temperature is increased beyond 90 ◦C, an additional doublet structure becomes apparent
for each line with a splitting of 0.7 Hz. We attribute this splitting to an external magnetic field
that appears due to imperfect residual-field shimming at elevated temperatures, consistent with
Fig. A.1(c). Note that the linewidth of the ZULF spectra decreases with increased temperature
(Fig.A.2). While the linewidth exceeds 2 Hz full width at half-maximum at room temperature, we
have δν = 0.30 Hz at 108◦C. As seen in Fig. A.2(b), δν follows the viscosity [208] as a function
of temperature. The narrowing with increasing temperature is likely due to enhanced molecular
tumbling [184]. The linewidth may also be affected by hydroxyl proton exchange, which leads to
relaxation via modulation of J-coupling frequencies, as discussed in Ref. [120]. Together with the
line narrowing, the spectral intensity increases due to reduced relaxation during shuttling, reflecting
an increase of the spin-lattice relaxation time.
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Figure A.1: (a) Temperature dependence of the ZULF-NMR spectrum of bulk 13C2-ethylene gly-
col. The vertical axis is the Fourier transformed lock-in signal. The inset figure shows molecular
structure of ethylene glycol (gauche conformer) where ∗ denotes 13C, small spheres: H atoms; in-
termediate spheres: O. (b) Simulation of 76◦C spectrum without couplings to hydroxyl protons at
zero magnetic field. (c) Spectral simulation without couplings to hydroxyl protons in the presence
of a 100 µG field. (d) Spectral simulation with couplings to hydroxyl protons scaled by λ = 0.1
at zero magnetic field. (e) Spectral simulation including full couplings to hydroxyl protons (λ =

1) at zero magnetic field. Simulated spectra are shown with narrow linewidth (extended relaxation
time) in order to reveal fine structure.
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Figure A.2: (a) Central resonance frequency and (b) its linewidth plotted against temperature for
bulk 13C2-ethylene glycol. The data shown by closed triangles are obtained from fitting with two
Lorentzians with the same fixed intensities for a doublet; the averaged frequency of a doublet is
plotted for 90 ◦C and above. The solid line in (b) shows temperature dependence of viscosity, and
is not a fit.
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Figure A.3: ZULF NMR spectra for aqueous solutions of 13C2-ethylene glycol as a function of
water content (wt %) measured at 36◦C. The intensity is normalized by the maximum intensity at
each concentration.

In addition to the appearance of extra structures with increasing temperature, the spectra exhibit
a slight positive shift, e.g. from 208.65(5) at 38 ◦C to 208.92(1) Hz at 108 ◦C for the central intense
peak, as shown in Fig. A.2(a). The position of this peak is primarily determined by the sum
of 1JCH and 2JCH, which may provide information about the conformational equilibrium, though
a rigorous means of extracting all coupling constants from the ZULF spectrum would provide
stronger support.

To examine the effect of solution concentration on molecular conformation, we measured
ZULF NMR for aqueous EG solutions with different concentrations, as shown in Fig. A.3. We find
narrowing of ZULF NMR spectral features, similar to what is observed in the thermal variation for
the bulk sample. Presumably, this reflects the reduction of the correlation time of molecular rota-
tions with both increasing temperature and dilution, improving the averaging of the dipole-dipole
interactions that broaden the lines.

Each line shows an approximately parallel shift to higher frequency with increasing water
content, keeping the interval between the lines approximately constant. A parallel shift of the
spectrum would indicate that the effect is due to 1JCH, though deviations from a perfectly parallel
shift would indicate that effects are due to changes in 2JCH. The much larger shift [1.8 Hz between
2% and 80%, Fig. A.4(a)] compared to the thermal shift in neat EG [≈ 0.3 Hz between 40 and
110◦C, Fig. A.2(a)] highlights the importance of the solvent effects.
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Figure A.4: (a) Central-resonance frequency, (b) multiplet width proportional to 1JCC, and (c) the
central-resonance linewidth vs. the concentration of aqueous 13C2-ethylene glycol solution. The
solid curve in (c) shows viscosity data for the aqueous solution [208].
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Dilution with water exponentially suppresses the viscosity [Fig. A.4(c)] and also tends to re-
place hydrogen bonds among EG molecules with those to water. The linewidth also scales as
viscosity, as observed in the temperature dependence, indicating the correlation time of molecular
tumbling governs the linewidth. In contrast to the thermal variation, an offset linewidth of 0.3 Hz
(the left vertical axis) remains in the scaling relation, presumably due to the effect of water protons
in the infinite-dilution limit. This linewidth is substantially greater than would be attributed to
magnetic field inhomogeneity or temperature gradients (approximately 0.01 Hz) [65, 67, 112], and
should be primarily representative of the intrinsic spin-spin relaxation time.

A detailed understanding of the shifts towards higher frequencies observed both with increas-
ing temperature and dilution with water would require an accurate description of the conform-
ers’ populations. Molecular-dynamics simulations would be able, in principle, to provide the full
distribution of dihedral angles of EG. However, currently available classical force fields are not
sufficiently accurate to describe hydrogen bonds and the associated key dihedral angles involving
the OH groups (indeed, there is no generally accepted parameterization even of the OCCO angle
[197, 209, 210]). On the other hand, Car-Parrinello simulations [211] are too demanding for the
slow dynamics of a viscous fluid. Thus here we only attempt to provide a qualitative description.

To this end it is convenient first to examine the simpler case of EG in chloroform (CHCl3),
where intermolecular interactions, especially H bonds, are expected to play a negligible role. The
experimental data from the literature are compared with the results of DFT calculations where
the EG molecule is embedded in a continuous medium with the dielectric constant of CHCl3 (see
Computational Method). This case serves as a test of the performance of the theoretical level
selected. We then compare the experimental data here reported with the results of DFT calculations
where the dielectric constant has been set to the value in EG in order to model long range solvent
effects in the neat liquid. However, explicit intermolecular H bonds cannot be fully described by
this method.

The results of the calculations in chloroform are summarized in Table A.1. For each conformer
there are 28 couplings which are reduced to 10 independent values because of fast rotation and/or
molecular symmetry. In Table A.1, we only report the averaged values; for example 1JCH is the
average of four calculated couplings of each 13C with its two protons.

In agreement with previous theoretical investigations, [207, 212] the most stable conformer is
tGg′ followed by gGg′ and g′Gg′, which account for about 90% of the total. Most G conform-
ers exhibit some intramolecular hydrogen bonding (HB), as expected for an essentially isolated
molecule. The Boltzmann-averaged J values can be directly compared with those reported in
[192] measured in CDCl3, because this solvent is expected to have negligible HB with the solute
EG. The agreement is good, especially for the couplings involving 13C: the average absolute error
is just 0.37 Hz, which gives us confidence on the calculated population distribution in CHCl3.

Calculated couplings using the solvent reaction field of EG differ only slightly from those
in CHCl3; this is not unexpected because, even though the calculations include the long-range
dielectric response of the environment, no explicit solvent molecules account for intermolecular
HB. However, in EG, solvent intermolecular hydrogen bonds are not negligible and may change
the relative conformer stability, although the experimental results in Table A.2 do not show striking
differences compared with the experimental values of Table A.1.
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1JCH

(Hz)

1JCC

(Hz)

2JCH

(Hz)

3JHH,1

(Hz)

3JHH,2

(Hz) Dgn.
∆G

(kcal/mol) %Pop

g′Gg′ 140.4 39.9 -1.0 3.0 6.5 2 0.28 14.8
gGg′ 141.2 38.0 -1.3 3.2 6.8 4 0.36 25.9
gGg 139.4 38.0 -0.8 2.8 7.1 2 1.59 1.6
gTg′ 141.5 41.1 -3.8 12.6 6.2 2 1.82 1.1
gTg 141.6 41.1 -3.8 12.6 6.1 2 1.96 0.9
tGg′ 141.5 39.8 -2.0 2.9 6.7 4 0.00 47.9
tGg 139.5 40.8 -1.7 2.1 7.0 4 1.72 2.6
tGt 139.8 43.2 -2.6 1.7 6.9 2 1.45 2.1
tTg 141.9 43.6 -4.6 12.3 6.3 4 1.79 2.3
tTt 142.1 46.1 -5.3 12.0 6.3 1 1.65 0.7
〈J〉298K 141.2 39.6 -1.8 3.4 6.7

Jexp 141.6 39.3 -1.6 2.6 6.4

Table A.1: Calculated J-coupling constants for ethylene glycol conformers in chloroform. The
expectation values for each coupling constant at 298K are weighted by fractional conformer pop-
ulations, obtained in terms of the relative energies and degeneracies. Experimental values taken
from Ref. [192]. Coupling constants involving hydroxyl protons are included in the Supporting
Information.

1JCH

(Hz)

1JCC

(Hz)

2JCH

(Hz)

3JHH,1

(Hz)

3JHH,2

(Hz) Dgn.
∆G

(kcal/mol) %Pop

g′Gg′ 140.8 39.9 -1.1 2.9 6.6 2 0.30 12.2
gGg′ 141.7 38.1 -1.3 3.2 6.8 4 0.20 28.6
gGg 140.0 38.6 -0.8 2.4 7.0 2 1.12 3.1
gTg′ 141.9 41.2 -3.8 12.6 6.2 2 1.59 1.4
gTg 141.9 41.2 -3.8 12.5 6.1 2 1.62 1.3
tGg′ 142.0 39.7 -2.0 3.0 6.7 4 0.00 40.4
tGg 140.3 40.8 -1.7 2.2 6.9 4 1.09 6.4
tGt 140.6 43.0 -2.6 1.9 6.9 2 1.06 3.4
tTg 142.1 43.5 -4.6 12.3 6.3 4 1.64 2.6
tTt 142.2 46.0 -5.3 12.1 6.3 1 1.60 0.7
〈J〉298K 141.6 39.6 -1.8 3.7 6.7

Jexp 141.2 40.0 -2.0 4.0 5.9

Table A.2: Calculated J-coupling constants for ethylene glycol conformers in ethylene glycol. The
expectation values for each coupling constant at 298K are weighted by fractional conformer popu-
lations, obtained in terms of the relative energies and degeneracies. Experimental values are taken
from this work. Coupling constants involving hydroxyl protons are included in the Supporting
Information.
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The experimental value of 1JCH in neat EG at room temperature (≈141.2 Hz) is slightly lower
than in CDCl3. This suggests that the population distribution in bulk EG is different from what we
have calculated using EG as a solvent, and, because of intermolecular interactions, likely enriched
in some conformers with low values of 1JCH, such as gGg, tGg or tGt, to remain within G con-
formers. The magnitude of 2JCH is also slightly larger in neat EG than in CDCl3, also likely due to
stabilization of conformers with more negative values of 2JCH due to intermolecular interactions.
The variations in these values may explain the small shift towards higher frequencies as the temper-
ature is increased because the frequency of the central resonance is, to first order, 3

2 (1JCH +2 JCH).
If the conformers with smaller values of 1JCH+2JCH are more stabilized by intermolecular interac-
tions in bulk EG, an increase in temperature would produce an increase in the average value and
therefore a shift of the central resonance of the ZULF spectrum. A similar rationale may explain
the even larger shift observed when EG is diluted in water, even though a precise determination of
the various conformers population in EG and the exact values of their couplings, is not possible.

It is noteworthy that the C-C coupling constant is also strongly dependent on the EG con-
formation. As a general rule, and similarly to the 1JCH case, we note that G conformers exhibit
smaller 1JCC couplings (38-41 Hz) while T conformers exhibit larger 1JCC (41-45 Hz) couplings.
A rough measure of the strength of this coupling is given by the width of the “multiplet” centered
around 3

2 (1JCH+2JCH). As shown in Fig. A.4(b), the spectral features move slightly together with
increasing dilution, indicating a decrease in 1JCC.

A.5 Conclusions and Outlook
In this work, intermolecular interactions were studied with ZULF-NMR in ethylene glycol,

a prototypical viscous liquid. For a bulk sample we observed relatively broad J-coupling spec-
tra with reduced intensity compared to low-viscosity liquids. The linewidh of the ZULF spectral
features varies in the same way as viscosity does in the thermal and the aqueous concentration de-
pendences. We observed small changes in the J-coupling constants while controlling the influence
of intermolecular interactions with heating and dilution. The results are consistent with high-field
NMR studies.

Overall, density functional theory calculations successfully model the conformer distribution
and J-couplings in EG, provided that they are experimentally determined under conditions where
intermolecular interactions are weak (i.e., in chloroform). When such interactions are strong (bulk
EG or aqueous solution), we expect the population of conformer to be altered. Nevertheless, the
agreement between calculations and experiment is still quite good. Therefore, the capability of
accurately measuring J-couplings by ZULF-NMR, coupled with their computational predictions,
can provide information on the conformer distribution.

Our results illustrate the capability of ZULF-NMR for determining molecular structures and
conformations in viscous liquids with significant intermolecular interactions and fast relaxation.
The linewidth of ZULF-NMR can be free from inhomogeneous fields and chemical shift anisotropy,
and is thus a straightforward method for the measurement of intrinsic relaxation times.

Application of ZULF-NMR to non-liquid samples such as gels and polymers is an interest-
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ing direction for further investigation. ZULF-NMR may be particularly useful for the study of
anisotropic materials, as the spin-spin interaction tensors are not truncated by large magnetic
fields, allowing for the measurement of so-called “non-secular” terms. In combination with multi-
dimensional and decoupling techniques, applications to more complex biologically relevant molecules
are also the goals of ZULF-NMR. However, for materials with relaxation times shorter than 0.5
s, prepolarized nuclear spins become unpolarized during the shuttling process to the zero-field re-
gion. Further technical improvements (e.g., faster shuttling) will be necessary for application to
solid systems with fast relaxation rates.
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Appendix B

Mathematica Notebooks

B.1 Data Processing Code (Mathematica)
An early version of this notebook was developed by Micah Ledbetter, to whom the author is

thoroughly indebted.
It should be noted that the command “//Rasterize” is used in several places in order to reduce the

file size and to prevent PDF viewers from crashing while attempting to render the vector images.
In general, these commands are not used, as vector images are preferable when preparing figures.

The data presented are for a particularly nice-looking sample of acetonitrile-2-13C in a stretched
polyvinyl acetate gel that did not appear in Chapter 7 because it was the only sample of its series
(series 13 – sample C; the condensed label being, somewhat poetically, 13-C) to yield useful data.
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�������� ������������[���]�

(������ = ������[��� <> �������� �������]) // �����������

(������ = ����[������� �]) // �����������

������ = ����[������� {��}]�

������ = ����[������� �]�

������[[���� �]] = ������[[���� �]] * ����[�]�

������[[���� �]] = ������[[���� �]] * ����[�]�

�� = ��������[������[[���� {�� �}]]�

��������� → ��������[�� �� �]� ��������� → ���� ������ → �����]�

�� = ��������[������[[���� {�� �}]]� ��������� → ��������[�� �� �]�

��������� → ���� ������ → �����]�

����[��� ��� ��������� → ���] // ���������

���������� = ������[[���� {�� �}]]�

����������[[���� �]] = ����������[[���� �]] + � * ������[[���� �]]�

��������
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�������� (*��� �� ��� ��� ����� ��� ��������� �� ��� ����������� ����*)

����� = {� → ����� �ν → ���� ϕ → ��� ν� → �� �� → ����� �ν� → ���� ϕ� → ��� ν�� → ��}�

������ = ����

���� = �����������[�������[����������� �� ν�� �ν� ϕ� ��� ν��� �ν�� ϕ�]�

{{�� � /� �����}� {ν�� ν� /� �����}� {�ν� �ν /� �����}� {ϕ� ϕ /� �����}� {��� �� /� �����}�

{ν��� ν�� /� �����}� {�ν�� �ν� /� �����}� {ϕ�� ϕ� /� �����}}� ������������� → ���][[�]]�

��� = ��������[��[����������]� ��������� → ��������[�� �� �]�

��������� → ���� ���� → ������ ����� → ����]�

��� = ��������[���������[{����������[[���� �]]� ��[����������[[���� �]]]}]�

��������� → ��������[�� �� �]� ��������� → ���]�

� = �����

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ν��� �ν�� ϕ�� ν] /� �]�

{ν� ���[����������[[���� �]]]� ���[����������[[���� �]]]}�

��������� → ���� ��������� → {��������[�� �� �]� ������}]�

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ν��� �ν�� ϕ�� ν] /� �]�

{ν� ���[����������[[���� �]]]� ���[����������[[���� �]]]}�

��������� → ���� ��������� → {��������[�� �� �]� ������}]�

����[���� ���� ���� ���] // ���������

�����[ν_] = ������[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ν��� �ν�� ϕ�� ν]]�

��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ν��� �ν�� ϕ�� ν]]] /� �����

��������[ν_] = ���[-� �����[ν]] /� �����

���[ν_] = ���[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ν��� �ν�� ϕ�� ν] /� ����]�

������[��_] = ���� * ����� / ��� * α� / ���[��]�

����������� ������� � ������ �� �������� �� ��� ��������� �������� �� ��������� ������ ���� ����������� � 

��������
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�������� ����[������[��]� {��� �� ���}� ����� → �����

���� → ������ ���������� → {���������� (��)�� �μ�/�����}] // ���������

��������

��������

(*���� ���������� ��� ������� ������� �����

��� ��� �� ������ �� ��� ������ ����������� �������� �����*)

(*

����[��_���_���_���_���_���_���_] =��+��*��+��*����+�� ����+�� ����+�� �����

�������� = ���������[{������[[�����]]�������[������[[�����]]�������[[�����]]]}]�

��������[[�����]] = ���[��������[[�����]]-�*������]�

�������� = �������[���������

����[��������������������]�{{����}�{����}�{����}�{����}�{����}�{����}}���]

���������[��_] = ����[��������������������]/����������

������ = ���������[{������[[�����]]�����[������[[�����]]��+������[[�����]]��]}]�

�����=��������[������������������→��������→������

�����→���������������→{���������� (��)�������� (���)�}]�

����� = ��������[����������������→��������→�����������→�����

����������→{���������� (��)��������� (�)�}]�

���� = ����[�����[ν]�{ν������}�����→�����������→��������������→���]�

���� = ����[���[ν]�{ν������}�����→�����������→��������������→���]�

�������� =

����[���������[ν]�{ν������}�����→�����������→��������������→���������������→���]�

�������������[{����[�������������������]�����[����������]}]*)

�������������������������������������’������

����������� = {}�

���������� = {}�

������ = {}�

������� = �/�����/��������/�������/��������/��_����/���������/��

������������[�������]

/�����/��������/�������/��������/��_����/���������
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����� = ��

����� = �����

��������� = �����_��_����_���_������_������

���� = �������[�������� ���������� ������ ������ � / �����]�

(* ��� ��� ������ ������������ ����� ���� ������ ���

�������� ���� �� � ����� ���� ��� �� ���� �� ��� ���� ���������� *)

������[

�/�����/��������/�������/��������/��_����/���������/����_��_����_���_������_����������

����� ����� �������]�

�������������������������

�������� (*���� ���� ��� ���� ���� �� �� ��� ���� �� � ���-

������ ����� ���� ��� ���� ����� �� ��� ����� ������ ��� ��� ������� ������� �� ���

������ ������� ����� ���� ������� ���� ����� �� ��������� ���� ���� �������*)

���� = ������[

�/�����/��������/�������/��������/��_����/���������/������������_����-���_�����_���

����������� �������]�

����������

�������� (*���� ��� ��� ���� �� ���� ���� ����� ��� �� ����� ������*)

������������[����� ��������� → ���] // ���������

��������

�������� (* ��������� ���������� *)

(*��� ���� �� ���� ������� ���� ������ ���� ���

��������� �� ���� ���� ���� ��� ��������� ���������� *)

��� = ����[����� ���]�

(*��� ��� ������ �� ������ �� ������ ��� ������� �� ��������� ����������*)

������� = ���

(*��� ��� ������ �� ������ ���� ����� �� ���� ��� ��������� ���������*)

������������ = ����
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���� = ����[���� -(������[���] - ������������)]�

���� = ����[����� �������]�

�� = ������������[����]�

(*��� ������� ��������*)

����[��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ���_�

���_� ���_� ���_� ���_� ���_� ���_� ���_� ���_� ���_� ���_� ����_� ����_�

����_� ����_� ����_� ����_� ����_� ����_� ����_� ����_� ����_� �����_� �_] =

�� + �� * � + �� * ��� + �� ���[� * �� * ��� � + ����] + �� * ���[� * �� * ��� * � + ����] +

�� * ���[� * �� * ��� * � + ����] + �� * ���[� * �� * ��� * � + ����] +

�� * ���[� * �� * ��� * � + ����] + �� * ���[� * �� * ��� * � + ����] + �� *

���[� * �� * ��� * � + ����] + �� * ���[� * �� * ��� * � + ����] + �� * ���[� * �� * ��� * � + ����] +

�� * ���[� * �� * ��� * � + ����] + ��� * ���[� * �� * ���� * � + �����]�

(*���� �� ����� ��� ��� �� ��� �������� ������� �� ��� ��

��������� �� ���� ��� ������� ������� ��� ����������� ������� ����*)

���� = �������[����� ����[��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� �����

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������ �]�

{

(*********���� �� ����� �� ��� ��� �������� ������� ��� �������***********)

{��� -�}�

{��� �}�

{��� �}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{��� ���}�

{���� ���}�

{���� �}�

{���� ��}�

{���� ��}�

{���� ���}�

{���� ���}�

{���� ���}�

{���� ���}�

{���� ���}�

{���� ���}�

{���� ���}�

{����� ���}�

{����� �}�

{����� �}�

{����� �}�

{����� ��}�

{����� ��}�

{����� ��}�

{����� ��}�

{����� ��}�

{����� ��}�

{����� �}�

{������ �}}�
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�� ������������� → ����]�

�� =

����[����[��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

������ �] /� ����� {�� �� ���[����[[���� �]]]}� ��������� → ���]�

(*��� �� ���� � ���������� �� ��� ���� ��� ��� ��������� ���������� ���*)

����[��� ��� ��������� → ���] // ���������

(*��� �� ������� ��� ������� ������ ���� ��� ��������� ��������� �������

������� � ��� ���� ���� ��������*)

������ = ����

������[[� �� �������� �]] =

����[��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

����� ����� ����� ����� ������ ������[[� �� �������� �]]] /� �����

������� �������� �

��� ���� ���� �� ��� ������ ��� ������ ���� ���� ��� ��������� ���������� �� ��� ������������� ������ � ���

��� �������� �� ������ ���� ��� ��������� �������� �� ��� ������������ ������ � �����

�� � ����������� ���� ��� ������ ��� ������� �� � ����� ���� �� ��� � ����� ������� � 

��������
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�������� (*����������/����� ����������*)

�����[��]

����� = �������

(*���� �� � ���������� ������� �������� ���� ����� �� ���� ���� �� ��� ����� ������

���� ��� ��������� �� �������� �� �������� ��� ����� �� ��� ���������� ������*)

�����[��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ��_� ν_� ϕ_� ��_� ��_� �_] =

�� + �� * � + �� * ��� + �� * ��� + �� * ��� + �� * ��� +

�� + �� * � + �� * �� + � * �� + � * �� + � * �� + � * �� * ���[-� / ��] * �� * ���[� �� * ν * � + ϕ] +

� * ���[� �� * ��� * � + ϕ]�

����� = �������[������ �����[��� ��� ��� ��� ��� ��� ��� ��� ��� ν� ϕ� ��� ��� �]�

{{��� �}� {��� �}� {��� �}� {��� �}� {��� �}� {��� �}� {��� �}� {��� �}�

{��� �}� {ν� ��}� {ϕ� �}� {��� �}� {��� �}}� �� ������������� → ��]

�� = ��������[������ ������ → ����� ��������� → ���� ����� → �����

���������� → {����� (�)�� ������� (�)�}� ���� → �����]�

�� = ����[�����[��� ��� ��� ��� ��� ��� ��� ��� ��� ν� ϕ� ��� ��� �] /� ������

{�� ����� ������[�����] / �����}� ��������� → ��������[�� �� �]� ��������� → ���]�

����[��� ��] // ���������

(*�� ��� ������� ��� ����������/����� �����������

��������� � ��� ���� ��� ������ ��������*)

������ = �������

������[[���� �]] = ������[[���� �]] -

�����[��� ��� ��� ��� ��� ��� ��� ��� ��� ν� ϕ� ��� ��� ������[[���� �]]] /� ������

������������[������[[� �� ������[������]]]� ��������� → ���] // ���������

������� = �������

������� ������� � ������ �� �������� �� ��� ��������� �������� �� ��������� ������ ��� ����������� � 

�������� �� → -��������� �� → -�������� �� → ���������� �� → -������������

�� → ������������� �� → -������� × ��-�� �� → -������������ �� → �������������

�� → ������� × ��-�� ν → ��������� ϕ → �������� �� → -�������� �� → -��������

��������
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��������

�������� (* ����������� ����������� *)

(*����-���������� �� �������� �� ����������� �� �

�������� ������������ ��� �� ������ �� ������� ��� ����� �� ����*)

�� = ����

�������[[���� �]] = ������[[���� �]] * ���[-������[[���� �]] * ��]�

������������[�������� ��������� → ���] // ���������

��������

��������

(* ����-������� *)

����� = �����[{������[�������] / ����� + � * � / ������ �}� {�� �� ������[������] * �}]�

������ = ����[�������� �����]�
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�������� (* ������� ��������� *)

������ = ����

������ = (� / �����) * ���

(*���� ������ �� ������� �� ��� ������� ����������� ��� ������������*)

��������� = ��

���������� = ����

(*������� ����� ��� �� �������� �� ������� ����*)

�� = -����

�� = �������[������[[���� �]]� ������[[�� �]] - ������[[�� �]]]�

����� = ���������[��� {���������� ����������}]�

��[����� [[�� �]] =

�����[[�� �]] * ���[� ��] * ������[�����[[�� �]]] * ���[� � * �� * ������ �����[[�� �]]] *

���[� * �����[�����[[�� �]]]] * ������� {�� �� ������[�����]}]�

����������[��������� ������ → ����� ��������� → ���� ����� → ����� ���� → ������

���������� → {���������� (��)�� ������� (��)�}� ��������� → ������]�

(*��� ���� ��������� ���� �� ������� �� �������� ��������� ��� ��������

����� ������� ��� ���� ��������� �� ����� ��� ������ �������������*)

��� = ��������[��[�����]� ��������� → ��������[�� �� �]�

��������� → ������� ����������� → ��� ��������� → ���] // ���������

��� = ��������[���������[{�����[[���� �]]� ��[�����[[���� �]]]}]�

��������� → ��������[�� ��� �]� ��������� → ������� ����������� → ���� ��������� → ���]�

��� = ��������[���[�����]� ��������� → ��������[�� �� �]�

��������� → ������� ����������� → ���� ��������� → ���]�

��������

��������������������������������

�������� (*�� ����� �� �������������� ��� ���� ��������

(�� �� ����� � ������������ ����� ������� �� �����)*)
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�� = -����

�� = �������[������[[���� �]]� ������[[�� �]] - ������[[�� �]]]�

����� = ���������[��� {�� ���}]�

��[����� [[�� �]] =

�����[[�� �]] * ���[� ��] * ������[�����[[�� �]]] * ���[� � * �� * ������ �����[[�� �]]] *

���[� * �����[�����[[�� �]]]] * ������ + ����� {�� �� ������[�����]}]�

(*��� ������� ������ �� ������� �� �� ������� ��������� ��� ����������*)

������� = ����

�������� = ����

���� = ���������[������ {�������� ��������}]�

(*�� ��� �� � ��� �� ��� ������� ������������ �� ��� ��� �������� ����������*)

��������[���_� �_� ν�_� �ν_� ϕ_� ��_� ���_� �ν�_� ϕ�_] �=

���[���[���[[�� �]] - ����������[�� ν�� �ν� ϕ� ���[[�� �]]] -

����������[��� ���� �ν�� ϕ�� ���[[�� �]]] - ������]��� {�� �� ������[���]}]

(*�� ������� �� ����� ��� ��� ������ �� ������ -

������� ��������� �� �������� ���������� �� ����� ��������� ����! *)

��� = �����

���� = �����������[��������[���� �� ν�� �ν� ϕ� ��� ���� �ν�� ϕ�]�

{

(******* ���� �� ������ ��� �������� ������� ��� ��� ������� �������� *********)

{�� �}� {ν�� ������}� {�ν� ���}� {ϕ� �}�

{��� �}� {���� �����}� {�ν�� ��}� {ϕ�� ���}}�

������������� → ���][[�]]�

(*��� �� ���� ��� ���� ����� ���� ��� ���� ��� ����������*)

����������[��������� ������ → ����� ��������� → ���� ����� → �����

���� → ������ ���������� → {���������� (��)�� ������� (��)�}� ��������� → ���]�

��� = ��������[��[���]� ��������� → ��������[�� �� �]]�

��� =

��������[���������[{���[[���� �]]� ��[���[[���� �]]]}]� ��������� → ��������[�� �� �]]�

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ���� �ν�� ϕ�� ν] + ������ /� ����]�

{ν� ���[���[[���� �]]]� ���[���[[���� �]]]}�

��������� → ���� ��������� → ��������[�� �� �]]�

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ���� �ν�� ϕ�� ν] + ������ /� ����]�

{ν� ���[���[[���� �]]]� ���[���[[���� �]]]}�

��������� → ���� ��������� → ��������[�� �� �]]�

������������[{{����[���� ���]� ����[���� ���]}}] // ���������


���=� � {} �ν�=� ν� �Δν�=� �ν {} �ϕ�=� ϕ

���=� �� {} �ν�=� ��� �Δν�=� �ν� {} �ϕ�=� ϕ�
 /� ���� // ���������

B.1. DATA PROCESSING CODE (MATHEMATICA) 189



����������� �������� �

��� ���� ���� �� ��� ������ ��� ������ ���� ���� ��� ��������� ���������� �� ��� ������������� ������ �

��� ��� �������� �� ������ ���� ��� ��������� �������� �� ��� ������������ ������ � �����

�� � ����������� ���� ��� ������ ��� ������� �� � ����� ���� �� ��� � ����� ������� � 

���������

��������������������

��= -������ ν�= ������� Δν�= ��������� ϕ�= -�������

��= ������� ν�= ������� Δν�= �������� ϕ�= ������

��������������������������������

��������� (*�� ����� �� �������������� ��� ���� ��������

(�� �� ����� � ������������ ����� ������� �� �����)*)

�� = -����

�� = �������[������[[���� �]]� ������[[�� �]] - ������[[�� �]]]�

����� = ���������[��� {�� ���}]�

��[����� [[�� �]] =

�����[[�� �]] * ���[� ��] * ������[�����[[�� �]]] * ���[� � * �� * ������ �����[[�� �]]] *

���[� * �����[�����[[�� �]]]] * ������ + ����� {�� �� ������[�����]}]�

(*��� ������� ������ �� ������� �� �� ������� ��������� ��� ����������*)

������� = ����

�������� = ����

���� = ���������[������ {�������� ��������}]�

(*�� ��� �� � ��� �� ����� ������� ������������ �� ��� ��� �������� ����������*)

��������[���_� �_� ν�_� �ν_� ϕ_� ��_� ���_� �ν�_� ϕ�_� ��_� ���_� �ν�_� ϕ�_] �=

���[���[���[[�� �]] -

����������[�� ν�� �ν� ϕ� ���[[�� �]]] - ����������[��� ���� �ν�� ϕ�� ���[[�� �]]] -

����������[��� ���� �ν�� ϕ�� ���[[�� �]]] - ������]��� {�� �� ������[���]}]

(*�� ������� �� ����� ��� ��� ������ �� ������ -

������� ��������� �� �������� ���������� �� ����� ��������� ����! *)

��� = �����

���� = �����������[��������[���� �� ν�� �ν� ϕ� ��� ���� �ν�� ϕ�� ��� ���� �ν�� ϕ�]�
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{

(******* ���� �� ������ ��� �������� ������� ��� ��� ������� �������� *********)

{�� �}� {ν�� ������}� {�ν� ���}� {ϕ� �}�

{��� �}� {���� ������}� {�ν�� ��}� {ϕ�� ���}�

{��� �}� {���� �����}� {�ν�� ���}� {ϕ�� ���}}�

������������� → ���][[�]]�

(*��� �� ���� ��� ���� ����� ���� ��� ���� ��� ����������*)

����������[��������� ������ → ����� ��������� → ���� ����� → �����

���� → ������ ���������� → {���������� (��)�� ������� (��)�}� ��������� → ���]�

��� = ��������[��[���]� ��������� → ��������[�� �� �]]�

��� =

��������[���������[{���[[���� �]]� ��[���[[���� �]]]}]� ��������� → ��������[�� �� �]]�

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ���� �ν�� ϕ�� ν] +

����������[��� ���� �ν�� ϕ�� ν] + ������ /� ����]�

{ν� ���[���[[���� �]]]� ���[���[[���� �]]]}� ��������� → ����

��������� → ��������[�� �� �]]�

��� = ����[��[����������[�� ν�� �ν� ϕ� ν] + ����������[��� ���� �ν�� ϕ�� ν] +

����������[��� ���� �ν�� ϕ�� ν] + ������ /� ����]�

{ν� ���[���[[���� �]]]� ���[���[[���� �]]]}� ��������� → ����

��������� → ��������[�� �� �]]�

������������[{{����[���� ���]� ����[���� ���]}}] // ���������

���=� � {} �ν�=� ν� �Δν�=� �ν {} �ϕ�=� ϕ

���=� �� {} �ν�=� ��� �Δν�=� �ν� {} �ϕ�=� ϕ�

���=� �� {} �ν�=� ��� �Δν�=� �ν� {} �ϕ�=� ϕ�

/� ���� // ���������

����������� ������� � ������ �� �������� �� ��� ��������� �������� �� ��������� ������ ���� ����������� � 

���������

��������������������

��= ������� ν�= ������� Δν�= �������� ϕ�= -�������

��= -�������� ν�= ������� Δν�= -������� ϕ�= �������

��= ������� ν�= ������� Δν�= �������� ϕ�= ��������
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B.2 Simulation Code (Mathematica)
Micah Ledbetter was the author of an early version of this notebook, as well.



������������������������������

�����������������

������� (* ������ �� ����� �� ����������� *)

���� = ��� × ��-��
(* �� � *)�

�� = � / ��  ��� × ��-��
�

γ� = � �� * �������

γ� = � �� * �������

������ = ��

������� (* �������� ��� ������������

��������� ��

���� �� ����� ���� ��� ����

�� �������� ��(�����)�� ���� ���� ����������� �� ������������� � ������ ������

���� ��� �=����� �������

*)

���� = �����[�� {�� �� ������}� {�� �� ������}]�

���� �= ������ * � * ��

���� �= ���� * � * ��

���� �= ���� * � * ��

���� �= ���� * � * ��

��� �= ����� * � ��

��� �= ����� * � * ��

��� �= ����� * � * ��

��� �= ����� * � * ��

��� �= ����� * � * ��

��� �= ����� * � * ��

��� �= -����� * � * ��

��� �= ����� * � * ��

��� �= -����� * � * ��

����[[�� �]] = �����

����[[�� �]] = �����

����[[�� �]] = �����

����[[�� �]] = �����

����[[�� �]] = �����

����[[�� �]] = �����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����
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����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

����[[�� �]] = ����

���� // ����������

(* ��� �� �-�������� ��� ����� �������� *)

����� �= {γ�� γ�� γ�� γ�� γ�� γ�� γ�}

(���� �= ����)

γ� = γ��

γ� = γ��

��������������������

� ������� ������� ������ ������� ������� �������

� � ������� ������� ������� ������� -��������

� � � ������� ������� ������� �������

� � � � ������� ������� -��������

� � � � � ������� �������

� � � � � � -��������

� � � � � � �

������������������������������������������������������������������������
���������

�������� ���� = ���������

�������� σ = {� / � {{�� �}� {�� �}}� � / � {{�� -�}� {�� �}}� � / � {{�� �}� {�� -�}}}�

���������� /@ σ

�������� 

�
�

�

�

�
�

�
� -

ⅈ

�

ⅈ

�
�

�

�

�
�

� -
�

�



�������� ����������� �= ������[{���}�

������� = �����[� / �� {�� �� ������}]�

(* ��������� ����� ����� ��� ����� ����� ����� � *)

����� = �����[�������� {�� �� ��(������)}]�

��[��[�����[[� + �� �]] = �����[[� + �� �]] * (-�)�(��������[�� ��(� - �)])�

{�� �� ��(������) - �}]� {�� �� ������}]�

�����]

(* ����� �� ��� ��������� ������ ����� *)

������������

B.2. SIMULATION CODE (MATHEMATICA) 194



�������� (* ����� ������ ������� �� ��� ��� ��������� �� ��� ��� ���� *)

��������������[�_� �_� �_� �_] �= ������[{���}�

����� = �����[���� {���� �� ������}]�

����� = ����[������ {�}]�

�������[

��������������[ �����[[�� �����[[���]]]]� �����[[�� �����[[���]]]] ]�

{���� �� ������[�����]}] σ[[�]][[-� * �����[[�� �]] + � / �� -� * �����[[�� �]] + � / �]]

]

�������� ���������� �= ������[{���}�

���� = �����[{�����[��������������[�� �� �� �]� {�� �� ����}� {�� �� ����}]�

�����[��������������[�� �� �� �]� {�� �� ����}� {�� �� ����}]�

�����[��������������[�� �� �� �]� {�� �� ����}� {�� �� ����}]}� {�� �� ������}]�

����]

�����������

�������� �� �= ���[ ����[[�� �]]

(����[[�� �]]�����[[�� �]] + ����[[�� �]]�����[[�� �]] + ����[[�� �]]�����[[�� �]])�

{�� �� ������}� {�� �� ������}]

�������� �� �= -(�� * ���[�����[[�]] ����[[�� �]]� {�� �� ������}] +

�� * ���[�����[[�]] ����[[�� �]]� {�� �� ������}] +

�� * ���[�����[[�]] ����[[�� �]]� {�� �� ������}])

�������� ������ = ���[�����[[�]] ����[[�� �]]� {�� �� ������}]�

������ = ���[�����[[�]] ����[[�� �]]� {�� �� ������}]�

������ = ���[�����[[�]] ����[[�� �]]� {�� �� ������}]�

�������� �����[�_] �= ���[�����[[�]] ����[[�� �]]� {�� �� ������}]�

�������� ����� �= ���[����[[�� �]]� {�� �� ������}]�

����� �= ���[����[[�� �]]� {�� �� ������}]�

����� �= ���[����[[�� �]]� {�� �� ������}]�

�������� (* � ����� �� ���� ��� = ��/�/(γ�-γ�) *)

(��[���_] �= ���������[� ��� ���[����[[�� �]] * �����[[�]]� {�� �� ������}]]) //

�����������

(��[���_] �= ���������[� ��� ���[����[[�� �]] * �����[[�]]� {�� �� ������}]]) // �����������

(��[���_] �= ���������[� ��� ���[����[[�� �]] * �����[[�]]� {�� �� ������}]]) // �����������

�������� (* �-�������� ���� ��������� �������� *)

(* (�[�_] = ���������[-� (��+��) �])//�����������*)

�������� (* ������� ������� ������ �� ��� �� *)

(*(���� =���������[��(����[[���]]�����[[���]]+����[[���]]�����[[���]]+

����[[���]]�����[[���]])]/��[���������[����[[���]]�����[[���]]+

����[[���]]�����[[���]]+����[[���]]�����[[���]]]])//����������*)

�������� (* ������� ������ �������� �� ��� ����� �� ����������� �� ��� ����������� *)

���[ρ_� �����������_� �_� �_] �= ���������[�����������[[�� �]]]�ρ������������[[�� �]]�
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�������� (* ���� ��������� ������������� ����� ������� ������� ������ ρ ��� ����������� *)

�������������[ρ_� �����������_� �_� �_] �=

���[���[-� (����[�����������[[�� �]] - �����������[[�� �]]]) �]

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]������[�]�

�����������[[�� �]]]� {�� �� ����}� {�� �� ����}] // ��������� // ����

(* ���� ��������� ������������� ����� ������� ������� ������ ρ ��� ����������� *)

�����[ρ_� �����������_� �_] �=

���[���[-� (����[�����������[[�� �]] - �����������[[�� �]]]) �]

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]��������

�����������[[�� �]]]� {�� �� ����}� {�� �� ����}] // ��������� // ����

�����[ρ_� �����������_� �_] �= ���[���[-� (����[�����������[[�� �]] - �����������[[�� �]]])

�] ����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]��������

�����������[[�� �]]]� {�� �� ����}� {�� �� ����}] // ��������� // ����

�����[ρ_� �����������_� �_] �= ���[���[-� (����[�����������[[�� �]] - �����������[[�� �]]])

�] ����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]��������

�����������[[�� �]]]� {�� �� ����}� {�� �� ����}] // ��������� // ����

�������� ������������[ρ_� �����������_� �_� �_� �_] �=

���[���[-� (����[�����������[[�� �]] - �����������[[�� �]]]) �]

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]��������

�����������[[�� �]]]� {�� �� ����}� {�� �� ����}] // ��������� // ����

�������� ��[ω_� ω�_� Γ_] = Γ  (ω - ω�)� + Γ
�
�

��[ω_� ω�_� Γ_] = (ω - ω�)  (ω - ω�)� + Γ
�
�

�������� (* ������� ��������� �� ������������� ����� ������� ������� ������ ρ ��� ����������� *)

����ω[ρ_� �����������_� Γ_� ω_] �=

���[(��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ ] +

� ��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ])

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]�

������������������[[�� �]]]� {�� �� ����}� {�� �� ����}]

����ω[ρ_� �����������_� Γ_� ω_] �= ���[

(��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ ] +

� ��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ])

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]�

������������������[[�� �]]]� {�� �� ����}� {�� �� ����}]

����ω[ρ_� �����������_� Γ_� ω_] �= ���[

(��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ ] +

� ��[ω� (����[�����������[[�� �]] - �����������[[�� �]]])� Γ])

����[���[ρ� ������������ �� �] * ���������[�����������[[�� �]]]�

������������������[[�� �]]]� {�� �� ����}� {�� �� ����}]

�������� (* ����� ������������� *)

�����������[���_] �= �����[���������[���[[�� �]]]����[[�� �]]�

{�� �� ������[���[[�]]]}� {�� �� ������[���[[�]]]}] // ���� // ����������

�������� (* �������� ��� ��������������� ��� ������������ ����� ����-������� *)

��������������[������_� �_� �_] �= ������[{���}�

��� = �������

���[[�� �]] = ���[[�� �]] / ����[���������[���[[�� �]]]����[[�� �]]]�

���[[�� �]] = ���[[�� �]] - (���������[���[[�� �]]]����[[�� �]]) ���[[�� �]]�

���[[�� �]] = ���[[�� �]] / ����[���������[���[[�� �]]]����[[�� �]]]�

���]
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����������������������������������������

�������� �������[����_� ��_] �= ������[{����}�

�� = � / ����[������[����]] �������[����]�

�� = ����[��� -������[����] / �]�

������ = �����[ � / (������[����] * ��) * (� - �)� {�� �� ������[����] / �}]�

�� = ���������[{������� ��}]

]

�������� ���������[����_� ������_] �= ������[{����� ����� ��� ���}�

�� = ����[[�� �]] - ����[[�� �]]�

��� = ����[����� -(������[����] - �����[������[[�]] / ��])]�

����[���� �����[������[[�]] / ��]]]

�������� ��������[����_� ������_] �= ������[{����� ����� ��� ���}�

�� = ����[[�� �]] - ����[[�� �]]�

���� = �����[(������[[�]] - ����[[�� �]]) / ��]�

���� = �����[(������[[�]] - ����[[�� �]]) / ��]�

��� = ����[����� {����� ����}]

]

��������

����������������[ν�_� �_� ϕ_� �ν_� ��_� ��_� ν_] =

�  (ν - ν�) �ν - � �ν�  (ν - ν�)�� + �ν� * ���[� ϕ] + �� + �� * ��

�������� �������������[���_� ν�_� �_� ϕ_� �ν_� ��_� ��_] �=

���[���[���[[�� �]] - ����������������[ν�� �� ϕ� �ν� ��� ��� ���[[�� �]]]]���

{�� �� ������[���]}]

���

�������� (* �������� ����� *)

�� �= �����

�� �= �����

�� �= �����

(* ������������������ *)

���� = �����������[����[�� + ��]]�

��[����[[�� �]] = ����[[�� �]] / ����[����[[�� �]]]� {�� �� ������[����[[�]]]}]

�������� (�[�_] �= ���������[-� (�� + ��) �]) // �����������

����[���_� �_] �= ������[{��}�

�� = �[�]�

��������������[��]]
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��������

(* ��� ������� ������������ *)

(* ������� ������� ������ �� ����-���� ������������ *)

(* ����� � ����� ���� ������� �� �� �� �� � ��������� *)

�� = ������

���� = �� ����� / ���

�����[����]�

���� = �����[γ� �� / ��� {�� �� ������}]�

� = ���[����[[�]] * ����[[�� �]]� {�� �� ������}]�

(���� = ���������[�] / ��[���������[�]]) // �����������

(* ������� ������ ����� �������� ����� ��������� ����� ����� � *)

��� = � �� / (γ�)�

(���� = ��[���]�������������[��[���]]) // �����������

��������� �����[��]

��������� (* �������� ���������� *)

��[�_] = �����[����� ����� �]�

��������� (* ���������� �� ����� *)

���������� = � * ������ / ������ * ���� * ���� (* ��������� ��� �� *)

������� = ���� × ��-���

��������� ������� × ����

��������� �� = ������

�� = ��

��� = ���

�� = � × �� ���

������ =

����[�����[��[�] ���[-� / ��]� {�� ��� ��� - ��� ��}]] ���������� ������� ��-�
* �����

����� = �����[�� {�� ��� ��� - ��� ��}]�

��������� ������[�����]

��������� �����

��������� ������[������]

��������� �����

��������� ������[[�]]

��������� �������

��������� ���� = �������[���������[{������ ����[������]}]� � * ���[-� / ��]� {{�� -�}}� �]�

������ = ������ - � * ���[-����� / ��] /� �����

������������[���������[{������ ������}]�

��������� → ���� ���������� → {����� (�)�� ������� (μ�)�}]�
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��������� ��� = ����[������� ���]�

������������[���� ��������� → ���] // ���������

���������

��������� ����� = �������[���� ��]�

����� = ���������[������ {������� ������}]�

����������[������������� ���� → ������

����� → ����� ��������� → ���� ����������� → ���� ��������� → ��]�

������ = ������������[��[�����]� ��������� → ��������[�� �� �]�

��������� → ���� ���������� → {���������� (��)�� ��� �� (��)�}] // ���������

���������
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��������� �������� = �������[���� ��]�

�������� = ���������[��������� {�� ��}]�

����������[������������� ���� → ������

����� → ����� ��������� → ���� ����������� → ���� ��������� → ��]�

��������� = ������������[��[��������]� ��������� → ��������[�� �� �]�

��������� → ���� ���������� → {���������� (��)�� ��� �� (��)�}] // ���������

���������

��������� ��������� = �������[���� ��]�

��������� = ���������[���������� {�� ���}]�

����������[������������� ���� → ������

����� → ����� ��������� → ���� ����������� → ���� ��������� → ��]�

���������� = ������������[��[���������]� ��������� → ��������[�� �� �]�

��������� → ���� ���������� → {���������� (��)�� ��� �� (��)�}] // ���������

���������
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����[{������� ������}]

���������
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