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Banach-Tarski paradox using pieces with the property of Baire
(equidecomposable sets/paradoxical decomposition)

RANDALL DOUGHERTY AND MATTHEW FOREMAN
Department of Mathematics, Ohio State University, Columbus, OH 43210

Communicated by Robert Solovay, May 29, 1992

ABSTRACT In 1924 Banach and Tarski, using ideas of
Hausdorff, proved that there is a partition of the unit sphere S2
intosetsA, ... ,AkBj, . . ,Beandacollectionofisometries
*fal. ., °ok, Pi, ....* Pe} so that {aAl, . . . , 'rkAk} and
(p1Bi, . . ., peBe} both are partitions of S2. The sets in these
partitions are constructed by using the axiom of choice and
cannot all be Lebesgue measurable. In this note we solve a
problem of Marczewski from 1930 by showing that there is a
partition of S2 into sets Al, ..., Ak, Bi, . . ., Be with a
different strong regularity property, the Property ofBaire. We
also prove a version of the Banach-Tarski paradox that
involves only open sets and does not use the axiom of choice.

In 1924, Banach and Tarski (1), using ideas of Hausdorff (2)
proved a very striking theorem:
THEOREM (THE BANACH-TARSKI PARADOX). For n - 2,

there is a partition {Al, . .. , Ak, B1, . .. , Be} of the unit
sphere Sn and a collection of isometries {O-, . ..., ki, P1,
. . ., Pe} of Sn, so that {J1A1,&. *,AkJ and {pBl .* ,
peBe} are both partitions of Sn.
As a corollary:
COROLLARY. Ifn 2 3 and A and B are bounded subsets of

Rn with nonempty interior, then there is a partition ofA into
{Al, - . . , Ak} and a collection ofisometries of Rn", 1,...
p'd, so that {plAl, ... , pkAk} partitions B.

Colloquially, this states that one can "cut up a pea and
rearrange the pieces to get the sun."
Because A and B typically do not have the same volume,

the pieces in the partition must not have a well-defined
volume; in particular, they are not all Lebesgue measurable.
In ref. 3 (assuming the consistency of "ZFC+ there is an
inaccessible cardinal"), Solovay shows that it is consistent
with Zermelo-Fraenkel set theory with the countable axiom
of choice that every subset of Rn is Lebesgue measurable.
Hence the controversial (uncountable) axiom of choice is
required to construct the partition used in the corollary and
thus the sets must be extremely wild in this sense.
There is, however, another well-behaved countably com-

plete boolean algebra (a-algebra) of subsets of Rn, the sets
with the property of Baire. We now define this notion in a
somewhat abstract setting.
A topological space X is Polish if the topology admits a

complete separable metric. A closed set K C X is nowhere
dense iff it contains no nonempty open set. A set B C X is
meager if it is included in a countable union of closed
nowhere-dense sets. IfB is meager, then X\B is comeager. A
set Y C X has the property of Baire iff it belongs to the
smallest a-algebra containing the Borel sets and the meager
sets. Note that in Rn this is analogous to the algebra of
Lebesgue-measurable sets-i.e., the smallest a-algebra con-
taining the Borel sets and the Lebesgue measure zero sets.
The Baire category theorem implies that no nonempty Polish
space is meager. A standard fact (4) is that for each Y C X

with the property of Baire, there is an open set 0 C X so that
the symmetric difference Y A 0 is meager. If A, B E R C
5P(X), and G is a group acting on X, we say that A is
equidecomposable with B using pieces in a and elements of
G (A B with respect to G) iffthere is a partition ofA into
{Ai, . . , A"} with Ai E a and {i, . . , nC G so that {yiA1,
... , ynAn} is a partition of B. We omit 09 if a = 5P(X) and
we omit G if it is clear from context. We sayA =a2B iff there
is a partition of A, {A1, A2} with each Ai = B. A is
paradoxical iffA 2A. A group G acting on a set X is said
to act freely on Y C X iff whenever y E G and y E Y, yy =
y implies By= e.
Our main result is that the Banach-Tarski paradox can be

performed using pieces with the property of Baire:
THEOREM 1. Let n 2 2. Then Sn 2Sn using isometries and

pieces with the property of Baire.
This solves a problem posed by E. Marczewski in 1930 (see

ref. 5).
COROLLARY 1. Let n 2 3 and A and B be bounded subsets

ofRn with nonempty interior. Then A B using sets with the
property of Baire and isometries of Rn.
COROLLARY 2. Let n - 3, and A and B be nonempty

bounded open subsets ofRn. Then there is a pairwise disjoint
collection {A, . . . , Ak} ofopen subsets ofA whose union is
dense in A and a collection {pi,. . , pjj of isometries ofRn
so that iA1, ...., pkAk} is a pairwise disjoint collection of
open subsets ofB whose union is dense in B.
COROLLARY 3. Let n - 2. There is no rotation-invariant

finitely additive probability measure on the Borel subsets of
Sn giving meager sets measure zero.
We note that Corollary 2 is proven entirely constructively,

with no axiom of choice. In the "pea-sun" metaphor, it says
that there is a collection Q1, . . ., 0n of disjoint open subsets
of the sun that fill the sun (in the sense that there are no
"holes" of positive radius) and that can be rearranged by
rigid motions to remain disjoint and fit inside a pea. Our other
results are as follows:
THEOREM 2. Ifn > 2 and A, B C Sn have nonempty interior

and the property of Baire, then A - B using sets with the
property ofBaire and elements of SO(n + 1).
THEOREM 3. Let n 2 2. For each N 2 3, there is a partition

{A1 ... , AN} of Sn into congruent pieces with the property
ofBaire. Further, if1 - i < j < k c N, then there are rotations
Pi, P2, p3 so that {pAi,, p2A p3AkJ partitions Sn.
THEOREM 4. The sphere S2 and the unit ball in R3 each have

paradoxical decompositions using 6 pieces with the property
of Baire. [Wehrung (personal communication) previously
showed that one needs at least 6 pieces.]
These results will appear in a forthcoming paper of the

authors.

MAIN LEMMA
We now state our main lemma, prove the Banach-Tarski
paradox, and use the proof to reduce Theorem I to the Main
Lemma:
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MAIN LEMMA. Suppose X is a separable metric space and
G is a countable group ofhomeomorphisms ofX actingfreely
on X. Suppose that {pi, yi: 1 c i c 3} C G generate a free
subgroup ofG ofrank 6. Then there are disjoint open sets {Ri,
Gi: 1 < i s 3} so that U1i<3piRi and Ul:i3yiGi are dense
open subsets of X.

Let G be a group acting on X and 9a C 9P(X). For A, B E
Oa define A ' %B (with respect to G) iff there is B' C B with
A - SB'. Banach noticed that the usual Schroder-Bernstein

proofworks in this context (see ref. 5, pp. 25-26 and 116): Let
9a = 9P(X) or (if X is a Polish space and G is a group of
homeomorphisms) 9a = {Y C X: Y has the property of Baire}
and suppose that A 9,B and B s %A, then A - B.

Our first step in reducing Theorem I (for n = 2) to the Main
Lemma is to note that if 9i C 5S2 is countable, then S52 \9
for any rotation-invariant o-algebra Oa containing all single-
tons. To see this, choose a line e through the origin, whose
intersection with 52 doesn't meet 91. Choose a rotation p

about e so that for all natural numbers m > 0, pm"? n 9; = 0.

(Since 91 is countable the collection of such rotations p about
e is cocountable.) Then: S2 = (52\Um,pmq1) U (Umjpm91)

q(S2\Um:.pmq1) U p(Um:,",0mq) = (S2\Um.opmq1) U

Umalpmqi;; = S2\91
Now choose rotations 4, 41 of S2 that generate a free group

on two generators. For v E {,, ', /i+, q-r}, let W, = {w E
(4,, a): w is a reduced work beginning with v}. Then for v #
vI, wv n Wv, = 0 and (d, = W,0 U 0WO-1 =W= U Swi.
Let F = {s E S2: s is fixed by some element of (4, J}, and let
Y C S2\F be (4, *)-invariant. For each (4,, *)-orbit e of Y,
choose x0 E C. For v E {4,, -1', 4,, 41}, let Yv = U{WVxC:
e is an orbit}. Since (4,, acts freely on 52\F, for v v' we
have Yv n Yv, = and Y = Y4,U OY4,-i = Ye U Y,*-,. Hence
Y = Y4, U Y,0-1 s Y\(Y4* U Y4,-,) s Y, and thus the Banach-

Schroder-Bernstein theorem implies that Y = Y#, U Y,-,

Y\(Y.* U Y,*- ), or Y= 2Y. In particular, if = 52\F, we have

52 _ Y = 2Y = 2S2 (the Banach-Tarski paradox).
To prove Theorem I from the Main Lemma, let X = 52\F

with the inherited topology. Then X is a Gas subset of S2 and
hence is a Polish space with the subspace topology (6).
Further, (4, /i) acts freely onX by homeomorphisms. Let {pi,

Ay: 1 < i c 3} be free generators of a free subgroup of (4,

ofrank 6. Applying the Main Lemma, we get pairwise disjoint
open sets {Ri, Gi: 1 < i < 3}. By "shrinking" the Ris and Gis
we can assume that both {p1R1, P2R2, p3R3} and {yiG1, y2G2,
y3G3} are pairwise disjoint collections of sets. Let B =

Ul1i3pRRi n U1i-3y,Gi and D = ngE(4,OO g(B). Then D is a
(4, ¢)-invariant comeager set. Letting Rf = R, n D and G =

Gi n D, we find D = U1,i53pR! = U1Si53yGi'. Let 9k be the
collection of sets with the property of Baire. Then D

%Ulsi53Rif < %(D\Ui-i-3G,) ' %D, so by an application ofthe
Banach-Schroder-Bemstein theorem, (D\U1,:i3G,) SD
%U1:5i3G;. Hence D = 2D. On the other hand, Y =S2\(D
U F) is (,, *)-invariant and meager. Hence Ye 2Yand, since
Y is meager, the pieces used trivially have the property of
Baire. Putting all of this together, we see

S2 zS2\F D US2\(DU F) - 2D U2(S2\(D U F))
2(S2\F) - %2S2.

This proves Theorem 1.

PROOF OF MAIN LEMMA
We now prove the Main Lemma. Fix a countable dense
G-invariant subset D in X, and endow it with the subspace
topology. Then G acts on D by homeomorphisms. It suffices
to build pairwise disjoint open subsets of D, {RA, Gi: 1 si s
3} so that Ul i-3ptRiand Ulli-3yGiare dense in D. (Then, if
we let R! be the interior of the closure ofRiin X and G! be the

interior of the closure of Gi in X, {R, G.: 1 s i - 3} witness
the lemma for X.)

Consider the subgroup H of G generated by P = {pT' 0 pj:
1 < i $1s 3} U {IT- 0 yj: 1 c i 0jc 3}. On each H-orbit
of D, put the undirected Cayley diagram ofH with respect to
the presentation P. So, for x and y in D, x is connected to y
iff for some i # j, pT1 O pox) = y or VT1 0 ibx) = y. A triple
(x, y, z) is an (i, j, k)-red triangle iff Pj 1 0 p,{x) = y and pk 1
o p,(x) = z. Define an (i, j, k)-green triangle similarly, using
yi, yj, and yk. Since H acts freely on D and is a free group,
each connected component of the Cayley graph onD consists
of red and green triangles linked at the vertices and no simple
cycles except these triangles. In particular, if x and y are in
the same connected component then there is a unique path
from x to y of minimal length (which we call the graph
distance from x to y) and for each w and each triangle (x, y,
z) in the component of w there is a unique vertex of that
triangle closest to w. Note that each path determines a word
w in the letters P and the graph distance from x to y is the
length of the unique shortest word w (written in the letters P)
so that w(x) = y. (We will call these minimal words "re-
duced"-they are the words in P that are reduced in the
group (pi,- yi: 1 - i s 3).)
LEMMA 2. Let x0 E D and m E N. Suppose that A1,...

An is a partition of D into open sets. Then there is a
neighborhood 0 ofx0 so that for all y C 0, all i s n, and all
words co C H (expressed in the alphabet P) oflength less than
or equal to m, co x0 E Ai iff c y c Ai.
Proof: Let 0 = n{y-1(A,): length y s nt and y(xo) E Ail.
To prove the Main Lemma, we must construct Ri, Gi so

that they can be rearranged into a "red" open dense set and
a "green" open dense set. So the main task is to arrange
density and maintain the disjointness of {RI, Gj: 1 s i s 3}.
Fix (On: n C N) a basis for the topology on D. We now "color"
the points in D into open colors {RI, Gi: 1 s i s 3} so that for
each n, UpR f On #0 and UyGi n On0, 0. Viewing each
On as two "tasks," we build sequences of open sets Ri? C RI
C ***C RIn C Rq"+1 C . .. and Gi? c Gil ** C G7n C Gi"+1
C ... so that {RI+1, Gin": 1 - i s 3} accomplishes the nth
task; i.e., Up*R2n+l n o$ 0 and Uy,-G+2 n o0n, # 0.
(Setting Ri = UnRq and Gi = UnG7 then suffices.) There may
be an obstacle, however: trying to arrange that 0 n
Ulic3pR!'+ : 0, it may occur that for each i, pi-l(O) C
U1',qR7' U UG7. It would then be impossible to add an open
subset ofany p,-'(O) to R. and maintain disjointness. We thus
have an induction hypothesis preventing this. Note that if w
E 0 and x = pT-l(w), y = p-1(w) and z = pk l(w), then (x, y,
z) is an (ij, k)-red triangle. If0 were the obstacle described
then xE Ui'#iR7 U UG7i", y E UpojR' U U,Gi, and z E Ui,'kRn
U UGIS. This is called a bad (i, j, k)-red triangle. [Bad (i, j,
k)-green triangles are defined similarly with ys replacing ps
and the Gs and Rs interchanged.] Our induction hypothesis
ensures that there are no bad triangles. In fact, we will
demand the stronger requirement that ifx E U1 +Rn U U,G7
andy E Ui,zRn7 U UGi7, then z E Rk, and ofcourse, similarly
for green triangles. We call triangles that violate this stronger
hypothesis "delinquent."
Presented with a "red" task 0 at stage n, if there is no

delinquent triangle, it is possible to add some xo to some RI
with x0 E p-l'(O). But adding this to RI (to be an element of
R7"+) threatens to create new delinquent triangles, so we
must add further points to the Rr.s and Gis adjacent to x in the
Cayley graph. This creates further complications. We must
show that no contradictory requirements are created (by
induction on graph distance) and that we can "blow up" xO
to an open neighborhood which exactly mimics the behavior
of xO and hence can be added to R7 with the resulting
consequences.
The induction hypotheses on the sets {R., G.: 1 < 1 < 3}

are:

Mathematics: Dougherty and Foreman
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Hypothesis 1: For each i, n . 1, R. and G7 are open subsets
of D with no boundary, and {R., G.: 1 C i - 3} is pairwise
disjoint, and R1-l C RI, Gin 5 G7 .
Hypothesis 2: For n = 2j (resp. n = 2j + 1), UipiR'+l n oi

# 0 (resp. Uiry,,G+1 n o0 # 0).
Hypothesis 3: Let RI = Us +,Rn U UG and G* =UrqG

U UiRI. If (x, y, z) is an (i, j, k)-red triangle and x E R*, y E
R*, then z E Rk, and similarly for the Gs and (i, j, k)-green
triangles.

Define the live Cayley graph at stage n to be the edge-
subgraph consisting of all edges adjacent to a vertex in
U1,si3R! U Gq.
Hypothesis 4: The live Cayley graph at stage n has finite

connected components.
The following clearly suffices to prove the Main Lemma:
Main Claim. There is a sequences of open sets {R., G.: n

E N, 1 ' i ' 3} so that for each n, Hypotheses 1-4 hold.
We construct the sequence by induction on n. For n = 0,

let R? = Gi° = 0.
Suppose we have {R, G.: 1 c i c 3} satisfying Hypotheses

1-4. By symmetry we may assume n = 2j. Choose w E O9.
The triple (pj 1(w), pi l(w), pil(w)) is a (1,2,3)-red triangle, so
by Hypothesis 3, for some t, xo = pj1(w) 0 Rt. Let C be the
(finite) connected component of xo in the live Cayley graph.
We define by induction on graph distance, a pairwise disjoint
collection of subsets of C, {Ah, 6i: 1 < i c 3}.

Let xo E A-. Suppose m 2 1 and we have defined hi and ci
restricted to points of distance c m - 1 from xo. Each point
z in C of distance m from xO belongs to a unique triangle {x,
y, z} with vertex x of distance m - 1 from xo. If (x, y, z) is an
(ij, k)-red triangle and x E UihA U U,<i and y E R*, then
we put z into Ak. [If (x, y, z) is an (i, j, k)-green triangle we
do analogous things with the role of the Rs and Gs reversed.]
Since C is finite this process terminates. An induction on
graph distance shows that at stage kin the construction of {IA
ci: 1 < i < 3}, the Ais and dis are pairwise disjoint, there are

no bad triangles, and every triangle of whose vertices of
distance at most k from xo is not delinquent.

Let C' be the union of all the connected components of the
live Cayley graph at stage n that have a vertex adjacent or
equal to some element ofUi U A,). Then C' is finite, since
each Ai and Pi is. Let m = IC' + 1 and U = D\(UR7 U UGi).
By Lemma 2, there is an open neighborhood 0 of xo so that
for all y E 0 and all words w (in the letters P) of length less
than or equal tom, co xo E R' (resp. Gi, U) iffw y E R7 (resp.
Gi, U). This implies that if we "label" the elements of the
Cayley graph of distance less than or equal to m from y E 0
with the labels R7 and G7 and U according to which sets they
belong to we get a graph isomorphic to the labeled graph of
the elements of distance less than or equal to m from xo. By
shrinking 0 further we may assume that 0 has no boundary
and for all y £ 0 and all reduced words co # co' (in the letters
P) of length less than or equal to m, wO n agO = 0.

Let R. 1 - U{wO: coxo E A,} U R7 and Gin` = U{coO:
cl x EC} U G?. Then Hypotheses 1-3 are easily seen to hold.
Hypothesis 4 holds because C' is the connected component
of xo in the live Cayley graph at stage n + 1. Hence for all y
E 0, the connected component at stage n + 1 is isomorphic
to C'. Thus all y' connected to some y in 0 have finite
connected components in the live graph at stage n + 1. For
all other z, the live component at stage n + 1 is unchanged
from the live component at stage n.
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