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Abstract
The next generation of hard disk drive technology for data storage densities beyond 5 Tb/in2

will require single-bit patterning of features with sub-10 nm dimensions by nanoimprint
lithography. To address this challenge master templates are fabricated using pattern
multiplication with atomic layer deposition (ALD). Sub-10 nm lithography requires a solid
understanding of materials and their interactions. In this work we study two important oxide
materials, silicon dioxide and titanium dioxide, as the pattern spacer and look at their interactions
with carbon, chromium and silicon dioxide. We found that thermal titanium dioxide ALD allows
for the conformal deposition of a spacer layer without damaging the carbon mandrel and
eliminates the surface modification due to the reactivity of the metal–organic precursor. Finally,
using self-assembled block copolymer lithography and thermal titanium dioxide spacer
fabrication, we demonstrate pattern doubling with 7.5 nm half-pitch spacer features.

Supplementary material for this article is available online

Keywords: double patterning, bit patterned media, atomic layer deposition, sequential infiltration
synthesis, template fabrication

(Some figures may appear in colour only in the online journal)

Introduction

The future of magnetic data storage beyond perpendicular record-
ing will require replacing the conventional granular magnetic
media with bit patterned media (BPM) [1, 2]. Lithographically
defining the single bit is necessary to maintain the thermal sta-
bility needed for magnetic recording [3]. In order to reach storage
density beyond 5 Tb/in2, BPM demands isolated sub-10 nm
feature sizes over a large area [4].

Current optical lithographies do not have the resolution to
meet the critical dimension requirements [5]. Electron beam
lithography has sub-10 nm resolution [6], but is a serial method
with low-throughput [7]. Cross-nanoimprint lithography (NIL)
[1, 8] on the other hand, allows for stitchless, high volume
production and enables to pattern features at the single digit
nanoscale [9, 10]. As UV curing is preferred over thermal curing
[1, 8], the master template is usually fabricated from quartz
substrates. Herein, we target fabricating master templates on
quartz to meet BPM with an areal density greater than 5 Tb/in2.
This requires sub-10 nm half-pitch features to be patterned with
single nanometer control. For these reasons a solid understanding
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of the deposition process and etch properties of suitable materials
for UV-NIL template fabrication is required in order to maintain
critical dimensions [11–14].

Double patterning methods have been adopted in the
interim [15, 16] to overcome resolution limitations by halving
feature size and pitch [17–19]. Among the different double
patterning techniques, spacer defined double patterning
(SDDP) gains particular attention because it does not suffer
from overlay issues and can achieve high throughputs
[20, 21]. In SDDP (figure 1, progressing from steps (d)–(f)), a
highly conformal spacer layer is deposited onto a sacrificial
mandrel pattern. Next, the spacer is etched back and the
mandrel removed, resulting in a patterned layer with narrow
spacer features. The key element for a successful SDDP
integration is the performance of the spacer technology.
Atomic layer deposition (ALD) is particularly appropriate for
the spacer fabrication [22, 23] because it produces excellent
conformity and uniformity without loading effect across an
entire wafer [21]. ALD allows the formation of ultra-thin
films with angstrom-level resolution by cyclical oxidation of a
metal–organic precursor [24, 25]. Control of the ALD para-
meters is instrumental in defining the feature size and fre-
quency of the double patterned lines.

The ALD deposition step in SDDP must fulfill three main
requirements for achieving single-digit nanometer accuracy.
First, the oxide deposition must not damage the underlying
materials. Second, nucleation and growth on different sur-
faces should promote the formation of either a uniformly
thick film or a thinner film at the bottom of the trenches. An

uneven film with less deposition at the bottom of the trench
would balance the discrepancy in the etching rate between
trench tops and bottoms (tops tend to etch faster than bot-
toms) [26]. Finally, the deposited material should have
enough mechanical integrity to prevent line collapse when the
mandrel is removed.

In this work, we focus on the ALD process used during
SDDP. The ALD layer grows on two different materials:
carbon, which defines the mandrel, and chromium, which
defines the hard mask for future quartz etching (figure 1(e)).
To begin this study we prepared flat substrates of carbon,
chromium as well as silicon dioxide, which is used as a
reference material. Using flat samples is imperative for the
in situ spectroscopic ellipsometry (SE) to study the growth of
the ALD layers. During the ALD of titanium dioxide (TiO2)
and silicon dioxide (SiO2) we look at nucleation and etch
properties to better understand the initial deposition phase.
We show that the plasma processes using tris(dimethylamino)
silane (TDMAS) as the SiO2 precursor interacts with the
carbon. TiO2 worked with both plasma and thermal processes.
However, thermal processes better maintained the integrity of
the underlying carbon and chromium layer.

After defining a viable spacer deposition process with
blanket samples, our patterning approach employs the use of
self-assembled block copolymer lithography [27] in combi-
nation with SDDP [18] to reach the sub-10 nm regime
(figure 1). Patel et al demonstrated the use of multi-patterning
for pitch doubling from a starting lamellae polystyrene-b-poly
(methyl methacrylate) (PS-b-PMMA) [28]. Here we use

Figure 1. Line frequency doubling flow. (a) Initial PS-b-PMMA BCP pattern. (b) Sequential infiltration synthesis (SIS) of AlxOy using atomic
layer deposition and polymer removal treatment to release lithographic nanostructures. (c) Pattern transfer to SiO2 hardmask and sacrificial
carbon layer etching. (d) Carbon line trimming and SiO2 hard mask stripping. (e) Conformal titanium dioxide spacer deposition using ALD.
(f) Spacer etch back and strip of sacrificial carbon between spacers.
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PS-b-PMMA with 30 nm starting pitch. From previous
research, we demonstrated nanoscale etching of relevant
materials for imprint template fabrication at sub-10 nm
dimensions [29–33]. We build on this experience to identify a
material stack with coordinated selectivities for high resolu-
tion pattern transfer in the SDDP process. By using the results
of the ALD study, we ultimately show the fabrication of ALD
generated TiO2 features on chromium with 7.5 nm width.

Materials and methods

For this work, two types of substrates were used: (1) flat
substrates for ellipsometric analysis and (2) patterned struc-
tures for sub-10 nm features fabrication.

Flat substrates fabrication (1)

SiO2 and TiO2 were grown in a plasma-enhanced ALD
reactor (Oxford Instruments FlexAL) on three types of flat
substrates; thermal silicon dioxide (SiO2), e-beam evaporated
chromium (Cr) and sputtered carbon (spC). Carbon and
chromium coated wafers were used to represent the carbon
mandrel and chromium underlayer respectively, while SiO2

was used as a reference material. Temperatures of 200 °C and
300 °C were used because these higher temperatures promote
mechanical strength and reduce collapse after removing the
mandrel [19, 34].

Nucleation and growth during ALD were studied in situ
using SE (J A Woollam Co., Inc., M2000) fitted on the
Oxford FlexAL ALD reactor. Under many conditions, SE can
detect thickness changes in the submonolayer range [35].
Substrates were measured before ALD deposition to facilitate
the optical modeling of the material film during growth. The
optical constant of the ALD material was determined after
200 cycles and then used for modeling the film thickness.

Spacer defined pattern doubling for sub-10 nm features (2)

The process we considered for BPM master template fabri-
cation is shown in figure 1. The process in total involves 6 dry
etching steps, 1 wet etching step, and 2 deposition steps. All
the steps involved in the SDDP have been properly developed
in order to have stable and reproducible results and minimize
time-to-time variations. Samples of 1×1 in2 were used
during the optimization of the processes. Over these samples,
the features were completely uniform.

Material stack. The material stack (provided by Seagate
Technology LLC) is comprised of a 6″ prime grade silicon
wafer substrate with 300 nm thermal SiO2, 5 nm e-beam
evaporated chromium, 20 nm sputtered carbon and a 7 nm
SiO2 layer. The unguided block copolymer film of PS-b-
PMMA block copolymer had a full pitch of 30 nm.

Figure 1(a)→ figure1(b): sequential infiltration synthesis
(SIS). In order to enhance the selectivity between the pattern
formed by BCP and the underlying SiO2, aluminum oxide was

selectively synthesized in the PMMA domain by exposing the
PS-b-PMMA film to TMA and water vapors [25, 36–40]. The
infiltration was performed using an Ultratech/Cambridge Nano-
Tech Savannah (S100) ALD system. The process temperature of
85 °C, is below the glass transition temperature of PS-b-PMMA
BCP [41]. The precursors exposure was carried out at a pressure
of 250 mTorr with a dosing time of 300 s. A study on TMA/
water precursors exposure dependence on pressure and time is
included in the supporting information, which is available online
at stacks.iop.org/NANO/29/405302/mmedia.

Polymer removal. After selectively hardening the PMMA
domain over PS, the BCP film was stripped by oxygen plasma
in an Oxford Instruments 80+ reactive ion etcher (RIE) at
110 V DC bias and 20 °C to remove the remaining polymer
and form infiltrated AlxOy lines (figure 1(b)).

(b)→(c): pattern transfer to SiO2. A 7 nm SiO2 layer is used
under the BCP to promote a specific surface chemistry for
graphoepitaxy [27]. The AlxOy lines are transferred to this
SiO2 layer using fluorine-based plasma. The etching was
carried out in a multiple frequencies parallel plate tool
(Oxford Instruments) with 60MHz on the top plate and
13.56MHz on the bottom plate. The chamber was filled with
80 sccm SF6 at 20% O2 and kept at 5 mTorr. We applied
150W of radio frequency power and 400W VHF forward
power for 6 s. The resulting SiO2 lines were used as a hard
mask for etching the 20 nm sputtered carbon layer.

Carbon etch and trim. The Carbon was etched in an oxygen
plasma at cryogenic temperature (−100 °C) in an Oxford
Instruments PlasmaLab 100 (Cobra) inductively coupled
plasma (ICP) system. The forward power was 20W and
ICP power was 1000W. The flow rate of O2 was 20 sccm,
and chamber pressure was set to 6 mTorr (figure 1(c)). The
width of the lines was controlled by the etching time. A 90 s
etch time left a 15 nm line. Increasing the etching time to
270 s reduced the mandrel width to 8 nm.

(c)→(d): hard mask stripping. SiO2 and AlxOy were removed
by hydrofluoric acid dip (40% dilution) leaving carbon lines at
30 nm pitch and 8 nm width (figure 1(d)).

(d)→(e): titanium dioxide deposition. 7.5 nm thick TiO2 film
was conformally deposited on trimmed mandrel lines by thermal
ALD (Oxford FlexAl) at 200 °C. The process used alternating
steps of Tetrakis(dimethylamido) titanium (TDMAT) dosing and
oxidation in which reactive oxygen was created from water
vapor. TDMAT dosing was carried out at a pressure of 80 mTorr
for a time of 800ms, followed by a 6 s purging step. The
oxidation step was then performed using water vapor at a
pressure of 80 mTorr for 120ms. The water dose was followed
by 10 s purging step with 400 sccm argon gas flow.

(e)→(f): etch back. The planar surfaces on the bottom and
the top of the deposited TiO2 were etched back in a fluorine-
based ICP-RIE. At 4 mTorr the flow rates CF4 and O2 were
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33 sccm and 3 sccm respectively. Etching was done for 45 s at
25W RF power and 180W ICP power. After etching, the
height of the features was reduced to 8 nm.

Carbon strip. The carbon mandrel was removed by O2

plasma at 20 °C in an ICP-RIE at low forward power of 2W
RF with 1 V DC bias to prevent damage to the TiO2 lines.
Process conditions had an oxygen flow of 8 sccm, pressure
5 mTorr, ICP power of 250W and 75 s etch time.

Results and discussion

ALD growth on flat substrates

Silicon dioxide deposition was tested both thermally and with
plasma on flat substrates (1), using tris(dimethylamino)silane
(TDMAS) as a precursor. However, surface species deposited
by TDMAS were found to be unreactive using water vapor at
temperatures ranging from 40 °C to 300 °C. After 200 cycles
of thermal SiO2 ALD, no material was detected on the surface
by in situ SE analysis. This result is consistent with the pre-
vious finding of Burton and Kang [42]. SE measurements
show SiO2 thin films deposits from TDMAS and O2 plasma at
300 °C on silicon dioxide and chromium with a growth rate of
0.036±0.005 nm/cycle (figure 2(a)). The initial growth rate
of SiO2 on chromium is higher than SiO2 on SiO2 due to the
formation of chromium oxide which results in an apparent
increase in thickness. Notably, plasma SiO2 deposition on
sputtered carbon produced unexpected results. After 100
cycles SiO2 plasma-enhanced ALD, the carbon layer was no
longer present (figure 2(b)—TDMAS-O2 plasma ALD). We
initially hypothesized that the plasma etching step removed
the carbon. However, we found that running a continuous
oxygen plasma step with the same process condition used in
ALD oxygen step (figure 2(b)—O2 plasma only) produced a

carbon etch rate much slower than the etch rates we observed
during the full ALD sequence. The ALD precursor exposure
step run alone was not found to remove any carbon
(figure 2(b)—TDMAS only). Presumably, there is a syner-
gistic reaction between the SiO2 precursor and carbon that
promotes faster removal in an oxygen plasma. Overall we did
not find a suitable thermal or plasma ALD process using the
TDMAS precursor for deposition of SiO2. We subsequently
found success investigating the TiO2 ALD process.

Titanium oxide ALD films were deposited from Tetrakis
(dimethylamido)titanium (TDMAT) metal–organic precursor
on sample type (1) using both thermal and plasma processes.
To minimize line edge roughness due to crystallinity, we
performed TiO2 growth at temperatures below 250 °C where
the formation of large crystallites is minimized [43–45].

Unlike our SiO2 precursor, TDMAT works in both
thermal and plasma-based processes and we were thus able to
evaluate both. Figure 3(a) shows the nucleation behavior of
thermal and plasma TiO2 ALD at 200 °C on the three dif-
ferent substrates: chromium, carbon, and silicon dioxide.
Nucleation behavior of the films on these substrates is shown
in figure 3(b). While the growth rates of thermal and plasma
ALD are not significantly different, 0.042±0.005 nm/cycle
for thermal versus 0.052±0.005 nm/cycle for plasma, the
nucleation behavior is different. As observed in the plasma
growth of SiO2 on chromium, the nucleation of TiO2 shows a
higher slope. This behavior is absent in the thermal growth.
We hypothesized that oxygen plasma promotes an apparent
change in thickness due to the formation of chromium oxide.
This conclusion is confirmed in the work of Langereis et al
[44], where they show an initial accelerated growth during
plasma ALD on different substrates. When plasma TiO2

grows on carbon, measured film thickness first drops below
zero and then increases to reach a constant growth rate. We
believe the carbon is etched during the nucleation phase, the
first few cycles, and then the carbon surface is passivated with

Figure 2. (a) ALD growth of plasma SiO2 at 300 °C on two substrates: thermal SiO2 and chromium (Cr). (b) Changes in carbon thickness
during plasma SiO2 ALD deposition at 300 °C (continuous line), O2 plasma exposure step alone (dashed line), and TDMAS injection step
alone (dotted line).
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the first layers of TiO2. Note, however, that when carbon is
used as a mandrel in the patterning process, any etching can
be detrimental for sub-10 nm dimensions. Therefore, in order
to minimize damage to the substrate and to avoid any etching,
oxidation or acceleration during the growth, we decided to
move away from any O2 plasma activated process.

Nucleation of thermal TiO2 on the three substrates does
not show any etching, and a delay is observed on chromium.
This delay is small and unlikely to result in a significant
process benefit (reduced ALD thickness at the trench bottoms

to counteract reduced etch rates) [26]. Overall, the TiO2

thermal process was the best process identified and used as
the ALD step in our SDDP process.

Demonstration of 7.5 nm half-pitch TiO2 features via SDDP

Figure 4 shows selected key steps of the full pattern doubling
process in a top down view. The selective infiltration process
was optimized to create an initial pattern of 15 nm (PS-b-
PMMA half-pitch) after infiltration and polymer removal

Figure 3. (a) TiO2 layer thickness measured by in situ SE as a function of the number of ALD cycles at 200 °C on different substrates:
thermal silicon oxide (SiO2-blue), carbon (spC-red), chromium (Cr-black). Titanium dioxide ALD alternated TDMAT dosing and oxidation
where oxygen is given by water vapor (dashed line) and O2 plasma (continuous line). Graph (b) represents a zoom of the first 40 cycles of the
deposition, showing the nucleation behavior.

Figure 4. Top view SEM images of unguided BCP line doubling pattern transfer demonstration corresponding to the schematic process flow
in the inset. (a) Self-assembly of PS-b-PMMA BCP with 30 nm pitch after stripping the PMMA. (b) Pattern after selective sequential
infiltration synthesis of AlxOy in the PMMA domain and polymer removal. (c) Pattern transferred to SiO2 and carbon mandrel. (d) 30 nm
pitch, 7.5 nm wide carbon mandrel lines. (e) Conformal thermal ALD of TiO2 spacer over mandrel features. (f) 15 nm pitch spacer lines after
etching and mandrel removal.
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(figure 4(b)) (see supporting information). This pattern is
etched into the oxide layer and then the carbon (figure 4(c)).
After the carbon trim step and mask removal, figure 4(d)
shows an increase in edge roughness in the top down image.
However, we found that subsequent process seemed to
smooth the sidewalls. Next, TiO2 was deposited by ALD,
using the thermal deposition process at 200 °C. This ALD
layer was etched to produce titanium features at 7.5 nm half-
pitch (figure 4(e)).

Figure 5 shows a cross-sectional view of the last three
steps in the double patterning process. Where figure 5(a)
shows 30 nm pitch carbon mandrel lines fabricated using PS-
b-PMMA block copolymer along with SIS pattern transfer.
Figure 5(b) shows the resulting 7.5 nm conformal TiO2 spacer
deposited on the carbon mandrel. After back etching the TiO2

using CF4 at 10% O2 in an inductively coupled plasma
reactor, figure 5(c) shows resulting features with 7.5 nm half-
pitch. ICP power of 180W and RF of 25W etch 7.5 nm TiO2

in 30 s. In order to etch through TiO2 at the bottom of the
trenches, a longer etching time is used. This leaves TiO2

features with a height of 8 nm (after mandrel removal using
standard oxygen plasma) (figure 5(c)). TiO2 is a high selec-
tivity mask for the subsequent chromium patterning step so
this height is sufficient to pattern the underlying chromium.
Note, that some lines in figure 5(c) appear tilted. This is not
due to pattern collapse but rather an artifact of the conformal
coating of the carbon mandrel. During the oxygen etching and
trimming of carbon features, carbon structures develop a
widened footing portion at their base (figure 5(a)). After
etching the TiO2 layer, the remaining feature conforms to the
tilt of the carbon pattern. We are currently tuning the carbon
etching to reduce this effect. The TiO2 structures in figure 5(c)
could be used directly as the structural template material, or
alternatively transferred to the underlying chromium layer
using chlorine and oxygen gas mixture plasma [30].

Conclusions

We were able to fabricate sub-10 nm half-pitch pattern through a
combination of self-assembled block copolymer and SDDP. In
this work we demonstrated the fabrication of 15 nm carbon lines
using selective infiltration by ALD of PS-b-PMMA block
polymer. Using SE, we conducted detailed studies of the

deposition of the spacer on flat substrates, chromium and carbon,
as a function of the number of ALD cycles. After studying SiO2

and TiO2 processes, both plasma and thermal, we chose a
thermal TiO2 process. SiO2 could only be deposited by plasma
and ended up etching the carbon. We demonstrated the etching
process was due to a synergistic reaction between the ALD
precursor and the O2 plasma; O2 plasma alone etched the carbon
considerably slower. Carbon was more stable in the TiO2 plasma
process but underwent some etching. In addition, it appeared
that plasma processes promoted the growth of chromium oxide.
We thus moved to a thermal TiO2 process for SDDP demon-
stration which did not damage the mandrel and ends with 7.5 nm
robust standing lines that are not subject to pattern collapse.
However, the lines did exhibit a slight tilt. To minimize this tilt,
the carbon trim will need to be optimized to reducing any
footing at the bottom of the feature.

Overall, using SDDP fabrication approach we proposed a
systematic route to enable sub-10 nm feature size transfer
over large areas. Notably, it is possible to take advantage of
the wafer stack and extend the implementation of this method
using substrates compatible to chromium deposition. This
type of process enables scalable fabrication of single digit
nanometer feature sizes for both patterned media at densities
beyond 5 Tb/in2 and integrated circuits. The next steps in
BPM master template fabrication are to transfer the TiO2

pattern into the underlying chromium and then into the quartz
template. This will be demonstrated in subsequent work.
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