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Abstract

Cloud screening is the process of classifying pixels in satellite images which contain
clouds and is an important step in processing remotely-sensed images. This paper applies
inhomogeneous statisticalspatial models in the form of Markov random field models (MRF)
to this problem and develops an efficient algorithm for the estimation of model parameters.
The algorithm has a natural parallel decomposition. The model is tested on synthesized
images for which ground truth is known and applied to segmentation of clouds in several
Advanced Very High-Resolution Radiometer (AVHRR) images. This paper concentrates on
the abstract spatial aspects of the models rather than the details of specific remote-sensing
mechanisms. The main results are (1) the formulation (in terms of inference and estima
tion) of the inhomogeneous MRF model, (2) the exact solution of the "pseudo-likelihood"
equations used for parameter estimation in this model, and (3) experimental results which
indicate that (a) inhomogeneous models perform better than homogeneous models and (b)
that spatial models perform better than non-spatial models for cloud-screening problems.



1 Introduction and Background

This paper introduces an algorithm for locally-adaptive parameterestimationofspatially in-
homogeneous Markov random fields (MRFs) using an exact solution to the pseudo-likelihood
equations of Besag (1986). The standard MRP model assumes that the coupling between
pixel labels (the (3 parameter) isglobally constant throughout the image. An inhomogeneous
MRP model allows this coupling parameter to vary spatially. Our interest in this model
stems from the practical problem of "cloud screening," namely the automatic segmentation
of cloud pixels from ground pixels in remote-sensing applications (Simpson and Humphrey,
1990). Existing cloud-screening algorithms make decisions on a pixel-by-pixel basis and do
not take axlvantage of spatial information. The inhomogeneous MRP appears better suited
for such images than the homogeneous MRP, since clouds have locally varying spatial scales
(e.g., see Figure 1). The method is tested on synthesized images for which ground truth is
known and applied to segmentation of clouds in remote-sensing images.

The paper concentrates on the abstract spatial aspects of our models rather than the de
tails ofspecific remote-sensing mechanisms. Our main results are the formulation (in terms
of inference and estimation) of the inhomogeneous MRP model, the exact solution of the
pseudo-likelihood equations used for parameter estimation in this model, and experimental
results on synthetic images which validate the use of both the pseudo-likelihood estimation
methodology and the inhomogeneous model.

1.1 Background on Cloud Screening

Continuous remote sensing of the Earth's surface is now routine in areas such as atmospheric
science, ocean science, ecology, agricultural science, etc. In recent decades, the performance
of onboard satellite sensors has dramatically improved while the cost of communication has
significantly dropped. As a result, very large sets of remotely-sensed images are routinely
collected, analyzed, and archived.

Foroptical, infrared, and submillimeter wavelengths, the main obstacle inobtainingclear
satellite images of the Earth's surface are clouds (Elachi, 1987). Clouds can contaminate
any analysis carried out on the images. A typical AVHRR image with cloud contamination
is shown in Figure 1.

Typical "products" from satellite imagery are calculations of standard indices like NDVI
(normalized dilference vegetation index) or SST (sea surface temperature). These indices
change over time and their temporal evolution is of fundamental interest in various scientific
endeavors such as global climate change studies (Gutman et al., 1995). The indices are
calculated from the intensity information contained in the images. These calculations can be
very sensitive to the misrepresentation of surface reflectance caused by cloud-contaminated
pixels (e.g., Gutman, Ignatov, and Olson, 1994). For example, calculations of sea-surface
temperature (SST) can be considerably biased by pixels containing clouds (Henderson-
Sellers, 1982; Stewart, 1985). Image archiving applications (e.g., for military and intelligence
purposes and for monitoring of forest growth) also involve cloud screening in the sense that
they are intolerant of cloudy images.

Hence, the classification of pixels in remotely-sensed images into "cloud" and "non-
cloud" is an important practical problem, especially given the increasing volume with which
these images are being collected. Once classified, unwanted pixels can be rejected from
further consideration. Depending on the particular application, the whole image or part of
it can be discarded, or it may sulfice to quantify the "cloudiness" of the image (e.g., for



Figure 1: An example of an AVHRR image with cloud contamination.

characterization of optical Landsat imagery).

1.2 Current Cloud Screening Algorithms

Existing cloud screening algorithms are typically based on pixel-by-pixel classification into
cloud and non-cloud classes. Early work on cloud screening was based on static thresholding
of measured intensities using single (Bernstein, 1982) or multiple channels (McClain et al,
1983). The disadvantage of such thresholds is that they typically are reliable only in local
regions under very specific circumstances. Simpson and Humphrey (1990) developed a
more general approach based on dynamic thresholds which are computed using background
knowledge of the physical radiation processes governing cloud appearance.

More recent work has focused on the application of both supervised and unsupervised
learning algorithms to this problem. Yhann and Simpson (1995) used neural networks
(combined with some post-processing) to classify pixels in a supervised fashion based on
manually-labeled training images. Gallaudet and Simpson (1991) used unsupervised clus
tering algorithms to cluster pixels into groups which are then assigned cloud and non-cloud
labels.

A disadvantage of these methods is that they do not model the spatial aspects of clouds,
i.e., the classification decision is made locally at each pixel independent of other pixels. This
ignores spatial context information which may be very useful for classifying ambiguous
(noisy) pixels in particular. Coakley and Bretherton (1982) and Saunders and Kriebel
(1988) use local windows to derive spatial indices for use in cloud screening, however, as
pointed out in Gallaudet and Simpson (1990) their algorithms operate under significant
practical restrictions.

In this work, we look at the statistical use of spatial information for cloud screening
problems using an inhomogeneous MRP model. It imposes spatial continuity constraints



Figure 2: An example of a synthetic inhomogenecus MRP. From left to to right: /?-map,
label image, and intensity image.

on labeled regions but allows different scale patterns to exist within the same image.

2 Markov Image Models

2.1 MRF Priors on the Hidden Labels

The main object of inter^t is a rectangular nxm image 5 consisting of sites Sij ordered in
a matrix manner. The neighborhood oi the site is any subset dij C S such that Sij ^ dij.
The neighborhood system N is the set of all the neighborhoods: N = t < n, 1 <
j < m}. At each site we define an intensity random variable Xij (typically taking 256
gray-levels) and a hidden label random variable Yij (discrete-valued, k labels). The specific
values the random variables take are denoted Xij and j/jj respectively. This gives us two

sets of variables defined on the image S: X = {Xu, •••^Xnm}-, and Y = {Vn, •••^Ynm}-
MRFs have been widely used in image segmentation (seefor example Besag (1986)) and

have been proven equivalent to the Gibbs statistical model in physics by the Hammersley-
Clifford (H-C) theorem (although they do not necessarily have to satisfy the rather strict
symmetry constraints imposed on physical systems). From the H-C theorem, an MRF for
P{Y) is of the form

F(y) = -e^ny) =

In this equation, z is the partition function or normalizing constant (yielding P(F) =
1). P is the temperature parameter (frequently called the smoothness parameter in image
segmentation). V is the so-called potential function and its extrema are tightly connected
to the optimal segmentation within the MRF framework. The second term (on the right
in Equation (1) above) shows how the potential function V can be factored into a sum of
potentials defined at each site: V = J2ij ^ij'

2.2 Spatially Inhomogenecus MRF Priors

Traditionally the P parameter in an MRF model is a global constant across the whole image.
This can be justified for small images, or images that are uniform in some way, but is less
well motivated for many real-world images. For images that have high spatial variability
in intensity, Pappas (1992) introduced the idea of inhomogeneous intensity parameters by
slicing images into small windows and treating them as separate images. The argument is
that the size of an image is a somewhat arbitrary concept. The variability of parameters
within the image might be large, much like variability of parameters over different, separate
images.



Here we allow for scale variability by allowing the parameter /3 to vary across the image.
Large /? values implystrong correlations and favorslarge, blob-like structures, smoothing out
a lot of the noise. Small /? values imply weak correlations and allows for 'broken' structures
of 'small islands'. The variable 13 model is well suited for images that have underlying
different scales. It prevents oversmoothing of small-scale regions, while still minimizing
noise in large-scale regions. Clouds are a particularly good example of this. For example,
notice the spatial scale variability in cloud regions (brighter pixels) in Figure 1. Figure 2
shows a synthetic image from an inhomogeneous model where (3 is increasing from left to
right across the image. Ackroyd and Zimeras (1997) have also investigated the same type
of model. However, their approach is somewhat different to that proposed here in that (1)
they used Monte Carlo methods for estimation rather than the pseudo-likelihood approach
described here, and (2) they investigated the model only on images for which ground truth
is unknown (here we provide an objective evaluation of the method where truth is known).

More specifically, in this paper, P{Y) is modeled using a second order neighborhood
~ {Vklll —1 < k < t + Lj —1 < I < j + 1}. and a spatially varying (3 term,

l3Vij{dij U {l/tj}) — particular form of the potential function
has one independent parameter /?,j per site. The potential is a count of neighbors with
the same label, where S is the Kronecker discrete delta function. Thus, ^ij is a per-site
temperature parameter which defines an inhomogeneous MRF. We further use somewhat
simpler notation nij(yij) for the number of pixels labeled y,j in the neighborhood of the site
s,j. Thus, the potential function reduces to: U{yij}) = 0ijnij{yij).

In this paper we assume that observed intensities Xij only depend on the local Yij labels
and are conditionally Gaussian (normal) given the local label. We further set mj =
and <7ij = This spatially homogeneous intensity model can be easily extended to
the spatially inhomogeneous intensity model of Pappas (1992). Bayes' theorem yields a
complete model coupling intensities and labels:

P{Y\X) oc P(X|y)F(y) = ^ (2)

The goal of segmentation is to maximize P(Y\X) with respect to labels Y. This cor
responds to obtaining the maximum a-posteriori estimate of F: Y* = argmaxy{P(y|X)}.
We use the method of Iterated Conditional Modes (ICM) by Besag (1986). ICM is a compu
tationally efficient way to find a local maximum of P{Y\X). Finding the global maximum
is well-known to be intractable.

3 Likelihood-based Parameter Estimation

The intensity parameters (/i and a for each class) can be easily estimated conditioned on a
particular segmentation. This is an approximation to the full maximum likelihood estimate,
(which would average over the hidden variable Y) which is intractable since there number
of states of Y (possible labelings of the image) is Thus, we use the tractable estimate
where we simply condition on the most likely labeling Y*\ finding Y* is discussed below.

The main difficulty in parameter estimation is theestimation oftheMRF parameters (3ij.
The estimation is intractable because (3ij appears both in the exponent of the probability
density model and in the partition function z. As a first step, consider the estimation of
the single parameter /3 as if it were global for the whole image. The direct approach is to



use the MLE:

^p(y|x,/3)ocp(x|y)^p(y|/3) =o, (3)
which reduces to:

A J_e/sv(r,« ^ 0
apziP)^

Solutions to this equation give the positions of likelihood minima and maxima. The optimal
^ is the one that corresponds to the largest maximum. The problem is that z{P) represents
the sum of terms in (3 (there is a term in the sum for every possible labeling Y).

Instead of the maximum likelihood estimator above, we use the Pseudo Likelihood Esti
mator (PLE). The PLE was first introduced by Besag as an approximation to the maximum
likelihood estimator (Besag, 1986). Geman and Grafiigne (1986) showed that the pseudo-
likelihood (PL) isa tractable approximation to the full likelihood and that gradient ascent is
feasible for a particular potential function they define for texture modeling. In this work we
look at a different class of potential functions (namely, those in the model described earlier
for segmentation into a set of discrete hidden classes) and we present a way to reduce the
maximum-pseudolikelihood parameter estimation problem to that of finding the roots of a
polynomial.

The PL is defined as:

and its log:

In both equations:

PL(Y\/3) = J]

1{Y\P) =log Pi(y1/3) =^logi-e^Jnolv.i),

= S
y=i

Zij is a normalizing constant defined locally at each pixel. Intuitively, the PLE treats
each pixel as a single image. However, each pixel is considered as an image with a frame
(neighborhood) and hence the PL does not completely decouple neighbors. Instead, it
captures "first order" dependence effects.

For further analysis, it is useful to define a new variable ^ and use it instead of /3
itself. Estimation of/? then reduces to estimation of Maximizing the log-pseudolikelihood
I becomes:

'̂(^1/5) = (8)
^ ^ ij

= (9)



In the above derivation c is a constant, and Pij and Q,j are polynomials with integer
coefficients. The degree of Pij and Qij is not more than max{nij{t/)}, which is bounded by
the neighborhood size n.

Furthermore, Pij and Qij are completely defined by nearby labels Uij. Coefficients
are constrained by so there is a combinatorial number of possible different
Pij^s and Qij^s. For example, with n = 8 and k = 4, there are 15 possible P's and Q's. This
is because there are 15unordered partitions oflength 4ofnumber 8. Although the number of
possible neighborhoods is much larger than 15,each neighborhood will be equivalent to one
of the 15 representatives. Each representative will have a particular P and Q associated
with it. The two neighborhoods are equivalent if corresponding sets {«tj(y)|Vy} are the
same.

In general, let there be 7/ = 7j{n^k) possible unordered partitions of n that are of length
k and let / denote an index that is in the range [1, ?/]. Let the set {n/(y)|l < y < k] describe
the Ith neighborhood representative and let yi be the number of the neighborhoods that
are equivalent to {n/(y)}. Furthermore, let Pi and Qi be corresponding polynomials Pij
and Qij defined on the representative {n/(y)}, and let Q(^) = H/Li QiiO be the product
over all the possible (non equivalent) polynomials Qi. Then, the PL maximizing condition
becomes:

= 0 (13)

This reduces the problem to the one of finding roots of a polynomial of degree not more
than the degree ofQ {Pi and Qi are of the same degree, and Q is divisible by any Qi). The
degree of Q can be no more than T)n as it is the product of the t? terms of degree not more
than n. Neither the coefficients nor the degree of Q depend on the image being analyzed.
The same holds for all the P/'s and Qj's. It is therefore possible (in principle) to find
the analytical solution to the above optimization problem. In practice, since the involved
polynomials are of degree 'v- 100, in the results reported here we use a Newton-Raphson
scheme for numerical root finding over the range of /? of practical interest (0 < /? < 3).
Experiments with finding all the zeros of the polynomials produced the same result as the
Newton-Raphson method, but took ordersof magnitude more time to compute.

To extend the above methodology to the problem of finding local rather than global /3's,
we estimate f) locally on small windows and then perform bilinear interpolation to get the
intermediate values. For the results in this paper, the windows are non-overlapping and set
to be 1/8 X 1/8 of the size of the original image. This choice represents a practical trade
off between having the window size be small enough to faithfully track local variability in
spatial scale (i.e., reducing the bias of the model), while at the same time not making the
window size so small that unreliable parameter estimates result from too few pixels (i.e.,
increasing the variance). Alternatives to a fixed window size would be to (a) automatically
estimate the window size from the pixel data, and/or (b) allow the windows to beofdifferent
sizes in different parts of the image. However, since is a second order parameter in the
MRF model, it is not clear if there is much to be gained by the extra effort of trying to
determine the optimal window size.

The proposed algorithm uses the A;-means algorithm for initial segmentation and then
alternates between a parameter estimation step for a given segmentation, and an Iterative



1. Given the observed intensities x, perform a non-spatial k-means
segmentation to obtain the initial classification t/o*

2. Begin loop:

(a) Set the current classification y —ya.

(b) Given the current classification y and the original intensities x,
estimate the per class intensity parameters (ficidc).

(c) Given the current classification y, estimate the MRF parameters /3
on small windows.

(d) Interpolate point estimates of ^ to obtain the full set of ^ij.
(e) Perform one ICM iteration. Evaluation of the potential function

requires the current (estimated) as well as the current
classification y and the original intensities x. Keep the updated
classification in t/o-

(f) While y and j/o iiot satisfy the convergence condition, go to
step 2.

Figure 3: Pseudocode description of the estimation algorithm

Conditional Mode (ICM) step (Besag, 1986) with fixed parameters. This general scheme
has been widely and successfully used in many applications of MRFs to imagesegmentation.
Figure 3 contains a pseudocode description of the complete algorithm for unsupervised MRF
segmentation of an image.

3.1 Computational Complexity and Parallelization

As suggested in the pseudocode, the estimation procedure is iterative and the exact number
of required iterations cannot be predicted. In the work described here, if the algorithm does
not converge in the maximum allowed number of iterations, the last classification is returned
as the result. The number 20 was used as the default value for the maximum number of

iterations in our experiments. In the results below, the image size is n x m, the neighborhood
size is d, and there are k classes.

EJstimation of the intensity parameters is linear in the number of pixels nm, as each
pixel has to be visited exactly twice: once for calculating y., and once for calculating a.

To estimate the MRF parameters {3, one needs to determine the typeof the neighborhood
of each pixel. This is done by counting differently classified pixels in the neighborhood,
which takes time linear in the neighborhood size d (per pixel). Thus, for non-overlapping
estimation windows, the total time required is 0{nmd). For overlapping windows, the time
required is proportional to the sum of the window areas. There is also the slight overhead
associated with solving the PLE equation, but it is a constant factor relative to the size of
the image. The bilinear interpolation is linear in the number of pixels nm.

Each ICM iteration locally updates the classification labels and only requires looking at
the neighborhood once. Hence, the time complexity is the same as for the estimation of the
MRF parameters, O(nmd).

The preceding analysis shows that the overall time complexity of a single iteration is



linear in the number of pixels and that the inclusion of the parameter estimation step
does not change the asymptotic time complexity. Furthermore, the choice of window size
for the estimation of /? does not eifect the time complexity, as long as the windows are
non-overlapping.

The locality of the MRF model and the local nature of the parameter estimation method
makes the proposed algorithm ideally suited for paraJlelization. The natural way to break
the problem into smaller problems is to assign each window to a single processor. Within
each window, the problem reduces to a simpler, global MRF segmentation problem.

4 Experimental Results

We performed two types of experiments. One on images generated from synthetic MRF
models, and the other on AVHRR images to investigate the application of the spatially-
varying MRF model to the problem of cloud-screening. The main difference between the
two sets of experiments is that for synthetic images ground truth is known, while for the
real-life AVHRR images ground truth is not known. A general problem is that there are
no well-calibrated ground truth annotations for evaluation of cloud-screening algorithms
(J. Simpson, personal communication, 1997). The first set of experiments focuses on the
performance of parameter estimation and the quantification of error rates. The second set
of experiments focuses on the visual appeal of the segmentations and the adaptability of
inhomogeneous model to scale variations within the images.

4.1 General Experimental Methodology

Images were generated as a realization of an inhomogeneous MRF with known parameters
using a 1-dimensional (spatial) variation in the parameter /?. The synthesized images con
sist of four labels and represent the ground truth for the experiment. The corresponding
intensity images are obtained by choosing per-class means and adding Gaussian noise with
per-class standard deviation. Depending on the separation of the means relative to the stan
dard deviation, we generated intensity images with different noise levels. Although there
are two parameters per class to control the noise (quality) of the image, there is actually
only one relevant parameter, the ratio of separation between the means to the standard
deviation.

Several different segmentation algorithms of interest were used to segment the images.
Their performance was measured by comparison of the final segmentation to the true label
image. We used misclassification rate to quantify and compare the performance of the
algorithms.

Two different types of experiments were performed on the synthetic images. The first
is on images with variable /?, the second is a control experiment on an image where (3 is
constant. Thus, the visual difference between the images from the two experiments is in
the spatial scale of label dependence.

All experiments included running a non-spatial A:-means algorithm and six different ver
sions of MRF segmentation. The MRF segmentation algorithm of most interest (and the
novel contribution of this work) is the one that is completely unsupervised and inhomo
geneous (as described in section 2). The five other segmentations used were true /?, fixed

(but chosen in an ad hoc manner), estimated global /? (homogeneous model), maximum
value of estimated 0ij and minimum value of estimated Pij.
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Figure 4: Performance of different MRF segmentation algorithms on a synthesized image
from an inhomogeneous MRF model with increasing j3 from left to right across the image.

4.2 Experiments on Synthetic Inhomogeneous MRFs

The first experiment tests the performance of the parameter estimation algorithm for a
variable-scale synthetic image. The image and the /3-map are shown in the Figure 2. P was
chosen to lie in the interval from 0.3 to 2.3, such that all points with the same horizontal
pixel coordinate have the same value of (3 (1-dimensional variation in P).

The 1-dim variation in P was chosen to make it easy to plot and visualize the results.
We were interested in performance on "tall narrow windows." These windows, consisting
of pixels with the same horizontal pixel coordinate, were realizations of a single value of p.
That way, the misclassification rate becomes a function of the single coordinate. However,
instead of directly defining the "small width" of the windows and measuring the performance
within each one of them, it was more convenient to look at the integral misclassification
rate. In other words, we measured misclassification rate on windows that started at the left
edge of the image and ended at the desired point x. The function obtained this way was
not misclassification rate itself, but rather its integral. The "goodness" of the algorithm is
represented by the slope of the resulting plot, rather than the value itself.

The main results for the inhomogeneous image from Figure 2 are contained in Figure 4.
Several observations are apparent from the graph.
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Figure 5: Segmentations returned by fc-means, global /? and variable (3 in an enlarged
portion of the image.

• At the left side of the image, spatial models do not perform that well (large slope),
while at the right side they improve. The spatial information becomes increasingly
relevant as the underlying patterns increase in size.

• The boundary value parameters (very large and very small /?) are optimal within their
respective regions (optimal slope), but their overall performance is generally poor. The
measure of overall performance is the misclassification rate at the rightmost end of
the graph.

• The ad-hoc value of /? seems to be a reasonable tradeoff. Its performance is never
optimal, but it still achieves better results than extremal values of /5.

• The single estimated value of /? is also never locally optimal, but it optimizes the
overall accuracy over different global models. In principle, the fine-tuning of the ad-
hoc /3 could produce results close to the estimated global /9 model. However, there is
not much room for tuning if the ground truth is not known. Therefore, the estimated
global (3 model on average performs much better than the ad-hoc model, and it never
performs worse.

• The variable (locally estimated) (3 model works optimally over the whole image. Its
performance curve follows the best slope at all the times. It starts as the minimum
(3 model at the beginning, but is able to adapt to the large scale and behaves as the
maximum (3 model at the end.

• The true 0 model produced the same curve as the locally estimated 0 model and is
therefore omitted from the graph.

The non-spatial k-means algorithm performed as expected with about a 10% error rate.
Its performance is not shown in Figure 4.

It was also of interest to observe the "visual appeal" of the segmentation results. We were
interested in comparison of homogeneous versus inhomogeneous models. For comparison
purposes, the output of the non-spatial k-means segmentation is also included. The quality
of the visual image from a human perceptual viewpoint becomes relevant when there is no
objective way of quantifying the segmentation (most real-life images).

Figure 5 displays the MAP segmentation for the intensity image of Figure 2. The k-
means segmentation looks very noisy, while the two MRF segmentations are able to use
spatial information to their benefit. More details can be seen in the enlarged image of
Figure 6. The portion of the image that is enlarged lies towards the right side of the



Figure 6: k-means, global /3, variable (3 and Ground Truth on Enlarged Image Portion

Figure 7: True and locally estimated (3 maps.

original image (at the largest spatial scale). The noise in the non-spatial model is now
obvious. Figure 6 also shows that the global (3 model cannot adapt to locally large scale
blobs and that there is still some undersmoothing represented by small dots in the large
blobs. The variable 0 model adapted to the large scale and produced results visuallyalmost
identical to the true image. It is worth emphasizing that Figure4 does not capture fully the
perceptual difference in the segmentations. In Figure 4, both MRF models seem to be close
in the overall performance, whereas in Figure 6 there is a clear difference from a human
perceptual viewpoint. This suggests that other objective functions could be used instead of
direct misclassification rate.

To further check the quality of the MRF parameter estimation algorithm, we also com
pared the /? map of the true image and the estimated map. The two images are close.
The estimated ^ map has slight variability (as one can expect given that it is completely
data-driven). Some directional effects from interpolation can be seen. As /? is a second order
parameter in MRF models, we did not expect to gain much by fine-tuning the interpolation
process. This is a possible direction for the future research.

It is also of interest to examine the performance of different models as a function of
the noise in the image as measured by A/i/cr. Figure 8 shows the misclassification rate for
several models as a function of the noise, where the underlying label model is the same
inhomogeneous MRF as used earlier in this section.

Non-spatial fc-means was included as a reference. Other than showing the usual relative
performance of MRFs versus fc-means, they also give us a rough idea about what perfor
mance to expect based on measurable image properties, namely, that the spatial models
havea greater advantage as the intensity noise decreases, and that the inhomogeneous MRF
shows a consistent (about 10 to 15%) improvement in classification accuracy over the ho
mogeneous MRF. It is very important to keep in mind that the results above are obtained
on the images that are realizations of an MRF. It would be incorrect to try to generalize
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Figure 8: The relative performance of different segmentation algorithms on images of vary
ing noise levels.
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Figure9: Asynthesized label image from a homogeneous MRPand a corresponding intensity
image.

Figure 10: From left to right: A;-means, global j3 and variable P segmentations.

these results to real-life images. Nonetheless, the above results provide an indication of the
likely relative performance of the different algorithms for different qualities of images.

4.3 Experiments on Synthetic Homogeneous MRF's

The second experiment tested the performance of the inhomogeneous model on an image
that was generated from an homogeneous MRF. The single p value was chosen to be 0.8.
An example ofsuch an image is shown in figure 9. This experiment tests the inhomogeneous
model for possible overfitting.

Figure 10 shows the resulting segmentation for the models of interest. As before, the
non-spatial k-means model performed distinguishably worse than the two MRF models.
The enlarged view on figure 11 gives more information.

Both the homogeneous and inhomogeneous MRF models perform almost exactly the
same and are very close to the ground truth. The variable P model adapted locally to the

Figure 11: k-means, global /3, variable p and Ground Truth on Enlarged Image Portion



Figure 12: Locally estimated (5 map for the homogeneous image

Image 1 Image 2
(variable P) (fixed p)

k-means 10.0 24.0

max p 8.0 5.0

min p 6.0 4.4

ad-hoc p 5.0 4.4

single P 4.3 4.3

true P 3.8 4.3

variable p 3.8 4.3

Table 1: Summary of percentage misclassiiication rates on both images.

underlying scale without overfitting. The generated ^ map for the locally estimated is
given in Figure 12.

The map has a mean value of /? = 0.92 and a standard deviation of 0.05; it is quite
uniform. The minimum value across the image is ^ = 0.79. Despite the slight discrepancy
from the true value, the variable p segmentation performs the same as the global model.

Table 1 summarizes the overall results of both experiments in terms of misclassification
rate for the two synthesized images.

4.4 Experiments on AVHRR Images with Clouds

AVHRR is a sensing device onboard many satellites orbiting the Earth. The primary
physical characteristics of the AVHRR instrument are the recording of images in four or
five spectral bands, a roughly l.lkm ground resolution, a roughly 2700km swath width,
and 6 scans per second. AVHRR images are used for calculating standard indices like SST
(Berstein, 1982) or NDVI (Gutman et al., 1995).

The images we use here are preprocessed versions which are composites (averages) from
several spectral bands. The underlying scenes were cloudy, but there was no ground truth
available. This means that the quality of any particular segmentation could not be obtained
in the objective way it was done for the synthesized images. In the following figures we
compare several classifications and look at various enlarged details. The observed pixel
classifications agree with our intuition about large scale vs. small scale P parameters.

Figure 13 represents a scene that has clouds ranging from thick cover to small broken
clouds. Both MRF models appear to perform much better than simple fc-means. On the
enlarged view in figure 14,somedifferences become more visible. The enlarged portion of the
image is the image ofthe ground. It looks uniform on the raw image and the inhomogeneous



Figure 13: First row: First AVHRR raw image, variable /? segmentation and corresponding
/3 map. Second row: k-means and single (5 segmentation.

model was able to reflect this fact.

Figure 15 shows a second AVHRR image which is mostly cloudy. There is not much
scale variability; both MRF models perform very similarly and they both appear to perform
much better than fc-means method.

5 Conclusion

In this paper we developed an efficient algorithm for parameter estimation in inhomoge-
neous MRF models. The algorithm was based on the concept of a pseudo-likelihood that
approximates the regular likelihood. We presented an inhomogeneous MRF model and
applied the parameter estimation algorithm to it. Results on the test images favored the

Figure 14: Details of segmentation: raw image, k-means, single j3 and variable /3 models.



Figure 15: First row: Second AVHRR raw image, variable 0 segmentation and correspond
ing 0 map. Second row: k-means and single 0 segmentation.

inhomogeneous model over the homogeneous model whenever there was a significant scale
variation across the image. On the images with no scale variations, the inhomogeneous
model performed as well as the homogeneous model and both models performed better
than the ad-hoc parameter model. On the AVHRR images, the segmentation obtained with
the inhomogeneous MRF model was visually appealing and followed our intuition about
scale variability. The experimental evidence suggests that inhomogeneous MRF models are
able to adapt to local scale in images with large scale variations while still performing as
well as homogeneous models on images with no scale variability.
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