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Abstract

There is much interest in translating neuroimaging findings into meaningful clinical diagnostics. 

The goal of scientific discoveries differs from clinical diagnostics. Scientific discoveries must 

replicate under a specific set of conditions; to translate to the clinic we must show that findings 

using purpose-built scientific instruments will be observable in clinical populations and 

instruments. Here we describe and evaluate data and computational methods designed to translate 

a scientific observation to a clinical setting. Using diffusion weighted imaging (DWI), Wahl et al., 

(2010) observed that across subjects the mean fractional anisotropy (FA) of homologous pairs of 

tracts is highly correlated. We hypothesize that this is a fundamental biological trait that should be 

present in most healthy participants, and deviations from this assessment may be a useful 

diagnostic metric. Using this metric as an illustration of our methods, we analyzed six pairs of 

homologous white matter tracts in nine different DWI datasets with 44 subjects each. Considering 

the original FA measurement as a baseline, we show that the new metric is between 2 and 4 times 

more precise when used in a clinical context. Our framework to translate research findings into 

clinical practice can be applied, in principle, to other neuroimaging results.
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1.- Introduction

We describe methods to translate magnetic resonance imaging (MRI) scientific findings into 

clinical practice. The goal of scientific discoveries differs from clinical diagnostics. Clinical 

applications should be based on quantitative measurements that replicate in controlled 

laboratory conditions. These applications must also be applicable to a clinical environment 

where data acquisition methods, subject populations, and computational methods can vary 

substantially.

We base our methods on the ideas of replication and generalization. Because these terms, 

along with reproducibility, re-execution, and robustness are used in various ways in the 

literature (Goodman et al., 2016; Kennedy et al., 2019; McNaught and Wilkinson, 1997; 

Patil et al., 2016; Plesser, 2017), we begin by explaining our usage. Scientific 

experimentalists typically set out to make a measurement that can be replicated. For 

example, a team makes a measurement using a specific rig and experimental conditions. 

Other scientists check the work by following the published instructions that define how to 

construct the rig and implement the experimental conditions. Scientific replication means 

repeating the experiment as precisely as possible. This approach is appropriate for 

investigations that test theories or quantify important phenomena, but replication is not a 

realistic possibility for extending discoveries into clinical applications. These applications 

do not have access to the carefully calibrated instruments that have been purpose-built for 

scientific measurements (for example, the Human Connectome Project scanners). For a 

scientific discovery to become clinically relevant, the finding must generalize across 

variations in the population and instruments.

Replication and generalization are contrasted in Figure 1. Panel A emphasizes scientific 

discovery and replication. An experimental design is chosen and measurements are made 

with a selected population, data acquisition instruments and methods, and a computational 

method. We measure the precision of the measurement when the experiment is repeated 

(test-retest). In this case three replication experiments are illustrated using different data 

acquisition parameters. If the scientific measurements replicate with sufficient precision, we 

might carry out generalization measurements (Panel B), to test the extent of applicability of 

said measurements. The panel illustrates generalization experiments that share the same 

experimental design, but use different populations (e.g., geographic locales, age and gender), 

different data acquisition methods, (e.g., pulse sequences and vendors), and different 

computational methods (e.g., pre-processing software). Translating a scientific measurement 

into a clinical application is a two step process: beginning with an experiment that replicates, 

we test how well the experiment generalizes.

This paper applies replication and generalization to a neuroimaging measurement that has 

the potential to become clinically relevant: identifying lateralized white matter disease in 
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individual subjects. Wahl et al. (2010) used diffusion-weighted imaging (DWI) to measure 

white matter tracts in healthy adults; they observed that across subjects the mean fractional 

anisotropy (FA) of homologous pairs of tracts is highly correlated. We hypothesized that this 

finding might be a fundamental biological trait in healthy participants, that can be measured 

in research labs and clinical settings. We investigated if the relation between homologous 

tract pairs is a more useful clinical measure than assessing the measurements from each tract 

separately. We find that using the relation between homologous left and right tracts does 

provide a potential clinical measure.

2.- Materials and methods

To evaluate the replication and generalization of the DWI finding, we obtained data from 

multiple sources. We use nine datasets that we group into three categories.

• WHL: Original 44 subject dataset used in (Wahl et al., 2010). The authors 

shared the original DICOM files for this work, and we performed the analysis 

using our computational methods. We obtain 1 dataset, called WHL1000.

• YWM: We selected a 44 subject subset of the data reported by (Yeatman et al., 

2014). The subjects matched the mean age (but not the age range) of the WHL 

dataset. We obtained two datasets: YWM1000 and YWM2000 that differ in data 

acquisition parameters (b-values, number of directions).

• HCP: We selected a 44 subjects whose test-retest data are available from the 

1200 Human Connectome Project (HCP) release (Glasser et al., 2013). 

HCP1000, HCP2000 and HCP3000 differ only in data acquisition parameters (b-

values). HCP 1000RETEST, HCP2000RETEST and HCP3000RETEST are the 

corresponding retest data.

Figure 1 represents three replication experiments (panel A) and a generalization experiment 

(panel B). The replication experiments compare test-retest values of the mean tract FA at 

three different b-values; the were collected using the same subjects, instruments and 

computational methods at the HCP. This replication analysis bounds the precision of the 

estimated mean tract FA: the generalization precision shouldn’t be better than the replication 

precision.

The generalization experiment compares the mean tract FA across different subjects, 

instruments and computational methods (Figure 1B). The precision derived from these six 

experiments assesses generalization. The HCP RETEST experiments are omitted from the 

generalization experiment to avoid a HCP bias. In addition to subject and instrument 

differences, the WHL and YWM differ in computational processing. Some unmeasured 

variability is introduced by non-deterministic aspects of these computations.

In the following sections, we describe three different aspects of the experimental pipeline. 

The Population statistics section shows that cohorts are similar, but not identical. The Data 

acquisition section includes MRI pulse sequences and parameter choices that are different 

between sites and vendors, as is often the case in clinical settings. The Computational 

methods section describes the infrastructure we used to implement computational 

Lerma-Usabiaga et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reproducibility, as well as a detailed description of the data analysis pipeline and numerical 

calculations.

2.1.- Population statistics

The population statistics for the three datasets are similar, but not exactly the same (see 

Table 1). All the groups include 44 subjects of a similar mean age, ranging from 30.7 to 

31.8. The age range of the YWM dataset is the largest, with a standard deviation of 14.4. 

The HCP dataset age standard deviations is 3.2, which is an approximation: the HCP ages 

are binned to protect participant privacy. The YMW and WHL datasets are matched in male-

female ratio, but the HCP dataset has more females than males. The original publications 

include more information about the populations (Glasser et al., 2013; Wahl et al., 2010; 

Yeatman et al., 2014).

2.2.- Data acquisition

Table 2 shows the main characteristics of the DWI data acquisition, emphasizing the 

differences between sites and experiments. As a practical matter, measurements made across 

multiple sites are very likely to have different MRI scanner models that are calibrated using 

different tools. The MRI vendors compete on intellectual property concerning the pulse 

sequences, making a perfect replication either extremely inconvenient or impossible. For 

example, the scanner used by the HCP site was specially designed and this type of 

instrument is unlikely to become available to the thousands of clinical sites around the world 

(Glasser et al., 2016, 2013). The datasets differ with respect to the number of acquisition 

channels, gradient strength, diffusion directions, b-value and voxel size. Such differences are 

unavoidable because not all sites can implement the same acquisition parameters. In addition 

to vendor differences, data are acquired over time, technology evolves, and people make 

choices.

2.3.- Computational methods

The computational methods are divided into two parts: (1) the infrastructure: required for a 

computationally reproducible system, sometimes called the neuroinformatics platform 

(Marcus et al., 2011); and, (2) the data analysis pipeline: comprises all the steps starting with 

the DICOM images generated in the MRI scanner (the acquisition device) to the final 

published results.

2.3.1.- Infrastructure for computational reproducibility—The data management 

and computational infrastructure use a technology (Flywheel.io) that (a) implements 

reproducible computational methods, (b) tracks provenance of the data, and (c) facilitates 

data sharing. For reproducibility, all computational methods were performed using 

containerized methods. These are small virtual machines that include all dependencies and 

runs the same computation across platforms. The analytical methods implemented in the 

containers are open-source, and we provide links to the containers in the following sections. 

To track the provenance, the computational system stores: (a) the input data, (b) the 

container version that was executed, (c) the container input parameters, and (c) the output 

files. The analyses are fully reproducible by anyone with IRB authorization to access the 
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system. More details about the infrastructure and implementation can be found at Lerma-

Usabiaga et al. (2019).

2.3.2.- Data analysis pipeline—The diffusion-weighted imaging analysis methods 

consisted of two main steps, implemented in two containers: preprocessing and tractography. 

Both were applied to WHL and YWM datasets. The HCP dataset was preprocessed by that 

consortium (Andersson et al., 2003; Andersson and Sotiropoulos, 2016, 2015) and only the 

tractography container was applied.

2.3.2.1.- Preprocessing: The preprocessing consists of the data preparation required to do 

the tractography and fractional anisotropy (FA) analyses. The preprocessing container 

comprises the following steps: first, using the tools provided by MRtrix (github.com/

MRtrix3/mrtrix3), we perform a principal component analysis (PCA) based denoising of the 

data; second, additional Rician based denoising and Gibbs ringing corrections were applied 

(Kellner et al., 2016; Veraart et al., 2016a, 2016b); third, FSL’s eddy current correction was 

applied (Andersson and Sotiropoulos, 2016); fourth, we performed bias correction using the 

ANTs package (Tustison et al., 2010); fifth, we applied a Rician background noise removal 

using MRtrix tools again. The code and parameters are available through GitHub 

(github.com/vistalab/RTP-preproc) and Docker Hub (hub.docker.com/r/vistalab/RTP-

preproc/).

2.3.2.2.- DWI processing and tractography: The tractography container takes the 

preprocessed DWI data and an un-preprocessed anatomical T1-weighted file as input. It 

outputs the FA of the selected 6 homologous tract pairs. The algorithms in the container 

perform the following steps: first, the diffusion data are aligned and resliced to the 

anatomical image (https://github.com/vistalab/vistasoft, dtiInit); second, the whole brain 

white matter streamlines are estimated using the Ensemble Tractography (ET) method 

(Takemura et al., 2016). ET invokes MRtrix’s constrained spherical deconvolution (CSD) 

implementation once and the tractography tool 5 times, constructing whole brain 

tractograms with a range of minimum angle parameters (values 47.2, 23.1, 11.5, 5.7, 2.9). 

The LiFE (Linear Fascicle Evaluation) method evaluates the tractogram streamlines and 

retains those that meaningfully contribute to predicting variance in the DWI data (Pestilli et 

al., 2014). Finally, the Automated Fiber Quantification (AFQ) method (Yeatman et al., 2012) 

segments streamlines into tracts (Figure 2). The code and parameters are available through 

GitHub (github.com/vistalab/RTP-pipeline) and the container through Docker Hub 

(hub.docker.com/r/vistalab/RTP-pipeline).

2.3.2.3.- Mean tract FA values: We analyzed the six homologous-tract pairs analyzed in 

(Wahl et al., 2010) (Figure 2). The ROIs used to identify the streamlines that form the tracts 

are shown in red. The mean tract FA is calculated in several steps. A core fiber, representing 

the central tendency of all the streamlines in the tract, is identified. Equally spaced positions 

along the fiber between the two defining ROIs are sampled (N=100). The FA values of 

streamlines at locations transverse to each sample position are measured and combined. The 

value is a Gaussian-weighted sum where the weight depends on the distance from the 
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sample point (Yeatman et al., 2012). The sampling and transverse averaging generates a tract 

profile of 100 FA values. The mean tract FA is the average of these values.

2.3.3.- Data preparation and statistical analysis—The data preparation, statistical 

analysis and plotting scripts read the input data directly from the Flywheel neuroinformatics 

platform using a software development kit (SDK). To maintain reproducibility and data 

provenance, these scripts are stored and versioned in a GitHub repository, and the input data 

are stored and the specific version that was executed is stored in the neuroinformatic 

platform. The scripts read the files containing the FA values for each subject and each tract, 

categorize it for the different experiments, create the descriptive plots and calculate the 

metrics. The scripts to replicate the figures and calculations can be found at https://

github.com/garikoitz/paper-reproducibility.

3.- Results

We first illustrate replication and generalization analyses for the FA measurement of 

individual tracts and evaluate the usefulness of this measure as a clinical application. Next, 

we evaluate a metric based on the homologous tract correlation reported by Wahl et al. 

(2010). The main figures describe one illustrative tract, the inferior fronto-occipital 

fasciculus (IFOF), and in total we report findings for six pairs of homologous tracts. We 

selected the mean FA of a tractogram as an example because it is useful to explain our 

methods, but the analysis can be applied to many other measures. For example, Wahl et al. 

report four DWI measures (FA, MD, AD, RD).

3.1.- FA measurement

3.1.1.- Replication experiment—Figure 3A shows the mean tract FA profiles at three 

b-values for the streamlines that model the IFOF. The solid and dashed lines show the mean 

tract profile across subjects for the test (solid) and retest (dashed) acquisitions. The profiles 

are similar at each b-value; consistent with prior measurements the FA values decrease as b-

value increases (Farrell et al., 2007a; Jones and Basser, 2004; Landman et al., 2007; 

Mukherjee et al., 2008a, 2008b). The shaded regions indicate the range (+/− 1 SD) across 

the population of participants.

The test-retest analyses for the mean tract FA of the IFOF are shown in Figure 3B. Each 

point is a subject, and the three types of symbols show test-retest at three b-values. The test-

retest mean tract FA values are distributed near the identity line. For each b-value the mean 

tract FA varies between subjects (standard deviation, 0.025). The scatter about the identity 

line is smaller, (standard deviation, 0.01-0.02). The scatter around the identity line is similar 

for measurements at the three b-values, suggesting that the noise level is similar (Rokem et 

al., 2015).

The replication analyses for an additional 11 tracts follow the same trends as the IFOF (see 

Supplemental material, Figures S1a–S2). The FA values decrease with increasing b-value, 

and the between-subject standard deviation is larger than the within-subject test-retest 

standard deviation. Considering all tracts, the largest between-subject standard deviation is 

for the arcuate fasciculus, and the smallest is for the corticospinal tract. In all cases, the 
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shape of the tract profiles remain similar across b-values. This supports the idea that tract 

profiles are a useful target for further investigation (St-Jean et al., 2019; Yeatman et al., 

2014).

3.1.2.- Generalization experiments—We assess the generalization of the FA measure 

by comparing the HCP data with those from YWM and WHL. Because of the large 

differences in FA, we separate the analysis by b-value (Figure 4).

The HCP, YWM and WHL data obtained at b=1000 are compared in the top two panels. We 

use the IFOF tract, but the conclusions are the same for other tracts (see Supplementary 

material Figures S1b,S1c–S3a–S3b). The tract profile from the HCP dataset is the same as 

that shown in Figure 2, and the green and red curves are from the WHL and YWM datasets, 

respectively. Over much of the tract the three data sets agree in the sense that they are closer 

than the between-subject variance. The HCP tractogram profile diverges from the YWM and 

WHL on the left side of the graph (occipital end), and this appears to be the largest source of 

the difference between the three datasets.

The distribution of HCP mean tract FA values are about 1 standard deviation larger than the 

values in the YWM and WHL data set, and this causes the precision of the generalization to 

be substantially lower than the precision of the replication (Figure 4B, top). It is notable that 

at b=1000 the mean FA tract values for the IFOF in the WHL and YWM data sets contain 

values that are never observed in the HCP data set (FA < 0.47). The expansion of the range 

of FA values provides an indication of what one would observe in a clinical application 

compared to measurements obtained at a single site.

The HCP and YWM data obtained at b=2000 are compared in the two bottom panels. In this 

measurement the HCP FA values are generally lower than the YWM FA values. This 

difference is seen in the mean FA distributions, which are again separated by about 1 

standard deviation. It is notable that at b=2000 the mean FA values for the IFOF include 

values in the YWM data that are never observed in the HCP data (e.g., FA > 0.55). Again, 

the generalization analysis shows that combining data from multiple sites extends the range 

of FA values one would observe from healthy participants.

3.1.3.- Evaluation—The analyses of replication and generalization do not force a 

conclusion about whether the technique may have value in practice. Rather, the analyses 

define the range of values one might observe using a restricted set of instruments and 

methods (replication), compared to the range of values observed as we measure in clinical 

applications (generalization). For most tracts, the range of the mean tract FA value increases 

by about a factor of two as we include data from different, but typical, instruments and sites. 

Adding more sites, or expanding the population, can only increase this factor.

3.2.- Homologous tract FA values

The evaluation of mean tract FA motivated us to search for a dependent measure with better 

generalization. The high positive correlation in FA between pairs of homologous tracts 

(Wahl et al., 2010), measured across subjects, suggests an alternative measure. The 

correlation implies that a participant with a relatively high FA value in the left tract will have 
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a relatively high FA in the homologous right tract. Using this type of measure has the 

potential to improve generalization because measurements of the two tracts depend on 

common experimental factors. Qualitatively, the measurements of the left tract serve as 

calibration data to predict the FA measurement of the right tract. This is analogous to the use 

of image contrast rather than image value.

3.2.1.- Homologous tracts linear model—The next question we address is how to 

convert the observed correlations, obtained from multiple participants, into a measurement 

that can be applied to individual participants. The initial approach is to use the linear model 

implicit in the correlation. Specifically, the correlation between homologous tracts means 

that there is an affine transform that predicts the mean tract FA in the right from knowledge 

of the left.

PredictedRightFA = αMeasuredLeftFA + β

The prediction error (residuals) are the difference between the measured and predicted FA,

Residuals = MeasuredRightFA − PredictedRightFA,

and bootstrapping with replacement from the residuals we estimate the FA range where we 

expect to find some percentage, say 95%, of the data (Figure 5: the vertical black line 

represents this range). If we calculate the range of possible PredictedRightFA values for all 

MeasuredLeftFA values, we obtain a band of likely PredictedRightFA values (green bands). 

The center of the band is the linear prediction and the dashed (solid) lines represents the 

68% (95%) limits. Given a measurement of the left FA, the band defines the range of 

expected values for the MeasuredRightFA in a healthy participant.

A more general formulation, beyond the linear relation, assesses the distribution of left-right 

FA values in the plane. These distributions form a cloud of points in the plane that can be 

reasonably approximated by a bivariate Gaussian. Consequently, the likely locations of the 

points are circumscribed by an ellipse. The distance of any single point from the center of 

the ellipse, say measured by the Mahalanobis distance, can serve as a measure of the 

participant’s health in a clinical application. This formulation has the added benefit 

incorporating additional information: the absolute value of tract mean FA.

3.2.2.- Replication of the linear model—A scatterplot of the mean tract FA of the left 

and right IFOF for six HCP data sets (three b-values, test-retest) is in Figure 6. The different 

blue colors represent measurements at different b-values, and the different shapes represent 

test (circles) and retest (crosses) measurements. The slope of the linear relation between the 

mean tract FA of the left-right IFOF tracts is slightly less than one. Each pair of tracts has its 

own best-fitting line (see Figure S4a).

The test-retest data points thoroughly intermingle, which is a replication of the left-right 

linear relation. The mean tract FA of a single tract replicates with a precision of 0.01 s.d. 
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(Figure 3), and the separation in the FA plane for mean tract FA of left-right homologous 

tracts (corresponding circles and crosses) replicates with the same precision (0.01 s.d.).

The data obtained at the three different b-values fall along roughly the same line. 

Consequently, this left-right measurement generalizes well across b-values, despite the fact 

that the mean tract FA values do not (Figure 3). Considering the data from the three b-

values, 95% of the FA measurements fall within 0.21 FA (gray line at right). 

Correspondingly, for the left-right difference 95% of the measurements fall within 0.07 FA 

(black line at right).

In certain cases, different sites may adopt measurement protocols at a single b-value. In that 

case, the range of the left-right difference is reduced. For example, in the b=2000 data set the 

FA range would be reduced to 0.04 FA, which is smaller than the FA range across subjects 

(0.08 FA).

There are different causes for the range of FA values between subjects. Some of the 

differences are likely to be the natural variation between subjects. Additional variation may 

be due to uncontrolled instrumental factors. The co-linear relation between data obtained at 

the different b-values suggests that some differences arise because the nominal and true 

gradient (b-value) differs between subjects.

3.2.3.- Generalization of the linear model—To assess generalization we combined 

the six datasets at three b-values (b=1000, 2000, 3000) and three sites (WHL,YWM,HCP). 

The left-right scatterplots, one for each of the six pairs of tracts, are shown in (Figure 7). 

There are qualitative similarities between data from different tracts, but each has its own 

parameters and precision.

The left-right scatterplots of the IFOF, ILF and CST are the most compact. Given a 

measurement of the left mean tract FA, the right mean tract FA falls within about 0.05 FA. 

For the Cingulum, Arcuate and Uncinate the left mean tract FA predicts the right mean tract 

FA within about 0.10 FA. In all cases the slopes of the linear regions (orientation of the 

principal axis of the ellipse) are near one.

The left-right relation generalizes across the different sites and b-values. For each of the 

tracts, there is no substantial loss of FA precision when calculating the left-right difference 

using the data at a single nominal b-value or data from all b-values at all sites.

The scatter plots reveal outliers in the cohort, and one particular sample point stands out. 

This point arises from a single subject at b=2000 who is an outlier in all of the tracts 

(YWM2000 data, red dot). In a clinical setting, this subject would be subject to more 

scrutiny. We can compare this subject’s data to the acquisition at b=1000 (YWM1000). The 

subject’s FA values in the YWM1000 acquisition are normal, so we assume that something 

went wrong in the YWM2000 acquisition and/or analyses. Such outliers occur, and it is not 

unexpected that one of 264 data points might be problematic

Some of the variation in the mean tract FA arises from the tractography algorithms. For 

example, the Arcuate and Uncinate are more curved than the other tracts, and previously 
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several groups observed that the right Arcuate is not well-recovered from DWI data (Catani 

et al., 2007; Lebel and Beaulieu, 2009; Wahl et al., 2010; Yeatman et al., 2011). Other 

differences may arise because of differences in the length of the trunks used to estimate the 

mean FA of each tract (see Figure 2).

Similar variability was observed in five of the homologous tract pair correlations in the 

original Wahl et al (2010) experiment (Cingulum Cingulate: 0.57, Arcuate: 0.5, IFOF: 0.88, 

ILF: 0.73, Uncinate: 0.7), with the one exception of the corticosopinal tract (0.62). The 

original Wahl et al. result for corticospinal may be due to their method of identifying the 

corticospinal tract; because using our tractography methods on the original data (WHL1000) 

the value is higher (0.71).

The correlation values of the data combined across b-values are very high (Cingulum 

Cingulate: 0.85, Arcuate: 0.76, IFOF: 0.94, ILF: 0.94, Uncinate: 0.87, Corticospinal: 0.95). 

This suggests that as hoped the same left-right relation is revealed at different b-values and 

that using the relation rather than absolute FA levels compensates for variations in the data 

acquisition.

4.- Discussion

We write in support of the idea that modem neuroimaging is sufficiently mature to develop 

useful quantitative applications for structural neuroimaging. As an example, we showed how 

the test-retest MRI scans produce highly reliable diffusion measures, even when accounting 

for instrumental noise, system calibration between scans, and repeating the probabilistic 

numerical processing in the computational methods. On the other hand, the experiments 

confirm prior reports that the compliance range of the data acquisition parameters for FA 

does not extend to changes in the diffusion gradient b-value (Chou et al., 2013; Farrell et al., 

2007b; Hutchinson et al., 2017; Landman et al., 2007). For this reason, we proposed: (i) a 

two-step assessment system (measure replication, measure generalization) to translate MRI 

metrics with potential to be useful in the clinic; and, (ii) a simple method for improving the 

precision of our metrics by using the relationship between two measurements that 

compensates for the acquisition differences.

4.1.- Replication-generalization tradeoff

There is a tradeoff between replication and generalization in neuroimaging. Over the past 

decade, the two extremes have been represented by: (1) the HCP for high-quality highly 

replicable anatomic, diffusion and functional imaging using custom-designed hardware (the 

Connectome scanner) and software (e.g., multiband echo planar sequences) that were not 

generalizable to other platforms (Glasser et al., 2016); and (2) the Enhancing NeuroImaging 

Genetics through Meta-Analysis (ENIGMA) consortium that began with low quality and 

low precision imaging metrics that were primarily limited to gross macroscopic features 

such as total intracranial volume, but were platform-independent and did not require 

standardized sequences and therefore generalized for worldwide data aggregation.

The tension between these two goals is being addressed by specifying standardized pulse 

sequences across a broad range of scanners for multicenter studies. This approach is 
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exemplified by the HCP Lifespan protocol (Bookheimer et al., 2019; Harms et al., 2018; 

Somerville et al., 2018), the ENIGMA protocol (Acheson et al., 2017; Adhikari et al., 2018; 

Kochunov et al., 2017), and protocols for Precision Medicine studies such as ADNI3 for 

Alzheimer disease (Reid et al., 2017; Zavaliangos-Petropulu et al., 2019) and TRACK-TBI 

for traumatic brain injury (Yuh et al., 2013). This approach is applicable to coordinated 

multi-center studies.

The harmonization of measurements puts a strong emphasis on replication, hoping to limit 

the problem of generalization. There are economic and technology trademark issues that will 

prevent the widespread distribution of the most advanced instruments. Because there will be 

variations in clinical instrumentation and methods, we advocate for investigators to design 

tools and experiments that directly address generalization. The approach in this paper 

emphasizes collecting multiple datasets and then evaluating different dependent measures to 

select the ones that generalize. In this approach, it becomes important to specify the 

precision and the compliance range when reporting results for potential application, as 

different pathologies will have different requirements.

4.2.- Explicit measures of generalization and context of use

Clinical applications should be based on measurements that replicate with confidence 

intervals that are compact enough to support a meaningful diagnostic. This attribute is 

crucial for the validation of “biomarkers” that can be widely used for biomedical science and 

clinical translation. A biomarker is defined by the US National Institutes of Health (NIH) 

and the US Food & Drug Administration (FDA) as “a defined characteristic that is measured 

as an indicator of normal biological processes, pathogenic processes, or responses to an 

exposure or intervention, including therapeutic interventions” (Naylor, 2003). This definition 

encompasses brain imaging (Mayeux, 2004). Precision Medicine is “an emerging approach 

for disease treatment and prevention that takes into account individual variability in genes, 

environment, and lifestyle for each person” (Collins and Varmus, 2015). Objectively 

quantifying these individual differences in order to tailor treatment and prevention strategies 

for specific patients requires validated biomarkers. Ensuring the reliability of these 

biomarkers over time in individual subjects is crucial for adequately testing the efficacy of 

precision medicine therapies (Senn, 2018). Throughout this work, we provided a valid range 

of normal values that gives the precision at which departures from normality can be 

measured. This range, like all the measurements we used in this work, is given in FA units, 

which is directly interpretable by any researcher or clinical practitioner.

In addition, but less appreciated, is that neuroimaging applications deployed in the field will 

use a range of instruments, participant populations, and measurement protocols (Goodman et 

al., 2016); the range of conditions in the field will be wider than that encountered in 

scientific studies. It is important, therefore, to assess how effectively an applied 

measurement generalizes across the clinical conditions. For an applied measurement to scale 

from the lab to the clinic, the result must generalize across these measurement conditions. 

This range of conditions where the measurement is valid for a proposed application should 

be specified contained in the “context of use” that the FDA requires as part of the biomarker 

qualification process (Goodsaid and Mendrick, 2010). After our experiment, we could claim 
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that the context of use of our metric is circumscribed to 3 Tesla MRI magnets and b-values 

between 1000 and 3000. We think that the symmetry in homologous mean tract FA is a 

fundamental human biological trait, but we should extend our generalization experiments to 

extend its context of use.

4.3- A continuous aggregation platform

The relatively recent increase in complexity of neuroimaging is a major complicating factor 

that impacts reproducible research. New MR instruments, analysis algorithms and the use of 

special participants have increased the size and complexity of datasets. In many 

neuroimaging publications, there is no realistic chance that a reader can repeat the 

experimental data acquisition or even the computational analyses (Buckheit and Donoho, 

1995; Sandve et al., 2013; Wilson et al., 2017). The best we can hope for is to be able to 

repeat, check, and explore portions of the computational analysis of the published data 

(Peng, 2011; Stodden et al., 2014).

The increase in computational power has also led to an increase in algorithm complexity and 

the number of user-defined parameters. Several authors have analyzed the effect of pipeline 

parameters and reported large impacts on fMRI data; the variations in the result as a function 

of the parameters can be quite significant. For example, the position of the peak activation 

may range over a cortical area of 25 cm2 (Carp, 2012). (Yarkoni and Westfall, 2017) observe 

that we are often uncertain about critical parameters that must be in computational models. 

We can confirm that the general point also applies to DWI methods. It is our experience, too, 

that scientists find it very difficult to keep track of the specific parameters used in any 

particular analysis, and even fewer scientists record the combinations of parameters they 

used during data exploration (Baker, 2016).

To overcome most of these problems, the system we used in this paper encapsulates the 

software and its dependencies in a container; it also stores the history of which analyses (and 

with what configuration) were run in the database. This approach overlaps with many of the 

proposals for scientific reproducibility. For example, (Poldrack et al., 2017) describe 

desiderata for reproducible research tools that closely align with those we have 

implemented.

… The entire analysis workflow (including both successful and failed analyses) 

would be completely automated in a workflow engine and packaged in a software 

container or virtual machine to ensure computational reproducibility. All data sets 

and results would be assigned version numbers to enable explicit tracking of 

provenance … (page 124).

Furthermore, our system is extensible. We can add datasets to our neuroinformatics 

platform, analyze them with identical computational methods, and check how the 

compliance range of our measurement changes. Analogously, we can containerize a 

computational tool from another group, process our data again, and do the same checks. 

Therefore, new results sets can be continuously aggregated. In the long term, this continuous 

aggregation will continue to inform the compliance range, and it will naturally work towards 

the harmonization of measurement protocols: settings that worsen the compliance range will 
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be abandoned. We think that this continuous aggregating and improvement process will 

provide a useful approach for translating scientific research to the clinic.

4.4.- Related research

A particularly related recent investigation of DWI generalization considered data from 13 

different 3T MRI scanners throughout the USA, representing all three major vendors (GE, 

Philips and Siemens), found a coefficient of variation (CoV) of 4.2% for the FA of whole-

brain white matter, with the FA CoV varying from 2% to 6% for individual major white 

matter tracts (Palacios et al., 2017). That study was limited to a single subject, to scanners 

with similar hardware capabilities, and to a harmonized DTI protocol in which all major 

acquisition parameters are as similar as possible.

This study extends that work by probing generalization across a wider range of acquisition 

parameters (e.g., spatial resolution, b-value, and the number of diffusion directions) using 

scanners with different hardware capabilities (e.g., 8 receiver channels vs 32 and 40 mT/m 

maximum gradient amplitude vs 100 mT/m), and in different participant populations. The 

scope of our tests is for a very modest set of instruments, data acquisition parameters, and 

population statistics; but the generalization could have proved much worse. A fundamental 

difference in our work is the intention to vary the experimental conditions instead of 

harmonizing them, assessing how the instrumental variations affect the precision range.

Furthermore, the generalization issues in neuroimaging applications are similar to those in 

other human research fields (He et al., 2015; Shavelson et al., 1989; Shavelson and Webb, 

1991; Tipton, 2014); the issues are also closely linked to meta-analysis, which aggregate the 

outcomes of multiple studies (Evangelou and Ioannidis, 2013; Simpson and Pearson, 1904). 

The unique features of neuroimaging applications we discuss are that they are motivated by 

the observation that these applications are likely to arise from experimental measures that 

are not precisely controlled.

4.5.- Limitations and opportunities

All the datasets were obtained from research environments. We obtained data from different 

sites to illustrate our point, but for a real experiment, more datasets with more variability 

should be included. Further generalization could come from scanners (models, mean field 

strength), acquisition sequences (e.g. dual-spin echo), population (e.g. age range) or 

computational methods (e.g. Tracula (Yendiki et al., 2011)). The database system we use is 

extensible: we can add data and re-evaluate the generalization should new dataset become 

available.

This work assesses one type of structural data which eliminated the need to analyze the 

impact of experimental design. Developing a deeper understanding of such factors is 

important for clinical assessments using task-based functional MRI, say for psychiatric 

disorders. Such analyses introduce many new parameters including factors ranging from 

stimulus selection and delivery and subject instructions and compliance.

Some functional experiments quantify characteristics of individual participants (e.g. defining 

V1). A much larger set of the scientific literature uses group comparisons. In many cases, it 
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will not be clear how to convert a group comparison experiment into a clinical assessment of 

individual participants.

5.- Conclusion

This paper illustrates an approach for translating neuroimaging findings from the lab to the 

clinic. We describe software tools designed for large data sets and computational 

reproducibility that are helpful calculating the impact of increasing the number of sites, 

experiments, different subjects, and/or the impact of higher quality instrumentation. We 

consider a full approach, from the definition of the data set for replication and generalization 

experiments, to the neuroinformatics platform and computational methods required to define 

an evaluate metrics with diagnostic value.
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• Reproducible white matter diagnostics, generalizable to clinical conditions

• Data collected from multiple scanners into a searchable and computable 

database

• Data analysis software implemented as platform-independent, reproducible 

containers

• Strategy to minimize measurement variance across a likely span of clinical 

scanners
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Figure 1. Summary of the individual experiments, organized as replication or generalization 
experiments.
The columns correspond to the experimental pipeline steps; every row corresponds to an 

experiment. Different colors represent different steps in the experimental pipeline; different 

shades represent implementation differences within the step. A) Three replication 

experiments, based on the Human Connectome Project (HCP) test-retest datasets. The 

difference among the experiments is the b-value used in the acquisition. In a replication 

experiment, the intention is to repeat the original methods as far as possible, hence the same 

shades; the test-retest case goes uses the same population and instrumentation at different 

times. B) The generalization experiment reflects the transition to the clinical environment. 

The goal is to evaluate whether the measurements are robust to expected variations in the 

measurement conditions. The generalization is undertaken after validating the results in the 

replication experiment. The datasets are from Wahl et al (2010) (WHL). Yeatman et al. 

(2014) (YWM), and (Glasser et al., 2013) (HCP).
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Figure 2. Six pairs of homologous tracts and their defining ROIs.
The streamlines serve as a model of white matter tracts; they are selected by fitting to the 

diffusion weighted imaging (DWI) measurements. The tracts are defined by regions of 

interest (ROIs, red) that select specific streamlines from the whole brain tractogram. The 

region between the two ROIs is relatively stable and called the trunk. We estimate a core 

fiber from the collection of streamlines and sample 100 equally spaced segments. The FA of 

the core fiber is calculated by combining FA transverse to the core fiber at every sample 

point, using a Gaussian weighting scheme over distance. The set of sample points is the tract 

profile; the average of the FA values of the core fiber is the mean tract FA.
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Figure 3. Replication analyses of the tract profile and mean tract FA.
Analyses are shown for a representative tract (left IFOF), and based on the HCP test-retest 

data. A) Tract profiles of the subject average FA in the test (solid) and retest (dashed) 

experiments. The mean profile (thin line) and ±1 SD (shaded band) are shown. The profiles 

at each b-value match very closely; across b-values the profiles have a similar shape but 

different absolute values. B) Test-retest scatter plot. For all b-values, the SD of the difference 

between the test-retest pairs of FA values is 0.01 (TRT SD), and the SD of the distribution of 

FA values is 0.02 (Subj. SD). (Tract profiles and scatter plots for 11 other tracts are similar 

and reported in Figures S1a, S2).
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Figure 4. FA Analyses for the generalization experiment and selected tracts.
Top: Left Corticospinal. Bottom: Left IFOF. A) The curves show the average FA tract 

profiles for different experiments. The shaded region is ±1 SD. B) Normal distribution 

summary of the mean FA values in each experiment. The mean is the average of the FA 

values of each participant’s profile. The grey plot shows the distribution for all experiments; 

the curves are scaled so that the sum of the areas of the experiments equals the grey area. 

The arrows show the difference between each of the means and the group mean, and the 

numbers express effect size (Cohen’s d). The distributions were estimated using 10,000 

bootstrap samples. C) Mean FA values and 90% experimental confidence intervals. n.s.: 
non-significant. Plots for additional tracts are in the Supplementary Materials (Figure S1b–

S1c–S3a–S3b).
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Figure 5. Representation of the relation between homologous tracts
The linear correlation between mean FA in homologous white matter tracts defines a band of 

predicted right FA values given a left FA value. Measurements across clinically relevant 

cases, including variations in population, data acquisition, and computational methods, 

define the correlation and the size and shape of this region. For each tract, a participant’s 

data may fall inside or outside the green region, and this serves as a diagnostic of their white 

matter health. Measured: the range of Right FA values. Predicted: the size of the range 
ofpredicted Right FA values given a Left FA value (vertical height of the green band).
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Figure 6. Left-Right IFOF FA scatterplots and iso-residual contour lines for HCP
Scatterplot of the Left-Right IFOF HCP mean FA values. Inside the square, the grey line 

(0.08) shows the 95% range of all Right FA values for b=2000, and the black line (0.04) 

shows the range of possible values for any given Left FA value. Although not pictured, the 

values when using the b=2000 test-retest data points increases to 0.09 and 0.05. Outside the 

square to the right, the grey line (0.21) shows the 95% range of all right FA values for the 

combined six HCP Test-Retest values. The diagonal bands are the contour lines holding the 

68% and 95% of the residuals from the linear model fitted to all the six datasets. See Figure 

S4a for the rest of the tracts.
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Figure 7. Homologous tract Left-Right FA scatterplots and iso-residual contour lines
Scatterplot of the Left-Right mean FA for all tracts and all projects. The grey vertical lines 

shows the 95% range of all Right FA values, and the black line the range of possible values 

for any given Left FA value. The diagonal bands are the iso-residual contour lines holding 

the 68% and 95% of the residuals from the linear model fitted to all the six datasets.
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Table 1.

Descriptive statistics of the three different populations used across the datasets.

Dataset Count Age Gender Age

WHL 44 30.8±7.8
20 female 29.5±7.5

24 male 31.9±7.9

YWM 44 31.8±14.4
24 female 29.5±2.1

20 male 34.7±3.6

HCP 44 30.7±3.2
31 female 31.9±3.2

13 male 27.8±3.2
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Table 2.

Main characteristics of the data acquisition parameters across datasets.

Dataset Scanner Vendor; Model; 
Location

Magnetic Field; Head Coil 
Receivers; Max. Gradient 

Strength

Main Sequence Characteristics Experiment Codename

WHL
GE

Signa EXCITE
UCSF

3T
8 channels
40 mT/m

55 dirs., 1.8 mm3 voxels
b = 1000 s/mm2 WHL1000

YWM
GE

Discovery 750
Stanford CNI

3T
32 channels

40 mT/m

30 dirs., 2 mm3 voxels
b = 1000 s/mm2 YMN1000

96 dirs., 2 mm3 voxels
b = 2000 s/mm2 YMN2000

HCP
Siemens

Connectom CMRR/WASH
WashU

3T
32 channels
100 mT/m

90 dirs., 1.25 mm3 vox
b = 1000 s/mm2

HCP1000 & 
HCP1000RETEST

90 dirs., 1.25 mm3 vox
b = 2000 s/mm2

HCP2000 & 
HCP2000RETEST

90 dirs, 1.25 mm3 vox
b = 3000 s/mm2

HCP3000 & 
HCP3000RETEST
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