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Abstract 

Language is a powerful cognitive tool. For example, labeling 
objects or features of problems can support categorization and 
relational thinking. Less is known about their role in making 
inferences about the structure of mathematics problems. We 
test the impact of labeling decimals such as 0.25 using formal 
place value labels (“two tenths and five hundredths”) 
compared to informal labels (“point two five”) or no labels on 
children’s problem-solving performance. Third- and fourth-
graders (N = 104) were randomly assigned to one of three 
conditions (formal labels, informal labels, or no labels) and 
labeled decimals while playing a magnitude comparison game 
and number line estimation task. Formal labels facilitated 
performance on comparison problems that required 
understanding the role of zero, which highlighted place value 
structure. However, formal labels hindered performance when 
explicit understanding of place value magnitudes was 
required. Findings highlight how the language teachers and 
students use can impact problem-solving success.  

Keywords: mathematics; problem solving; labels; decimals  

Introduction 
Previous research suggests language may play a critical role 
in learning and understanding across a variety of domains 
(Fyfe, McNeil, & Rittle-Johnson, 2015; Miura, Okamoto, 
Vlahovic-Stetic, Kim, & Han, 1999; Paik & Mix, 2003). 
Labels in particular have been shown to act as a powerful 
cognitive tool, recruiting processes that support 
categorization and relational thinking. For example, 
providing shared labels encourages children to treat objects 
similarly and categorize (e.g., Gelman & Markman, 1986; 
Graham, Kilbreath, & Welder, 2004). Further, children 
attribute characteristics of ambiguous objects based on their 
categorical label, rather than relying on perceptual features 
of the objects (Gelman & Markman, 1986). In addition to 
supporting categorization, providing shared labels that have 
a relational meaning enables children to map related sets of 
objects (Waxman & Gelman, 1986).	

Much less is known about the role of shared labels in 
making inferences about the structure of mathematics 
problems. Looking for and making use of structure is one of 
eight mathematical practice standards outlined by the 
Common Core State Mathematics Standards (2010). For 
example, mathematically proficient students are able to 
recognize the relationship between place value location and 

the value of a digit (e.g., place values decrease from left to 
right).  

Several indirect pieces of evidence suggest that labels 
may play a role in children’s mathematics understanding. 
First, shared labels facilitated performance on a repeating 
patterns task (Fyfe et al., 2015). Four- to five-year-olds 
solved repeating pattern problems and were exposed to 
either shared, generic labels (e.g., A-B-B-A-B-B) or 
unshared, specific labels (e.g., blue-red-red-blue-red-red). 
Children in the formal labels condition solved more pattern 
problems correctly compared to children in the informal 
labels condition. The abstract pattern problems required 
children to make the same kind of pattern as a model pattern 
by recreating the part that repeats using new materials. The 
shared labels were generic and arbitrary, which may have 
helped reveal the structure in the model pattern and 
generalize it using new materials.  

Second, cross-cultural studies suggest differences in 
number names used in different languages impact 
mathematics performance. English fraction labels lack 
information related to the relational magnitudes they 
represent. In comparison, East Asian languages use verbal 
names for fractions that explicitly represent part-whole 
relations. Cross-cultural research compared how Korean, 
Croatian, and U. S. children performed on a fraction-
identification task prior to receiving formal instruction on 
fractions (Miura et al., 1999). Korean children significantly 
outperformed Croatian and U.S. children, suggesting 
differences in fraction labels impacted performance. 
Additionally, when English-speaking children were 
provided with fraction names that revealed part-whole 
relations in a similar way as Korean fraction labels, they 
outperformed Korean children on a similar fraction-
identification task (Paik & Mix, 2003).  

Thus, providing children with language that carries 
meaningful information and can be shared across multiple 
instances may be one way to support thinking that reveals 
the mathematical structure of problems. The current study 
tested how providing different labels for symbolic decimals 
helps children make inferences about place value structure. 

Labels and Decimal Knowledge 
How would you say the decimal 0.25? Most adults would 
name this decimal using informal “point” language (i.e., 
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point two five or point twenty five). In contrast, when 
children learn to name decimals they are taught to use 
formal place value labels (i.e., twenty five hundredths). 
Teachers might also use decomposed place value labels by 
naming each place value separately (i.e., two tenths and five 
hundredths). The way we describe or label decimals may 
impact how children make sense of these numbers. The 
fractional amounts decimals represent are non-intuitive, and 
as a result, these symbols are often difficult to interpret. In 
an effort to understand, children often treat decimals like 
numbers they have lots of experience with – whole numbers 
(e.g., Stafylidou & Vosniadou, 2004). For example, when 
children are asked to compare decimal magnitudes they 
often think 0.25 is greater than 0.9 because of a whole 
number bias (25 is greater than 9; Resnick et al.,1998).  

Labeling decimals using formal, decomposed place value 
labels might help children understand decimal magnitudes 
for at least two reasons. First, these labels could help reveal 
place value structure. Decomposed place value labels assign 
each digit with an associated value or magnitude, which 
may encourage children to make place value comparisons 
by providing a shared place value label. For example, when 
comparing 0.25 and 0.9, distinct place value labels may 
encourage children to compare 2 and 9 instead of comparing 
25 and 9. Further, providing shared labels promotes 
relational thinking potentially by revealing the mathematical 
structure of problems (Fyfe et al., 2015). Second, these 
labels may help children distinguish decimals from whole 
numbers by reducing a whole number bias.  

There are also compelling reasons to predict that informal 
point labels will aid or harm thinking. In comparison to 
formal place value labels, informal “point” labels that reflect 
familiar language adults use may activate partial 
understanding of decimal magnitudes children acquire 
during everyday experiences. Children are exposed to these 
labels for decimals in everyday environments in which we 
often label decimal amounts, such as reading thermometers 
and discussing weight. Mix et al. (2014) found that children 
as young as 3 years showed surprising understandings of 
multidigit place values on simple tasks focusing on 
mappings between spoken number names to written 
numerals, dots, or block representations. The authors argued 
that these partial understandings were likely acquired 
through statistical learning processes that occur in everyday 
environments rich with multidigit numerals and verbal 
number names. If children develop these partial 
understandings in a similar way with decimal magnitudes, 
labeling decimals using informal, familiar labels could 
activate this knowledge.  

However, using informal labels may harm thinking by 
activating whole number misconceptions. Labeling digits 
using only their number names may encourage children to 
treat decimals like whole numbers. Activating 
misconceptions has been shown to hinder problem-solving 
performance (McNeil & Alibali, 2005), in part because 
children perseverate on using incorrect strategies (Fyfe, 
Rittle-Johnson & DeCaro, 2012). Thus, informal labels may 

encourage a whole number bias that interferes with 
children’s problem-solving success.  

Current Study 
We examined the influence of naming decimals using 
formal, decomposed place value labels compared to 
informal, everyday labels or no labels on children’s decimal 
magnitude problem-solving performance. Decimal 
magnitude knowledge was examined using two main 
performance measures (i.e., magnitude comparison and 
number line estimation) and several follow-up transfer 
tasks. When comparing symbolic decimals, children’s 
success rates and the types of errors they make vary 
depending on features of the symbolic decimals they are 
comparing (e.g., Desmet, Grégoire, & Mussolin, 2010; 
Durkin & Rittle-Johnson, 2015; Resnick et al., 1998). For 
example, children are influenced by the length or number of 
digits (using whole number logic, assume decimals with 
more digits are greater than decimals with fewer digits) and 
the value of the digits (decimals that include zeros as 
placeholders are misunderstood).  

We hypothesized that formal labels would facilitate 
performance on magnitude comparison problems that 
highlight place value structure by including zeros as 
placeholders and problems that require ignoring a whole 
number response. Additionally, we predicted that the 
advantages of informal labels would be counteracted by the 
activation of whole number misconceptions that interfere 
with problem solving. Therefore, we predicted children in 
the informal labels condition would perform similarly to the 
no labels condition.  

Number line estimation was included as a more general 
measure of symbolic mapping knowledge for decimals. We 
hypothesized the same pattern of results for this task as the 
magnitude comparison task but expected effects to be 
weaker given that symbolic mapping knowledge requires 
additional knowledge of the specific quantity represented by 
a given written numeral that may draw more on children’s 
prior knowledge. 

 
Method 

Participants 
Participants were 121 third- and fourth-grade children. A 
pretest was given to identify children who did not already 
demonstrate a high level of decimal magnitude knowledge 
and thus would perform near ceiling regardless of label 
condition. Thirteen were excluded from participation 
because they scored above 75% on the pretest measure. 
Four additional children were excluded from analysis 
because they had diagnosed learning disabilities. The final 
sample included 104 children (M age = 9 yrs, 7 mos; 56% 
female; 26% ethnic minorities). 

Design and Procedure 
Children completed a brief pretest in their classrooms and 
participated in a single individual session lasting 
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approximately 40 minutes. Children were randomly 
assigned to one of three conditions: formal labels (n = 56), 
informal labels (n = 55), or control (n = 56). The only 
difference between conditions was the labels the 
experimenter and children used to name decimals during the 
decimal comparison game and number line task. The 
remaining transfer tasks were administered without using 
any labels. All tasks were presented on a laptop computer 
with the exception of the decimal comparison card game. 
The experimenter read aloud each question and recorded the 
child’s verbal response. 

Materials 
Pretest An abbreviated version of a validated assessment 
measured children’s decimal magnitude knowledge (Durkin 
& Rittle-Johnson, 2015). Sample items included comparing 
decimal magnitudes (e.g., circle the decimal that is greater), 
identifying decimals worth the same amount (e.g., 0.5 and 
0.50), writing a decimal that comes between two decimals 
(e.g., 0.4 and 0.5), and locating decimals on number lines. 

 
Decimal Comparison Game The decimal labels 
manipulation occurred while children played a decimal 
magnitude comparison game (e.g., which decimal is 
greater?). The game had the same rules as the card game 
War. Children played the game with the experimenter using 
a deck of decimal cards, and the player with the greater 
decimal won each round. Children read aloud the decimal 
labels printed on the cards before choosing the greater 
decimal. The printed labels were removed halfway through 
game play to give children an opportunity to practice 
generating the decimal labels on their own with feedback 
from the experimenter. During game play, children 
compared the magnitudes of 40 pairs of decimals. Pairs 
were designed to reveal different levels of understanding 
based on previous research that has identified common 
errors children make when comparing decimal magnitudes 
(Desmet, Grégoire, & Mussolin, 2010; Durkin & Rittle-
Johnson, 2015; Resnick et al., 1998). Comparisons fell into 
three different categories. On benchmark comparisons (n = 
5), children compared a decimal to a familiar 0 or 1 
benchmark. The second comparison type included 
congruent and incongruent pairs (n = 17). Congruent 
comparisons can be solved correctly by comparing decimals 
as whole numbers (e.g., 0.68 and 0.2; n = 7), whereas 
incongruent comparisons cannot be solved correctly using 
whole number rules (e.g., 0.51 and 0.8; n = 10). Finally, role 
of zero comparisons included decimals with a zero in either 
the tenths or hundredths place. Children often apply rules 
for the role of zero in whole numbers to decimals. For 
example, children ignore a leading zero (e.g., 0.04 is the 
same amount as 0.4) and think a trailing zero increases a 
decimal’s magnitude (e.g., 0.40 is greater than 0.4). Eleven 
of these pairs had identical non-zero digits (e.g., 0.40 and 
0.4 or 0.09 and 0.9). The remaining 7 pairs had different 
non-zero digits and a zero in the tenths place only (e.g., 0.07 
and 0.1 or 0.8 and 0.02), so competing strategies of either 

comparing the digit values or comparing the length of the 
decimals could be used. 

 
Decimal Number Line Estimation To measure magnitude 
knowledge, a 0-1 decimal number line task was created (18 
trials; adapted from Siegler, Thompson, & Schneider, 
2011). Children were instructed to name each decimal 
according to their assigned label condition before placing 
the decimal on the number line. The decimals were taken 
from previous work and included decimals with one or two 
digits (Rittle-Johnson, Siegler, & Alibali, 2001). Percent 
absolute errors (PAE) were calculated reflecting the 
absolute difference between the student’s estimate and the 
correct location. Lower PAEs indicate more accurate 
estimates. Each child received an average PAE score across 
all 18 trials. Because children are often influenced by the 
number of digits a decimal has, we calculated an average 
PAE score for hundredths trials (e.g., 0.46; n = 5) and for 
tenths trials (e.g., 0.2; n = 5). An average PAE score was 
also calculated for the remaining 8 trials that included 
decimals with a zero in the tenths or hundredths place (e.g., 
0.40 and 0.09) because children often experience confusion 
about the role of zero. 
 
Decimal Comparison Transfer Decimal comparison 
transfer items (n = 10; adapted from Durkin & Rittle-
Johnson, 2015; Rittle-Johnson, Siegler, & Alibali, 2001) 
included problems with decimals that included digits in 
either the thousandths or ones places, which children were 
not exposed to during the comparison game. Half of the 
problems were comparisons involving the role of zero (e.g., 
3.3 and 3.300).  

 
Place Value Two items assessed children’s place value 
knowledge as used in Rittle-Johnson et al. (2001). These 
items were administered after the labels manipulation had 
occurred to determine if using formal labels helped children 
understand place value concepts. One item presented the 
number 413.728 and asked how much the 2 was worth from 
a list of 5 choices: 0.2, 2 tenths, 2 hundredths, 2 tens, or 2 
hundreds. The second item asked how many tenths were in 
30 hundredths. 
 
Additional Measures Several additional items (n = 13) 
were included for exploratory purposes. Due to poor 
reliability and few condition differences, results are not 
reported for these measures. 

Analysis and Results 
To examine children’s performance on the primary outcome 
measures (performance on decimal comparison game, 
decimal number line estimation accuracy, and decimal 
comparison transfer), a series of ANCOVAs with condition 
as a between-subject variable were performed. Specifically, 
condition was dummy coded with formal labels and 
informal labels entered into the models, and no labels as the 
reference group. In all models, children’s age, grade, and 
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their score on the pretest were included as covariates. 
Preliminary analyses revealed no interactions with age, 
grade, or pretest scores so these interaction terms were not 
retained in the final models. 

Pretest 
On the pretest, children answered a minority of problems 
correctly (M = 32% correct, SD = 14%). Importantly, there 
were no differences by condition at pretest, F < 1. 

Decimal Comparison Game Performance 
Across conditions children solved about half of the decimal 
magnitude comparison problems correctly (see Table 1). 
There were no significant effects between any of the label 
type conditions for overall performance, F’s < 2.5. Children 
performed above chance (33%), t(103) = 7.05, p < .001, but 
condition differences were not reliable. Comparison types 
were designed with common errors and misunderstandings 
in mind, and some comparisons could be solved correctly 
using whole number rules. Thus, we compared performance 
on the three comparison types.  
 

Table 1: Summary of Performance by Condition 
 

 
As expected, children’s percent correct on benchmark 

comparisons was high and similar across conditions (F’s < 
1; see Table 1). Children across all three conditions were 
also successful on congruent comparisons that could be 
solved correctly using a whole number rule (e.g., 0.62 and 
0.2; F’s < 1; see Table 1). However, for incongruent 
comparisons in which a whole number rule produced an 
incorrect answer (e.g., 0.51 and 0.8), children’s percent 
correct with formal labels was highest and lower with 
informal and no labels (see Table 1). These condition 
differences were not reliable, though. Children in the formal 
labels condition performed at chance (33%), t(34) = -.26, p 
= .80, but children in the informal labels and no labels 

conditions performed significantly below chance, t(33) = -
3.56, p = .001 and t(34) = -2.91, p = .006, respectively.  

Children’s percent correct on role of zero comparisons 
with identical non-zero digit values (e.g., 0.40 and 0.4) was 
highest with formal labels and lower with informal and no 
labels (see Table 1). There was a significant effect of formal 
labels relative to no labels, F(1, 98) = 4.94, p = .03, ηp

2 = 
.05, and no effect of informal labels relative to no labels, p = 
.72. A follow-up analysis revealed a significant effect of 
formal labels relative to informal labels, F(1, 98) = 6.55, p = 
.01, ηp

2 = .06. Children’s accuracy on role of zero 
comparisons with different non-zero digits (e.g., 0.07 and 
0.1) was highest with no labels, lower with informal labels, 
and lowest with formal labels (see Table 1). There was a 
significant, negative effect of formal labels relative to no 
labels, F(1, 98) = 7.50, p = .01, ηp

2 = .07. There was no 
significant effect of informal labels relative to no labels, p = 
.21, or between the two label types, p = .15.  

To understand the negative effect of formal labels relative 
to no labels, we examined performance on problems where 
the correct answer can be achieved using whole number 
rules. On 4 of these 7 problems, ignoring a zero and 
choosing the decimal with the greater digit results in the 
correct answer (e.g. 0.03 and 0.4). Children’s percent 
correct on these 4 problems was highest in the control 
condition (M = 91%, SD = 38%), lower in the informal 
labels condition (M = 79%, SD = 37%), and lowest in the 
formal labels condition (M = 55%, SD = 42%). There was a 
significant, negative effect of formal labels relative to no 
labels, F(1, 98) = 17.64, p < .01, ηp

2 = .15. There was no 
significant effect of informal labels relative to no labels, p = 
.20. A follow-up analysis revealed a significant, negative 
effect of formal labels relative to informal labels, F(1, 98) = 
8.25, p = .01, ηp

2 = .08. On the remaining 3 problems, the 
correct answer could not be obtained by ignoring a zero and 
using whole number rules (e.g., 0.07 and 0.1). Children’s 
percent correct on these problems was highest in the formal 
labels condition (M = 31%, SD = 41%), lower in the control 
condition (M = 24%, SD = 38%), and lowest in the informal 
labels condition (M = 18%, SD = 34%), but condition 
differences were not reliable, F’s <1.64. 

Comparison Game Performance Summary	Performance 
on difficult incongruent and role of zero comparisons 
revealed some positive but mixed effects of providing 
formal labels. Formal labels led to higher performance on 
role of zero comparisons that isolate place value, but only 
when there was no competing digit value information (i.e., 
only for problems that had identical non-zero digits). For 
role of zero comparisons that had different non-zero digits, 
formal labels led to lower performance, potentially by 
reducing a whole number bias that led to the correct answer. 

Number Line Estimation Accuracy 
Overall, children’s estimations of decimal locations on the 
number line were inaccurate (see Table 1). There was an 
unexpected significant, negative effect of formal labels 

Task Formal 
M (SD) 

Informal 
M (SD) 

Control 
M (SD) 

Comparison Game 
Accuracy .53 (.25) .44 (.18) .47 (.20) 

Benchmark  .74 (.28) .71 (.27) .71 (.28) 
Congruent .91 (.26) .96 (.18) .94 (.21) 
Incongruent .31 (.43) .14 (.31) .16 (.35) 
Role of zero    

Same digits .43 (.38)* .20 (.34) .24 (.39) 
Different digits .45 (.38)* .53 (.28) .62 (.21) 

Number Line Est. PAE 20 (12)* 18 (6) 16 (4) 
Tenths 30 (16) 36 (13) 35 (13) 
Hundredths 13 (10) 10 (8) 9 (5) 
Role of zero 18 (17)* 11 (11) 8 (5) 
Comparison Transfer 
Accuracy .48 (.16)* .39 (.13) .43 (.12) 

Congruent & Incong. .42 (.19) .39 (.13) .38 (.12) 
Role of zero .54 (.18)* .39 (.18) .47 (.21) 
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relative to no labels, F(1, 98) = 5.22, p = .03, ηp
2 = .05. 

There was no significant effect of informal labels relative to 
no labels and no significant effect between the two label 
types, p’s > .21. To understand the negative effect of formal 
labels relative to no labels, we examined performance on 
trials in which children may have been influenced by the 
number of digits in a decimal and could have experienced 
confusion about the role of zero. 

Children’s estimates were least accurate for one-digit 
decimals that only included tenths, suggesting these were 
the most difficult trials (see Table 1). There were no 
significant effects between any of the three label type 
conditions, p’s > .10. Children’s estimates for two-digit 
decimal hundredths trials were more accurate than estimates 
for tenths trials (see Table 1), but condition differences were 
not reliable for these trials. Children’s PAE for two-digit 
decimal role of zero trials were similar to hundredths trials 
(see Table 1). There was a significant, negative effect of 
formal labels relative to no labels, F(1, 98) = 12.56, p < .01, 
ηp

2 = .11. There was no significant effect of informal labels 
relative to no labels, p = .22. A follow-up analysis revealed 
a significant, negative effect of formal labels relative to 
informal labels, F(1, 98) = 5.16, p = .03, ηp

2 = .05. 
In general, formal labels impeded children’s ability to 

accurately estimate the location of decimals on a 0-1 
number line. This negative effect of formal labels was 
strongest for role of zero trials and was not present for the 
most difficult tenths trials. 

Decimal Comparison Transfer 
Performance across conditions was low on transfer 
magnitude comparison problems, although performance was 
significantly above chance (33%), t(103) = 7.43, p < .001 
(see Table 1). There was no significant effect of either label 
type relative to no labels, p’s > .14. A follow-up analysis 
revealed a significant effect of formal labels relative to 
informal labels, F(1, 98) = 5.16, p = .03, ηp

2 = .05.  
 We also examined performance on congruent and 
incongruent comparisons and role of zero comparisons. For 
congruent and incongruent comparisons, there were no 
effects between any conditions, p’s < .31. For role of zero 
comparisons, there was no significant effect of either label 
type relative to no labels. A follow-up analysis revealed a 
significant effect of formal labels relative to informal labels, 
F(1, 98) = 9.60, p < .01, ηp

2 = .09.  

Place Value Knowledge 
Despite exposure to formal place value labels, only a quarter 
of the children in the formal labels condition were able to 
use the learned labels to correctly identify the hundredths 
place value (26%). A similar percentage of children in the 
informal labels condition (18%) and the no labels condition 
(6%) were successful on this item, χ2 (2, N = 104) = 5.18, p 
= .08.  
 Children were much more successful at determining how 
many tenths were in 30 hundredths. More children in the 
formal labels condition answered this item correctly (69%) 

compared to children in the informal labels condition (38%) 
and no labels condition (43%), χ2 (2, N = 104) = 7.43, p = 
.02. Thus, formal labels seemed to reveal place value 
structure, as evidenced by understanding the relationship 
between tenths and hundredths. 

Discussion 
While shared labels have been shown to support 
categorization and relational thinking (e.g., Gelman & 
Markman, 1986; Waxman & Gelman, 1986), less is known 
about their role in making inferences about the structure of 
mathematics problems. Several indirect pieces of evidence 
suggest that labels play a role in mathematics understanding 
(e.g., Fyfe et al, 2015; Miura et al., 1999; Paik & Mix, 
2003).  

We found that naming decimals using formal, 
decomposed place value labels had mixed effects on 
decimal magnitude problem solving performance. Children 
who learned to name decimals using formal labels (e.g., 
“two tenths and five hundredths”) compared to informal 
labels (e.g., “point two five”) or no labels were better able to 
solve decimal magnitude problems that required 
understanding the role of zero. In particular, they solved 
slightly more incongruent magnitude comparison problems 
correctly (e.g., Which decimal is greater, 0.51 or 0.8?), 
solved more role of zero comparison problems correctly 
with decimals that had identical non-zero digits (e.g., Which 
decimal is greater, 0.4 or 0.40? 0.09 or 0.9?), and were 
better able to determine the relationship between tenths and 
hundredths. In part, they may have been less likely to treat 
decimals as whole numbers compared to children in the 
informal and no labels conditions. 

However, there were unexpected negative effects of 
formal labels compared to informal and no labels. Their 
performance was lower on role of zero magnitude 
comparison problems and number line estimation problems 
that required explicit knowledge of how much tenths and 
hundredths are worth. This decrement in performance 
compared to the informal and/or no labels conditions on 
some tasks may reflect a transitional phase when children’s 
performance becomes worse before it becomes better (e.g., 
“U-shaped development”; McNeil, 2007; Namy et al., 2004; 
Siegler, 2005). As children learn that their way of thinking 
only sometimes leads to correct solutions, they begin to 
reject that way of thinking; however, rejecting an old way of 
thinking and generating new, correct ways of thinking are 
separate processes that develop over time (Siegler, 2005), so 
children’s performance can get worse before it gets better. 
Noticing place value structure seems to reflect a kind of 
transitional knowledge important for developing decimal 
magnitude knowledge. Indeed, understanding the role of 
zero as a placeholder was found to reflect an intermediate 
level of decimal magnitude knowledge (Resnick et al., 
2016). Further, correctly naming decimals using place value 
language is predictive of symbolic-mapping knowledge for 
decimals two years later (Mazzacco & Delvin, 2008). 
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Compared to formal place value labels, using informal 
labels could have activated contextual knowledge children 
acquire through everyday experiences (e.g., Mix et al., 
2014). Unfortunately, the tasks used in the current study 
may not have been suitable for revealing this type of 
knowledge. In general, children in the informal labels 
condition performed similarly to those in the control 
condition. There was some concern that informal labels 
might activate whole number misconceptions. Children in 
the informal labels condition performed somewhat worse 
than children in the no labels condition on transfer role of 
zero magnitude comparisons. However, in general informal 
language did not seem to activate misconceptions more so 
than no labels.  
 In conclusion, findings from the current study extend 
previous research on the role of language in mathematics 
learning, and more specifically the use of labels to reveal the 
mathematical structure of problems (Fyfe et al., 2015). 
Identifying mathematically meaningful labels may be a 
powerful first step in the process of impacting students’ 
problem-solving behavior and understanding. 
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