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Abstract. The fundamental energy gap of a periodic solid distinguishes 
insulators from metals and characterizes low-energy single-electron 
excitations. But the gap in the band-structure of the exact multiplicative Kohn-
Sham (KS) potential substantially underestimates the fundamental gap, a 
major limitation of KS density functional theory. Here we give a simple proof 
of a new theorem: In generalized KS theory (GKS), the band gap of an 
extended system equals the fundamental gap for the approximate functional 
if the GKS potential operator is continuous and the density change is 
delocalized when an electron or hole is added. Our theorem explains how 
GKS band gaps from meta-generalized gradient approximations (meta-
GGAs) and hybrid functionals can be more realistic than those from GGAs or 
even from the exact KS potential. The theorem also follows from earlier work. 
The band edges in the GKS one-electron spectrum are also related to 
measurable energies. A linear chain of hydrogen molecules, solid aluminum 
arsenide, and solid argon provide numerical illustrations. 

Significance. Semiconductors and insulators have a fundamental energy gap, 
and absorb light at a continuum of photon energies above this gap. They also 
have a band-structure of one-electron energies, and a band gap separating 
unoccupied from occupied one-electron states. When should these gaps be 
equal?  It is known that they are not equal in the exact Kohn-Sham density 
functional theory, but are equal in commonly-used density-functional 
approximations such as the generalized gradient approximation (GGA). We 
show here that they are also equal (and improved) in higher-level 
approximations such as the meta-GGA or the hybrid of GGA with exact 
exchange, when the effective one-electron potential is not constrained to be a 
multiplication operator. 

\body 

        Band-gap problem in Kohn-Sham density functional theory. The most 
basic property of a periodic solid is its fundamental energy gap G, which 
vanishes for a metal but is positive for semiconductors and other insulators. G 
dominates many properties. As the unbound limit of an exciton series, G is an 
excitation energy of the neutral solid, but it is defined here as a difference of 
ground-state energies: If )(ME  is the ground-state energy for a solid with a 
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fixed numfor I-A) ber of nuclei and M electrons, and if NM = for electrical 
neutrality, then 

           )]1()([)]()1([)()( +----=-= NENENENENANIG                         (1) 

is the difference between the first ionization energy )(NI and the first electron 
affinity )(NA  of the neutral solid. While I and A can be measured for a 
macroscopic solid, they can be computed directly (as ground-state energy 
differences) either by starting from finite clusters and extrapolating to infinite 
cluster size or (for I-A) by starting from a finite number of primitive unit cells, 
with periodic boundary condition on the surface of this finite collection, and 
extrapolating to an infinite number. Here we shall follow both approaches, 
which have been discussed in a recent study (1). (The energy to remove an 
electron to infinite separation cannot depend upon the crystal face through 
which it is removed, although the energy to remove an electron to a 
macroscopic separation, but much smaller than the dimensions of that face, 
may so depend. The gap is of course a bulk property.) 

             Kohn-Sham density functional theory (2,3) is a formally-exact way to 
compute the ground-state energy and electron density of M interacting 
electrons in a multiplicative external potential. This theory sets up a fictitious 
system of non-interacting electrons with the same ground-state density as the 
real interacting system, found by solving self-consistent one-electron 
Schrödinger equations.  These electrons move in a multiplicative effective 
Kohn-Sham potential, the sum of the external and Hartree potentials and the 
derivative of the density functional for the exchange-correlation energy,

],[ ¯ nnExc , which must be approximated. The simplest local spin density 
approximation (LSDA) (2) is already usefully accurate for many solids. Better 
still are generalized gradient approximations (GGAs) (e.g., Ref. 4), meta-
GGAs (e.g., Refs. 5,6), and hybrids of GGA with exact exchange (e.g., Refs. 
7,8). The additional ingredients in higher-level functionals can in principle 
satisfy more exact constraints, or fit data better, achieving higher accuracy. 
KS theory has become the most widely-used (3) method to calculate the 
ground-state energies, energy differences, electron densities, and equilibrium 
structures of molecules and solids, and, with less justification, the electronic 
band structures of solids. For a solid, KS theory produces a band structure, 
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one-electron energies as functions of Bloch wavevector and band index, in 
which there can be a non-zero band gap, 

                               HOLUg ee -=  ,                                                          (2) 

the difference between the lowest-unoccupied (LU) and highest-occupied 
(HO) one-electron energies. We show here that, under common computational 
conditions for solids, g equals G for a given approximate functional. How 
close g is to the experimental gap depends on how accurate the functional is 
for the ground-state energy difference G (strongly and comparably 
underestimated by LSDA and GGAs, but better estimated by meta-GGAs and 
especially hybrids). 

                In principle, should the band gap g equal the fundamental energy 
gap G?  In the early 1980’s, band structure calculations were accurate enough 
to show that LSDA band gaps for semiconductors were often about half the 
measured fundamental energy gaps. Was this a failure of the LSDA effective 
potential to mimic the exact KS potential, or an inability of the exact KS 
potential (for the neutral solid) to predict the fundamental gaps, or both? 

                 Regarding the fundamental gap G as an excitation energy, we do 
not expect it to equal the band gap g of the exact KS potential. But thinking 
of it as a ground-state energy difference, we might hope that it is. Williams 
and von Barth (9) gave a clear argument to support this hope, based on three 
assumptions: (I) Janak’s theorem (10,11): The one-electron energies of KS 
theory are derivatives of the total energy with respect to occupation number, 
between integer occupations, in both finite and extended systems. This is 
unquestionably true. (II) When an electron is added or removed from a solid, 
the density change is infinitesimal and periodic. This assumption, only 
possible for an extended system, is often true, although there may be 
exceptions in which added electrons or holes get stuck in localized states; see 
Refs. 12,13 for possible examples. (III) When an electron is added or 
removed, the KS potential changes only infinitesimally. This assumption 
seemed to follow so naturally from (II) that it was only implicit in the 
argument, yet assumption III is incorrect for the exact KS potential. 
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               Other work (14-17) of the early 1980’s showed that the exact Kohn-
Sham potential jumps up by an additive-constant discontinuity when an 
electron is added to a neutral solid, making 

                              itydiscontinuxcgG exactexact _+= .                                            (3) 

The discontinuity spoils the interpretation of g, shifting the one-electron 
energies without changing the density. The KS potential is a mathematical 
fiction, acting on non-interacting electrons to yield the true ground-state 
density of the neutral solid and making the one-electron energy for the highest 
partly-occupied one-electron state equal to the true chemical potential 

ME ¶¶= /µ , which is itself discontinuous at zero temperature for an insulator 
when M crosses N. The xc discontinuity is absent in the LSDA and GGA 
approximations to the multiplicative exchange-correlation potential, for 
which (17)  

                                approxapprox gG = .                                                              (4) 

In Eq. (4), G of Eq. (1) and g of Eq. (2) are evaluated with the same 
approximate functional. While GGA improves ground-state energies and 
electron densities over LSDA, both approximations yield nearly the same 
band gaps g and hence fundamental gaps G, excepting some special GGAs 
(18). It has long been known (17) that Eq. (4) is true in LSDA and GGA, and 
it has been suspected (e.g., Refs. 15,17) that LSDA and GGA band gaps are 
close to exact KS band gaps (but not to true fundamental gaps). 

         Band-gap problem in generalized Kohn-Sham (GKS) theory. A 
simple, self-contained proof of our theorem will be given here. Refs. 19-22 by 
themselves also imply this result, as discussed in a later section. 

           Based mostly upon empiricism, realistic fundamental gaps for 
semiconductors (e.g., Refs. 23,24) have been estimated from band gaps of 
hybrid functionals in GKS, which is also an excellent starting point for simple 
quasi-particle corrections (25). A global hybrid replaces a fraction (e.g., 25% 
(7,26,27)) of GGA exchange with that of Hartree-Fock, and replaces the same 
fraction of the GGA exchange potential with that of Hartree-Fock (an integral 
operator, not a multiplication operator). Screened hybrids (e.g., Ref. 8) 
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additionally screen the interelectronic Coulomb potential in the exchange 
term, and typically improve results for semiconductors (23). 

              We argue that Eq. (4) is also valid within typical approximations in 
GKS theory, as typically implemented, extending the argument of Williams 
and von Barth (9) from KS to GKS theory. Thus the improvement in the band 
gap that comes from using a hybrid functional reflects a corresponding 
improvement in the value for G of Eq. (1). Our detailed argument, presented 
in the theoretical methods section, generalizes assumption (I) of the Williams-
von Barth argument (9) from KS to GKS theory, and notes that the GKS 
potentials, like the LSDA and GGA and unlike the exact one, have no 
discontinuity under change of particle number, consistent with Refs. 19-22.  

             While there is a formally-exact GKS theory (28), here we view GKS 
as a small step out of KS theory, in which one can use nonempirical 
approximations to xcE  that are constructed to satisfy the known exact 
constraints of KS theory. In rigorous KS density functional theory, the 
occupied Kohn-Sham one-electron states are demonstrably implicit 
functionals of the electron density that can be used to construct a density 
functional approximation, such as an explicit functional of the KS one-
electron density matrix.  For example, use the non-interacting kinetic energy 
density to construct a meta-GGA (e.g., Ref. 5), or use the full KS density 
matrix to construct the Hartree-Fock exchange energy for a global hybrid as 
in Ref. 7. Because the one-electron states are only implicit functionals of the 
density, the KS potential can be constructed only by the optimized effective 
potential (OEP) method (29). It is computationally easier to find the 
variationally optimized potential that minimizes the energy with respect to the 
non-interacting density matrix. The resulting GKS potential is not a 
multiplication operator, but is in practice continuous (does not change when 
one delocalized electron is added to or subtracted from a solid) and self-
adjoint, for differentiable functionals of the non-interacting density matrix. It 
is an integral (Fock) operator (11) for hybrids, but a differential operator 

(30,31) for meta-GGA’s, the same operator for occupied and unoccupied one-
electron states.  

           The step outside KS to GKS barely affects the occupied one-electron 
states, the electron density, and the total energy, but not so the one-electron 
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energies. This was first shown by comparing exchange-only OEP (KS) and 
Hartree-Fock (GKS) results for atoms (29,32), and more recently by 
comparing the corresponding KS and GKS implementations of meta-GGAs 
(exchange and correlation together) for atoms (33) and solids (31). They 
produce closely similar results for total energies, but the KS meta-GGA band 
gap is close to that of LSDA and GGA, while the GKS meta-GGA band gap 
is significantly larger and more realistic.  

           Within exchange-correlation approximations using the non-interacting 
density matrix, relaxing the KS demand for a multiplicative effective potential 
is a “practical” approximation with an unexpected benefit: It yields the 
interpretation of Eq. (4) for the GKS band gap of a solid, explaining how meta-
GGAs and especially hybrids can improve the estimation of the fundamental 
energy gap of a solid:  For a typical approximate functional, the GKS band 
gap g is the ground-state energy difference G.  Improvements in G correlate 
at least roughly with other improvements in ground-state energy differences 
for integer electron numbers, relevant to atomization energies and lattice 
constants.   

         Numerical demonstration. Because computational effort typically 
scales like the cube of the number of atoms, finite three- and even two-
dimensional clusters are much harder to converge to the mesoscopic length 
scale, so we consider as a first model a finite one-dimensional linear chain of 
realistic H2 molecules. The separation between the nuclei of neighboring 
molecules is taken to be 1.25 times the separation between nuclei within a 
molecule (0.74 Å), in order to produce a gap of order 3 or 4 eV. To 
demonstrate our conclusions, the model does not need to be realistic, and its 
exact gap does not need to be known. With an even number (two) of electrons 
per unit cell, this system is a band insulator. We consider chains with one to 
500 molecules. At large numbers molN  of molecules, the correction to the limit 

¥®molN is (13,34) of order molN/1 , simplifying the extrapolation. Figures 1 
and 2 show that, for all tested approximate functionals, gG -  tends to zero as

¥®molN . Table 1 shows limiting values. Within numerical accuracy, as
¥®molN , HOI e-® , LUA e-® , and gG® .           
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              The positive ions show delocalization of the extra positive charge 
over the finite chain, even without periodic boundary conditions, as expected 
from the approximate functionals studied here. The negative ions are 
resonances, with negative electron affinity of the chain, captured by the finite 
basis set. But the resonance can evolve smoothly (35) to a bound state with 
positive electron affinity as the chain length grows. In contrast to the situation 
for atoms and molecules, the resonant one-electron states of bulk solids can 
be converged with respect to basis set.    

               Ref. 36 states without an explicit proof a major result proved here: 
For a hybrid functional implemented in a generalized Kohn-Sham scheme, the 
band gap equals the fundamental gap within the same approximation. Refs. 
36 and 37 show how to calculate the fundamental gaps of real extended solids 
from a given functional without extrapolating from clusters of finite size (and 
Ref. 37 thereby finds realistic band gaps for many solids from the random 
phase approximation, by a method different from that of Ref. 38.) This makes 
it possible to demonstrate our conclusions for real three-dimensional solids 
using a computer code with periodic boundary conditions. 

             To that end, we report calculations for the semiconductor aluminum 
arsenide and the large-gap insulator solid argon with the PBE GGA (4) and 
the PBE0 hybrid (7,26,27) functionals as representatives for KS and GKS 
methods, via the approach of Refs. 36,37. Regular grids of n x n x n k points 
containing the Γ point are used, corresponding to a collection of n x n x n 
primitive unit cells in periodic boundary conditions. For n → ∞ an infinite 
periodic solid would be obtained, forbidding symmetry-breaking localization 
of the added electron or hole, which we do not expect for the solids and 
functionals considered here.  Symmetry-breaking (forming polarons) can be 
captured by a related supercell approach (39). A self-consistent calculation for 
the neutral system yields a band gap g and an energy E(N). Removal of one 
electron from the highest occupied orbital or one-electron state (the k point at 
the top of the valence band), while keeping the other occupations and orbitals 
unchanged, yields the non-selfconsistent Enon-SCF(N-1), while allowing orbital 
relaxation yields the selfconsistent ESCF(N-1).  Contributions to the Hartree 
energy and Hartree potential from the zero reciprocal lattice vector are not 
taken into account in the charged systems, or (as usual) in the neutral ones. 
This long-known approach for charged systems (40) is better justified for bulk 
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periodic solids than for other cases (41). Thus, without any code modification, 
a finite energy E(N-1) is obtained. An ionization potential I(N) is just the 
difference E(N-1)-E(N), where neither energy is divided by the number of 
primitive unit cells. An energy E(N+1) is obtained analogously by adding one 
electron to the k point representing the bottom of the conduction band. From 
Eq. (1) the fundamental energy gaps Gnon-SCF and GSCF, for the cases without 
and with orbital relaxation respectively, are calculated. Convergence with 
mesh size is rapid for PBE. For PBE0, convergence is accelerated by the 
method of Ref. 42. No physical (measurable) interpretation is intended for the 
gaps in Tables 2 and 3, except in the limit of large n.  
         Tables 2 and 3 show that all three gaps, g, Gnon-SCF, and GSCF, rapidly 
converge towards each other. The convergence of Gnon-SCF  and GSCF  towards 
each other demonstrates that orbital relaxation upon removal or addition of an 
electron does not play a role in infinite periodic solids, while the convergence 
of g and GSCF towards each other represents a numerical demonstration of the 
theorem of this work. Comparison with the experimental gaps in the table 
captions shows that, as expected, the 25% exact exchange in PBE0 can be too 
much for small-gap solids like AlAs, and too little for large-gap solids like 
Ar. As expected (15,17), the OEP or KS band gap g for PBE0 is closer to the 
PBE KS value than to the PBE0 GKS value. 
 
         Relation to other previous work. The relation between GKS frontier 
orbitals and electron addition/removal energies was first shown in Refs. 19-
22 for both extended and finite systems, and was demonstrated numerically 
for molecules in Ref. 19. Refs. 19-22 by themselves imply our main result. 
Ref. 19 derives the generalized Janak’s theorem for a differentiable functional 
of the one-particle density matrix (in its Eq. 10), namely, the GKS LU/HO 
orbital energies are the chemical potentials for electron addition/removal for 
both finite and extended systems, in a way that differs from the derivation in 
our theoretical methods section. Refs. 19,20 show that the GKS one-electron 
energy gap matches the GKS derivative gap -- the discontinuity in chemical 
potentials for electron addition and removal (Eq. 5 of Ref. 20), which is equal 
to G for the exact functional and for functionals with linear behavior in M on 
either side of N, but generally differs from G for finite systems with 
approximate functionals (Eq. 6 of Ref. 20). Ref. 20 further shows that the 

)(ME curves are linear over M on either side of N for approximate functionals 
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in periodic solids, and also for non-periodic systems as N ®¥  when the 
approximate functionals have delocalization error. But the GKS derivative 
gap is not equal to G for non-periodic systems as N ®¥   for functionals with 
localization error, such as hybrid functionals with high fractions of exact 
exchange that localize an added electron or hole (20).  Combined, these 
statements yield our main conclusion. 

            For KS methods employing the optimized effective potential (OEP) 
method (29) to construct the exchange-correlation potential corresponding to 
orbital-dependent energy functionals, e.g., the exact exchange energy, the KS 
band gap g and the fundamental energy gap G are different as mentioned 
above. Indeed OEP potentials do not determine an additive constant because 
the electron number is kept fixed. If the KS band structures are adjusted by an 
appropriate shift of the gap, as in Ref. 36, they can be transformed into 
approximate quasiparticle band structures.  
 
        Conclusions. The fundamental energy gap is the most basic property of 
a periodic solid. It cannot be found from a single Kohn-Sham band-structure 
calculation, even with the unattainable exact density functional. Surprisingly, 
high-level approximations, implemented in an efficient generalized KS 
scheme, yield band gaps equal to the fundamental gap for a given approximate 
functional. Future all-purpose non-empirical approximate functionals could 
predict usefully-correct gaps for most solids. The band edges (43) in the GKS 
one-electron spectrum, relevant to interface formation and redox catalysis, can 
also be interpreted as measurable energy differences, as shown by Eq. (6) and 
illustrated in Table 1. They can be found in principle by extrapolating the GKS 
one-electron energies of a slab or cluster. 

           Typical approximate functionals, as typically implemented, obey Eq. 
(4), as previously known (17) only for LSDA and GGA. For three-
dimensional solids (31), there is little or no improvement in Gapprox from 
LSDA to GGAs, but substantially more from GGAs to fully-nonlocal 
functionals, where the nonlocality of the density dependence and the 
usefulness of the band gap gapprox increase further from meta-GGAs to hybrids. 
This suggests that, in solids, the exchange-correlation effects can be more 
long-ranged (e.g., Ref. 23) than in atoms and small molecules.  
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          The PBE0 and HSE06 hybrids contain 25% of exact exchange, globally 
or at intermediate range, chosen to yield accurate atomization energies 
energies for molecules and related moderate-gap systems at integer electron 
number. The nonlinear variation of approximate total energy with electron 
number between adjacent integers is a problem in finite systems, but vanishes 
in typical solids (1,20). PBE0 and especially HSE06 yield realistic GKS gaps 
for typical semiconductors. But they can over- or under-estimate gaps of other 
solids. For example, molecular crystals seem to need 1/ε of long-range exact 
exchange (44), where ε is the dielectric constant (45). 

 

        Appendix A: Computational methods. The self-consistent all-electron 
results for the chain of hydrogen molecules reported here were found using 
the Gaussian code (46) with a small cc-pvDZ basis set, to speed up the hybrid 
calculations for the longer chains. Many results were checked with the ADF 

(47) (TZP basis) and FHI-aims (48) (NAO-VCC-2Z basis) codes. The effect 
of increasing the basis from cc-pvDZ to TZP is to increase the ¥®molN  limits 
of I and A in PBE by 0.14 and 0.10 eV, respectively, and to stabilize the 
negative-ion resonances for some of the larger finite chains. All codes show 

02.0~®- gG eV, which we attribute to the slow convergence of G  with 
increasing system size (Fig. 1). All extrapolations display the increase of I and 
decrease of A from LSDA to HSE06.  

           The AlAs and Ar calculations were carried out with the plane-wave 
program MCEXX (49) using norm-conserving PBE pseudopotentials 
generated by the code of Ref. 50 which is based on the Troullier-Martins 
scheme (51). The cutoffs used for the construction of the pseudopotentials are 
the same as those used in Ref. 37. In principle, the pseudopotential for PBE0 
should be different from that for PBE, but the difference is irrelevant to our 
demonstration. For AlAs a lattice parameter of 5.66 Å and a plane wave cutoff 
of 15 a.u. were used. The corresponding values for Ar were 5.26 Å and 30 a.u. 
 
        Appendix B: Theoretical methods. Here, we derive the generalized 
Janak’s theorem, and prove that the band gap and band edges of generalized 
Kohn-Sham theory are the appropriate ground-state energy differences, for a 
given approximate functional. In any constrained minimization, the Lagrange 
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multiplier is the derivative of the minimized quantity with respect to the value 
of the constraint. Consider minimizing the orbital functional }]{},[{ jjv fE y , 

where 2)()( rfrn i
i

i
!! yå=  and the occupation numbers are restricted to the 

range 10 ££ if  with Nf
i

i =å , subject to constraints jjj frrdf =ò
23 )(!y  

guaranteeing normalization of the occupied or partly-occupied orbitals. The 
Euler-Lagrange equation for this problem is

0})(}]{},[{{ 23 =- òå rrdffE ii
i

ijjv
!yeyd , where the ie  are Lagrange multipliers. 

The interpretation is    

                          ii fE ¶¶= /e .                                                                       (5) 

This is a generalized Janak’s theorem. The same statement and derivation (11) 
apply to the ungeneralized KS theory. The minimizing one-electron 
wavefunctions are solutions of a one-electron Schrödinger equation with an 
optimal variational potential operator. 

         Consider a GKS calculation for an extended solid with an approximate 
xc functional, in which the ground-state delocalizes the density of the added 
electron or hole over the infinite solid.  The variation of the approximated E  
is linear in if  because the relaxation effect on the optimal variational potential 
associated with the removal or addition of one electron is negligible. Then, by 
Eq. (5), 

             
)()()1(
)()1()(

de

de

+=-+

-=--

NNENE
NNENE

LU

HO

                                                           (6) 

where += 0d , and 

             ).()()()( dede --+=- NNNANI HOLU                                              (7) 

Here HO and LU label the one-electron states of the (N- )d -electron system, 
which change only infinitesimally when M increases through integer N. If the 
approximate xc potential in GKS theory has no discontinuity as the electron 
number crosses integer N, then 

              ).()()()( NNNANI HOLU ee -=-                                                         (8) 
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For a meta-GGA or hybrid functional, the optimum variational potential 
operator has been found explicitly (e.g., Eq. (7) of Ref. 30, Eq. (1.7) of Ref. 
11) and is continuous.  Thus within LSDA, GGA, meta-GGA, or hybrid 
approximations, when implemented in GKS, the band gap equals the ground-
state total energy difference. 

        In contrast, within an ungeneralized KS scheme, this statement remains 
true in LSDA and GGA, but not in meta-GGA or hybrid approximations. For 
meta-GGA and hybrid approximations, treated in OEP, as for (15) exact KS 
theory, 

=--+=- )()()()( dede NNNANI HO
OEP

LU
OEP    

)}()({)}()({ dededede --++--- NNNN LU
OEP

LU
OEP

HO
OEP

LU
OEP ,                                  (9) 

where the first curly bracket is the OEP or KS band gap and the second is the 
contribution from the discontinuity (15,16) of the OEP or KS potential.  
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Figure Legends 

Fig. 1. The PBE GGA fundamental gap G and band gap g for a linear chain 
of Nmol H2 molecules. Note that G converges to the limit ¥®molN  much 
more slowly than g does. 

Fig. 2. Difference between the fundamental gap AIG -=  and the GKS band 
gap HOLUg ee -=  for a linear chain of molN  hydrogen molecule 
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Fig. 1. The PBE GGA fundamental gap G and band gap g for a linear chain 
of Nmol H2 molecules. Note that G converges to the limit ¥®molN  much 
more slowly than g does. 
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Fig. 2. Difference between the fundamental gap AIG -=  and the GKS band 
gap HOLUg ee -=  for a linear chain of molN  hydrogen molecules.   
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Table 1. Ionization energy I, electron affinity A, and fundamental gap 
AIG -=  of an infinite linear chain of H2 molecules, evaluated by 

extrapolation from finite chains, and the band edges HOe , LUe  and band gap 
HOLUg ee -= ,  in the LSDA (2), PBE GGA (4), SCAN meta-GGA (5), and 

HSE06 range-separated hybrid (8) functionals. The extrapolated band 
energies agree closely with those from a periodic-boundary-condition 
calculation (shown). 2/)( AI + , the energy difference from the gap center to 
the vacuum level (15), depends only weakly on the approximation. 

 

(eV) (I+A)/2 I -εHO A -εLU G g 
LSDA 1.65 3.14 3.13 0.16 0.17 2.98 2.96 
PBE 1.67 3.24 3.23 0.09 0.10 3.15 3.13 
SCAN 1.68 3.33 3.31 0.01 0.02 3.32 3.29 
HSE06 1.82 3.92 3.91 -0.29 -0.28 4.21 4.18 
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Table 2. KS (PBE) and OEP/KS and GKS (PBE0) band gap g and 
fundamental energy gaps G of solid AlAs, calculated according to Eq. (1) with 
orbitals of the neutral N-electron system Gnon-SCF, or with orbitals of separate 
self-consistent calculations of N-, (N-1)-, and (N+1) - electron systems GSCF, 
in eV, as described in the text. The experimental band gap (52) of AlAs is 
2.23 eV. 
																

	

																																																		PBE																																																																															PBE0	

- 					---------------------------------------																									------------------------------------------------	

Grid	size	 g	 Gnon-SCF	 GSCF	 gOEP	 g	 Gnon-SCF	 GSCF	

2x2x2	 1.162	 1.164	 1.131	 1.276	 2.669	 2.681	 2.645	
4x4x4	 1.321	 1.324	 1.321	 1.490	 2.635	 2.639	 2.638	
6x6x6	 1.345	 1.346	 1.344	 1.526	 2.598	 2.599	 2.599	
8x8x8	 1.349	 1.349	 1.348	 1.534	 2.583	 2.584	 2.584	
10x10x10	 1.349	 1.349	 1.349	 1.537	 2.577	 2.577	 2.577	
12x12x12	 1.349	 1.349	 1.349	 1.536	 2.575	 2.575	 2.575	
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Table 3. KS(PBE) and OEP/KS and GKS(PBE0) band gap g and fundamental 
energy gaps G of solid Ar, calculated according to Eq. (1) with orbitals of the 
neutral N-electron system Gnon-SCF, or with orbitals of separate self-consistent 
calculations of N-, (N-1), and (N+1)-electron systems GSCF, in eV, as 
discussed in the text. The experimental band gap (53) of Ar is 14.20 eV. For 
a recent comparison of GKS band gaps for many solids from GGA hybrid 
functionals, including PBE0 and HSE, see Ref. 54. 

	

	

																																																PBE																																																																																		PBE0	

																														----------------------------------------																		----------------------------------------------------
-----	

Grid	size	 g	 Gnon-SCF	 GSCF	 gOEP	 g	 Gnon-SCF	 GSCF	

1x1x1	 7.621	 9.130	 8.482	 7.901	 12.079	 11.944	 11.311	
2x2x2	 8.640	 8.793	 8.658	 8.831	 10.947	 11.065	 10.948	
3x3x3	 8.688	 8.735	 8.694	 8.923	 11.091	 11.108	 11.073	
4x4x4	 8.691	 8.711	 8.699	 8.938	 11.120	 11.123	 11.108	
5x5x5	 8.692	 8.702	 8.693	 8.942	 11.121	 11.126	 11.119	
6x6x6	 8.692	 8.697	 8.693	 8.944	 11.122	 11.126	 11.122	
7x7x7	 8.692	 8.695	 8.692	 8.945	 11.123	 11.126	 11.123	
8x8x8	 8.692	 8.694	 8.692	 8.945	 11.123	 11.125	 11.124	

	

	

	

 




