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Method comparison and estimation 
of causal effects of insomnia 
on health outcomes in a survey 
sampled population
Anja Shahu 1,2, Joon Chung 2, Wassim Tarraf 3, Alberto R. Ramos 4, Hector M. González 5, 
Susan Redline 2, Jianwen Cai 6 & Tamar Sofer 1,2,7*

Applying causal inference methods, such as weighting and matching methods, to a survey 
sampled population requires properly incorporating the survey weights and design to obtain effect 
estimates that are representative of the target population and correct standard errors (SEs). With a 
simulation study, we compared various approaches for incorporating the survey weights and design 
into weighting and matching-based causal inference methods. When the models were correctly 
specified, most approaches performed well. However, when a variable was treated as an unmeasured 
confounder and the survey weights were constructed to depend on this variable, only the matching 
methods that used the survey weights in causal estimation and as a covariate in matching continued 
to perform well. If unmeasured confounders are potentially associated with the survey sample design, 
we recommend that investigators include the survey weights as a covariate in matching, in addition 
to incorporating them in causal effect estimation. Finally, we applied the various approaches to the 
Hispanic Community Health Study/Study of Latinos (HCHS/SOL) and found that insomnia has a causal 
association with both mild cognitive impairment (MCI) and incident hypertension 6–7 years later in the 
US Hispanic/Latino population.

Abbreviations
ATE	� Average treatment effect
ATT​	� Average treatment effect for the treated
BG	� Block group
CATE	� Conditional average treatment effect
CATT​	� Conditional average treatment effect for the treated
CEM	� Coarsened exact matching
CEMW	� Coarsened exact matching weights
CI	� Confidence interval
Cover	� Coverage
HCHS/SOL	� Hispanic Community Health Study/Study of Latinos
HH	� Household
IPTW	� Inverse probability of treatment weighting
IRR	� Incidence rate ratio
ISW	� Inherited survey weights
MCI	� Mild cognitive impairment
MR	� Mendelian Randomization
Obs	� Observations
OR	� Odds ratio
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OSW	� Original survey weights
PS	� Propensity score
PSM	� Propensity score matching
PSW	� Propensity score weighting
RCT​	� Randomized controlled trial
SE	� Standard error
SMD	� Standardized mean difference
SUTVA	� Stable unit treatment value assumption

Modifiable lifestyle behaviors, such as sleep, are essential to health, and are therefore targets for intervention to 
mitigate or prevent adverse health outcomes. While randomized controlled trials (RCTs) are the gold standard 
for causal inference, they can also be impractical and expensive and lack generalizability when using specific 
inclusion and exclusion criteria1,2. RCTs may also be unethical if they withhold treatment for some individuals 
when one is available3. Thus, researchers have called for greater use of causal inference methods in observational 
sleep studies to assess the potential impact of treatment effects4.

Using multiple causal inference methods can establish more robust causal associations than application of 
a single approach5,6. With the growing availability of complex health surveys conducted on racial and ethnic 
minorities, who have been historically underrepresented in research despite having higher disease burdens, 
investigators have more opportunities to make inferences on these populations and ensure that research is more 
representative of the world’s diversity7,8. However, complex health surveys––which use multi-stage probability 
sampling and include survey weights that contain information on the sampling design and adjustments for 
issues, such as non-response––present unique challenges. Survey weights and design must be incorporated into 
statistical models to obtain estimates representative of the target population and to provide correct standard 
errors (SEs)9. However, since causal inference methods were developed under the assumption of a simple random 
sample (SRS), incorporating the survey weights and design in a way that limits confounding while maintaining 
representativeness is not straightforward.

Motivated by the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)––the largest longitudinal 
cohort study with multiple sleep measures at baseline and the only study with comprehensive sleep measures in 
a large, diverse sample of US Hispanics/Latinos, we aimed to investigate how to apply matching and weighting-
based causal inference methods to complex health survey data. Both weighting and matching methods estimate 
the causal effect by balancing the distribution of covariates between the exposed and unexposed groups, relying 
on the three assumptions of exchangeability, positivity and Stable Unit Treatment Value Assumption (SUTVA)10. 
We conducted a simulation study to compare various approaches for incorporating the survey weights and design 
into weighting and matching methods11–15. We use the simulation results to inform our use of the HCHS/SOL 
for estimating the effect of insomnia on prevalent mild cognitive impairment (MCI) and incident hypertension 
in the US Hispanic/Latino population.

Potential outcomes framework and causal estimands
Relying on a potential outcomes framework, suppose that a study has n individuals sampled from a population of 
size N . An individual i has two potential outcomes Yi(a) , for exposure a = 0 (unexposed) and a = 1 (exposed)16. 
Let Zi be the indicator for observed exposure, with Zi = 0 if unexposed and Zi = 1 if exposed16. The individual’s 
observed outcome is then Yi(Zi) = Zi × Yi(1)+ (1− Zi)× Yi(0)

16.
At the population level, the average potential outcomes are represented by E[Y(1)]  and E[Y(0)] when all 

individuals in the population are exposed and unexposed, respectively17. For binary outcomes, these values 
are represented by probabilities: Pr[Y(1) = 1] and Pr[Y(0) = 1] , respectively17. Some causal effects of inter-
est can include the rate difference Pr[Y(1) = 1]− Pr[Y(0) = 1] , the risk ratio Pr[Y(1)=1]

Pr[Y(0)=1]
 and the odds ratio 

(Pr[Y(1)=1]/Pr[Y(1)=0])
(Pr[Y(0)=1]/Pr[Y(0)=0])

17.

Common causal estimands (i.e., defined quantities that one can estimate from data) of interest include the 
average treatment effect (ATE), average treatment effect for the treated (ATT), conditional ATE (CATE) and 
conditional ATT (CATT)16. The marginal estimands, ATE and ATT, define exposure effect on the entire popu-
lation and on those individuals who are observed as exposed, respectively16, obtained from analysis that is not 
adjusted for any covariates. The conditional estimands, CATE and CATT, align with the ATE and ATT defi-
nitions, but are additionally conditional on the sampling distribution of the covariates, Xi

16, i.e. are obtained 
from analysis that adjusts for covariates. For a continuous outcome, we define ATE as E[Y(1)− Y(0)] , ATT as 
E[Y(1)− Y(0)|Z = 1] , CATE as E[Y(1)− Y(0)|X] and CATT as E[Y(1)− Y(0)|Z = 1,X]16. Like the popula-
tion causal effect, these definitions can be modified to apply to a binary outcome. In observational data that 
use exposure, rather than treatment, data, we use the term “exposed”, while in clinical trials and observational 
studied in which individuals are treated with a specific intervention, the term “treatment” is used. Henceforth we 
use “ATT” and “CATT” rather than “average exposure effect on the exposed” and “conditional average exposed 
effect on the exposed” for consistency with the causal inference literature.

The ATE and the ATT may coincide in a randomized controlled trial (RCT) due to randomization, but will not 
generally coincide in an observational study because the exposed and unexposed groups will not be comparable, 
i.e. they do not have the same characteristics and covariate distributions18. In an RCT, in the case of a continu-
ous outcome, the ATE and CATE and the ATT and CATT will both coincide, i.e., the difference in continuous 
outcome means across treatment groups is “collapsible”. However, when the outcome is binary, these estimands 
may not coincide due to non-collapsibility10. Table 1 provides an overview of the causal inference methods that 
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we compare and are described below, including information on the target estimand of each approach (ATE or 
ATT; and CATE or CATT if covariate adjusted).

Implementation of causal inference methods in a survey study
We study the application of two categories of causal inference approaches: matching and weighting methods. 
Briefly, matching methods typically identify sets (or minimally, pairs) of exposed and unexposed individuals 
who have similar characteristics and use these individuals in the regression analysis. Weighting methods perform 
weighted regression analysis, where each observation is weighted according to its probability of being exposed. 
Notably, this is an analogue of survey regression which weights each observation according to its sampling 
probability into the study (survey weight). A challenge of applying both matching and weighting-based causal 
inference methods to a survey-sampled population is in using the survey weights, which we call “original survey 
weights” (OSW), to obtain causal effect estimates that are representative of the target population.

Both matching and weighting methods may rely on both the OSW and on propensity score-based weights10. 
The propensity score for individual i is defined as the probability of exposure, conditional on measured covariates: 
ei = P

(
Zi = 1|Xi1, . . . ,Xip

)
10. A popular method to calculate propensity scores is to use a logistic model given 

by logit(ei) = β0 + β1Xi1 + · · · + βpXip where p is the number of measured covariates10. For both the weighting 
and matching methods, we consider estimating the propensity scores in two ways: (1) OSW-weighted logistic 
regression, and (2) logistic regression with OSW as a covariate. In the weighting and matching methods sections 
below, we describe propensity score-based weights and additional method-specific weights.

Matching methods.  Matching methods are generally implemented in three steps: (1) matching exposed 
and unexposed; (2) assessing covariate balance between the exposure groups and (3) estimating causal effect10. 
We studied both propensity score and coarsened exact matching (PSM and CEM) implemented using the 
“MatchIt” package in R. Generally, PSM matches individuals by ensuring that their propensity scores are similar; 
CEM first “coarsens” variables used for matching, with coarsening being the process of creating bins of values of 
continuous variables, followed by matching, i.e. ensuring that the coarsened variables are the same in matched 

Table 1.   Comparison of weighting and matching-based causal inference methods. ATE average treatment 
effect, ATT​ average treatment effect for the treated, CEM coarsened exact matching, IPTW inverse probability 
of treatment weighting, PSM propensity score matching.

PSM CEM Weighting

Description Match based on the propensity score to obtain a 
matched sample with balanced covariates

Bin based on coarsened variables to obtain a 
matched, weighted sample with balanced covariates

Use weights based on the propensity score to obtain a 
weighted sample with balanced covariates

ATT or ATE? ATT​10 ATT​19 ATE for IPTW, ATT for weighting by the odds10,18

Package in R MatchIt MatchIt, cem N/A

Figure 1.   Steps in estimation of causal effects using the two compared matching methods: PSM and CEM. 
Left: the three steps in the estimation process. Right: comparison of the first and third steps between the two 
methods. Step 2 (assessing matching) compares means of covariates between the compared exposure groups 
using the weighting approaches described in step 3. CEM coarsened exact matching, CEMW coarsened exact 
matching weights, ISW inherited survey weights, OSW original survey weights, PSM propensity score matching.
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individuals. We considered a few approaches, outlined in Fig. 1, to incorporating the survey weights and design 
in steps 1 and 3.

Matching exposed and unexposed.  In PSM, we calculated the distance between individuals, defined as 
Dij = êi − êj

10. We then used greedy 1:1 nearest neighbor matching without replacement. This algorithm 
matches every unexposed individual i to the exposed individual with the smallest distance from individual i and 
discards any unmatched unexposed individuals10. In CEM, we sorted individuals into bins based on coarsened 
variables19. We considered matching based on coarsened covariates only and based also on coarsened OSW. We 
coarsened the continuous covariates manually, choosing meaningful cut points when available or otherwise 
choosing quantiles as our cut points. We then pruned individuals from any bin that did not contain at least one 
exposed and one unexposed individual19. Specifically, the CEMW wi for individual i is given by: 
wi = Zi + (1− Zi)

[
nunexposed
nexposed

×
nbi ,exposed
nbi ,unexposed

]
 , where bi is the bin that individual i has been sorted into and 

nunexposed and nexposed are the numbers of unexposed and exposed individuals in the matched sample, 
respectively20. Thus, for matched individuals, the algorithm yielded CEMW that “equalize” the two groups of 
matched individuals by up- and down-weighting the number of exposed and unexposed individuals within each 
bin, and weight individuals in both groups so that both groups have similar characteristics to the exposed 
group19,20.

Estimating causal effects.  For both PSM and CEM, we used the matched samples to fit Poisson regressions with 
a “log” link to estimate incident rate ratios (for incident outcomes) and logistic regressions to estimate odds 
ratios (for prevalent outcomes). We used both unadjusted and multivariable-adjusted regressions to estimate 
the marginal and conditional causal effects, respectively, incorporating the sampling design using the “survey” 
package in R for any weighted analysis. For PSM, we fit: (1) unweighted regression; (2) weighted with OSW and 
(3) weighted with inherited survey weights (ISW), in which unexposed individuals “inherit” the survey weight 
of the exposed individual that they are matched with. For CEM, we fit weighted regressions with: (1) CEMW 
and (2) CEMW × OSW.

Weighting methods.  We studied two types of propensity score-based weighting methods: (1) inverse prob-
ability of treatment weighting (IPTW), weighting both the exposed and unexposed individuals using their esti-
mated exposure probabilities with wi =

Zi
êi
+ 1−Zi

1−êi
 , and (2) weighting by the odds using wi = Zi + (1− Zi)

êi
1−êi

 , 
where the unexposed are weighted by their odds of being exposed.

When estimating the causal effect, we fit Poisson regressions with a “log” link to estimate incident rate 
ratios (for incident outcomes) and logistic regressions to estimate odds ratios (for prevalent outcomes) on the 
full sample. These were weighted using: (1) propensity score weights (PSW) and (2) PSW × OSW, where PSW 
were either the IPTW or odds-weights above. We used both unadjusted and multivariable-adjusted weighted 
regressions, incorporating the sampling design using the “survey” package in R, to estimate the marginal and 
conditional causal effects, respectively.

Assessment of matching and weighting.  Metrics, such as the absolute standardized mean difference 
(SMD), can be compared before and after implementing weighting or matching methods to assess improvement 
in balance of covariates across the exposure groups10,18. We define the absolute SMD of a covariate as ∣∣xexposed−xunexposed

∣∣
sexposed

 , where xexposed and xunexposed are the means of covariate x in the exposed and unexposed 
groups, and sexposed is the standard deviation of x in the full exposed group. In other words, the standard devia-
tion sexposed is computed using the full exposed group—before potentially sampling individuals for matching 
purposes—while accounting for survey design using weighting with OSW10. We similarly use OSW for weight-
ing when estimating xexposed and xunexposed . For categorical (including ordinal) variables, the absolute SMD for 
each level of the covariate is calculated, where now the mean of the covariate (at a given level) is the proportion 
of individuals with that level of the covariate, rather than treating the covariate as continuous10,21.

Simulation study
Sampling design.  We simulated complex health survey data with a nested structure, where the population 
was segmented into block groups (BGs), with equal-sized households (HHs) nested within the BGs. We used a 
stratified two-stage probability sampling design to draw 1000 independent samples from this population. This 
design mimicked the sampling design of the Bronx site in the HCHS/SOL22. Figure 2 provides an overview of the 
sampling design. The population contained 752 BGs split unevenly across 8 strata. We assigned the BGs strata-
specific sampling probabilities. The BG sampling probability was 25% for BGs in strata 1–4 and 60% for BGs in 
strata 5–8. We sampled entire BGs without replacement from the population based on these strata-specific BG 
sampling probabilities.

In the primary scenario 1 (Fig. 2), we generated the number of HHs to vary for each BG using an exponen-
tial distribution with mean of 450. Within each HH, we generated 2 individuals and their ages, and set the HH 
sampling probabilities to depend on the maximum age of the HH. First, we sampled a mean age for the HH 
as N

(
40, 152

)
 , truncated to a range of 23 to 69. Second, we sampled the age of the first individual and second 

individual from a uniform, discrete distribution that ranged within 10 years of the mean age. For each HH, the 
HH sampling probability was calculated as expit

(
−8+ 0.1×max_HH_age

)
 , where expit(x) = exp(x)

1+exp(x) . From 
the BGs that were selected in stage 1, we sampled equal-sized HHs without replacement based on these HH sam-
pling probabilities. In a secondary scenario 2, we did not use age in the sampling design (Supplementary Fig. 1).
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We calculated survey weights for each sample in three steps. We let i designate the BG, j designate the HH 
and k designate the individual. First, we calculated the individual sampling probability as pijk = p

i
pij , where pi 

is the BG sampling probability and pij is the HH sampling probability. Second, we calculated the base weights 
as wijk =

1
pijk

 . Third, we calculated the final weights to use in our analyses as Wijk =
wijk

1
n

∑
i,j,k wijk

.

Generating variables and association models.  According to the description below, we generated the 
following variables: BMI and years between visits as predictors; insomnia as the exposure of interest; hyperten-
sion status in visits 1 and 2 and MCI in visit 2 as outcomes. In brief, we generated the outcomes for a visit using a 
potential outcomes framework, i.e. by simulating the outcomes under two (observed and unobserved) exposure 
values, to allow estimation of both the true marginal and conditional population causal effects.

In detail, in addition to age, we generated two other predictors, baseline BMI and years between visits. BMI 
and years between visits were generated independently for all individuals using N

(
29, 92

)
 , truncated to the range 

of 15 to 63, and using N
(
6, 0.52

)
 , truncated to the range of 3 to 9, respectively.

We generated the binary exposure, insomnia, independently for all individuals in two steps. First, we calcu-
lated the probability that an individual has insomnia using the following logistic model:

where α0 = log(0.109) , α1 = log(1.025) and α2 = log(1.019) , inferred from the HCHS/SOL data. Second, we 
used Pr(Zi = 1) to sample the observed insomnia status, Zi , from a Bernoulli distribution.

For the binary outcomes, we generated prevalent MCI that was measured at visit 2 only and incident hyper-
tension that was measured at both visit 1 and 2. Both outcomes were generated based on the HCHS/SOL data 
so that the prevalence of hypertension at each visit was relatively high ( ≈ 40%), while the prevalence of MCI 
was low ( ≈ 8%).

We generated the outcomes for a visit using a potential outcomes framework that consisted of three steps 
to allow estimation of both the true marginal and conditional population causal effects. For an individual, let 
Yijk1 designate the outcome at visit 1 and Yijk2 designate the outcome at visit 2. Let hij be the HH clustering effect 
generated using N(0, 1) and bi be the BG clustering effect generated using N

(
0, 0.52

)
 . First, for a visit, we calcu-

lated the potential probabilities of the outcome under a = 1 (insomnia) and a = 0 (no insomnia) using logistic 
regression models.

For prevalent MCI at visit 2, we used the following model:

where β0 = log(0.003) , β1 = log(1.560) , β2 = log(1.018) and β3 = log(1.056) , based on the HCHS/SOL data.

logit(Pr(Zi = 1)) = α0 + α1bmii + α2agei ,

logit
(
Pr
[
Yijk2(a) = 1

])
= β

0
+ β1a+ β2bmiijk + β3ageijk + hij + bi ,

Figure 2.   Flowchart illustrating sampling design from one sampled dataset for scenario 1, where survey 
weights are constructed to depend on the confounder, age. BG block group, HH household, pop population, prob 
probability.
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For hypertension status at visit 1 and visit 2, we used the following models:

where γ0 = log(0.002) , γ1 = log(1.065) , γ2 = log(1.088) , γ3 = log(1.082) , φ0 = log(0.001) , φ1 = log(1.247) , 
φ2 = log(1.082) , φ3 = log(1.092) and φ4 = log(1.098) , based on the HCHS/SOL data.

Second, we used the respective probabilities to sample Yijk1(a) and Yijk2(a) from Bernoulli distributions under 
a = 1 and a = 0 . Third, we identified the outcomes that were observed under Zi.

In a sensitivity simulation analysis, we generated a new variable which we named education. We replaced 
age with education in the data generating models for insomnia, MCI, and hypertension. Education was 
generated for an individual in two steps, while ensuring that it is correlated with age. First, we drew from 
Unif (min

(
age

)
,max

(
age

)
) . Then, we drew from a Bernoulli distribution to decide if that value should be replaced 

with the individual’s age. The Bernoulli probability was chosen such that education would be correlated with age 
with correlation ρ ∈ {0.25, 0.5, 0.75}.

Calculating true causal effects.  We estimated the true marginal and conditional causal effects for the 
population of size N in two steps. First, we created a new data frame with 2N observations, in which every 
individual has an observation for each potential outcome. Second, using the new data frame, we fit multiple 
regression models, each targeting a separate causal estimand. Specifically, we estimated the ATE and the CATE 
using the complete new data frame, as well as the ATT and CATT using only the observations where Zi = 1 . 
For prevalent MCI, we fit marginal logistic regressions (regressing MCI on insomnia; estimating ATE and ATT) 
and conditional logistic regressions (regressing MCI on insomnia, BMI and age; estimating CATE and CATT). 
For incident hypertension, using a “log” link, we fit marginal Poisson regressions (regressing hypertension on 
insomnia with log of years between visits included as an offset; estimating ATE and ATT) and conditional Pois-
son regressions (regressing hypertension on insomnia, BMI and age with the log of years between visits included 
as an offset; estimating CATE and CATT) on the observations that did not have hypertension at baseline. For 
both outcomes, we used the exponentiated coefficient estimates on insomnia as the true causal effects.

Performance measures.  We used bias and 95% confidence interval (CI) coverage to compare the dif-
ferent approaches to using the survey weights and design on the simulated data. We calculated bias as 
1

1000

∑1000
i=1 (T̂Ei − TE) where 1000 was the number of samples that were drawn from our simulated popula-

tion, TE was the true causal effect and T̂Ei was the estimated causal effect for the i th sample. We calculated 
95% CI coverage as the percentage of simulated samples with a 95% CI that contained the true causal effect: 
100× 1

1000

∑1000
i=1 I(TE ∈ CIi) where CIi was the 95% CI for the i th sample. An approach performs well when it 

has low bias and coverage near 95%.

Sensitivity analyses.  We performed three types of sensitivity analyses. One, for both scenarios 1 and 2, 
we treated age as an unmeasured confounder and re-ran the analyses to assess sensitivity to omission of con-
founding variables that are correlated with the survey weights. Two, we then further focused on the analysis 
methods that had good performance in this scenario 1 sensitivity analysis, and generated another confounding 
variable named (without loss of generality) education, and used it instead of age in the data generating models 
for insomnia and for the outcomes (MCI and hypertension). We generated this variable so that it is correlated 
with age with varying degrees of correlation ( ρ ∈ {0.25, 0.5, 0.75} ). In this setting, age was still a design variable. 
Thus, we assessed the degree to which correlation of an unmeasured confounder with a design variable may help 
recover the underlying causal effect size. Three, for scenario 1, we re-generated insomnia, MCI and hyperten-
sion multiple times by varying the model intercepts and re-ran the analyses to assess sensitivity to changes in the 
prevalence of the exposure and outcomes. The intercepts were chosen so that the prevalence of the exposure and 
outcome varied from 5 to 35 in increments of 10.

Results.  Tables  2 and 3 and Supplementary Tables  1 and 2 provide the simulation results of the various 
approaches to incorporating the survey weights and design into the matching and weighting methods, respec-
tively. Under correct specification of the matching and weighting approaches, all approaches, excluding the PSM 
approaches using ISW, performed well for prevalent MCI and incident hypertension in both scenarios 1 and 2 
(without age in the sampling design). When age was omitted from the matching and effect estimation models 
(i.e. under-specification), most approaches experienced increases in bias and poor coverage. In scenario 2, no 
approach performed well. However, in scenario 1, methods that used OSW as a covariate in matching or the 
propensity score calculation, in addition to incorporating OSW during causal effect estimation, continued to 
perform well.

Highlighted in Tables 2 and 3 are four matching approaches identified as robust based on two subjective 
criteria: (1) coverage between 93 and 97% for scenarios 1 and 2 under correct specification; and (2) coverage 
between 93 and 97% for scenario 1 during under-specification. The robust PSM methods used propensity score 
computed via logistic regression with OSW as a covariate for matching, and next fitted regressions weighted 
using OSW. The robust CEM methods conducted matching using both coarsened covariates and coarsened OSW, 
following by regressions weighted using CEMW × OSW.

logit
(
Pr
[
Yijk1(a) = 1

])
= γ

0
+ γ1a+ γ2bmiijk + γ3ageijk + hij + bi ,

logit
(
Pr
[
Yijk2(a) = 1

])
= φ

0
+ φ1a+ φ2bmiijk + φ3ageijk + φ4yearsijk + hij + bi ,
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Table 4 provides results from the sensitivity analysis in which a confounder (education) was correlated with 
one of the survey design variables (age) and compares estimation results with and without including education 
in the analysis (correct specification and under-specification, respectively), by degree of the correlation between 
age and education. This sensitivity analysis focuses on the four robust matching methods identified in the first 
sensitivity analysis above. When education is not incorporated in the analysis, we see that the higher its correla-
tion is with the design variable, the better the robust methods are able to recover the underlying causal effect.

Table 2.   Simulation results for estimating effect of insomnia on prevalent MCI using various matching 
methods in the two compared scenarios. Scenario 1: survey weights depend on age. Scenario 2: survey weights 
do not depend on age. Bias: difference between the causal effect estimate obtained from the full (unsampled) 
simulated target population dataset and the average estimated causal effect over the 1000 survey samples. 
Cover: coverage of the 95% CIs defined as the proportion of simulations in which the true effect is covered by 
the CIs. CEM coarsened exact matching, CEMW coarsened exact matching weights, CI confidence interval; 
Cover coverage, ISW inherited survey weights, MCI mild cognitive impairment, OSW original survey weights, 
PS propensity score, PSM propensity score matching. The four matching methods that we consider robust 
based on results from simulations with under specification are highlighted with bold text.

Scenario 1 Scenario 2

Specification Method Matching Adjustment Weights Bias Cover Bias Cover

Correct

PSM

PS via weighted logistic regression using 
OSW

Unadjusted

No weights  − 0.004 0.969 0.011 0.951

OSW 0.018 0.939 0.016 0.940

ISW  − 0.266 0.420 0.015 0.944

Adjusted

No weights  − 0.019 0.955 0.007 0.953

OSW 0.014 0.936 0.014 0.932

ISW 0.010 0.941 0.014 0.943

PS via logistic regression with OSW as 
covariate

Unadjusted

No weights  − 0.007 0.969 0.009 0.951

OSW 0.018 0.946 0.015 0.943

ISW  − 0.267 0.407 0.013 0.927

Adjusted

No weights  − 0.020 0.964 0.006 0.941

OSW 0.019 0.937 0.014 0.940

ISW 0.009 0.943 0.015 0.934

CEM

Binning via coarsened covariates

Unadjusted
CEMW 0.045 0.906 0.048 0.909

CEMW × OSW 0.033 0.948 0.052 0.910

Adjusted
CEMW  − 0.021 0.954 0.005 0.954

CEMW × OSW 0.009 0.944 0.011 0.943

Binning via coarsened covariates and 
OSW

Unadjusted
CEMW 0.041 0.915 0.047 0.910

CEMW × OSW 0.030 0.947 0.052 0.910

Adjusted
CEMW  − 0.021 0.957 0.004 0.950

CEMW × OSW 0.009 0.945 0.011 0.950

Under (no age)

PSM

PS via weighted logistic regression using 
OSW

Unadjusted

No weights 0.138 0.502 0.271 0.243

OSW 0.279 0.563 0.275 0.410

ISW  − 0.573 0.002 0.275 0.405

Adjusted

No weights 0.114 0.648 0.249 0.342

OSW 0.254 0.634 0.252 0.485

ISW  − 0.598 0.002 0.252 0.491

PS via logistic regression with OSW as 
covariate

Unadjusted

No weights 0.067 0.846 0.267 0.285

OSW 0.045 0.937 0.273 0.413

ISW  − 0.330 0.164 0.272 0.417

Adjusted

No weights 0.046 0.906 0.245 0.347

OSW 0.020 0.948 0.250 0.500

ISW  − 0.420 0.038 0.250 0.482

CEM

Binning via coarsened covariates

Unadjusted
CEMW 0.146 0.366 0.279 0.115

CEMW × OSW 0.286 0.469 0.284 0.234

Adjusted
CEMW 0.114 0.567 0.245 0.208

CEMW ×  0.253 0.573 0.251 0.348

Binning via coarsened covariates and 
OSW

Unadjusted
CEMW 0.054 0.885 0.279 0.116

CEMW × OSW 0.050 0.937 0.285 0.232

Adjusted
CEMW 0.022 0.943 0.245 0.211

CEMW × OSW 0.017 0.949 0.251 0.352
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Figures 3 and 4 provide the results of the sensitivity analysis to assess the effect of changing the exposure 
and outcome prevalences on the identified robust matching methods. Both bias and coverage appear robust to 
changes in the exposure and outcome prevalences as long as the prevalences are not rare (i.e. > 5%).

Table 3.   Simulation results for estimating effect of insomnia on incident hypertension using various matching 
methods in the two compared scenarios. Scenario 1: survey weights depend on age. Scenario 2: survey weights 
do not depend on age. Bias: difference between the causal effect estimate obtained from the full (unsampled) 
simulated target population dataset and the average estimated causal effect over the 1000 survey samples. 
Cover: coverage of the 95% CIs defined as the proportion of simulations in which the true effect is covered by 
the CIs. CEM coarsened exact matching, CEMW coarsened exact matching weights, CI confidence interval, 
Cover coverage, ISW inherited survey weights, MCI mild cognitive impairment, OSW original survey weights, 
PS propensity score, PSM propensity score matching. The four matching methods that we consider robust 
based on results from simulations with under specification are highlighted with bold text.

Scenario 1 Scenario 2

Specification Method Matching Adjustment Weights Bias Cover Bias Cover

Correct

PSM

PS via weighted logistic regres-
sion using OSW

Unadjusted

No weights  − 0.036 0.942  − 0.004 0.982

OSW  − 0.001 0.941  − 0.001 0.946

ISW  − 0.087 0.776  − 0.002 0.953

Adjusted

No weights  − 0.031 0.969  − 0.001 0.993

OSW 0.002 0.934 0.002 0.949

ISW 0.004 0.945 0.001 0.940

PS via logistic regression with 
OSW as covariate

Unadjusted

No weights  − 0.037 0.948  − 0.005 0.986

OSW  − 0.001 0.956  − 0.002 0.958

ISW  − 0.079 0.784  − 0.004 0.946

Adjusted

No weights  − 0.031 0.978  − 0.001 0.993

OSW 0.004 0.942 0.002 0.958

ISW 0.009 0.934 0.002 0.947

CEM

Binning via coarsened covariates

Unadjusted
CEMW  − 0.020 0.901 0.009 0.961

CEMW × OSW 0.002 0.954 0.012 0.947

Adjusted
CEMW  − 0.034 0.732  − 0.005 0.953

CEMW × OSW  − 0.002 0.939  − 0.002 0.961

Binning via coarsened covariates 
and OSW

Unadjusted
CEMW  − 0.021 0.890 0.009 0.962

CEMW × OSW 0.002 0.946 0.012 0.953

Adjusted
CEMW  − 0.034 0.744  − 0.005 0.955

CEMW × OSW  − 0.002 0.933  − 0.002 0.962

Under (no age)

PSM

PS via weighted logistic regres-
sion using OSW

Unadjusted

No weights 0.047 0.911 0.122 0.340

OSW 0.126 0.707 0.126 0.330

ISW  − 0.345 0.002 0.124 0.351

Adjusted

No weights 0.050 0.899 0.127 0.313

OSW 0.128 0.708 0.130 0.310

ISW  − 0.360 0.000 0.129 0.318

PS via logistic regression with 
OSW as covariate

Unadjusted

No weights  − 0.009 0.994 0.123 0.350

OSW  − 0.001 0.952 0.127 0.355

ISW  − 0.052 0.915 0.122 0.372

Adjusted

No weights  − 0.004 0.996 0.128 0.316

OSW  − 0.008 0.952 0.131 0.310

ISW  − 0.154 0.473 0.128 0.311

CEM

Binning via coarsened covariates

Unadjusted
CEMW 0.050 0.608 0.131 0.081

CEMW × OSW 0.134 0.627 0.133 0.167

Adjusted
CEMW 0.049 0.607 0.126 0.097

CEMW × OSW 0.128 0.656 0.128 0.194

Binning via coarsened covariates 
and OSW

Unadjusted
CEMW  − 0.013 0.926 0.130 0.087

CEMW × OSW 0.013 0.950 0.133 0.170

Adjusted
CEMW  − 0.017 0.919 0.126 0.094

CEMW × OSW 0.003 0.951 0.128 0.195
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Data analysis
Hispanic community health study/study of latinos.  The HCHS/SOL is a community based, multi-
center, longitudinal cohort study of Hispanic/Latinos in the US23. A goal of the study was to investigate causal risk 
factors of diseases in Hispanic/Latino individuals23. In 2008, the study recruited over 16,415 men and women, 
aged 18–74, who self-identified as Hispanic/Latino, from four communities: Bronx, NY; Chicago, IL; Miami, FL 
and San Diego, CA23. HCHS/SOL is a complex health survey with a stratified three-stage probability sample24. 
Investigators used unequal sampling probabilities in each stage, selecting census BGs in stage 1, households in 
stage 2 and individuals in stage 3, and prioritized sampling of households more likely to have adults ages 45–7424.

The HCHS/SOL was approved by the institutional review boards (IRBs) at each field center, where all partici-
pants gave written informed consent in their preferred language (Spanish/English), and by the Non-Biomedical 
IRB at the University of North Carolina at Chapel Hill, to the HCHS/SOL Data Coordinating Center. All IRBs 
approving the study are: Non-Biomedical IRB at the University of North Carolina at Chapel Hill. Chapel Hill, NC; 
Einstein IRB at the Albert Einstein College of Medicine of Yeshiva University. Bronx, NY; IRB at Office for the 
Protection of Research Subjects (OPRS), University of Illinois at Chicago. Chicago, IL; Human Subject Research 
Office, University of Miami. Miami, FL; Institutional Review Board of San Diego State University, San Diego, 
CA. The study reported here was approved by the Mass General Brigham IRB under protocol #2022P001237. 
All methods were carried out in accordance with relevant guidelines and regulations.

Exposure and predictors.  Insomnia was defined using the Women Health Initiative Insomnia Rating 
Scale (WHIIRS) ≥ 925. The other included predictors were: time between visits; Hispanic/Latino background 
(Dominican, Central American, Cuban, Mexican, Puerto Rican, South American, more than one/other herit-
age); alcohol (never, former, current); smoking (never, former, current); age; gender (female, male); marital sta-
tus (married or living with partner, single, separated, divorced or widower); education (no high school diploma 
or GED, at most a high school diploma or GED, greater than high school diploma or GED); BMI; employment 
(retired and not currently employed or missing on employment, not retired or missing on retirement and not 
currently employed, employed part-time, < 35 h/week, employed full-time, > 35 h/week). Table 5 provides a sum-
mary of the predictors stratified by insomnia status.

Outcomes.  Outcomes of interest are incident hypertension, an average of 6 years after the baseline exam, 
and prevalent MCI, an average of 7 years after the baseline exam. Hypertension (≥ Stage 1) was operational-
ized as systolic blood pressure ≥ 130 mmHg, DBP ≥ 80 mmHg or use of antihypertensive medications. MCI was 

Table 4.   Simulation results from the second sensitivity analysis using the four robust matching methods to 
assess the degree to which correlation of an unmeasured confounder with a design variable may help recover 
the underlying causal effect size. The simulations were performed under Scenario 1. Corr: correlation between 
age and education. Bias: difference between the causal effect estimate obtained from the full (unsampled) 
simulated target population dataset and the average estimated causal effect over the 1000 survey samples. 
Cover: coverage of the 95% CIs defined as the proportion of simulations in which the true effect is covered by 
the CIs. CEM coarsened exact matching, CEMW coarsened exact matching weights, CI confidence interval, 
Cover coverage, ISW inherited survey weights, MCI mild cognitive impairment, OSW original survey weights, 
PS propensity score, PSM propensity score matching.

Corr = 0.25 Corr = 0.50 Corr = 0.75

Specification Method Matching Adjustment Weights Bias Cover Bias Cover Bias Cover

Outcome: prevalent MCI

 Correct

PSM PS via logistic regression with OSW as covariate
Unadjusted

OSW
0.018 0.952 0.023 0.935  − 0.020 0.959

Adjusted 0.035 0.945 0.036 0.930  − 0.004 0.953

CEM Binning via coarsened covariates and OSW
Unadjusted

CEMW × OSW
0.037 0.943 0.041 0.933 0.004 0.955

Adjusted 0.035 0.939 0.034 0.932  − 0.013 0.946

 Under (no education)

PSM PS via logistic regression with OSW as covariate
Unadjusted

OSW
0.316 0.607 0.248 0.685 0.117 0.900

Adjusted 0.314 0.609 0.241 0.705 0.102 0.913

CEM Binning via coarsened covariates and OSW
Unadjusted

CEMW × OSW
0.320 0.486 0.258 0.583 0.122 0.862

Adjusted 0.309 0.518 0.245 0.613 0.101 0.897

Outcome: incident hypertension

 Correct

PSM PS via logistic regression with OSW as covariate
Unadjusted

OSW
0.006 0.957 0.007 0.952 0.002 0.958

Adjusted 0.011 0.945 0.008 0.958 0.003 0.940

CEM Binning via coarsened covariates and OSW
Unadjusted

CEMW × OSW
0.019 0.940 0.017 0.961 0.013 0.962

Adjusted 0.011 0.934 0.007 0.950  − 0.001 0.940

 Under (no education)

PSM PS via logistic regression with OSW as covariate
Unadjusted

OSW
0.152 0.614 0.110 0.748 0.056 0.920

Adjusted 0.155 0.593 0.107 0.757 0.050 0.926

CEM Binning via coarsened covariates and OSW
Unadjusted

CEMW × OSW
0.163 0.486 0.122 0.660 0.069 0.848

Adjusted 0.161 0.490 0.116 0.671 0.061 0.871
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according to the National Institute on Aging-Alzheimer’s Association criteria and included individuals with 
severe impairment/suspect dementia26.

Analyses.  For each outcome, we removed any individuals with missing values on the predictors or outcome 
(at baseline or visit 2). For incident hypertension, we additionally removed individuals with hypertension at 
baseline. Our final samples sizes for the prevalent MCI and incident hypertension samples are 6,086 and 6,097, 
respectively. We applied all the weighting and matching-based causal inference approaches to both samples.

Results.  Supplementary Tables  3 and 4 provide the HCHS/SOL analysis results across all weighting and 
matching-based causal inference approaches, while Table 6 highlights the results among the robust matching 
methods only. Comparing individuals with and without insomnia, Table 6 provides the estimated odds ratios 
for prevalent MCI seven years after, on average, and the estimated incident rate ratios for incident hypertension 
an average of 6-years after baseline assessment. Based on the robust PSM method, insomnia has a causal effect 
on both MCI (marginal OR 1.402, CI [1.095, 1.794]; conditional OR 1.432, CI [1.108, 1.850]) and hypertension 
(marginal IRR 1.184, CI [1.002, 1.400]; conditional IRR 1.174, CI [1.012, 1.360]). Figure 5 provides a plot of 
the absolute SMD before and after implementing the robust PSM method for each outcome. The robust PSM 
method does appear to induce better balance in the covariates. Unlike in the simulations, the estimates from the 
CEM methods diverge substantially and have wide CIs, compared to the estimates from the PSM and weighting 

Figure 3.   Simulation results for sensitivity analysis conducted on the robust matching methods to assess the 
effect of varying the prevalence of both the exposure and the outcome on coverage (left) and bias (right) during 
estimation of the effect of insomnia (exposure) on prevalent MCI (outcome). CEM coarsened exact matching, 
MCI mild cognitive impairment, PSM propensity score matching.
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methods. This is due to the small number of individuals who were ultimately used in the analysis after conduct-
ing CEM.

Discussion
Motivated by our interest in applying matching and weighting-based causal inference methods to complex 
health survey data, we conducted a simulation study to compare various approaches to incorporating the survey 
weights and design into these methods. We found that most weighting and matching methods performed well 
under correct specification. However, when a variable (age, in our simulations) was treated as an unmeasured 
confounder and not included in the matching and effect estimation models (i.e., under-specification) and the 
survey weights were constructed to depend on this variable, only the matching methods that used the survey 
weights in both the causal estimation and as a covariate in the matching step continued to perform well. Although 
age was specifically modelled in simulating the survey weights, our analysis was motivated by the potential for 
unmeasured variables that are related to demographic or socioeconomic status. The HCHS/SOL survey sampling 
design accounted for socioeconomic status, yet not all potential sociocultural variables were measured. Thus, it 
is plausible that an unmeasured variable influenced the sampling process that is nonetheless captured to some 
extent by the survey weights. As another assessment, we also considered a confounding variable (education 
in our simulations) that is associated with a design variable (age in simulations). When education was treated 
as an unmeasured confounder, we saw that the higher its correlation is with the design variable, the better the 
performance of the robust methods in estimating the causal effects (however confounding bias remains due to 
imperfect correlation between the unmeasured confounding with the design variable). Therefore, the simulation 

Figure 4.   Simulation results for sensitivity analysis conducted on the robust matching methods to assess the 
effect of varying the prevalence of both the exposure and the outcome on coverage (left) and bias (right) during 
estimation of the effect of insomnia (exposure) on incident hypertension (outcome). CEM coarsened exact 
matching, MCI mild cognitive impairment, PSM propensity score matching.
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Table 5.   Demographics and BMI of HCHS/SOL stratified by insomnia status. Means, percentages and SEs are 
weighted by OSW. Totals are unweighted. Individuals with missing values on predictors and outcomes have 
been removed. Additionally, individuals with baseline hypertension have been removed from the incident 
hypertension sample. BMI body mass index, HCHS/SOL Hispanic Community Health Study/Study of Latinos, 
MCI mild cognitive impairment, OSW original survey weights.

Incident hypertension sample Prevalent MCI sample

No insomnia (N = 4092) Insomnia (N = 2005) Total (N = 6097) No insomnia (N = 3580) Insomnia (N = 2506) Total (N = 6086)

Hispanic/Latino background, %

 Dominican 7.5 10.8 8.5 7.7 11.6 9.2

 Central American 7.8 7.0 7.6 7.8 6.7 7.4

 Cuban 14.0 16.3 14.7 25.8 25.4 25.7

 Mexican 50.7 38.9 47.2 37.0 27.6 33.3

 Puerto Rican 9.7 18.4 12.3 11.9 21.2 15.6

 South American 6.2 4.4 5.7 5.9 3.9 5.1

 More than one/other 4.0 4.1 4.0 3.8 3.6 3.7

Alcohol, %

 Never 19.1 15.3 18.0 23.5 22.3 23.0

 Former 29.0 33.4 30.3 29.5 34.0 31.3

 Current 51.9 51.3 51.7 47.0 43.6 45.7

Smoking, %

 Never 68.6 59.6 65.9 56.0 54.1 55.3

 Former 13.3 16.2 14.2 27.0 24.6 26.1

 Current 18.1 24.2 20.0 17.0 21.2 18.6

Age, years, mean (SD) 36.30 (12.75) 39.28 (13.09) 37.19 (12.93) 56.27 (8.16) 56.58 (7.93) 56.39 (8.07)

Gender, %

 Female 56.0 67.0 59.3 49.8 61.5 54.4

 Male 44.0 33.0 40.7 50.2 38.5 45.6

Marital status, %

 Single 36.7 35.0 36.2 15.4 19.4 17.0

 Married or living with partner 52.4 50.0 51.7 57.1 49.6 54.2

 Separated, divorced, or widow(er) 11.0 15.0 12.2 27.4 30.9 28.8

Education, %

 No high school diploma or GED 28.1 30.4 28.8 36.5 40.6 38.1

 At most a high school diploma or 
GED 29.4 29.2 29.3 21.0 21.1 21.0

 > High school diploma or GED 42.5 40.4 41.9 42.5 38.3 40.8

BMI, kg/m2, mean (SD) 28.06 (5.56) 28.85 (6.11) 28.30 (5.74) 29.60 (5.21) 29.95 (5.73) 29.74 (5.42)

Employment, %

 Retired and not currently employed 2.3 4.1 2.8 18.9 20.7 19.6

 Not retired and not currently 
employed 39.2 44.8 40.9 30.4 41.3 34.7

 Employed part-time 20.5 18.7 20.0 15.1 13.8 14.6

 Employed full-time 38.0 32.4 36.3 35.5 24.2 31.1

Table 6.   HCHS/SOL data analysis results for both prevalent MCI and incident hypertension across the robust 
matching-based causal inference approaches. The estimates are given as ORs for prevalent MCI and IRRs 
for incident hypertension. CEM coarsened exact matching, CEMW coarsened exact matching weights, CI 
confidence interval; Cover coverage, Est estimate, IRR incident rate ratio, MCI mild cognitive impairment, Obs 
observations, OR odds ratio, OSW original survey weights, PS propensity score, PSM propensity score matching.

Outcome Method Matching Adjustment Weights # Obs Est 95% CI

Prevalent MCI

PSM PS via logistic regression with OSW as 
covariate

Unadjusted
OSW

5008 1.40 (1.10, 1.79)

Adjusted 5008 1.43 (1.11, 1.85)

CEM Binning via coarsened covariates and 
OSW

Unadjusted
CEMW × OSW

782 0.90 (0.42, 1.90)

Adjusted 782 0.99 (0.53, 1.84)

Incident hypertension

PSM PS via logistic regression with OSW as 
covariate

Unadjusted
OSW

4085 1.18 (1.00, 1.40)

Adjusted 4085 1.17 (1.01, 1.36)

CEM Binning via coarsened covariates and 
OSW

Unadjusted
CEMW × OSW

474 0.90 (0.53, 1.54)

Adjusted 474 1.03 (0.64, 1.63)
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results suggest that incorporating the survey weights as a covariate in the matching may provide some protec-
tion against unmeasured confounding. We recommend further that investigators subsequently incorporate the 
survey weights in causal effect estimation.

Previous studies have agreed that survey weights should be incorporated in the causal effect estimation step 
but have disagreed on whether and how to incorporate the survey weights in the matching step. Ridgeway et al. 
recommended using a survey-weighted propensity score model, while Dugoff et al. concluded that survey weights 
should be included as a covariate in the propensity score model instead, aligning with our recommendation11,13. 

Figure 5.   Graphical diagnostics to assess robust PSM method for incident hypertension (left) and prevalent 
MCI (right) analyses using the HCHS/SOL data. Top: Plot of absolute SMD before and after matching. Bottom: 
Distribution of propensity scores of matched exposed, matched unexposed and unmatched unexposed 
individuals. Note that the “unmatched exposed” category is empty because all exposed individuals were 
matched. MCI mild cognitive impairment, SMD standardized mean difference.
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In contrast, Austin et al. and Lenis et al. found that whether and how the survey weights were incorporated in 
matching did not impact performance of the method12,15. Our study is an important contribution to existing 
literature. First, while previous studies have focused on continuous outcomes, our study focuses on binary out-
comes, targeting both prevalent and incident population estimates of the OR and IRR, respectively. Second, our 
study is the first to consider the use of CEM in the context of complex survey data. Third, while other studies have 
used simple sampling designs that are not often employed in practice, our study uses a more complex sampling 
design and is the first to allow the survey weights to depend on a confounder. Fourth, our study assesses both sen-
sitivity to the introduction of unmeasured confounding and to changes in the exposure and outcome prevalences.

When applying our robust PSM methods that consistently performed well in the simulation study to the 
HCHS/SOL data, we found that insomnia has a causal association with both prevalent MCI 7 years later and 
with incident hypertension 6 years later in the US Hispanic/Latino population. Our incident hypertension 
results support those reported by Li et al.27 who estimated the odds ratio for incident hypertension comparing 
individuals with and without insomnia via logistic regression. In addition, we also provide new evidence of an 
association between insomnia and prevalent MCI in US Hispanic/Latino adults. We also found that our robust 
CEM methods performed poorly when applied to the HCHS/SOL data, despite consistently performing well in 
the simulation study, because of the huge reductions in sample size incurred from matching on a large number 
of strata. This suggests that CEM may not be practical for small/medium sample sizes and when there are many 
variables to match on.

Recent sleep research has prioritized using Mendelian Randomization (MR) to conduct causal inference 
for sleep exposures on downstream health outcomes28–40 using genetic variants as instruments for modifiable 
exposures1. However, MR has limitations that have been overshadowed in the wake of its popularity. Violations 
of MR’s assumptions—relevance, exchangeability, exclusion restriction and homogeneous and linear associa-
tions—can result from issues, such as residual pleiotropy, population stratification, linkage disequilibrium, weak 
IVs and heterogeneity1,41. Additionally, lack of relevant genetic variants for the exposure may reduce power for 
finding causal associations5. Specific exposures used by MR studies are also restricted by the specific measures 
targeted by genome-wide association studies (GWAS) performed. Lastly, most MR studies conducted so far on 
sleep exposures have used genetic information from predominately European populations, minimizing their 
generalizability to racial and ethnic minority groups5. These limitations of MR underscore the importance of 
triangulating causal inference from multiple methods currently underutilized in sleep research.

Although we performed an extensive simulation study, there is still room for further investigation in apply-
ing causal inference methods to complex health survey data. Future work may focus on––but is not limited 
to––identifying the best approaches to incorporating the survey weights and design when assessing matching, 
evaluating robustness of the matching methods after introduction of different types of missingness, assessing the 
effectiveness of other propensity score estimation approaches and matching algorithms, studying the effect of 
over-specification of the propensity score and the causal effect estimation models by including unnecessary vari-
ables on inference, and investigating other causal inference methods that are not based on weighting or matching.

Data availability
HCHS/SOL data are available on the National Heart Lung and Blood Institute’s BioLINCC (Biologic Specimen 
and Data Repository Information Coordinating Center) repository under accession number HLB01141422a. 
Alternatively, the data can also be obtained via a data use agreement with the HCHS/SOL Data Coordinating 
Center at the University of North Carolina at Chapel Hill, see collaborators website: https://​sites.​cscc.​unc.​edu/​
hchs/.

Code availability
Code used for simulations and data analysis is publicly available on the GitHub repository: https://​github.​com/​
anjas​hahu/​causal_​match​ing_​paper.

Received: 17 November 2022; Accepted: 12 June 2023

References
	 1.	 Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. & Davey, S. G. Mendelian randomization: Using genes as instruments 

for making causal inferences in epidemiology. Stat. Med. 27(8), 1133–1163 (2008).
	 2.	 Rochon, P. A. et al. The inclusion of minority groups in clinical trials: Problems of under representation and under reporting of 

data. Account Res. 11(3–4), 215–223 (2004).
	 3.	 Faraoni, D. & Schaefer, S. T. Randomized controlled trials vs observational studies: Why not just live together? BMC Anesthesiol. 

16(1), 102 (2016).
	 4.	 Pack, A. I. et al. Randomized clinical trials of cardiovascular disease in obstructive sleep apnea: Understanding and overcoming 

bias. Sleep 44(2), 229 (2021).
	 5.	 Sofer, T., Goodman, M. O., Bertisch, S. M. & Redline, S. Longer sleep improves cardiovascular outcomes: Time to make sleep a 

priority. Eur. Heart J. 42(34), 3358–3360 (2021).
	 6.	 Munafò, M. R. & Davey, S. G. Robust research needs many lines of evidence. Nature 553(7689), 399–401 (2018).
	 7.	 Smart, A. & Harrison, E. The under-representation of minority ethnic groups in UK medical research. Ethn. Health 22(1), 65–82 

(2017).
	 8.	 McGrath, R. P. et al. The burden of health conditions across race and ethnicity for aging Americans: Disability-adjusted life years. 

Medicine 98(46), e17964 (2019).
	 9.	 Lohr, S. Sampling: Design and Analysis 2nd edn. (CRC Press, 2010).
	10.	 Stuart, E. A. Matching methods for causal inference: A review and a look forward. Stat. Sci. 25(1), 1–21 (2010).
	11.	 Dugoff, E. H., Schuler, M. & Stuart, E. A. Generalizing observational study results: Applying propensity score methods to complex 

surveys. Health Serv. Res. 49(1), 284–303 (2014).

https://sites.cscc.unc.edu/hchs/
https://sites.cscc.unc.edu/hchs/
https://github.com/anjashahu/causal_matching_paper
https://github.com/anjashahu/causal_matching_paper


15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9831  | https://doi.org/10.1038/s41598-023-36927-2

www.nature.com/scientificreports/

	12.	 Austin, P. C., Jembere, N. & Chiu, M. Propensity score matching and complex surveys. Stat. Methods Med. Res. 27(4), 1240–1257 
(2018).

	13.	 Ridgeway, G., Kovalchik, S. A., Griffin, B. A. & Kabeto, M. U. Propensity score analysis with survey weighted data. J. Causal Infer-
ence 3(2), 237–249 (2015).

	14.	 Lenis, D., Ackerman, B. & Stuart, E. A. Measuring model misspecification: Application to propensity score methods with complex 
survey data. Comput. Stat. Data Anal. 128, 48–57 (2018).

	15.	 Lenis, D., Nguyen, T. Q., Dong, N. & Stuart, E. A. It’s all about balance: Propensity score matching in the context of complex survey 
data. Biostatistics 20(1), 147–163 (2019).

	16.	 Imbens, G. W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econ. Stat. 86(1), 4–29 
(2004).

	17.	 Hernán, M. A. A definition of causal effect for epidemiological research. J. Epidemiol. Community Health 58(4), 265–271 (2004).
	18.	 Austin, P. C. & Stuart, E. A. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using 

the propensity score to estimate causal treatment effects in observational studies. Stat. Med. 34(28), 3661–3679 (2015).
	19.	 Iacus, S. M., King, G. & Porro, G. cem: Software for coarsened exact matching. J. Stat. Softw. 30, 9 (2009).
	20.	 King, G. An Explanation for CEM Weights. https://​docs.​google.​com/​docum​ent/d/​1xQwy​Lt_​6EXdN​pA685​Ljmhj​O20y5​pZDZY​

we2qe​NoI5dE/​edit (2012) (Accessed 3 July 2021).
	21.	 Harder, V. S., Stuart, E. A. & Anthony, J. C. Propensity score techniques and the assessment of measured covariate balance to test 

causal associations in psychological research. Psychol. Methods 15(3), 234–249 (2010).
	22.	 Cai, J. et al. Comparisons of Statistical Methods for Handling Attrition in a Follow-up Visit with Complex Survey Sampling. Stat. 

in Med. 42(11), 1641–1668 (2023).
	23.	 Sorlie, P. D. et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 20(8), 

629–641 (2010).
	24.	 Lavange, L. M. et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 

20(8), 642–649 (2010).
	25.	 Levine, D. W. et al. Reliability and validity of the Women’s health initiative insomnia rating scale. Psychol. Assess. 15(2), 137–148 

(2003).
	26.	 González, H. M. et al. A research framework for cognitive aging and Alzheimer’s disease among diverse US Latinos: Design and 

implementation of the Hispanic Community Health Study/Study of Latinos-Investigation of Neurocognitive Aging (SOL-INCA). 
Alzheimers Dement. 15(12), 1624–1632 (2019).

	27.	 Li, X. et al. Associations of sleep-disordered breathing and insomnia with incident hypertension and diabetes. The Hispanic Com-
munity Health Study/Study of Latinos. Am. J. Respir. Crit. Care Med. 203(3), 356–365 (2021).

	28.	 Ai, S. et al. Causal associations of short and long sleep durations with 12 cardiovascular diseases: Linear and nonlinear Mendelian 
randomization analyses in UK Biobank. Eur. Heart J. 42(34), 3349–3357 (2021).

	29.	 Liao, L.-Z. et al. Causal assessment of sleep on coronary heart disease. Sleep Med. 67, 232–236 (2020).
	30.	 van Oort, S., Beulens, J. W. J., van Ballegooijen, A. J., Handoko, M. L. & Larsson, S. C. Modifiable lifestyle factors and heart failure: 

A Mendelian randomization study. Am. Heart J. 227, 64–73 (2020).
	31.	 Zhuang, Z. et al. Association of physical activity, sedentary behaviours and sleep duration with cardiovascular diseases and lipid 

profiles: A Mendelian randomization analysis. Lipids Health Dis. 19(1), 86 (2020).
	32.	 Daghlas, I. et al. Sleep duration and myocardial infarction. J. Am. Coll. Cardiol. 74(10), 1304–1314 (2019).
	33.	 Richmond, R. C. et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisa-

tion study. BMJ 365, l2327 (2019).
	34.	 Titova, O. E. et al. Sleep duration and risk of overall and 22 site-specific cancers: A Mendelian randomization study. Int. J. Cancer 

148(4), 914–920 (2021).
	35.	 Gao, X.-L. et al. Obstructive sleep apnea syndrome and causal relationship with female breast cancer: A Mendelian randomization 

study. Aging (Albany, NY) 12(5), 4082–4092 (2020).
	36.	 Henry, A. et al. The relationship between sleep duration, cognition and dementia: A Mendelian randomization study. Int. J. Epi-

demiol. 48(3), 849–860 (2019).
	37.	 Anderson, E. L. et al. Is disrupted sleep a risk factor for Alzheimer’s disease? Evidence from a two-sample Mendelian randomiza-

tion analysis. Int. J. Epidemiol. 50, 817 (2020).
	38.	 Gao, X. et al. Investigating causal relations between sleep-related traits and risk of type 2 diabetes mellitus: A Mendelian randomi-

zation study. Front. Genet. 11, 607865 (2020).
	39.	 Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12(1), 900 

(2021).
	40.	 Daghlas, I. et al. Habitual sleep disturbances and migraine: A Mendelian randomization study. Ann. Clin. Transl. Neurol. 7(12), 

2370–2380 (2020).
	41.	 Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 8(4), 186 (2020).

Acknowledgements
This work was supported by the National Institute on Aging (R01AG048642, RF1AG054548, RF1AG061022, 
R21AG070644, and R21AG056952) and by the National Heart, Lung, and Blood Institute (R35HL135818, 
R01HL161012). Dr. González also receives additional support from P30AG062429 and P30AG059299. The 
Hispanic Community Health Study/Study of Latinos is a collaborative study supported by contracts from the 
National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (HHSN268201300001I/
N01-HC-65233), University of Miami (HHSN268201300004I/N01-HC-65234), Albert Einstein College of 
Medicine (HHSN268201300002I/N01-HC-65235), University of Illinois at Chicago (HHSN268201300003I/
N01-HC-65236 Northwestern Univ), and San Diego State University (HHSN268201300005I/N01-HC-65237). 
The following Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to 
the NHLBI: National Institute on Minority Health and Health Disparities, National Institute on Deafness and 
Other Communication Disorders, National Institute of Dental and Craniofacial Research, National Institute 
of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, NIH 
Institution-Office of Dietary Supplements. The authors thank the staff and participants of HCHS/SOL for their 
important contributions.

Author contributions
A.S., J.C., and T.S. conceptualized the manuscript. A.S. performed all analyses, prepared tables and figures. A.S., 
J.C., and T.S. drafted the manuscript. All authors critically reviewed the manuscript.

https://docs.google.com/document/d/1xQwyLt_6EXdNpA685LjmhjO20y5pZDZYwe2qeNoI5dE/edit
https://docs.google.com/document/d/1xQwyLt_6EXdNpA685LjmhjO20y5pZDZYwe2qeNoI5dE/edit


16

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9831  | https://doi.org/10.1038/s41598-023-36927-2

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​36927-2.

Correspondence and requests for materials should be addressed to T.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-36927-2
https://doi.org/10.1038/s41598-023-36927-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Method comparison and estimation of causal effects of insomnia on health outcomes in a survey sampled population
	Potential outcomes framework and causal estimands
	Implementation of causal inference methods in a survey study
	Matching methods. 
	Matching exposed and unexposed. 
	Estimating causal effects. 

	Weighting methods. 
	Assessment of matching and weighting. 

	Simulation study
	Sampling design. 
	Generating variables and association models. 
	Calculating true causal effects. 
	Performance measures. 
	Sensitivity analyses. 
	Results. 

	Data analysis
	Hispanic community health studystudy of latinos. 
	Exposure and predictors. 
	Outcomes. 
	Analyses. 
	Results. 

	Discussion
	References
	Acknowledgements




