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Abstract
Background. Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tu-
mors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To 
date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this 
study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection 
and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions.
Methods. Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent 
EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination 
with investigational clinical trial regimens.
Results.  Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis re-
vealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and 
DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and 
protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcrip-
tional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent 
NE regions.
Conclusions.  Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across 
tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that 
persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally 
mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

Temporospatial genomic profiling in glioblastoma 
identifies commonly altered core pathways underlying 
tumor progression
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Key Points

•  Alterations in common core pathways are retained across GBM recurrences.

•  Significant transcriptional changes are observed over GBM progression.

Glioblastoma (GBM), a World Health Organization (WHO) 
grade IV astrocytic tumor, is the most common and aggres-
sive primary brain tumor in adults, with an overall 5-year 
survival rate of 5%. The molecular landscape of GBM offers 
prognostic and therapeutic relevance, and a diagnosis of 
GBM now requires an integrated histopathologic and mo-
lecular classification.1 Clinical trials employing targeted 
therapies against mutations and pathways known to be al-
tered in GBM have yet to demonstrate a benefit for either 
up-front or salvage treatment.

GBMs exhibit substantial intratumoral heterogeneity 
which is thought to drive the phenotypic features of 
this malignancy, including aggressive parenchymal in-
vasion, treatment resistance, and inevitable recurrence. 
GBM cells display a high degree of local dispersion, 
and tumors recur most commonly in the immediate 
vicinity of the primary excised tumor.2 The current 
standard of care includes maximal feasible resection 
of the enhancing (EN) tumor region, with further non-
enhancing (NE) tumor resection as safely allowed, lim-
ited by functional regions of the brain.3,4 Radiotherapy 
targeting the EN disease combined with a wide surgical 
margin results in improved overall survival, but ulti-
mately does not prevent relapse.4,5 To date, GBM cells 
infiltrating the brain parenchyma remain inadequately 
profiled despite their clinical significance. These cells6 
may represent genetically and phenotypically divergent 
tumor cells requiring specific treatment, thus improved 
temporospatial molecular profiling across both EN and 
NE regions of GBM remains a significant unmet need. 
Finally, although concurrent and adjuvant temozolomide 
(TMZ) provides survival benefit,7,8 it is associated with 
additional mutations, including hypermutated recurrent 
tumors harboring mutations affecting DNA mismatch 
repair proteins.9–11

In this study, we characterize by exome and RNA 
sequencing a cohort of patient-matched sets of treatment-
naïve GBM from the excised bulk of the tumor and recur-
rent tumors sampled from EN and NE regions. Our results 
identify commonly altered signaling pathways enriched 
in recurrent tumors and the emergence of posttreatment 
mutations.

Materials and Methods
A retrospective analysis of GBM tissue samples was per-
formed. GBM samples were collected as part of an IRB-
approved clinical trial protocol (NCT02060890) which 
recruited patients with recurrent/progressive GBM who 
were candidates for surgical resection as part of their clin-
ical management. The study was a single-arm feasibility 
trial evaluating genomic profiling to inform the treatment 
of recurrent GBM, approved by the University of California 
San Francisco Institutional Review Board and by the 
Western Institutional Review Board (TGen); all study par-
ticipants provided written informed consent prior to study 
entry. The genomic and clinical results of this feasibility 
study have been reported.12 Data from this study have been 
deposited in the database of Genotypes and Phenotypes 
(dbGaP) under accession number phs001460.v2.p1 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs001460.v2.p1). As part of the study, tissue 
was taken from adjacent, NE regions of the surgical resec-
tion cavity at recurrence when possible. NE tissue was col-
lected for 12 of the 16 participants. NE tissue biopsies were 
collected at the time of tumor resection of the contrast-
enhancing tumor region. Locations of the acquired EN and 
NE tissue samples were estimated by the surgical team 
and recorded as screenshots and image coordinate values 
of the associated MRI images using Brainlab. Estimated 
distance between EN and NE samples was calculated 
using the 3-dimensional Cartesian coordinate annotations. 
The median estimated distance between NE and EN tissue 
samples was 18 mm (estimated range, 8–34 mm). For lon-
gitudinal analysis, archival fresh frozen tumor tissue or 
formalin-fixed, paraffin-embedded tissue blocks from the 
standard of care bulk resection of the primary tumor and/
or previous progressive disease were obtained for 4 par-
ticipants. In addition, longitudinal (matched primary, re-
current, and second or third recurrence) archival tumor 
tissue samples were obtained for 2 additional GBM pa-
tients (GBM-021 and GBM-022). Data available using ac-
cession PRJEB39059, accessible via http://www.ebi.ac.uk/
ena/data/view/PRJEB39059. Archival recurrent GBM tumor 

Importance of the Study

Molecular profiling of GBM shows consider-
able intratumoral heterogeneity, which underlies 
treatment resistance and remains poorly charac-
terized due to a confounding sampling bias by 

limited surgical resection beyond regions of MRI-
based tumor enhancement. Improved efforts at 
precision medicine for GBM, especially at recur-
rence, warrant image-guided tissue sampling.

http://www.ebi.ac.uk/ena/data/view/PRJEB39059
http://www.ebi.ac.uk/ena/data/view/PRJEB39059
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tissue was previously sequenced for these patients (sam-
ples 7 and 8 in Ref. 12), and for this study archival primary 
and later recurrence tumor tissue samples were obtained 
for these patients for inclusion in the longitudinal analysis. 
Sample processing and sequencing information are avail-
able in Supplementary Methods.

Exome Sequencing Analysis

Whole exome sequencing (WES) was performed on 47 
GBM tissue samples and their paired blood samples from 
16 patients.

Quality control was performed on raw sequencing 
data using the MultiQC toolkit.13 Paired-end clean reads 
were aligned to GRCh37/hg19 using Burrows-Wheeler 
Aligner.14 Mapped reads were sorted with SAMtools,15 
marking duplicates with Picard (http://broadinstitute.
github.io/picard). Target coverage of exome sequencing 
had a mean of 571× for tumor samples and 340× for 
germline samples. One tumor sample presented low 
coverage (2×) and was excluded. Aligned reads were 
processed using GATK16 to remove low mapping quality 
reads (MPQ ≥20) and realigned in the genomic regions 
around potential indels. The quality scores were then re-
calculated for the cleaned BAM files.

Somatic single-nucleotide variants (SNVs) and indels 
were identified in tumors against matched germline 
sequences by integrating the results from 4 variant 
calling algorithms: Freebayes,17 MuTect,18 VarDict,19 and 
VarScan2.20 To minimize false positives, somatic variants 
were retained if they met the following criteria:

	 •  variant-supporting read count ≥2;
	 •  variant allele frequency ≥0.05;
	 • � average variant position in variant-supporting reads 

(relative to read length) ≥0.1 AND ≤0.9;
	 • � average distance to effective 3′ end of variant position 

in variant-supporting reads (relative to read length) 
≥0.2;

	 • � fraction of variant-supporting reads from each strand 
≥0.01;

	 • � average mismatch quality difference (variant − refer-
ence) ≤50;

	 • � average mapping quality difference (reference − var-
iant) ≤50.

Somatic variants reported in the non-cancer databases 
(dbSNP v150, gnomAD v3, and 1000Genome v5b) with a 
minor allele frequency of ≥0.05 were classified as germline 
polymorphisms and excluded.

Somatic copy number was estimated from WES reads by 
CNVkit.21 GISTIC222 was used to integrate results from in-
dividual patients and identify genomic regions recurrently 
amplified or deleted across glioma samples.

LumosVar 2.023 was used to (1) jointly call SNVs and 
copy number variations across a set of patient samples, 
(2) estimate the proportion of cells containing each var-
iant in each sample, and (3) group variants by the patterns 
they follow across samples. Each clonal variant group was 
manually categorized as increasing, similar, or decreasing 
across time points. Genes with coding variants in each 

set of clones were used in gene set enrichment anal-
ysis (GSEA) using the “GeneOverlap” R package using 
the “hallmark” and the “Reactome” gene sets from the 
MSigDB website.24–26 False discovery rates (FDRs) were 
calculated using the Benjamini–Hochberg method. For 
each sample, tumor purity was calculated using CNVkit; 
briefly, the largest region of deletion (ie, for most of the 
samples, this was chromosome 10) was assumed to have 
a clonal one-copy loss. A  log2 fold-change was applied 
to calculate tumor purity as follows: 2−2*2^(log2FC) (see 
Supplementary Table 3 for tumor purity estimates).

mRNA Sequencing and Gene Expression 
Analysis

RNA sequencing quality was assessed through the 
MultiQC toolkit.13 Reads containing adaptors or more 
than 10% undetermined bases or more than 50% bases 
with a Phred quality score ≤5 were removed. Cleaned 
reads had an error rate mean of ≤2% and Q30 ≥90% for 
all samples. Reads were aligned to GRCh37/hg19 using 
STAR27; expression was quantitated at the gene level 
using featureCounts.28 Downstream analysis of gene ex-
pression was performed in the R statistical environment. 
GC correction was applied for the normalization step and 
upper quantile for the between phase. Pairwise compari-
sons were performed by differential expression analysis 
(2-sided Mann–Whitney–Wilcoxon [MWW] test, top and 
bottom 50 genes of the test statistics). Samples were 
clustered using the hierarchical clustering algorithm 
based on the Ward linkage method and Euclidean dis-
tance as implemented in R.

Gene Ontology (GO) enrichment and GBM gene 
expression-based classification29 were computed using 
the MWW Gene Set Test.30 The significant GO terms 
(q-value < 0.001, absolute normalized enrichment 
score  >0.6) were analyzed using the Enrichment Map 
application of Cytoscape.31 In the network, nodes rep-
resent terms while edges represent known term–term 
interactions and are defined by the number of shared 
genes between the pair of terms. Node size is propor-
tional to the number of genes in the category. To select 
overlapping gene sets, a cutoff of the overlapping coef-
ficient (>0.5).

Master regulators (MRs) of the gene expression signa-
ture activated in the NE recurrence versus bulk tumor GBM 
subgroups were performed using the regularized gradient 
boosting machine algorithm as previously described.30,32 
The transcriptional interactome comprised 300 969 (median 
regulon size: 141) interactions between a predefined set of 
2137 transcriptional regulators and 12 656 target genes.

Immunohistochemistry

Immunohistochemistry (IHC) was performed at 
the University of California, San Francisco using a 
Ventana BenchMark autostainer. Tissue sections were 
immunostained with commercially available antibodies 
including anti-EGFR (Dako; M3563, H11), anti-phospho-
RPS6 (Ser240/244; Cell Signaling Technology; 2215), 
anti-phospho-PRAS1 (PRAS40; Thr246; Cell Signaling 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
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Technology; 2997, C77D7), anti-PTEN (PTEN; Cell Signaling 
Technology; 9559, 138G6).

Results

Tumor Collection Scheme and Commonly 
Identified Genetic Aberrations in Patient Samples

To determine the signaling mechanism(s) driving recurrent 
GBM, we analyzed whole exomes and transcriptomes from 
a cohort of GBM tumors from 14 patients. Samples included 
matched primary and recurrent tumor and/or multi-region 
intratumoral sampling across MRI-guided EN and adjacent 
NE tumor regions (Figure 1A and B; Supplementary Figure 
1 and Supplementary Table 1). Baseline patient character-
istics and treatment regimens were previously published12 
and clinical information is available in Supplementary Table 
2. All patients had a histopathologic diagnosis of WHO 
grade IV GBM at disease onset except GBM-015, which 
progressed to GBM from initial diagnosis of WHO grade 
III anaplastic astrocytoma. All patients were treated for the 
primary tumor and at least one recurrence, if not second 
and third recurrences over time, likely accounting for long 
overall survival times provided in Supplementary Table 2. 
The landscape of genomic alterations as defined by SNVs 
recapitulates results from other cohorts33,34 identifying 
known frequently altered early drivers of GBM, including 
PTEN, CDKN2A, PIK3, TP53, NF1, and RB135 (Figure 1C and 
D), and 2 tumors displayed TMZ-induced hypermutation 
(Figure 1D). Individual tumors display alterations that are 
retained or divergent between the EN and NE regions. PI3K 
signaling pathway alterations were noted to be frequently 
retained at tumor recurrence and within intratumoral sam-
pling, including PTEN and PIK3CG mutations across all 
GBM-007 samples, alterations of PTEN in GBM-001 and 
GBM-012, and alterations of PIK3C2G in GBM-003 and 
GBM-016 (Figure  1C and D). These findings converge on 
the importance of genetic alterations that activate the PI3K 
signaling pathway in GBM progression.

Phylogenetic Trees Demonstrate Alternative 
Evolutionary Paths in GBM-007 and GBM-015

Patient tumors with longitudinal data were subsequently 
profiled for their individual genomic evolution via phyloge-
netic analysis alongside their corresponding clinical time-
line (Figure 2; Supplementary Figure 3 and Supplementary 
Methods). GBM-007 (Figure 2A) demonstrates a branching 
pattern of evolution. EGFR amplification and other com-
monly identified early aberrations (CDKN2A, PTEN) were 
observed as truncal alterations, with additional EGFR 
mutations occurring across time. Enigmatically, the EN 
region of recurrence #2 branches earlier than the EN/bulk 
region of recurrence #1, despite arising at a later time in 
the clinical course, presumably highlighting the presence 
of these clones prior to clinical detection of recurrence. 
Moreover, the EN/bulk region of recurrence #1 harbors a 
mesenchymal/immune transcriptome and contained a 
high-quality neoantigen (INTS9 V283L), whereas the other 
samples retained a classical signature (see Supplementary 

Text for high-quality neoantigen calling methods). The 
mesenchymal subtype is known to be associated with the 
highest degree of immune infiltrates.29 GBM-015, which 
displayed TMZ-induced hypermutation, exhibits linear 
evolution and also harbored high-quality neoantigens. 
Of note, while several of these neoantigens are shared 
among the recurrent samples, there is also a unique 
neoantigen (ALPK2 E679K) found within recurrence #3 but 
not recurrence #2, highlighting neighboring sub-clonality 
emergent over time.

To assess the adequacy of patient-derived models to 
study tumor EN and NE regions, patient-derived xeno-
graft (PDX) models were derived from recurrent tissues 
from 4 GBM patients (GBM-001, GBM-003, GBM-005, and 
GBM-007). Phylogenetic analysis of PDX tumors revealed 
close branching to the parent tumor tissue (Figure  2; 
Supplementary Figure 3). The PDX from GBM-007 
branched closely to its cognate parent tumor, although no-
tably gained 81 private mutations (Figure 2A).

Clonal Dynamics in Longitudinal Samples

Patient samples with longitudinal data available under-
went a clonal evolution analysis within individual tumors. 
We utilized LumosVar 2.023 to group variants predicted 
to occur in the same clones and assessed the frequency 
of these variants across time (Figure  3; Supplementary 
Table 4).

We pooled all clones identified across longitudinal pa-
tient tumor samples in order to perform a supervised 
GSEA to determine which gene pathways appear within 
similar, increasing, or decreasing cellular fraction through 
tumor progression. Pathway determination was evaluated 
by assessment of the variants against 1549 gene sets (1499 
Reactome gene sets and 50 cancer hallmark gene sets, 
Supplementary Table 7). Clones identified at a similar cel-
lular fraction through tumor progression are significantly 
enriched (P < .05 and FDR <0.05) for PI3K, RTK, and MET 
signaling pathways (green circles, Figure 3A). Clones with 
increasing cellular fraction through progression include 
Wnt signaling, G2M checkpoint signaling, DNA repair, 
and Kras signaling pathways (P < .05, Figure 3B). Clones 
with decreasing cellular fraction throughout progression 
include TGF-β signaling, glycolysis, and chromatin reor-
ganization pathways (P < .05, Figure 3C). However, for the 
pathways identified in increasing and decreasing cellular 
fraction, FDR was more than 0.1 and therefore requires a 
larger sample size to generalize these findings.

PI3K/AKT/mTOR pathway signaling mediators were fre-
quently identified among the clones, highlighted in red in 
Figure 3D–G, and notably most often found within clones 
that either increased in sample fraction across tumor pro-
gression or remained similar (Figure 3D–G; Supplementary 
Figure 4). GBM-002 (Figure 3D) displayed PI3K pathway ac-
tivation and received buparlisib, an investigational PI3K 
inhibitor; however, PI3K pathway-containing clones within 
this tumor were not significantly impacted by treatment. 
Buparlisib was shown in clinical trials to lack single-agent 
efficacy with incomplete PI3K signaling blockade in tumor 
tissue.36 GBM-015 exhibits a hypermutator phenotype 
(Figure  1G) and predictably harbors an emergent clone 
with an MSH6 alteration.

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa078#supplementary-data
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Figure 1.  Mutational landscape of primary tumors and multiple regions sampled within recurrences. (A) A schematic representation of how human 
glioma specimens were acquired, either via a standard debulking procedure (yellow surrounding the tumor) or on the basis of their MRI contrast 
enhancement (enhancing [EN] or non-enhancing [NE], yellow or blue dots, respectively) in the recurrences. (B) Representative T2-weighted mag-
netic resonance images demonstrating spatial location (yellow arrow) of glioma sample from EN and NE regions of recurrences. (C) The integrated 
landscape of somatic alterations occurring in 35 GBM samples from 12 patients. Rows and columns represent genes and tumor samples, respec-
tively. Genetic alterations, patients, EN or NE, and tumor types (primary, recurrence #1, recurrence #2) are indicated. Tumor samples are sorted 
and grouped by patients. Top and right bar plots indicate the total number of somatic alterations per tumor and per gene, respectively. (D) Somatic 
alterations occurring GBM-012 and GBM-015, which exhibit a hypermutator phenotype.
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Figure 2.  Phylogenetic trees constructed using genetic alterations in GBM-007 and GBM-015. GBM evolutionary trees in patients GBM-007 (A) 
and GBM-015 (B) and their brief clinical history. The longitudinal and spatial evolution was reconstructed by comparing the somatic alterations 
occurring in multiple tumors from an individual patient with a clustering approach. The length of branches is proportional to the number of accu-
mulated mutations at each stage that is also reported over the branches. The color of the branch indicates truncal, shared, and private alterations 
as indicated. Driver genes, as well as high-quality neoantigens, are reported for each evolutionary stage. Transcriptional subtype classification is 
indicated for each tumor. Surgical annotations: GTR, gross total resection; STR, subtotal resection; NS, no surgery; NA, not applicable.
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Longitudinal and Spatial Differences in 
Transcriptomic Signature

GBM tumors with longitudinal data were analyzed for 
transcriptomic signatures across primary tumors and re-
currences (Figure 4A, inset a and b). No significant longi-
tudinal change was observed for tumors taken together; 
however, individual tumors did display divergent tran-
scriptome profiling within some recurrent samples ac-
cording to the phylogenies displayed in Figure  2. Broad 
clusters of increased or decreased differentially expressed 
genes (DEGs) were shared among the primary and recur-
rent sample types (Figure 4B). Analysis of DEGs across pri-
mary and recurrent samples demonstrates enrichment of 
downstream mediator of the PI3K/AKT axis mTORC1 in the 
recurrent samples compared to the primary, where enrich-
ment of mTORC is not observed (Figure 4C).

Given the recurrent alterations noted in PI3K pathway 
mediators, immunohistochemical staining of GBM-021 
and GBM-022 was performed. IHC identified functional ac-
tivation of phosphorylated ribosomal protein S6 (RPS6) 
and phosphorylated PRAS40 across the primary tumor 
and both recurrences (Figure  5). EGFR amplification was 
detected in GBM-021 (data not shown), corresponding to 
increased staining over time.

We subsequently profiled the transcriptomic signature 
dynamics within the spatial transitions between bulk/EN 
regions and NE regions and showed a significant switch 
toward the proneural subtype in the recurrent, NE samples 
(P = .03; Figure 6A). Furthermore, a network of top 20 regu-
lators of the bulk tumor (both primary excised bulk and 
EN region of the recurrences; green in Figure 6B) and NE 
region of recurrences (red) of proneural subtypes demon-
strate an MR switch. Other subtypes did not exhibit a sig-
nificant change in MRs across time and/or spatial locations 
(data not shown). By using the pan-glioma gene regula-
tory network of Mall et  al.,32 we computed the differen-
tial activity of transcriptional regulators between these 2 
proneural cohorts. We observed that the most active up-
stream regulators of proneural EN/bulk samples are char-
acterized by transcription factors associated with the cell 
cycle (MCM2, MCM4, E2F), invasion, cell proliferation, and 
epithelial to mesenchymal transition. On the other hand, 
active regulators of proneural NE recurrence transcrip-
tional programs are polarized toward neural development 
(MYTIL, MEF2C), differentiation (NEUROD2, NEUROD6), 
and other neuronal functions (NEFN, NEFL).

Discussion

The molecular profiling of intratumor heterogeneity across 
regions of MRI-based enhancement in recurrent GBM has 
so far received modest attention. Consequently, there is a 
current lack of characterization of the temporospatial evo-
lutionary dynamics of the treatment-resistant residual cells 
in the peritumoral brain that populate GBM recurrences. 
Here, we examine WES and gene expression analyses 
in GBM using a distinct set of matched longitudinal sur-
gical samples from both the grossly resected bulk tumor 
and EN and NE regions of progressive disease within a 

cohort of 14 patients. This dataset is limited in the number 
of patients as well as the number of tumors from which 
primary resection data were available for genomic pro-
filing, with most samples taken across time points of re-
currence. Additionally, the initial diagnosis of some tumors 
was made based on histopathologic criteria alone without 
an integrated molecular diagnosis available at the time. 
However, this data provides meaningful insight into GBM 
tumor progression via an increased understanding of indi-
vidual versus cohort combined temporospatial dynamics 
along a clinically relevant timeline.

Within individual tumor profiles, we observed that the 
phylogenetic analysis of GBM-007 suggests that the EN 
region of recurrence #2 branched earlier than recurrence #1. 
This result is consistent with other reports demonstrating 
that tumor subclones infiltrating the parenchyma diverge 
early in tumorigenesis and represent the cell populations 
which escape the primary bulk tumor early and confer an 
inherited treatment-resistant profile.37 Individual phylo-
genetic tumor profiling is limited however in the ability to 
identify whether new mutations relative to conserved al-
terations drive tumor progression.

Interestingly, recurrence #1 of GBM-007 is character-
ized as a mesenchymal/immune subtype and harbors a 
unique high-quality neoantigen not shared among later 
recurrence samples of either EN or NE tumor. The dis-
appearance of this signature suggests the possibility of 
lymphocyte infiltration and immune-elimination over 
time.38 Comparatively, the recent large cohort of tempo-
rally profiled GBMs in the GLASS Consortium found that 
neoantigens are not exposed to selective pressure during 
tumor progression.34 Yet, of note in GBM-007, the clin-
ical time to recurrence was longer after the development 
of this mesenchymal/immune signature in recurrence #1 
until recurrence #2, than from primary tumor resection to 
first recurrence (196 vs 164 days). Thus, further studies are 
warranted to investigate the role of immune cell activity 
and editing in individual GBMs, particularly in relation to 
intratumoral heterogeneity of immune cell infiltrates and 
duration of clinical response, given GBM is increasingly 
recognized as a tumor with significant involvement of pe-
ripheral and CNS-resident immune cells.39

We subsequently used LumosVar to identify groups of 
variants, which increased, decreased, or retained a similar 
proportion of the tumor fraction longitudinally. The charac-
terization of these clones revealed that alterations in sev-
eral key signaling pathways, including DNA repair, Kras, 
Wnt, and PI3K/AKT/mTOR, are shared in both primary and 
recurrent tumors, corroborating previous data40,41 and 
highlighting the persistence of these pathways in residual 
disease. On an individual tumor basis, clones containing 
alterations in members of the PI3K/AKT/mTOR pathway 
were overall found with similar or increasing frequency 
across time. Moreover, our DEG analysis identified in-
creased mTORC signaling across primary to recurrent 
tumor time points. The subsequent functional validation 
of the activation of PI3K/AKT/mTOR pathway members by 
IHC revealed the overall stable activation of these medi-
ators across time. Taken together, these results imply that 
standard treatment regimens did not significantly alter 
these key truncal aberrations. This small dataset is cor-
roborated by the temporally profiled GBMs in the GLASS 
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Consortium which found that overall truncal alterations re-
mained stable across time as well as the recent study by 
Draaisma et al.42 showing that alterations in the PI3K/AKT/
mTOR pathway specifically are maintained longitudinally. 

Of note, within the GLASS Consortium dataset, the pres-
ence of subclonal competition was notably associated with 
shorter overall clinical survival, indicating that the identi-
fication of subclonal selection may prognosticate tumor 
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aggression. However, in our limited dataset, we are unable 
to correlate overall survival with clonal change. One tumor 
in our dataset did receive targeted therapy with the PI3K 
inhibitor buparlisib, although treatment did not result in 
a decreased sample fraction of clones with alterations in 
PI3K signaling. Buparlisib was subsequently shown to be 
ineffective in enacting meaningful pathway blockade in 
GBM tumors,36 making it difficult to determine whether or 
not these tumors would respond to effective PI3K inhibi-
tion as a treatment strategy targeting a key truncal aberra-
tion. The recent success of other PI3K inhibitors, however, 
including FDA approval of alpelisib for PIK3CA-mutated 
hormone receptor-positive advanced breast cancer,43 
demonstrates that targeting this axis remains feasible.

We did not find a significant change in transcriptional 
subtype over time. However, there was a nonsignificant 

trend toward retention of or switch to the mesenchymal 
subtype at recurrence across bulk/EN regions, consistent 
with other studies,44 and suggesting some selection 
for this subtype with treatment.29,39 While spatial dy-
namics have been less well studied, intratumoral tran-
scriptional subtype heterogeneity has been previously 
demonstrated.39 Our data revealed a significant switch 
toward a proneural subtype among NE regions as com-
pared to bulk/EN. Given the regional differences, it is 
possible that the intrinsic characteristics of the spatially 
divergent microenvironments influence the transcrip-
tional subtypes, and this remains to be clarified further 
by single-cell analysis at the tumor margins. Moreover, 
among comparative proneural samples across EN and NE 
tumor, we observed a spatially governed MR transcription 
factor switch, further suggesting external influence from 
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microenvironment interactions may regulate dynamic 
tumor progression.

Tumor cell populations residing in the peritumoral brain 
outside of resection margins represent an elusive and crit-
ical population to profile and target during GBM tumor 
progression. Sampling of these regions is limited by safe 
resection surgically; however, recent advances in surgical 
technique including fluorescence-guided surgery have 
been shown to allow for greater gross total resection of 
GBM.45 Our data demonstrate that when genomic profiling 
includes samples from both the EN and NE regions of re-
currences, both overlapping and distinct genomic profiles 
emerge, providing insight into the evolution of the tumor. 
Our limited cohort supports a continued advancement of 
methods to further safely acquire up-front tumor samples 
across MRI regions of contrast enhancement.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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