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Automated Defect Identification in
Electroluminescence Images of Solar Modules

Xin Chen ∗, Todd Karin ∗, Anubhav Jain ∗

∗Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A

Abstract

Solar photovoltaic (PV) modules are susceptible to manufacturing defects, mishandling problems or extreme weather events
that can limit energy production or cause early device failure. Trained professionals use electroluminescence (EL) images to
identify defects in modules, however, field surveys or inline image acquisition can generate millions of EL images, which are
infeasible to analyze by rote inspection. We develop a rapid automatic computer vision pipeline (∼0.5 seconds/module) to analyze
EL images and identify defects including cracks, intra-cell defects, oxygen-induced defects, and solder disconnections. Defect
identification is achieved with a machine learning model (Random Forest, ResNet models and YOLO) trained on 762 manually-
labeled EL images of PV modules. We compare model performance on an imbalanced real-world validation set containing 134 EL
images and determine that ResNet18 and YOLO are the optimal models; we next evaluated these models on a dedicated testing
set (129 module images) with resulting macro F1 scores of 0.83 (ResNet18) and 0.78 (YOLO). Using a field EL survey of a PV
power plant damaged in a vegetation fire, we analyze 18,954 EL images (2.4 million cells) and inspect the spatial distribution of
defects on the solar modules. The results find increased frequency of ‘crack’, ‘solder’ and ‘intra-cell’ defects on the edges of the
solar module closest to the ground after fire. We also find an abnormal increase of striation rings on cells which were assumed
to be caused mainly in fabrication process. Our methods are published as open-source software. It can also be used to identify
other kinds of defects or process different types of solar cells with minor modification on models by transfer learning.
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I. INTRODUCTION

With the continuing push toward higher performance and reliability of photovoltaic (PV) modules to enable the energy
transition, diagnostic tools to assess module damage during manufacturing, installation or operation are becoming ever more
important. Electroluminescence (EL) imaging is a fast, non-destructive and established method for detecting defects in solar
modules [1], [2], [3], [4]. Although EL images can be acquired very quickly on the ground or by drone [5], it takes a trained
professional 10-30 seconds to analyze each resulting image, severely limiting the number of modules that can be inspected.
Further, different examiners can make different conclusions from the same dataset, limiting the extent to which comparisons
can be made [6].

As machine learning has become increasingly fast and accurate, it is now possible for computers to perform tasks that
would otherwise require a large labor expenditure. Previous research has shown that the application of computer vision and
machine learning has significant potential in the analysis of EL images, for example using independent component analysis [7],
anisotropic diffusion filter followed by support vector machine (SVM) [8], random forests [9], [10], etc. Ever since around
2010, convolutional neural networks (CNNs) have been significantly developed and widely used in image classification and
object detection, e.g., AlexNet [11], VGG [12], ResNet [13] and YOLO [14], [15]. The automatic feature engineering and
outstanding performance trigger an increasing trend of application of CNN models in EL image analysis.

Deitsch et al. [16] performed one of the earliest studies of applying CNN models to EL image analysis. The authors trained
a CNN model with an accuracy of 88.42%, which exceeded the performance of an SVM model utilized in their paper. The
authors also published their data set consisting of 2,624 cell images as a benchmark [17], [18]. Based on this public data
set, Akram et al. [19] utilized data augmentation and designed a light CNN model with 93.02% accuracy. However, all these
models can only perform binary classification (‘functional’ or ‘defective’) without determining the specific defect categories.

Karimi et al. [10] designed an end-to-end pipeline to process EL images. In the pipeline, modules in raw EL images were
first transformed and cropped into individual cell images automatically. They then trained three models, including random forest
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Fig. 1. The process of the automatic pipeline.

(RF), SVM, and CNN to classify cells into three categories: ‘good’, ‘cracked’ and ‘corroded’. The CNN model outperformed
other models with a 99.71% accuracy on their own testing set. The automatic preprocessing tool is impressive. However, the
background in their images is relatively clean and free of other objects, so the tool requires further testing on field images with
complex backgrounds. Karimi et al. [20] also did unsupervised learning to cluster EL images into degraded and non-degraded
categories.

Tang et al. [21] utilized a generative adversarial network (GAN) to expand the training set of a limited sample size. Their
CNN models were trained on the generated images, and high accuracy (over 80%) was obtained for detecting ‘defect-free’,
‘micro-crack’, ‘finger-interruption’ and ‘break’ categories. They also compared the performance of various CNN models,
including VGG16, ResNet50, Inception V3 and MobileNet using transfer learning.

Apart from the image classification technique, object detection is also applied in EL image analysis [22], [23], [24]. Object
detection can not only identify different defects but also localize the position of defects with bounding boxes. Zhao et al. [23]
trained a CNN model to localize 14 types of defects, achieving a mean average precision of 70.2%. Meng et al. [24], based
on YOLO model, designed YOLO-PV with 94.55% of average precision and 35 fps interference speed.

Semantic segmentation is also applied to detect defects on pixel-level. Mayr et al. [25] used ResNet50 as backbone and
normalized Lp layer to segment cracks from cell images. Fioresi et al. [26] utilized a Deeplabv3 model with ResNet50 backbone
to segment cracks and achieved a weighted F1-score of 0.95.

While summarizing the progress in automatic analysis of EL images, we find that there are still demands for further
exploration from various aspects: (1) Most of the work mentioned above focused on training a classification/object detection
model. However, data preprocessing requires further attention, especially for field images with a poor background obstructing
the automatic transformation from raw EL images to individual cell images. (2) Object detection methods are impressive for
localizing defects, but it remains unknown whether its performance in identifying defects is competitive with classification
models. (3) Most tools developed in the papers are not open-source and cannot be readily tested or applied.

In this paper, we developed an open-source pipeline to analyze EL images of PV modules. As an overall dataset, we used
19,228 EL images of solar modules (16× 8 cells) from a 50 MW DC power plant located in Southern California, with data
acquired and provided by PV Evolution Labs (PVEL) [27]. We focused our analysis on four key defects: cracks, striation
defects, intra-cell defects and solder disconnection. The variety of EL images observed for each defect type makes this a prime
problem addressable with machine learning tools.

This paper presents the image preprocessing tools and the two methods for defect identification. Image preprocessing first
uses deep learning to detect the contour of the tilted solar modules in the EL images and perform perspective transform; it
subsequently crops out single solar cells. We investigated two strategies of identifying defects: object detection and classification.
The object detection method starts with an image of an entire solar module and puts a bounding box on each defective cell (i.e.,
the object to identify). The classification method begins with an image of a single PV cell and classifies the cell into a category
(e.g., intact cell, cracked cell, cell with solder disconnection, etc.). We trained the YOLO [15] model for object detection
and ResNet18, ResNet50 and ResNet152 [13] models for classification. We also trained a Random Forest (RF) classifier as a
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Category Intact Crack Oxygen Intra-cell Solder

Image

Training
762 modules

95048
97.44%

1367
1.40%

709
0.73%

279
0.29%

143
0.15%

Validation
134 modules

16618
96.87%

345
2.01%

127
0.74%

47
0.27%

18
0.10%

Testing
129 modules

16082
97.4%

244
1.48%

126
0.76%

45
0.27%

17
0.10%

TABLE I
IMAGES OF CELLS WITH DIFFERENT DEFECTS AND DEFECT TYPE BREAKDOWN IN THE TRAINING, VALIDATION AND TESTING SET.

baseline.
We compared the model performance on the real-world dataset and quantified the performance using recall, precision, F1

score and F2 score [28]. We further applied the YOLO model on all 18,954 successfully transformed EL images (around 2.41
million cells) of solar modules in the overall dataset. We presented the distribution of the defective cells detected by the YOLO
model and found that cracks, solder disconnection and intra-cell defects are more prevalent on the two shorter edges of the
PV module. We also found an abnormal increase of striation defects.

A schematic of the analysis pipeline as mentioned above is depicted in Figure 1. Whether the object detection or classification
method is best depends on the demand of the users; their accuracy is similar. For object detection, the solar modules do not
need to be segmented into single solar cells and bounding box can be directly viewed on solar modules. For cell classification,
single cells need to be cropped out from the module images but the classification costs less computing resource. The ‘module
classification’ in the final step is based on the number of different defects in the solar modules. The criterion is given by the
users.

In summary, the main contributions of this paper are:
(1) We published an open-source pipeline that includes preprocessing, classification/detection and post-processing.
(2) Our tools can handle field images with a complex background (e.g., vegetation, racks, other modules). Most of other

papers report results on images with a clean background (totally dark background or with very little noise).
(3) We compared the performance of classification and object detection neural networks on our validation set.
(4) We applied our pipeline to field images to find potentially new phenomena (the abnormal growth of striation defects)

using a large data set affected by fires (2.41 million cells).
The remainder of this paper is organized as follows: Section II presents the description of our dataset. Section III provides

details of image preprocessing tools and models. Section IV shows the results of our processing pipeline and the comparison
of various models’ performance. Position distribution of defects from big data is also presented in this section. The conclusions
and outlook are given in section V.

The algorithms and trained models developed in this paper are available as part of the pv-vision open source software [29].

II. DATASET

Our dataset is composed of 19,228 EL images of interdigitated back contact (IBC) solar modules (16× 8 cells). Each raw
image has a size of 640× 512 pixels. Our perspective transform tool finds the target module and transforms it into a module
image with a size of 600 × 300, as shown in III. This dataset is the result of a field survey performed to determine which
modules to replace after a vegetation fire occurred beneath the modules in the plant. The EL images were acquired during
daytime using an InGaAs camera and lock-in detection using the commercial DaySy system [30].In this research, we focused
on four categories of defects: cracks, striation rings caused by oxygen impurities during fabrication, intra-cell defects caused by
series resistance to metal contacts or alternate carrier recombination pathways and defects caused by solder disconnection [31].
Cells with other features are considered as intact class. For instance, some cells may have potential induced degradation but
we still label them as ‘intact’ because they do not contain one of the target defect types. Examples of the identification of
these defects from the EL image is shown in Table I. The ‘oxygen’ category denotes the striation-ring defects.

18,954 images of the whole dataset could be successfully transformed by our image preprocessing tools and were used for
further investigation. Among these 18,954 modules, 129 of them are in control group that were placed in the same installation,
but at a different part of the plant that wasn’t hit by the fire. The remaining 18,825 modules were influenced by fire. Because
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(a) (b)

(c) (d)

Fig. 2. (a) Example EL image of PV module. (b) Mask of the target module predicted by the UNet model and corners detected in the mask (c) Solar module
after perspective transform. Bounding boxes identifying defects predicted by YOLO model are shown. (d) A different transformed solar module where the
edge cells are dark.

we are interested in the effect of fire on this 1-in-portrait single-axis tracking system, we attempt to preserve the orientation
of the processed images. Presumably, the entire array was tilted to one direction when the fire occurred, and was also tilted
in a uniform direction when the EL survey was performed. Because the camera is mounted on a tripod, the short edge of the
module that appears larger in the image will be the one closest to the ground during the EL survey. Most images, apart from
602 images, in our dataset have the longer vertical edge aligned on the right side in images. Therefore, we apply a 180 degree
rotation on those images with an opposite direction to obtain a uniform orientation. After the re-orientation, we assume that
the vertical edge on the right side in each image is closer to the ground.

III. METHODS

A. Automatic perspective transform

Figure 2(a) illustrates an example of a raw EL image from the dataset, with the target solar module in the center of the image.
All raw EL images of solar modules were preprocessed by our open-source tools. The module background with vegetations,
racks, and parallel modules makes it difficult to localize the target module and do perspective transformation automatically.
In our pipeline, we first trained a UNet [32] model to do semantic segmentation on the raw image and determine the mask
that covers the target module, as shown in Figure 2(b). 1692 labeled images of modules are sampled at random and fed into
the UNet model. 181 additional images are sampled as the testing set and the Intersection over Union (IoU) score reached
99% (see Supporting Information for more details). The images processed by the UNet model are then processed to perform
perspective correction and cell segmentation. More details of the training and testing of our UNet model for module detection
are presented in the supplementary information (SI).

After the UNet model predcited module masks. we applied an algorithm combining Hough line detection [33] and corner
detection [34] from OpenCV [35] to detect the four corners of the mask. The detected corners are shown in Fig. 2(b). Using
the positions of the four corners, we apply a perspective transformation to generate the aligned image shown in Fig. 2(c). This
transformation ignores the barrel distortion of the image. The size of the transformed image is 600×300 pixels to approximate
the original size of the target module in raw images.
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(a) horizontal slice of module vertical slice of module(b)

(c) (d)

(e) (f)

Fig. 3. Example of detecting the edges of single solar cells. (a)(b) Horizontal and vertical splits of solar modules. Split in (b) is rotated from vertical to
horizontal position in favor of typesetting. (c)(d) Detected peaks on the positions of the edges. (e)(f) Fitted lines of inner edges on solar module.

B. Automatic cell segmentation

To train classifiers (see Method 2 in Figure 1), we need to crop out single cells from the perspective-transformed solar
module. This is performed by splitting the images into different segments along the y-axis (i.e., the vertical axis) with the size
of each split equal to 600 × 10 pixels. An example of one split is shown in Figure 3(a). For each split, we sum the image
in the vertical direction to get the distribution of gray-scale values shown in Fig. 3(c). The gray-scale intensity is normalized
and ranges from 0 (approaching black) to 1 (approaching white). The edges of solar cells are the darkest and appear as dips
in Fig. 3(c). We use ‘signal.find peaks’ tool from Scipy [36] to find the positions of those dips. After we find the positions
of edges of solar cells in each split, we fit those positions to compute a line that represents each edges, shown in Fig. 3(e).
We perform an analogous procedure to find the splits in the horizontal direction, shown in Figure 3(b)(d)(f). Based on the
intersection of these lines, we determine the four corners of each solar cell and crop them out (size of 32 × 32 pixels). The
size is selected to maintain the cell’s original size.

C. Classification and object detection models

To develop the YOLO model and classifiers, 896 images of solar modules were sampled randomly and split into a training
set (762 modules) and a validation set (134 modules). This data is used to evaluate several models and select two models for
further study (a classification approach and an object detection approach). Following model selection, 129 additional images
were sampled randomly for testing and performance evaluation. The ratio of train-val-test is about 7.5:1.5:1. There are five
categories of solar cells labeled in the dataset: ‘intact’ cells, cells with ‘cracks’, cells with ‘oxygen’ induced defects (i.e.,
striation rings), cells with ‘intra-cell’ defects and cell with ‘solder’ issues. The ‘intact’ cells are not labeled as objects to detect
for YOLO model. The annotation is performed on Supervisely [37] by two annotators. The annotation results are cross verified
by each annotator. For the YOLO model, the training data is augmented by vertical flip, horizontal flip, 180-degree rotation,
and random crop. For random crop, the input image is cropped at random to 80% - 95% of its width and 90% - 95% of its
height.

The same 1,025 images (train, validation, and test) of modules used to develop the YOLO model are used to train and evaluate
the classifiers. The cell segmentation tool is used to cropped module images into single solar cells, creating 131,200 images
of solar cells. Among them, 15 cells have two defects, e.g., both ‘crack’ and ‘solder’ defects. We duplicated these cell images
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and placed them into two categories. The training set for classifiers is augmented through vertical flip, horizontal flip, and
180-degree rotation. The distribution of each category in the dataset is summarized in Table I. Since categories are extremely
imbalanced in the training set, we compare the performance of models with different sampling methods including undersampling
and oversampling. We found that using the original training set is optimal for ResNet models while undersampling is optimal
for the RF model. The details are shown in section ‘comparison of sampling methods’ of SI.

For annotation and training convenience, the YOLO v3 [15] (pretrained on COCO [38]) model deployed on Supervisely is
selected to do transfer learning. The single channel in the grayscale image is duplicated and expanded to three channels so
the size of the input images is 300× 600× 3. The default size of the input layer of YOLO model is 416. The training batch
size is 12. The model is trained for 10 epochs and the model at the epoch that has the optimal loss on the validation set is
selected as the final model.

CNN models are constructed using Pytorch (version 1.6.0) [39]. ResNet models are pretrained on ImageNet [40] and fine-
tuned during our training process. The input of the CNN model is a grayscale image of a segmented cells with size 32×32×3
pixels (the single channel of the grayscale image is replicated 3 times to match the RGB format of the model). Cross-entropy
loss is used as the loss function. Stochastic gradient descent (SGD) was used as the optimizer. The learning rate is tuned from
0.001 with learning rate scheduler. The batch size of training is 128. The images are trained for 20 epochs and the model at
the epoch that has the optimal loss on the validation set is selected as the final model.

The RF model is constructed with Scikit-learn (version 0.23.2) [41]. As the input of RF, each grayscale image with the
size of 32 × 32 is flattened. Each flattened array is concatenated into the input matrix. This flattening method was also used
in a previous work [10]. Hyperparameter tuning is conducted to return the best model; details are in the SI. The optimal
hyperparameters determined for the RF model are {‘number of trees’: 200, ‘split criterion’: ‘gini’, ‘maximum depth’: None,
‘bootstrap’: False}.

To compare the performance of each model, we used recall, precision, f-1 score, and f-2 score:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =

∑
2TP∑

2TP + FN + FP
(3)

Fβ =
(
1 + β2

) Precision ∗ Recall
β2 ∗ Precision + Recall

, β = 2 for F2 (4)

where TP are true-positives (model correctly identifies an existing defect), FP are false-positives (model detects a defect when
none exists), and FN are false-negatives (model does not detect a defect when one exists).

Transformation, segmentation scripts and training of RF model are executed on MacBook Pro (2.8 GHz Quad-Core Intel
Core i7 processor, 16 GB 2133 MHz LPDDR3 memory). UNet and YOLO models are trained on 4 NVIDIA TESLA K80
GPUs (48 GB GDDR5 memory) and deployed on 1 NVIDIA TESLA K80 GPU (12 GB GDDR5 memory). CNN classifiers
are trained and deployed on 1 NVIDIA TESLA K80 GPU (12 GB GDDR5 memory).

IV. RESULTS AND DISCUSSION

A. Image preprocessing

Figure 2(a)-(c) illustrate that the UNet model successfully segments the target module even with multiple complicating
image features. Figure 2(d) shows another example of a successfully transformed image where some cells have darkened
edges. We apply the perspective correction algorithm to all 19,228 images of solar modules, finding 98.6% (18,954 images)
are transformed successfully. Of the failed cases, around 68% are due to the wrong mask predicted by the model while the
rest are due to poor images. Figure 4 shows examples of failed images. Most incorrectly predicted masks are similar Figure
4 (a). The orientation of this module is different from most of the images in the training set. Also the solar module was too
tilted for the model to recognize properly. By including more images like this in the training set, the model performance can
be improved. In Fig. 4(b), the corner of the solar module is too dark to recognize. The module image is truncated in 4(c).
Another poorly shot image like 4(d) can also cause the transformation algorithm to fail. We consider Fig. 4(b)-(d) an data
acquisition error while errors in Fig. 4(a) can be fixed in the future version of models.
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(a) (b)

(c) (d)

Fig. 4. Example of failed images. (a) Mask error due to orientation of the module. (b) Extremely dark edges that cannot be recognized from background. (c)
Truncated module in the image. (d) Another poor photograph.

Model YOLO ResNet18 ResNet50 ResNet152 RF
Avg F1 (val) 0.86 0.87 0.87 0.87 0.57
Avg F1 (test) 0.78 0.83 Not tested

TABLE II
MACRO AVERAGE(UNWEIGHTED MEAN) F1 SCORE OF EACH MODEL ON THE VALIDATION AND TESTING SETS

B. Cell classification and detection

The performance of each model on the validation set is illustrated in Figure 5 and Table II. The hyperparameter tuning and
confusion matrices of each model are shown in the SI. Recall is the fraction of actual defects that were correctly labeled by
the model, whereas precision is the fraction of predicted defects that are identified correctly. A desirable algorithm balance
precision and recall so that most of the defects are found without too many spurious detections. One way to combine precision
and recall is with the F1 score where the weights of each metric are the same. The F2 score combines precision and recall in
a way that makes recall the more important score. Which metric is best depends on the demands of the users. For example,
some applications need high sensitivity to detect all defective cells in order to determine which modules to replace. In this
case, recall is more important and the user would select the algorithm with the best F2 score.

The macro average F1 score on validation set in Table II shows that the performance of ResNet models and YOLO model is
similar. All these neural network models are better than RF model. The performance of the ResNet models isn’t improved as the
architecture of the model becomes more complex from ResNet18 to ResNet50 and ResNet152. Considering that deeper neural
networks cost longer time to train and perform inference [42], ResNet18 is selected as the optimal model among classifiers.
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(a) (b)

(c) (d)

Fig. 5. Comparison of the performance of different models on the validation set. (a) Recall (b) Precision (c) F1 score (d) F2 score

YOLO model is also an optimal model since it is conceptually simpler. Although our models were trained on IBC cell images
and are specific to this cell type, they can be applied to other types of solar cells using transfer learning. We demonstrated the
transfer learning of ResNet18 to address other module types in SI.

When comparing the YOLO model versus the ResNet models, we note that the YOLO model doesn’t require segmenting
single solar cells, and the output bounding boxes(as shown in Figure 2c) of the YOLO model can directly show the positions
of defective cells without further processing. However, the ResNet models may transfer better to other types of modules (e.g.,
solar modules with 12× 6 cells) because they take only cell images as inputs, not module images; whereas the ResNet model
may only need adjustment to the cell segmentation procedure, the YOLO model may need retraining from scratch when it deals
with other types of modules. The recall shows that YOLO model is more likely to find ’intra-cell’ defects whereas ResNet18
is more likely to identify ’oxygen’ induced defects. Therefore, the selection of models depends on which categories of defects
the user is more interested in, and whether recall or precision is more important. We tested the performance of ResNet18 and
YOLO model on the testing set. The macro average F1 scores are 0.83 (ResNet18) and 0.78 (YOLO), as shown in Table II.

Figure 6 shows the confusion matrix for the validation set of the best performing ResNet18 and YOLO models (confusion
matrices for other models given in SI). Both models are somewhat confused between ‘crack’ and ‘intact’. One possible reason is
that some cracks are very small and more training examples are needed to distinguish these from intact cells. Also, the models
may mistake some debris on the module surface as cracks. Table III illustrates some examples of the incorrectly predicted
images from the ResNet18 and YOLO models. The first column of images in Table III have short cracks on the corner of the
solar cell but the models did not recognize this kind of short cracks. The first two images in the second column of Table III
have objects which are mistaken as cracks. We assume these objects are wider than normal cracks so they are more like debris
on solar modules rather than cracks. The remaining images in the second column of Table III have a horizontal crack which
is not obvious to see, so the annotators did not recognize it but the model detected it. The images in the third column have
inconspicuous round striation which were not recognized by the models. Images of the fourth column for both model are
confusing even to annotators. Those cells are darker than their neighbour cells and all their surface are evenly dark, which
is different from the intra-cell defects in Table I. This charge trapping may not be necessarily caused by intra-cell defects
generated in fire. They can also be caused by other degradation modes before exposure to high temperature.

C. Defects distribution on the solar modules

We apply the YOLO model to all 18,954 transformed EL images (2.41 million cells) and enumerate the defects at different
positions in the 18,825 solar module that were influenced by fire and the 129 modules in control group. The occurrence of
defects at particular locations in fire-influenced modules are shown in Figure 7. Figure 8 shows the significant difference of
the proportion of defects in the control group and fire-influenced group. The value of proportion and corresponding p value
is shown in SI. To reduce the influence of incorrectly predicted defects, we also use the combination of validation and testing
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(a) ResNet18 (b) YOLO

Fig. 6. Confusion matrix of (a) ResNet18 and (b) YOLO models tested on validation set. Colors of boxes on the diagonal of confusion matrix are removed
for better visualization of incorrectly predicted labels.

Cells (YOLO)

True label Crack Intact Oxygen Intact
Prediction Intact Crack Intact Intra-cell

Cells (Res18)

True label Crack Intact Oxygen Intra-cell
Prediction Intact Crack Intact Intact

TABLE III
EXAMPLES OF INCORRECTLY PREDICTED CELLS FROM YOLO AND RESNET18 MODEL

set to estimate the precision of the predictions and subtract the estimated false positive in the predicted defects. However the
distribution is still similar to Figure 7. Details are presented in the SI.

Figure 7(b) shows that the ‘oxygen’ defect is (to a first approximation) distributed uniformly on the solar module whereas
Figure 7(a)(c)(d) show that the ‘crack’, ‘solder’ and ‘intra’ defects tend to occur on the two shorter edges of the solar module,
especially the right edge which should be closer to the ground. One hypothesis is that the shorter edges are closer to the fire
source when the solar modules are tilted at a certain angle in the field. It is confirmed by the data provider PVEL that shorter
edges are mounted to the ground, although which side (left or right) is always closer to the fire is based on our analysis
of the perspective of the image. We have attempted to rotate images such that the right edge corresponds to the side closer
to the ground. Based on this analysis, the fire may accelerate the formation and propagation of ‘crack’, ‘solder’, and ‘intra’
defects. Also, the high occurrence of defects on two short edges may be caused during installation or mounting, since these
two edges are more susceptible to mechanical stress. Although the ‘oxygen’ defects distribute evenly on the edges and inner
part of modules, they still show a tendency of distributing on the right side and Figure 8 also show the significant increase of
‘oxygen’ defects after fire. This is beyond our expectation since ‘oxygen’ defects are formed during manufacturing [31] and
are not expected to be impacted by fire. This result is worthy of further investigation. The distribution of defects implies there
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(a) crack (b) oxygen

(c) solder (d) intra-cell
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Fig. 7. Distribution of defects on PV modules affected by fire. Here each heatmap shows the quantiy of defects observed in each cell in a 16 × 8 solar
module. Defects are recognized by YOLO model. The right-hand side of the image is the side of the module closest to the ground during the EL survey.
Defects shown are (a) Crack, (b) Oxygen induced defects, (c) Solder disconnection and (d) Intra-cell defects

Fig. 8. Proportion of defects in fire-influenced group versus the control group.
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is a possibility to improve quality by more carefully handling modules during installation, especially on the edges.

V. CONCLUSION AND OUTLOOK

This paper introduces an automatic pipeline for detecting defective cells in EL images of solar modules. The tool performs
a perspective transformation of the tilted solar module and either performs direct object detection of defects or crops out single
cells for further classification into defect categories. We train different machine learning models (classification and object
detection) on the sampled images and compare their performance based on the imbalanced real-world data, concluding that
the YOLO model used for object detection and the ResNet18 model used for classification are optimal models. Both models
perform similarly well, with macro F1 scores on a real-world testing set of 0.83 (ResNet18) and 0.78 (YOLO). We also apply
the YOLO model to 18,825 solar modules affected by fire and analyze the distribution of defects on the solar modules.

Future work could generalize the model by feeding in more EL images from other modules. We can further improve
the performance of the models by improving the quality of our annotations. Also our tools can be used for other kinds of
defects with minor modification on models by transfer learning. Comparisons of power loss data from current-voltage (IV)
curve measurements can be correlated to the observed defects to determine the impact of defect quantity on power loss. The
open-source tools and model weights are published on Github [29].
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