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Abstract

This study examines the effects of representational
forms on the acquisition and transfer of problem
solving strategies. Three isomorphic representations
of the Tic-Tac-Toe are used as the experimental tasks.
The experiment shows that different representations of
a common structure lead to the discovery of different
forms of a common strategy with varying degrees of
generality. With a better representation, subjects not
only learn faster but also acquire more general forms
of the strategy. The transfer across different
representations can be either positive or negative, and
it is based on strategies, not on problem structures.

Introduction

Different isomorphic representations of a common
abstract structure can generate dramatically different
representational efficiencies, task complexities, and
behavioral outcomes. This phenomenon is often
called representational effect (e.g., Zhang & Norman,
1994). One obvious example is the different
difficulty levels of multi-digit multiplication using
Arabic and Roman numerals (see Zhang & Norman,
1995, for a detailed study). The study of the
representational effect has been focused on
performance and transfer, not on acquisition and the
relation between acquisition and transfer (e.g., Cheng
& Holyoak, 1985; Evans, 1983; Gick & Holyoak,
1980, 1983; Greeno, 1974; Griggs & Hewstead,
1982; Jeffries, Polson, & Razran, 1977; Kotovsky,
Hayes, & Simon, 1985; Kotovsky & Simon, 1990;
Larkin & Simon, 1987; Novick, 1990; Wason &
Johnson-Laird, 1972; Zhang & Norman, 1994).

The purpose of the present study is to examine
how representational forms affect the acquisition of
problem solving strategies and how the acquired
strategies affect transfer. The main hypotheses are (1)

different representations of a common structure lead to
the discovery of different forms of a common strategy,
with a better representation leading to faster learning and
to the discover of more general forms of the strategy; and
(2) the acquired strategy can cause both positive and
negative transfer, depending on the two isomorphs
involved.

Tic-Tac-Toe

The Tic-Tac-Toe (henceforth, TTT) and its isomorphs are
used for the present study. The TTT is a well-known two-
player game. A minor variation of the original game is
shown in Figure 1A as the Line version. The task for the
two players is to select the circles in turn by coloring the
circles with different colors, one at a time. The one who
first gets three circles on a straight line (horizontal,
vertical, or diagonal) wins the game. The TTT is a draw
game, i.e.,, when both players use optimum strategies,
neither can win. Figures 1B and 1C are two more
isomorphs of the TTT. In the Number version (Figure
1B), the task is to select the numbers in turn by coloring
the numbers, one at a time. The one who first gets three
numbers that exactly add to 15 wins the game. In the
Color version (Figure 1C), the task is to select the big
circles in turn by drawing different background textures.
The one who first gets three big circles that contain the
same colored small circle wins the game. Figure 2 shows
the equivalence of the isomorphs: the center, corners, and
sides in Line (Figure 2A) correspond to the number five,
even numbers, and odd numbers in Number (Figure 2B)
and the 4-object, 3-object, and 2-object big circles in
Color (Figure 2C), respectively.

The representational properties of the TTT were
analyzed by Zhang (1997) in terms of four formal
properties and their representations. The four formal
properties are: (1) nine elements; (2) eight winning
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triplets, each of which is a group of three elements
that constitute a win; (3) three symmetry categories
that group the nine elements, with the elements in a
symmetry category being identical to each other; (4)
winning invariants of symmetry categories, each of
which is the number of winning triplets to which an
element belongs. For example, for Line in Figure 1A,
the nine elements are the nine circles. The eight win-
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ning triplets are the 3-circle groups that lie on the 3
horizontal, 3 vertical, and 2 diagonal lines. The three
symmetry categories are the center, 4 corners, and 4 sides.
The winning invariants of the center, comners, and sides
are 4, 3, and 2, respectively. For example, the center is an
element of 4 winning triplets: 1 horizontal, 1 vertical, and

2 diagonal lines.
l . @

Oe® @®®

(A) Line

(B) Number

(C) Color

Figure 1. Three TTT isomorphs. (A) Line. Getting three circles on a straight line is a win, (B) Number. Getting three
numbers that exactly add to 15 is a win. (C) Color. Getting three big circles that contain the same colored small circle is a
win. The letters inside the circles indicate the colors used in the experiment: B = Blue, G = Green, L = Light Blue, O =

Orange, P = Pink, R = Red, Y = Yellow, W = Brown.
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(A) Line (B) Number (C) Color

Figure 2. The mappings of the TTT isomorphs. The center, comners, and sides in Line correspond to five, even numbers,
and odd numbers in Number, and 4-object, 3-object, and 2-object big circles in Color, respectively.

The formal properties of the TTT are represented
differently in the three TTT isomorphs. The nine
elements are represented by nine circles in Line, by
nine numbers in Number, and by nine big circles with
2, 3, and 4 small circles in Color. The eight winning
triplets are represented by the 3 horizontal, 3 vertical,
and 2 diagonal straight lines in Line, by the eight
number triplets with the sum of the three numbers in
each triplet equal to 15 in Number, and by the eight
different colors of the small circles in Color. The
three symmetry categories are represented by spatial
symmetry in Line (the center, 4 corners, and 4 sides),

by parity in Number (the number five, 4 even numbers,
and 4 odd numbers), and by the quantity of objects in a
big circle in Color (4-object, 3-object, and 2-object big
circles). The winning invariant of a symmetry category
is represented by the number of straight lines connecting
a circle in Line (4, 3, and 2 for the center, the corners, and
the sides, respectively) and by the quantity of objects in a
big circle in Color (4, 3, and 2). In Number, however, the
winning invariants (4 for the number five, 3 for even
numbers, and 2 for odd numbers) are not directly
represented. To get the winning invariant of a number, it
must be grouped with all possible pairs of other numbers
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to form number triplets and the sums of the three
numbers in all number triplets have to be mentally
computed to see whether each sum is 15. Even with
extensive mental computations, this task is very
difficult if not impossible.

Because all TTT isomorphs have the same
formal structures, for convenience, we use the three
symmetry categories of Number, i.e., five, even
numbers, and odd numbers, to refer to the three
symmetry categories of all TTT isomorphs for the
rest of this article. For example, when we talk about
even numbers in Color, we actually refer to the 3-
object big circles (see Figure 2).

In the current study, the task for the subjects is to
discover the Even-Even strategy, which requires them
to select any even numbers for the first and second
moves to get draws (for the detailed algorithm, see
the appendix of Zhang, 1997). The Even-Even
strategy is necessary and sufficient for subjects to get
draws. The first and the second moves are crucial: if
either or both are made incorrectly, then subjects
always lose, regardless of how other moves are made.
Under this strategy, subjects only have to make
decisions for the first and second moves because for
all other situations, the subjects only have one
choice—blocking the piece that can lead to an
immediate win for the computer. In addition,
subjects' first and second moves only depend on the
symmetry categories (i.e., five, even numbers, and
odd numbers), not on specific elements.

Zhang (1997) found that for the Even-Even
strategy, the difficulty order was, from hardest to
easiest: Number > Color > Line. Two factors
contributed to this difficulty order. The first factor is
the perception of the symmetry categories. Subjects
had better perception of the symmetry categories for
Line than for Color, and had no perception of the
symmetry categories for Number. The second factor
is biases. For Line and Color, subjects had a
perceptual bias called more-is-better bias, which is
the tendency to pick an element that has higher
winning invariant (e.g., the center for Line and the 4-
object big circle for Color). This perceptual bias was
consistent with the Even-Even strategy, thus it helped
make Line and Color easier. For Number, instead of
the more-is-better bias, subjects had a cognitive bias
called larger-is-better bias, which is the tendency to
pick up a larger number (e.g., 9 or 8). This cognitive
bias is irrelevant to the Even-Even strategy, thus it
did not help make Number easier. Based on this
finding of the difficulty order of the three isomorphs,
Line can be called the most effective representation
and Number the least effective representation for the
Even-Even strategy.

The experiment described below will examine
whether the different representations of the three TTT
isomorphs lead to the discovery of different forms of the
Even-Even strategy and whether the acquired strategies
affect transfer across isomorphs. The main hypotheses are
(1) the three isomorphs lead to the discovery of different
forms of the Even-Even strategy, with the most effective
representation (Line) leading to the fastest learning and to
the discover of the most general form of the Even-Even
strategy; and (2) the different forms of the acquired
strategy can cause both positive and negative transfer,
depending on the two isomorphs involved.

Experiment

Method

Subjects. 90 undergraduate students enrolled in
introductory psychology courses at The Ohio State
University participated in the experiment to earn course
credit.

Stimuli. The three TTT isomorphs in Figure 1 were
the experimental tasks. They were programmed in
SuperCard on Macintosh computers. The three TTT
isomorphs were controlled by the same program because
they have the same formal structure. The computer
always made the first move in all games. Its strategy was
designed such that the subjects had to discover the Even-
Even strategy to get draws. Subjects made moves by
clicking the pieces with a mouse. The pieces selected by
the computer and subjects were in different colors or
background patterns such that they could be distin-
guished.

Design & Procedure. The design is shown in Figure
3. Each subject played two of the three TTT isomorphs.
Subjects were told that the best they could get was a draw
and were instructed to play the games against the
computer until they got 10 draws in a row. They were not
told about any relations between the first and second
games. Complete move sequences and time stamps for all
games were recorded by the computer. After each game,
subjects were asked to write down the strategies they
discovered.

l First Game ] | Second Game J
15 subjects (Color)
M <: 15 subjects (Number)

15 subjects (Line)
90 subjects 30 subjects (Color) <

15 subjects (Number)

15 subjects (Line)
30 subjects (Numiber) <: )
15 subjects (Color)

Figure 3. The design of the experiment.
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Results

Pre-Transfer Performance. The results for first
games are shown in Figure 4, with 30 subjects for
each isomorph. In terms of the number of games
needed to get 10 draws in a row (Figure 4A), Line
was marginally easier than Color (Tukey HSD, p =
0.08), which in turn was significantly easier than
Number (Tukey HSD, p < 0.01). In terms of the
number of games needed to get the first draw (Figure
4B), Line and Color, which did not differ from each
other significantly (Tukey HSD, p = 0.38), were both
significantly easier than Number (Tukey HSD, p <
0.001, for both cases).

Figure 4C shows the percentage of the subjects
who got draws for each game position for the three
isomorphs. Consistent with the results on 10 draws
and first draw, it is clear that subjects acquired the
Even-Even strategy fastest for Line and slowest for
Number.

One critical finding of this experiment is shown
in Figure 4D. We say a subject discovered or
acquired the Even-Even strategy if the subject could
get 10 draws in a row. However, the Even-Even
strategy acquired by subjects can be in different
forms. Remember that the Even-Even strategy
requires that the first and second moves be any even
numbers. If a subject could not perceive the
symmetry categories, they might use a fixed move
sequence for all ten draws in a row. This is the Fixed
form of the Even-Even strategy. For example, a
subject might always select 2 as the first move and
always select 4 as the second move for all draw
games, even if any even numbers would be equally
correct. If the ten continuous draw games of a subject
all had the same move sequence and the subject did
not indicate any knowledge of the symmetry in the
written report, then the Even-Even strategy acquired
by this subject is classified as Fixed. All other forms
are considered as Non-Fixed. Figure 4D shows that
more subjects acquired the Fixed form of the Even-
Even strategy in Number than in Color and in Line
(x* = 25.5, p < 0.001; x* = 15.6, p < 0.001), which
did not differ from each other significantly (y* = 1.8,
p=0.12).

Transfer Effect.  The transfer data were
analyzed for the six 15-subject groups corresponding
to the six combinations of first and second games. In
terms of the number of games needed to get 10 draws
in a row (Figure 5A), there were a significant positive
transfer from Number to Color (1(28) = -2.34, p <
0.05) and a significant negative transfer from Color
to Line (t(28) = -3.02, p < 0.005). Other transfers
were not significant (largest [t(28)] = 1.77 with

smallest p = 0.09). In terms of the number of games to
first draw (Figure 5B), none of the transfers were
significant (largest [t(28)| = 1.17 with smallest p = 0.25).

It appeared that the positive transfer from Number to
Color and the negative transfer from Color to Line were
due to the transfer of the different forms of the Even-
Even strategy. Figure 5C shows that the percentage of
subjects who acquired the Fixed form of the Even-Even
strategy for the three isomorphs when they were played as
the first game and when they were played as the second
game. Although not significant (x> = 1.20, p = 0.20),
slightly more subjects used the Fixed form of the Even-
Even strategy when Color was played after Number than
when Color was played before Number (60% vs. 40%).
After acquiring the Fixed form of the Even-Even strategy,
it seems that subjects tended to use a fixed move
sequence to get 10 draws in a row when they played
Color because they simply wanted to get 10 draws in a
row as soon as possible to satisfy the goal of the task.
Therefore, subjects needed fewer games to get 10 draws
in a row when Color was played after Number than when
Color was played before Number.

The negative transfer from Color to Line can be
explained in a similar manner. After solving Color, the
Even-Even strategy was acquired as a Non-Fixed form by
53% of the subjects. When Line was played after Color,
the Non-Fixed form acquired from Color tended to make
subjects use Non-Fixed form in Line, causing them to
play more games before getting 10 draws in a row.
Therefore, slightly more subjects used the Fixed form of
the Even-Even strategy when Line was played before
Color than when Line was played after Color (40% vs.
20%, ¥*=1.42, p=0.16).

The Pattern of Subjects’ Moves. Figures 6A-6C
show the averaged frequencies of even and odd numbers
selected by the subjects as the first moves in the initial 10
games for the six transfer pairs. The rightmost column in
each graph shows the expected frequencies for random
moves with replacement. No transfer effect was observed
for the selection of the first moves (largest t(28) = 1.43
with smallest p = 0.16).

Figures 6D-6F show the distributions of subjects
selecting even and odd numbers as their second moves for
the first game in which an even number was selected as
the first move. Chi-Square tests showed that there was no
significant change of the selection of even numbers for

any of the transfer pairs (largest xz =2.40 with smallest p
=0.12).

Therefore, the positive transfer from Number to
Color and the negative transfer from Color to Line were
not due to the transfer of problem structures that are
reflected by the selection of moves.
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Figure 4. Pre-transfer results. (A) The number of games needed to get 10 draws in a row (excluding the 10 draws). (B)
The number of games needed to get the first draw (including the first draw). (C) Percentage of subjects who got draws for
each game position. (D) Percentage of subjects who used the Fixed form of the Even-Even strategy.
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Figure 5. Transfer results. (A) The number of games needed to get 10 draws in a row (excluding the 10 draws). (B) The
number of games needed to get the first draw (including the first draw). (C) Percentage of subjects who used the Fixed form
of the Even-Even strategy. C = Color, L = Line, N = Number. The subscripts indicate the preceding or succeeding games.
For example, L is for Line that was played before Color and cL is for Line what was played after Color.
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Figure 6. Move patterns. (A)-(C) The average frequencies of even and odd numbers selected by each subject as first moves
for the initial 10 games for the Line-Color, Number-Color, and Line-Number transfer pairs. (D)-(F) Frequency distributions
of subjects who selected even and odd numbers as their second moves in the first game in which five was selected as the
first move for the Line and Color, Number and Color, and Line and Number pairs.
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Conclusion
The present study examined how the forms of
representations affect what strategies were acquired
and how the acquired strategies were transferred. The
experiment showed the following results.

First, different representations of a common
structure led to the discovery of different forms of a
common strategy with varying degrees of generality.
With a better representation, subjects not only
learned faster but also acquired more general forms
of the strategy.

Second, the transfer across different isomorphic
representations could be either positive or negative.
Although a less effective representation (Number) led
to the acquisition of a less general form of the Even-
Even strategy, this less general form of the strategy
led to a positive transfer to a more effective
representation (Color). In contrast, the more effective
representation (Color) led to the acquisition of a
more general form of the Even-Even strategy.
However, this more general form of the strategy led
to a negative transfer to the most effective
representation (Line).

Third, the positive and negative transfers
mentioned above were not due to the transfer of the
structures of the task. In fact, the structures of the
task, reflected by the patterns of subjects' moves,
were not transferred from one isomorph to another.
This result is consistent with the general finding of
minimal spontaneous transfer across problems with
different surface representations in the studies of
analogical problem solving (e.g., Gick and Holyoak,
1980, 1983; Holyoak & Koh, 1987; Ross, 1984).

In conclusion, the present study is another
demonstration of the ubiquitous representational
effect. The major contribution is the demonstration
that different representations of a common
underlying structure can lead to the discovery of
different properties of the underlying structure in
terms of different forms of strategies, which can not
only determine problem difficulties but also affect
the pattern of knowledge transfer.
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