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Local figure–ground cues are valid for natural images
Department of Electrical Engineering and Computer Science,

University of California at Berkeley, Berkeley, CA, USACharless C. Fowlkes

Computer Science Department, Boston College,
Boston, MA, USADavid R. Martin

Department of Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley, CA, USAJitendra Malik

Figure–ground organization refers to the visual perception that a contour separating two regions belongs to one of the
regions. Recent studies have found neural correlates of figure–ground assignment in V2 as early as 10–25 ms after
response onset, providing strong support for the role of local bottom–up processing. How much information about figure–
ground assignment is available from locally computed cues? Using a large collection of natural images, in which
neighboring regions were assigned a figure–ground relation by human observers, we quantified the extent to which figural
regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues
are ecologically valid, and we quantify their relative power. We have also developed a simple bottom–up computational
model of figure–ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the
model is capable of matching human-level performance when scene context limited.
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Introduction

In the 1920s, the Gestalt psychologists identified group-
ing and figure–ground as two major principles underlying
the process of perceptual organization. Grouping describes
the way that individual elements of a stimulus come
together to form a perceptual whole. Figure–ground refers
to the perception that a contour separating two regions
“belongs” to one of the two regions. The figural region
takes on shape imparted by the separating contour and
appears closer to the viewer, whereas the ground region is
seen as extending behind the figure. Both grouping and
figure–ground are thought to be important in reducing the
visual complexity of a scene to that of processing a small
number of cohesive, nonaccidental units.
Starting with Rubin (1921), who first pointed out the

significance of figure–ground organization, a long list of
factors that affect figure–ground assignment have been
identified. These include size, surroundedness, orientation,
and contrast (Rubin, 1921), as well as symmetry (Bahnsen,
1928), parallelism (Metzger, 1953), convexity (Kanizsa &
Gerbino, 1976; Metzger, 1953), meaningfulness (Peterson,
1994), and lower region (Vecera, Vogel, & Woodman,
2002).
How might these cues be computed in the brain? It is

conceivable that cues such as orientation or contrast could
be a function of information present in receptive fields

local to a given contour, but other cues like symmetry and
parallelism would seem to require long-range lateral
interactions. Evidence from electrophysiology (Qiu &
von der Heydt, 2005; Zhou, Friedman, & von der Heydt,
2000) suggests the existence of cells in V2 that code for
contour ownership within 10–25 ms of the onset of
response activity. The early availability of this signal
(both in terms of time course and stage in the visual
pathway) provides strong support for the role of local
bottom–up cues, contrasting with the traditional Gestalt
emphasis on global organization. On the other hand,
studies on meaningfulness (Peterson, 1994) show that
contours tend to associate with the abutting region that has
a familiar shape, pointing to the integration of top–down
knowledge.

Although there is little doubt that both local and global
information sources play a role in figure–ground process-
ing, a key problem is understanding their relative
importance. Identifying cues, even in physiological detail,
does not provide an explanation as to why they exist or
how conflicting cues might be fused to yield a cohesive
percept. More than 50 years ago, Egon Brunswik
(Brunswik & Kamiya, 1953) suggested a solution to these
concerns, namely, that the Gestalt cues reflect the statistics
of the natural world in which the visual system evolved.
He proposed that Gestalt cues be validated by studying the
statistics of natural scenes and carried this agenda out on a
limited scale.
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In this article, we pursue such a strategy to understand
how well local bottom–up cues predict figure–ground
relations in natural scenes. We study the ecological
statistics of size, convexity, and lower-region cues using
a large collection of natural images for which true figure–
ground relations have been assigned by human observers.
Measuring the frequency with which these features make
the correct prediction provides an ecological validation of
the corresponding Gestalt cues. We describe a simple
computational model that combines these three cues to
predict figure–ground relations. We find that the model
performs as well as human subjects asked to make similar
local judgments. We also highlight the importance of
figure–ground information contained in the image lumi-
nance, which lies outside the scope of classical configural
shape cues. Together, these results provide a first
quantitative measurement of the relative power of local
and global cues in figure–ground assignment.

Methods

Formulating cues to figure–ground

We formulate the cues of size, lower region, and
convexity as functions of the boundary shape between

two regions inside a local analysis window centered at a
contour point p. Size(p) is defined as the log ratio of the
areas of the two regions. LowerRegion(p) is defined as the
cosine of the angle between the line connecting the center
of masses of the two regions and the vertical direction
given by the camera orientation. In contrast to measuring
the angle of the boundary tangent at the center point,
LowerRegion(p) incorporates information over the entire
analysis window. The convexity of a single region is
computed as the fraction of point pairs in a region for
which a straight line connecting the two lies completely
within the region. Convexity(p) is then given by the log
ratio of the two region convexities.

In natural scenes, an object may appear at any distance
from the viewer. As a result, a window subtending a fixed
visual angle may include an entire object at a distance or
cover only a small uninformative portion of a nearby
object boundary. To provide an intuitive notion of context
that is independent of the scale at which an object appears
in a scene, we specify the analysis window radius as a
percentage of the arc length of the underlying contour on
which it is centered. This makes the local cues we
measure approximately invariant to an object’s distance
from the viewer.

Figure 1 provides a graphical description of each cue
computation and shows the cue response along the

Figure 1. Formulating local cues to figure–ground assignment. Three cues are defined locally inside an analysis window centered at a
contour point p. The Size cue describes the relative size of the neighboring regions. LowerRegion compares the relative locations of the
center of masses of the two regions. The Convexity cue captures the relative convexity of the two neighboring regions. Convexity is
defined as the probability that a line segment connecting two points in a region lies completely within the region. The six panels at the right
demonstrate the information captured by each cue at two different scales. The base of each colored line segment along the boundary
marks the point on the contour at which the cue was computed and points towards the predicted ground region. The length of the line
indicates the relative magnitude of the cue. The cues of size, lower region, and convexity are indicated with red, blue, and green,
respectively.

Journal of Vision (2007) 7(8):2, 1–9 Fowlkes, Martin, & Malik 2



boundary of a test figure at two different scales of
analysis. These local cues are not always in agreement
with our global percept. Along the top of the bear’s nose,
all three cues correctly predict the bear-shaped segment as
figural, whereas at the bottom of the bear’s leading foot,
Size and Convexity correctly indicate the foot as figural,
but LowerRegion gives a contradictory response. At a
small scale, Convexity suggests that the space between the
bear’s legs is figural but reverses at a larger scale.

Acquiring ground-truth labels

To understand how often each cue provides the correct
prediction, we compiled ground-truth figural assignments
for contours in a collection of 200 images depicting a
wide variety of indoor and outdoor scenes containing
manmade and natural objects, including humans and other
animals. These 200 images were chosen at random from
the set of 1,000 hand segmented images in the Berkeley

Segmentation DataSet (Martin, Fowlkes, Tal, & Malik,
2001). A segmentation of each image was selected
randomly from the set of five available color segmenta-
tions to provide ground-truth contour locations. The
images and annotations are available online (http://www.
cs.berkeley.edu/projects/vision/grouping/segbench).
Human subjects were asked to indicate, for each pair of

abutting segments in an image, which region was figural and
which was ground. Figure 2 shows a typical example of the
labeling process where a subject has assigned each contour
in turn yielding a complete labeling of the image. Subjects
also had the option of indicating that a given contour was
the result of a change in albedo or surface normal and
hence “belonged” to both neighboring regions.
The figure–ground labeling was carried out by 10

subjects who were naive to the experimental purpose. Each
of the 200 segmented images was presented at a resolution
of 481 � 321 pixels on a typical computer monitor.
Subjects were not asked to label contours whose length
was less than 2% of the image diagonal. There were no time
constraints imposed on the labeling task.

Figure 2. Acquiring figure–ground labels. Human subjects labeled each contour in an image, indicating to which region it “belongs”.
Starting from a segmentation of the original image (left), subjects were presented with a sequence of highlighted contours corresponding
to each pair of neighboring regions (center). The subject indicated which of the two regions was the figural element. The reported figural
region is displayed here with a red tint, ground with a blue tint. Subjects also had the option of attributing a boundary to a change in
surface albedo or a discontinuity in the surface normal. Such a boundary, exemplified by the corner between the building and earth,
marked in green, was seen as belonging to both segments. Once all the contours had been labeled, the subject was presented with the
final labeling (right) and given the opportunity to fix any mistakes.
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Each contour in the dataset was labeled by two different
human observers. A consistency check of the human labels
shows that observers agreed on the figure–ground/albedo
labeling for 83.9% of the contour points sampled. Of the
remaining 16.1%, 12.3% involved one subject marking
figure–ground and the other marking albedo, whereas 3.7%
had conflicting figure–ground assignments.
For use in the following experiments, 10% of the

contour points were sampled from the 400 labelings, for a
total of 285,000 points. We did not utilize those 40,000
points that were labeled as lying on albedo boundaries.
Points that were within two thirds of the largest analysis
window radius from a junction between three or more
segments or an image border were also excluded, leaving
50,000 points for analysis at all scales. On this restricted
set of points, humans agreed on the labeling 96% of the
time. Inconsistently labeled points were included in our
analysis with the label chosen randomly, establishing an
upper bound of 96% on classification accuracy.

Results

Figure 3 shows the empirical distribution of cue
responses at a single scale (r = 5% contour length) for
50,000 points sampled from the human-labeled bounda-
ries. We plot only distributions for positive values of each
cue. Because every boundary point contributes two values
of equal magnitude and opposite sign, the distributions of
negative values are identical with the roles of figure and
ground reversed. Note that the marginal distribution of
contour orientations is not uniform. The greater preva-
lence of horizontal (LowerRegion = 1) and vertical
(LowerRegion = 0) boundaries is consistent with previous
results on the statistics of brightness edges in natural
images (Switkes, Mayer, & Sloan, 1978).
These histograms show that figural regions in natural

scenes tend to be smaller, more convex, and lie below the
ground regions. For example, when the sizes of the two
regions are the same, Size(p) = log(Area1/Area2) = 0, they
are equally likely to be figure. When one region is larger,
Size(p) 9 0, it is more common that the larger region is
ground. All three cues uniformly differentiate figure and
ground on average, in agreement with psychophysical
demonstrations of the corresponding Gestalt cues
(Kanizsa & Gerbino, 1976; Metzger, 1953; Rubin,
1921; Vecera et al., 2002). At 5% contour length, we
estimate the mutual information (Cover & Thomas,
1991) between each cue and the true label to be 0.047,
0.075, and 0.018 bits for Size, LowerRegion, and
Convexity, respectively.
To further gauge the relative power of these three cues,

we framed the problem of figure–ground assignment as a
discriminative classification task: “With what accuracy
can a cue predict the correct figure–ground labeling?”

Figure 3. The statistics of local figure–ground cues in natural
scenes. Each histogram shows the empirical distributions of
Size(p), LowerRegion(p), and Convexity(p) for 50,000 points
sampled from human-labeled contours in 200 natural images
computed over a window with radius r = 5% contour length.
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For individual cues, it is clear from Figure 3 that the
optimal strategy is to always report the smaller, more
convex, or lower region as figure. To combine multiple
cues, we fit a logistic function,

P figurekc pð Þð Þ ¼ 1

1þ ej"TcðpÞ ; ð1Þ

which takes a linear combination of the cue responses at
point p, arranged into vector c(p) along with a constant
offset, and applies a sigmoidal nonlinearity. The classifier
outputs a value in [0, 1] that is an estimate of the
likelihood that a segment is figural. In the classification
setting, we declare a segment to be figure if this likelihood
is greater than 0.5. The model parameters " were fit using
iteratively reweighted least squares to maximize the
training data likelihood (Hastie, Tibshirani, & Friedman,
2001). We also considered models that attempted to

exploit nonlinear interactions between the cues, such as
logistic regression with quadratic terms and nonparametric
density estimation, but found no significant gains in
performance over the simple linear model.
Figure 4 shows the correct classification rate as a

function of the analysis window radius for different
combinations of cues. Values in the legend give the best
classification rate achieved for each combination of cues.
The performance figures suggest that all three cues are
predictive of figure–ground, with Size being the most
powerful, followed by LowerRegion and Convexity.
Combining LowerRegion and the Size cues yields better
performance, indicating that independent information is
available in each. The addition of Convexity when Size is
already in use yields smaller performance gains because
these two cues are closely related: A locally smaller
region tends to be locally convex.
We found that increasing context past 25% contour

length did not further improve the model performance.
In fact, computing the relative Size, Convexity, and
LowerRegion at the level of whole segments (100% context)
yielded lower correct classification rates of 56.9%, 55.4%,
and 59.5%, respectively. One explanation for the worse
performance of global Size and Convexity is that natural
scenes typically involve many interacting objects and
surfaces. Object A may occlude object B, creating a
contour whose local convexity cue is consistent with the
figure–ground layout. However, the global convexity of the
region composing A may well be affected by its relation to
other objects C, D, E, and so forth, in a manner that is
largely independent of the figure–ground relation between
A and B.
At the most informative window radius, our combined

model achieved a 74% correct classification rate, falling
short of the human labeling consistency (96%). This is
likely due to several sources of information absent from
our local model that could have been exploited by human
subjects viewing a whole image during labeling. First,
integration of local noisy measurements along a contour
should yield a consistent label for the entire contour. Our
feed-forward approach does not assume that grouping of
contours has taken place before figure–ground binding
begins. Second, we exclude junctions from our analysis.
Junctions embody important information about the depth
ordering of regions; however, they are quite difficult to
detect locally in natural scenes (McDermott, 2004). Third,
human subjects have access to important nonlocal and
high-level cues such as symmetry (Bahnsen, 1928),
parallelism (Metzger, 1953), and familiarity (Peterson,
1994; Rubin, 1921), which we have not considered here.
Lastly, our model only utilizes the shape or configuration
of the abutting regions, with no regard to the luminance
content associated with each one. This ignores important
local photometric evidence such as terminators signaling
occlusion (von der Heydt & Peterhans, 1989) and cues to
three-dimensional geometry such as texture, shading, and
familiarity.

Figure 4. Quantifying the relative power of local figure–ground
cues in natural scenes. The power of individual cues and cue
combinations is quantified by measuring the correct classification
rate, plotted here as a function of window radius. Multiple cues are
combined using logistic regression fit to training data. The error
bars show 1 SD measured over held-out data during 10-fold
cross-validation. The legend gives the highest classification rate
achieved for each combination of cues. The analysis window
radius is measured relative to the length of the contour being
analyzed to make it (approximately) invariant to an object’s
distance from the camera.
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Quantifying the role of local luminance cues

To better understand the role of these unmodeled
information sources, a second group of subjects was
presented with circular patches extracted from the set of
labeled images and asked to indicate which of the two
neighboring regions they judged to be figural. Two
conditions were used: one in which subjects saw the
cropped grayscale image patch and one in which subjects
were presented with only the corresponding cropped
segment map where each region was filled in with a
constant gray level (see Figure 5). These two conditions
deprived the observer of global context or both context
and luminance content, respectively.
Local patches were displayed through a physical aperture

placed in front of a computer monitor. This was done to
prevent the aperture from interfering with the perceived
shape of the regions being viewed, instead giving the
impression that they extended behind the aperture. The
aperture size was fixed with respect to the subject (sub-
tending 7 degrees of arc) and image patches scaled to the
same presentation size. The subject’s head was stabilized
with a chin rest 75 cm from the monitor. Exposure times
were not limited, but subjects usually spent 1–2 s per patch.
Eight hundred contour points for use in the local patch

display experiment were randomly sampled with the same
exclusion criteria as used in collecting statistics (described
above). RMS contrast for the image patches varied widely
from 0.2 to 1.1, depending on the scene. The distribution
of contrast over the patches in our dataset was quite
consistent with that reported by Mante, Frazor, Bonin,
Geisler, and Carandini (2005). Figure–ground was not
significantly correlated with brightness. The average
brightness of the ground segment was greater than that
of the figural segment in 51.5% of the patches sampled.
Each subject labeled all 800 patches, 200 at each of four

levels of context: r = 2.5%, 5%, 10%, and 20% contour
length. Of the eight subjects, four were presented with

image luminance patches; and four, with segment-only
displays. None of the subjects presented with luminance
patches had previously seen the images used. For the
segment-only display, subjects indicated which side was
figural (black or white). In the luminance display, the
image patch was overlaid with a red and blue tint to
unambiguously specify the contour location.
The gray level or tint assignment was randomized over

trials. Subjects showed little bias, choosing the white
region in 51.7% of the segment-only trials and choosing
the blue tinted segment in 56.0% of the luminance trials.
Subjects also showed no significant bias toward the
brighter segment in the luminance display, assigning it
as figure in 50.5% of the trials.
The resulting local classification performance of human

subjects is presented in Figure 6, along with the perfor-
mance of our local configural model on this subset of
patches. We found that, in combination, LowerRegion,
Convexity, and Size cues approach human-level perfor-
mance when only boundary shape information was
available. At 20% contour length, human subjects in the
configuration-only condition averaged 69% correct clas-
sification, whereas the model achieved 68%. Furthermore,
labels assigned by human subjects for a given patch
agreed quite closely with those of the model. On average,
the model prediction matched the subject’s response, both
correct and incorrect, for 79% of the 800 patches
classified. For comparison, pairs of human subjects
averaged 75% agreement on the patch labels in the
configuration-only condition. Tables 1, 2, 3, and 4 in the
Appendix document the performance and level of agree-
ment for individual subjects in both conditions.
Human subjects did make good use of information

contained in the image luminance that was not captured
by the configural cues. At 20% of the object contour
length, access to luminance content decreased the number
of errors by more than a factor of 2 over the configuration-
only presentation. Performance on luminance patches also

Figure 5. Subjects made figure–ground judgments for local stimuli, like those shown, consisting of a cropped disc depicting either region
shape (configuration) or image luminance (configuration + content). In the luminance condition, the two regions on either side of the
contour were distinguished by red and blue tints. The color assignments were randomized over trials, but in this figure, the white/red tinted
segments indicate which region was figural according to the ground-truth labels. Numbers indicate the window radius for each patch as a
percentage of the contour length.
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improved significantly (p G 2 � 10j4 for all subjects) as
the window radius increased from 5% to 20% contour
length.
Figure 5 shows individual image patches for which the

difference in human classification rate without and with
luminance information was particularly large. For each of
these patches, more than two subjects responded correctly
to the luminance content presentation, but more than two
responded incorrectly to the configuration-only presenta-
tion. The jump in human performance when luminance
content is available can be explained by additional local
cues exemplified in the patches shown. These include
terminators created by occlusion of background texture
(first column); three-dimensional shape information avail-
able from shadows, shading, and highlights (second
column); and recognition of familiar materials or objects
based on texture and other internal markings (third and
fourth columns, respectively).

Discussion

Taken together, our results provide a quantification of
the relative amounts of information about figure–ground

assignment provided by local boundary configuration,
local luminance content, and global scene context in
natural scenes. In particular, our simple bottom–up model
appears to sufficiently capture much of the figure–ground
information available from local boundary shape.
Surprisingly, the gap that remains between human

performance on local configurations and whole scenes
appears to be bridged in large part by exploiting
information contained in the local image luminance
content rather than global reasoning. Although restricting
context prevents the utilization of global configural cues
such as parallelism or symmetry, it seems evident from
the patches shown in Figure 5a that “high-level” familiar-
ity or meaningfulness can still function locally alongside
generic “low-level” cues such as texture, shading, and
terminators.
As seen in Figure 1, local figure–ground assignments

along a given contour are by no means consistent. It is
interesting to consider how pooling local measurements
might improve the classification rate by propagating
information outwards from zones of high certainty (e.g.,
Zhaoping, 2005). One difficulty is knowing which local
estimates to pool because detecting and grouping contour
elements are themselves difficult tasks in natural images.
A preliminary study (Ren, Fowlkes, & Malik, 2006)
suggests that for those contours that can be detected

Figure 6. Quantifying the importance of context and content. The correct classification rate and standard deviation across subjects
(n = 4 subjects in each condition) are plotted as a function of context. We also plot the classification performance of our computational
model (S, L, and C) on the same set of local windows, with whiskers marking 1 SD of the sample proportion. The grid line at 0.96 indicates
the level of global labeling consistency in the ground truth figure–ground assignments.
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locally, pooling measurements yields small but noticeable
gains in performance (approximately 5%).
The study of the statistics of natural stimuli has become

an increasingly prominent theme in understanding sensory
information processing. For example, natural image
statistics provide an elegant explanation of the localized
receptive fields found in primary visual cortex in terms of
optimal coding strategies (Atick & Redlich, 1992;
Olshausen & Field, 1996; Ruderman, 1994). The findings
described here are more closely related to a smaller body
of work, starting with Brunswik and Kamiya (1953),
which examines the joint statistics of ground-truth percept
and scene measurements pursued in the context of group-
ing by similarity (Fowlkes, Martin, & Malik, 2003) and
contour completion (Elder & Goldberg, 2002; Geisler,
Perry, Super, & Gallogly, 2001; Ren & Malik, 2002).
Figure–ground organization has a long history in the

field of psychology, where the focus has largely been on
identifying which cues impact perception. Our results
provide a novel perspective on these findings, offering an
explanation as to why such cues exist. An organism that
exploits size, lower region, or convexity as a cue to infer
figure–ground would have an obvious advantage, more
often correctly grasping nearby objects and navigating
through gaps rather than colliding with obstacles. Visual
theorists (Brunswik & Kamiya, 1953; Gibson, 1979) have
sought justification for particular cues in the physical and
statistical regularities of the “external world”. With the
recent availability of large collections of digitized images
and the development of statistical learning techniques,
such theories are now amenable to direct experimental
verification.

Appendix A

The following tables document the agreement between
the model and individual human subjects on local patches.
Tables 1 and 2 show the correct classification rates for each
level of context with configuration only or configuration +
content displays, respectively. Tables 3 and 4 document
the level of agreement on labels assigned by subjects
and the model. The values indicate the percentage of

patches for which both labelers selected the same
figure–ground assignment, regardless of whether or not
it was correct.
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