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On Cohesive Micro-crack Damage Theory.
I. Two dimensional homogenizations

By SHAOFAN Lif AND ELISE MORGAN

t Department of Civil and Environmental Engineering
and Department of Mechanical Engineering,
University of California, Berkeley, CA94720, U.S.A.

Abstract

A novel continuum damage theory is proposed to model the overall damage effects
on material’s properties due to distributed cohesive micro-crack growth and coales-
cence. A new class of continuum damage models is constructed based on homog-
enizations of Dugdale-Bilby-Cottrell-Swinden (Dugdale-BCS) type micro-cracks in
an elastic elastic representative volume element (RVE) of two dimensional space.
The new theory proposed rest upon two postulates on the statistical closure:

e the mazimum average octahedral elastic strain of an RVE, and

e the mazimum distortional strain energy density of an RVE.
The newly proposed damage models are distinctly different from the existing dam-
age models such as the Gurson model. Instead of considering void growth in a
perfectly plastic medium, the new damage models are derived from homogeniza-
tions of cohesive crack growth in a linear elastic RVE; they mimic the realistic
interactions among various bond forces at micro-scale. Therefore a statistical aver-
age of such interaction can effectively represent the overall damage in a material
due to bond breakings, or surface separations. In this part of work, damage mod-
els are derived based on homogenizations of analytical solutions of Dugdale-BCS
cracks in two-dimensional space.

Keywords:

Cohesive model, Damage, Fracture, Homogenization, Micro-cracks, Microme-
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On Cohesive Micro-crack Damage Theory 3

1. Introduction

Micromechanics-based constitutive modeling of materials that contain distributed
defects is an important subject in reliability analysis, in order to predict material
failure and degradation. The popular Gurson model (Gurson [1975,1977]; Tvergaard
[1981,1982]) is such an example. In this model, the material’s failure mechanism at
micro-level is postulated to be void growth, and the macro-level constitutive relation
obtained from the homogenization is a form of pressure sensitive plasticity, which
depends on a damage indicator — the volume fraction of the void in a representative
volume element (RVE). The most distinguishing feature of the Gurson model is
that its constitutive relation at macro-level, a form of pressure sensitive plasticity
with damage-softening, differs from the constitutive relation at the micro-level, the
perfect plasticity. This feature is absent in early developments in micro-elasticity, in
which homogenization does not produce any new forms of constitutive relations. At
both micro and macro-levels, constitutive equations are the same: the generalized
Hooke’s law, except having different material constants (e.g. Eshelby [1961], and
Hill [1963,1965ab,1967]). The motif of contemporary micromechanics is far more
ambitious. It aims to discovering of unknown but vital constitutive information by
homogenizing simple micromechanics object in a massive ensemble.

In principle, a more accurate micromechanics model should lead to a more ac-
curate constitutive relation at macro-level, provided that a feasible homogenization
can be carried out. For the Gurson model, the void growth mechanism is supported
by many experimental observations on failures of ductile materials (see McClintock
[1968], Rice and Tracy [1969]). On the other hand, in most brittle or quasi-brittle
materials such as concrete, rocks, ceramics, and some metals, the damage failure
mechanism is usually attributed to nucleation and coalescence of micro-cracks. In
fact, if a dislocation pile-up may be viewed as a micro-crack physically, not just
a fundamental solution in mathematical sense, its nucleation and coalescence may
be attributed to the failure of ductile materials as well (e.g. Rice {1992], Rice and
Thomson [1974]), which is the essence of Bilby-Cottrell-Swinden theory [1963).

Although several micro-crack based damage models have been proposed to de-
scribe the brittle failure process (e.g. Budiansky and O’Connell [1976], Hoenig
[1979], Hutchinson [1982], Horii and Nemat-Nesser [1983,1986], Fleck [1992], Gud-
mundson [1994], Kachanov [1985,1994], Krajcinovic [1996]). Few micro-crack dam-
age models are available for both ductile and quasi-brittle materials.

Furthermore, the Gurson model is hardly a genuine micro-mechanics model in
physical sense, its basic assumption on perfectly plastic medium inside an RVE ex-
cludes any first principle based damage mechanisms, such as decohesion, or surface
separation.

It is generally believed that at micro-level, or even at meso-level, physics-based
constitutive laws should be adopted to model real material behavior. The cohesive
model has been long regarded as a sensible approximation to model fracture, fatigue,
and other failure phenomena of solids. Since ultimately, this approximation may be
better justified on physical ground because the separation of two solid surfaces may
attributed to any types of damage.

Since Barenblatt [1959,1962] and Dugdale’s pioneer contribution [1960], the co-
hesive models have been studied extensively and the concept has become the very
foundation for both theoretical and experimental fracture mechanics. Notable con-

Technical Report UCB/SEMM-2002/01



4 Shaofan Li and Elise Morgan

tributions have been made by Bilby, Cottrell, and Swinden [1963,1964], Keer [1964],
Keer and Mura [1966], Goodier [1968], Rice [1968ab], Kanninen [1964,1967], Becker
and Gross [1987ab,1988ab,1989], Lu and Chow [1992], Weertman [1984ab,1996],
Zhang and Gross [1998], Feng and Gross [2000], and many others.

In reality, the cohesive zone has a very small length scale, and how to assess
the overall effect of cohesive zone degradation is important for study brittle/ductile
fracture in macro-level. Recently, the Barenblatt-type model has been implemented
in finite element analysis based numerical computations, e.g. Xu et al [1994s] and
Ortiz et al [1999]. In their approach, no homogenization procedure has been taken
into consideration, and the cohesive force only exists between finite element edges.
Other cohesive models with homogenization features have also been proposed in
literature, e.g. Gao and Klein’s Internal Virtual Bonds model [1998]. Most of these
homogenized cohesive models follow a numerical homogenization procedure, i.e. a
numerical averaging procedure. .

In this paper, an analytical homogenization procedure is developed to homoge-
nize an elastic solid with randomly distributed cohesive cracks — Dugdale-Barenblatt
cracks. The homogenization leads to a new damage evolution law at macro-level.
New pressure sensitive elasto-plastic constitutive relations are obtained, which re-
flect the accumulated damaged effect due to the distribution of micro-cracks.

Technical Report UCB/SEMM-2002/01



On Cohestve Micro-crack Damage Theory 5

2. Damage models based on model IIT Dugdale-BCS crack
solution

As modeling a multi-dimensional damage process is a complex task, it is valu-
able to illustrate the philosophy and procedures of what is to follow with an one-
dimensional damage model based on homogenization of an anti-plane Dugdale-
Bilby-Cottrell-Swinden (Dugdale-BCS) problem.

(@) The mode III Dugdale-BCS crack solution

The mode III (anti-plane) Dugdale-BCS crack problem and its solution (Dugdale
[1960], Bilby et al [1963]) has now become a classical example in standard references
(e.g. Kanninen and Popelar [1985], Mura [1987], Broberg [1999]). For convenience,
the main results of the mode III Dugdale-BCS crack solution are outlined in the
following. :

Consider a single Dugdale-BCS crack at the center of an RVE as shown in Fig.
1. The displacement fields are

up =0, us=0, uz=w(z1,z2)

The stress fields inside the RVE are

o1 = Oxp=033=012=0; (2.1)
ow ow

= g = 2.2

013 H 6:1:1’ 023 = 4 8zs ( )

where the shear modulus p* may be either u, the virgin shear modulus, or f,
the shear modulus of the damaged material, depending on which homogenization
procedure is chosen at a later point in the analysis, e.g. the method based on the
assumption of dilute crack distribution or the self-consistent scheme,

External traction is present on the remote boundary I', (the boundary of the
RVE) such that

013=0, 03=%x, V x €Ty (23)
On crack surfaces and inside the cohesive zones,

o23(z1,0) = 0 V |z1] <a (2.4)
0’23(.'131,0) = 09 Va< II]' <b (25)

where 2a is the length of elastic crack and 2b is the total length of the crack including
the cohesive zone.
The displacement solution along z;-axis is given by Bilby et al {1963],

N R

1V — a? — a/b% — 22

w(z,0) = 751)* {zl In

—aln
1Vb? — a? + a/b? — z? Vb2 —a? + /b2 — 2
(2.6)
where b — a is the length of the cohesive zone, and
a oo
3= cos( 5og ) (2.7)

Technical Report UCB/SEMM-2002/01
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Figure 1. An anti-plane cohesive crack.

At the crack tip z; = a, the crack tip opening (slip) displacement is

dooa, b 2.8)
Tu* a

& = w(a,0%) — w(a,07) =
Note that under small-scale yielding condition (a/b = 1),

w(a,0) =

=
Tu* a TR

2¢:r0a1 b N 2aga(b ) _ ﬂ(b—a) (2.9)

--1
a T
Inside the cohesive zone,

. Ow w(b,0) — w(a,0) 200
LA = 2% 10
# 6371 b—-a ™ (21 )

Jg23 = Oy (211)

Jgi3 =

Assume that the plastic yielding at micro-level obeys the Huber-von Mises criterion.
The cohesive stress og can then be related to the true yield stress by

oy _ 3(m2 +4) (2.12)
0o T )

The crack opening (slip) volume for mode III Dugdale-BCS crack is:

/a [w(zl, 0t) — w(z, 0“)] d:c.l

—a

{0 D)) Dl e

tan(ﬂzm) (2.14)

il

V(a)

I

or
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On Cohesive Micro-crack Damage Theory 7

Shown by Rice [1968a], the J-integral related energy release rate in this case is

QZE}_ =J =0 = 4:5? In [sec(gzm)] (2.15)

0o

where £ = 2a is the length of the elastic crack. Assume that during crack growth
(quasi-static) the ratio £.,/00 remains constant. Integrating (2.15), one may find
the energy release of a single Dugdale-BCS crack

R = 4:;? In [sec(ﬂfoo)] (2.16)

The energy release expression given in Eq. (2.16) does not include plastic dis-
sipation, nor is it the exact crack separation energy release (see: Kfouri and Rice
[1978] and Kfouri [1979]). To seek a upper bound solution, one may assume that
all the energy release is consumed in crack separation, and it is

a b
Ry = Zoolw](z1)dz1 + 2/ (Boo — a0)[w](z1)dz1 (2.17)
where [w](z) = w(z1,0") — w(z;,07). It is straightforward that
_ _ 80pa® 00
Rz = EeoV (b) = 00(V (5) = V(@) = — 2= In [sec( = )] (2.18)
One may notice that Ry = 2R;. Combining (2.16) and (2.18), one may write
_ 4dwoda® T _
R, = — ln{sec( 200 )] , w=1,2 (2.19)

(b) Averaging theorem for aligned cohesive crack distribution

For elastic solids containing cohesive cracks, there is no averaging theorem avail-
able. An extension of averaging theorem to the present case of cohesive cracks will
provide sound theoretical footing.

Define macro stress and macro elastic strain tensors as

1
Zi_,' = < 0y >=—/0’,‘]’dV (220)
Vv
owe .
N = Diik 2.21
Ez] 32:‘]’ D Jklzkf ( )

where W€ is the average complementary energy density of an RVE, and D;x is the
overall (average) elastic compliance tensor. Note that first Eq. (2.21) is a nonlinear
relationship in general since the overall elastic compliance tensor D;;x; may depend
on macro stress Z;;; second the average elastic strain is not the average strain, i.e.
gij 9‘5 Eij =< gy >

The deviatoric counterparts and the corresponding second invariants of £;; and
£;j are defined as

! 1 1
Zz‘j = Eij _ gzkkéi_j, Jo = 522j22j
1 1 1 !
E; = &y-3Eady, I= 3656 (2.22)

Technicel Report UCB/SEMM-2002/01
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First consider a single antiplane crack in the center of an RVE (see Fig. 1).
On the remote boundary of RVE T',, the prescribed traction is generated by a
constant stress tensor X2°; on elastic crack surfaces, V.., the traction is zero; and
cohesive crack surfaces, 0V}, the traction is constant. By the divergence theorem
and considering OV = I', U 8V, U 8V}, it may be found that

1 1
Eij = V/va'ijdv=v'/v(0’mj$,‘),mdv

1
= — / TmidimdV — 0-z;n,dS — OmjTinmdS
vV v Vee Vp.
= oo 1 R Yo'} 1 0
= 21] - '-‘7 avpz Umjzinmds = 21] - th avpx :L‘zdS (223)

where t} = of;n¢. The last term in Eq. (2.23) is

1

— 0o / 22dS =0 (2.24)
V" Jev,.

since the crack lies on z; axis. Now assuming that there are N cohesive cracks inside
the RVE, and they are aligned in the direction of z; axis. Therefore,

N
1
21.. — 2?" - — UO/ :l:zdIE] (2'25)
R D ILY

Assume that the center of the k-th crack is located at (x), Zk2,0) and introduce a
local coordinate z} such that z; = zx; + . Hence Eq. (2.25) becomes

N
1
Ly = X5 - Vi—pz 'd
3 i V;UO(xlﬂla k—p |+/6V~_,, zhdz))

1 X

= Iy - v 2.9 (Ik-zlaVk—pzl) (2.26)
k=1

because in each local coordinate / zodzy = 0. If the crack distribution is

OVi_p:

symmetric about z, axis (aligned and uniform), it would require that the weighted
average

N
> Tk2|0Vi—pz| = 0 (2.27)

k=1

To this end, we recover the averaging theorem for solids with cohesive defects:
< 0 >= X7 in the case of aligned cohesive crack distribution.

Define
Yeg = 3.J> (2.28)
Ym = =Xk (2.29)

Technical Report UCB/SEMM-2002/01



On Cohesive Micro-crack Damage Theory 9

Considering the remote boundary conditions (2.3), one has

T = V3T (2.30)
T 0. (2.31)

(¢) Additional strain formulas

The key technical step in deriving continuum damage models is finding the
damaged elastic compliances. There are several means by which to accomplish this:
(1) use Hill-Kachanov additional strain formula suitable for traction-free defects
(Hill [1967] and Kachanov [1985]), (2) use energy methods.

(i) Owverall elastic compliance via Hill-Kachanov additional strain formula

The additional strain caused by a crack ! may be estimated by the Hill-
Kachanov formula (Hill [1967], Kachanov [1985]),

eladd) = 51—/- o (n® [u] + [u] ® n) as (2.32)

where the superscript add stands for additional strain, and 9% is the upper part
of the crack surface.

Strictly speaking, Eq. (2.32) is only applicable to solids with traction-free de-
fects; it may not be valid in homogenizations of cohesive cracks. Becker and Gross
[1987a) showed that the Hill-Kachanov formula is still be valid in homogenization
of cohesive defects, which, the present authors believe, is true only under certain

approximations.
For cohesive cracks, there are two choices for crack upper surface: 9 = [—a, a]
or 9Q = [—b, b]. Consequently,
(ada) _ 1 _ 1 _ 1 [ V(a)
3 T 3w [, n2lus]dS = o5 /{,Q[“*”’]d”“ TV { V(b)
4
(1 - Z—°°—) tan(ﬂz‘x’) ——In [cos(ﬂzw)]
oo [Tal oo 209 T 200 0.3
- =) (2.33)
tan( S0 )

(0) , (add)

From £33 = €35’ + €55, one may find

Eoo__Z;.o_*_Zoo(mﬁ)(ao)

2 2w \V

(2.34)

Suppose that there are N randomly distributed cohesive cracks inside the RVE,
and each of them with the half length a;, £ =1,2,-., N. Define the crack opening

Technical Report UCB/SEMM-2002/01



10 Shaofan Li and Elise Morgan

volume fraction
N ra?

and use the self-consistent scheme (e.g. Hill [1965]), Budiansky and O’Connell
[1976]) such that p* = ji. Then one can find the damaged shear modulus

Pt EES (2.36)
where
EOO [o o]
s o | () - qmen(), @
(%) = (52) — (2.37)
ta ( 209 )’ (b)
On the other hand, if the crack distribution is dilute, one may find
E=1+25(%2) (2:38)

Egs. (2.36) and (2.38) reveal the dependence of the overall shear modulus, i, on
remote stress Y.

(ii) Owverall compliance via energy methods

If the energy release contribution to the damage process can be determined, one
can derive the overall elastic compliance with ease.

In this 1-D model, the complementary strain energy density of the virgin mate-
rial is

1
W= _—52 (2.39)
2p
Consider strain energy balance
- Ro
W = (< Oij€ij > *Wc) — 7 (240)

where W is the overall strain energy density. The overall complementary energy
density can be obtained via Legendre transformation

W =W+ Ry , (2.41)
1%
because
W = << Oij€ij > —WC) — % (2.42)

Technical Report UCB/SEMM-2002/01



On Cohesive Micro-crack Damage Theory 11

It is then straightforward that

£ _ owe _ owe + o} (&)
3= 3223_8<023> 3(0’23> \%4
_ (0) 2(.4)0‘0f 71'200
i tan( o ) (2.43)
where
Ro dwolf T 00
- = 2.44
Vv m2p* ln[cos( 200 )] (2.44)

Consider the self-consistent scheme (u* = ). One may find the ratio between the
damaged shear modulus and the initial shear modulus

%:1—wf(:§:o)tan(”2§?) Cw=1,2 (2.45)

It is interesting to note that when w = 1, (2.45) is exactly the same as the result
obtained from Hill-Kachanov formula in Egs. (2.36) and (2.37 b).

If a crack distribution is dilute, it can be shown that

%=1+wf(:;:°)tan(ﬁ2§‘;°), w=1,2 (2.46)

Obviously, the energy method is a more theoretically sound approach.

(d) Damage models

Without proper statistical closure, averaging alone may not be able to provide
sensible results, and often leads to frustration.

In this paper, two hypotheses on statistical closure are postulated for isotropic
materials:

Hypothesis 2.1[Ensemble Averaging Closure]

1. The macroscopic yielding of an RVE begins when the average elastic octahedral
strain reaches a threshold, i.e.

2V2
Eoct ' = —=V 12 = €cr 247
t \/g 2 ( )
1 ’ ’ ’
where Iy = '2‘51'3'51'1‘ and &;; are calculated based on elastic unloading, i.e.

1
£ = 271221' (2.48)

2. The macroscopic yielding of an RVE begins when elastic distortional energy
density of the RVE,

g'J ~ 7 ~1
Uy = / 5. dE, (2.49)
0

Technical Report UCB/SEMM-2002/01



12 Shaofan Li and Elise Morgan

reaches a threshold. In other words, the mazimum elastic distortional energy
of an RVE is a material constant.

Ug <US . (2.50)

&
Remark 2.1

1. The above statistical closures are postulates, and they are not based on micro-
mechanics principles. In other words, these conditions are pre-requisite prop-
erties assigned to all the RVEs in a material under consideration.

2. Since the relationship (2.48) is nonlinear, in general,

1
— 2.51
Us # 2ﬁJ2 (2.51)
Interestingly, if the overall shear modulus only depends on X, i.e. o =
(), it can be shown that

’

Iy

Ci v £ T
0 0 0

i

2(Em) ]2 = El—_—Jg (2.52)
T

3. Eq. (2.49) is reminiscent of Hencky’s mazimum distortional energy principle
in classical plasticity (Hencky [1924]). According to this principle, the thresh-
old of yielding for a material point can be measured by its ability to absorb
certain amount of elastic distortional energy. However, the elastic distortional
energy density of an RVE does not equal to the average elastic distortional
energy density, i.e.

£l €
7 o~y ~r 1 Vo
In other words
E'fj 1 ' l o
4. The two criteria can be calibrated with uniazial tension tests of virgin mate-
rials
1 1
Eoct = 7 Zoct = —=0y (2.55)
oct 20" T 32
12 1,
Ud - azeq = @UY (256)
2
where Xyet 1= §J2 and X.q := /3J2.

In the damage evolution process, the two criteria take the following forms

Technical Report UCB/SEMM-2002/01
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(a) . (b)

Figure 2. One dimensional damage models (a) Model 1a (self-consistent method); (b)
Model 1b (dilute crack distribution) .

1. The maximum average elastic octahedral strain criterion:

Yeg

1 1
Eoct = Yeq < oy =
oct 3\/_ﬁ eqg > 3\/§/J Y oy

.y (2.57)
u

2. The criterion of the maximum distortional strain energy density in an RVE

¥ 1 22 0
U, = 9 < g2 = 9= 2.58
d 6p — GuUY o3 i ( )

In the 1D model, i = i(X.4), and the criterion of maximum distortional energy
density in an RVE may not be cast into a convenient form. Use the maximum
average elastic octahedral strain criterion and substitute (2.36) and (2.37a,b) into
(2.57), and combine (2.12) and (2.30)

Yo [ 4 (T
Zo — 2.
0o 1+ 2 (Uy ) ( 59)

The following damage models may be derived

Damage Model 1a (self — consistent) :

14+ — I it §
032/ Vil +4 + m \oy 20y

e i - e ) ()

20y

—%ln[cos(—ﬂz—t—‘l&‘l)]} — & =0

(2.60)

Technical Report UCB/SEMM-2002/01
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©5

s -1 05 o 05 1 15 s K] 05 [ 05 1 15

(a) )
Figure 3. One dimensional damage models (a) Model 2a (self-consistent method); (b)
Model 2b (dilute crack distribution) .

Damage Model 1b (dilute crack distribution) :

x2 e Gk
R I SECO)INEEED

_;ln[cos(___vﬂ;;jze«)]} _Za_

oy

(2.61)
Damage Model 2a (self — consistent) :
i% + izji‘ltan(Tzeq) - i—;q =0, w=1,2
(2.62)
Damage Model 2b (dilute crack distribution) :
i—% + aj“\’/%tan(@&q) - % =0, w=1,2
(2.63)

In Figs. 2 and 3, the damaged yield surfaces are plotted in the two-dimensional
stress space, which are a set of coaxial elliptics.

Technical Report UCB/SEMM-2002/01



On Cohesive Micro-crack Damage Theory 15

3. Two-dimensional Dugdale-BCS crack in an RVE
(a) Mode I Dugdale-BCS crack under uniform biazial tension

Before proceeding to construct damage models, we first briefly outline the mode
I Dugdale-BCS crack solution in a representative volume element (RVE). Consider
a two-dimensional RVE with a Dugdale-BCS crack in the center. Uniform biaxial
tension is applied on the remote boundary of the RVE, I'r..

T =% =%e, V x€ls (3.1)

On macro-level, the remote stress ¥, may be related with the spherical stress ¥,,
of the RVE
2
5200, plane stress
Em = 00X = (3.2

2
3(1 +v")E, plane strain

The Dugdale-BCS mode I crack solution can be obtained via superposition.

(i) Trivial solution

Consider an RVE without cracks. A trivial solution of uniform stress state is:
VxeV,

(0)

o1 = Zeo
Uég) = X
A =0
and
K R St S I
. .8
€y =% n;?’ Kgl 0] e (3.3)
29 0 0 1 0

where the constants u*, k* not only depend on material properties but also depend
on ensuing homogenization procedures, and «* is the Kolosov’s constant

B-v) ,
m, plane stress ;
sy (3.4)
3 —4v*, plane strain.
By inspection, one may find the displacement fields of the trivial solution
*+1 *—3
u§°) = K + Yooy + E—szz (3.5)
8+ 8u*
* — 3 * 1
’U.go) = N——Eoozl + adin Eoo.’l,‘g (36)
8u* 8u*

Technical Report UCB/SEMM-2002/01
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Figure 4. Illustration of superposition of cohesive crack problem

(ii) Crack solution

The crack solution has to satisfy the remote boundary conditions

off =off =off =0, r=y/ri+a} o0 (37)

and crack surface traction boundary conditions and symmetric condition

Uég) = -%u, Vro=0, |71 <a (3-8)
oé;) = g9 — EOO) A4 Iy = Oa a S |.’.C1’ <b (39)
W = 0, Vzy=0, |n|>b (3.10)

The stress field solution on z; axis (z2 = 0) is well known (e.g. Mura [1987]
pages 280-285)

c c d b tH Ty — 1t
0i(21,0) = 013 (21,0) = N {/0 5’-(—\)7—;_1—?2——2(1::} (3.11)
2 _

where H(-) is the Heaviside function, and

Yot t<a

= 3.12

a) th—zoocos—l(%)t , a<t<db (3.12)
m

The stress distribution along z; axis are:

1. (O < |£E1| < (l)
Uﬁ)(zlvo) = Ué;)(zlyo) =~Y , o{? =0;
2. (@< |zl <d)

04 (21,0) = 0 (21,0) = ~Seo + 00, 09 =0
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3. b<|z1| < @

021,00 = 035(21,0) = —Feo + 09
g d [z . _, [m%(bz — 2a%) + a?b? . _1[Z2 +a® - 22
A dz, { a " b?(z} — a?) ] +sin [ 72 —a? ]
ol) = 0. (3.13)
Inside the cohesive zone (a < |z1]| < b),
o) = aftl)) +0 =g, (3.14)
o) = ol +0ld =a (3.15)
o = 0. (3.16)

It is assumed that the microscopic yielding of the material is governed by the
Huber-von Mises criterion. Since the shear stresses are all zero inside the cohesive
zone,

. 1 :
o = \/ 5 (@ - ol + 8 - o2+ (0l - ol?) <ov  (317)

which links the cohesive stress with the uniaxial yield stress of the virgin material,

oo , plane stress;
oy = X0 = (3.18)
(1-2v*)oy plane strain.

For crack solution, the displacement fields along the z, axis are

o . (z1 +a), V -b<z;<—a
u§C)(zlai0) = (14—,?)200-751 + ‘(ﬁa—*i)ﬂo 0, V —a<z <a
# (z1 — a), V a<z1<b
(3.19)
and
(1+%")

u§°) (z1,£0) = £ " oo -
;v — a? — a/b? — 22
Z1ln 7 g2 7 .2
T1Vb — a? + a/b? — 1?

Therefore, in the cohesive zone (a < |z;| < b),

N VbZ —a? — \/b? — 1}
2
Vb2 —a? + \/b? — z}

} (3.20)

(K,‘—l) ($1+a), v —b<:1:1§—a
U§t)(r1,0) = g 0o 0, V —a<z<a (3.21)
H (z1 —a), V a<z<b

and ug)(zl,ﬂ) = uéc) (z1,0). The elastic crack opening volume can be expressed as

vio= [ = (5o { (1 52) () - S ()]}
(3.22)
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and the total crack opening volume as

b *
_ W, _ (A+k) 5 oo
V(b) = /_ [y )doy = 5 00a tan(—2ao ) (3.23)

The crack tip opening displacement is given by Rice [1968a],

= u® (g _gy = L+ ET)o0a 70
8 = u®(a, +0) — u¥(a, -0) — ln[sec( = )] (3.24)

Rice [1968a,b] also showed that the J-integral for mode I Dugdale-BCS crack is

(1+ n")

J =090 = o2aln {sec(%)] (3.25)

20‘0

Since J is related to energy release, assume ?—Rl = J, where £ = 2a is the total
length of the crack. It may be found that

Ry = 9-%‘—) 02a®In [sec(”fm)] (3.26)

4]

Note that in nonlinear fracture mechanics, J may not be the exact surface separation
energy release rate (Wnuk [1972},[1990]).
The total energy release can be calculated as

o2a’1ln [sec(7r2EDO )] (3.27)

Ry = SV () = 00 (V(8) = V(a)) = 2(%}12 =

Considering the fact that Ry = 2R;, one can then combine the two into a single
form

w(l+ k") ,
Tt

Ry =

oia ln[sec(ﬂzi:o)], w=1,2 (3.28)
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4. Additional Strain Formulas

Since the cohesive crack is not a traction-free defect, the usual averaging theo-
rem used for solids containing traction-free defects may not be applicable for ho-
mogenization of cohesive defects. Before proceeding to homogenization, it may be
necessary to examine the ensemble averaging technique first.

(a) Averaging theorem
Theorem 4.1. Suppose

1. A 2D elastic representative volume element contains N Dugdale-BCS cracks;

2. The orientation of the cohesive crack distribution is isotropic and there are
no shear components of the cohesive tractions on the surfaces of the cohesive
- zone; ‘

3. The tractions on the remote boundary of the RVE are generated by a constant
stress tensor, i.e, 13’ = ngXly, , and 55 = const.

Then average stress of the RVE equals to the remote constant stress, i.e.
Yap =< 048 >= Z‘c’f’g (4.1)
where all Greek letters range from 1 to 2.

Proof:
As shown previously,

N

1 ,

<0ap>=T% - S :/av t$0z,dS (4.2)
k=1 k—pz

Let Toq = ZTko + Tk,, Where Tiq is the coordinate for the center of the k-th cohesive
zone. By symmetry,

/ Ti,dS =0 (4.3)
OViwp:
Therefore
1 N
<0y >= 2;’; -7 tg.‘*)“zkc,‘avk._,,zi (4.4)
k=1

This is valid for any crack orientation. In other words, the distribution of the
crack orientation is isotropic for any given spatial point (see Fig. 6). The second term
of Eq. (4.4) may be rewritten in terms of the probability of the crack orientation

N
1 [0V A/ (k)0
oa P
- = GV k—pz] ¢ N
af ngl dn s 3 Tk dS

< Oag > =
B i 0 4g 45
= aﬁ - —‘—/- Z -27|6Vk_.p;| 0 tﬁ ( . )
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Iee
/ TSN/

RVE

N

Zec

Figure 5. A two-dimensional RVE with randomly distributed cracks

Here S; is a unit sphere surrounding the k-th cohesive zone, at center z4q.

Let the outward normal to crack surface be n. And t = ogn, where o9 is the
cohesive stress. By assumption that there is no shear cohesive force, one may write
the components of t(¥)° as

) = 54 cosd (4.6)
% = ggysing (4.7)
It is trivial to show
1T w0ge g B=1,2 (4.8)
271' 0 ﬁ 9 » .
Thereby,
Tag =< Oap >= £ (4.9)
&

To construct continuum damage models, we first apply additional strain formu-
las to evaluate overall compliance tensor of a damaged solid. In the following, two
types of additional strain formulas are used: (1) the Hill-Kachanov formula; (2) the
formulas based on energy methods.

(b) Additional strain formula for traction-free defects

In the first approach, the Hill-Kachanov formula is taken as an acceptable ap-
proximation to estimate additional strain in solids containing cohesive defects. As-
sume that there is a single crack with radius ax in a local coordinate {zX}. The
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X’y
X2
The k—th crik tk0=0C¢on
0 X’y
Xk Sk
X1

Figure 6. Homogenization of cohesive cracks with random orientations

outward normal to the crack surface is pointing to z§ direction. Then the only
non-zero additional strain component is

(add) _ e (L7 mapy o Te
€2 V an[uz]dzl = e ( = )B( = )zoo (4.10)

where function B(Se /00) is defined in Eq. (2.37).
Let k* = k and p* = u. The additional strain tensor may be expressed as

2
eledd) = (E%'E)Hk . £ (4.11)
where H* = HY; ek @ ef ® ef ® e}, and HYg., =0, Y o,B,(,n=1,2 except

Q1+kK) /Too)\2
Hyyy = orn B(U—Zo) (4.12)

Note that H* is anisotropic, due to the presence of the crack.

Assume that there exists a crack distribution density function w(a, 8) = wy(a)wo(6).
The total additional strain introduced by crack distribution from crack size 2a,, to
crack size 2aps is

apm
(ladd) _ / €%V y(q,6)dadd = H : % (4.13)

ap 27 ﬂ_a E o
= 27( / )H : £%w(a, 6)dadd (4.14)
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The global H tensor can then be determined as

1 [ (2™ pg?
H = — — |H*
5 ) /0 ( = )H (6)w(a, 8)dadd
1 am ) 1 2w )
= {V~/a a w,(a)da} . {ﬂ | HiﬁCn(G)e’; ® efg} ® ef ® e’,‘,wo(B)dH}
(4.15)
where V is the total volume of the RVE.
Define the crack opening volume fraction as
1 [omM
f:= v/ na’w,(a)da (4.16)

Eq. (4.15) becomes

f 27
H-= %/(; ( ’;AquQf,, f,EHfW{(G)wo(G))ea ®eg®ec ®eydd (4.17)

Assume that H is isotropic, i.e.

Hapin = baglin + 2 (BacSn + Sanbc) (418)
Consider the identity
QhsQ%s = QBaQb¢ = bac (4.19)
and the normalization
1
or ), wo(6)ds =1 (4.20)

One may find the global H tensor by solving the following algebraic equations

2h +2hy = fHJ,, = fHin, (4.21)
hy +3hy = fH,l\cu,\u = fH}p, (4.22)
which yield the solution
1(1+ k) Yoo
- = Z> 4.2
e 4 2mp fB( 0o ) (4.23)
1(1+k) Yoo
= = B(— 4.24
ha 4 2mp f ( 0o ) ( )

The elastic compliance tensor for two dimensional isotropic materials has the
form

k-3 1
Dapen = o dapdcn + @(5a<5ﬁn + bandpc) (4.25)
_ k-3 1
Daopen = 87 dapdcn + a—ﬂ(‘sac‘sﬁn + bandpc) (4.26)
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From the homogenization scheme

_ 1 1 ha
Da = Da Ha —_— = — — .
B¢n scn + Hapen = AR +3 (4.27)
It then yields
7 (1+kK) (T
o142 sp(oxe _
=1+ fB( = ) (4.28)

(¢) Energy method

A more rigorous procedure of deriving the additional strain formula for solids
containing cohesive defects is to use energy method. By the balance of strain energy
density of the damage process, one may be able to find the average potential energy

" density and hence the average complementary energy density, which are assumed to
be potential functions of average strain and average stress. Consider an RVE with
N randomly distributed cohesive cracks. The overall potential energy density in an
RVE can be calculated by taking into account the average energy release density
(see Fig. 4)

- Re
W =< 0ag€ap > -W° - v WS 1,2 (4.29)

Via Legender transform, one has

N
—— e Ro 1 wod(1l+ k%) TZ00
We = W+ T2 = =Dapen 2558 + (;—1: )—————ln[sec( — ]
(4.30)
where Z?f = ¥ 0;j. Define the crack opening volume fraction
N 2
Ta
=) —‘7’2 (4.31)

k=1

Since W€ is a potential function of £,4 and by the averaging Theorem 4.1 ( £,5 =
o% ), one may find

Eoap = o = ik
8T 0T
- s gl (S (2] S
_ (aog + ga;d) (4.32)
where €05 := Dapcn %, €ap = DapcnT3%, and
(aa;d) _ (14:*”)!,[“22020 tan(ﬂzi:o)]xooéaﬁ’ w=12 (4.33)
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One may wish to put above expression in a general expression,

€ledd) —H . m (4.34)

where the tensor H = %12 ®1% 4+ hy1149) s a global, isotropic tensor, such that
D=D+H.

Apparently, the information carried in (4.33) is not sufficient to determine the
H tensor, because the degradation on the shear modulus is hidden. To evaluate
H, additional provisions on homogenization may be needed. In the following, two
approaches are adopted.

(i) Dilute crack distribution

Assume that the crack distribution is dilute and let u* = y, v* = v. Con51der a
single crack embedded in an RVE. Eq. (4.33) take the form

= () 222 (ot w=r2 s

One may write the above expression in a tensor form

2
e = (- )B* = (4.36)

where the local tensor H* = H*
its components

aB¢n€a e eB &® eC 2y e is again anisotropic. Among

k 72 _ w(l + I‘&) 209 T80
Hyjyy = Hiypoy = T (77200) tan( %00 ) ) (4.37)

and Hfz., = 0 otherwise.
The global isotropic tensor H can then be obtained by spatial averaging

ap 27
H = 2,, / ’“‘ T ) Hw(a, 6)dads
= % Hkﬁc,,ea ® e,3 ® e< ®e 'wo(0)d0 (4.38)
0

where f is defined in Eq. (4.16). Use the procedure outlined before, one has

2h +2hy = fHR,, = f(Hin + Hio) (4.39)
hi+3hy = fH,’\Cu,\u = f(Hfi1y + Hizzo) (4.40)
The solution of Eq. (4.40) is
lwf(l1+ &) 1 200 T o0
= = 441
M 4 2u (77200) tan( 209 ) ’ ( )
lwf(l+ &) 1 209 TE0
= = . 4.42
he 4 2u (77200) tan( 209 ) ( )
From D = D + H, it then can be shown that
i w(l+k)fT 200 T
L =1,2 4.43
7} 1+ 4 [ﬂEoo tan( 209 )]’ v ( )
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(i) Self-consistent method

The essence of self-consistent method is considering the effect of micro-crack
interaction (Hill [1965b], Budiansky and O’Connell [1976]). Let u* = i,v* = ¥ and
assume that inside RVE the damaged medium is microscopically isotropic and that

h
there exists a global isotropic tensor H = —21~1(2) ® 13 4+ hy1149) | such that

€lrdd) = H . x> (4.44)

which may lead to the determination of the overall compliance tensor, D = D + H.
Let

1 1

D = ____El il nY .
3K + QHE (4.45)
_ 1 1
D = —E'4+ _—E? .
3% + QﬁE (4.46)
H = (hi+ ho)E! + hoE? (4.47)
E
where p = 050 and
1—
. ( 5 V) , plane stress
K" (4.48)
3 (1-v-—207) 1 trai
5 , plane strain
and similar expressions may be held for z and K. Note that
1
E' = ééagécﬂea RegRec®e, (4.49)
1
E? = 3 (éagégn + dandac — JQgéc,,)ea RegRe; ey, (4.50)

Nevertheless, Eq. (4.44) is only valid when X% = X d,5€e, ® eg. It only admits
one equation

D: (Eoo(fagea ® 8;3) =(D+H): (Zm(sagea & eg) (4.51)

Combining Egs. (4.33) and (4.51), one may find that

1 1 1 1 1 209 T o
el i the) = ot (e — [ ¢ )] s
3k ~3g T th) 3K+(3K+2ﬁ)“’f = an( 200 (4.52)

by virtue of identities E! : 1) = 1() and E2: 1 = 0.
In Eq. (4.52), there are two unkowns, K and f, or equivalently h; and hz. An
additional condition is needed to uniquely determine D or H. Impose the restriction

K
K
This implies that the relative reduction of the bulk modulus is the same as that of

the shear modulus. This restriction will guarantee the positive definiteness of the
overall strain energy, and it is reasonable for uniform biaxial loading condition.

(4.53)

h~a ]
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Remark 4.1. There may be some other possibilities for additional restriction. For
example, hy = 0. However, in this particular problem, the restriction, hy = 0, may
not guarantee the positive definiteness of overall strain energy.

A direct consequence of (4.53) is

v=v (4.54)

Then for plane stress problems, one may find

_fi e 1- (12b_ny) [(:\g:o) tan(gic: )] plane stress; (a)
K U 1- (21(_1_; Iiz);;-zf) [(:;:o ) tan(giooo )] plane strain; (b)
(4.55)
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5. Micro-cohesive-crack damage models

Recall
3%m
_2“;_, plane stress;
oo _ XEm _ Y o1
oo poy 31-2") T lane strain
2(1+v*) oy’ b o

The overall shear moduli derived above only depend on spherical stress X,,,. There-
fore, one may be able to derive continuum damage models based the maximum
distortional energy density closure. By substituting (4.28) into criterion (2.58), the
following plastic yield function may be derived,

T _ B _ 1
L=C=
1+ ——B{—
+ 5 B( 7o ) (5.2)
where B(X/00) is defined in Eq. {2.37). It can be rewritten as
Model 1: ¥(Z¢q, E )—Zz" ! =0
ode N 1( eq; &m,q) = 0'%/ . (1+K,)fB(XEm) =
4 doy (5.3)

where q represents other possible internal variables.
Since the model is only valid when f << 1, a first order approximation may be
taken

= qu (1+x) XEm 2y _
(T, Tmea) = 3+ B ) 14007 =0 (59)

Similarly, by substituting homogenization results obtained via energy methods
(4.43) into (2.58), the following damage model may be derived,

2 1
: _ Zeq _ =0.
Model 2 ‘I’Z(Z:eq'; Emy q) 0_%, 1+ w(l + K)f ( 2¢JY ) tan(ﬂ'xzm)
4 TXZm 2¢0y

(5.5)

The first order approximation is

X2 w@+K)f [ 240y TXEm 2y —
R [(Mm)tan(ww )] _140(f5) =0.
(5.6)
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(c) v=10.25 (d) »=0.30

Figure 7. The cohesive micro-crack damage model: ¥;.

Substitute the corresponding homogenization results based on self-consistent
method into Eq. (2.58). For plane stress problems, Eq. (4.55 (a)) leads to

Model 32: W34(Teq, Em,q) = Eg" + (?msﬂ—) tan(g)f—?:—:—"i) -1=0.

oy 1-vZ, doy
(5.7)
For plane strain problems, Eq. (4.55 (b)) leads to

e

\I’3b(2eq7 Zma‘:I) = Uzq

: Y

Model 3b : 8(1 - v?)wfoy tan(37r(l - 2u)2m) -
3n(1 - 2v)2%, 41+ v)oy T
(5.8)

Choose the overall yield function ¥3, as the paradigm for macro potential func-
tion of plastic flows. The macro plastic flow direction may be obtained by the
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I/

™oy

(a) The exact formula. . (b) The first order approximation.

1=0

1=0.01

. "
[] [ 1 15 2 25 25

I fo

™oy

(c¢) The exact formula. (d) The first order approximation.

Figure 8. The cohesive crack damage model, ¥2, with different Poisson’s ratios:
(a), (b) ¥ =10.2; (c) (d) v =0.3.

associative rule

D? = An (5.9)
where DP = %(ﬂﬁj + i"_‘;,i) e; ® e, and
803, 3 8wfoy 31Tm\  /37%m
% _ Yy
n 85~ oL- ' or(l-w)Z {( oy )Sec ( 4oy )
3InEm
—tan(32m) b (5.10)

The scalar plastic flow rate can be determined by consistency condition as usual,

- (r:C:D)
- "‘I,q'h"'n'C'n

(5.11)
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Figure 9. The cohesive crack damage model, ¥3,, with different Poisson’s ratios (plane
stress).

where C is the elastic stifiness tensor, and < - > is the Macauley bracket, and q
are internal variables whose evolutions are assumed to be governed by

4= \h(Z,q) (5.12)

e.g. Lubliner [1990].

The damage evolution law for micro-cracks in a cohesive elastic environment
may be significant different from that of voids in a perfectly viscoplastic environ-
ment. Let the volume of the RVE is denoted as V = V,,, + V. where V. is the crack
opening volume and V,, is the volume of matrix. By assuming that the total rate
change of the crack volume is proportional to the volume rate change in a RVE, i.e.

V. =BV (5.13)
where k is the proportionality constant. Then
d (VC

fgrowth = EE "'/-) = (ﬁ - f)% = (,B - f)tT‘(lce(D) (514)
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(a) v =0.1.

=0
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(c) v=10.25. (d) v =10.3.
Figure 10. The cohesive crack damage model, ¥3;,, with different Poisson’s ratios (plane
strain).

Neglecting elastic rate of deformation and assuming plastic rate of deformation
is dominant, the conventional damage evolution law is recovered

f=(1- f)trace(DP) (5.15)

On the other extreme, an argument can be made that Ve = Vc, since the vol-

ume fraction of cohesive cracks is obtained by integrating elastic crack opening
displacement (COD),

f = (1-p8"f)trace(D®) = (1 - g1 f)trace(D — DP)

= (1-p7"f)trace ((1 - ""(‘I’lq: _nli fr(ln: :CC:)n) : D) (5.16)
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6. Concluding remarks
The most distinguishing features of the present cohesive crack damage models are:

1. The homogenized macro-constitutive relations are different from the micro-
constitutive relations: the reversible part of macro-constitutive relation is non-
linear elastic versus the linear elastic behaviors at micro-level; the irreversible
part of macro-constitutive relation is a form of pressure sensitive plasticity
versus the Huber-von Mises plasticity or cohesive laws at micro-level.

2. When the ratio of spherical stress and the true yield reaches a finite value,

ie.
2
=, plane stress
o0 T 3
S T Y (6.1)
7 7 20 +v) lane strain
31-2v) P

the Dugdale-BCS cohesive crack model will predicts a complete failure in
material with infinitesimal amount of initial damage, whereas under the same
condition, the Gurson model, which is based on void growth, will not predict
a complete material failure unless the spherical stress approaches to infinity;

3. In cohesive damage models, the overall yield surfaces as well as damage evo-
lution equations depend on materials Poisson’s ratio; whereas in the Gurson
model, no such dependence is observed, because of the assumption of incom-
pressible materials;

4. The rate of crack opening volume growth may depend on the rate of elastic
deformation.

It may be worth noting that since cohesive damage models are obtained from the
homogenization of the analytical solution of cohesive crack under uniform biaxial
tension, it may break down for incompressible materials (u = 0.5). In that case,
the dilatational energy density approaches zero. From this perspective, the cohesive
damage model can not replace the Gurson model completely.

The damage model ¥; and damage model ¥, are derived based on the dilute
crack distribution. Both cases are plotted for the case of plane strain (see Figs. 7 and
8). From Figs. 7 and 8(a) and (c), it may be observed that as X,,/oy increases,
all the yield loci converge to one point when X /oy — 1, or X.5/0y — 0. An
explanation for this unusual phenomenon is because when X, = X,, — 09, the
remote stress reaches to the value of decohesion. At that point, the size of the
cohesive zone will become infinite (b — o0), and the assumption of dilute crack
distribution is no longer valid. Interestingly enough, this abnormality disappears
when the first order approximation is adopted (see Figs. 8(b)(d)).

For the damaged yield loci obtained from self-consistent scheme, the abnormality
does not appear (see Figs. 9 and 10), since the consideration of crack interactions.

Note that almost all the cohesive damage models derived from two-dimensional
homogenization have the same functional format, except the model ¥; based on
2.37(a). That is that damage due to hydrostatic stress state is controlled by a tan-
gent function, contrasting to the hyperbolic cosine function for the Gurson model.
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(c) ¥3p (v =0.1). (d) The Gurson model

Figure 11. Comparison of cohesive micro-crack damage models and the Gurson model.

All the damage models are juxtaposed and displayed in comparison with the Gurson
model (see Figs. 11 and Figs. 12) It may be found that there is a major difference
between these two types of damage models when the damaged volume fraction (ei-
ther crack volume or void volume) is small. If f << 1, the Gurson model predicts
a much higher tolerant hydrostatic stress level than cohesive damage model does.
This is because that in cohesive crack solution once the remote stress reaches the
decohesion level g, the material fails immediately, whereas for the Gurson model,
the material only fails when hydrostatic stress reaches to infinite under the condi-
tion that f is infinitesimal. From this view point, it seems that the cohesive damage
model makes more sense than the Gurson model does.

The key to accurately construct a cohesive damage model is to determine the
energy release contribution to the material damage process. The energy release in
nonlinear fracture mechanical process is consumed in several different dissipation
processes, e.g. surface separation, heat generation, dislocation movement, and may
be even phase transformation, etc. In fact, Wnuk [1972,1990], Kfouri and Rice
[1978] , and Kfouri[1979] have studied energy release caused by crack extension of

Technical Report UCB/SEMM-2002/01



34 Shaofan Li and Elise Morgan

(c) T3 (v =0.1). (d) The Gurson model

Figure 12. Comparison of cohesive micro-crack damage models and the Gurson model.

two-dimensional Dugdale-BCS cracks. An in-depth study may be needed to refine
the damage models proposed here.

In fact, the damage due to interaction of cohesive micro-cracks has been at-
tracted some attentions, e.g. recent work by Feng and Gross [2000]. It is specu-
lated that in general by considering interaction induced coalescence among cohe-
sive cracks, one may find a critical micro-crack opening volume fraction, f., based
on Dugdale-BCS crack model, e.g. the solution of periodic distribution of cohesive
crack by Bilby et al [1964].

A three-dimensional cohesive crack damage model is recently reported by Li et
al [2001].
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