
UC Merced
UC Merced Previously Published Works

Title
Social identity bias and communication network clustering interact to shape patterns of 
opinion dynamics.

Permalink
https://escholarship.org/uc/item/2ms1879r

Journal
Journal of the Royal Society Interface, 20(209)

Authors
Steiglechner, Peter
Smaldino, Paul
Moser, Deyshawn
et al.

Publication Date
2023-12-01

DOI
10.1098/rsif.2023.0372
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ms1879r
https://escholarship.org/uc/item/2ms1879r#author
https://escholarship.org
http://www.cdlib.org/


royalsocietypublishing.org/journal/rsif
Research
Cite this article: Steiglechner P, Smaldino PE,
Moser D, Merico A. 2023 Social identity bias

and communication network clustering interact

to shape patterns of opinion dynamics.

J. R. Soc. Interface 20: 20230372.
https://doi.org/10.1098/rsif.2023.0372
Received: 3 July 2023

Accepted: 17 November 2023
Subject Category:
Life Sciences–Mathematics interface

Subject Areas:
computational biology

Keywords:
agent-based model, in-group bias,

computational social science, opinion

dynamics, generational conflict, climate change
Author for correspondence:
Peter Steiglechner

e-mail: peter.steiglechner@leibniz-zmt.de
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6960070.
Social identity bias and communication
network clustering interact to shape
patterns of opinion dynamics

Peter Steiglechner1,3, Paul E. Smaldino5,6, Deyshawn Moser2,4 and
Agostino Merico1,3

1Systems Ecology Group, and 2Institutional and Behavioural Economics Group, Leibniz Centre for Tropical Marine
Research (ZMT), Bremen, Germany
3School of Science, and 4School of Business, Social and Decision Sciences, Constructor University, Bremen,
Germany
5Department of Cognitive and Information Sciences, University of California Merced, Merced, CA, USA
6Santa Fe Institute, Santa Fe, USA

PS, 0000-0002-1937-5983; PES, 0000-0002-7133-5620; DM, 0000-0003-1789-9393;
AM, 0000-0001-8095-8056

Social influence aligns people’s opinions, but social identities and related
in-group biases interfere with this alignment. For instance, the recent rise
of young climate activists (e.g. ‘Fridays for Future’ or ‘Last Generation’)
has highlighted the importance of generational identities in the climate
change debate. It is unclear how social identities affect the emergence of
opinion patterns, such as consensus or disagreement, in a society. Here,
we present an agent-based model to explore this question. Agents commu-
nicate in a network and form opinions through social influence. The agents
have fixed social identities which involve homophily in their interaction
preferences and in-group bias in their perception of others. We find that
the in-group bias has opposing effects depending on the network topology.
The bias impedes consensus in highly random networks by promoting the
formation of echo chambers within social identity groups. By contrast, the
bias facilitates consensus in highly clustered networks by aligning dispersed
in-group agents across the network and, thereby, preventing the formation of
isolated echo chambers. Our model uncovers the mechanisms underpinning
these opposing effects of the in-group bias and highlights the importance of
the communication network topology for shaping opinion dynamics.
1. Introduction
Social influence is a key driver of opinion formation. Opinions should presumably
align over time as people discuss an issue and observewhat others think about that
issue [1–3]. Yet, people do not seem able to find a consensus onmanypressing pol-
itical, environmental or economic issues, including climate change [4], public
health measures (like wearing face masks to prevent the spread of COVID-19
[5]) or government-funded social measures [6]. Among these examples, climate
change is particularly striking because public opinions remain divided, even
though an overwhelming scientific consensus has since long been established.
Social influence plays a critical role in this debate [7–10] as pro-environmental atti-
tudes can spread among people, but so can climate skepticism. What makes
collective opinion formation a particularly complex problem is that social learning
is not a straightforward copying of others’ opinions but follows context-dependent
strategies [11], which are typically heuristic, affected by cognitive biases [6,12] and
based on a limited number of social connections among individuals [13].

A major factor that impacts social influence is social identity [14,15],
especially in the debate about climate change [8,16,17]. Individuals affiliate
with a specific group, the ‘in-group’, based on similar personal or cultural
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characteristics such as political orientation, age, sex or occu-
pation. The way they interact with each other depends on
whether or not they share such a social identity [18,19]. For
example, identity-related factors influenced how people per-
ceived specific policies designed to mitigate the spread of
COVID-19 [20]. Similarly, identification with different gener-
ations, like ‘youngsters’ or ‘elders’, can add an independent
inter-group dimension to the debate on climate change.
Age has indeed been shown to correlate with opinions on
climate change [21–23]. More importantly, age and related
social identity may shape communication and interaction
behaviours in the climate change debate by establishing
generational in- and out-groups.

Social identity can affect different aspects of communi-
cation. First, social identity influences who interacts with
whom. People are homophilic, i.e. they preferentially interact
with members of their in-group [24,25]. For example, young
people observe or discuss more likely the opinions of their
young peers and vice versa. Second, social identity influences
how individuals perceive socially transmitted information. In
particular, people tend to view information coming from
in-group sources as more trustworthy and relevant than
information originating outside the group. Group member-
ship can thus become an important factor when evaluating
the subjective opinions of others. Such differential evaluation
of information, known as in-group bias, is a well-studied and
persistent feature of human behaviour [16,26–32], although
the impacts of this bias vary depending on the culture of
the people involved [33] and the nature of the relevant
social identities [34]. In-group bias usually reinforces simi-
larities between in-group members [26] and, at the same
time, draws like-minded people into the group [16]. Apart
from such in-group favouritism, social identity can also
involve out-group derogation or aversion, causing divides
between groups to become more pronounced [29,34,35]. In
summary, social identity does not necessarily determine
what a particular individual believes about a debated issue
like climate change, but social identity can affect (i) who
that person interacts with and (ii) how that person perceives
opinions of others.

Mathematical models have become a powerful tool to
study opinion formation and constitute a valuable com-
plement to traditional social science approaches, such as
laboratory experiments or surveys [9,36]. Models can be
used to explore a variety of scenarios, theories or assump-
tions. In particular, they can provide a link between how
cognitive processes, such as in-group bias, manifest at the
individual level and how this plays out at the collective
level. Most opinion dynamics models are agent-based and
simulate how human agents embedded in a social structure
update their opinions as they incorporate new infor-
mation—either through social influence or external stimuli.
Such models typically define (i) how people are connected
to each other (societal structure), (ii) how their opinions are
represented, (iii) how they acquire new information, and
(iv) how they process new information to update their
opinions (update rule). Homophily or biases are typically
integrated by modulating certain components of the model
at the individual level. In particular, homophily is often
encoded in the societal structure (e.g. [37–39]) and biases
are typically encoded in the agents’ update rules (e.g. [40,41]).

Different opinion dynamics models have studied various
ways to conceptualize biases (e.g. [38,41,42]). Most of these
models focus on biases related exclusively to the exchange of
opinions on the debated topic(s). For example, bounded confi-
dence models assume that the opinion distance of two agents
fully determines whether they perceive each other as similar
and, thus, whether they are influenced by each other. Social
identity theory, however, suggests that such biased influence
does not depend on people’s opinions alone. Perceived simi-
larity and, consequently, the degree of influence between
people also depends on their social identities and on group
perceptions. We, therefore, argue (in line with previous
works [12,15,43–45]) that it is ultimately the interplay of the
exchange of opinions and of social information that shapes
opinion formation. While there is much research in social psy-
chology and related sciences on the influence of social identity
on opinion formation—especially at the individual level—such
aspects are still understudied with mathematical models of
collective opinion formation [43,46,47].

In this study, we investigate the effects of social identity
and the related in-group bias on patterns of opinion for-
mation using an agent-based model. Our main assumptions
are that individuals align their opinions to those of their
social contacts, in line with the social influence literature
(e.g. [1,48]), and that social identity moderates such align-
ment (in line with social identity theory (e.g. [29])), leading
to greater shifts in opinions due to interactions from in-
group members versus out-group members. Moreover, we
assume that individuals interact in non-random ways but
that they have stable in- and out-group contacts, which can
be represented as a fixed network. While the network top-
ology is in principle uncertain, we assume that agents tend
to have more in-group than out-group contacts, in line with
literature on homophily (e.g. [25]). In particular, the model
is designed along the following principles. Agents hold
opinions on a specific topic, for example, climate change,
which evolve when they communicate with their neighbors
in a fixed network. Agents then use a heuristic approach,
formulated following Bayesian calculus, to adapt to per-
ceived opinions. The basic opinion formation process
follows previous studies by Martins [49] and Sobkowicz
[41]. We extend their framework by including social identity.
Agents identify with one of two groups, for example, young-
sters or elders in the context of climate change, and we
assume that this social identity is visible to others. The effects
of social identity are twofold: agents are homophilic in their
interaction preferences with respect to social identity, and
agents may be biased in the way they perceive others.

This model design allows us to investigate our main
research question: does in-group bias impede or foster consen-
sus among homophilic agents? It may seem obvious that in-
group bias should create divisions between groups, inhibiting
consensus formation. However, in-group bias may also speed
up the convergence of opinions within in-groups, thus allow-
ing opinions to spread further across the network before
polarization can take hold [50,51]. This suggests that the struc-
ture of social interactions may moderate the effects of in-group
bias. We thus ask: is the effect of in-group bias consistent over
different network topologies? If not, what is the mechanism by
which in-group bias can foster consensus? By setting up the
model with different homophilic network topologies, we
show that the in-group bias impedes consensus in societies if
the topology is highly random. By contrast, the in-group
bias fosters consensus in societies if the topology is highly clus-
tered. These contrasting effects are robust outcomes unless
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homophily is very high or agents are strongly predisposed in
their initial opinions such that an enhanced disagreement
between the identity groups at the outset of the simulations
inhibits the formation of consensus. The results of our model
suggest that the impact of social identity and in-group bias
can only be evaluated in relation to the underlying topology
of the communication network.
ing.org/journal/rsif
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2. Model description
2.1. Summary
Our model simulates opinion formation in a small, virtual
society consisting of n agents. Figure 1 shows a conceptual
representation of the model and the effects of social identity
on the model processes. Each agent represents an individual
human being and is characterized by (i) an opinion on a dis-
puted issue like climate change, expressed as a distribution
and (ii) a social identity, expressed as an exclusive affiliation
to one of two distinct groups (figure 1a). Agents are
embedded in a fixed interaction network, which is character-
ized by (i) a degree of identity-driven homophily and (ii) a
probability of link rewiring (figure 1b). The network topolo-
gies range from highly clustered to highly random. Over
time, the opinions of all agents evolve via one of two pro-
cesses. With a certain probability, a focal agent interacts
with a linked neighbor and its opinion distribution is modi-
fied by that interaction. In-group bias involves that agents
are more influenced by interactions with in-group members
than by interactions with out-group agents (figure 1c). If
the agent does not interact, its opinion distribution broadens,
thus, increasing the susceptibility of that agent’s opinion to
future social influences (figure 1d ). In the following sections,
we provide detailed explanations of these model features.
With the objective of fostering reproducibility, transparency
and flow of ideas, we make the model available as open-
source software [52] so that it can be used, modified and
redistributed freely.

2.2. Agent characteristics
Each agent is characterized by an opinion about the debated
issue. With ‘opinion’, we mean the agent’s subjective point
of view on the topic, such as its degree of concern about cli-
mate change. Opinions and beliefs are complex cognitive
constructs, involving mental representation and rational pro-
cessing of both direct evidence and social influence. For
simplicity, we use the word ‘opinion’ in a way consistent
with much of the opinion dynamics literature, in which
opinions are updated through social influence and not direct
experience. As such, our results will apply most readily to
opinions shaped largely through social influence. Adopting a
framework used in previous models [41,47,49], we represent
the opinion of agent i at time t as a distribution xi(b, t) (xi in
the following) over the belief space B ¼ ½�1, 1�. The opinions
are initially assumed as Gaussian distributions characterized
by a mean and a variance, the latter reflecting the agent’s
uncertainty around the mean opinion. Over time, the shape
of these distributions can change and may even become
multi-modal. Each value b in the belief space represents a state-
ment, for example, about climate change, ranging from b =−1
(‘I am not at all concerned about climate change’) to b = +1 (‘I
am extremely concerned about climate change’). The opinion
xi(b, t) represents the level of support of agent i for these state-
ments b at time t. For computational reasons, we approximate
the distribution and the belief space with 200 discrete, equally
spaced values B ¼ f�0:995, �0:985, . . . , 0:995g.

Each agent is also characterized by a social identity. This
is expressed as an affiliation to one of two groups, red or blue,
which can represent ‘youngsters’ and ‘elders’, for example.
The social identity groups contain an equal number of
agents. Social identities are visible to others and remain
fixed throughout a simulation. Although in reality opinions
often correlate with identities [53], we assume that the
agents’ opinions are independent of their social identities
(but relax this assumption later in §3.6 when we analyse a
scenario in which social identities predispose the agents to
specific opinions). The social identity of an agent defines its
in-group—those agents sharing the same social identity—and
the out-group—those with different social identities.
2.3. Interaction network
Agents are situated in an interaction network consisting of
nodes and undirected, unweighted links. Nodes represent
agents, and only agents connected through direct links can
communicate. This reflects the fact that, in reality, most
people have relatively few salient social influences that
shape their opinions [13]. The network consists of two
types of links: in-group links, connecting agents who share
the same social identity, or out-group links, connecting
agents with different social identities. In- and out-group
links represent the same influence channels, although, in real-
ity, these channels may have different characteristics.
Assuming that social relationships evolve at a much slower
pace than opinions, the network is created before the simu-
lation begins and remains unchanged throughout the
simulation. The network is defined by three parameters:
(i) the average number of in-group links per agent, denoted
as kin, (ii) the average number of out-group links per agent,
denoted as kout, and (iii) the link rewiring probability,
denoted as p (more on this parameter later). We define a net-
work as homophilic if kin > kout (see [38,54] for similar
conceptualizations of homophily). For instance, in a fully
homophilic network with an average node degree of 10, the
agents would have kin = 10 in-group links and kout = 0 out-
group links, indicating a complete separation of the social
identity groups. In a non-homophilic network, the agents
would have, on average, kin = 5 in-group links and kout = 5
out-group links.

The network is constructed by creating two separate ring
lattices, one for each social identity group. To establish
in-group links, we connect each agent to its kin nearest neigh-
bors within its own group in the corresponding ring lattice.1

To establish out-group links, we connect each agent in the
red group lattice to its kout closest agents in the blue group
lattice. For example, in a network with n = 100 agents, where
agents 1–50 are red and agents 51–100 are blue, for kout = 2,
agent 1 is connected to its two closest out-group agents, 51
and 52, agent 2 is connected to agents 52 and 53, and so on
(see electronic supplementary material, figure S1). After estab-
lishing this deterministic, homophilic network structure, all
links are rewiredwithprobability p. For the rewiringof in-group
links, we follow the procedure described in the Watts–Strogatz
model [55]. For the rewiring of out-group links, an existing
link between agents i and j is substituted with a link between
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agent i and a randomly selected agent k from the out-group
of agent i. This rewiring process preserves the total number of
in-group and out-group links, thereby maintaining the degree
of homophily in the network.

Homophily (kin and kout) and rewiring (p) both play an
important role in the topology of the network. In our main
analysis, we focus primarily on networks with moderate
homophily, specifically kin = 8 and kout = 2 (although we
vary the degree of homophily in the sensitivity analysis).
With this degree of homophily, we define a network as
highly clusteredwhen it is created with minimal or no rewiring
(p→ 0) and as highly random when it is created with maxi-
mum rewiring (p→ 1). Highly clustered networks are
characterized by a high clustering coefficient and a long aver-
age path length (see electronic supplementary material,
figure S2). Moreover, they possess a regular structure (i.e.
all agents have the same number of in- and out-group
links) and a local topology (i.e. most of the neighbors of
an agent are connected among themselves). Highly random
networks are characterized by a low clustering coefficient
and a short average path length, and the node degrees of
the agents are heterogeneous (i.e. while some agents may
be connected exclusively to in-group members, others may
have many out-group links). Highly random networks
resemble those generated by the stochastic block model [56]
with a prescribed number of in- and out-group links.

2.4. Opinion update
At every time step, all n agents are selected asynchronously
and in random order. With probability q, a selected agent
(the listener) interacts with one of its neighbors (the messen-
ger). With probability 1− q, the listener does not interact, and
its opinion distribution becomes more uncertain.

2.4.1. Opinion update through social interaction
Interaction implies that the opinion of listener i changes based
on observing the opinion of messenger j. We assume that the
listener i only sees a distorted version of the messenger’s
opinion distribution xj. Specifically, following a previous
opinion formation model [49], the listener sees the distribu-
tion xj with an uncertainty that is higher than the actual
value. This reflects the fact that humans tend to evaluate
others in a conservative way [57], perceiving their opinions
as less conclusive than what they are. As described in the
Introduction, social identity can undermine opinion change.
For example, individuals may trust in-group members more,
feel a stronger need to conform with them, or simply relate
more to their in-group peers due to a shared language. To
implement this bias, we assume that the degree of distortion
depends on the social identity of the messenger. That is, for
interactions with an in-group messenger j, listener i sees xj as

piðxjÞ ¼ ain � xj þ (1� ain) � U, ð2:1Þ

with in-group perception αin and, equivalently, with out-group
perception αout for interactions with out-group messengers.
U denotes the uniform distribution on the belief space B.
This perception step acts as a filter for xj (figure 1c) and
αin/out represent the transparencies of the filters for in-/out-
group messengers, respectively. A value of αin/out = 1 (fully
transparent filter) implies that the listener perceives xj accu-
rately, whereas αin/out = 0 (fully opaque filter) implies that
the listener perceives a uniform distribution that is unrelated
to the messenger’s opinion. Negative values of αin/out rep-
resent repulsive social influence, i.e. the listener would
perceive the support of the messenger for a certain belief as
counter-evidence for that belief. In this study, we restrict
ourselves to positive values of αin/out.

We define agents as affected by in-group biaswhen their in-
group perception is higher than their out-group perception (i.e.
αin > αout), meaning that a biased listener perceives the opinion
of an in-group messenger as more certain than the same
opinion of an out-group messenger. The in-group bias reflects
a preference for accepting the opinions of in-group individuals
over those of out-group individuals, with stronger bias indicat-
ing a larger disparity between the two. For simplicity, we
assume that αin and αout are the same for all agents.
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The opinion of the listener is updated following Bayesian
calculus. In line with previous models [30,41,49,58], we con-
sider the opinion distribution of the listener as the prior
and the distorted version of the messenger’s opinion, as
seen by the listener, as the likelihood. After an interaction
with an in-group messenger j, the updated opinion of listener
i becomes the Bayesian posterior (before normalization),

xi  xi � piðxjÞ ¼ ain � xi � xj þ (1� ain) � xi � U, ð2:2Þ
and, equivalently, with αout after an interaction with an
out-group messenger. Equation (2.2) encompasses two com-
peting forces: (i) an assimilative force that pulls the opinion
of the listener towards the opinion of the messenger
and (ii) a conservative force that keeps the opinion of the
listener unchanged, especially if the opinion of the messenger
is very distant. The relative strengths of these forces depend
on αin and αout and on the overlap between xi and xj.
Figure S3 in the electronic supplementary material provides
an illustrative example of how these forces shape the
posterior opinions of agents depending on αin/out and
different messenger opinions.
30372
2.4.2. Opinion update through non-interaction
At each time step, only a fraction of the agents (on average
q · n) change their opinions following social interactions. For
the remaining agents, non-interaction slightly increases the
uncertainty characterizing their opinion distributions. This
reflects the fading of strong emotions or imperfect memory
of arguments (see [37,41,59] for models with similar pro-
cesses). The posterior opinion of a non-interacting agent is
obtained by solving the diffusion heat equation for one
time step t→ t + 1 (using implicit differentiation via the
backward time-centred space method),

d
dt

xiðb, tÞ ¼ k � d
2

db2
xiðb, tÞ

����!discrete

solution

xitþ1b � xitb
Dt

¼ k � xi
tþ1
bþDb � 2 � xitþ1b þ xi tþ1b�Db

Db2
, ð2:3Þ

with zero Dirichlet boundary conditions at the edges of the
belief space. This process depends on the parameter κ,
which determines the speed with which the opinion distribu-
tion decays during non-interaction. While social interaction
tends to narrow down opinion distributions, non-interaction
broadens opinion distributions, making them more susceptible
to change during future interactions. Consequently, if an agent
does not interact for a sufficiently long time, it eventually
adopts a uniform opinion distribution, indicating complete
neutrality or indifference towards the issue. The impact of a
more recent social interaction on an opinion, thus, tends to
outweigh that of previous interactions.
2.5. Initialization and analysis of results
At the beginning of a simulation, t = 0, we create a society of
n = 100 agents as follows. We divide the agents into two
evenly sized social identity groups, red and blue, and situate
them in a fixed network with a moderate level of homophily
such that agents are on average linked to kin = 8 in-group and
kout = 2 out-group members and with a specific degree of clus-
tering determined by the rewiring probability p. Then, we
initialize the agents with opinions represented as Gaussian dis-
tributions, xi � N ðmi,0, si,0Þ, with fixed variance σi,0 = σ0 = 0.2
and randomly sampled mean μi,0∈ [−1, 1]. At the bounds of
the belief space, the distributions are truncated and, therefore,
mean and variance are not equivalent to those of the initial
Gaussian distribution. This choice of opinion initialization
allows us to distribute agent opinions uniformly over the
belief space (except at the bounds), such that the initial state
represents a very diverse and heterogeneous society. In §3.6,
we explore an alternative scenario in which agents have predis-
posed initial opinions depending on their social identities, i.e.
an agent i is initialized with a negative μi,0 with a higher prob-
ability of 0.5 + δ/2 (with predisposition δ) if it has the red
identity, and a lower probability of 0.5− δ/2 if the agent has
the blue identity. Finally, we fix the interaction probability
q = 0.2 and the opinion decay speed during non-interaction
κ = 0.0002. We analyse the robustness of our assumptions by
varying the values of these parameters in §§3.4–3.6.

Our main analysis focuses on comparing the opinion pat-
terns obtained with different in-group and out-group
perceptions and, thus, also different strengths of in-group bias.
To avoidpotential divisionsby0whennormalizing theposterior
in equation (2.2),we chooseαin/out∈ [0, 0.99]. For illustrativepur-
poses,we later focus on a set of distinct values ofαin and αout.We
consider three particular cases, U1, U2 and U3, representing
societies of unbiased agents, and one case, B, representing a
society of biased agents. There are three unbiased cases because
agents can be characterized by different levels of perception.
Regardless of social identity, agents inU1 are ‘skeptical’ towards
others (αin = αout = 0.25), agents in U2 are ‘neutral’
towards others (αin = αout = 0.5), and agents inU3 are ‘credulous’
towards others (αin = αout = 0.75). By contrast, agents in societies
B are ‘credulous’ towards in-group agents (αin = 0.75) and ‘skep-
tical’ towards out-group agents (αout = 0.25). Comparing the
results of U1, U2 and U3 with those of B allows us to isolate
the effects of the bias.

We start our analysis by describing the specific opinion
patterns produced by the model in general terms (§3.1).
Then, we systematically analyse how often societies reach a
consensus after a fixed number of t time steps, i.e. the consen-
sus frequency, Ct, for societies characterized by highly random
(§3.2) or highly clustered networks (§3.3). There are many ways
to quantify disagreement or consensus [60–63]. Here, we
measure the level of disagreement with the standard deviation,
σ, of the opinion means of all agents and we define consensus
when σ is below a threshold σcons = 0.01. Simulations are termi-
nated after t = 5000 steps, when an agent has, on average,
updated its opinion 1000 times during one-on-one interactions
(with interaction probability q = 0.2). The results do not change
qualitatively for shorter and longer simulation times (see §3.4).
Because the model is stochastic with respect to network top-
ology (if p> 0), update order, and initial opinions, we present
consensus frequencies, Ct, as averages over ensemble runs
of 1000 realizations of a society with the same parameter
configuration but different random seeds.
3. Results
3.1. Consensus can emerge through an abrupt,

stochastic transition
Figure 2 shows the temporal evolution of opinions in three
example simulations of a society B composed of biased
agents with αin = 0.75 and αout = 0.25. The societies in these
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over the entire simulation.
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examples are characterized by homophilic and highly
random networks, i.e. kin = 8, kout = 2 and p = 1. In the early
phase of a simulation, opinions converge within small local
neighborhoods. This leads to the formation of opinion clus-
ters. Neighborhoods in the highly random network are
densely interconnected such that these clusters typically dis-
solve quickly, causing fast overall convergence towards a
relatively moderate consensus opinion (figure 2a). If, how-
ever, distinct clusters become sufficiently large and the
convergence within these clusters dominates over the align-
ment among different clusters, then disagreement stabilizes
and fast consensus is prevented (figure 2b,c). Disagreement,
however, is a transient, meta-stable state of the system. In
some cases (e.g. figure 2b), alignment pressures among the
opinion clusters dominate over their internal cohesion. This
leads to an abrupt, stochastic transition towards a consensus
where one cluster absorbs the other and the resulting consen-
sus opinion tends to be more extreme than when consensus is
reached very early in the simulation (as in figure 2a; see elec-
tronic supplementary material, figure S4). In other cases (e.g.
figure 2c), disagreement persists because opinion clusters
turn into echo chambers, in which the agents are confronted
almost exclusively with similar opinions. Over time the
agents become increasingly certain about their opinions (i.e.
the variances of their opinion distributions narrows down)
and, thus, unresponsive to agents with different opinions.
In this scenario, we find that the standard deviation of all
mean opinions, σ, is typically in the range from 0.2 to 0.6,
similar to its initial value at t = 0 (and thus disagreement
and consensus are qualitatively distinct patterns regardless
of the exact value of the threshold, σcons = 0.01).
3.2. In-group bias impedes consensus in homophilic,
highly random networks

Figure 3 shows the frequency, C5000, with which societies in our
ensemble simulations reach a consensus within t = 5000 steps,
depending on the link rewiring probability, p, in the network
and the agents’ in- and out-group perception, αin and αout (in
particular, for societies U1, U2, U3 and B). We first focus on
societies characterized by highly random networks, p≫ 0.1.
In general, consensus is frequently reached within t = 5000
time steps unless the out-group perception of the agents is
very low, αout→ 0. However, consensus occurs somewhat less
frequently if the agents are biased (upper left part of panel
p= 1 in figure 3) than if they are unbiased (diagonal part of
panel p= 1), regardless of the exact values for αin and αout.
For example, for p= 1, societies U1, U2 and U3 reach consensus
within 5000 time steps in, respectively, 95%, 96% and 97% of
the simulations, but society B reaches consensus ‘only’ in 72%
of the simulations. These numbers increase only marginally
over much longer simulation times (see §3.4). Biased agents
see opinions of in-group messengers as more certain and, in
homophilic networks, they also tend to interact more with in-
group members. This combination facilitates and stabilizes the
emergence of echo chambers, which mostly coincide with
the identity groups (figure 2c). In sum, in-group bias impedes
consensus in homophilic and highly random networks.
3.3. In-group bias fosters consensus in homophilic,
highly clustered networks

In contrast to impeding consensus in societies with highly
random networks (p≫ 0.1), in-group bias promotes consensus
in societies with highly clustered networks (p< 0.1, figure 3). In
general, higher clustering in the network, i.e. fewer rewired
links, reduces the consensus frequency regardless of αin and
αout. The reason for this is that paths between agents in a clus-
tered network are typically longer than in a random network,
which leads to weaker influence between them and to longer
convergence times. However, unbiased agents are much more
affected by clustering than biased agents. For example, in
highly clustered networks with p= 0, a consensus is reached
in 42% of a society B (72% for p= 1), but only in 22% of a society
U2 (96% for p= 1). This qualitative pattern remains robust over
all time scales, even if societies characterized by such clustered
networks reach consensus at time scales beyond t = 5000 steps
(see §3.4 for more details). Note that this positive effect of the
in-group bias on consensus formation holds only for societies
in which the agents are at least somewhat susceptible to
out-group influences, αout > 0 (figure 3).

This result, that in-group bias can promote consensus in
highly clustered networks (p< 0.1), may appear counter-
intuitive. For a better understanding, we provide a video in
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the electronic supplementary material that shows a typical
simulation for the societies U1, U2, U3 and B, all characterized
by a homophilic and highly clustered network (p = 0) and an
identical configuration of initial opinions. Figure 4 shows
snapshots of the society B, which reaches consensus, and of
the society U2, which does not reach consensus. In U2, iso-
lated opinion clusters can form across social identity
divisions, with the effect that the agents are fully detached
from contrasting opinions elsewhere in the network. There-
fore, opinions are clustered by space rather than social
identity in this scenario. In B, the alignment pressure exerted
by the in-group outweighs the alignment pressure exerted by
neighboring out-group agents, even when the path length
between the in-group agents tends to be large. Agents are,
thus, more likely to reach a consensus within their in-group
and the possibility for the formation of isolated echo
chambers is reduced. Once one social identity group has
reached a consensus, the agents from the other group are col-
lectively pulled to that consensus opinion, and, eventually, a
society-wide consensus is established. This pattern of opinion
dynamics is fostered by the in-group bias affecting agents in
societies B but not agents in societies U1,2,3.

3.4. The interplay between in-group bias and network
clustering is a robust pattern

Our main results—in-group bias impedes consensus in highly
random networks (§3.2) and fosters consensus in highly
clustered networks (§3.3)—are robust under a wide range of
parameter values. Figure 5 shows the consensus frequencies
for highly random networks (p = 1, dots), and for highly
clustered networks (p = 0, crosses) at different values of all
model parameters. For p = 1, the consensus frequencies
obtained in societies B of biased agents (red solid lines in
figure 5), are reliably smaller than those in societies U2 of
unbiased, ‘neutral’ agents (blue solid lines). Similarly, for
p = 0, the consensus frequencies in societies B (red dashed
line in figure 5), are reliably larger than those in societies U2

(blue dashed lines) with only two exceptions for extreme
homophily or for strong predisposition (more details
in §§3.5 and 3.6), or for both combined (see electronic
supplementary material, figure S6).

While different values of n, σ0, κ, q and t do not change the
general results of the study, some interesting effects are dis-
cernible at a higher level of detail. First, a larger number of
agents, n, increases or decreases the consensus frequency
depending on the network topology (figure 5a). Very large
societies virtually always reach consensus when the interaction
network is highly random (p = 1), but they barely reach
consensus within t = 5000 time steps when the network is
highly clustered (p = 0). Second, the parameters σ0, κ and q
(figure 5b–d) determine how the uncertainties of the opinion
distributions evolve and are, thus, crucial for consensus for-
mation. The formation of consensus is facilitated by high
uncertainties in the Gaussian initial opinions, fast decay of
opinion distributions during non-interaction and reduced fre-
quency of interactions. Finally, the consensus frequencies
depend on the simulation time scale (figure 5e). Consensus
may emerge already after t = 100 time steps. In highly
random networks, consensus frequencies reach high values
relatively quickly, but in highly clustered networks consensus
forms much slower and may still emerge after a much longer
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simulation time. Eventually, for the agents in society B,
consensus becomes virtually certain in highly clustered
networks (p = 0, dashed) but the consensus frequency
saturates at C106 ¼ 84% in highly random networks (solid
red line)
3.5. Moderate homophily promotes consensus in highly
clustered networks

The presented results are based on interaction networks
with moderate homophily, specifically, where agents have,
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on average, kin = 8 in-group links and kout = 2 out-group links.
The main results (that the in-group bias has opposite effects
on consensus formation depending on the random or clus-
tered network topology, see §§3.2 and 3.3) also hold true
for less homophilic or even non-homophilic networks
(figure 5f ). Only in networks characterized by very strong
homophily, kin > 9 and kout < 1 (with an average of 10 links
per agent), does in-group bias impede consensus in both
random and clustered network topologies. Homophily
by itself has diverse effects on consensus formation, regard-
less of the in-group bias. Increasing homophily impedes
consensus in highly random networks (p = 1, solid lines in
figure 5f ), but it promotes consensus in highly clustered net-
works (p = 0, dashed lines) unless the two groups are (nearly)
fully separated.

3.6. Predisposition of unbiased agents promotes
consensus in homophilic, highly clustered
networks

The presented results are based on the assumption that
opinions are uniformly distributed at the start of a simulation
and independent of the agents’ social identities. We, there-
fore, tested the case of predisposed agents (figure 5g), in
which the initial opinions of agents with different social iden-
tities tend to be positioned on opposite sides of the belief
space (see electronic supplementary material, figure S7, for
a more detailed description). Our main results hold true for
weak predisposition, but not for strong predisposition. In
the latter case, in-group bias impedes consensus in both
random and clustered networks. In general, predisposition
impedes consensus. Surprisingly, however, predisposition
(up to δ = 0.7) can promote consensus in highly clustered net-
works, but only when the agents are unbiased (society U2,
dashed blue line).
4. Discussion
Mathematical modelling serves various purposes in the social
sciences [64–66]. While theories of human behaviour remain
largely verbal and ambiguous, idealized modelling can be
an important step in the development of more detailed
theories and towards a better understanding of the social
phenomena (see [67–69] for further discussions). For example,
a large and influential literature on opinion dynamics uses
abstract, idealized models of social influence to explore factors
that lead to phenomena such as consensus, polarization,
fractionalization and extremism. Our modelling study falls
into this tradition, yet our contribution is to point out how
in-group bias—a common and well-documented facet of
human behaviour—influences opinion dynamics in important
and non-obvious ways. We have thus presented an agent-
based model of opinion formation based on social influence
with the social identities of the agents driving their interactions
and perceptions. In line with theoretical arguments about the
importance of social identity [7,15,29,70,71] and with empirical
studies indicating that identity may be a crucial driver of
polarization [20,72–74], opinion patterns in our model are cru-
cially shaped by social identity. The model shows how in-
group bias can have different societal-level effects depending
on the network structure. Specifically, in-group bias prevents
consensus in highly random networks, but fosters consensus
in highly clustered networks—as long as homophily and
predisposition are not extreme.

The outcome of consensus or disagreement in the model
depends on the interplay between two forces during social
interactions: an assimilative force, acting to align opinions
and narrow them down, and a conservative force, acting to
preserve the original opinions. These two forces and their
interplay are common in many opinion dynamics models
(e.g. [40,62,75,76]), but in contrast to most of these studies,
we do not assume that agents fully ignore others (as e.g. in
bounded confidence models [77,78]) or that opinions diverge
when their disagreement exceeds some threshold (as e.g. in
[60,79]). In our model, agents biased with respect to social
identity adapt more promptly to in-group members than to
out-group members because they perceive in-group opinions
as more conclusive than out-group opinions. This purely
positive social influence implies that consensus is an inevita-
ble outcome (as in other studies, such as [30,40,80]; with
purely assimilative influences). However, to reach a consen-
sus in a reasonable time, the agents need to remain
sufficiently susceptible to opinion change. Disagreement
can solidify and persist in our model only when agents are
trapped in isolated opinion clusters and when those clusters
turn into echo chambers, inside which the agents’ opinions
become increasingly narrow. This outcome is in line with
empirical evidence that echo chambers play an important
role in political debates [81,82] including the debate on cli-
mate change [83,84]. Moreover, disagreement can be a
robust outcome of our model without opinion polarization.
This pattern is consistent with survey-based research [20,72]
showing that, for example, US citizens are divided more
along social identity lines than actual opinion differences.

Our model shows that, in the long run, in-group bias pre-
vents consensus in societies characterized by networks with
low clustering, i.e. with highly random link structures. In
such networks, the average path length, especially between
in-group members, is short, thus fostering in-group align-
ment. The bias exacerbates this effect by turning opinion
clusters more easily into echo chambers and, thereby, consoli-
dating disagreement between identity groups. This view is
consistent with the notion that in-group bias is negatively
associated with consensus building (e.g. [72,85,86]). A similar
effect of an identity-related bias was described in a previous
modelling study [60] with agents characterized by different
demographic attributes that influenced whether they aligned
to or repelled from the opinions of others. Similar to Flache &
Mäs [60], we find that a strong in-group bias generates
disagreement but, in contrast to them, we obtain this result
without including repulsive social influences between
dissimilar agents.

The most important result of our study is that in-group
bias can have opposite effects depending on the topology of
the communication network. High clustering in the network
inhibits consensus formation in general. However, in contrast
to the result discussed above, the presence of in-group bias
facilitates consensus in this case. In such highly clustered net-
works, the average path length between agents tends to be
long, such that agents at opposite ends of the network exert
little influence on each other. Consequently, local opinion clus-
ters emerge, irrespective of social identities, which inhibit a
society-wide consensus. In this case, opinions are separated
by space, and in-group bias helps to dissolve such clusters,
thus, promoting consensus. This view is consistent with the
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notion that, under certain conditions, in-group bias is posi-
tively associated with consensus building (e.g. [87]) and
with empirical evidence showing that concerns about climate
change have increased faster among younger generations than
older generations [88]. In our model, the mechanisms by
which the in-group bias leads to consensus are analogous to
those considered by Mäs et al. [37]. Mäs et al. [37] used the
model of Flache & Mäs [60] with the addition of homophily
in relation to the way agents choose their interacting partners.
The presence of in-group bias and homophily caused
the agents to moderate extremists within their respective
in-groups, which then promoted consensus among these
moderate groups in the long run. Our results exhibit the
same two-step process in highly clustered networks, but we
also find that besides homophily and bias, this process can
be driven solely by the topology of the communication
network. The importance of network topology in relation to
identity was recently observed also in a two-armed bandit
game model [89] in which agents learned from their peers
but distrusted information from out-group members. Similar
to our results, the (very simple) social networks considered
by Fazelpour & Steel [89] determined whether the bias
prevented or promoted collective performance.

Although the positive effect of the bias on consensus for-
mation in highly clustered networks is robust over a wide
range of parameter configurations, there are some limitations
in two extreme cases: strong homophily and marked pre-
disposition. In highly clustered networks, homophily and
predisposition affect opinion formation similar to in-group
bias. They promote the convergence of opinions among in-
group members that are dispersed over the network, thereby,
homophily and predisposition can foster consensus. Although
counter-intuitive at first sight, this result reflects the well-
established concept that any process that prevents social
learners from converging too quickly towards a local optima
can improve the collective performance [36,51,90]. However,
the combination of in-group bias with either strong homophily
or marked predisposition (or a combination of the two)
reverses this positive effect and prevents consensus formation.

Social identities and related biases are particularly rel-
evant in the debate on climate change [12,91]. As discussed
before, climate change entails an intergenerational conflict
[88,92,93], which is commonly addressed in the debate (‘We
young people [… ] must hold the older generations accounta-
ble for the mess they have created [… ].’—Greta Thunberg2).
There is ample empirical evidence on the fact that social iden-
tity affects the way people perceive the opinions of others on
topics like climate change [28,73,94]. This evidence suggests
that it may be easier to dismiss alarmed statements from an
out-group contact as ‘merely their opinion’, given that such
opinions are subjective rather than rooted in logic- or evi-
dence-based reasoning. Recent studies have proposed
strategies to reduce the relevance of social identities and
related biases in political debates, for example, by exposing
people to trusted expert opinions, like those presented in
the IPCC report [20], by emphasizing non-political simi-
larities between different groups, like connecting people
with similar musical taste [6], or by fostering contact between
members of different groups to reduce prejudices [95]. Analo-
gously, other studies (e.g. [96]) have proposed strategies
that instead aim to highlight social identity and exploit
related biases in order to overcome disagreement in political
debates. An example of such a strategy consists of
channelling policy communication through in-group specific
messengers, such as Greta Thunberg [97–99]. Another
example is the use of large social identity groups to reinforce
people’s perceived efficacy (by the sheer size of the group)
during global crises [98,100].

Over the past years, the generational identity gap and the
associated conflicts have arguably increased as youth move-
ments surged in popularity across the globe [23,101]. Has
this social identity contributed to a shared view of climate
change among youngsters and beyond? Or have social identi-
ties and related in-group biases further polarized society?
Answers to these questions remain elusive. Models, like the
one we have presented here, are, by definition, approximations
of reality. And although they cannot include the broad spec-
trum of processes and cognitive biases characterizing our
society, their simplicity enables us to test mechanisms that
can generate different macroscopic patterns such as consensus
or disagreement [102]. Our model shows that in-group bias
can have such opposing effects depending on the communi-
cation network characterizing a society. While it is relatively
well established that networks of social influence are some-
what affected by homophily [103], more fine-grained aspects
of the network topology are arguably less clear. For example,
connections between users of social media platforms such as
‘Twitter’ (now ‘X’), are driven by identity, but the network
comprises a mix of short- and long-range connections, and
local associations remain important [104]. We show here that
these aspects play a crucial role in the emergence of opinion
patterns. Sparse long-range connections and strong local clus-
tering generally impede consensus. Under such conditions, in-
group bias can stimulate consensus formation. Contrastingly,
the bias impedes consensus formation in networks with
many long-range and less locally confined connections (simi-
lar, for example, to internet forums). The effects of in-group
bias are thus moderated by network structure. This is impor-
tant because real-world network structures are quite diverse,
as the analysis of networks in social media platforms like
‘Twitter’ suggests [103,105], which can lead to unanticipated
communication and opinion patterns.

Future research could focus on investigating more closely
the network structures that are characteristic of certain real-
world debates, and in particular their clustering and path
length properties. This research may indicate which of the
effects of biases related to social identity dominate in such
debates. How heterogeneity in the degrees of in-group bias
or differences in the agents’ social power in the network
can alter the effects of in-group bias could be another interest-
ing avenue for future research. Although intergroup relations
are a key factor in driving opinion formation in society and,
thus, for example, in facilitating or hampering the design of
effective climate change mitigation policies [12,86,93], a sur-
prisingly low number of modelling studies have tackled
the problem. Ultimately, by shedding new light on the con-
trasting effects that the interaction among social identity,
in-group bias and network topology can have on opinion
dynamics, we hope that our study can inspire additional
modelling work in this field.
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Further analysis is provided in electronic supplementary material
[106].
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Endnotes
1Note that if kin is uneven, for example, kin = 5, then we connect each
agent to its two closest agents in both clockwise and counter-
clockwise directions in the ring lattice and, with probability 1/2,
additionally to the third closest agent in the clockwise direction,
such that the average in-group link degree is kin = 5.
2CNN (@CNN) ‘We must hold the older generations accountable for
the mess they have created … and say to them you cannot continue
risking our future like this.’ Teen climate activist Greta Thunberg calls
on young people to use their anger as activism.
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