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Abstract

Towards Bridging the Divide: Enhancing Understanding of Digital Inequity

by

Udit Paul

The Internet has become crucial for communication, education, commerce, and civic

engagement, but not everyone has equal opportunities to benefit from it, leading to digital

inequity. This inequity stems from various aspects of Internet access, such as availability,

quality, and affordability. Policymakers and stakeholders must understand the presence

and extent of digital inequity to develop strategies that can bridge the gaps and ensure

equal Internet access for all.

Acquiring relevant data that sheds light on all aspects of digital inequity is imperative

for building a complete understanding of the issue. Unfortunately, such data is currently

either non-existent or too noisy to be of any use. Policymakers in the US have long

relied on imprecise data obtained either from the Federal Communication Commission

or through crowdsourced network measurements to estimate the availability and quality

of Internet services in different regions, and allocate funding accordingly to improve

Internet access. However, due to the limitations of these datasets, funding initiatives

that rely on them may not achieve their intended objectives. Additionally, there are no

publicly available sources of data that can provide accurate information on the cost of

Internet access across the nation. As a result, it is extremely challenging to understand

Internet affordability and how that contributes to digital inequity.

This dissertation aims to address these challenges in several ways. Firstly, we charac-

terize existing Internet access datasets to gain insights into current digital inequity trends.

Additionally, we develop methodology and tools that can provide comprehensive data on

ix



various dimensions of digital inequity. Leveraging our solutions, we enhance the usability

of crowdsourced network measurements to better understand Internet quality. Moreover,

we curate multiple novel datasets that provide insights into Internet availability and af-

fordability nationwide. This work is crucial in helping policymakers and organizations

make informed decisions to address digital inequity and create a more equitable digital

society.
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Chapter 1

Introduction

In the modern era, the significance of high-quality and affordable Internet cannot be

overstated. The Internet is not just a network of computers; it is a fundamental corner-

stone of the modern information society–an essential medium that is now as pivotal to

the growth and prosperity of communities as transportation and electricity were in the

20th century. This is further evidenced by the recognition of the Internet as a basic hu-

man right by the United Nations [97]. However, despite witnessing the rapid expansion

of Internet accessibility in the last decade, certain segments of the population continue

to be excluded from its advantages, giving rise to the pervasive issue known as digital

inequity or the digital divide [115].

Digital inequity can be succinctly described as the disparity between individuals who

possess affordable access, skills, and support to actively participate in online activities

and those who lack such resources. As such, it disenfranchises underserved and underpriv-

ileged communities from the benefits of an Internet-based modern economy, a problem

that intensifies significantly over time. Even in the US, digital inequity remains present

as highlighted by a recent Pew Research Center study [51] indicating that about 7% of

the population remain non-users of the Internet, while 23% (1 in 4 people) lack access to
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a home broadband connection. Digital inequity disproportionately affects specific popu-

lation groups, such as those residing in rural areas or low-income households, as well as

individuals from minority backgrounds living in urban areas.

There are several ways through which digital inequity can manifest. One of the sig-

nificant dimensions of digital inequity is the lack of access to the Internet. The absence

or insufficiency of network infrastructure can lead to a situation where people have lim-

ited or no access to the Internet. However, the mere presence of network connectivity

alone does not guarantee a usable service. Hence, Internet access encompasses not only

its availability but also its quality. Access issues can also occur through affordability,

specifically referring to the cost of Internet services. Although a locality might have

access to high-quality Internet services, its subscription may be financially burdensome

for individuals, effectively resulting in a lack of access for many.

In addition to access, digital inequity can be pervasive through other dimensions

such as lack of Internet adoption, skills, and support necessary to engage in the benefits

provided by the Internet. While all the dimensions are critical, it is evident that access

to the Internet is a fundamental requirement to mitigate digital inequity.

Acknowledging the significance of universal Internet access and the existence of digital

inequity in the US, efforts are being made to address this issue. In 2022, the US Congress

has allocated a substantial amount of $42.5 billion through the Broadband Equity,

Access, and Deployment (BEAD) Program [187]. This project aims to improve Internet

accessibility by supporting planning, infrastructure deployment, and adoption programs

all across the US. This unprecedented funding initiative serves as a crucial catalyst in

addressing long-standing digital inequities. Nevertheless, it is imperative to allocate these

resources effectively to ensure the intended goal is achieved. Misallocation of funds could

lead to mismanagement and, ultimately, failure to bridge the gap. Hence, careful and

prudent allocation is essential so that the areas that currently lack proper Internet access
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Figure 1.1: Degree of difficulty in assessing the current state of different dimensions of
Internet access based on currently available data.

can reap the benefits of this initiative.

To improve Internet access, it is necessary to assess the existing state of Internet

access nationwide. As mentioned earlier, Internet access encompasses multiple dimen-

sions, including availability, quality, and affordability. Gaining a holistic perspective on

the current state of Internet access involves having relevant data pertaining to each of

these dimensions. However, each of these dimensions suffers from either accuracy, quality,

and/or quantity issues in terms of the data required to comprehensively gain an under-

standing of how they contribute to digital inequity. Therefore, the degree of difficulty

associated with assessing the current state of each of these dimensions vary, as depicted

in Figure 1.1

Of the three dimensions of Internet access, the one that currently has the most avail-

able information is availability. Historically, this information is compiled bi-annually, at

the coarse granularity of census block, by the US Federal Communication Commission

(FCC). The eventual dataset of Internet availability is released through Form 477 [116].

Given the aggregate nature of this data, the limitations are widely recognized. Form 477

data overstate broadband availability because: (1) if an ISP only covers a single house-

hold in a census block, the entire block is considered covered; (2) “availability” means

that the ISP does not necessarily service the area currently but could provide service
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within an interval that is typical for that type of connection [77]. In response to the

limitations of the imprecise Form 477 data and the recognition of the necessity for more

detailed information, in 2020, the US Congress mandated the Federal Communications

Commission (FCC) to create a precise map of broadband availability throughout the

US [113]. This resulted in the Broadband Data Collection (BDC) by the FCC to create

the National Broadband Map [78] of Internet availability in the US. Unlike Form 477,

this data provides information about the Internet services available to individual lo-

cations (street addresses) across the country, along with new maps of mobile coverage,

as reported by ISPs in the FCC’s ongoing BDC. While still reported by the ISPs, this

dataset serves as a massive improvement from Form 477 and provides Internet availability

information at the finest granularity possible. Although in its initial stages and undergo-

ing iterative improvements, there are reports indicating inaccuracies associated with this

newly developed dataset. ISPs have been found to have provided false information [106]

to the FCC giving rise to fear [121] that inaccuracies that plague the Form 477 may still

be present in the new dataset.

While the existing Internet availability datasets face the challenge of inaccuracy, the

limited data sources that can provide insights into Internet quality are hindered by the

presence of noise. Fundamentally, measuring Internet quality on a large scale is an incred-

ibly challenging task. The FCC operates the Measuring Broadband America (MBA) [141]

project through which it longitudinally measures the Internet quality of 3k households,

or 0.003% of total households, around the country. As an alternative, datasets gathered

by crowdsourced speed test measurement tools such as Ookla’s speedtest or Measurement

Lab’s speed test emerge as a potential alternative to understanding Internet quality in

scale. These speed test platforms are designed to measure Internet quality and their

subscribers can run these measurements at will. However, this uncontrolled setting of

speed tests gives rise to a lot of noise. To interpret the results of speed tests, additional
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contexts such as a subscriber’s purchased subscription tier and/or local home network

conditions need to be taken into account. However, current speed test tools either lack

this information or only collect a few of the required parameters, leaving the datasets

rife with noise and unusable to study Internet quality.

Finally, while some datasets are present to understand Internet availability and qual-

ity, there is a notable absence of a comprehensive dataset to explore Internet affordability

at a large scale. The lack of granular information regarding the cost of Internet services

across the country results in an inherent opacity within the Internet service provisioning

industry. The absence of detailed data makes it challenging to examine significant trends

regarding ISP practices, Internet service pricing, and overall Internet affordability across

the country.

Taking into account the individual limitations related to each dimension, it becomes

apparent that fully understanding the extensive scope of digital inequity in relation to

Internet access is an exceptionally difficult undertaking. Relying on existing inaccurate

and low-quality datasets to allocate funds for improving Internet access raises the risk of

making uninformed investment decisions, which could ultimately impede the achievement

of the intended objectives. It is therefore imperative to assess the existing state of Internet

access with new and/or improved datasets pertaining to Internet availability, quality, and

affordability.

This thesis centers around studying the current state of Internet access and aims

to develop methodologies to enhance the usability of existing datasets. Additionally, it

focuses on developing tools to contribute novel datasets that are necessary to advance

our understanding of Internet availability, quality, and affordability.
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Figure 1.2: Dissertation overview.

1.1 Thesis Statement

This dissertation shows that:

Many people experience digital inequity as they do not have access to Internet services

that are both affordable and of high quality. However, the extent of digital inequity

remains unknown. To address this issue and bring benefits of the Internet to everyone,

we must assess the presence and extent of digital inequity along three important axes:

availability, quality, and affordability.

Figure 1.2 presents the outline of this dissertation. In this thesis, we characterize

the existing state of Internet availability [180] and quality [196] using available datasets.

Additionally, we develop methodologies to enhance our understanding and utilization of

these existing datasets [197]. Finally, we develop tools to contribute novel datasets that

provide additional insights into the prevailing state of Internet access [194, 193].
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1.2 Key Contributions

In this section, we discuss our broad contributions and their implications based on the

outline shown in Figure 1.2.

1.2.1 Internet Availability

To enhance understanding of Internet availability, we i) analyze existing datasets and

ii) create new methods and tools, including utilizing non-traditional sources like Twitter,

to identify areas with limited Internet access.

• Characterization and Analysis: We combine multiple existing datasets to un-

derstand the digital divide/inequity in Chicago and the contributing factors [180].

The focus of this study is on Chicago as the city is known to have economically/de-

mographically diverse communities.

Contributions: To gain insights into the patterns of Internet availability and adop-

tion within the city of Chicago, we employ two existing datasets as primary sources

of information: i) the FCC Form 477, which provides data on broadband availabil-

ity, and ii) demographic data obtained from the US Census American Community

Survey (ACS), which offers valuable insights into the characteristics of the popula-

tion. The study provides a comprehensive analysis of the existing digital inequity

in Chicago, and identifies the specific geographical areas that require attention and

resources. Additionally, the study demonstrates the relationship between various

demographic factors (e.g., age, income, and education) and the adoption of Internet

services in the city.

• Methodology & Tool: We explore the possibility of utilizing unconventional

data sources, like the widely-used micro-blogging platform Twitter, to detect In-
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ternet outages [193]. Our focus is primarily on pinpointing instances of network

disruptions during natural disasters.

Contributions: In addition to conventional Internet availability data, this disserta-

tion brings a unique perspective by exploring an unconventional source—Twitter

data—for understanding and detecting Internet outages. The utility of social me-

dia as a vast, real-time information source is well recognized. Still, its potential for

aiding Internet outage detection and, by extension, illuminating aspects of Internet

quality and access is relatively untapped. We develop machine learning models

that can be employed on real-time human experiences shared on Twitter to au-

tomatically detect Internet availability issues such as outages. Our methodology

and tool have versatile applications, including providing crucial information to first

responders about possible areas facing communication disruptions during natural

disasters, or identifying regions that generally endure subpar connectivity.

1.2.2 Internet Quality

Due to the scarcity of large-scale datasets offering insights into Internet quality, we ini-

tially analyze available datasets to characterize digital inequity along the dimension of

Internet quality. Additionally, we devise an innovative methodology that augments these

existing Internet-quality datasets with valuable contextual information, thereby enhanc-

ing their interpretability and overall applicability.

• Characterization and Analysis: The availability of Internet services does not

guarantee usability. It is therefore important to assess the extent of digital inequity

in terms of Internety quality. Crowdsourced active measurement platforms such as

Measurement Lab (M-Lab) Speed Test allows us to explore the relationship between

the quality, as opposed to only the availability, of Internet access and demographic
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attributes of users of the platform.

Contributions: In this study [196], we use network measurements collected from the

users of Speed Test by M-Lab [57] and demographic data to characterize the rela-

tionship between the quality-of-service (QoS) metric download speed, and various

critical demographic attributes, such as income, education level, and poverty in the

state of California. The study demonstrates that tests conducted in urban areas

record higher download speeds compared to rural areas. Furthermore, even within

urban areas, the study finds digital inequity in terms of Internet quality along the

demographic dimension of household income. Finally, the study also contrasts the

information reported by the FCC Form 477 with actual network measurements

and identifies considerable exaggeration in the Form 477 data, especially in rural

locales and urban areas with low income. The study also discusses the potential

limitations of existing crowdsourced measurement datasets.

• Mehodology & Tool: Although the few existing crowdsourced network measure-

ment, or speed test, datasets can provide insights into trends in Internet quality,

they come with several significant constraints. Primarily, these measurements only

provide a snapshot of the user’s current network condition. For example, if a

test reports a download speed of 10 Mbps, it doesn’t inform if the low speed was

a byproduct of poor Internet quality or other factors that are hyperlocal to the

test taker themselves such as their subscription tier and/or poor home network

condition. Such contextual information is missing from the existing crowdsourced

measurement datasets. To that end, we design a novel methodology that is able

to associate crowdsourced measurements with critical contextual information of

subscription tier.

Contributions: To infer the subscription tier of a speed test, we develop the Broad-
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band Subscription Tier (BST) methodology which is a two-stage hierarchical un-

supervised classification technique [197]. We evaluate the efficacy of BST on the

MBA dataset. Results reveal that BST can infer speed test’s subscription tier with

over 96% accuracy across multiple ISPs. We then apply BST on existing Internet

quality datasets gathered from crowdsourced network measurements platforms such

as Ookla’s speedtest and M-Lab’s Speed Test. We quantify the potential impact of

various test taker’s specific factors such as access medium (wired or WiFi), WiFi

band, WiFi signal strength, and device memory on the ultimate Internet qual-

ity reported by the speed tests. Additionally, our results show that the choice of

speed test platform can also affect the reported performance. This work is timely

given the recent focus on crowdsourced speed test measurements for policy-related

decision-making. Our analysis shows how the lack of context contributes to mis-

leading conclusions and offers a set of recommendations for speed test vendors and

the FCC to contextualize speed test data and correctly interpret measured perfor-

mance.

1.2.3 Internet Affordability

As mentioned previously, unlike the dimensions of availability and quality, there exists

no comprehensive dataset that allows the characterization of Internet affordability in

the US. To tackle this challenge, we develop a tool that can extract the information of

ISP provided Internet plans at the street address level granularity around the country.

Subsequently, using the data gathered by our tool, we are able to analyze and characterize

broadband affordability in the US by focusing on the nature of broadband plans offered

by major ISPs.

Contributions: To curate a novel dataset of ISP provided Internet plans at street
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address level granularity, we develop the Broadband plan Querying Tool (BQT). BQT

takes a street address as input and determines the ISPs that provide services to that

address. Subsequently, BQT extracts the set of plans provided by each ISP to that

particular address. Using this tool, we have curated a dataset of Internet plans from

seven major US ISPs, covering over a million residential addresses in the US [194].

The dataset gathered using BQT brings a revolutionary change to the study of Inter-

net affordability. It allows for a comprehensive examination of trends concerning Internet

access costs and the practices of Internet Service Providers (ISPs) nationwide. Analysis

of the dataset reveals several interesting findings such as strong spatial clustering of simi-

larly valued plans, benefit of competition between ISPs offering similar value services, and

digital redlining amongst various communities. Additionally, this dataset is well suited to

verify the accuracy of the FCC’s newly developed National Broadband Map [78]. Finally,

we make BQT and the dataset publicly available, thereby empowering researchers and

policymakers to utilize and build upon our work to deepen our understanding of Internet

affordability around the country.

1.3 Broader Impacts

In addition to peer-reviewed publications and presentations to academics, this work was

impactful to the larger community.

• We have partnered with multiple state and non-profit entities such as Califor-

nia Public Utilities Commission (CPUC) [112], California Community Foundation

(CCF) [111], and Oakland Undivided [119] to assist in providing the datasets to

better understand communities who remain disenfranchised from the benefits of

the Internet.
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• Our work successfully convened stakeholders from academia, industry, and poli-

cymaking domains in a dedicated workshop [108], fostering a collaborative envi-

ronment for discussing broader concerns related to digital inequity. Through this

platform, we explored the development of methodologies, tools, and algorithms

aimed at enhancing our comprehension of Internet inequity and devising effective

strategies for its mitigation. The workshop facilitated meaningful dialogue and

knowledge exchange, enabling participants to collectively contribute to the ad-

vancement of research, policy, and industry practices in addressing the challenges

of digital inequity.

• Through our work, we were able to provide technical assistance to the investigative

reporting conducted by the Markup[98], which revealed trends of digital redlining

through an examination of ISP-offered services across 43 metropolitan cities in the

US. The subsequent news article [73] garnered significant attention from various

sectors, facilitating extensive discussion and scrutiny of the US broadband service

provisioning sector.

• This work has generated considerable interest in the industry as evidenced by our

invited presentations in 2022 to Google’s Network Analytics team, as well as to

Ookla’s Data Science team, where we shared our findings.

• The work that constitutes Chapter 5 of this dissertation received the Distinguished

Paper Award (Long Paper) at the 2022 Internet Measurement Conference.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. The dissertation is comprised

of three main sections: Internet availability, Internet quality, and Internet affordability.
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Related to Internet availability, in Chapter 2, using existing datasets, we characterize

the current state of Internet availability in Chicago. We propose a novel approach of

using data from a popular microblogging platform, Twitter, to detect Internet outages in

Chapter 3. In terms of Internet quality, Chapter 4 presents an analysis of Internet quality

in California using the data generated from the speed test platform, Speed Test by Mea-

surement Lab. Chapter 5 introduces an innovative approach that links data points from

crowdsourced network measurement platforms with the essential context of the subscrip-

tion tier. The methodology enables a better understanding and interpretation of network

performance data and Internet quality in general. Regarding Internet affordability, in

Chapter 6, we first present a scalable data collection tool, that enables the curation of

the most comprehensive cost of Internet access dataset in the US. Subsequently, we an-

alyze the data collected using the tool to capture different trends pertaining to Internet

affordability around the country. Lastly, Chapter 7 discusses our findings and provides

some recommendations to various stakeholders to further our understanding of digital

inequity.
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Part I

Internet Availability
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Chapter 2

Internet Inequity in Chicago:

Adoption, Affordability, and

Availability

2.1 Introduction

Internet access has become critical to ensure equitable opportunity in workforce partic-

ipation, education, health, and other domains, especially in the post-pandemic world.

Historically, the question of Internet equity generally has focused on bridging the “digi-

tal divide” between urban and rural areas; that is, on bringing broadband service to the

(mostly) rural areas that have none. For example, the recently approved Federal Broad-

band Equity, Access, and Deployment (BEAD) funding, which promises $42.5 billion to

expand high-speed Internet access, with priority given to the connection of “unserved” ar-

eas, many of which are rural [189]. More attention, however, is also needed to understand

and address Internet equity in areas that already meet the FCC standard of “served”,

because many residents of these mostly urban areas do not, in fact, have broadband
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connections at home. It has long been known that there exist many barriers to Inter-

net adoption, from access to affordability [200]; thus, policy efforts to bridge the digital

divide must also focus on areas that are technically “served” by Internet infrastructure,

even in large urban centers.

Accurately identifying the urban digital divide and the contributing factors is an

important first step towards mitigating it; doing so can subsequently inform the policy

interventions that might reduce the divide. As cities around the United States are working

towards understanding gaps in Internet equity, the city officials in Chicago asked us for

input into how to quantify the digital divide in Chicago. Specifically, they asked us:

What is the Internet connectivity across different neighborhoods in Chicago and how does

it relate to socio-economic factors as well as broadband availability?.

Recent work has pointed towards the existence of a digital divide in urban areas, but

an analysis that quantifies this at a neighborhood level is missing. Given that income,

unemployment, institutional resources, and social capital are known to be unequally

distributed at the neighborhood level—and the influence these characteristics have on

both individual and collective outcomes—having an understanding of neighborhood-level

inequity in Internet connectivity is paramount [210].

Towards this goal, our work seeks to understand the following questions: (1) What

is the current state of Internet inequity in Chicago; specifically which geographies need

the most attention and resources?; (2) How does Internet adoption relate to popula-

tion characteristics including age, income, and education?; and (3) How does broadband

availability relate to adoption rates? To answer these questions, we use two datasets

in this chapter: (1) the American Community Survey (ACS), a household-level survey

containing spatially aggregated information about broadband adoption and key popula-

tion characteristics (e.g., income, education, occupation), and (2) FCC Form 477 fixed

broadband data, a semi-annually collected dataset that indicates availability of ISPs at
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a census block level. We combine these datasets to answer the above questions. We find

the following:

• Broadband adoption rates vary greatly across neighborhoods in Chicago: adoption

rates range from 58% to 93% depending on neighborhood.

• The neighborhoods with the lowest adoption rates are concentrated on the South

and West Sides of the city, in majority-Black areas that reflect Chicago’s historical

patterns of racial residential segregation.

• Adoption rates also correlate with Hispanic population concentration, low income,

low educational attainment, and a higher proportion of elderly population.

• Nearly all census blocks (90%) have at least one high-speed broadband ISP present.

The number of ISP options available varies greatly by census block, and 50.6% of

census blocks have only one high-speed broadband ISP available (as defined by

100/20 Mbps).

Our findings quantify the extent of home Internet inequity in Chicago, highlighting the

neighborhoods that would benefit the most from attention towards increasing connec-

tivity rates. While our analysis stops short of establishing causal relationships, the

high correlation between income and adoption rate suggests the importance of afford-

able Internet access either through subsidy programs (such as the United States federal

government’s Affordable Connectivity Program [154] or the City of Chicago’s Chicago

Connected program for students in Chicago Public Schools [142]) or measures to support

deployment of community networks. The correlation of adoption with age highlights the

importance of digital literacy programs such as digital navigators, as well as efforts to

innovate on inclusive technologies, including in regards to privacy protection. Finally, the
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spatial disparities in ISP availability, including the number of ISP options and newer ac-

cess technologies such as fiber and DOCSIS 3.1, highlight potential inequities in Internet

infrastructure.

2.2 Background and Related Work

In this section, we provide a brief background on the datasets we used in our analysis;

we then provide an overview of related work.

2.2.1 Datasets

Census American Community Survey (ACS)

This dataset is a nation-wide demographic survey conducted by the US. Census Bu-

reau. Every year, the Census samples approximately 3.5 million addresses (roughly 1%

of the United States population) and gathers population characteristics such as employ-

ment, income, and household characteristics. In 2013, the Census also included two

questions around broadband adoption inquiring about access to Internet and mode of

access The data is made public and is used by governments, communities, and private

entities for many purposes (e.g., allocating funds). The Census shares spatially aggre-

gated information from the ACS samples. For analysis in a smaller region, the census

recommends using five-year aggregates; for larger geographies, yearly aggregates suffice.

This is because of the sampled survey and aggregation across years ensures there are

enough responses within a smaller geography. In addition, the Census also shares indi-

vidual responses through Public Use Microdata Samples (PUMS), which are anonymized

to preserve privacy. The PUMS data is available at a larger spatial granularity called

Public Use Microdata Areas (PUMAs). In this paper, we use the five-year aggregate
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data, unless otherwise specified.

Limitation: The data combines information from last five years to obtain estimates

and is thus not always reflective of the most current circumstances. Other limitations

include potential errors in the estimates due to sampling and errors in survey response.

FCC Form 477 Data

The Federal Communication Commission (FCC) mandates that Internet Service Providers

(ISPs) provide information about areas where they provide service. ISPs need to file their

offerings at a census-block level; an ISP can include a census block in its offerings if it

can provide Internet service to at least one household in the census block. Along with

each census block, the ISPs must also file information about the maximum advertised

download and upload speeds in the census block, the access technology (e.g., cable, fiber-

to-the-home), and whether the service plan is for consumers or business. This data is

one of the key datasets used to decide whether an area is unserved. We use the latest

form 477 data to understand broadband availability in Chicago.

Limitation: Form 477 data may overstate broadband availability because: (1) if an

ISP only covers a single household in a census block, the entire block is considered covered;

(2) “availability” means that the ISP does not necessarily service the area currently but

could provide service within an interval that is typical for that type of connection [150].

From a practical perspective, such service delays may act as a barrier to broadband

adoption.

2.2.2 Related Work

Previous research has investigated the presence and extent of digital divide/inequality

amongst various communities within the US. In [196], the authors utilize the crowd-
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sourced speed test measurements from Measurement Lab [56] in California to identify

the location and demographic factors that impact download speed. Their results show

speed test performance positively correlates with household income and urban areas.

Paul et al. conduct statistical analysis on publicly available datasets from another popu-

lar speed test vendor [195] (Ookla [191]). The objective of this work was to identify states

where digital inequality in terms of internet performance exists between urban/rural and

low/high-income areas across all states in the US. Their results once again confirm the

presence of digital divide in the majority of the states in the dimensions of location and

household income. A similar performance trend between communities using the same

dataset was also captured in several previous studies [132, 22].

Other work found that that a major reason behind digital inequity in the urban

regions stems from households opting against purchasing high-quality of internet even

when it is available [1] . This finding is further reinforced in the survey conducted by Liu

et al. [175], who found in a study across 978 US. households that the surveyed population

expressed less willingness to invest in Internet speeds exceeding 100 Mbps. Another study

conducted in Detroit, Michigan finds while lower-income communities want to purchase

high-quality of Internet, the higher associated cost proves to be a major barrier and

creates digital divide [205]. An analysis of the urban region of San Antonio, Texas

reveals the cost of deployment of new technologies by ISPs and geographical disparities

primarily contribute to the digital divide between urban communities [138] .

Combining zip code level demographic information with its own data, Microsoft [35],

estimated that adoption of high-speed Internet was lacking for 162.8 million Americans, a

number far greater than the FCC’s estimate. Galperin et al. identify the low-income mi-

nority population as a group likely to be disenfranchised from having access to residential

fiber services that provide better Internet performance [158].
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2.3 Adoption

In this section, we analyze the broadband adoption rates as reported by the Census ACS

data. We consider adoption rates at both the census tract and neighborhood levels.

2.3.1 Method

We use the latest five-year data spanning 2016–2020 from the ACS survey to obtain

broadband adoption rates. The survey asks residents the following two questions regard-

ing Internet access:

• At this house, apartment, or mobile home – do you or any member of this household

have access to the Internet?. The response can be either no or yes. For households

with access, the survey also differentiates whether the access is through a paid

subscription or otherwise.

• If the answer to above question is yes with an Internet subscription available, the

survey also asks about the mode of Internet access. Do you or any member of this

household have access to Internet using a: The options include cellular, broadband,

satellite, dial-up Internet service, or others.

We consider households who responded yes to having a broadband connection at the

household. Note the ACS broadband definition is not the same as the FCC’s definition

which uses specific speed thresholds. Rather, ACS specifies broadband Internet as high

speed Interent (without any speed limits) and provides few examples of access technology

which include cable, fiber optic, and even DSL service. We define adoption rate as the

percentage of total households that responded yes to having Internet access through a

broadband subscription.
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Figure 2.1: Internet Access across Community Areas in Chicago

To calculate adoption rates, we use the data in Table B28002 containing spatially

aggregated responses to the above survey questions. We consider the finest spatial granu-

larity, i.e., census tract. The table contains estimate of number of households with broad-

band access along with its 90% confidence interval denoted as margin of error (MOE).

To compare adoption rates across geographies, we calculate the percentage of households

with broadband access by dividing the estimate with the total estimated households in

the census tract. We also obtain margin of error for the derived percentage as follows:

MOE(P̂ ) =
1

Ŷ

√
[MOE(X̂)]2 − (P̂ × [MOE(Ŷ )])2 (2.1)

Here, X̂ and Ŷ are the estimated households with broadband access and total households,

respectively. P̂ is estimated percentage of households with broadband access and is simply
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Figure 2.2: Adoption rates along with Margin of Error

X̂

Ŷ
. MOE(X̂), MOE(Ŷ ), and MOE(P̂ ) denote the respective margin of errors. In case

the expression under the square root is negative, we sum the two expressions under the

square root instead of subtracting them, as recommended by the Census [137]. This leads

to a more conservative estimation of margin of error.

As Chicago has distinct community areas, we also repeat the analysis at community-

area level. We first map each census tract to the respective community area. If a census

tract overlaps with multiple community areas, we associate it with the community with

which it has the highest-area overlap. We then aggregate the census tract adoption rates

within a community to obtain community-level adoption rates. We sum the tract-level

estimates to obtain estimates of total households and households without Internet access.

To obtain the margin of error, we use the ACS table containing the successive difference

replication values [136]. This calculation provides a more accurate margin of error during

aggregation.
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2.3.2 Broadband adoption across community areas

We first explore the community-level broadband adoption rates. Figure 2.1 shows the

fraction of households without Internet access across community areas in Chicago. We

observe large disparities in Internet access across community areas. Communities with

lowest adoption rates include Fuller Park (58%), Englewood (64%), West Englewood

(64%), and East Garfield Park (67%). By comparison, the areas with the highest adoption

rates, Beverly and Lake View report 93% and 92% of households with broadband access,

respectively. Most of the areas with the lowest adoption rates are located in the South and

West sides of Chicago, areas containing neighborhoods that are historically marginalized,

consisting of immigrant and lower-income residents who settled away from the central

business districts and wealthier, lakeside areas in the northern sections of Chicago [190].

We also analyze the margin of error in adoption rates across community areas as

shown in Figure 2.2. The margin of error varies from 4.5% to 19.8% with a median

of 8.1%. The margin of error is generally less than 10% of households for almost 90%

of the community areas. We found the MOE to be high for three communities, i.e.,

West Elsdon, Pullman, and Jefferson Park. One reason is that the MOE approximation

formula defined in Equation 2.1 could not be applied for these neighborhoods as the

expression under the square root was negative. We instead compute a more conservative

MOE based on census recommendation which leads to higher MOE. Even considering

the margin of errors, the adoption rates are significantly different between community

with the highest and lowest adoption rates.

Takeaway : The ACS data provides evidence of stark Internet equity in Chicago.

Although the underlying reasons of the divide can be different between urban and rural

areas (e.g., affordability vs. connectivity), the data highlights that even urban areas
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Figure 2.3: Households without Internet Access at tract level.
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Figure 2.4: Distribution of adoption rates within community areas.

require attention at the local, state, and federal levels—and efforts by communities and

governments alike to bridge these gaps.

2.3.3 Broadband adoption at the census-tract level

Although community areas have a social meaning for both residents and local government

administrators, there is merit to doing analysis at census-tract levels because census

tracts are more fine-grained than community areas. Although a community may have

a high adoption rate overall, there may be some smaller regions with lower adoption.

Figure 2.3 shows the cumulative distribution function (CDF) of the percentage of tract
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Hispanic Black White Asian
Correlation with
broadband adoption

-0.06 -0.49 0.58 0.26

Table 2.1: Correlation of broadband adoption with Race/Ethnicity

households with broadband access across tracts. The adoption rate varies from 42% to

100%; in the median tract, 82% of the households lack broadband access. The analysis

shows clear a disparity in adoption rates across census tracts. Next, we consider whether

tracts within a community show disparity in adoption rates at a census-tract level. We

group tracts based on the community area and show a box plot of distribution of tract

adoption rates. We find significant variance within communities. For example, the 10th

and 90th percentile tract adoption rates in the Near West Side community are 75% and

95%, respectively. This finding indicates that targeted interventions may be required at

sub-community area levels.

Takeaway : In addition to disparity at community-area level, there are disparities

within some communities, indicating community areas are not homogeneous in terms of

broadband adoption rates. Thus, more micro-level approaches (e.g., at block level) may

be needed to address issues of low adoption within certain individual community areas.

2.4 Correlation with Population Characteristics

In this section, we study how various socioeconomic factors correlate with adoption rates.

We first consider the relationship between adoption and race/ethnicity at the level of cen-

sus tract. Next, we consider three major factors: income, education, and age. These three

factors have been shown to correlate with Internet adoption in previous studies [149]. We

examine whether these relationships also hold in Chicago.
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Figure 2.5: Scatter plot of broadband adoption vs race/ethnicity constitution

2.4.1 Adoption Rates and Race/Ethnicity?

For this analysis, we use the Data Profile Tables from the ACS Census data. The Data

Profile Tables or Data Profiles contain a variety of socio-economic and demographic

information at a tract level. We select the following estimates at census tract level:

(1). Ethnicity: percentage of Hispanics of all races (Table DP05 0071PE), (2) Race:

percentage of Non-Hispanic Blacks (Table DP05 0078PE), Non-Hispanic Whites (Table

DP05 0077PE), and Non-Hispanic Asians (Table DP05 0080PE), We do not include

other races (e.g., Native Americans, Mixed race) as there is only a small proportion of

people who fall into these categories in most tracts. We compute the Pearson correlation

coefficient between the race/Hispanic ethnicity percentages and broadband adoption rates

across census tracts (see Table 2.1). We find that the percentage of Black residents in a

tract correlates negatively with broadband adoption rates, while the percentage of White

and Asian residents has a positive (though weaker) correlation with adoption rates. The

correlation between percent Hispanic residents and broadband adoption is negative but
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small.

We also show a scatterplot of tract racial composition and adoption rates along with

a trend line obtained by fitting a linear regression (see Figure 2.5). Of particular interest

is Figure 2.5c, showing the adoption rates and percentage of Black population in a census

tract. This graph recalls the high levels of residential segregation between Black and non-

Black populations in Chicago, and shows that broadband adoption rates are similarly

divided. Most tracts have either few Black residents or a majority of Black residents. In

the latter tracts, we find low adoption rates. In contrast, tracts with few or no Black

residents have high adoption rates. This finding is corroborated by Figure 2.5b, which

shows high adoption rates in tracts with a majority White population.

2.4.2 Adoption Rate and Population Characteristics

We next study the correlation between adoption rates and key population characteristics.

We focus on three characteristics: income, education, and age. These three characteristics

may have a causal effect on adoption. Income can affect the ability to get a broadband

connection; education has an effect on both employability (and hence income) as well

as digital literacy and hence the perceived utility of the Internet; age may also affect

broadband adoption with older population less likely to adopt due to multiple reasons

such as difficulty of using digital technology, privacy concerns, or perceived lack of utility.

With the available datasets, demonstrating causality is challenging; thus, we restrict our

analysis to correlation.

For this analysis, we again use the Data Profile Tables from the ACS Census data;

we use the following tables:

• Income: We select two metrics for income. The median household income (Table

DP03 0062E) and percentage of families below poverty level (Table DP03 0119PE).
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Population Characteristic Correlation Coefficient
Log median household income 0.72
Percentage of families below poverty level -0.58
Percentage of population above 25 with Bachelor Degree or high 0.66
Percentage of population above 25 with a high school degree or higher 0.52
Percentage of population above 65 -0.38
Percentage of single-person householders above 65 -0.52

Table 2.2: Correlation of population characteristics with broadband adoption

The latter metric normalizes the income by the number of people in the household.

We further take the log of the median household income as existing work suggests

using log income for modeling [148].

• Education: We consider two metrics for education, namely percentage of popula-

tion above 25 with a high school degree or higher (Table DP02 0015PE) and per-

centage of population above 25 with a bachelors degree or higher Table DP02 0068PE).

• Age: We consider the percentage of older adults (above 65) in the population.

We consider two metrics, percentage of population above 65 (DP05 0024PE) and

percentage of single-person households with the householder age above 65 (Table

DP02 0009E and DP02 0013E for males and females, respectively). The second

metric can more strongly show the association between age and broadband adop-

tion. For the second metric, we obtain a single number by adding the male and

female householders.

We obtain the above metrics at the census-tract level and compute the Pearson’s corre-

lation coefficient with broadband adoption rates (see Table 2.2. Looking first at metrics

of income, we find that broadband adoption rate is positively correlated (in fact most

correlated) with median log income and negative correlation with percentage of fami-

lies with income below the poverty level. This result is expected since low income may

make it difficult to purchase broadband Internet access. The prices of popular ISPs like

Comcast and AT&T do not vary based on geography within Chicago; as such, we can
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compare broadband affordability by comparing income across neighborhoods. High per-

capita income tracts may generally find broadband to be more affordable and thus they

also may have high broadband adoption rates.

We also find a high correlation between broadband adoption rates and education.

Broadband adoption rates are more correlated at the tract level with percentage of peo-

ple with a bachelors degree than with percentage of people with a high-school degree.

Education is also highly correlated with income. As mentioned before, education can

impact adoption through income as well as through households’ perceived utility of In-

ternet. Future work can consider isolating the impact of the latter by controlling for

income.

Finally, we find a weak negative correlation (-0.17) between adoption rates and per-

centage of population above 65 in a tract. The negative correlation is stronger (-0.42)

when we consider single person households with householder above age 65. This rela-

tionship suggests that the older population may have lower adoption rates due to low

perceived utility of the Internet, may also be related to the difficulty of using technol-

ogy. Increasing high-speed broadband adoption rates could, however, be critical for these

households (e.g., with remote telehealth opportunities during and after the COVID-19

pandemic).

Takeaway: When examining bivariate correlations, we find that broadband adoption in

Chicago is most correlated with income and education. In terms of policy, the association

suggests the need to make broadband more affordable for the lower-income population

(which is also more likely to comprised people of color) in Chicago. We also find a

negative correlation between adoption and percentage of single-person households above

65 years of age. Community-based programs such as digital navigators, which aim to

enhance digital literacy, may be useful for increasing the adoption rate, especially among
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Access Type Technology ISP Advertised speeds [Mbps]
% Census
Blocks
Present

Wireless

Satellite
ViaSat 35/3 100
HNS 25/3 99.71
VSAT 2/1.3 99.71

Terrestrial

T-Mobile 25/3 44.2
Verizon 300/50 0.16

Google Webpass
100/100, 200/200,
500/500, 1000/1000

0.4

Everywhere Wireless 25/10,..,2000/2000 0.75

Wired

ADSL, ADSL2, ADSL2+,
VDSL, SDSL, Fiber

AT&T 0.42-0.42, .., 1000/1000 89.59

DOCSIS 3.1 Comcast 1000/35, 2000/2000 88.62
DOCSIS 3.0 WOW 1000/50 20.23
DOCSIS 3.1, 3.0, 2.0, 1.1, 1.0,
Fiber

RCN
25/4, 500/20, 1000/20,
1000/1000

12.59

Table 2.3: ISPs in Chicago by access technology.

the elderly.

2.5 Availability

In this section, we analyze broadband availability in Chicago. We specifically consider

variability of technology, speeds, and number of ISP options within Chicago. We use the

latest FCC form 477 data from December 2020 which contains ISP-provided availability

information at a census block level.

2.5.1 ISP Availability by Access Technology

We filter the form 477 data for census blocks within Chicago and characterize the ISPs

based on the access technology. Table 2.3 shows the major ISPs, including their access

technology, advertised speeds, and percentage of census blocks covered.

Satellite wireless : These include ISPs that use satellites (e.g., Low Earth Orbit

Satellites) to provide Internet access. Consumers can obtain Internet access by installing

a satellite receiver antenna. The satellite ISPs are characterized by low speeds and high
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Figure 2.6: Spatial coverage of T-Mobile fixed wireless offerings.

last-mile latency compared to the wired ISPs. These satellites are mostly suited for rural

or remote contexts where it is challenging or not profitable for wired ISPs to provide

access. We find three satellite providers with residential offerings in Chicago. All three

ISPs span nearly all of the census blocks. However, we do not include satellite providers

in our analysis because of two reasons: (1) Internet speeds from these ISPs are typically

slow. Two ISPs provide sub-broadband speeds (less than 25/3 Mbps) and the other two

provide speeds of 25/3 and 35/3 Mbps. (2) The plans are expensive compared to fixed

broadband plans. For instance, the least expensive broadband plan from one of the ISPs

is 99$/month. As a result, satellite networks are likely not feasible options for broadband

users in Chicago which is mostly urban with less expensive, high-speed, and low-latency

terrestrial connectivity options.

Terrestrial wireless : These ISPs provide access using a terrestrial wireless system.

Typically, most of these ISPs have a last-mile wireless link with the upstream links being

wired. For instance, ISPs that provide fixed broadband using cellular technology would
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be categorized as a terrestrial wireless ISP. We find 12 fixed terrestrial wireless providers

with residential plans in least one census block within Chicago. Among these, 8 provide

offerings in fewer than 30 census blocks with 6 serving only up to two census blocks. We

exclude these providers from our analysis. We examine the speeds and coverage of the

remaining four ISPs (see Table 2.3). Two providers, T-Mobile and Verizon, are cellular,

and provide home Internet using 5G or LTE technology. T-Mobile is the largest terrestrial

wireless provider, covering 20,498 census blocks. In terms of speed offerings, it reports

only a single speed tier of 25/3 Mbps, which barely meets the FCC broadband standard.

Verizon, on the other hand, reports speed offerings of up to 300/50 Mbps but covers only

0.16% of the census blocks. The other two providers are Everywhere Wireless and Google

(doing business as Webpass) with presence in 0.4% and 0.75% census blocks. Both of

these providers report up to gigabit symmetric speed offerings. This seems surprising

given these are fixed wireless ISPs. However, based on the description online, these ISPs

likely use fiber in most of their network with a single wireless hop in the last- mile. For

instance, Webpass uses a rooftop antenna to receive wireless Internet at the building. It

likely uses the Google Fiber infrastructure for upstream connection.

We next examine the spatial coverage of these ISPs. As shown in Figure 2.6, T-

Mobile service seems to be evenly distributed across Chicago. In comparison, the other

three ISPs have sparse coverage, with offerings mostly in the northern neighborhoods

and business district areas of Chicago. This characteristic may result from some of the

following factors: (1). these companies have fiber-based infrastructure in these regions,

(2) these areas generally have high-occupancy buildings, with occupants having relatively

higher income, thus providing better potential return on investment, especially for Google

Webpass and Everywhere Wireless.
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(a) AT&T (b) Comcast (c) WOW (d) RCN

Figure 2.7: Spatial coverage of fixed wired ISPs. Green indicates availability

Technology
% census blocks

present
Download speed Upload speed

ADSL2,ADSL2+ 86.2% 0.77-25 0.38-3
ADSL 17.3% 0.77-6 0.26-0.51
SDSL 0.0% 0.42 0.42
VDSL 58.0% 18-100 1.5-20
Fiber 23.7% 1000 1000

Table 2.4: AT&T: Advertised speeds and coverage [% of census blocks] by technology

Wired: Twelve wired ISPs providing residential offerings in at least one census block

in Chicago. Among them, eight ISPs are present in fewer than 25 blocks, with 5 ISPs

serving only up to 2 census blocks. We focus on the remaining four ISPs which have

a significant footprint in Chicago, also summarized in Table 2.3. Figure 2.7 shows the

spatial coverage of these providers across Chicago. AT&T and Comcast are the largest

wired providers with presence in more than 88% of census blocks in Chicago. The census

blocks that are not covered are likely the blocks with zero residential population. In

future, we plan to validate this using once the data from 2020 Census becomes public.

The other two ISPs have a limited footprint. WOW provides offerings in far south side

of Chicago while RCN has offerings in the Downtown and Northern lakeside areas of

Chicago.

In terms of access technology, three ISPs— Comcast, RCN, and WOW—mostly use
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DOCSIS to provide Internet connectivity over hybrid-fiber-coaxial (HFC) networks. Each

version of DOCSIS varies in channel configurations and throughput for upstream and

downstream links. DOCSIS 3.1, the latest standard, can support up to 10 Gbps down-

stream and 1 Gbps upstream throughputs. Comcast uniformly supports DOCSIS 3.1,

the latest DOCSIS standard, across all census blocks. This also reflects in the Comcast’s

speed offerings, as it uniformly reports maximum advertised speed of 1000/35 Mbps

across all census blocks. In comparison, WOW supports an older cable standard, DOC-

SIS 3.0, across all census blocks. However, in terms of advertised speeds, WOW reports

the same maximum advertised speed of 1000/50 Mbps across all census blocks. The

advertised upload speeds are higher compared to Comcast, despite supporting an older

cable standard. Finally, RCN reports different version of DOCSIS technologies in dif-

ferent census blocks. Among the 8,495 census blocks it serves by cable, 37% support

DOCSIS 3.1, 60% support DOCSIS 3.0, and 3% support older version of DOCSIS (i.e.,

1.0, 1.1 or 2.0). We also find difference in advertised speeds across the three standards,

with the speeds being 1000/20 Mbps, 500/20 Mbps, and 25/4 Mbps for DOCSIS 3.1,

3.0, and 2.0 or older versions, respectively. RCN also provides access using fiber in 1044

census blocks with maximum advertised speeds of 1000/1000 Mbps. Figure 2.9 shows

the spatial map of RCN offerings coded by the access technology. Most Fiber offerings

are centered around a single region, slightly north-west of the downtown Chicago.

The fourth major fixed wired ISP, i.e. AT&T, uses a mix of Digital Subscriber

Line (DSL)-based and Fiber as the access technology. Among the 41532 census blocks

served, it supports Asymmetric DSL (ADSL) 2 and ADSL2+ in 96.2% blocks, Very high

speed DSL or VDSL in 64.7% blocks, Fiber to the home or fiber in 26.4% blocks, ADSL

in 19.3% blocks, and Symmetric DSL in 0.02% blocks. Figure 2.8 shows the spatial

distribution of the different access technologies. There is no clear pattern in the spatial

distribution of DSL technology. The fiber, however, is mostly concentrated in the West
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(a) ADSL (b) ADSL 2, 2+ (c) VDSL (d) Fiber

Figure 2.8: AT&T: Spatial coverage of different Access technologies

(a) DOCSIS 1.0, 2.0 (b) DOCSIS 3.0 (c) DOCSIS 3.1 (d) Fiber

Figure 2.9: RCN: Spatial coverage of different Access technologies

and North western parts of Chicago. In terms of speed, the maximum advertised speed

over Fiber is 1000/1000 Mbps across all census blocks. The speeds over the same DSL

technology varies across census blocks. This is likely because DSL performance depends

on the distance between the subscriber and Central Office (CO). Table 2.4 summarizes

the different advertised download and upload speed pairs for different DSL technologies.

2.5.2 Number of ISPs in a Single Census Block

We next study the number of ISPs that are available in a census block. Note that having

multiple ISPs in a census block does not necessarily imply more competition as each ISP

may serve a disjoint set of addresses. It can be considered as a necessary but not suffi-

cient condition to indicate competition. We consider two speed thresholds while counting
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1
2
3
>= 4

(a) 25/3 Mbps

1
2
>= 3

(b) 100/20 Mbps

Figure 2.10: Number of ISPs available across census block

the number of ISPs, (1) 25/3 Mbps, the speeds used by the FCC to define broadband,

and (2) 100/20 Mbps, the newly proposed minimum speeds for broadband [151]. Fig-

ure 2.10 shows the number of ISPs available within a census block based on different

speed thresholds. We see a disparity in the number of options available across different

regions. While, the lakeside areas and the far south parts have 3 broadband options avail-

able (25.8% blocks), the remaining areas have only two options (59% blocks) available

with some pockets (14.1% blocks) having only one broadband ISP option. For high-speed

broadband options, 50.6% blocks have only one ISP option, 45.9% have two options, and

the remaining 3.5% blocks having 3 or more options.

Are adoption rates correlated with number of ISPs? We now analyze if adoption

rates are correlated with number of ISPs available in an area. We first calculate the

number of ISPs with broadband offerings (greaten than 25/3 Mbps) available in each

census block. The ACS data, however, is available at census tract level. To match

the two datasets, we compute the average of number of ISPs available across census

blocks in a census tract. We then compute the pearson correlation coefficient between

average number of ISPs and adoption rates across census tracts. We observe a weak
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positive correlation of 0.27 between availability and adoption. It is not clear however if

there is a causal relationship. There could be other confounding factors such as legacy

infrastructure and higher population density that may impact availability in an area.

Takeaway: AT&T and Comcast are available evenly across census blocks in Chicago.

AT&T, however, varies in terms of access speeds due to their dependence on DSL tech-

nology in certain areas. Their fiber offerings are also available in selected regions. Among

the terrestrial wireless ISPs, only T-Mobile has a city-wide presence. The remaining five

ISPs (two wired and three wireless) have a more limited footprint. Four of these ISPs

are concentrated in North Lakeside and Downtown areas of Chicago, with only one ISP

providing sevice to the far south side of Chicago.

2.6 Conclusion

In this chapter, we analyzed Internet equity in Chicago across three dimensions: adoption,

affordability, and availability. We find disparity in adoption rates across community areas

in Chicago. The areas with lowest connectivity also exhibit low income, thus indicating

that adoption may result from a lack of affordability, although future work could aim

to firmly establish this causal relationship. In addition, we also observe low adoption in

households with elderly populations or low education, possibly indicating issues related

to perceived utility of broadband potentially impacting adoption. Finally, our broadband

availability analysis using FCC form 477 data shows that most regions in Chicago have

at least one broadband (and even high-speed broadband) option, yet different regions do

exhibit variability in terms of the number of ISP options that are available.

38



Chapter 3

#Outage: Detecting Power and

Communication Outages from Social

Networks

3.1 Introduction

Users post content on social media platforms such as Twitter, Reddit and Facebook

for a variety of purposes, including to report real-time situational incidents such as loss

of electricity, internet connectivity and telecommunications [209]. During the onset of a

natural disaster, situational information is posted by the affected individuals in real-time,

including, increasingly, cries for assistance when 911 lines are overloaded [163]. First

responders are responsible for carrying out rescue operations to help affected people

during such emergency situations. Real-time social media posts can therefore provide

critical information about the situation on the ground so that first responders can be

most effective. Researchers have previously analyzed the usefulness of online information

in timely crisis response and management [165, 171]. A key challenge is to extract
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valuable and actionable information such as missing or injured people and damaged

utilities and infrastructure from all other content that appears online. It is therefore

critical to develop information extraction tools that are capable of cutting through the

noise and quickly filtering out vital information that authorities can use in their search

and rescue operations.

Twitter has emerged as an ideal platform for information retrieval tasks due to the

concise nature of the posts (tweets) [125]. Crisis informatics researchers have studied how

to identify different types of sub-events, such as loss of lives and damage to infrastructure,

from user generated posts [208, 166]. However, most of the developed algorithms focus on

extracting information related to a wide spectrum of events, rather than a specific type of

event [212, 216]. Since every type of event is not equally tweeted about by the users, some

categories are classified with poor precision and recall as they represent only a small per-

centage of the entire dataset [188]. Additionally, in a recent study [225], it was reported

that the majority of the existing frameworks that aim to provide situational awareness

to responders during a crisis do not meet the immediate informational requirements of

specific responders. For example, information related to power outage would be more

useful to responders responsible for restoring damaged utilities than responders in charge

of locating trapped people. As such, there is an urgent need to develop highly domain

specific information extraction tools to properly assist responders during emergencies.

In this work, we study the viability of the use of tweets to detect power and com-

munication outages during natural disasters, with a specific focus on hurricanes. We

begin by collecting tweets based on carefully selected keywords, and subsequently cu-

rate a raw dataset. We label a sample from the raw dataset to generate an annotated

dataset that contains tweets related to power-outage, communication-outage and power-

communication outage. Our goal is to first analyse characteristics, such as commonly used

words, hashtags and sentiment, associated with the tweets that convey outage-related in-
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formation during natural disasters. Then, we evaluate the performance of simple machine

learning algorithms, neural network and transfer learning models to create a classification

framework that is capable of determining whether or not a tweet is about outages. Once

identified as an outage-related tweet, we perform an information extraction task to filter

further information such as whether the tweet is about a power outage, a communication

outage or both. To the best of our knowledge, no previous study has analyzed Twitter

data in-depth to perform information extraction to detect both power and communication

outages.

While prior work has shown that people often use Twitter as a platform to report

power and communication outages [128], our study observes that over 75% of the tweets

that contain outage-related keywords do not mention an actual outage. Hence, it is not

enough to simply filter tweets based on keywords as this results in noisy dataset. Among

tweets that actually mention an outage, we determine that the majority of tweets are

made about power outages, followed by communication outages, and then both power

and communication outages. Our analysis reveals that actual outage-related tweets carry

more negative sentiment than tweets that contain outage-related keywords but that do

not actually report an outage. As we attempt to classify these tweets, we are faced with

the challenge of low numbers of usable tweets, as well as the inherent noise that is present

in data gathered from Twitter. In spite of that, we observe that simpler models such

as boosting and support vector machine are able to identify tweets that contain outage-

related words with close to 100% accuracy. Furthermore, by applying state-of-the-art text

classification techniques such as transfer learning, we are able to identify tweets that not

only contain these keywords, but specifically report power and communication outages

with very high accuracy, precision and recall scores. In summary, this work presents the

following contributions:
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• We curate a dataset of 18, 097 unique tweets containing outage-related keywords,

posted during seven major hurricanes that made landfall in the USA between 2012

and 2018.

• We present an in-depth analysis to determine features such as commonly used

words, hashtags and sentiments associated with the tweets that mention power and

communication outages.

• We use machine learning algorithms to perform multiple levels of information ex-

traction to detect tweets that contain information about power and communication

outages.

• We show that using simpler models such as SVM, tweets that contain outage-

related keywords can be quickly detected with very high accuracy. Furthermore,

employing transfer learning models such as BERT, we show that different types of

outage-related events can be identified with high precision and recall scores.

3.2 Related Work

Information extraction from textual data is a very popular application of natural language

processing. Previous work has been conducted to detect power outages using tweets as

a source of information. Researchers have also focused on using data from social media

to detect other types of events during natural disasters. In this section, we present the

related work in two categories.

3.2.1 Power Outage Detection from Tweets

There has been some work that focused on detecting power outages using posts available

on Twitter. In [169], the authors gathered a dataset and applied several machine learning
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algorithms to detect power outages from tweets. Their analysis showed that a multi-

layer perceptron model is capable of detecting tweets related to power outages with

reasonable accuracy, precision and recall. The authors in [128] used active learning,

standard learning and Kleinberg’s burst to detect real-time power outages using tweets.

Supervised topic modelling was employed in [218] to detect power outages from tweets.

Nightlight satellite imagery and tweets were used in [164] to identify locations of power

outages. Specific keywords were used in [129] to gather a datset and then use classification

algorithms to detect whether a tweet is about a power outage.

The primary focus of these studies was to make the binary distinction of whether or

not a tweet refers to a power outage. Further, while these studies detect power outages

from tweets using machine learning algorithms, they each utilized datasets that contained

equal numbers of outage-related and unrelated tweets. In contrast, in this work, we

maintain the ratio of tweets in each category that we observe during the analysis of

our raw datset. Critically, in our work, we only consider a tweet to be relevant to

an outage if it mentions an actual outage and not simply if it contains outage-related

keywords. Finally, in addition to identifying power outages, we also carry out detailed

analysis to identify tweets that mention communication outages. To the best of our

knowledge, our work is the first to perform detection of tweets that identify actual power

and communication outages as well as to discern tweets that identify outages from tweets

that simply contain outage-related words.

3.2.2 Sub-event Detection from Tweets

Prior work has attempted to identify information from social media during crisis sce-

narios [171, 204]. In [126], the authors attempt to use tweets to identify users in need

of resources during or post natural disaster and match them with others who claim to
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have the needed resources. In [188], deep neural networks are used to identify useful

tweets during crisis situations and categorize useful tweets. Tweets related to damaged

infrastructure and utilities formed 8% of their dataset . The authors of [221] applied

matching and learning based methods to identify tweets that provide situational aware-

ness during natural disasters. In [206], the authors used integer linear programming to

identify several types of events from tweets made during some natural disasters. In ad-

dition to natural disasters, sub-event detection from tweets has been performed in other

fields. A recent paper [162] used keyword volume to identify specific events that belong

to a category such as protests. The authors in [207] used tweets to gather information

during epidemics. In each of these studies, different machine learning frameworks were

employed to extract/classify information from a large number of data points gathered

from Twitter. However, none of this work employed multiple levels of classification to

obtain fine-grained information about power and communication outages.

3.3 Data and Annotation

To achieve our goal of identification and classification of outage-related tweets, we first

curate a raw dataset using specific keywords. Once we obtain the raw dataset, we man-

ually perform annotation to generate an annotated dataset for detailed analysis and

classification. Figure 3.1 presents our overall framework for this study.

In this section, we describe our process to collect the raw dataset. We then explain

the annotation procedure used to generate the annotated datset.

3.3.1 Dataset Curation

The volume of tweets related to infrastructure damage increases during natural disas-

ters [167]. Unlike other natural disasters such as earthquakes that occur within a short
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Figure 3.1: Proposed framework to detect power and/or communication outages from
Tweets.

span of time, hurricanes pass through an area over a much longer period, typically hours

or days. As such, to curate our dataset, we selected the seven major hurricanes that

made landfall in the USA between 2012 and 2018. We used Crimson Hexagon [10], a

social media firehose with access to 100% of the Twitter stream, to collect tweets that

appeared online in the time period from when each of these hurricanes made landfall

to when they dissipated [15]. To collect tweets of interest, we generated two sets of

keywords: Hurricane-specific keywords and Outage-specific keywords.

Hurricane-specific keywords : Similar to [206], to obtain hurricane-specific tweets, we

filtered tweets using keywords such as, but not limited to, HurricaneMaria, harvey storm,

hurricanematthew and #HurricaneSandy. In all cases, our keywords contained either the

word ”hurricane” or ”storm”, as well as the name of the storm. This resulted in a total of

thirteen keywords per storm (91 total for the seven storms), each a permutation of these

words and name combinations with different capitalization (i.e. we used each of michael

storm, Michaelstorm, and MichaelStorm as a keyword). These formed our hurricane-

specific keywords that we used to identify tweets related to these natural disasters.

Outage-specific keywords : In order to generate keywords to obtain tweets related to

power and communication outages, we employed the semi-supervised topic modelling

algorithm Latent Dirichlet Allocation (LDA) [168]. We began by scraping news articles
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that mention power and/or communication outages and formed a document containing

the keywords mentioned in those articles. These keywords from the articles were obtained

using the keywords class of the Newspaper3k [16] library provided by Python.To generate

a diverse set of keywords, we applied LDA, with various combinations of numbers of

topics and keywords, to this document. Five sets of topics, each having 15 keywords

were heuristically determined to generate keywords of desired quality. Upon completion,

we manually selected the words that we considered to be most relevant to obtain the

required tweets. For example, keywords such as blackout, outage, spotty, reception and

damage emerged from LDA as related keywords. We also added joined keywords such as

no power, can’t call and call drop to retrieve relevant tweets. Furthermore, to improve the

quality of data, we collected tweets that had geo-location information and originated in

the specific areas at the time the hurricanes passed through. The areas were determined

from [15] and the geolocated tweets were collected using the location feature provided by

Crimson Hexagon.

Table 3.1 presents the number of tweets that contained only hurricane-specific key-

words as well as outage-specific keywords. The query containing outage-specific keywords

also contained the hurricane-specific keywords for each hurricane. Among all tweets that

have one or more hurricane-related keyword, only about 1−4 percent of those also contain

outage-related keywords. We observed that the overall number of tweets that contain

tagged geolocation is on average 10 times less than the un-tagged tweets. Interestingly,

the percentage of geo-tagged tweets that contain outage specific keywords in the total

set is larger than those present in the un-tagged tweets.

Among the hurricanes, Hurricane Sandy contained the greatest number of tweets

with outage-specific keywords by volume. This hurricane caused over 8 million people to

lose power, far greater than any other hurricane we studied [160]. Hurricane Maria also

caused extensive power outages, leaving over 80, 000 households without power [11]. In
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Table 3.1: Number of tweets generated during hurricanes that contain keywords with
and without geo-location.

Hurricane Tweet extraction period Keywords Non-Geo-Tagged Geo-tagged
Michael 10/06/2018-10/17/2018 hurricane-specific 387,617 62,191

outage-specific 15,909 3,300
Florence 08/30/2018 -09/20/2018 hurricane-specific 718,414 69,262

outage-specific 25,155 3,231
Maria 09/15/2017-10/03/2017 hurricane-specific 483,195 34,740

outage-specific 26,509 1,594
Irma 08/29/2017-09/14/2017 hurricane-specific 1,761,869 252,082

outage-specific 58,102 13,944
Harvey 08/16/2017-09/03/2017 hurricane-specific 1,372,863 193,965

outage-specific 18,643 4,141
Matthew 09/28/2016-10/11/2016 hurricane-specific 1,202,774 175,941

outage-specific 35,367 6,841
Sandy 10/22/2012-11/02/2012 hurricane-specific 1,903,552 250,936

outage-specific 75,349 14,209

Table 3.2: Number of tweets per hurricane in the dataset.

Hurricane Total Number of tweets selected
Michael 3,005
Florence 2,742
Maria 2,597
Irma 3,136

Harvey 1,208
Matthew 2,209
Sandy 3,200

terms of communication outages, Hurricane Maria destroyed over 88% of the cell sites in

Puerto Rico alone [152]. In comparison, cell phone infrastructure experienced less damage

during Hurricane Sandy [4]. This could explain the larger number of outage-related

tweets that appeared online during Hurricane Sandy than during Hurricane Maria; when

faced with both cellular and power outages, many residents of Puerto Rico probably

found themselves unable to post on Twitter. Hurricane Michael, on the other hand,

had the fewest outage-related tweets, possibly because it also had the shortest duration

among the hurricanes. In terms of percentage of outage-related tweets (percentage of

tweets that contained outage keywords among all hurricane related tweets), Hurricane

Maria contained the greatest number. When comparing geo-tagged tweets, we notice

that Hurricane Sandy contained the greatest number of outage-related tweets, both by
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Figure 3.2: The salient words associated with power and communication outage tweets.
A larger font for a word signifies high frequency of occurrence of that word in the dataset.

volume and percentage.

To curate our dataset, a sub-sample of the raw tweets that contained one or more

of our outage-related keywords from each hurricane was selected. The sub-sampling

strategy involved selecting a greater number of tweets that originated from the locations

where the hurricanes made landfall. To ensure that our dataset was not dependent on

one particular hurricane event, we incorporated roughly equal numbers of tweets from

each hurricane. The smallest number of samples were drawn from Hurricane Harvey and

Hurricane Matthew as they contained the smallest percentage of outage-related tweets

(both geo-tagged and un-tagged) in their datasets. Table 3.2 presents the total number

of tweets selected from each hurricane. The gathered dataset consisted of 18, 097 outage-

related tweets. The salient words1 present in the tweets is shown in Figure 3.2.

3.3.2 Dataset Annotation

To identify the different categories of tweets present in our raw dataset, we proceeded

to annotate the dataset. We first attempted to perform the annotation process using

Amazon Mechanical Turk (AMT) [133]. However, the annotated results obtained from

1inappropriate language has been modified with the ‘*’ character
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AMT were unreliable; they contained many incorrectly labeled tweets, and in many cases

multiple annotators labeled the same tweet differently. We therefore discarded these an-

notations. The annotation was then instead performed by 80 closely supervised volunteer

upper division computer science students using Labelbox [14]. A pair of students were

assigned the same subset of the raw dataset. The labels for the data points that did

not match were further annotated by one of the authors. The annotators were provided

detailed guidelines and asked to tag each tweet into one of the following four categories:

Not relevant : A large number of tweets in the raw dataset contained outage-related

keywords but did not convey actionable outage-related information. For example, many

tweets mention losing power in the future and thus do not provide any actionable infor-

mation about current outages. As such, any tweets that do not contain current outage

information are categorized as Not Relevant.

Power-outage: This category of tweets was reserved for tweets that mention power

outages. In addition to directly reporting an outage, many tweets were informational in

nature. They either contained a first-hand account by a person about a power outage

in an area, or they contained a news article with information about areas currently

experiencing an outage. Tweets that contained information about power restoration

after a period of outage were also included in this category.

Communication-outage: Similar to the power-outage category, the category of communication-

outage represents tweets that report communication outages. This category also consists

of tweets that provided information about a related outage in an area/locality as well as

tweets that reported regaining communication facilities after an outage.

Power-Communication-outage: We observed a small number of tweets that mentioned

both power and communication outages, and placed those tweets in this category. Note

that tweets in this category do not necessarily indicate that both power and communi-
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Figure 3.3: Example tweet per category.

Table 3.3: Number of annotated tweets per category.

Category Number of Tweets
Not Relevant 13,957
Power-outage 2,791
Communication-outage 1,000
Power-communication-outage 349

cation are out; instead, they provide information about the status of both utlity types.

Figure 3.3 shows an example tweet from each category; the total number of annotated

tweets per category is presented in Table 3.3. Surprisingly, a large portion of the tweets

belong to the Not Relevant class even though the tweets were carefully extracted using

domain-specific keywords. The reason behind this is the tendency of people to use words

such such outage and blackout to mention an anticipated outage in the future rather than

using these words to report an active outage. Because we only annotated tweets about

active outages in the outage-related categories, a large portion of the tweets ended up in

the Not Relevant category.
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(a) Not-relevant (b) Power-outage

(c) Communication-outage (d) Power-communication-outage

Figure 3.4: The salient words in each tweet category.

3.4 Dataset Analysis

In this section, we analyse the annotated dataset to better understand the nature of tweets

that contain outage-related keywords. Our goal, through this analysis, is to highlight

the differences that exist between the not-relevant class and others as well as between

individual outage-related classes. In particular, we determine the inherent features such

as popular words, bi-grams, tri-grams, hashtags and sentiments that are present in the

tweets in each category. In Figure 3.4 we present the salient words associated with each

of these four categories. We note that the not-relevant category consists of many of the

same words that are present in other categories. However, as mentioned previously, the

tweets in this category do not actually identify an outage. The salient words present in

other categories are consistent with the names of the categories. Below we first perform
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Figure 3.5: Length of tweets in each category.

lexical analysis to detect features such as single words, bi-grams, tri-grams and hashtags

that are prevalent in each category. We then proceed to analyse the sentiments that are

associated with the tweets by category.

3.4.1 Lexical Analysis

The lexical analysis of each category is presented below.

Not-relevant : This category consisted of over 75% of the total annotated tweets. In

addition to investigating the most commonly occurring words in this category, as shown

in Figure 3.4a, we evaluated the predominant bi-grams and tri-grams. Among single

words, power, mobile, No, outage and plane were the five most frequent words in this

category. For bi-grams, the words my phone, no power, power outage, cell phone and

phone call appeared most frequently. From the frequently occurring words and bi-grams,

it is not yet apparent that the tweets in this category do not convey any specific outage-

related information. However, the most common tri-grams in this category, which include

get radio play, uncut internet station, charge my phone, got my phone and my phone off

shed more light on the nature of these tweets. Additionally, we investigate the frequent

hashtags of the tweets from this category. The top three hashtags are #mobile, #news

and #tech. Figure 3.5 shows the length of tweets in this category. On average, each
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tweet contained 18.6 words. We note the presence of a large number of outliers in the

length of tweets in this category compared with others.

Power-outage: This is the second most popular category among the annotated data,

containing 13% of the entire dataset. The category includes tweets that reported either

power outages or restoration of power after an outage. The most frequently appearing

words in this category are shown in Figure 3.4b. The top five common words are No,

power, hit, area and days. Outage-related words such as outage and blackout also appear

in the tweets in this category. The popular bi-grams in this group of tweets include no

power, still no, power outage, no electricity and without electricity. Some of these words

are also present in the commonly occurring tri-grams, which include still no power, no

power no, no power thanks, no power my and no power since.

Further analysis of the 2, 791 tweets in this category determined that 4% of the tweets

mention power restoration after an outage. 20% of the power outage tweets were observed

to be informative in nature, providing useful information about an outage. These infor-

mational tweets reported areas experiencing outages and in many cases included live

updates from news organizations that stated the number of people experiencing outages

in affected areas. The majority of tweets in this category, 76%, directly reported an

outage during the time of the outage. Popular hashtags in this category are #blackout,

#nopower and #lightsout. Figure 3.5 shows the distribution of the length of the tweets

in this category. Tweets in this category contained 18.3 words on average.

Communication-outage: This category of tweets represents 5.5% of the overall number of

tweets in our annotated dataset. Tweets in this category either inform about or report an

active communication outage or mention having some form of communication capabilities

returned after their loss. Popular words in this category include internet, service, wifi,

no and out and are shown in Figure 3.4c. One interesting observation is that specific
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provider names, such as verizon, tmobile and xfinity appeared frequently in the tweets of

this category. This could be as a result of users being more familiar with the names of

their telecommunication service providers. The most popular words pairs in the tweets

of this category include my internet, no internet, phone service, no service and internet

down. Tri-grams such as cell phone service, my internet down, mobile networks knocked,

networks knocked out and still no internet emerged as the most common. The collection

of these words indicate that when reporting a communication outage, people tend to

use the word service together with down. Power outages are reported using outage and

blackout in addition to out. Similar to the power-outage category, we subdivide the

communication-outage related tweets into three subcategories. 9% of the tweets belong

to the sub-category of tweets that mention restoration of communication service after

an outage. 24% and 67% of the tweets in the communication-outage category inform or

report about a communication outage, respectively. Hashtags #wifi, #att and #internet

are the three most frequently used in this category. Unlike the most popular hashtags in

the power-outage category, hashtags in this category do not inherently convey information

related to an outage. Tweets in this category have an average length of 18.9 words as

seen in Figure 3.5.

Power-communication-outage: This category contained the fewest tweets, about 2% of

the overall annotated dataset. Because this category consists of tweets that must mention

both power and communication outages, the average length of a tweet in this category,

shown in Figure 3.5, is 22 words long. As can be seen from Figure 3.4d, these tweets

combine the keywords from both the power-outage and communication-outage categories.

Popular keywords include power, internet, no, back and service. Common bi-grams are

no power, power no, power internet, no internet and cell service. We find that the tri-

grams still no power, power no cell, no cell service, no electricity no and no power internet
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appear most frequently. As the tweets in this category are longer than the rest on average,

we also determine the commonly occurring four-grams. These include no power no cell, no

power no internet, power no cell service, no power no wifi and no power cell service. We

observe that in addition to reporting about experiencing both power and communication

outages, a number of tweets reported either having power but no communication or

vice versa. Some tweets also provided information related to power and communication

outages. When we analyze the nature of the tweets in this category further, we find that

10% of the tweets mention having power while experiencing some form of communication

outage. Similarly, 10% of the tweets mention having communication capabilities while

suffering from power outage. 15% of the tweets mentioned getting back both power

and communication services after an outage. Informative tweets such as those providing

locations and number of people experiencing power and communication outages formed

7% of the tweets in this category. Finally, 58% of the tweets reported experiencing

both power and communication outages. The top three hashtags are #poweroutage,

#electricity and #finallygotpowerback.

The lexical analysis of these categories highlights various salient features present in

each category. The popular words and bi-grams of the not-relevant category are similar to

those of the actual outage-related categories. In spite of the similarity between keywords,

further analysis of the tri-grams and hashtags of these categories shows that the contents

of the tweets in the not-relevant category do not report an outage. It is also noticed

that during hurricanes, users tend to anticipate experiencing power and communication

outages and post on Twitter before such outages actually occur. In addition to reporting

an outage, tweets often mention restoration of services after an outage as well as provide

meaningful information such as number of people experiencing an outage.
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(a) Not-relevant (b) Power-outage

(c) Communication-outage (d) Power-communication-outage

Figure 3.6: Distribution of sentiment scores of each category.

3.4.2 Sentiment Analysis

To better understand the inherent traits of the tweets that are present in these categories,

we perform sentiment analysis [192] using the sentiment analysis API provided by IBM

Watson [12]. IBMWatson analyzes the sentiment associated with a statement and assigns

it a score between −1 and 1. A score closer to −1 conveys extremely negative sentiment

while a score closer to 1 signifies more positive sentiment. Figure 3.6 shows the distribu-

tion of the sentiment scores of each of the four categories. The average sentiment score

of not-relevant, power-outage, communication-outage and power-communication outage

categories is calculated to be −0.26, −0.42, −0.51 and −0.40, respectively. As seen from

Figure 3.6a, the sentiments associated with tweets in the not-relevant category are more

neutral as they hover around 0. In contrast, the sentiment scores of the rest of the cate-
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gories are more concentrated in the negative side of the scale with communication-outage

tweets having the most negative sentiment. Overall, in the not-relevant category, 29%

of the tweets had sentiment score of 0, while 51% of the tweets attained negative scores.

The percentage of tweets with negative sentiment score increased for the other categories.

The power-outage, communication-outage and power-communication-outage categories

had 68%, 72% and 70% of their tweets with score below 0, respectively.

3.5 Outage-Specific Classification

In this section, we design a two-stage classification framework to automate the process

of detecting outage-related tweets. Before performing the first level of classification, we

collect a new set of tweets, using Crimson Hexagon, that occurred during the seven

hurricanes. This dataset is comprised of tweets that contain only hurricane-specific key-

words and not outage-specific keywords. These tweets are then added to the previously

annotated dataset to form two separate classes of tweets. We first perform a binary clas-

sification to quickly extract all tweets that have our outage-specific keywords in addition

to hurricane-specific keywords from the rest of the tweets. Before performing classifica-

tion, we clean and pre-process the dataset. Once we have identified the outage-related

tweets, we then perform the second level of classification, only on the annotated dataset,

to automatically place tweets into the categories we established in the previous sections.

Below we present the details associated with the pre-processing and classification tasks.

3.5.1 Pre-processing Dataset

Tweets are typically not properly grammatically structured and are likely to contain

abbreviations, rendering them incomplete and noisy. In order to sanitize the dataset, we

employed multiple text pre-processing steps. We removed URLs, non-ASCII characters
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and non-English characters. We also removed hashtags, user names and date and time

strings. Emoticons were converted to UNICODE strings. To reduce the feature space,

we converted all words to lower case.

We next created a custom set of stop words to ensure that we preserved the context

of our tweets while eliminating unnecessary repeated stop words. For example, the stop

words library provided by Python’s NLTK contains 179 words such as as, they, himself,

out, down and not. Removing the words out, down, off, no and not from our tweets

could leave outage-related tweets meaningless. Hence we excluded these words from the

stop words library. Additionally, we removed occurrences of event-specific words, such

as hurricane, sandy and irma from the training dataset. This was done to ensure that

the classifiers did not become dependent upon such words while identifying information

that we require.

We used popular word embeddings frameworks to perform word vector initialisation.

To generate word tokens, we first used term-frequency-inverse-document-frequency (tf-

idf). Tf-idf is used to obtain the most important words within the tweets. These tokens

from tf-idf were subsequently vectorized using GloVe [199]. We choose GloVe over an-

other widely used word embedding framework, Word2Vec, due to the former’s ability to

take the ratio of the co-occurrence probabilities of consecutive words to establish seman-

tic meanings for those words. For binary classification, we employed nine state-of-the-art

classifiers such as logistic regression, support vector machine and K-nearest neighbors.

These simpler classifiers were implemented using the scikit-learn 0.21 [198] library of

Python. To extract various classes of our outage-related events, we used popular neu-

ral network models such as convolutional neural network (CNN) and recurrent neural

network (RNN), in addition to the simpler models. These more sophisticated models

were implemented using Keras with Tensorflow backend [13], as this platform contains

the packages that are required to run these algorithms. Additionally, we implemented
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an emerging technique of text classification known as transfer learning to perform clas-

sification of our categories.

3 All the classifiers were run on Google Cloud Compute powered by a 16GB NVIDIA

Tesla V100 GPU. In addition to using a categorical cross entropy loss function with our

neural network models, we also employed focal loss [174], which has been proven to be

effective in classifying minority samples in image classification tasks. Next we present

details associated with the two types of classifications we conducted and various methods

we implemented to achieve better classification success.

3.5.2 Binary Classification

The goal of binary classification is to quickly isolate the domain-related tweets to conduct

further information extraction. Specifically, we want to separate the tweets that contain

hurricane-specific keywords from those that also contain outage-related keywords.

To perform binary classification, we first create a training dataset of a roughly

equal number of samples that contain only hurricane-specific keywords (but not outage-

specific keywords), comprising class 0, and tweets that contain both hurricane-specific

and outage-specific keywords (our annotated dataset), forming class 1. We collected

equal numbers of geo-tagged and un-tagged tweets that contained hurricane-specific key-

words but excluded our outage-specific keywords using [10]. The training set consisted

of 10, 007 tweets, of which 5, 236 samples belonged to class 0 and the rest to class 1.

The distribution of the two classes in the test set, however, was kept similar to what we

observed while curating the original dataset in Section 3. Because outage-related tweets

only comprised a very small fraction of the overall tweets that contained hurricane-related

keywords, our test set contained 2, 326 tweets, of which 2, 203 belonged to class 0 and 123

belonged to class 1 (making up roughly 5% of the dataset). This small number of tweets

of class 1 ensures consistency with what is observed during a real scenario. However, this
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results in difficulty in identifying these tweets with very high precision and recall. To

perform this layer of classification, we only employed the simple classifier models as they

are computationally inexpensive and capable of producing results with high accuracy.

3.5.3 Category Classification

Once we successfully filter tweets that contain outage-related keywords, we then attempt

to further classify these tweets into the four major categories we established in Section

3. This is done to obtain more fine-grained information about different outage-related

events. We first create a training set by selecting 3, 500 random samples of the not-

relevant class (class 0). The rest of the training set is formed of 2, 295 randomly selected

tweets from the power-outage category (class 1), 828 tweets from the communication-

outage category (class 2) and 306 tweets from the power-communication outage category

(class 3). As with the binary classification task, we kept the distribution of categories

in the test set similar to the original dataset. In our test set, we selected 1, 500 tweets

from the not-relevant category, 496 tweets from the power-outage category, 172 from the

communication-outage category and 43 tweets from the power-communication outage

category.

In addition to the simple classifiers, we employed neural network and transfer learning

models to extract tweets of each category in this layer of classification. To address the

imbalance problem in our dataset, we applied the sampling technique SMOTE [139] and

various sampling ratios amongst the classes. These techniques, however, fell short in

improving the classification performance while detecting outage-related tweets, as they

failed to adopt to the feature space that exists in our tweets. Therefore, because this

is a multi-class classification problem, we instead first use a categorical-cross entropy

loss function with a softmax layer in our neural network models. The categorical-cross
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entropy loss function can be mathematically defined as:

H(y, ŷ) = −
M∑
j=0

N∑
i=0

(yij)(log(ŷij) (3.1)

where H is the loss function, y is the actual label of the ith observation of the jth

class and ŷ is the predicted label for the observation made by the softmax layer of

the neural network. An issue that arises with this loss function is that in a skewed

dataset, it fails to properly penalise the classifier when it predicts the majority class.

Because we are dealing with a dataset that exhibits class imbalance, we incorporate a loss

function, known as focal loss, with our neural network classifier. Focal loss has proven

to increase classification accuracy in datasets that suffer from the imbalance problem

between classes [203]. Focal loss can be represented as:

FL(pj) = α(1− pj)
γlog(pj) (3.2)

where FL is the focal loss function and pj is the softmax probability of the jth class for a

particular observation. α and γ are two regularizing parameters. This loss function adds

more importance when the network predicts a minority sample as opposed to the overly

represented sample. This makes it ideal for performing classification on an imbalanced

dataset.

We choose a number of neural networks that have proven effective in text classifi-

cation to perform this level of classification. To determine the ideal hyper-parameter

configuration for each neural network, we use Grid Search [18] starting with multiple

numbers of configurations. We train the CNN model using 100-word long embedding

vectors alongside 512 convolutions filters of sizes 2, 3, 4, 5. To avoid over-fitting, we use

a dropout of 0.5 while training with the Adam gradient descent optimizer [170]. The
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CNN model was run for 10 iterations with a batch size of 32. We also evaluated the per-

formances of both LSTM and GRU-based bi-directional RNN. These RNN models were

further incorporated with an attention layer to improve performance. We trained the

RNN models containing 100 neurons for 20 iterations. We then employed Hierarchical

Attention Network (HAN) [224] with 200 LSTM based word encoders and 250 sentence

encoders. Finally, we tested the performance of Bidirectional Encoder Representations

from Transformers (BERT) as a transfer learning model for the classification task [145].

Transfer learning models are pre-trained on a very large corpus and then fitted to perform

classification on a smaller number of domain-specific data points. We used BERT-Large,

Uncased (Original) model as the pre-trained model due to its ability to produce good

results while remaining computationally inexpensive [17].

3.6 Results

In this section we first present the results obtained after applying different classifiers

to detect tweets that contain outage-related words. We then present the performance

of the classification models in identifying specific outage categories. We compare the

performance of the classification models by measuring the per-class precision, recall and

f-score that each of these models produce. In addition, we compare the overall accuracy

of each model as well as the time it takes for the model to perform the classification

task. Because our goal is to classify the outage-related tweets quickly, the runtime for

each algorithm presents us with important information we need to select the right model

to perform the classification. Our goal is to determine the model that is able to quickly

detect outage-related tweets with high accuracy, precision and recall scores.
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Table 3.4: Performance comparison of the binary classifiers.

Not-outage-related Outage-related
Methods Precision Recall F1-score Precision Recall F1-score Accuracy Runtime(seconds)
Bagging 0.96 0.92 0.94 0.21 0.38 0.27 0.89 5.3
Boosting 0.99 1 1 0.99 0.94 0.97 0.99 1.94
Decision Trees 0.99 0.97 0.98 0.62 0.94 0.75 0.96 0.59
K-nearest neighbors 0.97 0.71 0.82 0.1 0.6 0.18 0.7 0.71
Logistic Regression 0.99 0.98 0.98 0.67 0.94 0.78 0.97 1.56
Multinomial Naive Bayes 0.99 0.87 0.93 0.28 0.9 0.43 0.87 0.12
Nearest Centroid 0.99 0.92 0.95 0.36 0.82 0.5 0.91 0.22
Random Forest 0.99 0.99 0.99 0.8 0.94 0.87 0.98 2.78
Support Vector Machine (SVM) 0.99 0.99 0.99 0.84 0.95 0.89 0.99 0.1

3.6.1 Binary Classification

Table 3.4 presents the results we obtained after applying each of the nine classifiers on

a curated dataset that contained only hurricane-specific keywords (class 0) as well as

hurricane-specific and outage-related keywords (class 1). Almost every model performs

exceptionally well in identifying tweets that contain only hurricane-specific keywords.

The precision, recall and F1 scores of these models are very close to 1 when classifying

members of class 0. In comparison, only a small set of models are able to identify

samples of class 1 with good precision, recall, and f1-score. The boosting algorithm

identifies class 1 tweets with the highest precision, recall and f-score values. Because

the boosting algorithm has a hierarchical tree structure, where a new tree learns from

the results of the previously trained tree, it is able to perform better than other simple

classifiers when performing binary classification. The SVM and random forest models

achieve the second and third best performance in classifying the samples from class 1,

respectively. K-nearest neighbor performs poorly when classifying class 1 samples. This

occurred as a result of the insensitivity of the distance function of K-nearest neighbor

towards small but meaningful differences between tweets. In addition to performing the

overall classification task reasonably well, SVM also recorded the fastest run-time.
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Table 3.5: Accuracy and runtime of the models used to perform outage-related categories
classification.

Model Accuracy Runtime(Seconds)
Bagging 0.77 3.38
Boosting 0.84 9
Decision Trees 0.79 0.71
K-nearest neighbors 0.76 0.47
Logistic Regression 0.86 1.68
Multinomial Naive Bayes 0.82 0.11
Nearest Centroid 0.79 0.11
Random Forest 0.84 3.57
Support Vector Machine 0.86 0.16
CNN 0.65 645.05
CNN-Focal 0.84 650.89
RNN-LSTM 0.83 2309.47
RNN-GRU 0.84 1907.36
RNN-Attn-LSTM 0.84 2541.71
RNN-Attn-GRU 0.8 2216.57
RNN-LSTM-Focal 0.83 2239.26
RNN-GRU-Focal 0.83 1953.92
RNN-Attn-LSTM-Focal 0.83 2409.45
RNN-Attn-GRU-Focal 0.84 2261.31
HAN 0.85 2335.13
HAN-focal 0.82 2342.31
BERT 0.88 87

3.6.2 Outage-category Classification

Table 3.5 presents the accuracy and run-time of the classification models. Table 3.6

presents the classification performance achieved by these models in detecting not-relevant,

power-outage, communication-outage, and power-communication-outage tweets.

When comparing the accuracy of the models, Table 3.5 indicates that of the simpler

models, boosting, logistic regression, random forest and SVM achieve accuracy scores

above 0.8. These models also record low run-times, ranging from 0.16 to 9 seconds. The

simpler models classify tweets from the not-relevant category with high precision and re-

call. In categorizing power-outage related tweets, the simpler models perform reasonably
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Table 3.6: Classification performance of the models in detecting tweets per category.
Methods Not-relevant Power-outage Communication-outage Power-Comm-outage

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Bagging 0.84 0.87 0.86 0.65 0.72 0.68 0.47 0.31 0.37 0.33 0.09 0.14
Boosting 0.91 0.87 0.89 0.76 0.92 0.83 0.59 0.44 0.5 0.54 0.57 0.56
Decision Trees 0.9 0.8 0.85 0.73 0.87 0.79 0.41 0.56 0.47 0.45 0.61 0.52
K-nearest neighbors 0.85 0.85 0.85 0.65 0.69 0.67 0.41 0.39 0.4 0.21 0.09 0.13
Logistic Regression 0.92 0.9 0.91 0.77 0.92 0.83 0.63 0.52 0.57 0.65 0.25 0.36
Multinomial Naive Bayes 0.84 0.93 0.89 0.76 0.83 0.79 1 0.02 0.03 0 0 0
Nearest Centroid 0.92 0.8 0.86 0.8 0.82 0.81 0.34 0.62 0.44 0.34 0.68 0.45
Random Forest 0.91 0.88 0.9 0.72 0.93 0.82 0.66 0.47 0.55 0.69 0.2 0.32
Support Vector Machine 0.94 0.86 0.9 0.77 0.94 0.85 0.57 0.66 0.61 0.59 0.39 0.47
CNN 0.96 0.54 0.69 0.67 0.92 0.78 0.25 0.84 0.39 0.26 0.77 0.39
CNN-Focal 0.91 0.87 0.89 0.76 0.92 0.83 0.53 0.45 0.49 0.63 0.6 0.62
RNN-LSTM 0.95 0.81 0.87 0.76 0.91 0.83 0.49 0.79 0.6 0.48 0.7 0.57
RNN-GRU 0.93 0.84 0.88 0.75 0.91 0.82 0.56 0.64 0.6 0.63 0.79 0.7
RNN-Attn-LSTM 0.92 0.85 0.88 0.79 0.85 0.82 0.52 0.7 0.59 0.59 0.74 0.66
RNN-Attn-GRU 0.94 0.77 0.85 0.75 0.9 0.81 0.42 0.81 0.55 0.6 0.74 0.67
RNN-LSTM-Focal 0.93 0.82 0.87 0.76 0.89 0.82 0.48 0.73 0.58 0.56 0.84 0.67
RNN-GRU-Focal 0.94 0.81 0.87 0.76 0.92 0.83 0.48 0.74 0.59 0.59 0.79 0.67
RNN-Attn-LSTM-Focal 0.92 0.83 0.87 0.77 0.9 0.83 0.47 0.64 0.54 0.6 0.7 0.65
RNN-Attn-GRU-Focal 0.93 0.85 0.89 0.77 0.9 0.83 0.54 0.69 0.6 0.6 0.58 0.59
HAN 0.93 0.86 0.89 0.79 0.87 0.83 0.57 0.71 0.63 0.56 0.84 0.67
HAN-focal 0.96 0.77 0.86 0.74 0.96 0.84 0.46 0.77 0.57 0.47 0.88 0.61
BERT 0.93 0.9 0.91 0.83 0.89 0.86 0.67 0.66 0.66 0.69 0.84 0.7

well, with logistic regression and boosting models achieving an f-score of 0.83. The perfor-

mance of the simpler models, however, drops significantly while detecting samples from

the two minority categories: communication-outage and power-communication-outage.

This occurs as a result of these models’ inability to learn classes with a small number of

samples in an unbalanced dataset. Logistic regression, random forest and SVM are the

only three models that produce an f-score greater than 0.50 when identifying tweets in the

communication-outage category. In classifying tweets from the power-communication-

outage category, among the simpler models, only the boosting and decision tree models

achieve an f-score above 0.50.

As expected, the run-times of the neural network models are significantly greater

than their simpler counterparts as shown in Table 3.5. CNN models execute fastest

whereas RNN models take the longest. In terms of accuracy, except for the CNN model

with categorical cross-entropy loss function, every other neural network model achieves

accuracy scores around 0.80. The models also perform fairly similarly when classifying

samples from the not-relevant categories. As seen in Table 3.6, the precision recorded

by the neural network models exceeds 0.90 in detecting not-relevant tweets. Except

for CNN with categorical cross-entropy loss function, all other models achieve recall

scores of around 0.80 in detecting tweets of this class. Precision scores between 0.75 and
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0.79 are reached by the neural network models when identifying power-outage tweets.

The difference in performance between the simpler models and neural network models

is seen when detecting communication and power-communication-outage tweets. The

neural network models achieve higher recall scores in detecting communication-outage

tweets while reaching better f-scores than the simpler models when identifying power-

communication-outage tweets. Focal loss outperforms categorical-cross entropy loss when

used with CNN across all four categories. It also records a 10% increase in f-score

when used in conjunction with the RNN-LSTM model compared to the categorical cross-

entropy loss function when detecting power-communication outage tweets.

The best performance in all the considered metrics is achieved by BERT in this

classification task. From Table 3.5, we can see that though it takes longer to execute

than the simpler models, it is able to achieve the highest accuracy; further, its run-time

is faster than all the neural network models. It records the best f-scores when detecting

tweets that belong to both the not-relevant class and outage-related categories. Because

BERT is already pre-trained on a large corpus of texts, it is able to identify the tweets

with very good performance, making it an ideal candidate to perform this classification

task.

3.6.3 Remarks

With the aid of our annotated dataset and machine learning algorithms, we are able to

detect outage-related events from a large stream of tweets that appeared online during

recent hurricanes. The binary classifier is able to separate outage-specific tweets from

others quickly, thereby reducing the amount of time needed to extract domain-specific

tweets. Once these outage related tweets are detected, they can be further classified into

different groups with the aid of an advanced learning model such as BERT. Using the ideal

model to perform each level of information extraction will result in rapid classification of
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tweets, which first responders can then use to take immediate action or aid planning of

additional operations.

3.7 Conclusion

In this work, we take an in-depth look at the tweets that originate during hurricanes

and convey important outage-related information. We first determine keywords that are

commonly used during power and/or communication outages. We use these keywords to

obtain tweets that were posted during the seven major hurricanes in the USA between

2012 and 2018. These tweets were then annotated and placed into one of the four cate-

gories based on the outage information they contained. We perform a detailed analysis to

better understand the type of tweets that belong to each of these categories. Finally, we

apply various state-of-the-art machine learning models to first detect tweets that contain

our outage-specific keywords and subsequently place them in their respective categories.

Results show that computationally inexpensive models such as SVM and logistic regres-

sion can be used to filter out tweets that mention words related to outages. Through use

of transfer learning models such as BERT, such outage-related tweets can be detected

with high accuracy, precision and recall. Our framework can be implemented to provide

first responders with outage related information during natural disasters. In our future

work, we will build a user interface that incorporates classification models to perform

real-time detection of outage-related tweets. Another next step is to conduct a deeper

level of information extraction to sub-classify the tweets within each outage-related cat-

egory. For example, with enough samples, we can train a classifier to automatically

identify tweets that mention restoration of services or other useful information.
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Part II

Internet Quality
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Chapter 4

Characterizing Internet Access and

Quality Inequities in California

M-Lab Measurements

4.1 Introduction

The term “digital inequality” refers to the gap in Internet access that exists across differ-

ent geographic areas and demographic variables [9]. Access to the Internet is known to

impact multiple facets of human life, including economic [19], education [34], health [24],

and, more recently, the ability to self-isolate to prevent spread of COVID-19 [33]. The

majority of prior work on digital inequality across the U.S. has focused primarily on the

availability of Internet access within a region. However, we argue that the quality of

the Internet access is equally important. While the ability of an Internet connection to

support advanced and bandwidth-intensive applications, such as video, has always been

important, it has never been more so than in the post-COVID-19 world. The availability

of quality Internet access now directly impacts remote learning outcomes, the ability to
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work at home, and the ability to use telehealth, among others [23, 20, 21, 36].

Internet access quality has received less attention than availability in part due to

the dearth of reliable and granular data related to Internet quality [161]. The Federal

Communications Commission (FCC), through Form 477, documents Internet coverage

and maximum theoretical available download speed across the country. This documenta-

tion is done using information received from Internet service providers at the geographic

granularity of the census block. The inaccuracy of this data in terms of overestimating

coverage, especially in rural areas, is well documented [30, 179]. To improve access and

quality of Internet, large financial investments have been made by the federal govern-

ment [26], but given the underlying data used to guide these efforts is rife with errors,

such investment runs the risk of being completely misdirected.

As an alternative to the FCC data source, within the past few years multiple for-

profit and nonprofit programs such as Measurement Lab (M-Lab), SamKnows and Ookla

have undertaken the complex task of analyzing Internet access and performance through

crowdsourced measurements. For instance, Speed Test by M-Lab [57] collects Internet

quality of service (QoS) metrics such as download speed, round-trip time (RTT) and

packet loss rate when an user initiates a test. Google also collaborates with M-Lab and

allows its users to conduct network diagnostic tests [43] using M-Lab provided infras-

tructure. With the aid of these measurements collected by M-Lab, it becomes feasible to

dive into the problem space of determining the factors that affect the quality of Internet

access across different demographics and geographical locations amongst different users

who take the test. It is this topic that our work addresses.

In this chapter, we combine crowdsourced measurements from M-Lab with recent

demographic data from the Economic and Social Research Institute (ESRI) to charac-

terize the effect of demographic attributes on the quality of Internet connectivity. We

conduct multiple statistical and geographical aggregations of these datasets to overcome
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limitations imposed by crowdsourced measurements. We attempt to identify the rela-

tionship that exists between an important quality of service metric, download speed, and

land and demographic factors such as type of area (rural/urban), income, education and

population. In addition, as COVID-19 imposed lockdowns have significantly modified

our online footprint, we explore how Internet quality changed across different demo-

graphic variables during this period. Finally, we use our analysis to highlight the amount

of inaccuracy that exists in FCC data, particularly in rural and lower income areas in

comparison to what is recorded through the Speed Test. We conduct this analysis for

the state of California but our methodology can be extended to cover any geographical

region. In summary, this chapter reveals the following key factors that affect Internet

quality through download speed collected from M-Lab Speed Test users:

1. Income has the strongest correlation with download speed, followed by type of area.

2. While rural areas record low download speeds compared to urban areas, perfor-

mance gaps also exist between income groups within urban regions.

3. The change in Internet usage patterns due to COVID-19 lockdowns coincided with

a decrease in download speeds across the board, with previously high performing

areas demonstrating the greatest decreases.

4. The FCC Broadband Report highly overestimates download speed in rural and

lower income group regions, more so than in urban and wealthier areas.

4.2 Description of the Measurement Data

We begin our study by combining publicly available Internet QoS data from the Speed

Test by M-Lab [58] with ESRI demographic data [45]. In the following section, we

describe these datasets in more detail.
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4.2.1 M-Lab Speed Test Data

M-Lab is an open-source project whose mission includes providing consumers and re-

searchers with free information about Internet performance [57]. It has a distributed

architecture with over 500 well-provisioned servers to conduct free performance measure-

ment tests. Clients can use various tools, such as the Network Diagnostic Tool (NDT)

and WeHe, to measure different aspects of Internet connectivity and quality.

Amongst their active measurement tests, we select data from NDT because it mea-

sures the performance of a TCP connection and provides summary data that includes

our metric of interest: download speed. Measurement tests are conducted when a client

initiates the measurement voluntarily, either from a web app or a browser. Once the

test is initiated, the M-Lab server-selection algorithm chooses a server geographically

closest to the client unless otherwise selected by the client or prohibited by factors such

as network capacity and load condition of the server [54, 55, 53]. The test consists of

bulk exchange of data between the client and server, as defined in IETF RFC 3148 [184].

During this single TCP connection test, a variety of information is recorded, including

client and server IP addresses, download speed, upload speed, round trip time and packet

loss rate. The collected data is publicly available for use [39].

To characterize the quality of Internet access for users of Speed Test by M-Lab in

California, we analyze M-Lab NDT data collected in the state between 01-01-2020 and

04-30-2020. We focus our analysis on download speed—an important QoS metric. To

geographically locate clients, we use a popular IP geolocation service, IPinfo [52], to

obtain the location coordinates of recorded client IP addresses and information about

the client’s Internet service provider (ISP). Because performance in fixed networks (e.g.,

maximum download speed) varies from wireless networks, we separate measurement sam-

ples by access technology (fixed and wireless) to enable a fair comparison. We use the
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Figure 4.1: Location of Unique IP addresses in the M-Lab California Data.

Technology Total Total Unique
Measurements IP Addresses

All 8,666,013 1,133,282
Fixed 8,425,723 1,096,349

Wireless 240,290 36,933

Table 4.1: Access Technologies

Geographic Area CA M-Lab > 10 IPs
# of Blocks 710,145 1,446 984

# of Block Groups 23,212 1,406 973
# of Tracts 8,057 1,302 937

# of Zip codes 1,769 1,158 844

Table 4.2: Geographic Areas

client’s ISP information to separate these measurement types.

Table 4.1 displays the number of measurement samples and unique IP addresses

present in our M-Lab dataset by type of access. The wireless measurements form only

3% of the measurement total. Geographic areas, as shown in table 4.1, can be represented

by regions of varying sizes. For example, a census block is the smallest geographic area

for which the Census Bureau collects and tabulates census-related information [42]. On

average, a group of 39 census blocks form a census block group [41] and contains between
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(a) Servers located in the US. (b) Servers located in the non-US. portion of
the world

Figure 4.2: Download Speed of Measurements for Different Server Locations.

600 and 3000 people. It is also the smallest geographic unit for which the Census Bureau

publishes sample data [62]. A census tract is formed with at least one census block

group [62] and contains a population size between 1200 and 8000 people. A zip code is

a US. Postal Service designated area. While a zip code contains an arbitrary number

of census block groups [61], it is not considered a census unit. The shape file for each

geographic area is obtained from the resources provided by the Census Bureau [3]. We

map the location of the data points in each of these geographic areas within California

(CA). Table 4.2 presents the total number of each geographic area present within the state

of CA and the M-Lab dataset. To reduce bias in the dataset, we omit areas from which

we have less than ten measurement endpoints. To eliminate anomalous data points, we

discard measurement values that lie in the top five and bottom five percentiles of each

geographic area. We then aggregate the raw samples based on the median speed value

recorded within that area. Figure 4.1 shows the location of the IP addresses present in

our California dataset.

The M-Lab dataset measurements can be impacted by the measurement server char-

acteristics such as location and load conditions. There are 152 total measurement servers

worldwide, with 82 within the US. in our dataset. Among the ones in the US., 11 are
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within California. To account for the impact of distance between clients and servers in

our M-Lab dataset, we use the Haversine formula [49] to calculate the great circle dis-

tance between the client and server location for each test. Figure 4.2 plots the download

speed for each client-server distance in our dataset. We observe that measurement tests

to servers outside of the US. (“World (non-US.)”) almost always recorded lower download

speeds (see Figure 4.2(b)). Thus, we ignore them for our analysis. In contrast, using

measurements to servers in the US. (outside CA) has a marginal impact on the download

speed. Thus, we consider all measurement tests to US.-based servers for our analysis.

4.2.2 Demographic Data from ESRI

ESRI is a We utilize the demography data provided by ESRI’s Updated Demograph-

ics [64]. ESRI curates this yearly demographic dataset using multiple sources that provide

current-year estimates and 5-year projections of various demographic attributes. This

is the most recent demography data available that is known to have high accuracy [46].

Using [38], we obtain the demographic variables in different geographic areas within

California. For our analysis, we choose four demographic attributes: median household

income, population, education, and poverty rate. We divide the category of education

into three subcategories: proportion of the population in an area without a high school

degree (no HS), with a high school degree (HS) and with a bachelors degree (Bachelors).

We also include type of area (urban/rural). Prior work [19, 34, 179] has shown that these

attributes affect Internet access availability. In contrast, our goal is to explore whether

these attributes affect the quality of Internet access among users of Speed Test by M-Lab.

While the ESRI data represents the most recent and granular demographic attribute

data available, it is sparse at the granularity of census blocks. For example, over 25%

of all blocks in California do not have a corresponding median income value in this
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Variables Average Median Standard Deviation
Download Speed (Mbps) 40.41 30.44 38.91

RTT (ms) 24.91 22 13.72
Median Income ($) 75,536 63,675 43,009

No HS (%) 5.78 3.32 7.31
HS (%) 13.51 13.11 7.56

Bachelors (%) 14.95 12.92 14.01
Poverty (%) 5.67 4.04 5.96
Population 1790 1530 1468

Table 4.3: Summary Statistics for QoS and Demographic Variables.

dataset. On the other hand, at the granularity of census block group, the dataset covers

all locations. This fact, coupled with sparse M-Lab data at the block level, guides us to

conduct our analysis at the granularity of the census block group. Fortunately, in 2015,

the FCC classified every census block group as either urban or rural [5]. We use this data

source to classify the census block groups present in our dataset. The summary statistics

of the download speed and demographic attributes, at the granularity of census block

group, are presented in Table 4.3.

4.2.3 Critique

Our data and method of aggregation has several caveats and limitations. First, the

potential shortcomings of crowdsourced Internet measurements using tools such as NDT

are well known [153, 134]. These crowdsourced measurements may bias the performance

tests such that the observed distribution deviates from the true underlying distribution

of the metrics for the population of interest. Furthermore, our approach of using IP

address geolocation to obtain the physical location of the IP addresses is also prone

to inaccuracies [159]. Finally, the measurements obtained from the NDT test are not

uniformly distributed across all geographic areas in California. As such, we are unable

to get a balanced number of samples across all types of locations, such as urban and
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rural areas, as well as demographic attributes such as income, education and poverty

level across the state.

4.3 Impact of Demographic Attributes on Internet

Quality

We begin by exploring the correlation between download speed with the selected demo-

graphic attributes at the granularity of the census block group. Based on our results, we

then focus our analysis on area type and median income to determine their relationship

to download speed.

4.3.1 Correlation between Download Speed and Demographic

Attributes

We use the Pearson Correlation Coefficient (PCC) [59] as it is suitable to capture any

relationship that might exist between demographic attributes and download speed. Ta-

ble 4.4 shows the PCC metric, expressed in percentage, between the download speed and

each of our chosen demographic attributes. We compute this metric separately for wired

and wireless access types. Wired network samples show a higher degree of correlation

with the demographic attributes compared to the wireless network samples. In partic-

ular, the median income is the most highly correlated with download speed: growth in

median income leads to an increase in the download speed. We observe a similar trend

in Bachelors-level education and the overall population of the census block group. On

the other hand, we observe a negative correlation between the download speed and the

proportion of the block group population without or up to a high school degree. Simi-

larly, download speed is also observed to be negatively correlated with the census block
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Technology Income No HS HS Bachelors Poverty Population Area Type
Fixed 37.11 -12.75 -21.11 19.22 -12.28 3.06 -26.21

Wireless -1.59 -2.26 -3.25 -1.75 -7.64 0.8 3.3

Table 4.4: Pearson Correlation Coefficient between Download Speed and Demographic
Attributes.

group’s poverty rate. For area, we encode urban block groups as 0, rural block groups as

1, and perform special point-biserial correlation (equivalent to Pearson Correlation) [60]

with download speed. This results in a negative correlation of download speed with rural

areas. We observe that a census block group’s population has the lowest correlation with

download speed compared to other demographic attributes.

Compared to wired samples, we do not observe similar trends for the wireless mea-

surements. This is likely attributable to the fact that unlike in fixed networks where

one can improve the download speed by opting for a more expensive subscription, higher

subscription fees impact data volume instead of speed in wireless networks. Also, our

dataset has many fewer samples for the wireless network. Thus, we focus on the wired

network’s measurement data for the remainder of our analysis.

Table 4.4 indicates that other than area type and income, the remainder of the at-

tributes correlate poorly with download speed. This is due to the relative imbalance of

block groups that fall within each demographic variable’s categories. For example, only

8% of block groups have a poverty level of 25% or more. Given that the area type and

median income have the strongest relationship with download speed, we more deeply

analyze the relationship of different categories within these factors to download speed.

Effect of Area Type.

Table 4.4 indicates the strong relationship between area type and download speed. There

are 206 and 767 rural and urban census block groups in our data set, respectively. Fig-

ure 4.3(a) shows the cumulative distribution function of download speed in each of these
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Figure 4.3: Cumulative Distribution Function of Download Speed by Area Type and
Income.

block group categories. We note the significant difference that exists between download

speed in rural areas versus urban. The average download speed recorded in rural block

groups is 17.94 Mbps. This is well below the FCC definition of download broadband of

25 Mbps [6]. In comparison, urban block groups recorded an average download speed

of 44.37 Mbps, almost 2.5 times the average speed recorded in rural areas. The inter-

quartile range (IQR) for rural areas was 12.18 Mbps. Comparatively, the IQR for urban

areas was 47.76 Mbps. 87% of the rural block groups recorded download speeds of less

than 25Mbps, the broadband threshold defined by the FCC. In comparison, only 7% of

urban block groups recorded less than 25Mbps of median download speed. These statis-

tics capture the difference in quality of Internet that exists between rural and urban areas

and point towards a gap in usability of Internet between these regions.

Effect of Median Income.

While rural block groups may indicate a relationship between income groups and down-

load speed, in this study we focus our income analysis on urban census block groups

given the heavy skew of our dataset towards this area type.

We begin by breaking the urban census block group incomes into five bins, where
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Figure 4.4: Download Speed before and during Lockdown by Area Type and Income.

each bin represents an increase in income by $40, 000 (based on the observed standard

deviation of income data in the census block groups). There were 243, 288, 139, 55

and 42 census block groups in our income bins 1-5, respectively, where income bin 1

represents the lowest income group (less than $50, 000) and bin 5 represents the highest.

Figure 4.3(b) shows the cumulative distribution functions of speed in these income bins.

We can see that there is evidence of increasing download speed as the income level

within these urban census block groups increases. Income bin 1 recorded the lowest

average speed of 33.81 Mbps. The average download speed progressively increased to

39.52 Mbps, 53.91 Mbps, 58.34 Mbps and 93.15 Mbps for income bins 2 to 5, respectively.

The corresponding IQRs for income bins 1-5 are 38.07 Mbps, 45.40 Mbps, 56.13 Mbps,

52.91 Mbps and 104.62 Mbps. respectively. This shows that even within urban areas,

digital inequalities are still evident across users of Speed Test by M-Lab from different

income groups. Importantly, the average speed for the Speed Test by M-Lab users of

the lowest urban income group is higher than that of the average download speed in rural

block groups; however, it remains almost three times less than that recorded for the highest

income group.
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Variables Pre-Lockdown (Mbps) Post-Lockdown (Mbps)
Area Type Rural 20.5 16.5
Area Type Urban 50.38 41.81

Median Income $10k-$49k 36.89 30.99
Median Income $50k-$89k 44.26 38.38
Median Income $90k-$129k 63.1 50.23
Median Income $130k-$169k 71.09 53.97
Median Income >$170k 104.91 86.92

Table 4.5: Average Download Speed for Area Type and Income Pre- and Post-COVID-19
Lockdown.

4.3.2 Impact of the COVID-19 Lockdown on Download Speed

The California governor issued a lockdown/stay-at-home order on March 19, 2020 to

curb the spread of the COVID-19 virus [29]. As found in a recent study [177], this

COVID-19 lockdown led to changes in Internet traffic patterns nationwide; increased

load in residential broadband networks have been observed as daily activities, such as

work and school, shifted online. Based on this finding, our goal is to determine whether

the COVID-19 lockdown caused any impact on the quality of Internet access during this

period. To do so, we divide our M-Lab data into two datasets to cover the pre- and

post-lockdown time frames. 52% of the total M-Lab measurements in our dataset were

recorded pre-lockdown, with the rest occurring post-lockdown. Figure 4.4 presents the

speed recorded during these two periods, disaggregated by area type and urban census

block group income bins.

Figure 4.4(a) shows the speed recorded during these two periods within urban and

rural block groups. Table 4.5 provides the recorded average speed in these two area types

during these periods. The average speed decreased by almost 20% during the lockdown

in rural areas. A similar effect is observed in urban areas where, before lockdown, the

average speed measured 50.38 Mbps, but reduced to 41.81 Mbps during the lockdown

period. Critically, even as the average speed decreased in both location types, the average
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urban download speed remained 2.5 times the average rural speed.

In Figure 4.4(b), the download speeds recorded before and during the lockdown in

urban block groups are grouped by income. From Table 4.5, we observe that the average

speed across all income groups decreased during the lockdown period. For income bin

1, the average download speed was 36.89 Mbps before lockdown. However, this value

decrease by 16% during lockdown to 30.99 Mbps. The average download speed in income

bin 2 is reduced by 5.88 Mbps, while the average speed for income bin 3 decreased 20%

during lockdown to 50.23 Mbps from 63.1 Mbps. The average speed during lockdown

for the two highest income groups decreased the most. While income bin 4 shows the

greatest drop (nearly 25%) in average download speed, income bin 5 also experienced a

decrease by nearly 18 Mbps. Nevertheless, the average speed of the highest income group

remained three times that of the lowest income group.

4.3.3 Discrepancy between FCC and M-Lab Download Speeds

The FCC defines “advertised” download speed as that reported by fixed service providers

through Form 477 at the geographic granularity of a census block. The requirement for

a service provider to claim coverage in a census block is that it can provide a download

speed of at least 200 kbps in at least one location within the census block. Given the

well-documented inaccuracy of this data [179, 8], we explore how it compares to the

actual measurements collected from Speed Test by M-Lab users of different locations

and income levels.

We aggregate FCC speed data at the granularity of census block groups by taking the

median of the download speed of the blocks within a block group. Figure 4.5 compares

aggregated census block group measurement values obtained from M-Lab and FCC data

broken down by area type and income bins within urban block groups. The graphs clearly
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Figure 4.5: Comparison of M-Lab and FCC Download Speed by Area Type and Income.

show that the FCC data tends to estimate significantly higher speeds, anywhere from

8 Mbps to 114 Mbps, than the M-Lab users experience across all locations and income

bins. This mismatch may be explained in part by the ISP plan tier purchased by users;

users may not always purchase the best/fastest plan offered by an ISP. It may also be

explained in part by the timing of user Speed Tests; if users conduct Speed Tests when

they are experiencing sub-par performance, then we would expect to see poorer results.

On the other hand, it is also likely that in many areas providers overstate coverage

speeds [179]. With the available data, it is not clear which explanation accounts for the

greatest portion of the discrepancy.

To more deeply analyze the difference between FCC and M-Lab recorded download

speed, for each block group within an area type and income level, we calculate an accuracy

factor by taking the ratio of the download speed from M-Lab and FCC. To summarise

the accuracy factor for each variable, we take the average of the accuracy factors for all

block groups that belong to that variable. As seen from Table 4.6, the accuracy factor

is lowest in the case of rural areas, indicating that the FCC estimated download speed

tends to be most different from what is recorded through Speed Test by M-lab in these

regions. While at first glance it appears as if the level of mismatch for both rural and

urban areas are similar, accuracy factors across different income bins in urban block

groups suggest otherwise. Among income bins in urban areas, the accuracy factor is
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Variables # of Block Groups Factor
Area Type Rural 206 0.32
Area Type Urban 767 0.4

Median Income $10k-$49k 243 0.36
Median Income $50k-$89k 288 0.36
Median Income $90k-$129k 139 0.42
Median Income $130k-$169k 44 0.54
Median Income >$170k 42 0.88

Table 4.6: FCC Accuracy Factor by Area Type and Income.

lowest for the two smallest income groups. This points towards the FCC’s record of

much higher speed in these areas than what is captured in M-Lab dataset. The accuracy

factor increases as the income increases, suggesting for higher income urban areas either

there is i) more accurate reporting on part of the service providers and/or ii) higher

purchasing power of the end users, leading to purchase of higher/better tiers of Internet

service compared to the lower income areas. One shortcoming of the FCC’s database is

that it fails to capture the user’s tier of subscription, and hence the maximum download

speed, purchased by users. Further, our analysis demonstrates the discrepancy between

the download speeds claimed by the service providers and what is obtained through Speed

Test, thereby highlighting the need for more accurate documentation of download speeds,

by both actual availability and affordability, across diverse locations and demographic

attributes.

4.4 Discussion and Recommendations

There are several key takeaways from our analysis that can help researchers, practitioners

and government officials address the factors that perpetuate digital inequality.

Accurate Internet Measurement Data. Given the limitations that exist in the

FCC’s current reliance on ISP-provided data to document available speed in a census
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block, coupled with the sparse geographical coverage of current crowdsourced Internet

measurement tools, there is a need to develop better approaches to obtain a more accurate

and complete representation of Internet availability and quality. The FCC itself has

recognized the shortcomings of its current methodology and highlighted the need for

higher quality data through recent initiatives [25, 50]. An added complexity is the lack

of detail on available service plans, as well as the plans and data rates to which users

actually subscribe. Without this critical information, it is difficult to fully understand

the context behind the performance values reported through tools such as M-Lab’s Speed

Test.

Nevertheless, despite the fundamental limitations of crowdsourced measurement tools,

our M-Lab study reveals there is a gap in Internet access quality across varied locations

and demographic attributes. While some of the gap may be explained by users purchas-

ing different service plan tiers, without further detail, it is critical to investigate more

deeply the source of these disparities. Our preliminary work on service plan pricing (not

presented here), and specifically our work to map download speed (and corresponding

price) offered by ISPs to geographic location, has demonstrated multiple sources of digital

inequality. Our current and future work attempts to quantify this disparity.

With more accurate Internet measurement data, our approach can be extended to

much finer geographic granularity. Our findings also add to the body of work that has

demonstrated the inaccuracies of FCC data across different area types and income levels.

To address digital inequalities between communities, accurate documentation of quality

metrics such as download speed is crucial. Our findings indicate rural areas and low

income regions experience the greatest FCC inaccuracy. Therefore, more attention needs

to be paid to these areas to accurately capture true Internet performance, as well as

general Internet access availability, to guide future broadband deployment efforts.

Fine-grained Demographic Data. 2010 Census demographic attributes, such as
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poverty rate and education, are currently only available at the tract level. Hence the

establishment of relationships between these variables and Internet access quality is chal-

lenging. The 2020 Census data, once fully available, is likely to be the most accurate and

current demography data available within the near future. As such, the granularity of

the reporting of this data needs to be finer in order to better correlate the relationship

between demographic attributes and Internet access quality within smaller geographic

regions.

4.5 Related Work

Every year, the Census, through the American Community Survey (ACS) One Year es-

timates, compiles a list of cities with the worst Internet connectivity in the country [44].

However, this estimate is only done for cities with population greater than 65, 000, leaving

smaller communities undocumented. Similar to our work, [22] analysed the relationship

between income and download speed at the geographic granularity of zip codes in the

U.S. The work utilized income data (grouped into five income bins) obtained from 2017

tax returns filed with the Internal Revenue Service. The study demonstrated a positive

correlation between zip code income and download speed. Our work confirms this finding

at the finer geographic granularity of census block groups in California. We also demon-

strate that FCC data overestimates available speed to a greater degree in low income

census block groups.

Prior research has focused on the analysis of demographic factors that affect the pen-

etration and diffusion of Internet access in different geographic areas. In a recent study

conducted by Microsoft [35], it was estimated that 162.8 million Americans did not have

access to high-speed broadband, a number far greater than the FCC’s estimate. The

study was conducted at the granularity of zip code and, similar to our work, IP address
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geolocation was used to locate users within each zip code. A similar study [28] estimated

42 million Americans have Internet download speeds of less than 25 Mbps, double the

estimate of FCC. Through our work, we show that in addition to overestimating the

population with access to the Internet, the FCC also overestimates the quality of that

Internet access, in terms of download speed; this overestimation is particularly large in

lower income areas. The authors in [158] combined demographic information with Inter-

net infrastructure data provided by the California Public Utilities Commission (CPUC).

Their analysis revealed areas with low income minority population were less likely to have

access to residential fiber services that provide better Internet performance. Similarly,

in [222, 202, 201, 183], demographic factors such as location, race and/or income are all

shown to impact Internet access. We advance this body of work and demonstrate that

while areas may have Internet access, the quality of that access remains worse for lower

income populations.

Finally, similar to our work, the authors of [134] used crowdsourced measurements to

benchmark Internet performance across multiple metropolitan areas. In [146], cable and

Digital Subscriber Line performance in residential areas of North America and Europe

was characterized. Finally, cost effective deployment solutions were proposed to increase

coverage in unserved areas in [147].

4.6 Conclusion

In this work, we analyze Internet access quality across the state of California for users

of Speed Test by M-Lab. Our results study the characteristics of digital inequality

that exists among the user base of M-Lab across different locations and demographic

attributes within the state. Additionally, we highlight the shortcoming of the FCC’s

documentation of broadband speed as its current methodology significantly overestimates
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download speed in rural and poorer areas. Our findings point towards the need to develop

more accurate Internet coverage and quality measurement tools to discover additional

factors that affect Internet access availability and quality across diverse communities.

We hope that our analysis can help guide the efforts of policymakers and researchers in

narrowing the digital gap between communities.
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Chapter 5

The Importance of

Contextualization of Crowdsourced

Active Speed Test Measurements

5.1 Introduction

The challenge of mapping fixed broadband Internet access was brought to the forefront

during the stay-at-home orders of the Covid-19 pandemic. Suddenly, individuals without

high-quality Internet access could not participate in the remote schooling, work, and

telehealth that these orders required [19, 34, 24]. Further, federal money for Internet

infrastructure improvement was made available through the Bipartisan Infrastructure

Investment and Jobs Act [84]; however, a key challenge remained: knowing where high-

quality Internet access was lacking [67, 89]. While the Federal Communications Commis-

sion (FCC) has long compiled annual Broadband Reports that map provider-reported

access at the census block level, these reports are known to overstate access availability

and speed, particularly in rural and under-served urban areas [179, 96, 70].
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Crowdsourced active network measurements have emerged as a powerful tool to map

fixed broadband access more accurately. These “speed tests” provide a critical snapshot

of the network state from the vantage point of the end users. Because they are active

measurements, they provide data on actual performance instead of the theoretical max-

imum performance reported by the providers. Popular network speed test platforms,

such as Ookla’s speedtest.net [93], Measurement Lab’s speed.measurementlab.net [57],

FAST [76] and Xfinity’s speed test [103], are utilized by Internet users worldwide to

conduct these measurements. For instance, Ookla claims over 40 billion user-initiated

tests since its inception [95]. Because of the inherent benefits, numerous governmental

initiatives (e.g. [131, 72, 82, 102, 85, 69]) have come to rely on crowdsourced speed test

data to map broadband access. With this data, local governments, community organi-

zations, and others can attempt to discern where to make the economic investment in

infrastructure to address digital inequality. Perhaps most critically, the FCC itself has

recently specified a challenge process [79], whereby individual users and communities can

gather active measurement data to challenge provider-reported coverage claims.

However, despite the broad use of crowdsourced active network measurements and the

call for their usage by the FCC, the data generated through these speed tests suffer from

several key limitations, which must be addressed before drawing meaningful conclusions

about fixed Internet performance. More concretely, we argue that speed test measurements

must be contextualized to accurately interpret the measured performance. The challenge

here is understanding what a speed test measures and how it compares to expected speed

values. For example, many fixed broadband plans offer rates as high as 1 Gbps download

and 35 Mbps upload. If a speed test measures performance significantly less than these

values, is it because the access network is under-performing, the user has purchased

a lower-tier plan, or the user’s home WiFi network is misconfigured or experiencing

interference? It is critical to determine the source of the under-performance. If the
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under-performance is attributable to issues in the access network, then the problem

could be reported to the Internet Service Provider (ISP) to challenge coverage claims in

an area. In contrast, if the under-performance is attributable to local factors, such as

channel interference or poor signal quality, the user can address it directly. If the user

simply purchased a lower-tier plan, then perhaps the speed test is measuring the paid-for

speed. Finally, the methodology of the test itself can impact performance results, adding

anothe layer of complexity [153, 140].

In this chapter, we utilize more than 1.5M total measurements from Ookla and M-Lab

speed tests to demonstrate the critical need for contextualization of these measurements.

We start with an analysis of aggregate performance, as represented by this data, across

four major metropolitan cities in the US. To demonstrate the importance of subscription

plan context, we propose a novel approach called the Broadband Subscription Tier (BST)

methodology that determines, with over 96% accuracy, the subscription plan associated

with a group of speed test measurements. We evaluate the accuracy of this methodol-

ogy on over 60k Measuring Broadband America (MBA) data points, for which we have

subscription ground truth. After applying the methodology to our M-Lab and Ookla

datasets, we show that the majority of the speed tests in a city originate from the lower

subscription tiers. This implicit bias in the data skews the overall results for metrics such

as download speed to lower throughputs.

Second, we incorporate the subscription tier context to Ookla measurements to quan-

tify the impact of factors such as access type (WiFi vs. Ethernet), WiFi spectrum band,

RSSI and device memory. We find that side effects of these local factors can lead to

performance that only achieves half the data rate of the subscribed plan. We also eval-

uate the impact of the time of the test on the measured performance and, interestingly,

discover minimal impact. Finally, we evaluate the performance of M-Lab versus Ookla

speed test results for each subscription tier and demonstrate that M-Lab tests consis-
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tently achieve lower download speeds than Ookla tests, at times by as much as a factor

of two.

In summary, our work makes the following contributions:

• We develop a novel methodology (BST) that maps crowdsourced speed test results

to the residential broadband subscription plan at the test location. We demonstrate

over 96% accuracy on 60k MBA data points, for which we have ground truth.

• We apply this methodology to 1.5M Ookla and M-Lab speed test measurements

in four US. cities and show that the majority of data points originate from lower

subscription tiers, thereby skewing throughput results.

• We quantify the impact of access type, WiFi characteristics, device memory, and

time of day on Ookla measurements.

• We quantify the performance difference of Ookla versus M-Lab measurements for

the same subscription tiers, cities, and ISPs that stem from the differing measure-

ment methodologies.

• Based on our results, we put forth a set of recommendations for speed test vendors

and the FCC to contextualize speed test data and correctly interpret measured

performance.

5.2 A Motivating Example

We begin by illustrating the challenge and inaccuracy of interpreting crowdsourced active

measurement (e.g. “speed test”) data at face value. We base our initial analysis on 745k

Ookla measurements from the primary fixed broadband ISP in four major US. cities dur-

ing 2021. The median download speed of each of these four cities is roughly 115 Mbps. In
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Figure 5.1: Comparison of raw speed test download speed distributions in a major US.
city. The “Uncontextualized” line represents our starting point. The other lines represent
the original data contextualized with subscription tier, access link speed or type, and/or
device type.

prior work, a similar analysis, emphasizing the median value of the aggregated tests, was

used to study the regional Internet quality of a congressional district in New York [131].

Based on these median performance results, the report recommended regions for Internet

buildout and funding allocations to improve Internet quality in the constituency.

However, as this chapter will illustrate, the lack of context for these measurements

prevents proper interpretation of such aggregate results. Figure 5.1 presents the distri-

butions of the download speed in City-A disaggregated by subscription plan tiers, access

speed or link type, and measurement device type. The “uncontextualized” line represents

the original data without context applied. The figure shows that the median download

speed of the lowest (slowest) subscription tier (Tier 1, with a maximum download speed

of 25 Mbps) is 19.22 Mbps, almost six times as slow as the overall City-A median down-

load speed. City-A’s median download speed, on the other hand, is nearly four times

less than the premium ISP subscription tier (Tier 6: 1.2 Gbps) and almost seven times

less than that recorded by test takers on Tier 6 Ethernet connections (Tier 6: Ethernet).
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Table 5.1: Number of measurements for datasets utilized in this work. Note that for
Ookla and M-Lab, the data points are from each city, whereas for MBA, the data points
are from the state that corresponds to each city.

City/State ISP Ookla M-Lab MBA

A 1 214 k 113 k 25.9 k
B 2 205 k 376 k 14.9 k
C 3 128 k 64 k 10.9 k
D 4 198 k 166 k 8.9 k

Similarly, for speed tests that do not experience local bottlenecks (tests whose perfor-

mance is constrained by local WiFi factors such as WiFi band and RSSI), the median

download speed of the highest subscription tier for this group of speed tests (Tier 6:

Android) is almost four times more than the City-A median download speed. Still, the

median for the group of tests not affected by local bottleneck factors is half the Tier 6

(Ethernet) median download speed rate.

In the remainder of this chapter, we describe the contributions that enable us to con-

textualize each measurement point with broadband plan subscription tier, local network

characteristics, device context, test time, and speed test vendor. In so doing, we demon-

strate that the ability to contextualize speed test measurements is critical for interpreting

the quality of the Internet in a region.

5.3 Datasets

This section describes the three primary datasets we utilize for this work. Table 5.1

summarizes the number of data points of each type. We choose Ookla’s Speedtest® (ob-

tained from the Speedtest Intelligence® portal) as it is the largest Internet measurement

vendor that is capable of measuring available bandwidth with high accuracy [223]. M-

Lab’s Speed Test, on the other hand, makes collected data publicly available. We utilize
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the Measuring Broadband America (MBA) dataset because it provides the subscriber’s

purchased broadband plan information with the speed test measurements.

We use the Ookla and M-Lab data collected from January 1 – December 31, 2021.

MBA data is also from this period but lacks data from September 1 – October 31 (this

data is unavailable from the MBA website).

5.3.1 Ookla’s Speedtest

Ookla’s Speedtest1 (data provided through Ookla’s Speedtest Intelligence®) possesses

over 16k measurement servers worldwide [99] and allows users to assess the quality of their

Internet connection using either a web-based portal or native mobile application [93]. For

each Speedtest, a nearby test server is selected and multiple TCP connections are used to

calculate the throughput of the connection. Ookla’s Speedtest Intelligence dataset con-

tains individual Speedtest measurements that include QoS metrics (up/down throughput,

latency, packet loss, jitter), as well as meta-features such as ISP, device type, and access

type. Ookla provides performance data aggregated over time and space to the public [94].

A Data Usage Agreement (DUA) with Ookla provides us access to over 745k individ-

ual Speedtest measurements from four major metropolitan cities in the US, which we use

for this study. Each of these cities has a population in the range of 400,000 – 700,000.

For each city, we utilize the FCC Form 477 dataset [80] to identify the dominant ISP and

conduct our analysis. Specifically, we use this dataset to compute the number of census

blocks served by an ISP in a city and pick the one that covers the highest number of

blocks.

The Ookla dataset tags the origin of each test, specifying whether the test was ini-

tiated through a web-based portal or a native application. The web-based tests do not

provide device-related information. On the other hand, the native application dataset

1http://speedtest.net
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indicates the type of device that started each measurement (Android, iOS, or desk-

top). 394k of the measurement points in our dataset originated from native applications.

The dataset also contains critical metadata related to the wireless link for Android de-

vices, such as frequency band, signal strength, maximum achievable theoretical downlink

throughput, and available kernel memory. These metrics are essential in contextualizing

the measurements, as we will show in section 5.6.

5.3.2 M-Lab’s Speed Test

Section 4.2.1 in Chapter 4 provides an overview of the working mechanism of M-Lab’s

Speed Test2 (note the different spelling and capitalization from Ookla’s Speedtest) that

reports network performance metrics using the Network Diagnostic Tool (NDT). We

extracted 717k NDT measurements from the same four major US. cities in 2021 for the

same major residential broadband ISPs as Ookla. Because NDT measurements do not

associate an upload speed test with a download speed test initiated by the same client,

we adopt a similar methodology to [219]. We compute a 120 second window for every

download speed test and filter all upload speed tests issued from the same client and

server IP address. If a single upload speed is captured during that window, we associate

it with the download speed. In the event we observe more than one upload speed test

started during this time frame that meets this criterion, we associate the earliest upload

speed test with the download speed test. As a result, our methodology enables us to

compare Ookla and M-Lab measurements over the same period, in the same cities, for

the same service provider.

2https://speed.measurementlab.net/#/

96



The Importance of Contextualization of Crowdsourced Active Speed Test Measurements Chapter 5

5.3.3 Measuring Broadband America

Measuring Broadband America (MBA) [87] is an FCC-sponsored project that uses spe-

cialized hardware test units [101] to collect Internet measurement data from 4, 000 US.

households. These units measure and report upload and download speed multiple times

per day [88]. Each device in the dataset also reports its location (at the granularity of

census tract). Most critically, this dataset is generated from wired devices and contains

the broadband plan subscription of the user hosting the device. Wired devices provide

measurement data of the access link without confounding WiFi performance, while the

broadband plan data provides ground-truth for our methodology to determine broad-

band subscription tier. We utilize the latest subscriber information, which was collected

in 2020, for the measurements [100].

5.3.4 Ethics

While our work analyzes speed tests from users of two prominent speed test vendors, our

work is not human subjects research. The private dataset shared by Ookla under DUA

is fully anonymized, and we cannot identify the individual users of the platform. For

the subset of measurements from devices with GPS geolocation enabled, Ookla provides

GPS coordinates truncated after three decimal points. Such geolocation is accurate

to 111 metres; therefore, we cannot associate it with any user/residence. The M-Lab

dataset provides only public IP addresses that one can localize using IP geolocation

tools. However, IP geolocation errors can exceed 30 KM, making it difficult to isolate

specific users/homes. We also obtained the street address dataset from Zillow under a

DUA. We do not have methods to identify residents, selected broadband subscription

tiers, or the actual speed test performance at any address.
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5.4 Determining Subscription Tiers

Our first step in contextualizing speed test data is to determine the home broadband

subscription tier of the user from which the measurement originates. This step is critical

because it provides context for the achieved download and upload speed; with informa-

tion about the theoretical maximum speeds (the “plan” speeds), we can first determine

whether a speed test measurement indicates the network is under-performing. Without

this information, we may attribute a slow download speed to the under-performance of

the access link instead of a lower (“slower”) tier plan purchased by the user.

To determine the subscription tier, we must first obtain the residential broadband

plans available at the location of the speed test so that we know the set of possible plans

from which to select. As described in this section, we obtain this information by modifying

a prior approach. Then, we apply our Broadband Subscription Tier (BST) methodol-

ogy, a novel two-stage hierarchical unsupervised clustering technique that matches each

¡download speed, upload speed¿ measurement tuple to a specific subscription plan.3 To

evaluate the efficacy of BST, we utilize the MBA dataset as it provides both the speed

test measurements and subscription tier information for more than 60k data points.

Challenges. There exist two significant challenges in associating crowdsourced measure-

ments with subscription tier information. First, no dataset exists in the public domain

that details all the broadband plan choices offered by ISPs to users at the granularity of

street address, census block, or even census block group. Through its Form 477 [80], the

FCC only provides the ISP-reported maximum download/upload speed in a census block.

Unfortunately, it is impossible to associate measurements with subscription tiers without

a complete picture of all the plans available from the ISPs. Second, crowdsourced mea-

3We use the terms “subscription tier” and “subscription plan” interchangeably.
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surement results are inherently noisy, as they are vulnerable to environmental factors that

range from poor WiFi router positioning to device memory, as shown in section 5.6.3.

As such, it is crucial to understand the variability between different metrics reported

through speed tests prior to assigning a measurement to a subscription tier.

5.4.1 Observations

To obtain the set of ISP-offered subscription plan choices, we modify the tool proposed

in [179]. In particular, we augment the tool to collect available download/upload speed

plans for major residential ISPs at specific US. street addresses. Our tool requires clean

and well-formatted street addresses to obtain this information. Hence we utilize the

residential property address dataset from Zillow [105] to create an address set for each

of the four cities in our study. Then, we randomly select 100K residential addresses for

each city and collect the ISP-offered plans. To prevent overloading ISP infrastructure,

we carefully limit the number of queries we make per ISP. Our analysis of street-address

level broadband plan choices in four cities reveals two significant trends.

The first trend we observe is that the plan choices remain unchanged across different

street addresses within a city. For example, ISP-A offers six plans for all street addresses

in City-A. Three of these plans have different download speeds (25 Mbps, 100 Mbps, and

200 Mbps) but the same upload speed (5 Mbps). The other three plans have different,

faster download speeds (400 Mbps, 800 Mbps, and 1200 Mbps) with upload speeds of

10 Mbps, 15 Mbps, and 35 Mbps, respectively. We observe similar types of tiered offered

plans that do not vary based on the specific address for the other three cities and major

ISPs.

Second, although an ISP offers diverse plans for download speeds, varying in both

number and speed range, the set of maximum available upload speeds is much smaller.

Further, the upload speeds are much slower than available download speeds. This ob-
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servation is noteworthy because, as discussed in [153], many factors, such as local home

network conditions (e.g., WiFi interference or local congestion) and web-browser limi-

tations, could prevent a speed test measurement from attaining high throughput. On

the other hand, given the lower maximum upload speeds, fewer factors can limit the

attainment of the maximum speeds [220].

As a result, crowdsourced measurements from individual users should exhibit less

variation (and more consistency) in upload speed compared to download speed. Given

this intuition about upload speed, we should expect to see that the recorded upload

speeds during multiple measurements for a single user are more consistent than the set

of download speeds for that user. To capture this per-user performance consistency, we

calculate a consistency factor by taking the ratio of the mean and 95th percentile for the

sets of upload and download speeds recorded over multiple tests by the same user [214].

The closer the consistency factor is to 1, the greater the consistency for the evaluated

metric over the set of tests from a single user.

Concretely, we select measurements from any Ookla user who conducted at least five

tests using the native application while connected to the WiFi network [214]. In total, 23k

(out of 85k) users issued more than five tests. These users contribute 80k measurements,

about 70% of total measurements from native applications. For brevity, we present the

results only for City-A. We base our analysis only on native app users because a public

IP address identifies users of web-based tests. Given the prevalence of NAT employed by

the ISPs, determining which group of tests belongs to an individual user based on the

public IP address is highly challenging.

Figure 5.2 shows the CDF of the consistency factor of measurements from users who

registered at least five tests using Ookla’s native iOS application (we present only the

iOS result for clarity and confirm that we observed similar trends for data from Android

and desktop native applications). As shown in the figure, download speed variations
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Figure 5.2: CDF of consistency factor for all iOS users who recorded at least five tests.

are much more significant than upload speed; upload speed is more consistent across all

users. The median consistency factor for download speed is 0.58, compared to 0.87 for

upload speed. The more consistent behavior of upload speed performance indicates the

possibility of utilizing this metric to determine the subscription tier for each speed test.

We confirm our observations of upload speed consistency for the other three cities. Note

that while we report the mean value, we do observe that the consistency factor exceeds

one for some users. The mean value of a (heavy-tailed) distribution can be skewed by

larger items in the tail portion of the distribution.

Combining these two observations, we hypothesize that we can utilize the measured

upload speeds of the speed tests to identify the subset of possible subscription plans from

which any given speed test originates. In the next section, we describe our Broadband

Subscription Tier methodology, which is our approach to matching speed test measure-

ments to their corresponding subscription plan.
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Figure 5.3: Broadband Subscription Tier methodology.

5.4.2 BST methodology

We propose a two-stage hierarchical unsupervised clustering methodology to match each

< download speed, upload speed >measurement tuple to a specific ISP subscription plan.

In the first stage, our objective is to associate the recorded upload speed of a speed test to

a cluster that corresponds to the correct ISP-offered upload speed. Because multiple plans

might offer the same upload speed, in the second stage we use our first stage clustering

to perform an inter-cluster analysis to identify the set of individual subscription tiers

to which a recorded download speed can potentially match. Combining the two stages

yields a probabilistic model that can map the results of speed test measurements to their

respective subscription classes/tiers. Figure 5.3 gives an overview of our methodology.

For a given speed test dataset in a city, each of our two stages begins by first confirming

the presence of clusters within the upload/download speed distribution. Taking the

example of the first stage, we start by employing a Kernel Density Estimation (KDE) [86]

method with multivariate Gaussian kernel functions to estimate the probability densities

of the upload speeds recorded during the speed tests. Combining these multiple kernel

functions results in a smooth function that produces clusters containing the upload speed

densities. This stage checks whether the number of upload/download speeds offered

by an ISP matches the number of clusters formed in the distribution of crowdsourced

measurements.

102



The Importance of Contextualization of Crowdsourced Active Speed Test Measurements Chapter 5

Table 5.2: BST upload speed selection accuracy for the four states in the MBA dataset.

State ISP #Units Accuracy

A 1 20 99.33%
B 2 17 98.19%
C 3 10 96.84%
D 4 11 99.10%

After determining the number of clusters using the KDE method, we cluster the

upload speeds by employing the Gaussian Mixture Model (GMM) [90] to determine

the upload speed of the subscription tier. Once a measurement is associated with a

cluster of upload speed, we enter the second stage, where we re-apply GMM to determine

the corresponding download speed cluster. Note here that we possess the information

about the mapping between different offered download and upload speeds through the

mechanism described in section 5.4.1.

We choose GMM because it is one of the most popular unsupervised clustering tech-

niques employed on a distribution consisting of several components of Gaussian densi-

ties. In GMM, each cluster follows a Gaussian distribution, and the eventual goal is

to assign measurements to different parts by estimating each cluster’s parameters. The

parameters associated with a GMM cluster/component include the mean, covariance

matrix, and weight. As such, compared to other clustering methodologies such as K-

Means, GMM is a probabilistic model that considers the clusters’ variance in addition

to the means. In each stage, we employ GMM in conjunction with the Expectation-

Maximization (EM) [75] methodology (GMM-EM) to iteratively compute the maximum

likelihood that each speed test data point belongs to its respective upload/download

speed cluster.
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5.4.3 Evaluation with MBA dataset

We leverage the MBA dataset to evaluate the efficacy of our BST methodology. This

dataset contains not only active measurements collected hourly but also subscription

information. We apply our BST methodology to 60k measurements in this dataset span-

ning the four states associated with the four cities in our study. We compare the result

of BST with the ground truth subscription information available in the MBA dataset

by calculating the accuracy = (#correctly associated measurements
#total measurements

). Table 5.2 presents the

total number of units and the corresponding accuracy achieved by the BST methodology

for upload speeds. For all states, accuracy is above 96%; accuracy is above 99% for two

states.

As a descriptive example, we provide a detailed explanation of the application of the

BST methodology to the MBA dataset in State-A, where ISP-A is the dominant resi-

dential Internet service provider. Table 5.2 shows that 20 measurement units subscribe

to ISP-A in this state. These units record a total of 25, 927 measurements during 2021.

The plans recorded for the MBA subscribers in State-A are similar to the offered plans

described previously for City-A. However, there are no records of the 25 Mbps download

(5 Mbps upload) subscription plan in the MBA-State-A dataset. This observation is

important when we match subscription plans to measurements in the following example.

Upload Speed Subscription Tiers. We begin by applying KDE on the set of upload

speeds measured by the MBA nodes in State-A; Figure 5.4 presents the result (Figure 5.5

show the results for the other three cities). There are four significant clusters of upload

speed densities in this dataset. The distinct peaks of upload speed densities in the

regions of the offered upload speeds by ISP-A indicate the possibility of identifying the

subscription plan of a given measurement.

After determining the number of clusters, we aim to assign each measurement point
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Figure 5.4: Upload speed density using KDE method on MBA State-A dataset. The
vertical lines are the upload speed plans offered by ISP-A.
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(a) State-B
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(b) State-C
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(c) State-D

Figure 5.5: Upload speed density using KDE method on MBA dataset for States B-D.
The vertical lines are the upload speed plans offered by the dominant ISP in each state.

to the appropriate subscription tier by first using the recorded upload speed. To do so,

we employ the BST methodology to detect the clusters of the upload speed recorded by

the MBA units. The methodology converged after 20 iterations. The means of the four

upload speed clusters were 5.87 Mbps, 11.55 Mbps, 17.57 Mbps, and 38.62 Mbps. We

observe that the upload cluster means obtained through the BST methodology are close

to the actual offered upload speeds by ISP-A. BST achieves an accuracy of 99.3% for this

set of upload speed measurements. This result validates our hypothesis and demonstrates

the ability to use upload speed to narrow down potential subscription plans from which
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(b) Tier 4

0 200 400 600 800

Download Speed (Mbps)

0.000

0.005

0.010

0.015

0.020

0.025

F
ra

c
ti

o
n
 o

f 
Te

s
ts

(c) Tier 5
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Figure 5.6: Download speed density using the KDE method within each cluster of upload
speed. Black vertical lines represent the corresponding download speed plans for each
upload speed.

a given speed test may originate.

Download Speed Subscription Tiers. After determining the upload speed cluster

of the speed test measurements, we apply the BST methodology within each of the four

clusters of upload speed. Figure 5.6 shows the clusters of download speeds present within

the upload speed clusters identified in the previous step.

Tier 1-3: This cluster consists of measurements from users subscribed to the 5 Mbps

upload speed. Within this tier, we label the three available download speed plans as

Tier 1, Tier 2, and Tier 3 to refer to the offered 25 Mbps, 100 Mbps, and 200 Mbps
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download speeds, respectively. Because the MBA dataset does not have the 25 Mbps

download plan, our analysis consists of Tiers 2 and 3. There are 15, 781 measurements

total from Tiers 2 and 3 in the MBA-State-A dataset. From Figure 5.6(a), we see two

major download speed peaks after applying the KDE method to the download speeds in

this cluster.

After determining the number of clusters, we apply the BST methodology to attach

each download speed measurement point to the appropriate subscription tier class. The

means of the two clusters found by BST are 110.89 Mbps and 231.69 Mbps, which are

greater than the advertised download speeds. This observation indicates that ISP-A pro-

vides performance that surpasses the subscribed download speed for these subscription

tiers. Previous studies [220] observed similar ISP behavior in the past. In comparing our

calculated download speed plan with the ground truth, we determine that our method-

ology can accurately identify 100% of the download speed measurements in this cluster.

Tier 4: There are 4, 185 measurements in the MBA-State-A dataset that belong to this

subscription cluster. The upload speed in this cluster is 10 Mbps; only one plan offers this

upload speed, with a 400 Mbps download speed. Though our methodology achieves 100%

accuracy in determining the subscription tier of these measurements, the KDE method

reveals several download speed peaks within this cluster (see Figure 5.6(b)). We apply

the BST methodology to detect four download speed clusters. The four means obtained

through the process are 333.48 Mbps, 335.15 Mbps, 400.37 Mbps, and 463.31 Mbps.

While it is unclear why four clusters are detected, it could be due to ISP throttling. It

remains future work to diagnose the exact cause.

Tier 5: There are 2, 453 measurements in this cluster, and the offered upload speed is

15 Mbps. This tier offers a download speed of 800 Mbps. Like Tier 4, BST achieves 100%

accuracy in determining this subscription tier. Figure 5.6(c) shows a peak at around
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700 Mbps, closer to offered speed, with the KDE method. We also observe multiple

peaks around 300 Mbps and 400 Mbps. The BST methodology detects three clusters of

download speed with means 269.98 Mbps, 358.06 Mbps, and 705.35 Mbps. We observe

an overlap in download speed tier means between tiers 4 and 5. However, the proposed

BST methodology isolates the download speeds into their respective subscription tiers.

Tier 6: ISP-A offers a plan with download speed 1200 Mbps and 35 Mbps upload speed;

BST achieves 100% accuracy in inferring this subscription tier. In State-A, there are

3, 508 measurements in this subscription tier. Figure 5.6(d) shows a single major cluster

of download speed after applying the KDE method. The BST methodology computes

the mean of this download speed cluster to be 892.05 Mbps. This mean value is much

lower than the offered download speed for this subscription class. This result shows

the limitation of speed test-like measurements in saturating the available bandwidth

in the higher end of the offered subscription plans. Previous work [153] made similar

observations.

These promising results indicate the ability to infer subscription tier information for

crowdsourced speed tests. In the following sections, we use the BST methodology to con-

textualize Ookla and M-Lab speed test measurements with subscription tier information.

5.5 Augmenting Ookla & M-Lab Data

Now that we have demonstrated the accuracy of our BST methodology, our next step

is to apply our approach to contextualize crowdsourced speed test measurements. This

step is critical to the interpretation of speed test data; by comparing speed test results to

the subscribed broadband plan, we can gain insight into whether the network is under-

performing. Our analysis in this section focuses on City-A.
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Figure 5.7: Upload speed density using the KDE method on City-A speed test measure-
ments. The vertical lines represent the offered upload speed in each ISP-A plan.
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Figure 5.8: Upload speed density using the KDE method on Cities B-D speed test
measurements. The vertical lines represent the offered upload speed of the dominant
ISP in each city.

5.5.1 Contextualization with Subscription Plans

Upload Speed Subscription Tiers. The measurement nodes for the MBA project

collect data directly from the cable modems, increasing the accuracy of capturing the ac-

cess network performance. Unfortunately, a significant fraction of the speed test measure-

ments in the Ookla and M-Lab datasets stem from end-user devices connected through a

first hop WiFi link. The introduction of this single wireless link can significantly impact

the speed test performance and can introduce additional skews [153, 214]. However, given
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Table 5.3: Number of measurements and the means (Mbps) for upload speed clusters
that form near the ISP-A offered upload speeds in City-A. For each dataset, the means
are obtained using the BST methodology.

Tier 1-3 Tier 4 Tier 5 Tier 6
Platform Type #Measurements Mean #Measurements Mean #Measurements Mean #Measurements Mean

Ookla

Android-App 8, 890 5.25 3, 088 11.29 2, 810 17.04 5, 152 40.23
iOS-App 33, 265 5.30 13, 299 11.35 9, 530 16.71 19, 480 39.82

Desktop WiFi-App 4, 551 5.54 1, 377 11.59 3, 638 16.82 1, 750 39.92
Desktop Ethernet-App 1, 031 5.69 746 11.65 1, 400 16.95 2, 098 40.13

Net-Web 43, 833 5.72 12, 802 11.64 29, 157 16.69 15, 797 40.06
M-Lab NDT-Web 70, 789 5.32 17, 014 10.74 16, 417 16.71 9, 490 39.94

Table 5.4: Number of measurements and the means (Mbps) for upload speed clusters
that form near the ISP B offered upload speeds in City B. For each dataset, the means
are obtained using the BST methodology.

Tier 1-2 Tier 3 Tier 4-5 Tier 6
Platform Type #Measurements Mean #Measurements Mean #Measurements Mean #Measurements Mean

Ookla

Android-App 4965 5.73 2483 11.54 6794 22.42 2819 39.21
iOS-App 18940 5.81 11358 11.48 29960 21.95 15042 38.08

Desktop WiFi-App 2012 5.1 1281 11.48 3009 21.97 2093 39.01
Desktop Ethernet-App 492 5.63 811 11.39 2048 23.32 2904 36.87

Net-Web 30132 5.38 11925 11.56 37553 22.37 17504 39.62
Mlab NDT-Web 144345 5.44 63805 11.16 135897 22.04 25553 39.23

the small range of possible maximum upload speeds, we hypothesize that it should still

be possible to cluster these crowdsourced active measurements based on the recorded

upload speed.

Figure 5.7 shows the upload speed densities for speed test takers who accessed Ookla

as well as M-Lab tests run through the web-based portal (the rest of the cities are depicted

in Figure 5.8). Similar to the peaks in the MBA data shown in Figure 5.4, we observe

densities of upload speed in the crowdsourced measurements that peak near the ISP-A

offered upload speeds for all datasets. In addition to the four major peaks, there is an

additional upload speed cluster in the 1 Mbps region in the M-Lab data.

We apply the BST methodology to associate the upload speed measurements to the

four peaks around the ISP-A-provided upload speeds. Table 5.3 presents the number of

measurements and means for the upload speed clusters (corresponding to an ISP sub-

scription upload speed tier) detected by the BST methodology, broken down by device
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Table 5.5: Number of measurements and the means (Mbps) for upload speed clusters
that form near the ISP C offered upload speeds in City C. For each dataset, the means
are obtained using the BST methodology.

Tier 1-3 Tier 4-5 Tier 6-7 Tier 8
Platform Type #Measurements Mean #Measurements Mean #Measurements Mean #Measurements Mean

Ookla

Android-App 6766 5.28 3168 11.53 8307 22.28 3030 39.49
iOS-App 11725 5.18 4711 11.45 12322 21.96 5579 38.84

Desktop WiFi-App 2015 4.86 606 11.47 1094 21.61 854 38.21
Desktop Ethernet-App 1020 4.92 628 11.48 868 23.36 2416 37.71

Net-Web 24148 4.89 7982 11.54 21478 22.02 9697 39.53
Mlab NDT-Web 34523 4.76 12789 10.72 13041 19.82 4416 35.47

Table 5.6: Number of measurements and the means (Mbps) for upload speed clusters
that form near the ISP D offered upload speeds in City D. For each dataset, the means
are obtained using the BST methodology.

Tier 1-2 Tier 3-4 Tier 5
Platform Type #Measurements Mean #Measurements Mean #Measurements Mean

Ookla

Android-App 7244 3.51 8142 9.73 6462 28.69
iOS-App 18598 3.72 26699 9.39 19177 28.03

Desktop WiFi-App 2525 3.04 2233 9.59 2348 28.72
Desktop Ethernet-App 1845 3.6 1716 9.68 3096 28.99

Net-Web 40452 3.05 29642 9.7 27517 28.51
Mlab NDT-Web 71833 2.95 61435 7.6 24541 24.94

type when possible (Tables 5.4 – 5.6 in the appendix present the same breakdown for

Cities B-D). We observe the means of each cluster to be similar across all datasets. These

means are also consistent with the means detected in the State-A dataset in section 5.4.3

for ISP-A offered plans. Given this similarity, we can associate the crowdsourced mea-

surements to their subscription tier.

Download Speed Subscription Tiers. The much larger download speed plans offered

by ISP-A and the performance variability caused by the end user’s home wireless link

create considerable challenges to clustering the measured download speeds. Figure 5.9

shows the densities of download speeds recorded by Ookla tests conducted on Android

devices within each cluster of upload speed (the remaining three locations are depicted

in Figures 5.10 - Figure 5.12).
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Figure 5.9: Download speed density using the KDE method within each upload speed
cluster of Ookla Android device measurements.

There are five major download speed clusters in Tiers 1-3 of the Android dataset4.

This number is three more than the number detected in the MBA State-A dataset for the

same cluster and two more than what is offered by ISP-A for this subscription tier. After

applying the BST methodology, we associate the download speed measurements to five

clusters of download speed with means 8.04 Mbps, 27.14 Mbps, 57.85 Mbps, 115.65 Mbps

and 214.01 Mbps. We associate the measurement points that belong to the components

with mean values of 8.04 Mbps and 27.14 Mbps to Tier 1 as these measurements are close

to the offered download speed. Similarly, we assign the measurements associated with

4All Android measurements occur over WiFi.
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(d) Tier 6

Figure 5.10: Download speed density using KDE method within each cluster of upload
speed in State-B. Black vertical lines represent the corresponding download speed plans
offered for each upload speed.
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Figure 5.11: Download speed density using KDE method within each cluster of upload
speed in State-C. Black vertical lines represent the corresponding download speed plans
offered for each upload speed.

clusters of mean values 57.85 Mbps and 115.65 Mbps to Tier 2. Finally, we associate

measurements in the cluster of mean 214.01 Mbps to Tier 3.

Compared to the clusters formed by tests conducted over WiFi access links, the

measurements in Tier 1-3 run by desktop devices connected with wired links (presented in

Table 5.7) produce three download speed clusters with means of 16.04 Mbps, 93.76 Mbps

and 231.44 Mbps. These three means are closer to the three offered download speeds

provided by ISP-A for this subscription tier.

We know that ISP-A offers a single download speed for each of the other upload

speed tiers. However, Figure 5.9 indicates a large number of download speed clusters at

various magnitudes. We apply the BST methodology and associate measurements with

10 clusters of download speed for each of tiers 4-6. Table 5.7 presents the download speed
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Figure 5.12: Download speed density using KDE method within each cluster of upload
speed in State-D. Black vertical lines represent the corresponding download speed plans
offered for each upload speed.

Table 5.7: Download speed means (Mbps) for each subscription tier in City-A. For each
dataset, the means are obtained using the BST methodology.
Platform Type Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tier 6

Ookla

Android-App 8, 27 58, 116 214 21, 53, 93, 152, 212, 268, 327, 390, 445, 599 27, 73, 139, 219, 309, 403, 489, 574, 672, 879 40, 91, 160, 232, 304, 381, 461, 550, 636, 763
iOS-App 9, 28 55, 84, 113 155, 197, 226 25, 57, 95, 144, 196, 244, 289, 337, 389, 442 28, 73, 121, 193, 264, 339, 421, 502, 589, 693 37, 88, 152, 223, 295, 367, 447, 535, 624, 737

Desktop WiFi-App 15, 27 53, 86, 113 154, 202, 227 34, 77, 117, 155, 193, 251, 302, 340, 408, 453 22, 59, 105, 156, 211, 268, 345, 444, 540, 714 71, 177, 251, 345, 436, 540, 644, 735, 889, 1328
Desktop Ethernet-App 16 94 231 68, 288, 461 147, 596 104, 907

Net-Web 7, 28 55, 85, 114 170, 225 23, 55, 92, 146, 204, 265, 336, 405, 458, 637 19, 54, 97, 166, 239, 333, 437, 543, 692, 884 66, 162, 251, 350, 458, 568, 692, 820, 913, 1299
M-Lab NDT-Web 6, 25, 47 100, 164, 221 18, 53, 84, 135, 196, 258, 337, 422, 569, 852 18, 53, 84, 135, 196, 258, 337, 422, 569, 852 22, 60, 105, 165, 229, 325, 413, 501, 652, 868 31, 93, 183, 260, 342, 429, 507, 610, 732, 892

cluster mean values that belong to each upload speed cluster. The number of components

detected for wired measurements in each of these tiers is less than in wireless ones.

For Tier 4, we observe three clusters with mean values of 67.77 Mbps, 288.29 Mbps,

and 461.18 Mbps. For Tier 5, we identify two groups with mean values of 146.46 Mbps and

595.59 Mbps. We also observe two clusters for Tier 6, with mean values of 103.96 Mbps

and 906.87 Mbps. The wide range of values represented by these download speed clusters

means, as well as for WiFi tests, indicates a significant variance in the results of the speed

tests. This result further justifies our approach of first clustering these measurements

using the less noisy, slower upload speeds before associating the measurements with

complete subscription tier information.

WiFi-connected devices contribute to almost 97% of the native application tests in

the Ookla dataset. Roughly half of these tests originate from the lowest subscription

tier. As a result, if we take any aggregate (such as the median) of speed test data in

a locality, we would, at best, get a representation of the Internet quality obtained by
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Figure 5.13: CDF of α values per user per month.

the lower subscription tiers, as opposed to the complete picture. Contextualizing these

measurements with subscription tier information is crucial before making any general

assessment of the Internet quality in a region.

5.5.2 Investigation of Consistency

Because we lack ground truth for the Ookla and M-Lab measurements, we turn to other

approaches to evaluate the accuracy of our BST methodology in these noisy environ-

ments. In this section, we analyze the consistency of BST in its association of speed

test measurements with subscription tiers. To do so, we focus on users who conducted

more than five speed tests in a month, and we examine whether each measurement from

a single user is assigned to the same subscription plan, or whether there is variability in

the assignment.

For every user u in month m, we determine the ratio r of tests that were associated

with each of the six subscription tiers. For the ith cluster, this can be denoted as:
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rium =
Ni∑6
k=1 Nk

(5.1)

where Ni is the number of tests associated with tier i. We denote α as the maximum of

these four ratios to represent the tier that had the highest portion of tests associated for a

given user in some month i.e αum = maxi∈{1,..,6} rium. A higher α value indicates that our

BST methodology is consistent for an user across multiple tests in a month. Conversely, if

multiple tiers are associated for a user in a month, α will be lower. Figure 5.13 shows the

distribution of the α values recorded for users during the 12 months in 2021. The skew

of α values towards 1 indicates that, for most users in a month, our BST methodology

associates the user to a single tier the majority of the time (the median is 1).

5.6 Diagnosing Speed Test Performance

The association of subscription tier to speed test measurement provides the context

needed to determine whether a measurement indicates under-performance relative to

the purchased plan data rate. Armed with this information, our objective is now to

determine the potential causes of speed test measurements failing to achieve performance

close to their subscription plan upload and download speed maximums. For ease of

presentation, we present the analysis in this section on measurements from City-A; we

verify separately that our findings are consistent with the other three cities. Additionally,

because tiers 1-3 for ISP-A in City-A all share the same upload speed, we combine

these measurements into one group for the analysis in this section. Finally, we focus

the majority of our presentation on download speed due to its greater variability and

susceptibility to performance degradation.
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Figure 5.14: Impact of WiFi characteristics and available memory on speed test perfor-
mance.

5.6.1 Effect of Home Network and Device

Previous work [220, 153] has documented that the home WiFi link can act as a signifi-

cant barrier to saturating available bandwidth in the access network. Therefore, our first

objective is to understand whether and how characteristics of the client’s home network

configuration lead to speed test under-performance with respect to the maximum band-

width of the subscription plan. Our analysis in this section is possible because we can

contextualize the measurements with their respective subscription tier information using

our BST methodology. To capture any performance impacts, for every measurement, we
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normalize the recorded download speed by the offered download speed for the subscrip-

tion tier. In the following, we quantify the number of speed tests that we identify as

affected by different characteristics of the home WiFi link. We then study the effect of

kernel memory limitations in the user device on speed test performance.

Access Link. Given the challenges and complexities of WiFi communication, our first

step is to compare the speed test results that were conducted over WiFi with those

from desktop computers connected to the home network via Ethernet. For this study,

we include speed test measurements from all subscription tiers. We examine all WiFi

speed tests conducted via Android, iOS and desktop devices (the Ookla-web and M-Lab

datasets do not contain metadata about device/access type, and so these are not included

in this analysis). Where relevant, we compare the WiFi performance of these devices with

that of desktop devices connected through Ethernet.

As can be observed from Figure 5.14a, the difference in the normalized download

speed distributions of WiFi and Ethernet access links is significant. For speed tests

conducted over a WiFi network, the median normalized download speed is 0.28. This

value is almost three times less than the median normalized download speed of 0.71

for Ethernet speed tests. We observe similar results for other cities. Without proper

contextualization, the lower download speeds from tests conducted over WiFi could be

misconstrued to be under-performance of the provider network.

WiFi Band. Next, we more deeply examine WiFi speed test performance and inves-

tigate the impact of the WiFi spectrum band on download speed. Modern routers are

equipped to operate in both the 2.4 GHz and 5 GHz WiFi bands [217, 135]. The 5 GHz

band supports greater bandwidth while more susceptible to attenuation compared to

the 2.4 GHz band [130]. Amongst our datasets, only the Ookla Android measurements

contain information about the WiFi band a device used during the speed test. About
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23% (15k) of all Android measurements were conducted over the 2.4 GHz WiFi band;

the remaining were on the 5 GHz band.

We normalize the reported download speed by the respective ISP offered download

speed within a subscription tier. Figure 5.14b shows the distribution of the normalized

download speed for all Android measurements separated by the WiFi band. The figure

shows a striking difference between the performance of tests in the two bands. While the

median normalized download speed is just 0.11 for 2.4 GHz speed tests, it is 0.4 for 5 GHz

tests. This median difference in performance between these two bands is amplified for

higher subscription tiers. For Tier 6, the median normalized download speed for 5 GHz

speed tests (0.25) is over six times more than that of 2.4 GHz measurements (0.04).

This finding demonstrates that the WiFi spectrum utilization has an outsized impact on

speed test performance, and again, without proper contextualization, the cause of the

lower performance on 2.4 GHz devices could be misconstrued.

WiFi RSSI. We next analyse the impact of WiFi RSSI on speed test performance. As

our analysis previously demonstrated, 2.4 GHz tests under-perform compared to 5 GHz

tests. Hence, for this analysis we only consider the tests conducted in the 5 GHz WiFi

band in the Ookla Android dataset. We bin the tests into four categories of WiFi RSSI

values. Similar to the access type and WiFi band analysis, for each RSSI bin, we cal-

culate the distance between the measured and subscribed performance for each test.

Figure 5.14c shows the distribution of the normalized download speed achieved by speed

tests for each RSSI bin.

9% of the 5 GHz Android tests have RSSI values lower than −70 dBm; these tests

record the lowest median normalized download speed of 0.2. The median normalized

download speed increases to 0.3 for the speed tests conducted in the WiFi RSSI region

−70 dBm - −50 dBm; these tests account for 49% of 5 GHz Android speed tests. The
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next RSSI bin (−50 dBm - −30 dBm) contains 37% of the total 5 GHz Android speed

tests; these tests recorded a median normalized download speed of 0.49. Finally, 5% of all

5 GHz Android speed tests had an RSSI better than −30 dBm; the median normalized

download speed for these tests was 0.52. As shown in figure 5.14c, the performance

difference varies by over a factor of two between the lowest and highest RSSI bins for

all subscription tiers. This difference increases to more than five when considering speed

tests in Tier 6. It is therefore critical to contextualize WiFi speed test measurements

with signal strength as poorer RSSI can significantly affect the measured performance.

Kernel Memory. We next study the memory available to the Android device kernel

during the speed tests to understand its role in achieved performance. For Android

measurements, Ookla reports the amount of memory (in megabytes) available to the

kernel. To minimize the impact of other factors, we only consider Android measurements

in the 5 GHz WiFi band with an RSSI better than −50 dBm ( 9k measurements).

We bin the available kernel memory into four groups: less than 2 GB, 2 GB – 4 GB,

4 GB – 6 GB and more than 6 GB. Figure 5.14d presents the CDFs of the distance

between subscribed and achieved speed test performance grouped by available kernel

memory. The distance increases as less memory is available to the kernel during the

speed test. 7% of measurements have less than 2 GB of available kernel memory. This

group of measurements also recorded the smallest median normalized download speed of

0.16. The next two bins each contribute 17% of the speed tests. The median normalized

download speed is 0.48 and 0.52 for 2 GB – 4 GB and 4 GB – 6 GB of available kernel

memory, respectively. The majority of speed tests (59%) are issued from devices with over

6 GB of available memory; these tests record the highest median normalized download

speed of 0.53, three times more than the 2 GB tests. This difference increases further for

higher subscription tiers with Tier 6 tests recording a difference of five times in median
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normalized download speed between these two groups. This result shows that speed

test performance can be greatly impacted by available memory and is therefore another

important piece of context for speed test measurements.

Combination of Local Effects. In our final analysis of the impact of local char-

acteristics on speed tests, we divide the entire Android dataset, across all subscription

tiers, into two groups. The first group contains measurements that were conducted on

5 GHz WiFi band, with better than −50 dBm RSSI, and with more the 2 GB of available

kernel memory. Based on our results in figure 5.14, this group of tests should experience

the lowest impact of the home network and device characteristics on achieved speed test

performance. We, therefore, term this group “Best”.5 Conversely, the measurements

that do not belong to this group are placed in the “Local-bottleneck” group, as they

are more likely to experience constraints from the home network or device memory. It

is worth mentioning that the Ookla Android dataset does not provide metadata about

other potential local impacts, such as WiFi interference and WiFi channel occupancy. In

the absence of this information, we are restricted to the subset of local characteristics

presented in this analysis.

In total, 61% (∼12k) of all Android measurements belong to the Local-bottleneck

category. This indicates that the performance of the majority of speed tests is likely

negatively impacted by home network or device characteristics. Figure 5.15 presents

the normalized (with respect to the respective subscription tier) median download speed

recorded by both groups. The difference in performance is captured by the median

normalized download speed of 0.22 for Local-bottleneck tests, over twice as low as the

0.52 achieved by “Best” tests.

5We do not claim that this group of tests does not have other bandwidth constraints, such as a poorly
performing cable modem, or a faulty access link, etc. The labeling of “Best” reflects the fact that,
amongst the context we investigate, this group of measurements is least likely to experience performance
limitations.
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Figure 5.16: Percentage of speed tests in
each six hour time bin.

5.6.2 Time of Day Effect

To study the effect of the time of day of a speed test, our first step is to determine

the percentage of speed tests that originate at each time of day, for each subscription

tier. With this data, we can then analyze the download speed performance, per tier, to

determine whether there are measurable differences based on time of day. To explore this

time of day effect, we bin the tests into four 6-hour periods: 12am-6am (00-06), 6am-

12pm (06-12), 12pm-6pm (06-18) and 6pm-12am (18-00), all with respect to local time

of the user. For each time bin, we calculate the percentage of speed tests issued by each

subscription tier across all devices in the Ookla dataset; Figure 5.16 shows the result. We

observe that there is not a significant difference in the percentage of speed tests in each

time bin by subscription tier. We observe a similar trend across all subscription tiers in

the M-Lab dataset, but omit these results for brevity. The smallest percentage of tests

occur during the night and early morning hours, while the majority of tests, across all

subscription tiers, occurs in the afternoon and evening/early night hours. This finding

is contrary to the observation made in [219], where it was reported that speed tests are

primarily issued during the day.
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Figure 5.17: Normalized download speed between measured and offered values for Ookla
tests based on time of day.

We next explore whether the performance measured by each speed test differs based

on the time it is executed. In particular, our objective is to evaluate how much further (or

closer) measurement download speeds are compared to the subscription plan maximums

based on the time of day. With this approach, we will be able to quantify whether

performance drops are more likely to occur during specific time periods.

5.6.3 Effect of Home Network and Device

Figure 5.17 shows the CDFs of the normalized download speed for two subscription tiers

across all device types. Our results demonstrate that the speed test performance with

respect to the subscribed performance remains similar across all time bins within the

day, with slightly better performance recorded for tests conducted during 00-06 hours.

For example, the median normalized download sped for iOS tests for Tier 4 are 0.53,

0.46, 0.45 and 0.46 during the 00-06, 06-12, 12-18 and 18-24 time periods, respectively.

Similarly, when we analyse the results in the higher subscription tiers, we observe slightly

better median normalized download speeds during the off-peak time periods (e.g. 00-06).

The median distances for Tier 5 tests are 0.21, 0.19, 0.18 and 0.19 during the 00-06,
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Figure 5.18: Comparison of Ookla and M-Lab speed test normalized download speed per
subscription tier.

06-12, 12-18 and 18-24 time periods, respectively. Based on these results (and similar

results for M-Lab data), we conclude that the time of the test does not play a meaningful

role in the achieved performance.

5.6.4 Effect of Speed Test Vendor

As stated earlier, Ookla and M-Lab are two of the most popular speed test vendors, and

hence the datasets on which we base our study. However, there are some key method-

ological differences between their speed test measurements. Critically, M-Lab’s NDT
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conducts its speed test measurements with a single TCP thread, while Ookla speed tests

utilize multiple threads [57, 153]. Prior work has found that, as a result, the M-Lab speed

test suffers from an underestimation of the available bandwidth [153, 134, 140]. In this

section, our objective is to quantify the amount by which the performance reported by

Ookla and M-Lab measurements differs. Because we have been able to associate speed

test measurements with their subscription tiers, we have the ability to closely compare

speed tests that, in theory, should achieve similar performance. Hence, in this study, we

are able to compare Ookla and M-Lab measurements within the same subscription tier,

for the same city, and the same ISP.

Figure 5.18 shows the distributions of the distances between subscribed and achieved

performance for each subscription tier for Ookla and M-Lab measurements in City-A and

ISP-A. Across all tiers, M-Lab measurements record greater distance from the subscribed

performance than Ookla tests. For tiers 1-3, the median normalized download speed of

M-Lab (0.83) is roughly 1.2 times worse than that of Ookla (1). Similarly, the factors

by which M-Lab’s median normalized download speed lags Ookla’s are 2, 1.4 and 1.2

for tiers 4-6, respectively. As a result of these differences, it is critical for users of each

test to understand what each test measures before drawing any specific conclusions, or

making policy recommendations, based on performance results.

5.7 Related Work

Multiple prior studies have characterized crowdsourced speed test measurements to better

understand their utility and usability. In [214], the performance of three million Ookla

measurements from 15 cities was analysed. The results demonstrated the high variability

that exists in speed test measurement, particularly for wireless tests. However, the

work did not analyse the impact of any factors in impeding speed tests from achieving

125



The Importance of Contextualization of Crowdsourced Active Speed Test Measurements Chapter 5

subscribed performance. The authors in [134] benchmarked Internet performance across

multiple metro areas using Ookla speed tests. Their analysis reveals the presence of a

large number of low performing speed tests in all cities. Recently, [140] studied the M-Lab

dataset and highlighted the need for proper contextualization of measurements prior to

drawing generalizable conclusions. The authors of [219] demonstrated the shortcomings

of crowdsourced measurements in detecting overall Internet congestion. In [195], the

location and income group biases of speed test origin are analysed. The work in [157]

illustrates the shortcomings of speed tests in terms of not reaching subscribed speed

through a sample of 50 tests from a single home. Similar to our finding, their result

shows that upload speed has a small variance compared to download speed. In [153, 127],

a detailed analysis of factors that can impact speed test performance is presented. In

comparison to these and other similar studies, our work goes significantly further, in part

by adding ISP subscription tier context to quantify how close (or far) current speed test

results are from actual subscribed performance.

Other prior work has analysed how local network factors can create performance bot-

tlenecks. Local factors are demonstrated to create a bottleneck to achieving download

speeds greater than 20 Mbps in [220]. The negative impact of suboptimal WiFi parame-

ters was studied in [144, 130]. The work in [217] demonstrated that factors such as RSSI

significantly affect the overall measured latency. In [173], the Secure Digital Input Out-

put bus sleep in smartphone was identified as a large contributor to overall latency. Our

study finds that the vast majority of measurements experience bottlenecks by home net-

work and device characteristics, resulting in significant performance underachievement

compared to the theoretical maximum of the subscribed broadband plan.
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5.8 Conclusion

In this work, we develop a novel BST methodology to augment crowdsourced speed test

datasets with ISP subscription tier information. This critical context enables us to ana-

lyze and quantify the impact of a variety factors that can degrade speed test performance.

The extensive impacts we uncover, which at times differentiate performance more than

seven-fold, underlines the need for meaningful contextualization of crowdsourced speed

test measurements prior to drawing generalizable conclusions about regional broadband

access and quality. This is particularly important for policymakers prior to basing fund-

ing and investment decisions on this data. We also highlight the need for speed test

platforms used to challenge provider coverage claims to ensure their test methodologies

maximize link throughput. We believe that the need for accurate broadband mapping

has never been greater, and that crowdsourced speed test measurement platforms will

provide an invaluable part of the data needed to generate these maps. We hope that our

work contributes to the advancement of this critical mapping effort.
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Internet Affordability

128



Chapter 6

Decoding the Divide: Analyzing

Disparities in Broadband Plans

Offered by Major US ISPs

6.1 Introduction

The National Digital Inclusion Alliance (NDIA) in the US defines digital equity as “a

condition in which all individuals and communities have the information technology ca-

pacity needed for full participation in our society, democracy, and economy” [186]. As

modern life has moved increasingly online, high-quality Internet access has become a key

component of digital equity. The Covid-19 pandemic, and the post-pandemic “new nor-

mal” of remote interaction, have drastically changed the need for home Internet access;

work-from-home, online/remote schooling, telemedicine, and other networked applica-

tions have become increasingly indispensable. As a result, individuals without home

access to highly reliable, high-speed broadband are severely disadvantaged [37].
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Policymakers cannot take effective corrective actions, such as offering subsidies [154],

regulating rates [40], and funding access infrastructure [187], without understanding the

true characteristics of digital inequity. Digital equity, especially in the context of Internet

access, is often measured along three axes: availability, affordability, and adoption [215].

Many past efforts [197, 196, 132], including ones in our research community, have focused

on measuring availability. Researchers have disaggregated availability into coverage and

quality. Here, coverage answers whether broadband access is available in a geographical

region, while quality answers questions related to access type (e.g., cable, fiber, DSL), and

upload/download speed. Researchers and policymakers use publicly-available datasets,

such as the FCC’s Form 477 [116], Measuring Broadband America (MBA) [155], and

Measurement Lab (M-Lab) speed test [56], as well as proprietary ones, such as Ookla’s

speed test [93], to characterize Internet connectivity. More recently, as part of the Broad-

band Equity, Access, and Deployment (BEAD) program, the US Congress directed the

FCC to develop an accurate map of fixed broadband availability across the US. Though

it is still a work in progress, when completed, the FCC National Broadband Map [78]

will provide information regarding broadband availability (i.e., provider, access type,

maximum upload/download speed) at the granularity of street addresses.

Whereas the existing datasets in the US broadband sector, including the most recent

FCC National Broadband Map, measure availability, affordability has received less atten-

tion. To answer any question related to broadband affordability, extracting the “cost of

broadband connectivity”, i.e., the nature of the “deal” a user is getting, at fine-grained

geographical granularity, is important. Using cost data, one can answer policy ques-

tions such as (1) what pricing policies do ISPs employ to users in different regions (i.e.,

neighborhoods, cities, states)?; (2) where, within a region, are different types of deals

offered by ISPs?; (3) how does the (lack of) competition among ISPs affect broadband

prices in a region?; and (4) how do socioeconomic and demographic factors correlate with
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broadband prices?

Most previous studies have either focused on manually querying ISP websites [185,

172] or self-reporting from ISPs [156], and, at best, they scratch the surface of questions

(1) and (2). A more recent study by a team of investigative journalists curated broadband

availability and cost data at street-level granularity for four major ISPs across 43 cities.1

However, among other limitations, this study did not analyze the broadband plans for

major cable-based ISPs (e.g., Cox), and thus, it could not fully answer questions (3) and

(4).

Our goal is to curate a new dataset that enables a better understanding of broadband

affordability in the US, addressing the limitations of prior related efforts. To this end,

we present the design and implementation of a new broadband plan querying tool (BQT).

BQT takes a street-level address as input and returns the available broadband plans

offered by major ISPs at that address. Here the plans entail the maximum upload speeds,

download speeds, and corresponding prices in US dollars; typically, multiple plans are

available to each residential address. BQT automates mimicking the behavior of a real

user interacting with an ISP’s website to query available broadband plans for a given

street address. It addresses various challenges to offer a high hit rate, i.e., the number

of street addresses it can successfully query for an ISP and the number of major ISPs it

can query.

We use BQT to curate our broadband plans dataset while ensuring our data collection

effort does not overwhelm ISP websites. Specifically, we collect and analyze plan data

in thirty US cities with diverse populations, population density, and median income.

We identify seven major ISPs that reach 89% of the total census blocks in the US [78].

For each (ISP, city) pair, we sample a subset of residential addresses extracted from a

dataset provided by Zillow [105]. We feed these addresses to BQT to curate the desired

1Our team provided technical assistance for this investigative reporting.
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broadband affordability dataset.

We use this dataset to answer multiple policy questions about broadband affordability

in the US. Specifically, we use the metric carriage value to characterize broadband plans.2

This metric quantifies the amount of user Internet traffic (in megabits) that an ISP can

carry per second, per dollar spent on a monthly broadband plan. For example, the

carriage value for a broadband plan with a download speed of 100 Mbps at $50/month is

2 Mbps/$. Intuitively, the higher the carriage value, the better the deal the user receives

for their broadband subscription, and vice versa. We use this metric to study the quality

of “deals” ISPs offer within and between different cities. From an end user’s perspective,

we explore how this metric varies across different ISPs active in a region, how the nature

of the deal correlates with various demographic and socioeconomic factors, and the state

of competition among ISPs locally. By using this metric, this chapter and its findings can

contribute directly to the ongoing discussion currently active in the US on broadband

pricing, ensuring consistency and relevance.

In summary, our work offers three major contributions:

Broadband plan querying tool (Section 6.3). We present the design and imple-

mentation of a broadband plan querying tool that reliably queries the websites of seven

major ISPs, mimicking a real user, to extract the available broadband plans for a given

street address.

Broadband plans dataset (Section 6.4). We present our methodology to curate

a broadband plans dataset by querying 837 k unique addresses (1.2 M plans) across

30 cities (18 k census block groups) and seven major ISPs in the US. Our emphasis is

metropolitan/urban areas across the US. However, our work can be expanded to include

small towns and rural areas.

2A paper recently proposed this metric in the legal literature [185] that the White House referred to
in announcing a new Executive Order [47] citing a call to arms to address the lack of competition among
broadband service providers in the US.
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Characterization of broadband plans (Section 6.5). We conduct a multi-dimensional

analysis to study the intra- and inter-city distribution of broadband plans (i.e., carriage

value) for each ISP and how these plans are affected by competition among ISPs and

various demographic and socioeconomic factors. Our analysis offers the following key

insights: (1) ISP plans vary by city, i.e., the fraction of census block groups that receive

high (and low) carriage value plans are variable across cities.3 (2) ISP plans within a

city are spatially clustered, and the carriage value can vary as much as 600% within

a city. (3) Cable-based ISPs deliver up to 30% greater carriage value to users when

in competition with fiber-based ISPs within a block group, as opposed to when they

operate independently or alongside a DSL-based ISP. (4) Block groups with higher av-

erage income tend to be associated with higher fiber deployments, which offer superior

carriage values. However, racial composition and population density, when considered

independently of average income, do not correlate with differences in fiber deployment.

We view this work as an important step towards understanding broadband affordabil-

ity in the US at scale. We note that broadband affordability is multifaceted, with numer-

ous factors to consider. While our analysis provides valuable insight, it only scratches the

surface of what policymakers must address when assessing broadband affordability. The

evaluation of broadband affordability in a specific region or for a particular population

may require consideration of additional factors beyond the scope of this chapter. To

enable other researchers and policymakers to advance our understanding of this critical

topic, we will make our tool and a privacy-preserving version of our dataset publicly

available. We conclude this study with recommendations for different stakeholders to

further improve the understanding of broadband affordability.

Ethical concerns. Please refer to Section 6.4.2 for a discussion of how we address

3Xfinity emerges as an exception as its plans are invariant across the specific cities we study in this
work.

133



Decoding the Divide: Analyzing Disparities in Broadband Plans Offered by Major US ISPs
Chapter 6

ethical concerns regarding our data-collection tool and methodology.

6.2 Background & Motivation

Broadband providers in the US. Thousands of US ISPs offer broadband connectivity,

reaching approximately a hundred million residences. Most of these ISPs operate locally

and have a fairly small footprint [123, 114, 122]. This paper considers seven major ISPs,

each serving at least one million residences. Together they reach 89% of the total census

block groups in the US. We can divide these ISPs into two broad categories: DSL/fiber-

based4 and cable-based providers. Our work, like others [31], confirms that these ISPs

either operate as a monopoly or duopoly, i.e., at max, only two major ISPs compete with

each other in a census block group. Also, ISPs of the same type do not compete with

each other: DSL/fiber-based ISPs do not compete with each other, and cable-based ISPs

do not compete [31]. Moreover, in major cities, cable-based ISPs dominate in terms of

coverage, i.e., they serve almost all the block groups [78]. In contrast, DSL/fiber providers

serve a smaller fraction of block groups. Finally, in part because fiber deployments are

relatively new and more expensive to deploy, DSL is often (though not always) offered

in more block groups than fiber. Given these trends, cable-based ISPs operate in three

distinct modes: cable monopoly, cable-DSL duopoly, and cable-fiber duopoly.

Existing broadband availability datasets. The FCC recently launched a street

address-level map of broadband availability [78]. This is an improvement over the pre-

vious iteration, based on provider input through Form 477 [116], which offered this in-

formation at census block-level granularity. This new map reports the maximum upload

and download speeds and the access technology (e.g., fiber, cable) at street-level gran-

ularity and relies on self-reporting from ISPs. Previous efforts curated similar data by

4We categorize DSL and fiber providers together as, if an ISP offers a DSL-based service, it typically
also offers a fiber-based service, and vice versa.
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manually [110] or automatically [179] querying ISP web interfaces, also referred to as a

broadband availability tool (BAT). Such third-party efforts enable auditing self-reported

data from different ISPs [27, 179, 121].

These datasets improve our understanding of broadband availability, both in terms

of coverage and quality. However, without any pricing information, it is not possible to

characterize broadband affordability.

Existing broadband plan datasets. Prior efforts have typically curated broadband

plan datasets by manually querying ISP BATs. For example, the California Community

Foundation and Digital Equity Los Angeles queried Spectrum’s website to curate a list of

broadband plans for 165 street addresses in Los Angeles County (California) [172]. One

study [185] manually compiled a dataset of 126 street addresses across seven states to ob-

tain available plan information. While these studies highlight the disparity in broadband

plans, small-scale datasets are, at best, suggestive of broader and more general trends.

More recently, an online investigative platform, The Markup [98], extended the BAT

client [179] approach to automate the extraction of broadband plans for four major

ISPs in 43 US cities. Their study [73], which is the most closely related prior work

to ours, finds significant variability in the download speed offered by major ISPs at

different price points. For instance, the authors found that, for $55/month, AT&T

offers 1000 times greater maximum download speed to some addresses in the same city;

this phenomenon is referred to as “tier-flattening” [7]. The Markup’s study also finds

that some major ISPs, such as AT&T and CenturyLink, provide lower speeds to more

vulnerable populations, e.g., low-income and high-minority communities, than others.

Based on this analysis, the authors highlight the importance of analyzing the cost of

Internet service and download speed instead of download speed in isolation. A limitation

of the Markup’s study, however, is that it does not include cable-based ISPs, which serve

most of the US population [71]. Consequently, their dataset is not suited to explore the
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(a) Wrong address (b) Existing account (c) Multi-dwelling units

Figure 6.1: Illustration of different steps that BQT handles while querying ISP broadband
plans through their BATs.

dynamics between cable and DSL/fiber providers nor to the study of how competition

between the two changes the nature of broadband plans in a region. In addition to that,

as discussed in Section 6.3.2, extending BAT clients to collect data for all major ISPs is

non-trivial.

Our approach. In this work, we address the key gaps of previous efforts by curating a

comprehensive broadband plan dataset in terms of location and type of ISPs. First, we

develop BQT to obtain plan information across 837 k street addresses for three major

cable providers and four major DSL/fiber providers. Our dataset provides insight into

the ISP plan structure in 30 cities around the US. Using this dataset, we can characterize

how ISP plans change between cities, within a city, and in the presence of another ISP.

6.3 The Broadband-plan Querying Tool

Our goal is to develop a robust measurement tool that can accurately report the broad-

band plans offered by major ISPs for a given set of street-level addresses at scale. Rather

than relying on user surveys [172] or self-reporting [156] from ISPs, we focus on directly

querying ISP BATs. Minimizing disruption to end users using BAT is an important pri-

ority while developing this tool. In essence, for a given list of input addresses, we want

this tool to achieve a high hit rate, i.e., successfully extract broadband plans for as many
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input street addresses as possible, promptly, yet without disrupting the normal service

offered by the ISP to end users.

6.3.1 Challenges

In theory, obtaining broadband plan information from an internet service provider’s BAT

should be straightforward. However, in practice, it is often complicated due to the quality

of street address datasets. Most street address datasets are crowdsourced [124, 118],

which can result in incomplete, incorrect, or ambiguous information. As a result, the

querying process is a dynamic, multi-step process, where the information displayed at

each step is based on the internal logic and state of each BAT, as well as the input

provided by the user in the previous step. For instance, after the user enters a street

address, the next web page may either show available broadband plans, indicate an

incorrect input address, or inform the user that they are already a subscriber at that

address. Additionally, ensuring that the tool can query all major ISPs is challenging

because different ISPs use different formats and interfaces, such as drop-down menus or

click buttons, to present this information and allow users to respond.

To illustrate, Figure 6.1 shows different steps that our tool needs to follow to extract

the broadband plans. Here we use AT&T as an example, but we confirm that all other

ISP BATs also follow these steps. In the first case, as illustrated in Figure 6.1a, AT&T

could not identify the input street address.5 When faced with this scenario, the expected

response for the end user is to access the drop-down menu that the BAT provides and

then select an address from the offered address set. As a next step, AT&T could indicate

that an active customer already exists in this specific street address. In this scenario,

the BAT offers three distinct choices, as shown in Figure 6.1b. If a user is already an

AT&T subscriber residing in that address, the first two options given them the ability

5Note for privacy reasons, we have blurred the specific street address in this example.
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to change their plan or add a new plan. This would prompt the BAT to render an

authentication form to ensure the user is an active subscriber. The third option applies

to a new customer who is interested in viewing the set of AT&T plans at that address.

This step does not require any authentication. Finally, a particular address could be a

multi-dwelling unit, i.e. with an apartment/unit number that was not input during the

initial stage. For that scenario, as demonstrated in Figure 6.1c, the BAT provides an

option to select one of the possible apartments/units at that address.

6.3.2 Strawman: Extend Existing BAT Client

A potential solution to obtain broadband plan information is to enhance the BAT client

approach proposed in previous research [179]. This approach was designed to query

the binary availability of broadband service (i.e., service/no service) for a specific street

address. For every ISP, a BAT client was designed, which involved reverse-engineering

each ISP BAT by observing how it uses different RESTful APIs to extract the desired

information, such as broadband availability. For example, the BAT client can observe

that when a browser sends a request with a street address, it receives a response with an

ID, and subsequent requests in the next step use this ID and, in some cases, a session

cookie from the previous step. The BAT client then uses the Python requests library

to directly send a series of requests to the ISP’s RESTful APIs. Directly querying the

APIs is scalable; thousands of street addresses can be handled in parallel. In 2020, the

authors in [179] used this approach to query approximately 35 million street addresses.

Their data analysis revealed the limitations of the information provided by the FCC’s

Form 477 [116], reinforcing the need for such information to be made available at street-

level granularity as previously suggested by other research [196, 143].

Limitations. Since the BAT client approach has been successfully used to query millions
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of street addresses for all major ISPs, extending it to extract offered broadband plans

seems like a natural choice. However, we observed that the proposed approach has

several limitations that make it difficult to adapt to satisfy our goals. Specifically, since

the publication of the previous work [179], ISPs have safeguarded their RESTful APIs

from such direct querying.6 For example, some ISPs have now started using dynamic

cookies that append unique server-side parameters to each user session. Some BATs have

started blocking queries from an IP address that uses the same cookie across multiple

API requests. Dynamically generating a new cookie for each API request is non-trivial

and is not supported by the original BAT client.

6.3.3 BQT Approach

To decouple the querying process from ISP safeguarding strategies, our approach avoids

directly querying their RESTful APIs. Instead, we use a popular web automation tool,

Selenium, to mimic different end-user interactions for extracting the desired broadband

plan information.

As a first step, we manually inspect the workflow for different ISP BATs. Each BAT

employs a specific template to display the information for each step in the workflow. As

part of this manual bootstrapping step, we enumerate all possible templates and identify

unique patterns in their HTML content using regular expressions to help detect them at

runtime.

The second challenge is to identify how to mimic a user’s behavior using Selenium to

advance successfully to the next step. This step is critical for ensuring a high hit rate for

BQT. Specifically, we handle different templates as follows.

Incorrect address. As mentioned earlier, street addresses are noisy due to inherent am-

6We do not assert that ISPs have changed their safeguarding strategies in response to previous data-
collection efforts.
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biguity between different identifiers. For example, for the same street address, some

databases might use “Ave” instead of Avenue and “CT” or “Ct” instead of Court.

Whenever there is a mismatch between the input street address and the one in the ISP’s

database, it shows an “incorrect address” web page and often provides a list of one or

more street addresses as suggestions. Given the prevalence of this occurrence, addressing

it is critical to ensure a high hit rate for BQT. We address this issue by storing the list of

suggested street addresses for offline analysis. We then apply string-matching over each

suggested address in this list to find the one that best matches the input street address.

As a sanity check, we ensure that the selected street addresses have the same zip code

as our initially queried address. We then query the ISP’s BAT to extract the broadband

plan information.

Multi-dwelling units. For addresses where a specific street address has multiple dwelling

units (e.g., two or more apartments), the ISP BAT typically shows a “multi-dwelling unit”

web page and suggests more refined street addresses (e.g., specific apartment numbers).

Similar to previous work [179], we replace the input street address with a randomly

selected address from this list. We then use this new address to query the ISP’s BAT to

extract the broadband plan information.

Existing customers. If the resident of an input street address is already a subscriber,

the ISP BAT displays an “existing customer” web page and offers two options. The first

option directs the user to their account, while the second allows a new user to query

offered plans. Given our interest in extracting the available broadband plans, we select

the second option.

To avoid failures, we must ensure that all the Document Object Model elements

for a step are successfully downloaded before applying any user action. The download

times can vary across different templates and ISPs. For example, the step that displays

available broadband plans after inputting the street address takes less than 30 seconds
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Figure 6.2: BQT hit rate per ISP.

for AT&T but 60 seconds for Spectrum. Thus, we measure the download times for all

possible templates and pause for this period (i.e., max observed download time) before

applying the user action.

Microbenchmarks. The two crucial performance metrics of BQT are hit rate and

query resolution time. The hit rate informs the fraction of total queried addresses for

which we are able to obtain a response from a particular ISP BAT successfully. As shown

in Figure 6.2, our hit rate for all ISPs exceeds 80%; we achieve the highest hit rate of 96%

for Cox and the lowest for Spectrum (82%). Such high hit rates across all ISPs ensure

that BQT is able to extract plan information for the majority of the addresses. Our

investigation into the instances where BQT encounters failures reveals that the primary

cause is the denial of connectivity by the IP proxy service. Furthermore, some ISPs

classify certain requests as originating from data centers due to IP addresses, resulting

in service denial and subsequent failures. If we re-run the addresses that previously

failed, there is an increase in the BQT’s hit rate for each ISP. The query resolution
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time for a given street address is the amount of time it takes BQT to obtain a response

from an ISP BAT. Figure 6.3 presents the distribution of query resolution time for each

ISP. The median time for Frontier query resolution is lowest, at 27 seconds, while it is

highest, at 100 seconds, for Spectrum, despite no significant difference in the number of

intermediate webpages rendered. Given that this latency can be significant, we describe

the methodology we adopt to make BQT more scalable in Section 6.4.1.

Limitations. BQT has been specifically designed to work with the BATs offered by

seven major ISPs. However, any changes made to the interfaces of these BATs by the

ISPs, such as the addition of new drop-down forms, will require BQT to be updated. To

ensure that BQT continues to function properly over time, we must monitor the BATs

for all the supported ISPs and upgrade BQT as necessary to accommodate any changes.

In the future, we plan to make BQT more modular, which will help minimize the effort

required to adapt it to these changes.

6.4 Broadband Plan Dataset Curation

In this section, we describe the dataset we aggregate through BQT. We first describe

our methodology to query a subset of street addresses and ISPs to curate the broadband

affordability dataset. We then describe how we selected the ISPs, cities, and street

addresses for data collection (Section 6.4.1). Next, we discuss how we addressed different

ethical concerns regarding our data-collection methodology (Section 6.4.2). Finally, we

discuss the limitations of our dataset (Section 6.4.3).

6.4.1 Data Collection Methodology

In the US, seven ISPs serve approximately 90 million street addresses (87% of the total US

census blocks) [78]. Through our data usage agreement with Zillow [124], we have access
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Figure 6.3: BQT query time resolution distribution per ISP.

to about 104 million “residential” US street addresses. Note that while this database does

not represent every US address (it is comprised of addresses that had a transaction during

a specific period), it encompasses a very large subset. Further, compared to alternative

address datasets, such as the National Address Database (NAD) [118] offered by the US

Department of Transportation, the Zillow dataset offers more complete coverage and is

less noisy. Specifically, it includes nearly every county in the US, and USPS has validated

the addresses as suitable for postal delivery [74]. Note that validation for postal delivery

from USPS does not guarantee a perfect match with an ISP’s BAT; addresses can still be

flagged as incorrect, incomplete, or ambiguous. However, it offers an excellent starting

point.

In theory, we can use BQT to extract the available broadband plans for all ISPs that

serve each street address in the Zillow dataset. However, we realized that curating such

an extensive dataset has diminishing returns. Our initial exploration of the collected data

revealed that broadband plans are spatially clustered, so plans for street addresses in the

same neighborhood (i.e., a census block group) are similar. Additionally, our primary
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Figure 6.4: Geographical location of the 30 cities in our study.

focus for this study is metropolitan/urban areas around the US. Given the coverage of

Zillow’s address database, we can extend the scope of the study to micropolitan and rural

areas in future work.

With this context in mind, we now describe our selection methodology for the ISPs,

cities, and street addresses for our study.

ISP selection. We focus on fixed, terrestrial broadband providers that offer queriable

BATs and serve at least a million street addresses in Zillow’s dataset. After applying

this filter, there are seven major ISPs: AT&T, Verizon, CenturyLink, Frontier, (Comcast)

XFinity, (Charter) Spectrum, and Cox. Among them, Xfinity, Spectrum, and Cox are

cable-based providers, and AT&T, Verizon, CenturyLink, and Frontier offer DSL and

fiber-based plans. Previous work reported that Comcast Xfinity’s offerings are invariant

to location [73]. Our analysis using the data collected using BQT from six major US

cities confirmed these observations, and so we omit collecting data for this provider.

City selection. With a goal of wide geographic distribution, we examined cities with

a range of population densities as well as diverse socioeconomic attributes (e.g., average

income) that are well represented in the Zillow dataset. After applying this filter, we

selected 30 major cities in 27 states (see Figure 6.4). As shown in Table 6.1, these cities
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Block Street Population Median Major ISPs
Groups Addresses (k) Density (k) Income (k) 1 2 3 4 5 6 7

Albuquerque, NM 387 14 1.8 53 •
Atlanta, GA 389 12 1.2 65 • •
Austin, TX 487 25 1.7 74 • •
Baltimore, MD 1188 42 1.7 81 • •
Billings, MT 98 3 1.1 61 • •
Birmingham, AL 354 24 716 47 • •
Boston, MA 37 3 17 8.4 72 • •
Charlotte, NC 472 21 2 73 • •
Chicago, IL 1933 86 3.8 64 • •
Cleveland, OH 754 35 4.8 31 • •
Columbus, OH 662 20 1.9 58 • •
Durham, NC 138 5 1 59 • •
Fargo, ND 67 5 1.5 62 •
Fort Wayne, IN 209 11 0.9 54 • •
Kansas City, MO 305 15 1.2 51 • •
Los Angeles, CA 1787 90 8.5 67 • •
Las Vegas, NV 881 38 1 65 • •
Louisville, KY 505 41 1.6 56 • •
Milwaukee, WI 560 27 2.9 50 • •
New Orleans, LA 439 67 2.9 41 • •
New York City, NY 1567 51 41.7 96 • •
Oklahoma City, OH 493 20 1.3 50 • •
Omaha, NE 455 28 1.7 62 • •
Philadelphia, PA 981 32 8 46 • •
Phoenix, AZ 802 32 1.9 64 • •
Santa Barbara, CA 211 6 2 79 • •
Seattle, WA 634 28 2.1 101 •
Tampa, FL 536 25 1.5 57 • •
Virginia Beach City, VA 112 4 1.8 80 • •
Wichita, KS 304 13 1.3 50 • •
Total 18k 837 14 5 7 4 13 8 6

Table 6.1: Dataset coverage. The major ISPs are listed in the following order: (1) ATT,
(2) Verizon, (3) CenturyLink, (4) Frontier, (5) Spectrum, (6) Cox, and (7) Xfinity. Note
that Xfinity also provides service in Albuquerque, but we did not include this service in
our study.

represent a broad spectrum of demographic and socioeconomic attributes. For example,

the range of population densities varies from 1 k to 42 k per sq. mile [2], and the median

yearly household income varies from $31 k to $101 k. We focus on cities that are served

by at least two of the seven ISPs considered in our work to ensure that we capture any

trends that emerge as a result of competition between ISPs in a region.

Street address selection. Each city in the US is divided into census blocks, which

are aggregated into census block groups. The US Census Bureau defines a census block

group (CBG) as representing approximately 600–3000 people that are considered to be

homogeneous in terms of their demographic and socioeconomic characteristics. For the
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cities considered in this work, Zillow’s database includes addresses in all the census block

groups for each city, ensuring comprehensiveness. However, as querying every address in

a city would impose a significant load on the ISPs’ infrastructure, we opt for a sampling

strategy. To ensure that our sampling strategy mimics the socioeconomic composition of

the city, we uniformly sample street addresses at the census block group level. Specifically,

for each (ISP, city) pair, we identify the set of block groups covered by the ISP in a city.

We randomly sample 10% of street addresses for each such block group. If we are unable

to obtain the BQT data for any of those addresses, we continue sampling until we have

a successful sample of 10% of street addresses in each CBG.

Scaling data collection. To gather the needed samples for our study, BQT needs

to query 837 k street addresses, the total number of addresses resulting from sampling

10% of every census block group. We run multiple instances of BQT in parallel to scale

the data collection. We use Docker containers to run these instances concurrently on a

single local data-collection server. We can theoretically use as many containers as street

addresses for different ISPs to expedite data collection. However, such an approach will

overwhelm ISP BATs and degrade the user experience for actual customers.

Though we cannot directly measure the experience for real users, we conducted an

experiment where we measured ISP response time for 1, 50, 100, and 200 Docker in-

stances. We hypothesize that if running multiple Dockers is affecting user experience,

we should expect a statistically significant difference in ISP response time for different

settings. However, we observed that the response time for any ISP did not change as we

increased the number of Docker instances. Based on this experiment, we are confident

that using up to 200 Docker instances does not overwhelm ISP servers enough to disrupt

the user experience. Nevertheless, we scale back and utilize 50-100 distinct containers

for our data collection. Note that our choice of 200 instances is based on the intuition

that an ISP should not get overwhelmed by such a small number. By no means is it an
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upper bound on how many Docker containers we can run in parallel.

To ensure that all our queries do not originate from a single non-residential IP address,

we utilize a pool of residential IP addresses provided by Bright Initiative, the non-profit

branch of Bright Data [109] (formerly known as Luminati). This organization offers

free access to data scraping tools for nonprofits and academic organizations. Previous

efforts [179, 73] have also used this service.

We conduct our data collection campaign from December 2022 to February 2023.

Public release. We will make a version of this dataset publicly available to empower

other researchers and policymakers to improve our communal understanding of broad-

band affordability in the US. Due to the proprietary nature of Zillow’s data, we cannot

include specific street addresses in our dataset. Instead, for each queried street address,

we will only reveal its block group identifier along with the corresponding ISP plans.

Considering the limited variability in broadband plans within a block group (see Sec-

tion 6.5.1), we believe the released dataset will still hold value for various stakeholders.

6.4.2 Ethical Considerations

We query ISP plans at the street address level and do not collect or analyze Personally

Identifiable Information (PII). Our work does not involve human subjects research, and

the private dataset provided by Zillow under the data use agreement does not reveal

any individual’s identity. Furthermore, the data gathered from the website does not

include any PII. We do not have the means to identify residents, the selected broadband

subscription tiers, or the actual performance received at any address. Our methodology

involves obtaining ISP plan information from their websites, which is consistent with

legal requirements and research community norms [65, 83, 66].
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6.4.3 Limitations

We now discuss a few limitations of our dataset and how to address them in the future.

Staleness issues. Our dataset provides a single snapshot of broadband plans, which

may change over time as ISPs update their infrastructure and pricing structures. We

observe that many ISPs are actively deploying new fiber, and we expect their offered

plans to change in the near future. Also, ISPs occasionally offer discounts (i.e., higher

carriage value (cv) plans), especially in areas where they compete with other major ISPs.

Our dataset does not discriminate between normal and discounted offers and, thus, might

not best reflect the most recent carriage for a subset of street addresses.

Limited coverage. Although our dataset includes addresses from every census block

group in the 30 cities examined in this study, it represents only about 7.5% of all block

groups in the US. We currently use Zillow’s data, which is biased toward high-density

urban areas. We need a better representation of street addresses in semi-urban and rural

areas. Though curating such datasets is challenging, recent efforts from the FCC to

develop broadband availability maps at street address granularity demonstrate such an

approach’s feasibility. In future work, we will complement Zillow’s dataset as needed

with other sources, such as the NAD, to cover other areas where Zillow’s data alone lacks

sufficient representation.

Veracity of reported plans. There is no system or database to confirm the accuracy

of the download speed and price data provided by the ISPs when querying a street

address. However, as mentioned in [179], it is not in the interest of ISPs to report false or

misleading information to potential customers, including poor performance or low-valued

plans. We note that the total cost incurred by subscribers for ISP services often exceeds

the initially advertised prices. This includes subscriber-specific discounts, undisclosed

fees, taxes, and additional charges [104]. However, our focus in this study is the initial
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advertised price offered by ISPs; the analysis of the final amount paid by subscribers is

beyond the scope of the current work.

6.5 Broadband Plan Characterization

In this section, we will demonstrate how our broadband affordability dataset provides the

means for various stakeholders to address crucial policy questions that previously were

difficult to answer. To do so, we will first present an overview of the BQT dataset. We will

then answer the following critical questions: ❶ Do the broadband plans, characterized by

their carriage value, change by city for different ISPs? ❷ Does the carriage value change

within a city? If yes, which neighborhoods (identified by their census block groups)

receive good and bad deals (high and low carriage values)? ❸ Does competition among

ISPs impact the carriage value offered to the end users? If yes, is there a trend in which

neighborhoods experience competition? ❹ Is the quality of available deals correlated

with demographic and socioeconomic factors? If yes, which population groups receive

better or worse deals from the ISPs?

6.5.1 Dataset and Metrics

Dataset overview. Table 6.1 summarizes the number of street addresses and block

groups we cover for each of the thirty cities. It also shows which of the seven major ISPs

are active in each city and hence in our dataset. Overall, our dataset covers 837 k distinct

street addresses, representing 18 k block groups (around 7.5% of total block groups in

the US). None of the thirty cities are served by more than two major ISPs. This trend

indicates the presence of monopolies and duopolies in these cities [31].

Table 6.2 summarizes the available broadband plans from the seven major ISPs. The

range of plans is more diverse for fiber/DSL-based providers than cable-based providers.
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Figure 6.5: Distribution of coefficient of variation of carriage values in a block group for
each ISP.

The extremely low upload/ download speeds (and related carriage values) are attributable

to broadband plans via DSL.

Calculating carriage values. We use the carriage value to characterize a broadband

plan offered by an ISP, and we curate this metric for all input street addresses. Since

the entropy of available download speeds is greater than the upload speeds, we focus on

download speed to calculate carriage value. While not shown, we verified that our results

are consistent if we use upload speed to determine carriage value.

Each ISP offers a fixed number of plans across all cities. For example, AT&T offers

11 different plans across the 14 cities it serves in our study. However, an ISP only offers

a subset of these plans at any given street address. For example, for a specific street

address in New Orleans, AT&T offers three different plans: (1000 Mbps, $80/month),

(500 Mbps, $65/month), and (300 Mbps, $55/month), which translates to carriage values

of 12.5, 7.7, and 5.5, respectively. To represent the value provided by an ISP through

a set of plans to a street address, for every address, we consider the best carriage value

(cv), i.e., 12.5 in the case of the above address. We note that the cv metric has inherent
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Unique Download Upload Monthly cv
Plans (Mbps) (Mbps) Price ($)

AT&T 11 0.768–1000 0.768–1000 55–80 0.01–12.5
Verizon 4 3.1–1000 1–1000 50–100 0.4–11.1
CenturyLink 8 1.5–940 0.5–940 50–65 0.03–14.5
Frontier 2 0.2–2000 0.2–2000 50–100 0.0004–20.0
Spectrum 5 30–1000 5–35 20–70 11.1–14.3
Cox 6 100–1000 5–35 20–120 10.0–28.6
Xfinity 3 25–1200 5–35 20–80 3.8–15.0

Table 6.2: Overview of broadband plans offered by the seven major ISPs. The dashed
line separates DSL/fiber-based providers from cable-based ones.

limitations due to the nature of broadband pricing. Since speed tends to vary more than

price—e.g., at the address mentioned above, 1.5x cost gets 3.3x more bandwidth—the

highest carriage value (cv) plan available for an address is also the highest-speed plan.

Users may not require the highest speed available or want to pay for it, so cv is not

necessarily a reliable proxy for the subjective value of a plan to its customers. For this

and other reasons, policy decisions should not optimize around cv alone.

In some of the analysis that follows, we compare block groups by carriage value. The

cv of a block group provided by an ISP is computed as the median of the maximum

carriage values of the plans sampled from the addresses in that block group. Using

an aggregate metric at block group granularity simplifies spatial analysis, and ensures

that our analysis is not biased by block groups with more street addresses in the Zillow

dataset. However, it also hides variability within block groups. To characterize this

variability, Figure 6.5 shows a distribution of the coefficient of variation (CoV), i.e., the

ratio of the standard deviation to mean, for the cvs available per ISP for every block

group in our data set. Most ISPs show low CoV across all block groups, meaning the

aggregate cv metric hides little information. However, there is a long tail for AT&T and

CenturyLink, which sometimes offer both DSL (very low cv) and fiber (very high cv)
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plans within the same block group. We checked the robustness of our per-block-group

findings by performing an analysis where block group cv was computed as the median of

the minimum cvs of the sampled plans; our conclusions (e.g., Section 6.5.2, Figure 6.8)

were consistent regardless of this choice.

Comparing plans. To compare an ISP’s plans across different cities or the plans of

two competing ISPs within a city, we need to quantify the differences in the plans. To

this end, we represent the available plans from an ISP in a city using a plans vector of 30

dimensions, each representing a discrete carriage value.7 We then quantify the differences

using the L1 norm between the two vectors. The weight for each dimension is determined

by the fraction of block groups in the city that receive that specific carriage value, and the

ceil operator is used to discretize the carriage values. For example, Cox offers a carriage

value of around 10.5 and 11.3 in 35% and 12% of block groups in New Orleans, 12% and

6% of block groups in Oklahoma City, and 4% and 21% of block groups in Wichita. The

L1 norm between New Orleans and Oklahoma City plans is 1.78 (different). Between

New Orleans and Wichita, is 1.57 (different), and between Oklahoma City and Wichita

is 0.36 (relatively similar).

6.5.2 Inter-City Broadband Plans

To answer ❶ (do the broadband plans, characterized by their carriage value, change by

city for different ISPs?), we analyze the distribution of plans at block group granularity.

We only visualize one major provider from each DSL/fiber (AT&T) and cable (Cox)

category for brevity. To simplify the exposition, Figure 6.7 shows the distribution of

carriage value for only five cities (out of 14 and 6, respectively) for each ISP.

For AT&T, we observe two sets of peaks in broadband plans. The higher carriage

value peak is attributable to fiber-based plans and the lower to DSL-based plans. The

7Note that the maximum carriage value we observed across all ISPs and cities is 28.6 (Table 6.2).
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Figure 6.6: Distribution of difference in ISP plans across different city pairs. A higher
L1 norm indicates more diverse offerings.

fraction of block groups that receive fiber plans differs in each of the cities. For example,

in New Orleans, 32% of block groups receive fiber-based access, which is significantly

smaller than the 54% and 57% of block groups in Wichita and Oklahoma City.

For Cox, we observe six different peaks, and the distribution of the carriage values

across block groups varies significantly by city. For example, Cox offers cv of about

28 Mbps/$ to 7% of block groups in New Orleans. In contrast, Cox offers similar plans

to 21% and 18% of block groups in Oklahoma City and Wichita, respectively. On the

other hand, 44%, 46%, and 50% of block groups in Wichita, New Orleans, and Oklahoma

City receive cv of 14.6 Mbps/$.

To illustrate how this trend generalizes for other cities and ISPs, Figure 6.6 shows the

distribution of L1 norm, i.e., the difference in available plans between all pairs of served

cities for each ISP. A low L1 norm indicates similarities in broadband plans and vice

versa. We observe that DSL/fiber-based provider plans are less diverse across different

cities than cable-based providers, with AT&T (most similar) and Spectrum (most diverse)

at the extremes. This result demonstrates that some ISPs alter their plans between cities
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Figure 6.7: Distribution of broadband plans in different cities for two major ISPs.

while others maintain consistent offerings throughout their service areas.

6.5.3 Intra-City Broadband Plans

To answer ❷ (does the carriage value change within a city? If yes, which neighborhoods

(identified by their census block groups) receive good and bad deals (high and low carriage

values)?), we analyze broadband plans within each city. At a high level, Figure 6.7 shows

that ISPs offer disparate plans to users within a city. These differences in cv can be as

high as 600% for DSL/fiber and 92% for cable-based providers.

Individual and composite plans. To better understand broadband plans within
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Figure 6.8: Spatial distribution of broadband plans in New Orleans. All three scenarios
are spatially clustered. Darker shades indicate block groups with higher cv.

a city, we zoom in on Cox and AT&T in New Orleans, individually and as a pair (see

Figure 6.8c). Comparing Figures 6.8a and 6.8b, we observe that Cox offers better coverage

and higher carriage values than AT&T in most block groups.

Given its lower proliferation of high cv fiber plans, if we look at the plans only from

AT&T in this city, which was the case in one of the previous studies [73], we might get

an impression that the nature of broadband plans is problematic for all New Orleans

residents. Specifically, the broadband plans are sparse and highly variable (DSL vs.

fiber), and most residents get the “worst” deal, i.e., low carriage values. However, the

competing cable-based provider is the dominant ISP in the city, and its plans are not

as extreme nor sparse. Figure 6.8c shows that if we consider the AT&T and Cox plans

together, i.e., when we report the highest carriage value from either of the two providers,

the best carriage value is similar to that of the dominant cable-based ISP, i.e., Cox in

this case. We make similar observations for other cities as well. In our dataset, we do not

find a case where the DSL/fiber-based providers offer better coverage or higher average

carriage values than the cable-based providers.

Spatial clustering. We visually observe that broadband plans are clustered, i.e., the

likelihood that two contiguous block groups have similar available plans is high. To

validate this visual understanding, we compute the spatial autocorrelation metric using
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Individual ISPs
1 2 3 4 5 6 7

0.34 0.52 0.33 0.45 0.23 0.35 0

ISP Pairs
1-5 1-6 3-5 3-6 4-5 2-5 2-6 1-7 2-7 3-7
0.23 0.35 0.23 0.35 0.23 0.23 0.35 0 0 0

Table 6.3: Statistical evidence for spatial clustering. We report the median of Moran I
statistics across all cities.

Moran’s I method [91] to characterize the extent of correlation in carriage values among

nearby block groups. This metric has been widely used in previous studies [226, 176] to

understand the spatial distribution of a variable of interest (i.e., carriage value) within a

geographic region (i.e., city). A positive value of Moran’s I statistic means that similar

carriage values tend to be found near each other, while a negative value means dissimilar

values are found near each other, with zero indicating a complete lack of association of

carriage values with locations.

We computed the Moran’s I statistic for all (ISP, city) pairs to measure the spatial

autocorrelation of broadband plans. The results show that, with the exception of Xfinity,

the median value ranges between 0.3–0.5, indicating a high level of spatial clustering in

broadband plans across ISPs within a city. Given that AT&T is a DSL/fiber-based

provider, such clustering of its carriage value can be attributed to its fiber infrastructure

deployment around the city. Table 6.3 reports the median value across all cities for each

ISP.

Our results show that both DSL/fiber and cable ISPs offer similar cv plans to neigh-

boring census block groups within a city. Similar to the case for AT&T, the spatial

clustering of plans for DSL/fiber providers is related to the nature of access technology.

Neighborhoods with fiber deployments receive better carriage value and vice versa. How-

ever, since cable-based ISPs use the same technology across the city, spatial clustering

in their plans is intriguing. In the next section, we explore whether this behavior is
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attributable to competition among ISPs.

6.5.4 Impact of Competition

To answer ❸ (does competition among ISPs impact the carriage value offered to the

end users? If yes, is there a trend in which neighborhoods experience competition?), we

explore whether the cable-based ISP’s plans change when they operate as a monopoly

vs. when they compete as a duopoly. We did not analyze DSL/fiber-based providers

alone from the perspective of operating as both a monopoly and a duopoly because we

did not observe this pattern in any of the thirty cities. We employ a statistical test

to discern whether competition (or lack thereof) leads to a change in cable providers’

carriage value. For every city with competition between cable and DSL/fiber providers,

we run two one-tailed 2-sample Kolmogorov–Smirnov (KS) tests [117].

Our null hypothesis (H0) is that there is no difference in the cv offered by a cable

provider in locations where they operate as a cable monopoly compared to locations where

they operate as a cable-DSL duopoly or cable-fiber duopoly. To test this hypothesis, we

run one test for each of the following alternate hypotheses (H).

In the first one-tailed test, we propose H1, which states that the cv provided by

the cable provider is greater for block groups in duopoly locations than those in cable

monopoly locations. In the second test, we reverse the hypothesis from the previous test

and propose H2, which states that cable providers provide better cv for block groups in

cable monopoly locations than those in each duopoly category. By conducting two tests

per category, we can detect either scenario and provide robust statistical evidence of the

impact of competition on cable offerings for different types of DSL/fiber-based offerings.

If we achieve a p-value of less than 0.05, we reject the null hypothesis (H0) for the

corresponding test and record the corresponding KS test statistic, denoted by the D
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Figure 6.9: Distribution of carriage value for Cox in its three operational modes in New
Orleans. To simplify exposition, we prune the long tail that is attributable to block
groups that receive subsidized broadband access through the ACP plan [154].

value. We conduct this analysis for all combinations of cable and DSL/fiber providers

in other cities. In the remainder of the section, we use New Orleans as a case study to

explain our findings.

Cable-DSL Duopoly: In the first test, our H1 is Cox’s cv in cable monopoly block

groups is lower than the cable-DSL duopoly block groups. Conversely, our H2 is Cox’s

cv in cable monopoly block groups is higher than cable-DSL duopoly block groups. Fig-

ure 6.9 shows that Cox’s offered cv in the DSL duopoly block groups is similar to its

cv in monopoly block groups. This is further confirmed through the K-S test, where we

fail to reject H0, which signifies there is no statistical difference in Cox’s cv distribution

in block groups where it serves alone and block groups where it competes with AT&T’s

DSL offerings. The median cv for both cases is 11.38 Mbps/$. We observe the same

trend for other pairs of Cable-DSL duopolies within cities in our dataset.

Cable-Fiber Duopoly: We posit a similar hypothesis for cable-fiber duopolies. Fig-

ure 6.9 shows the difference in Cox’s cv distributions between these block group types,

which is further reinforced by the K-S test where we reject H0 with statistical signifi-
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cance in favor of H1. Contrarily, H2 cannot be accepted as the p-values exceed 0.05.

This result points towards Cox increasing the cv provided through its plans by lower-

ing the price for the same download speed in block groups where it faces competition

from AT&T’s higher cv fiber offerings. The median cv from Cox in such addresses is

14.63 Mbps/$, 30% more than the monopoly and DSL block groups’ median cv. For the

remaining combinations of cable and DSL/fiber providers in other cities, we capture the

same trend, indicating differential pricing structures from cable providers in the presence

of high cv competition.

Our analysis in this section has demonstrated that cable providers tend to improve

the carriage value offered through their plans in locations where fiber-based plans are

present. This places fiber plans in a critical position because they tend to yield better

broadband deals.

6.5.5 Influencing Socioeconomic Factors

In the prior sections, we established that low cv is associated with DSL plans. In this

section, we investigate whether there is a trend in which sociodemographic groups pre-

dominantly receive DSL plans and, therefore, worse cv. This analysis will enable us to

answer ❹ (is the quality of available deals affected by demographic and socioeconomic

factors? If yes, which population groups receive better or worse deals from the ISPs?). To

do so, we compute the percentages of block groups within every city that receive DSL or

fiber plans disaggregated by the block group level median household income. The Amer-

ican Community Survey (ACS) [68] publicly releases this information through a 5-year

dataset. Although the demographic information for the 2020 census survey is available,

it is known to have a significantly lower number of responses due to the COVID-19 pan-

demic [120]; hence we utilize the 2019 dataset. We merge our dataset with the ACS data
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Figure 6.10: The percentage of AT&T’s DSL/fiber deployment in terms of addresses
served by the two technology types, disaggregated by income level in New Orleans.

to obtain the median household income of every census block group.

Concretely, we adopt a methodology similar to [132, 73] to group each city’s cen-

sus block group-level income into two distinct categories: low (below the city’s median

household income) and high (exceeding the city’s median household income). For each

income group class within a city, we calculate the percentage of block groups that have

access to fiber-based plans. Subsequently, we compute the percentage difference in fiber

deployment between the high and low-income groups of the block group.

Figure 6.10 presents the breakdown of the percentage of block groups that receive

AT&T’s DSL and fiber plans in the two income categories of block groups in New Orleans.

41% of the low-income census block groups receive AT&T’s fiber plans while 57% of the

high-income block groups in have fiber plans available.

In the 14 cities where we collected AT&T plan data, the fiber deployment gap between

the high-income and low-income block groups exceeds 10% in seven cities, while in four

cities, it is below 10%. No difference is observed in Austin, TX; however, in Wichita, KS,
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Figure 6.11: The overall distribution of the percentage difference in fiber deployment
between high-income and low-income block groups across all cities and ISPs.

and Atlanta, GA, a higher proportion of low-income census block groups receive fiber

from AT&T compared to high-income groups. Figure 6.11 shows that CenturyLink and

Verizon exhibit a comparable pattern, where a larger proportion of high-income block

groups across cities receive fiber compared to lower-income groups. Frontier emerges as

an outlier in this analysis.8 Given that the lack of fiber also leads to lower cv from cable

providers, internet users in block groups that lack fiber connectivity tend to get more

bad deals overall compared to others.

We conducted a similar analysis for the demographic attributes of race and population

density. The results for these variables did not produce comparable trends.

8It is worth noting that in 2020, Frontier declared bankruptcy and received financial assistance
from the US. Federal Communications Commission to enhance its fiber connectivity for millions of
households [48]. Despite claiming to utilize these funds for the stated purpose, Frontier was found guilty
by the Federal Trade Commission of deceiving and overcharging its customers [81]. This highlights the
importance of extending the scope of our study and investigating the actual price subscribers pay for
ISP service.
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6.6 Related Work

In [31], the authors analyzed FCC Form 477 data and reported that close to 50 million

people in the US live in locations served by a single ISP, i.e. in an ISP monopoly.

While not considering the price/ cost associated with internet access, several studies

have sought to understand how internet quality itself varies between different locations

and demographic variables. The Census Bureau produces an annual list of US cities with

the lowest Internet connectivity using data from the American Community Survey (ACS)

One Year estimates [107]. However, this estimate does not take into account the cost of

access. The work conducted in [179] demonstrated that the FCC National Broadband

Report significantly overestimates coverage and examined the digital divide in terms of

the lack of coverage in rural and marginalized communities. Similar inaccuracies of the

FCC map were found for mobile networks in [181]. In [22], the authors analyzed the

relationship between income and download speed at the geographic granularity of US

zip codes. The work utilized income data, grouped into five income bins, obtained from

2017 tax returns filed with the Internal Revenue Service. The study demonstrated a

positive correlation between zip code income and download speed. The authors of [132]

analyzed publicly available data from Ookla [93], a popular speed test vendor, and found

significant differences in key internet quality metrics between communities with different

income levels. In [196], the authors utilized M-Lab [56] speed test data in California and

found higher internet quality in urban and high-income areas.

Several studies have also examined how the cost of electricity varies across locations

and demographic variables. The authors in [211] discovered that minority groups in

various US cities pay a disproportionate amount for electricity compared to other com-

munities. Similar findings are reported in [92].
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6.7 Conclusion

In this work, we explore broadband affordability in the US. Specifically, we analyze the

nature of broadband plans offered by seven major ISPs across thirty different US cities.

To aid this effort, we developed BQT, a new scalable tool that extracts broadband plans

offered by the seven major US ISPs at any street address. We use this tool to curate

a dataset that reports broadband plans offered to 837 k street addresses, spanning 18 k

census block groups in the thirty cities. To the best of our knowledge, this is the largest

such broadband plan pricing dataset in existence. Our analysis sheds light on pricing

strategies adopted by different ISPs, which have previously been opaque. Our results

highlight the importance of competition, and specifically on how fiber deployments benefit

end users. It also identifies the population groups reaping the benefits of competition and

fiber deployments. We believe this effort is a step towards improving public understanding

of US broadband affordability. We will make our tool and dataset publicly available to

facilitate further research.
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Chapter 7

Conclusion, Future Directions, and

Recommendations

7.1 Conclusion

Internet access is crucial for success in today’s world, but many population groups con-

tinue to remain excluded from it, resulting in digital inequity or a digital divide. Simply

having Internet services available does not ensure usability; it must also be both high-

quality and affordable. In 2022, the US authorized the investment of billions of taxpayers’

money through the BEAD [187] program to improve Internet infrastructure in under-

served areas, aiming to reduce the digital divide. The success of the BEAD program in

achieving its objectives hinges upon identifying the areas experiencing digital inequity

in Internet access. As Internet access encompasses availability, quality, and affordability,

the funding must be directed to regions experiencing digital inequities in one or more of

these dimensions across the country. Yet, the lack of high-quality, fine-grained, accurate,

and comprehensive datasets on Internet access currently hinders a complete understand-

ing and assessment of the extent and prevalence of digital inequity, making it challenging
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to identify areas that would benefit most from funding efforts.

This dissertation makes significant strides in advancing the collective comprehension

of digital inequity in Internet access. It focuses on the characterization and analysis of

current Internet availability and quality datasets, uncovering critical patterns in regions

facing digital inequity. Moreover, the dissertation highlights the limitations of existing

Internet access datasets, such as inaccuracies, quality issues, or insufficient quantity.

Additionally, it reveals the potential risks of using these datasets as-is to identify areas

affected by digital inequity. Critically, the dissertation proposes new methodology and

tools that are able to i) improve the usability of existing Internet quality datasets and

ii) curate novel datasets of Internet availability and affordability. The contributions in

this dissertation make important steps towards analyzing and understanding the current

state of digital inequity in the US.

Drawing on the dissertation’s findings, we conclude with a brief discussion on future

research directions. We also put forth some recommendations for relevant stakeholders

for further exploring digital inequity and implementing effective actions to eventually

mitigate it.

7.2 Future Directions

Passively Infer Contextual Information from Speed Tests. The work in Chap-

ter 5 demonstrated the critical role played by various contextual information such as

signal strength and device memory on the eventual Internet quality reported by speed

tests. While our study focused on speed tests carried out on Android devices that provide

this contextual information, speed tests conducted on different devices like iOS phones

and desktops do not offer the ability to gather such details. New methodologies capable

of extracting such information passively, when a user conducts a speed test, are therefore
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needed. A potential approach could be to conduct controlled lab experiments where con-

textual information is known and the packets transferred during speed tests are captured.

As speed test vendors can capture packets from the server end, various statistics from

the packet captures such as packet inter-arrival times and number of reordered packets

can be extracted. These statistics can then be used as features to train machine learning

models to ultimately predict contextual information such as whether a speed test was

run over a wired or wireless connection.

Expanding BQT’s Functionalities and Footprint. BQT, proposed in Chapter 6,

enabled the curation of the most comprehensive dataset of the cost of Internet access in

the US. However, the functionalities of the BQT can be enhanced to make the system

more dynamic and scalable. At present, BQT is run with 100 Docker containers to

ensure scalability. This number could be adjusted at runtime by observing the query

response times when interacting with ISP BATs. Additionally, as ISPs arm their BATs

with upgraded features to prevent scraping, an interesting research question emerges: how

can we integrate additional approaches like simulating realistic user mouse movements on

websites into the current BQT to bypass the prevention mechanisms? Another potential

challenge stems from the task of identifying ISPs that offer queryable BATs. For BQT

to increase its current footprint and support hundreds of ISPs, it is crucial to implement

an automated method for pinpointing these ISPs.

Network performance analysis. Poor network performance can impede a user’s

ability to make the best use of Internet connectivity, and poor performance may also

discourage adoption. Understanding ISP performance is especially important in census

blocks with only a single high-speed ISP (a significant proportion of census blocks in the

case of Chicago as mentioned in Chapter 2), where incentives to maintain and upgrade

infrastructure may be less. Unfortunately, crowdsourced performance datasets, such as

Ookla and Measurement Lab’s speed test datasets, are biased in a variety of ways, in-
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cluding lacking data from under-connected communities [132, 182]. Future research could

focus on measuring performance with more extensive targeted sampling from neighbor-

hoods of interest [178, 213]. The actual performance can then be compared with the

ISP-advertised performance to understand if the promised services are being delivered

by the ISPs. Beyond speed, future research can be conducted to develop scalable plat-

forms capable of measuring the quality of experience (QoE) of users while interacting

with different applications such as YouTube and Zoom.

7.3 Recommendations

Augmenting FCC map with Pricing Information. The FCC should consolidate the

broadband availability maps [78] and urban rate survey [156] to ensure that the public has

access to both availability and pricing information at the street address level. Based on

our findings in Chapter 6, it is evident that the speed offered by an ISP is a crucial factor

to take into account. However, there is significant variability in the prices at which these

speeds are offered to customers. Moreover, it is essential to assess the complete, actual

costs incurred by subscribers for these ISP services. Previous work [104] has documented

that ISPs frequently include extra fees and charges in their pricing structure. If such

comprehensive information is collected by the FCC and subsequently made public, these

pricing strategies can be better studied, decreasing the lack of transparency that currently

exists within the ISP service provider sector.

Collecting Internet Quality Data with Proper Contexts. Beyond the availability

and cost of access, actual performance data about fixed broadband service is critical

for fully characterizing digital inequality, yet it remains elusive. If ISPs are mandated

to provide information about actual performance experienced by their subscribers, we

can complement the research presented in this dissertation to understand not just what
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service ISPs promise to deliver, but what service they actually do deliver. Additionally,

as part of the Broadband DATA Act [32], the FCC has outlined and continues to refine

a process for consumers to challenge fixed and mobile provider coverage claims. In this

challenge process, consumers can submit speed test measurements taken from specified

tools. This dissertation has identified critical metadata that we believe must accompany

each measurement. It is possible to collect some of these metrics, such as access link, WiFi

RSSI, etc., without user-level intervention. However, extracting all the recommended

metadata for all end hosts might not be possible depending on their operating systems and

browsers. Nevertheless, the measurement platforms should collect as much contextual

information as possible to better understand the speed test measurements. Though it is

possible to infer the subscription plan, we recommend collecting this information from

as many users as possible. Our recommendation is motivated by the observation made

in Chapter 5 that subscription plans play a critical role in assessing Internet quality in

a region. Importantly, we believe the context we recommend must be coupled to (i.e.,

publicly accessible with) measurement results as meta-data so that such measurements

can be properly analyzed and contextualized. Note that we do not claim our work to

be an all-inclusive list of needed context. Other factors, such as the make and model of

the cable modem or additional relevant home router information, are likely also essential.

Finally,we encourage all speed test vendors who wish to create platforms for such coverage

challenges to ensure that the speed test is constructed so that it maximizes the throughput

of the measured path. Designing such test methodologies, especially for high-speed access

links, is non-trivial and requires further exploration [153].

Curating Accurate Street Addresses. Even if the FCC provides information regard-

ing Internet access, third-party audits are essential to verify the accuracy of self-reported

information from ISPs. However, existing US street address datasets are private, sparse,

and noisy, posing a challenge to such third-party efforts. Therefore, local governments
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(e.g., county) should put more effort into improving the quality and availability of street

address datasets in their areas. This will enable and encourage additional research within

this field, consequently leading to a more comprehensive understanding of facets related

to ISP service provisioning.

Policy Intervention. Finally, policymakers should consider subsidizing fiber deploy-

ment efforts [63] or enforcing rate regulations [40], even in urban areas, to help improve

the carriage value for broadband plans in low-income block groups that can be ignored

or deprioritized by major ISPs. This would improve competition and carriage value, as

our work in Chapter 6 has demonstrated that fiber deployments play a critical role in

providing subscribers with the option of high carriage value plans from different types of

ISPs.
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