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Department of Physics and Lawrence Berkeley Laboratory 
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ABSTRACT 

Abarbanel's derivation of the 2-pomeron dis-

continuity is examined at t = 0 where the physics is 

especially transparent. By altering slightly the 

significance of Abarbanel's decomposition of the total 

cross section, arguments are given to support the 

crucial and controversial assumption that his "single-

fireball" vertices do not contain the 2-pomeron branch 

point. It is shown further how Abarbanel's discontinu­

ity formula gives a semi-quantitative realization of the 

Finkelstein-Kajantie requirement of small pomeron cou-

plings if ~(0) is close to 1. This demonstration, 

which shows that the triple-pomeron coupling is 

proportional to 1 - ap(o), depends critically on the 

positive sign of the Abarbanel discontinuity. 
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I. INTRODUCTION 

There has recently occurred the remarkable development that the 

same generalS-matrix formula for.the discontinuity across the 2-

1-4 pomeron branch cut has been proposed by several different authors, 

but one of these authors argues for a positive discontinuity while all 

others believe the sign to be negative. The physical argument for a 

negative discontinuity (the majority position) has arisen fromFeynman­

graph models where the cut represents an "absorptive" correction to a 

pole when the latter is regarded as given ab initio with arbitrarily 

assignable strength, the cut being needed to keep the complete amplitude 

within unitarity bounds. Such an interpretation, however, lacks 

meaning in S-matrix language, where the strengths ~- ll01e, eut, and aJ..l 

other singuJ.arities are simultaneously controlled by unitarity. 

Feynman-graph models typically represent the amplitude as an 

infinite superposition of components associated with individual graphs, 

but without attention to renormalization the inserts in a particular 

graph cannot be identified with singularities of the full S matrix. 

Consistent renormalization procedures never having been developed for 

reggeon lines, an insert line in existing forms of "reggeon calculus" 

does not correspond to an actual J-pole of the S matrix. The status 

in graph models of Regge branch points is equally obscure. 

Since the discontinuity formula at issue is expressible 

entirely through the S matrix, it should be possible to derive the 

formula without recourse to Feynman graphs, and indeed two attempts of 

this kind have been made. The first, by Abarbanel, depends on the 

formulation of a certain integral equation whose kernel has simple 

analyticity properties near the branch point in question. 3 Abarbanel 
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found a positive discontinuity from his equation, but his arguments to 

support the crucial property of his kernel have not been entirely 

convincing, and Abarbanel's result has failed to shake the faith of 

those who on the basis of Feynman graphs had come to believe in the 

negative sign. A second attempt at an S-matrix derivation has been 

made by White, 
4 

using techniques that in principle seem more straight-

forward then those of Abarbanel but that in practice involve intricate 

technical points where sign errors may occur. Thus White's publication 

of a negative sign has not settled the issue. 

Although the physical importance of the 2-pomeron branch 

point (being only one of a welter of Regge singularities) is far from 

established, a healthy protracted controversy over the sign of the 

discontinuity should augment the understanding of Regge behavior. The 

intent of this paper is to fuel the controversy with arguments that 

support Abarbanel's result. 

II. A PHYSICAL INTERPRErATION OF ABARBANEL' S ANALYSIS 

Roughly speaking, Abarbanel's analysis depends on classifying 

high-energy events according to the number of produced "fireballs." 

At zero momentum transfer (t = 0) the physics is especially trans-

parent because one may there carry out the discussion through the total 

cross section which, apart from a simple positive factor, is the s 

discontinuity of the elastic amplitude. Abarbanel breaks down the 

total cross section into certain partial cross sections which are 

recursively related and thence he obtains his integral equation. 

Because all quantities throughout are real and positive, no technical 

mistake about algebraic signs can occur. If a mistake is made, it has 

a more subtle origin. 
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Abarbanel is not quite precise about his decomposition of the 

total cross section. We suggest that for each event the produced 

particles be ordered according to longitudinal rapidity, the event 

being characterized as "single-fireball_. " ''two fireball," "three-

fireball, " etc., according to the number of large rapidity gaps in the 

ordered chain. Figure 1, for example depicts a 4-fireball·event, 

particles 1 Produced lL_ ]' L 
--- _l ----.....!--C-----1-..,--

Incident 
particles 

1 
l 

Rapidity ~ 

A B 

· Fig. 1. The rapidity distribution of a 4-fireball event. 

AB .... 8 particles. To make unambiguous our fireball definition we 

specify a minimum interfireball rapidity gap 6; given a particular 

choice of 6 , the total cross section may be uniquely decomposed as 

tot( ) 
crAB s 

o, 6( ) 
crAB s + + + (2 .1) 

the superscript indicating the number of rapidity gaps larger than 6 

or, equivalently, the number of fireballs minus one. 

At any finite s there is a maximum n for which n, 6( ) 
crAB s 

is nonvanishing (nmax is of the order 1 s ), but as the zlog s .... 00 

number of terms in the series (2.1) increases without limit. Although 

cr~~s) does not correspond to any definite set of reactions, each 
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of these partial cross sections must be power bounded, so that the 

crossed-reaction J-projection of the forward amplitude has a decomposi­

tion corresponding to (2.1):5 

+ (2 .2) 

We note for future purposes that the rightmost J-siDgularity in each 

is determined by the leading power in the asymptotic expansion . 

of o~~s). What is the connection between this leading power and the 

pomeron? 

We shall suppose the pameron at t 0 to be a simple fac­

torizable Regge pole lying slightly below J 1, so that a gap occurs 

between this pole and other J singularities. Although the contradic-

tory aspects of the 2-pomeron cut discontinuity may conceivably be 

related to the failure of such a condition to be realized in the 

physical S matrix, the Feynma.n graph approach should be capable of 

accommodating an arbitrary pole location, so the controversy is worth 

pursuing on such a basis. In any event if we fail to assume simple­

pole status for the pomeron, meaning evaporates for the 2-pomeron dis-

continuity formula. Brower and Weis have recently given a persuasive 

argument that if the pomeron is a simple factorizable pole, with finite 

trajectory slope at t = 0 and nonvanishing coupling to any channels, 

6 
then its intercept must lie below J = 1. 

Supposing a gap in J to occur between the pomeron pole and 

other J singularities, we may choose 6 sufficiently large that at 

each interfireball gap a factorizable pomeron link becomes a good 

approximation. The expansion (2.1j may then be represented diagrammat­

ically as 

-6-

X- v 
/ ' •(2.~) 

where the symbol @ represents a sum over all types of single 

fireballs. The reader is cautioned against interpreting (2 .3) as a 

Feynma.n-like expansion. We are representing not the amplitude but the 

total cross section and each graph depicts the contribution from a 

distinct class of reactions. The different diagrams of (2.3), in otber 

words, correspond to different regions of phase space. To illustrate 

the meaning of (2.3) in a more concrete fashion, consider the second 

(two-fireball) term in the expansion and def'ine fireball masses SA 

and sB' as well as a squared momentum transfer t
1 

in the manner 

shown in Fig. 2. The factorization property means that o1' 'is) at . AB 

Fig. 2. Two-fireball diagram defining the squared 

fireball masses, sA and sB' and the 

squared momentum transfer t
1

• 
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large s has the structure 

(2. 4) 

0 6 
where the factor Ai~ (si,t) may loosely be described as being propor-

tional to the cross section for single-fireball formation when a pom~an 

"collides" with a physical particle of type i. The rapidity gap 

between the "rightmost" particle in the left fireball and the "leftmost" 

particle in the right fireball is approximately the logarithm of the 

ratio s/sAsB when the interfireball gap is large, so the integration 

in (2.4) is confined to the region where this ratio is greater than e 6 • 

For production of more than two fireballs one encounters 

additionally the four-pomeron vertex 

O,l', t' t") D'pp ~SP' ' J (2 ·5) 

which might be described as the single-fireball production cross 

section in a pomeron-pomeron collision. With such a factor repeated 

n - 2 times, Formula (2.4) may be generalized so as to construct the 

physical AB cross section for n-fireball formation. Abarbanel has 

given a set of variables for the general formula;3 also suitable are 

the Toller variables of Ref. 7. 

The J-projection of (2.4) to obtain A~~~J) involves an 

integration over s that extends to s =co •. If the factor 

is bounded by a sufficiently low power of 

asymptotic s dependence is controlled by the factor so the 
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leading J singularity of A~~J) will be a branch point at 

J = 2a:p(O) - 1, whose discontinuity has the form 

(2 .6) 

Similarly, if cr ~P·6( sP' t ', t ") is bounded by a sufficiently lm-r JlOW"er 

of sP' the leading singularity of A~~ 6 (J) will for any n be a 

branch point at this same location--with a discontinuity that can be 

computed. All these discontinuities are.positive since they dominate 

the asymptotic behavior of separately positive pieces of the cross 

section. We have here essentially the 5ame situation as that analyzed 

8 
by Finkelstein and Kajantie for finite fireball masses. 

It does not immediately follow that the discontinuity of the 

total amplitude AAB (J) is necessarily positive, because the series 

(2.2) diverges for J :5. a:p(o). This series, however, may be replaced 

by an integral equation, whose kernel has the structure 

K(J; t't") a: (2. 7) 

and if the J-singularities of the factor A~J,6(J,t',t") may be ignored 

one deduces that the discontinuity of the full amplitude has the form 

(2.8) 

the points J + and J _ lying on opposite sides of the cut. The sign 

of this discontinuity can be shown to be positive in the sense of the 

preceding discussion, although the magnitude of the full-amplitude 

discontinuity near the branch point is smaller than that of any of the 

individual terms in the series (2.2). It should be observed that the 
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final discontinuity formula (2.8) is independent of 6, although this 

parameter has been important at every stage of the derivation. 

Abarbanel's reasoning depends crucially on the asjmptotic 

behavior of single-fireball cross sections. Is it possible that this 

behavior could lead to J singularities of A~]:,6(J) and A~P~J) 

that would alter the result (2.8)? With our definition of a single 

fireball we find such an eventuality hard to imagine because singular-

ities in J arise f'rom power behavior in the limit as the fireball 

mass approaches infinity. Now to the extent that transverse momenta 

are bounded, each fireball cross section for a definite number of 

produced particles vanishes when the fireball mass exceeds some finite 

limit, because within the fireball we constrain the magnitude of 

allowable longitudinal-rapidity gaps. To the extent that the prob-

ability for large transverse momenta decreases exponentially we shall 

have an asymptotic exponential decrease with fireball mass (taster than 

any power) for each of the partial cross sections. Thus the J 

projection of each fixed-multiplicity component of a single-fireball 

cross section will be f'ree f'rom J singularities, ap!.rt from those in 

the left-half J-plane due to the projecting group representation 

function. Singularities in the right half J-plane arise only f'rom a 

divergence of the infinite series of components. 

The location of such singularities will depend on the ratio of 

successive terms in the series and thus on parameter~ such as 6, other 

than the pomeron trajectory.9 How a branch point could arise at 

J = 2ap(O) - 1 is obscure, none of the usual mechanisms being opera­

tive. Singularities with other locations, even if they occur to the 

right of the 2-pomeron branch point, will not interfere with the 

2-pomeron discontinuity formula. 
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III • RELATION BEI'WEEN roLE RESIDUE AND BRANCH R)INT DISC011TINUITY 

Support for a positive discontinuity also emerges from a study 

of the relation between the discontinuity and the pomeron pole residue 

when the pole at t = 0 is very close to J = 1. Following Abarbanel, 

we define 

where t
0
(J) is defined by 

(3.2) 

Assuming the trajectory ap(t) to be analytic in t near the branch 

point, the discontinuity formula for R(J) (up to the uncertainty in 

sign) is 

disc R(J) 2ip(J) R(J+) R(J_), 

where 

p(J) (3 .4) 

~ being a positive constant that depends on the precise normalization 

of R(J). Normalizing so that the pole in R(J) at J = ap( 0) has 

the residue gp2 (o), where gp(t) is the triple-pomeron coupling 

defined in Ref. 10, it turns out that ~ = 1/16. 

Formula (3.3) implies that the function 

where ac = 2ap - 1 is the branch-point position, is f'ree from 

singularities near J = a and in this neighborhood may be expanded 
·c 
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in a-power series if R(J) has no nearby zeros. To be troublesome to 

the following argument a zero would have to be located as close to ac 

as the pole at ap • Such a location for a zero is conceivable but 

would constitute an accident if the pole and branch point are signif-

icantly coupled to each other. 
8 

Since the Finkelstein-Kajantie result 

suggests an important interaction between branch point and pole we sharr 

ignore possible zeros of R(J) near J = 1. Since R-1 (J) vanishes 

at J = aP' it is convenient to expand around the pole position: 

1 J-a )2 
- p(J) tn c + b(J - ap) + O(J - ap • 
:n: ap - ac 

(3 .6) 

Now, 

r l 1 1 d 1 

2 I 
(£ (J) i gp l dJ 

_JJ=a p 

(3.7) 

so 

1 1 p(ap) 

2 + b 
gp 1{ ap - ac 

if the Abarbanel sign is correct, while the sign of the first term on 

the right-hand side of (3.8) is reversed if the absorptive sign is 

correct. With the Abarbanel sign, Formula (3.8) smoothly exhibits the 

8 
Finkelstein-Kajantie mechanism as ap ... L In this limit ac -+ ap 

from below and gp2 approaches zero from the positive direction.
11 

With the absorptive sign for the cut discontinuity,. on the other hand, 

2 t' 'f th d'ff is too small. 12 
gp becomes nega ~ve ~ e ~ erence ~ - ac 

IV. CONCLUSION 

If the pomeron is not a simple pole with factorizable residue, 

the entire subject under discussion requires reformulation, but the 
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apparent success of scaling rules for experimentally measured inclusive 

reactions is understandable in Regge language only with a factorizable 

pomeron at t = 0. On the other hand, the assumption that the pomeron 

trajectory is analytic near t = 0 has little experimental support. 

If the pole collides with the branch point at t = 0 and for negative 

t moves onto an unphysical sheet of the J plane, the Finkelstein-

Kajantie line of argument and the closely-related argument of Abarbanel 

must be reexamined. Both these arguments require factorization of 

asymptotic amplitudes ~ t = 0 as well as at t = 0 [as exhibited 

by the appearance of the pomeron trajectory slope in Formula (3.4)]. 

If the White method far c~lculating the 2-pomeron discontinuity 

conclusively yields a result different from that of Abarbanel, it is 

reasonable to infer a t = 0 singularity of the pomeron trajectory as 

the source of contradiction. 
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FIGURE CAPriONS 

Fig. 1. The rapidity distribution of a 4-fireball event. 

Fig. 2. Two-fireball diagram defining the squared fireball masses, 

sA and sB' and the squared momentum transfer t~. 
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