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Low Peclet Number Behavior of the Transfer Rate 
in Packed Beds 

Peter Fedkiw and John Newman 

LBL-6074 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, 
and Department of Chemical Engineering, University of California 

Berkeley, California 94720 

March, 1977 

Abstract 

The asymptotic behavior of the mass-transfer coefficient in a 

packed bed reactor at low Peclet numbers is dependent upon how the 

coefficient is defined. A singular perturbation approach coupled 

with heuristic arguments is used to demonstrate that the film mass-

transfer coefficient in deep beds approaches a constant value as the 

Peclet number decreases. The film coefficient is utilized in the 
/ 

one-dimensional model of a bed as a sink term in the governing 

equation. The volumetric, or effective, mass-transfer coefficient 

which relates the overall reactant conversion to a logrithmic mean 

concentration driving force, decreases linearly with the Peclet number 

as the Peclet number approaches zero. The distinction between the 

two coefficients is important in the low Peclet number region. 

Analogous results apply to heat transfer. Reported experimental 

data support these predicted trends. 
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Introduction 

The behavior of the particle-to-fluid (or vice-versa) heat or 

mass transfer rate in packed beds at low Peclet numbers has been a 

source of confusion iri the chemical engineering literature. The 

question is; "Does the transfer rate approach a steady value as 

the Peclet number decreases,or does it continually decrease with 

the Peclet number?" This can be rephrased by asking whether the 

Sherwood number reaches a constant value or decreases as the Peclet 

number is lowered. We shall demonstrate in this paper that both 

trends are possible depending upon how the Sherwood number is defined. 

The experimental determination of transfer coefficients at low 

Peclet ·numbers is vexing. The fluid leaving the bed is very near 

its saturation value in the transfered quantity. This creates a 

large uncertainty in the driving force at the exit of the bed which 

is used in defining the effective transfer coefficient. Free 

convection may also become an important effect. To overcome these 

difficulties, various workers have used diluted beds, transient, and 

frequency response methods to determine more accurately the low-

Peclet-number behavior. 

Since the Schmidt and Prandtl numbers for liquids are quite 
3 . 

large [0(10 )], most low Peclet number data are found in gaseous 

systems. Furthermore, most workers have varied the Reynolds number 

only. The free conVection effects should be minimized in the gaseous 

systems. 

The quantity of data for low Peclet numbers is understandably 

small. Table I is a compilation (with no claim to completeness) of 
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those publications which list packed-bed transfer data for Peclet 

numbers less than 30. Both heat and mass transfer results are 

included. The data scatter as the P~clet number decreases, and 

there is no absolute agreement between different authors. (This 

is true, to an extent, no matter what the Peclet number range.) 

There is, however, a definite trend in the Sherwood number (or 

equivalently, the Colburn j factor) with the Peclet number reported 

by the authors of Table I. The Sherwood number based on an averaged 

inlet and outlet concentration (or temperature) driving force across 

the bed(3,6,7,9,13,25,28,31) seems to decrease with the Peclet number. 

However, the film Sherwood number (10,17,21,22,23) seems to reach a 

constant as the Peclet number decreases. The film Sherwood number 

is calculated by parameter fitting the experimental data to the solu­

tion of the governing one-dimensional convective diffusion equation. 

A concise definition of these two different Sherwood numbers 

follows. We shall demonstrate that the distinction between these 

two numbers is small for large Peclet numbers but becomes important 

as the Peclet number approaches zero. 

Definitions of the Mass-Transfer Coefficient 

To be specific in our discussion, we shall speak in terms of the 

mass-transfer problem in a nonconsolidated packed bed. The results 

are applicable to the heat-transfer problem by the usual analogies. 

We shall also limit our discussion to a single reaction at the 

particle surfaces. The rate of reaction is controlled by the reactant 

mass transfer from the fluid to the particle surface. 
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A design engineer is interested in the performance capabilities 

of a packed bed reactor. Given a certain feed concentration of 

reactant, he is interested in the overall reactant conversion. This 

can be correlated in terms of the bed's effective mass-transfer 

coefficient k . 
m 

ak Lllc
1 m n 

The concentrationscF and cL are the far upstream and downstream 

reactant concentrations. Equation 1 relates the conversion to a 

(1) 

logrithmic mean driving force. (Some workers have chosen different 

driving forces. Bird et al. (4) give a lucid discussion of the 

possibilities.) For the limiting reactant condition considered 

here, equation 1 reduces to 

exp (- S~ aL ) 
p~ £ 

where the bed Sherwood and Peclet numbers have been introduced. 

It is also possible to define a film coefficient kf. This 

coefficient relates the local concentration driving force in the 

(2) 

bed to the local reaction rate. It is assumed for a given flowrate 

that kf does not vary throughout the bed. The term (kfc) appears 

as a sink term in the one-dimensional equation governing the con-

centration profile in the bed: 
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2 
E ~- v de 

dz2 dz 
(3) 

The dispersion coefficient E is a function of the flow regime. 

In the limit of low Peclet numbers, E is dominated by molecular 

diffusion and reduces to 

E = £ 

where £ is a tortuosity factor (32) • 

D 
0 

T 

It might seem that kf is a more fundamental quantity than k 
m 

(or vice-versa, depending upon one's point of view). This is not 

so, however, since both k 
m 

and are essentially defined 

quantities. These two coefficients are related. This can be seen 

by solving equation 3 with appropriate boundary conditions to find 

the concentration field across the bed. After solving this expres-

sion for cL/cF and setting this result equal to equation 2, one 

obtains (26) 

k 
k = _l_ + __}!__ ln m B aL 

B + ;i (1 - B) exp [-aL(i + #)] 
1 + D'/B2 (4) 

where 

a = ak/v 

D' = e:akfE/v 
2 

B 1 + V1 + 4D' = 2 
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The boundary conditions used to solve equation 3 were those 

given by Wehner and Wilhelm's analysis (36). 

E de + vc 
dz at 

at 

z = 0 

z = L 

-

(Si) 

(Sii) 

Equation 4 shows how the experimentally accessible, and design 

useful, km can be corrected to give the film coefficient kf. For 

purely pedagogical purposes, assume kf is given by the Wilson-

Geankopolis correlation (34). Figure 1 (26) illustrates how k 
m 

would then vary with the Peclet number. At large Peclet numbers, 

the distinction between the two coefficients vanishes. However, as 

PeB -+ 0, the difference between the two becomes important. It 

should perhaps be emphasized that the calculation of kf from k 
m 

requires a value of E, with which there must be associated some un-

CE;rtainty. 

Calculation of k 
m 

It would not be necessary to use the one-dimensional model for 

a bed and its associated film coefficient if we could describe the 

void volume in the bed analytically •. For it would then be possible 

(in principle) to solve the hydrodynamics and the convective-

diffusion within the voids to calculate directly the overall 

conversion. This is an overwhelming task. The voids in a bed defy 
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an analytic expression except in simple instance (34). This 

approach, however, can be used to indicate the asymptotic behavior 

of the fluid-to-particle transfer rate at low Peclet numbers. We 

shall see that a detailed knowledge of the void volume function 

is not necessary to establish the behavior in this limit. 

Assuming a known bed geometry, we shall demonstrate how k 
m 

(not kf) behaves asymptotically as PeB + 0. Equation 4 with 

the proper form of the dispersion coefficient can then be used to 

indicate the behavior of kf. 

Wehner and Wilhelm (36) showed how to analyze correctly the 

behavior of a one-dimensional model for a packed bed reactor. Their 

analysis can be extended to the actual three-dimensional structure 

of the bed. As shown in figure 2, the bed consists of three regions. 

Region II of length L is the reactive section of the bed. Regions 

I and III extend in the dimensionless streamwise coordinate x
1 

to - 00 and 

+oo, respectively. They are filled with an inert packing. These 

are the "calming sections" used in experimental apparatus. A cross 

section normal to the streamwise direction is finite in extent. 

The position of the particles' surface is assumed to be known 

as a function of the streamwise coordinate: Designate this function 

as Wa(x1 ) for the reactive particles and Wi(x
1

) for all other 

inactive surfaces. 

Neglecting free convection effects, the concentration field in 

the voids will satisfy the dimensionless convective-diffusion equation. 



0 0. ' 0 pQ 7 () k;_-1) '7 ' . ') 6 ~- ,i' '· ~~) 
t~ 

-7-

(6) 

Equation 6 is subject to the following boundary conditions. 

i) X ~ -oo 
1 

ii) -oo < X < oo 
1 

0 

(7) 

iii) 0 2_ xl < aL 
c 

0 Wa(xl) -= on 
cF 

iv) c remains finite. xl ~ oo 
cF 

These boundary condition yield a well-posed problem when applied to 

equation 6 in the void volume. 

Equation 7(iv) is a valid constraint placed on the solution. 

An auxiliary condition can also be written for the far downstream 

concentration field. 

= e -BL (8) 

Here BL is some unknown constant which must be determined as part 

of the solution. This parameter is directly related to the effective 

mass-transfer coefficient k as can be seen from equating equations' 
m 

8 and 2. 
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(3L. (9) 

As expected, we see that the solution to the detailed convective-

diffusion equation yields the effective coefficient directly. In 

the most general situation, SL will be a function of the velocity 

field, the parameters PeB and aL, and .the geometric functions 

We want to consider the solution to equations 6 and 7 in the 

limit of zero Peclet number. This limiting process is singular in 

nature. There are regions in the bed where diffusion does not 

dominate the reactant transport and convection becomes important. 

These regions will be located in the upstream and downstream "calming" 

sections. There are precedents for this expected behavior in the 

literature. Acrivos and Taylor (1) analyzed a single reactive sphere 

in Stokes flow as the particle Peclet number approaches zero. They 

have shown that, near the sphere, diffusion controls the mass-transfer 

rate to the surface, but convection also becomes important far from 

the surface. Leal (15) has extended this analysis to a sphere in a 

simple shear field. Such work suggests that applying the asymptotic 

limit of PeB ~ 0 will require a singular perturbation approach. 

To formulate properly a singular perturbation problem for the 

concentration field within the voids of the bed, it is necessary to 

delineate the regions where diffusive and/or convective transport 

are controlling. Appropriate transformation variables must also be 

defined for each region. The equations governing the concentration 
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and their boundary conditions should then be independent of the 

Peclet number in the regions. 

In the reactor section (II) and a region on the "calming" side 

of the boundaries I-II and II-III, the inner solution applies. In 

the inner expansion, diffusion dominates the reactant transport. 

Far away from the reactor section, in the upstream (I) and down-

stream (III) regions, the diffusive and convective flux of reactant 

become equally important. Thus, there is an upstream and downstream 

outer region to the expansion. 

Consideration of the Wehner-Wilhelm solution for a one-dimensional 

bed leads to the appropriate transformed concentration and coordinates 

in each region. 

~I a c/cF 

~I PeB 
x. = x. 

J J £ 

e c£ 
= 

cFPeB 

Xj = X. 
J 

~III 
x. 

J 

(j = 

(j = 

upstream 
outer 
variables 

1' 2' 3) 

1,2,3) 

(j = 1,2.3) I 

inner 
variables 

downstream 

outer 
variables 
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The coordinates (x
1

,x2 ,x
3

) form an orthogonal.system with its 

origin at the geometric center of the entrance to section II. 

Coordinate x
1 

is in the streamwise direction. The tilde (-) 

refers to the outer region variables and the bar (-) refers to 

inner region variables. The transformed concentrations have been 

scaled to be of 0(1) in each region. 

In the upstream and downstream outer region expansion, further 

simplifications are possible. Far from the perturbing effect of 

the reactor section, the concentration field will be approaching 

a constant value at each cross section of the bed, that is, the 

variation in the axial direction is small over a distance comparable 

to the size of a particle. Thus the one-dimensional (streamwise) 

description will suffice as a first-order approximation. The geo-

metry is a second-order effect there. It is accounted for by the 

tortuosity factor in the effective diffusion coefficient. In the 

inner region of the expansion, however, the exact placement of the 

particles is important, and no geometrical simplifications can be 

made here. 

By the above reasoning, the first-order solution in each region 

is governed by the following equations. 

d 2 ei dSI 
__ .JL- __ o_ = 0 

d(~~) 2 d(~~) 
(10) 

0 (11) 



0 , ... u >~·4 '1 u \.~ .. ~ 0 p~l 

l 2 I' fij a 

-11-

0 (12) 

Equation 10 is subje,ct to the boundary condition 7(i) and equation 

12 to. 7(iv). Equation (11) is subject to equations 7(ii), 7(iii), 

and the matching condition imposed by merging the outer limit of 

the inner solution to, the inner limit of the outer solution. This 

is carried out in the upstream and downstream regions. This matching 

results in the following additional boundary conditions for equation 

(11). 

ae 
0 -1 -- = as xl -+ -oo 

ai1 

(13) 

ae 
0 

0 = as xl -+ 00 

ai1 

The first order governing equations and their necessary 

boundary and matching conditions have been outlined above. The 

solution to this system of equations then generates the first-order 

approximation to the concentration of the reactant leaving the bed. 

This result can be utilized in equations 8 and 9 to write, 

£k £ 
m --= 

aD aL 
0 

v 
aD 

0 

1/8 - ln _v_J 
L £aD 

0 

(14) 
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where is lim 8 
- 0 

Equation 14 has been rigorously derived 
xl-+oo 

through a singular perturbation approach. The bed Sherwood number 

for low Peclet numbers can be calculated once e
1 

is known. This 

quantity will depend upon the detailed geometry functions W. and 
l 

W , and the parameter aL, as can be seen by examining equations 
a 

10 through 12 and their associated boundary conditions. 

Equation 14 may appear to be a rearrangement of equation 1, and 

indeed it can be generated from equation 1 through algebraic mani-

pulations. However, equation 14 yields a priori predictions of the 

Sherwood number after 8
1 

is determined from the perturbation 

problem as outlined. In particular, e
1 

is shown to be independent 

of the Peclet number at low Peclet numbers, and the dependence on 

aL can be elucidated to some extent as discussed below. 

Deep bed behavior of k 
m 

For straight tubes with an insulated upstream wall (z < 0) 

and an active downstram wall (z ~0), the local mass-transfer rate 

depends upon the axial position, but the local mass-transfer coeffi-

cient approaches an asymptotic value in the downstream region. The 

length scale in which this asymptotic value is approached depends 

upon the Peclet number. This region is usually designated the mass-

transfer entry region. Levich (16) has shown for high Peclet numbers 

that the entry region is O(PeR), where R is the tube iadius. In the 

low Peclet number regime, Michelsen and Villadsen (18) have shown 

that the entry region is O(R), a result which is substantiated by 
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the calculations of S~rensen and Stewart (33) and Michelsen and 

Villadsen (18). 

From these results one concludes that the entry region for a 

packed bed should be in the order of a particle diameter for low 

Peclet numbers, and a deep bed thus· will be one for which L >> d • p 

In this limit, most of the bed will be in the well-developed mass-

transfer region, where the fractional decrease of reactant for any 

incremental streamwise length should be independent of the position 

of the incremental length. Thus, for deep beds, the dependence of 

e
1 

on aL can be expressed as 

(15) 

where and are independent of aL (as well as Pe) and are 

dependent upon the detailed geometric functions W. 
1 

and w 
a 

deep bed, low PEE'Sherwood number from equation 14 can then be 

written as 

E:k 
m 

aD 
0 

v 
aD 

0 

E: ln a.2 v J 
aL E:aD 

0 

The 

(16) 

Since the entry region is small at low Peclet numbers, this result 

should be applicable to many beds of practical importance. Equation 

16 was first stated by S0rensen and Stewart (34) but they did not 

demonstrate how they derived this result. 



-14-

Equation 16 shows that for large values of aL, where the second 

term in the brackets is negligible compared to the first, k becomes 
m 

linearly proportional to _the velocity. (Note that in figure 1 the 

curve for aL = 5 is fairly close to that for aL = oo,) After applying 

the large aL limit and the low Peclet number limit, one can_conclude 

from equation 4 that the film coefficient of the one-dimensional 

model for the same bed must approach a constant as 

(17) 

Equations 16 and 17 are the main result of this paper. It is 

worth noting that equation 16 could be derived from equation 4 in a 

simpler manner by a priori postulating that kf becomes independent 

of v for low Peclet numbers. However, this of course would not 

shed any conclusive light on the real behavior of kf. 

The void volume approach outlined above cannot be carried 

further for the general case without specifying the geometry. A 

packed bed can be considered on the microscopic scale as a statis-

tically periodic structure (27). In order to introduce a predictive 

capability into the present method, one can solve equation 11 in 

the well-developed mass-transfer region as an eigenvalue problem. 

This yields the fractional decrease of reactant for each period and 

hence the value of in equation 15. For significant values of 

aL, this also yields the dominant part of k according to equation 
m 

16 and kf according to equation 17. 
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Discussion 

The two types of mass-transfer coefficients described in this 

work have been reported in the literature. Miyauchi and his co-

authors (20,21,22,23) conclude from the analysis of their data 

that the film coefficient reaches a constant as the Peclet number 

decreases. Gunn and Souza (10) and Littman et al. (17) also reach 

the same conclusion about their data. However, their results 

exhibit more scatter than those of Miyauchi. On the other hand, 

from considering those workers' results (3,6,7,9,13,25,28,31) who 

calculated an effective transfer coefficient as in equation 1 (or 

its possible equivalent forms), one could conclude that the effective 

transfer coefficient decreases with decreasing Peclet number. 

There are clearly different experimental trends in these two 

coefficients. Our analysis suggest that the effective Sherwood 

number becomes linearly proportional to the Peclet number as Pe+ 0. 

This is true for any geometric arrangement of the voids in the bed. 

This implies through equation 4 that the film coefficient approaches 

a constant in the same limit. These predicted trends agree with the 

available experimental data. 

We have not been concerned in this paper with presenting 

numerical predictions for the film or effective mass-transfer 

coefficients at low Peclet numbers. However, several comments on 

some previous theoretical work along this line are in order. 

To predict the transfer coefficients in a bed, it is necessary 

to introduce a microscopic model for the structure of the bed. The 
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free-surface cell model developed by Happel (11) or an analog of 

this as introduced by Neal and Nader (24) has been used by various 

authors. One can calculate a film mass-transfer coefficient by 

solving the hydrodynamics and the convective-diffusion equation 

within the cell, both subject to appropriate boundary conditions. 

This film coefficient will depend upon the flow conditionsin the 

cell and the Schmidt number. As our analysis suggests, only in 

the high Peclet number region is this film coefficient equal to 

the effective coefficient k. Pfeffer (29), Pfeffer and Happel (30), m 

El-Kaissy and Homsy (8) and Tardos et al. (35), have performed such 

calculations for high Peclet numbers within the free-surface cell 

model framework. 

At low Peclet numbers, the uniform concentration boundary 

condition imposed on the outer free surface of the cell has been 

criticized (5,25,33). Nelson and Galloway (25) attempted to remedy this 

ficticious sink boundary condition. They imposed a zero-radial 

gradient condition on the concentration at the outer free surface. 

Theycombined surface-renewal and boundary-layer arguments to arrive 

at a film coefficient linearly proportional to the Reynolds number 

and to the Schmidt number raised to the two-thirds power. At low 

Reynolds numbers the applicability of surface-renewal theory and 

boundary-layer theory is questionable. Also, the distinction between 

the film and effective mass-transfer coefficients was not recognized. 

Kunii and Susuzikki (14) have realized the difference between 

the two coefficients at low Peclet numbers. They have presented 
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a channeling model to calculate k • 
m 

I 

They predict a linear 

dependence on the Peclet number. Their model involves an empirical 

factor which varies over two orders of magnitude to fit their data 

analysis. 

S~renson and Stewart (34) ·have numerically calculated the 

creeping flow velocity profiles and solved the convective-diffusion 

equation for a limiting reactant in a simple cubic packed bed of 

uniform sized spheres. These calculations are a great aid in the 

understanding of processes in an actual bed. Their results indicate 

that the effective coefficient k varies linearly with the Peclet 
m 

number as PeB + 0 in accord with equation 16. Their results can 

be used to calculated a
1 

in equation 16, and hence, through equation 

17, kf. The dimensionless film coefficient for a deep bed of simple­

cubic packed spehres (£- 0.48) is found to be 

d kf 
_.E____!_ = 3 4 D . 

0 

where a tortuosity factor of T= Vz has been assumed. This should be 

compared to the experimental values of 12.5 determined by Miyauchi 

et al. (19) for a gas-film coefficient (£ - 0. 5) , -of 16. 7 determined 

by Miyauchi et al. (20) for a liquid-film coefficient(£- 0.4), and 

of 10.0 determined by Gunn and Souza (9) for a gas film coefficient 

(£- 0.4). 

It should be noted that S~renseon and Stewart's results have been 

previously misunderstood. Their calculations do not imply a dimen-

sionless film coefficient of 3.9 as has been claimed. Their Nusslet 
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number Nu is based on the log mean average of the convective 

energy flux entering and leaving the bed. This number is not the 

low Peclet number, one-dimens~onal film coefficient. 

Summary 

It has been demonstrated that the low Peclet number behavior 

of the Sherwood number in a packed bed reactor is dependent upon 

its defining equation. A rigorous singular perturbation approach 

coupled with heuristic arguments indicates that for a deep bed the 

effective mass-transfer coefficient (defined by equation 1) is 

directly proportional to the Peclet number. The film coefficient 

(defined by equation 3) approaches a constant in the same limit. 

These conclusions are independent of the detailed geometric void 

structure in the bed. 

Work performed under the auspices of the U. S. 
Energy Research and Development Administration. 
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Nomenclature 

. f. . f . 1 -l specJ. l.C J.nter acJ.a area, em 

3 far upstream reactant concentration, mol/em 

3 far downstream reactant concentration, mol/em 

2 m9lecular diffusion coefficient, em /s 

dispersion coefficient, cm2/s 

film mass-transfer coefficient, equation 3, cm/s 

effective bed mass-transfer coefficient, equation 1, cm/s 

reaction section length, em 

normal coordinate, em 

bed Pe~let number v 
aD 

bed Sherwood number, 

0 Ek 
m 

aD 
0 

superficial velocity, _cm/s 

dimensionless bed coordinates, axd 

streamwise dimensional coordinate 

Kroenecker d_el ta 

porosity 

tortuosity 

dimensional quantity 

logrithmic mean 
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Table I: Compilation of works which have reported heat or mass 
transfer data in packed beds for a particle Peclet 
number less than 30 . 
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Investigators Lowest Reynolds Lowest Schmidt or Lowest Peclet Heat (H) 
number reported Prandtl number number or 

reported Mass (M) 

Resnick and White 0.62 4.0 2.5 M 

(1949) 

Eichorn and White 1 0.7* 0.7 M 

(1952) 

Dryden et al. 0.0125 814 10.2 M --
(1953) 

Bar-Ilan and Resnick 0.2 2:6 0.5 M 

(1957) 

Littman et al. 1.9 0.7* 1.3 H --
(1968) 

Petrovic and Thodos 3 0.6 1.8 M 
(1968) 

Kato, et al. 0.1 2.6 0.3 M 
(1970)-

Gliddon and Crane field 23.8 0.7 16.4 H 
(1970) 

Karabelas et al. 0.01 1490 15 M --
(1971) 

Gunn and De Souza 1.5 0.7* 1.1 H 
(1974) 

Miyauchi et al. 0.02 510 10 M ---
(1975) 

Nelson and Galloway 1 0.7* 0.7 H 
(1975) 

Miyauchi et al. ? ? 2 M --
(1976a) 

Appel and Newman 0.00806 1440 11.6 M 

(1976) 

* estimated value 
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Figure 1 

Figure 2 
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Figure Captions 

Influence of axial dispersion on the effective mass-

transfer coefficient k . The film mass-transfer m 

coefficient kf is assumed to be given by the Wilson­

Geankopolis correlation (37) as shown in the upper curve. 

Because of axial dispersion, km lies below kf, and the 

effect becomes large at low Peclet numbers. In preparing-

the graph, the porosity was taken to be· E = 0. 3 and the 

tortuosity factor T was assumed to be 1. The convective 

contribution to the dispersion coefficient was given by 

equation 14 of reference 26. 

Schematic of a packed bed with fore and aft "calming" 

sections • 
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