
1

A Model for Scalable and Balanced
Accelerators for Graph Processing

Marjan Fariborz, Mahyar Samani, Terry O’Neill
Jason Lowe-Power, S.J. Ben Yoo, and Venkatesh Akella

Abstract—Designing a graph processing system that can scale to graph sizes that are orders of magnitude larger than what is
possible on a single accelerator requires a careful codesign of accelerator memory bandwidth and capacity, the interconnect bandwidth
between accelerators, and the overall system architecture. We present a high-level bottleneck-analysis model for design and evaluation
of scalable and balanced accelerators for graph processing. We show several applications of this model including how to choose the
right mix of different memory types, network topology, network bisection bandwidth, and system-level architecture to match the access
patterns and capacity requirements of different data structures for a given graph and a performance target.

Index Terms—Graph accelerator, graph analytics, heterogeneous memory, balanced computing

✦

1 INTRODUCTION

Graph analytics is used to uncover insights from high vol-
umes of connected data. As the size of real-world graphs
increases, future computing systems must support large-
scale graph processing in a cost-effective and timely manner.
Today’s largest benchmark graphs are on the order of 100
billion edges and 3 billion vertices [3], and some systems
are processing graphs with over 200 trillion edges [6]. In
addition to this enormous scale, graph processing has many
challenges, such as frequent random memory accesses and
low spatial and temporal locality [8]. These challenges are
compelling a resurgence of studies focusing on implement-
ing accelerators for graph workloads. However, due to the
infeasible runtimes—and even more infeasible simulation
times—these studies do not evaluate their performance at
these massive scales. Thus, there is a need for an analytical
model to predict the performance of graph processing as we
scale the graph size (by two or three orders or more) to help
design balanced high performance graph accelerators in the
future. The goal of this paper is to establish this analytical
model.

Most prior accelerators for graph algorithms focus on
improving performance by reducing data movement and
data accesses through on-chip memories [7], [8], [11] or
perform processing in/near memory [4]. To scale to large
graphs, these accelerators either use time multiplexing (tem-
poral slicing), which is not scalable with memory capacity
and does not improve performance, or they use a “scale-
out” approach (spatial slicing) and duplicate their acceler-
ators many times to make a large-scale system [7]. In the
model presented in this paper, we focus only on spatial slic-
ing, or scale-out approaches, since these are more scalable
to massive graph analytics than temporal slicing.

• The authors are with the Department of Electrical and computer Engi-
neering and the Department Computer Sciences, University of California
Davis, Davis, CA 95161 .

• Emails: {mfariborz,msamani,toneill,jlowepower,sbyoo,akella}@ucdavis.edu
• This work was supported in part by ARO W911NF1910470.

Simply increasing the number of accelerators in the
system does not guarantee performance improvement. The
model presented in this paper allows us to investigate how
to build a balanced large-scale graph processing system
without simulation or emulation. The model parameters
are specific to a particular system design, algorithms, and
graphs of interest. To build the model, we ask the following
questions. What data structures does the accelerator or algo-
rithm use? What is the capacity requirement of the memory
devices to store each data structure for the graph of interest?
How does the access pattern of each data structure and
bandwidth of the memory devices affect the performance
of the algorithm? What are the network requirements (port
bandwidth, bisection bandwidth, and topology) to fully uti-
lize all memories and accelerators in the scale-out system?

With the answers to these questions, we can parame-
terize a model to find a balanced design which gives the
most performance for the least cost (i.e., with the least over
provisioning of bandwidth and capacity). Our model helps
designers understand the performance implications of scal-
ing out their accelerator cores to accommodate large graphs,
and encourages designers to consider the impact of the
whole system to create a balanced graph accelerator. Since
well-known microarchitectural techniques like parallelism
and better partitioning and exploiting data reuse via on-
chip memory can be used to hide the memory latency, our
proposed model mainly focuses on the systems’ throughput.

The main contributions of this work are:
• We develop an analytical method to predict the per-

formance of a graph processing accelerator taking
into account memory and network performance and
accelerator-specific optimizations such as degree of
reuse and tiling schemes.

• We demonstrate how to take advantage of heteroge-
neous memory to address the unique access patterns
and capacity/bandwidth trade offs in graph process-
ing to develop a balanced system.

• We show three important applications of our model
to show its applicability to computer architects and



2

system designers interested in optimizing large scale
graph processing.

2 A MODEL FOR SCALABLE ACCELERATOR

The proposed performance model calculates the system-
level requirements assuming an asynchronous implemen-
tation of the widely used vertex-centric programming
paradigm for graph processing. We assume a system is
constructed by combining a set of accelerator tiles (the basic
building blocks) with an appropriate interconnection net-
work. The requirements are in terms of memory capacity and
memory bandwidth for different types of memory, the network
bandwidth, and number of tiles. These requirements depend
on the structure of the graph, representation of different data
structures, and physical constraints such as the maximum
I/O on each tile. With the assumption that graph algorithms
are throughput limited, these requirements capture the be-
havior of many graph accelerators. Additional constraints
could be added to the model if this assumption does not
hold (e.g., the compute capability is a limiting factor).

To calculate the bandwidth for each component, we
consider the maximum performance required from each
component individually. Equation 1 shows Graph Algo-
rithm Iron Law (GAIL) [5] which calculates the execution
time for graph workloads. GAIL separates algorithm and
hardware performance. Traversed Edge Per Second (TEPS)
shows the hardware performance. For the same algorithm
implementation, larger TEPS will result in a smaller exe-
cution time. Our model focuses on maximizing this TEPS
performance metric.

time
kernel

=
number of edges

kernel
× 1

TEPS
(1)

2.1 Memory System

Next we describe what data structures to store in the
memory and the capacity and bandwidth requirement of
these data structures. Both edges and vertices have different
characteristics. The proposed model calculates the capacity
and bandwidth requirements of edges and vertices sepa-
rately. For simplicity we only consider vertex and edge
data structures in the description below, but the model can
extend with other data structures easily.
2.1.1 Edge

In general, edges require a larger memory capacity com-
pared to vertices (graphs such as WDC12, Twitter, and
LiveJournal have 36×, 34×, and 15× more edges than ver-
tices). In most graph programming models [1], [2], [9] access
to edges are sequential and read-only. The model should
determine the number of memory devices that provides
enough capacity for a targeted graph. Table 1 Row 1 shows
the required capacity for the edge memory which depends
on the number of bits representing edge information. The
size of the edge is different between accelerators. At a
minimum it should include the vertex ID (destination or
source) and the weight of the edge. The other constraint for
the edge memory is the required bandwidth to achieve a
certain performance in TEPS (shown in Table 1 Row 2).

2.1.2 Vertex

In contrast to edges, vertices have low spatial and temporal
locality in most graph algorithms. This lack of locality

causes inefficient off-chip memory access and low memory
access throughput. Prior work exploits locality through
graph pre-processing [8] or by online traversal schedul-
ing [10] to improve the on-chip cache usage. Other hardware
accelerators use on-chip SRAMs to store vertices and/or
events to reduce off-chip memory access [11].

The required vertex bandwidth depends on the perfor-
mance of the edge memory. For every edge read there is
at most one vertex read and one vertex update. Therefore,
vertex access rate is 2× higher than edge access rate. The
maximum supported bandwidth also depends on the access
granularity to the vertex memory system (a.k.a. atom size).
On-chip caches reduce the off-chip vertex memory access
rate. Therefore in our model we use a parameter α to model
accelerators with on-chip memory assigned to vertices. α
indicates the fraction of the off-chip memory bandwidth
that is needed by the accelerator. α is a value between
zero and one. An accelerator that exploits locality/reuse
will have a smaller α which means it will have lower off-
chip memory bandwidth requirement. Table 1 Row 3, shows
the maximum required bandwidth for vertex memory given
a TEPS (usually from the peak edge bandwidth (Table 1
Row 2). In addition to the bandwidth, we must also meet
the capacity requirement of the vertex memory. Our model
needs to consider the capacity of vertices (Table 1 Row 4).

2.2 Network Requirements

After finding the best memory technology for vertex and
edge data structures, we must ensure that data movement
among accelerators will not cause a performance bottleneck.
We consider the network as the third constraint in our model.
What we consider as network in our scaled-out system is
the interconnection fabric between accelerators. Accelera-
tors use this network to communicate inter-slice updates. A
well-partitioned graph with a low inter-slice event rate does
not require a high bandwidth network. The proposed model
takes into account the bisection bandwidth, port bandwidth,
and topology of interconnection network.
2.2.1 Bisection Bandwidth

The required bisection bandwidth is dependent on the per-
formance of each accelerator and the size of the message
communicated through the network. With every edge read
a new message is created to another vertex. Hence, TEPS
indicate the maximum rate of messages generated from the
aggregate edge memory across all accelerators. We use γ
to indicate the fraction of the messages targeting vertices
in remote accelerators and have to be communicated over
the network interconnect. Table 1 Row 5 shows the required
network bisection bandwidth.

Data representation dictates the size of the message com-
municated in the system. It depends on the implementation
of the accelerator and is a parameter in our model.
2.2.2 Port Bandwidth

The required network bandwidth for each accelerator can
also be a limiting factor. Port bandwidth depends on the re-
quired bisection bandwidth and the number of accelerators
in the system. See Table 1 Row 6.

2.2.3 System Architecture

The system architecture dictates the interconnection traffic
patterns and depends on the port bandwidth and the in-



3

Network

ACCL

... ...

Bi-Section BW

Port BWVM: Vertex Memory 
EM: Edge Memory

ACCL ACCL
VM

EM

ACCL
VM

EM

VM

EM

VM

EM

VM

EM

VM

EM

(a)

Network

ACCL

...

Bi-Section BW

ACCL

VM

EM

VM

EM

VM

EM

ACCL

VM

EM

VM

EM

VM

EM

...

Port BW

(b)
Fig. 1: System architecture for the scaled-out accelerator. a) Near
memory processing. b) disaggregated memory-based.

1 Edge
= Number of edges × Sizeof(Edge)Capacity

2 Edge
= Maximum TEPS × Sizeof(Edge)Bandwidth

3 Vertex
= 2× atom size × TEPS ×αBandwidth

4 Vertex
= Number of vertices × Sizeof(Vertex)Capacity

5 Bisection BW
= TEPS × Sizeof(message) ×γ(Near-memory)

6 Port
=

Bisection Bandwidth
Number of acceleratorsBandwidth

7 Bisection BW
= Vertex BW + Edge BW(disagg.)

TABLE 1: System constraints used in the proposed model. α is the
miss ratio of vertex on-chip memory. γ is the percentage of inter-
accelerator to intra-accelerator communication.

terconnection network topology. We model two systems:
near memory processing architectures and disaggregated
memory-based architectures as shown in Figure 1. In the
near-memory processing system, each accelerator tile is con-
nected to a local memory system, and the interconnection
network is between the accelerators. Here, each accelerator
is operating on its local vertex and edge information, and
only events are communicated through the interconnect (Ta-
ble 1 Row 5). Whereas in the disaggregated memory based
system the accelerators do not communicate directly with
each other—the communication is through the memory. In
this topology, accelerators not only use interconnects for
communicating events but also use them for read/write
vertex and edge information. Hence, it required a larger
bisection bandwidth in the network (Table 1 Row 7).
2.3 Accelerator Node

The internal architectural parameters of accelerators are
another constraints in our model. These parameters are: 1)
Number of bits for representing data structures. This parame-
ter impacts the bisection and port bandwidth of the network
and also the edge memory bandwidth requirement. 2) On-
chip resources such as caches and SRAMs. These on-chip
memory systems will impact the required bandwidth from
the main memory (α). 3) The number of I/O pins connected
to each accelerator and their data rate limits the number
memory nodes connected to the accelerators (total capacity
supported by a single accelerator), and the port bandwidth
of the interconnect. Given the high memory access and
communication to computation ratios of graph workloads,
we do not consider the computation within the accelerator
as a bottleneck in our model [8].

3 APPLICATIONS OF MODEL

We show three concrete use cases (or applications) for the
proposed model. In the first use case, we show how to use

the model to create a balanced system taking advantage of
a heterogeneous memory such as HBM3, Intel® Optane™,
and DDR5 for a given graph. Next, we show how given a
homogeneous memory system, the proposed model can be
used to calculate the locality required from on-chip memory
to store vertices and edges in the same memory. This could
be useful to someone developing the microarchitecture of
the accelerator. In the third use case, we compare the system
generated from our model with a high performance comput-
ing system given a graph, algorithm, and performance.

In the first two applications, we use the WDC12 hy-
perlink graph [3]. We use 8 bytes to represent edges and
16 bytes for vertices. The accelerator for WDC12 requires
55 GiB for vertices and 2 TiB of edges. We consider the
Breath First Search (BFS) algorithm and assume our accel-
erators have no on-chip resources i.e., α = 1. In our parti-
tioning scheme we assume 80% more inter-slice edges than
intra-slice (γ). We assume our accelerators have 2000 data
pins. Note, that these are just assumptions to illustrate the
specific applications. The proposed model is not restricted
to these assumptions.
3.1 Use Case 1: Creating a Scaled-out System
In this section, we address the question How to create a
balanced Scale-Out graph accelerator given graph input and a
given performance target? The proposed model provides the
required memory devices for vertex and edge memory and
network bisection bandwidth to answer this question.

Edge Memory: Figure 2a shows the capacity-
performance relationship for different memory technolo-
gies using Table 1 Row 1 and Row 2. The right-side of
the red dotted line shows the region of interest for edge
memory capacity. HBM3.0 requires more than 128 stacks
to scale to WDC12 graph, and although it provides a
significant amount of performance, it also has high cost.
Optane, provides a significantly larger capacity with 32×
fewer channels than HBM3.0 stacks, but with less perfor-
mance due to its lower read bandwidth. Given DDR5’s
improved cost-performance tradeoff, we choose its perfor-
mance (100 GTEPS) as the target accelerator performance
for the bottleneck analysis for the rest of the system.

Vertex Memory: Figure 2b shows the performance-
capacity trade-off for the vertex memory. The red dashed
and solid red lines show the minimum capacity and per-
formance requirements respectively. The upper quadrant
region of these lines shows the memory systems with both
performance and capacity considerations.

Network: For our network constraints we consider near
memory processing system architecture due to its low bisec-
tion bandwidth requirements. With 8-byte message size and
using the equation in Table 1 Row 5, the required bisection
bandwidth for WDC12 is 640GB/s.

Answer: Using our model, we find that 8 accelerators
each with one stack of HBM3.0 as vertex memory and one
DDR5 channel as edge memory in a near memory process-
ing configuration is the best for the given performance target
(100 GTEPS) and the graph (WDC12).

3.2 Use Case 2: Locality Calculation

The proposed model can be used to calculate the locality
requirement (i.e., α) for the accelerator while using homo-



4

(a) Edge memory. Desirable region: right-side of capacity limit. (b) vertex memory. Desirable region: Upper right quadrant.

Fig. 2: Performance vs. capacity: (a) Edge memory the dotted vertical line indicates the required edge capacity. (b) Vertex memory Uses the
performance (TEPS) in addition to the required vertex capacity (dotted horizontal line). We consider α = 1.

geneous memory technology for edges and vertices. In this
example we consider using only DDR5 devices.

From our previous calculation we will use eight accel-
erators, and we will now use two channels of DDR5 each
(Figure 2b). Eight channels of DDR5 provides the required
capacity for the vertex memory (right-side of dashed red
line). Eight channels of DDR5 only provides 6.4 GTEPS
with α = 1. To increase the performance to 100 GTEPS our
model determines α must be less than 0.064 using Table 1
Row 3. Thus, if the accelerator’s on-chip memory for vertex
information was a simple cache it would require a hit ratio
of 93.6% for a balanced system with DDR5 channels for both
edge and vertex with minimum over provisioning on the
capacity. Thus, our model shows that in a homogeneous
memory system, unless the accelerator can find significant
locality, the vertex memory will be the bottleneck.

3.3 Use Case 3: System Evaluation

Next, we compare the results from our model to a real
example of a highly-scalable graph analytics system. We use
our model to estimate the performance of the new Sunway
supercomputer running BFS on a synthetic graph with 17.56
trillion vertices and 281 trillion edges and compare our
result with the performance reported by Cao et al. [6].

Sunway supercomputer is equipped with 40 million pro-
cessing cores across 103,912 processing units each with eight
DDR3 channels. Using our model we predict a performance
of 71,680 GTEPS with the Sunway supercomputer without
any optimization (γ = 1, α = 1). However, Cao et al.
achieves 180,792 GTEPS (2.5× better performance). This
discrepancy is due to their novel 3-D partitioning method
which leads to a lower γ (γ ≈ 0.4).

Furthermore, we can use our model to create a balanced
system for the same synthetic graph and a performance
target of 180,792 GTEPS and compared our system against
Sunway supercomputer. The proposed balanced system
from our model requires 256 TiB of memory for storing
the vertices and 2 PiB of memory for storing the edges.
The model shows the balanced design only needs 8192
accelerators each with 2 DDR5 channels and 2 HBM3.0
stacks for edge and vertex memory, respectively. The system
derived using our model uses 12× fewer processors (accel-
erators tiles) and 4× smaller memory by taking advantage

of heterogeneous memories to better match the capacity-
bandwidth tradeoffs inherent in graph processing.
4 CONCLUSION

As the size of the graphs increase, by orders of magnitude
in the future, simulation is no longer viable for conducting a
system-level design space exploration of graph accelerators.
We need an analytical model that can help an architect
make high level design decisions such as number of tiles,
what is the target network bisection bandwidth, what mix
of memory technologies make sense, what are the trade-offs
between a disaggregated memory configuration and a near-
memory configuration, and how to build a balanced system
for a given graph size and given performance target. In this
paper we present a high level performance model for large
scale graph processing and how to use this model to answer
these questions.

Currently the proposed model targets asynchronous
vertex-based graph programming paradigms. In the future
we plan to extend this model to linear algebra based formu-
lation of graph analytics [12] and dynamic graphs and use
this model to drive the design of the microarchitecture of
the accelerator tile itself.

REFERENCES

[1] “Giraph - Welcome To Apache Giraph!” [Online]. Available:
https://giraph.apache.org/

[2] “ISS Group at the University of Texas.” [Online]. Available:
https://iss.oden.utexas.edu/?p=projects/galois

[3] “WDC - Hyperlink Graphs.” [Online]. Available:
http://webdatacommons.org/hyperlinkgraph/

[4] J. Ahn et al., “A scalable processing-in-memory accelerator for
parallel graph processing,” in ISCA, 2015.

[5] S. Beamer et al., “Gail: The graph algorithm iron law,” in Proceed-
ings of the 5th Workshop on Irregular Applications: Architectures and
Algorithms, 2015.

[6] H. Cao et al., “Scaling graph traversal to 281 trillion edges with 40
million cores,” in PPoPP, 2022, pp. 234–245.

[7] V. Dadu et al., “Polygraph: exposing the value of flexibility for
graph processing accelerators,” in ISCA, 2021.

[8] T. J. Ham et al., “Graphicionado: A high-performance and energy-
efficient accelerator for graph analytics,” in MICRO, 2016.

[9] Y. Low et al., “GraphLab: A New Framework For Parallel Machine
Learning.” [Online]. Available: http://select.cs.cmu.edu/code.

[10] A. Mukkara et al., “Exploiting locality in graph analytics through
hardware-Accelerated traversal scheduling,” MICRO, 2018.

[11] S. Rahman et al., “Graphpulse: An event-driven hardware acceler-
ator for asynchronous graph processing,” in MICRO, 2020.

[12] N. Sundaram et al., “Graphmat: High performance graph analytics
made productive,” arXiv preprint arXiv:1503.07241, 2015.


