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ABSTRACT OF THE DISSERTATION

Mapping transcriptional regulation of cell types and states using systems genetics in mouse

By

Elisabeth Rebboah

Doctor of Philosophy in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2024

Professor Ali Mortazavi, Chair

Complex traits are intricately intertwined with an organism’s genome, a relationship under-

scored by the dynamic landscape of its transcriptome. Selective gene expression regulates

cell type specialization and fluctuation of cell states. The development of RNA sequencing

has facilitated the capture of the whole transcriptome of a given sample. However, a bulk ap-

proach obscures cell type heterogeneity, impeding the precise dissection of cell-specific effects,

including those modulated by genotype, developmental stage, and disease state. In contrast,

single-cell and single-nucleus RNA-seq preserves cellular identity, enabling a comprehensive

mapping of gene expression across various cell types and states.

Here, I describe my work in single-cell transcriptomics to characterize cell types and cell

states in mouse. First, I present our long-read single-cell RNA-seq method, benchmarked

in the C2C12 mouse myogenic system, which revealed cell type-specific isoform switching in

key genes during myogenesis. Next, I characterize 5 mouse tissues at single-nucleus resolu-

tion during postnatal development using the ENCODE4 mouse dataset, where I used topic

modeling to reveal cell type- and state-specific cellular programs. Lastly, I investigate the

impact of genetic variation on gene expression across 8 diverse tissues from 8 mouse geno-

types, pinpointing genotype- driven variation in specific celltypes in both wild-derived and

classical lab strains. Together, these projects lay the groundwork for cohesive cell type and

x



cell state annotation and comparative analyses, contributing to future characterization of

these tissues in other contexts such as human diseases and hybrid mouse genotypes.

xi



Chapter 1

Introduction

1.1 Abstract

Systems genetics integrates genetics, genomics, systems biology, and computational biology

to elucidate the genetic underpinnings of complex traits and diseases. Single-cell RNA-seq

has emerged as an invaluable tool for characterizing gene expression in heterogeneous tissues,

allowing for the identification of distinct cell types and states. The increasing throughput of

single-cell functional genomics assays has enabled large-scale studies of genomes and tran-

scriptomes in individual cells. This enables a systems genetics approach of profiling molecular

traits, such as gene expression, in specific cell types of genetically diverse populations in or-

der to identify genomic variation associated with transcriptional regulation. Here, I discuss

the use of mouse models for systems genetics within the framework of functional genomics

assays. I provide a brief review of single-cell genomics technologies for measuring gene ex-

pression as well as open chromatin and offer an overview of data processing and cell type

annotation methods. Finally, I explore the biological impact of single-cell and single-nucleus

RNA-seq for capturing cell types and cell states in skeletal muscle, highlighting approaches

1



for the analysis of gene regulatory programs.

1.2 Introduction

Investigation of complex traits using systems genetics

The history of systems genetics is deeply intertwined with classical genetics and the advent of

molecular biology techniques. Its roots lie in the pioneering work of researchers such as Gre-

gor Mendel, who established the fundamental laws of inheritance through experiments with

pea plants in the 19th century.1. Mendel’s pioneering work on inheritance, published in 1865

but not widely recognized until the turn of the century, spurred a rediscovery of his principles

between 1900 and 19031. This revival led to a surge of significant publications across Europe,

notably by plant geneticists such as Hugo de Vries, Carl Correns, and Erich von Tschermak,

and further popularized by famous (and infamous) figures such as biologist William Bateson

and eugenicist Charles Davenport in England and America, respectively1. Ronald Fisher’s

1918 publication established mathematical models of genetic effects, including the infinitesi-

mal model, proposing that quantitative traits stem from many genes with small, independent

effects2. This concept, known as polygenicity, became a cornerstone of quantitative genetics.

Theodosius Dobzhansky’s 1937 experimental findings validated Fisher’s theories, advancing

our comprehension of genetic variation and speciation3. In 1953, James Watson, Francis

Crick, and Rosalind Franklin elucidated the structure of DNA, providing the molecular ba-

sis for understanding genetics4,5. In the mid-20th century, genetic mapping and quantitative

genetics techniques laid the groundwork for systems genetics6. A quantitative trait locus, or

QTL, is a segment of DNA associated with variations in measurable characteristics, known

as quantitative traits7. These traits encompass a range of clinical features such as height,

weight, and blood pressure, as well as predisposition to diseases such as diabetes and cancer,

that can be traced to molecular intermediates such as transcript expression, protein levels,

2



and chromatin accessibility.

One of the early milestones in systems genetics came in the late 1990s with work in fruit

flies (Drosophila melanogaster). QTL analysis was conducted to identify genomic regions

associated with variation in morphological traits such as wing shape and bristle number,

providing insights into the genetic architecture of complex traits8–10. Examination of life span

in D. melanogaster through QTL mapping revealed numerous alleles influencing longevity,

along with significant findings of dominance, epistatic, and genotype-by-environment effects

on life span11–13. Similarly, in yeast, pioneering studies identified QTLs associated with

various phenotypes, including glucose metabolism and sporulation efficiency14,15. Among

this research came one of the first genome-wide association studies (GWAS) in early 2005

to identify genetic variants associated with gene expression differences16. This study, which

profiled the expression of 5,700 genes in yeast using microarray techniques, found that most

detected QTLs had weak effects, highlighting the extensive genetic complexity underlying

gene expression differences16. These findings underscore the necessity of comprehensive

omics techniques to fully elucidate the intricate genetic architecture of complex traits.

More recently, the integration of omics data, including genomics, transcriptomics, pro-

teomics, and metabolomics, has been instrumental in advancing systems genetics. The

advent of NGS (next-generation sequencing) has been transformative, facilitating high-

throughput profiling of genetic variants, gene expression, and molecular intermediates on

a truly genome-wide scale. Collaborative initiatives such as ENCODE17 and IGVF18 have

leveraged these advancements to comprehensively map functional elements genome-wide and

quantify the impact of genomic variation on molecular traits across diverse tissues and disease

contexts. This approach provides a comprehensive understanding of biological systems, elu-

cidating the intricate interplay between genes, regulatory elements, and cellular processes.

As systems biology emerged, focusing on the holistic examination of biological networks,

systems genetics evolved as a fusion of genetics and systems biology. Today, driven by tech-

3



nological advancements and interdisciplinary collaborations, systems genetics continues to

unravel the complexities of genetic systems and their role in shaping phenotypic traits. A

particularly promising of application of systems genetics is to understand mammalian gene

regulation using mouse strains.

A brief history of lab mice

Mice are widely recognized as excellent mammalian models for human biology due to their

genetic similarity (80% of human protein-coding genes have a mouse orthologue19), analo-

gous organ systems, short reproductive cycle, and genetic manipulability, facilitating disease

modeling. The use of mice in scientific research traces back centuries. In eighteenth-century

Japan, mice were not only kept as pets but also bred intentionally to produce desired coat

and eye colors20. During the Edo period, Japanese breeders began performing crosses and

documenting the resulting phenotypes in domesticated mice as early as 178720. In Europe,

the groundwork for mouse genetics research was laid by French biologist Lucien Cuénot in

190221. Cuénot demonstrated that mice inherit coat colors according to Mendel’s laws of

inheritance, and also identified the first lethal genetic mutation in mice21.

At the same time, William E. Castle at the Bussey Institute at Harvard published a paper

on coat color genetics in mice22. Castle, who was the first American geneticist to use mice

to study Mendelian inheritance in mammals, mentored Clarence Cook Little, another key

figure in mammalian genetics23. Little focused on inheritance patterns, transplants, and

grafts, establishing the first inbred mouse strain, DBA, in 1909. This strain harbored alleles

for various coat colors, including dilute (D), brown (B), and non-agouti (A), and laid the

foundation for subsequent inbred strains23. Following World War I, Little accepted a position

at the Cold Spring Harbor Laboratory in New York, where he continued cancer research using

inbred mice23. There, he encountered a setback when his mouse colony was decimated by a

paratyphoid epidemic24. To rebuild his colony, Little imported albino mice maintained by

Halsey Bagg at Memorial Hospital in New York City, which later became known as the BALB

4



strain24. Other strains, including C3H, CBA, and A, were developed around the same time.

At Cold Spring Harbor, Litte’s colleague Leonell C. Strong developed C3H from a cross of a

Bagg albino female with a DBA male24. In 1921, he introduced the CBA strain from a cross

of an unpedigreed Bagg albino female and an early DBA progenitor male, as well as the A

strain from crossing a Cold Spring Harbor albino and a Bagg albino24,25. Simultaneously,

Little established the C57BL strain, characterized by its dark fur and docile nature, sourced

from a colony owned by mouse fancier Abbie Lathrop26.

In 1929, C. C. Little officially founded the Jackson Laboratory in Bar Harbor, Maine27.

The laboratory began as a modest summer field laboratory on Mount Desert Island. The

island’s climate, ideal for mouse husbandry, led to the establishment of the Roscoe B. Jackson

Memorial Laboratory in memory of Little’s friend and investor27. However, fate took a

remarkable turn in October of that year. The U.S. stock market crashed, resulting in a

catastrophic loss of funding for the laboratory. Despite facing severe financial constraints,

scientists at the Jackson Laboratory persevered, achieving significant milestones. These

include the discovery of a cancer-causing mouse mammary tumor virus and the successful

execution of the first transfer of fertilized ova27,28. By 1937, strain 6 was isolated from the

C57BL colony, giving rise to the quintessential C57BL/6J or “Black 6” strain, denoted by

the /J to signify its origin at the Jackson Laboratory29. Today, the Jackson Laboratory

(referred to as JAX) is one of the world’s leading suppliers of inbred mice for biomedical

research, offering various strains adapted to controlled environments to minimize genetic

variability within experiments25,27.

C57BL/6J is the most widely used strain today because of its breeding characteristics,

longevity, and resistance to tumors25. In 2002, it became the first mouse strain to have

its genome sequence published, solidifying its status as the most widely used mouse strain

in biomedical research29,30. Sequencing has allowed insights into its genetic traits, such

as a spontaneous mutation impacting glucose homeostasis31, which may be linked to diet-

5



induced obesity. JAX also offers hundreds of lab strains, some with clinically relevant pheno-

types, such as NOD/ShiLtJ (“Non-obese diabetic”) and NZO/HlLtJ (“New Zealand obese”),

used for type 1 and type 2 diabetes research, respectively32,33. While C57BL/6J is tumor-

resistant, others are more susceptible to cancer such as the long-standing A/J (albino) strain,

a well-established model for lung cancer34, asthma35, emphysema36, and age-onset muscular

dystrophy37. Others are preferred for specific lab techniques, such as stem cell derivation. In-

terestingly, M. musculus is the only known species with both permissive and non-permissive

strains; while blastocysts from lab strains such as 129S1/SvImJ can be readily manipulated to

form embryonic stem cells, NOD/ShiLtJ is more difficult or “non-permissive” to ESC deriva-

tion38. However, through careful differentiation protocols ESC lines have been established

for all the strains mentioned above, including the previously non-permissive NOD/ShiLtJ

strain39. In conclusion, the historical journey of using mice as models for scientific research

reflects a remarkable convergence of scientific discovery and perseverance. From their early

domestication to the establishment of heavily used strains and institutions such as the Jack-

son Laboratory, mice have remained indispensable allies in studying human genetics.

Genetic and phenotypic variation in diverse mouse strains

The natural genetic variation present across diverse inbred mouse strains, coupled with sig-

nificant advancements in sequencing technology, has positioned them as invaluable tools for

systems genetics. While human GWAS have demonstrated noteworthy success40, a major

challenge of systems genetics is the high number of genetically distinct individuals needed

for mapping traits in the genome at high resolution, defined as less than 1 Mbp and down

to 1 gene if possible. This task remains challenging due to the complex and polygenic

nature of many traits41. Human genetic studies face unique challenges. The vast genetic

diversity among human populations, combined with environmental influences and complex

gene-environment interactions, necessitates large sample sizes to achieve statistical power and

detect meaningful associations. Moreover, ethical considerations and practical limitations
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often restrict the extent to which human populations can be studied. Unlike human stud-

ies, mouse models offer clear advantages, including controlled genetic backgrounds, shorter

generation times, availability of large sample sizes, and the ability to manipulate genes in a

controlled environment.

Since 2002, the Mus musculus genome assembly based on C57BL/6J has been updated over

a dozen times, yielding a high-quality finished genome comparable in quality to the human

genome42. Additionally, advancements in next-generation sequencing technology have en-

abled the publication of high-quality sequences for over 50 mouse strains and subspecies

by the National Center for Biotechnology Information (NCBI)43. Beyond the classical lab

strains mentioned above, wild-derived strains are also used for evolutionary biology research,

including investigations into speciation and adaptation, as well as genetics research, such as

mitochondrial DNA evolution44,45 and meiotic recombination46. Classical lab strains are

derived from the early crosses between European mice (M. m. domesticus) and Japanese

mice (M. m. molossinus), resulting in genomes that are approximately 68% M. m. domes-

ticus and 10% M. m. molossinus 47. Another 6% is attributed to M. m. castaneus and

3% to M. m. musculus 47. The subspecies diverged from a common ancestor approximately

one million years ago and are captured today in wild-derived inbred strains: CAST/EiJ for

M. m. castaneus and PWK/PhJ for M. m. musculus. WSB/J represents a purer M. m.

domesticus background. While lab strains originate from domesticated mice, wild-derived

strains were bred from individuals captured from wild mouse populations worldwide. For in-

stance, CAST/EiJ originated from wild mice trapped in Thailand, PWK/PhJ from Prague,

and WSB/J from Maryland25. Compared to the C57BL/6J reference genome, WSB/J,

PWK/PhJ, and CAST/EiJ exhibit 6.04, 17.2, and 17.6 million single-nucleotide polymor-

phisms (SNPs), respectively, resulting in a diverse landscape of phenotypes48. Even without

genomic analysis, observable differences exist; CAST/EiJ mice, for instance, have lighter

brown fur and a smaller build compared to C57BL/6J, and are behaviorally more active

and less docile than lab strains. Interestingly, CAST/EiJ are immune to flaviviruses due
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to having the resistant allele of an oligoadenylate synthase gene, yet are highly susceptible

to other viruses such as orthopoxviruses and influenza A49–51. They exhibit exceptional re-

generative abilities in spinal cord and optic nerve neurons, making them a valuable model

for exploring mechanisms of mammalian central nervous system regeneration52. In com-

parison to CAST/EiJ, PWK/PhJ are resistant to influenza A51. Among other observed

traits, PWK/PhJ mice have also recently been shown to display sex-specific responses to

diet-induced obesity53. In a study focusing on reproductive traits, CAST/EiJ males exhib-

ited low sperm counts and poor motility, particularly when compared to PWK/PhJ and

WSB/EiJ males, which displayed more favorable traits including high motility and normal

morphology54. The study also highlighted a highly heritable phenotype in WSB/EiJ males,

which had substantial vacuolization in seminiferous tubes of the testis compared to other

strains54.

Overall, the genetic diversity among M. musculus subspecies not only surpasses that found

in the current human population but also exceeds the differences between modern humans

and Neanderthals, whose last common ancestor dates back approximately ∼706,000 years55.

Furthermore, the number of generations between these species surpasses that of primates by

millions, contributing to the diversity generated by meiotic recombination56. The ultimate

objective of systems genetics is to establish connections between specific DNA elements and

changes in molecular intermediates, such as genes and proteins, that impact clinically relevant

phenotypes. The naturally occurring genetic variation present in mouse strains has emerged

as a foundational tool for establishing these connections, facilitated by advances in sequencing

technology that can capture increasingly large genomic, transcriptomic, and epigenomic

datasets at decreasing cost6,57. Therefore, researchers have collaboratively designed mouse

panels to consolidate this naturally occurring genetic variation across strains and subspecies

with a long history of research. Genetically diverse mouse panels such as the Collaborative

Cross and Diversity Outbred panels have been introduced to model the naturally occurring

variability observed in humans, with advantages such as replicability, stability, and control,
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thus serving as valuable tools for the analysis of complex traits using systems genetics58–62.

Mapping complex traits in mice

Mapping complex traits in mice has a rich history dating back several decades, with recom-

binant inbred (RI) strains playing a pivotal role. RI strains, resulting from repeated mating

of siblings from two inbred parental strains over multiple generations, provide a valuable

resource for mapping complex traits with greater precision due to their four-fold increase in

recombination compared to single-generation maps. This increased recombination enhances

the resolution of genetic mapping studies, enabling researchers to more accurately identify

the genetic factors underlying complex traits24. The importance of RI strains was first real-

ized by Donald Bailey in 1959, who recognized their potential utility for linkage analysis24.

This led to the development of various sets of RI strains, such as the original CXB set, which

Bailey brought to the Jackson Laboratory in 196724. Subsequently, Benjamin Taylor further

advanced the RI approach, creating standard sets of RI strains such as BXD and AKXD in

197324. Despite their small size, typically consisting of 15–35 strains from a single pair of

parental inbred lines, mouse RI panels offer a reproducible genetic background that facili-

tates the examination of gene-environment interactions and the use of multiple phenotyping

techniques24. While RI strains require considerable time and effort for their development,

they remain a valuable resource for investigating Mendelian and quantitative traits. Intro-

duced in 2002, advanced mapping strategies leveraging RI intercross (RIX) strains extends

the power of RI lines by producing F1 hybrids between parental RI lines, offering twice the

number of recombination sites in a single individual63.

In 2004, the Complex Trait Consortium proposed the Collaborative Cross (CC) panel, con-

sisting of approximately 100 highly diverse RI strains originating from the eight strains men-

tioned in the previous section: C57BL/6J, NOD/ShiLtJ, NZO/HlLtJ, A/J, 129S1/SvImJ,

WSB/J, PWK/PhJ, and CAST/EiJ (Fig. 1.1)58. CC lines are generated through the inter-

mating of these parental inbred strains, followed by successive sibling mating in a “funnel”
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pattern (Fig. 1.2)64. This process yields genetically stable lines, each representing a com-

plex mosaic of the original genomes. Using multiple CC lines aids in statistical power to

discern between true QTLs and false positives. For example, the CC lines have been used to

map gene expression QTLs (eQTLs) and chromatin accessibility QTLs (caQTLs) in diverse

tissues, including lung, kidney, and liver65. The long-term stability of established CCs as

inbred strains ensures reproducible genetic backgrounds, contributing to the consistency of

QTL analyses across experiments and laboratories.

Although the CCs have high statistical power for detecting genetic loci, they have limited

mapping resolution, spanning tens of megabase pairs66. The Diversity Outbred (DO) collec-

tion, introduced in 2012, is a randomized breeding colony based on the same eight founder

strains that can be leveraged for more high-precision QTL mapping66. For example, a 2

Mb region on chromosome 3 was mapped to serum cholesterol levels62. More recently, an

integrative analysis of skeletal phenotypes in the the DO panel identified an eQTL impacing

expression of the gene Qsox1, which in turn has an effect on cortical bone morphology67. A

follow-up study mapped gene expression in bone marrow–derived stromal cells at the single-

cell level, demonstrating the impact of genetic variation on the proportions of osteogenic

cell types in DO mice68. As single-cell sequencing technologies rapidly evolve, they are ex-

pected to continue playing a vital role in the ongoing development and application of systems

genetics.

The emergence of sequencing assays for functional genomics

Mapping the genetic influence on molecular traits such as transcript and protein abundance

is crucial for understanding complex phenotypic traits. For example, mutations in the dys-

trophin gene can lead to a deficiency in the corresponding protein, a key factor in Duchenne

muscular dystrophy69. However, many complex traits including common diseases are poly-

genic, meaning that each trait can be impacted quantitatively by multiple genes41. Rather

than directly assessing protein expression, researchers often opt to measure gene expression,
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or the abundance of polyadenylated RNA transcripts that serve as precursors for proteins

or functional non-coding RNAs. This molecular readout provides a snapshot of ongoing cel-

lular processes within cells. Additionally, chromatin accessibility, which indicates regions of

DNA regions that are loosely bound by histones or deplete altogether, provides insights into

active regulatory regions within the genome that are often associated with gene expression,

enhancer activity, and transcription factor binding70,71. Before the introduction of illumina

next-generation sequencing (NGS) in 200772, these assays were restricted to techniques such

as microarrays, which employ a set of oligonucleotide probes to capture target molecules,

relying on a predefined panel of known target genes73. In contrast, Illumina sequencing is

a massively parallel sequencing technology that synthesizes DNA sequences base-by-base74

allowing for comprehensive and unbiased capture of the entire genome and transcriptome.

With standard Illumina short-read sequencing, short fragments of DNA (typically 200-500

base pairs) undergo treatment to attach specific adapters at both ends75. These adapters

are complementary to sequences anchored to a flow cell, with one end binding to the flow

cell and the other remaining untethered. During a specific step of sequencing called cluster

generation, these fragments are amplified while still bound to the flow cell, creating dense

regions of identical sequences75. Sequencing proceeds as fluorescently tagged nucleotides

attach base-by-base to the template, with a picture taken at each addition. Since all strands

in a cluster are identical, as the same base binds to each position, a bright spot of light is

generated that is detectable by a high-resolution camera. Raw image data are then translated

into nucleotide sequences based on the sequence of colors (or the absence of color) at each

cluster74,75.

RNA sequencing (RNA-seq) involves extracting RNA from a cell or tissue, using an oligo-dT

primer to select messenger RNAs and long non-coding RNAs76. This primer serves as an

anchor for reverse transcription of the single-stranded RNA from the 3’ tail to the 5’ end,

creating an RNA-cDNA hybrid77. As the reverse transcriptase enzyme reaches the end of
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the RNA template, it adds a few non-templated nucleotides, typically cytosines77. Another

primer, known as a template switching oligo, anneals to these non-templated nucleotides at

the 5’ end of the cDNA, providing the 5’ primer site for subsequent PCR amplification77.

This ensures that the amplified reverse-transcribed RNA, commonly referred to as com-

plementary DNA or cDNA, contains the entire full-length transcript as a double-stranded,

stable structure. Additional ligation, PCR, and clean-up reactions are performed to add

adapters to each end of the cDNA fragment for sequencing. Importantly, for short-read

Illumina sequencing, the full-length cDNA must be fragmented further in order to be read-

able by the sequencer, while long-read sequencers such as Oxford Nanopore can sequence

full-length RNA and up to millions of bases of genomic DNA78.

Chromatin accessibility assays also rely on sequencing DNA fragments excised from the

genome. The first iteration of this assay, DNase-seq, utilizes DNase I endonuclease digestion

to cleave open regions of DNA79. Subsequent steps involve amplification and addition of

sequencing adapters to create the final library, or collection of DNA molecules that are

compatible with a sequencing platform. Its successor, ATAC-seq (Assay for Transposase-

Accessible Chromatin), employs a hyperactive Tn5 transposase to insert sequencing adapters

into open chromatin, bypassing a library preparation step and streamlining the process80.

The availability of multiple sequencing platforms, including Illumina, Pacific Biosciences, and

Oxford Nanopore coupled with declining sequencing costs, has facilitated the proliferation

of sequencing assays such as RNA-seq and ATAC-seq57. Consequently, the availability of

publicly accessible sequencing data has surged, exemplified by initiatives such as ENCODE.

Established in 2004, the goal of the ENCODE (ENCyclopedia Of DNA Elements) consortium

was to build a catalog of functional DNA elements in various human and mouse cell lines,

tissues, and developmental time points17,81. Various sequencing assays, including RNA-seq,

DNase-seq, and ATAC-seq, were conducted on unified sets of samples in labs worldwide

to identify regulatory elements in the genome and their associated target genes. Notable
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findings from the ENCODE project include the discovery that the majority of SNPs identified

by GWAS are located within DNase I hypersensitive regions, indicating the active state of

crucial variants82. Moreover, extensive sampling uncovered the tissue-specific nature of most

regulatory elements, where genomic regions accessible in one tissue often remain inaccessible

in others83. Additionally, polyA gene expression profiling using RNA-seq during prenatal

mouse development revealed distinct gene expression clusters and sub-clusters associated

with specific cell types within diverse tissues84. In its final phase that finished in 2022, the

ENCODE consortium added substantial single-cell and single-nucleus sequencing data to

comprehensively capture cell type-specific signatures in human and mouse postnatal tissues.

Functional genomics at single-cell resolution

While bulk assays capture an average signature across an entire sample, single-cell and single-

nucleus assays offer the capability to resolve molecular profiles, such as gene expression and

chromatin accessibility, while preserving the identity of each individual cell. When scaled up

to profile thousands or even hundreds of thousands of cells simultaneously, researchers can

readily discern heterogeneous cell types, or groups of cells with distinct molecular profiles,

and cell states, or different phenotypes within those cell types. Bulk assays can somewhat

capture the dominant profile attributed to the most abundant cell type, but overlook the

contributions of minor cell types, which can play crucial roles in specific developmental or

disease contexts. For instance, activation of the brain’s resident immune cells (microglia) is

a major hallmark of disease progression in Alzheimer’s disease85. The key to profiling many

cells in a single experiment lies in ensuring that each cell is assigned a unique barcode, which

is attached to all the molecules associated with that specific cell. Thanks to advances in

barcoding technologies, single-cell assays are rapidly replacing bulk assays as the preferred

method for large-scale genomic and transcriptomic studies wherever appropriate.

The initial phase of single-cell assays involved pipetting one cell per well in a 96-well or

slightly larger format, followed by parallel experimental reactions in plate format86. How-
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ever, these methods were both time-consuming and low-throughput. Over the past decade,

advancements in droplet microfluidics have dramatically increased the number of cells per

experiment86. For instance, the commercial Chromium system from 10x Genomics enables

high-throughput profiling of RNA 3’ ends from thousands of single cells; up to 80,000 in a

standard chip and 320,000 in the high-throughput version87. This droplet-based approach

uses microfluidics to encapsulate cells and barcoded beads within nanodroplets. Each syn-

thetic bead is coated with oligonucleotide sequences containing a unique barcode. A contin-

uous flow of cells and barcoded beads in a water-based buffer is merged with another channel

containing oil, resulting in the formation of robust nanodroplets, ideally containing a single

cell and one barcoded bead86. Subsequent cell lysis and reactions, such as reverse transcrip-

tion (for RNA-seq) or Tn5 tagmentation (for ATAC-seq), occur within each droplet, releasing

the barcodes from the bead and attaching them to various molecules inside the cell, such

as polyadenylated RNA or tagmented DNA, depending on the capture method. However,

limitations of droplet-based barcoding include access to microfluidics equipment, compat-

ibility of cell morphology with small microfluidics channels, and cost, especially regarding

large-scale experiments with many unique samples.

Ever higher throughput can be achieved using an alternative single-cell RNA-seq (scRNA-

seq) method where cells serve as their own fixed containers as they undergo rounds of bar-

coding reactions88. The initial barcode, introduced during in situ reverse transcription, is

uniquely distributed across wells in a 96-well plate, allowing for up to 96 multiplexed sam-

ples. Subsequently, the next two sets of 96 barcodes are ligated in situ following the first

barcode. The cells are then counted and distributed into subpools for the final barcoding

ligation, resulting in a throughput of 1 million cells with approximately 14 million possible

barcodes89. Compared to droplet-based scRNA-seq barcoding, this method scales rapidly

and requires no specialized equipment. In recent years, commercial combinatorial barcoding

kits from Parse Biosciences have made scRNA-seq more accessible to many labs by offering

kits in a variety of sizes (up to 1 million cells in a single experiment) and capture kits for se-
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lectively targeting certain transcripts, such as immune cell type markers and exon-containing

fragments89.

While advancements in barcoding technologies are ongoing, the protocols for sample prepa-

ration present ongoing challenges. Extracting intact cells from complex tissues such as the

brain is often limited to antibody-based selection techniques targeting specific cell surface

markers for positive or negative selection. In many cases, researchers turn to single-nucleus

sequencing as an alternative to single-cell sequencing. While this approach results in the

loss of cytoplasmic transcripts, single-nucleus RNA-seq (snRNA-seq) provides a snapshot of

ongoing cellular processes, enabling the identification of cell types and states as effectively as

scRNA-seq90. For assays such as ATAC-seq that focus on genomic DNA, nuclear preparation

is already integrated into the protocol. The success of any single-cell or single-nucleus assay

relies heavily on achieving a clean suspension of cells or nuclei at a known concentration.

This can be challenging depending on the tissue source, necessitating careful preservation

of nuclear structure during tissue lysis and homogenization while minimizing non-nuclear

debris. Techniques such as physical filtering through mesh strainers and density gradients

aid in separating nuclei from debris based on weight. In droplet-based barcoding, input

concentration is critical to avoid overloading the microfluidics equipment, which can lead to

an increase in doublets (two cells with identical barcodes) and empty droplets. While cell

concentration is less crucial for combinatorial barcoding, overloading can still result in an

elevated risk of doublets. Although automated workflows for transitioning from whole tissue

to single-cell suspension are emerging, it’s essential to maintain careful bench practices to

ensure high-quality downstream data.

Finally, substantial progress has been made in multiomic single-cell assays that capture two or

more types of molecular profiles from individual cells simultaneously. The most widely used

approach combines transcriptome profiling (RNA-seq) with chromatin accessibility (ATAC-

seq), dominated by a popular 10x Multiome kit87. However, non-commercial methods such
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as SHARE-seq, a combinatorial barcoding-based multiome assay, are also emerging91. In

SHARE-seq, fixed cells and nuclei undergo in situ reactions where open chromatin is first

excised from the genomic DNA via a Tn5 reaction, followed by reverse transcription of

polyadenylated RNA91. Cells are barcoded through three ligation-based split-pool reactions

in 96-well plates before being divided into aliquots and lysed for library preparation91. Other

multiomic assays combine epigenetic and transcriptomic assays to capture the transcriptome

and methylome, transcriptome and proteome, and even transcriptome, methylome, and chro-

matin accessibility simultaneously92. With the increasing accessibility of single-cell sequenc-

ing, there is anticipation of a continuing surge in innovative multiomic assays harnessing the

power of both single-cell barcoding and high-throughput sequencing.

Single cell RNA-seq data analysis and cell type annotation

Single-cell RNA-seq libraries are typically sequenced as paired-end reads. One read con-

tains the cell barcode and unique molecular identifier (UMI), a short sequence of random

nucleotides added before PCR amplification to track unique molecules and remove PCR du-

plicates during data processing93. The other read contains the cDNA sequence. Sequencing

depth, or the number of reads per cell, is crucial to fully capture the transcriptome. Sequenc-

ing saturation, a measure of the ratio of unique molecules detected to the total number of

reads, helps determine whether further sequencing would provide new UMIs and additional

information or merely sequence the same molecules repeatedly, thereby wasting sequencing

costs.

After sequencing, the initial step in data processing involves mapping cDNA fragments to a

reference, assigning reads to genes, demultiplexing cell barcodes, and deduplicating UMIs.

This process yields a cell-by-gene count matrix, containing the counts of RNA molecules

in each cell for each gene. Several bioinformatic tools are available for these tasks. For

instance, 10x’s CellRanger uses STAR for read mapping and proprietary algorithms for cell

demultiplexing87. Recently, tools such as STARSolo94 and kallisto bustoolskb have emerged
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that enhance computational efficiency by integrating alignment, cell demultiplexing, and

UMI deduplication into a unified workflow. Cell demultiplexing involves identifying cell

barcodes in reads, correcting barcodes based on the known sequences used to design the

oligonucleotide barcodes used in the experiment and removing duplicates. UMI deduplica-

tion compares UMIs associated with each read to eliminate duplicates originating from the

same molecule, mitigating PCR amplification biases. STARSolo, based on the STAR aligner,

offers high accuracy in gene quantification but requires longer processing time94. In contrast,

kallisto bustools pseudoaligns reads to a reference transcriptome, significantly reducing pro-

cessing time95. Both tools incorporate barcode error correction and UMI deduplication,

generating a final count matrix as the final step of their processing pipeline. Importantly, in-

tronic reads must be counted along with exonic reads when performing single-nucleus rather

than whole-cell sequencing, since many transcripts are anticipated to be pre-spliced or in the

process of splicing at the time of capture96.

After generating a counts matrix, cells undergo various quality control (QC) checks such as

assessing the number of UMIs per cell and the number of genes captured with at least one

UMI. Additional metrics include the percentage of reads associated with mitochondrial and

ribosomal transcripts. Another critical metric is the doublet score, which is an algorithm-

based prediction indicating whether a cell is a doublet. This score is derived by randomly

sampling and combining observed transcriptomes from single cells97. The local density of

simulated doublets as measured by a nearest neighbor graph is utilized to calculate a doublet

score for each cell97. Steps to calculate these QC metrics are often integrated into standard

data processing workflows and are part of popular single-cell RNA-seq toolkits such as Seu-

rat98 and Scanpy99, which are based on R and Python programming languages respectively.

These toolkits encompass filtering cells based on QC metrics, normalizing count matrices to

account for sequencing depth variation across cells, optional batch correction, principal com-

ponent analysis (PCA) for linear dimensionality reduction, computing K-nearest neighbors

for each cell, and clustering cells using algorithms such as Leiden and Louvain100. The result-
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ing clusters, or groups of single cells indicate cells whose transcriptomes are similar to each

other and thus suggesting a common cell type or cell state. Optional steps also involve embed-

ding the neighborhood graph in a UMAP or t-SNE, which are nonlinear low-dimensionality

representations of the data where each cell is depicted as a point in 2D space101. However,

in recent years, the structures of UMAP embeddings have been incorrectly interpreted as

biologically meaningful102. It is important to note that different selections of highly vari-

able genes and other parameters, such as the metric used to construct neighborhood graphs

and the number of neighbors considered for nonlinear dimensionality reduction significantly

influence the resulting embedding102. These variations can lead to inconsistencies and mis-

interpretations, potentially resulting in the misassignment of cell types102.

Cell type annotation, which is the process of assigning specific cell type labels to individual

cells or clusters based on their gene expression profiles, remains challenging in single-cell

RNA-seq analysis. Various bioinformatic tools have been developed to facilitate this task,

including data integration methods, classification-based machine learning approaches, and

marker gene databases for cell type prediction103. Integration techniques transfer labels from

reference data to query cells within clusters but suffer from high computational demands and

potential batch effects if the reference and query data vary significantly in quality or depth104.

In contrast, supervised annotation involves constructing a classifier using a labeled reference

dataset, selecting features, training the classifier, and predicting cell types in unannotated

data103. However, reliance on reference data poses challenges as new single-cell studies grow

in scale and encompass diverse biological contexts and genetic backgrounds. Manual anno-

tation by domain experts remains popular, with clustering algorithm choice and resolution

influencing the granularity of cell types. Annotators often perform differential expression

analysis to identify cluster marker genes, which can indicate specific cell types. However,

consideration of biological context is vital. For example, the Prox1 homeobox transcrip-

tion factor is a marker of both endothelial cells in lymphatic vasculature throughout the

body105 but is also selectively expressed in the hippocampal dentate gyrus during granule
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cell (neuron) maturation106. Thus, annotations done in a context-aware manner with pre-set

expectations of the recovered cell types often outperforms automatic annotations.

Transcriptional regulation of cell types and cell states in skeletal muscle

An organism begins as a single-celled zygote from which diverse cell types self-organize into

tissues and organs during embryonic development. Organs undergo significant postnatal

changes in cell type dynamics as tissues grow and mature. Notably, sex-specific cell types

emerge in organs such as the adrenal gland during puberty and decline in adulthood107.

Additionally, stem cells such as oligodendrocyte precursor cells in the brain persist through-

out postnatal development to adulthood, overseeing tissue maintenance and repair108. Cell

types are discerned by consistent, heritable features, including molecular markers, morphol-

ogy, tissue location, and functional characteristics109,110.

In skeletal muscle, a subset of Pax7 -expressing stem cells, also known as satellite cells, rest

beneath the basal lamina of myofibers and are activated to carry out myogenesis throughout

the life of the organism111. Activated satellite cells proliferate, align, and fuse into develop-

ing or regenerating myotubes, expressing myogenic regulatory factors such as Myf5, Myod1,

and Myog 111. These transcription factors (TFs) control cellular fate by binding to target

gene promoters such as muscle-specific actins and myosins that are essential for proper my-

ofiber functions. Single-cell and single-nucleus RNA-seq of cultured muscle cells has allowed

researchers to characterize progenitor and differentiated cell types based on their transcrip-

tomes, revealing the temporal dynamics of gene expression during cellular differentiation90.

In tissue, mature myonuclei are positioned along the periphery of myofibers to accommodate

linearly arranged sarcomeres and interspersed mitochondria, while supporting cell types oc-

cupy the space outside of the fibers (Fig. 1.3). Single-cell RNA-seq captures non-muscle cell

types such as endothelial and lymphatic endothelial cells of the blood and lymph vessels,

circulating and tissue-resident immune cells, and a stromal cell type called fibro-adipogenic

progenitor cells (FAPs)112,113. FAPs help maintain a favorable microenvironment during
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muscle regeneration and repair, interacting with satellite cells and maintaining homeosta-

sis114. Single-cell experiments allow for comparisons of cell type proportions, cell signaling

analysis, and differential expression between cell types in various contexts such as develop-

mental timepoint, disease, species, and sex. Alongside single-cell RNA-seq, single-nucleus

ATAC-seq assesses the open chromatin landscape in single cells, determining accessibility at

gene promoters and non-coding regulatory regions, or DNA sequences that can increase or

decrease gene transcription115. With appropriate read depth, it can also be used for tran-

scription factor footprinting to predict the binding locations of TFs, and subsequent motif

enrichment analysis to match sequences in these binding locations to preferred sequence mo-

tifs for specific TFs71. For example, snATAC-seq footprinting in regenerating muscle revealed

Pax7 and Nr3c1 are more active in quiescent satellite cells compared to activated satellite

cells, with target genes whose expression was further validated with bulk RNA-seq116.

Skeletal muscle is unique in that it is multinucleated, with up to hundreds of nuclei dispersed

throughout the myofiber cytoplasm, presumably in part due to the substantial metabolic and

functional demands required for muscle function117. Given this characteristic, most single-

cell studies in skeletal muscle prefer to focus on individual nuclei118. Single-nucleus RNA-seq

in skeletal muscle characterized gene expression in specialized myonuclei located beneath

the neuromuscular junction (NMJ), which exhibit distinct transcriptional profiles for the

development of acetylcholine receptor (AChR) clusters, essential for voluntary movement113.

Another study combining snRNA-seq with validation using spatial data showed that all

the nuclei in a muscle fiber are coordinated in their transcriptional output119, preferring to

express either slow-twitch or fast-twitch genes. Importantly, myonuclear specialization and

fiber type switching are changes in cell state rather than cell type. In vitro experiments

have demonstrated that AChR clustering can be induced in muscle cells by administration

of synaptic proteins120, while fiber type can be influenced by exercise training121. While cell

types establish the foundation for cellular identity, cell states enable plasticity within specific

cell types, exemplified by specialized NMJ and slow/fast-twitch myonuclei110.
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Modeling gene regulation in single cells

An ongoing challenge in single-cell RNA-seq analysis is identifying and associating groups

of genes with meaningful traits. While gene expression differences in traits such as sex and

age can be assessed through differential expression analysis, which highlights genes enriched

in one group or another, such analyses offer limited insights into the relationships between

different genes. Therefore, adopting a comprehensive approach is crucial for achieving a

systems-level understanding of gene expression regulation. Weighted gene co-expression net-

work analysis (WGCNA) is a commonly used approach for capturing underlying structure

in data122, reflecting the complex organization inherent in biological systems and recently

adapted for single cell data123. However, WGCNA typically assigns each gene to a single

module, limiting its flexibility. Another promising method is Latent Dirichlet Allocation

(LDA), also known as topic modeling. Initially developed for population genetics and later

adapted for natural language processing using machine learning, LDA groups words into

topics in written documents, enabling multiple topics to be associated with a single docu-

ment while assigning a numeric weight to each word in every topic124,125. In the context of

single-cell RNA-seq, LDA treats genes as words, cells as documents, and latent biological

processes as topics126–128. This approach aligns with true biological systems, where a gene

may participate in multiple regulatory programs. By analyzing gene weights between topics,

LDA facilitates the comparison of more latent traits associated with topics, such as dynamic

cell types and states.

1.3 Conclusions

Single-cell RNA-seq has emerged as a transformative tool in genomics, providing invaluable

insights into gene expression at the individual cell level and offering high-resolution views

of heterogeneous tissues. As these assays become standard practice, they enable the study
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of intricate transcriptional dynamics in specific cell types during development and assessing

the impact of genetic variation on gene expression, further advancing our understanding of

complex biological systems.

In Chapter 2, I describe our method for long-read single-cell RNA-seq and the benchmarking

results conducted on a differentiating skeletal muscle cell line. Our results, published in

Genome Biology, characterize heterogeneous mononucleated populations in differentiated

cultures and validate cluster marker genes by RNA fluorescent in situ hybridization. The

study highlights the gene troponin T2 (Tnnt2 ), which switches isoform expression from a

short version to a long version of the transcript during differentiation, observed in both

mononucleated cells and fused myotubes compared to undifferentiated myoblasts. Paired

single-nucleus chromatin accessibility (snATAC-seq) data further confirms TSS switching

in Tnnt2 and several other genes, shedding light on the genomic basis of RNA isoform

expression during skeletal muscle differentiation.

In Chapter 3, I provide a comprehensive overview of postnatal development across vari-

ous tissues using the ENCODE4 mouse single-cell dataset, building upon previous prenatal

single-cell analyses84. This coordinated single-nucleus RNA-seq dataset encompasses adrenal

gland, left cerebral cortex, hippocampus, heart, and skeletal muscle tissues at seven postna-

tal timepoints. Additionally, 10x Multiome (snRNA-seq and snATAC-seq) data at two key

timepoints supplements our analysis. We use LDA to model regulatory programs as top-

ics, capturing cell type and cell state-specific signatures. The postnatal time course reveals

dynamic changes, such as glial maturation in the brain and gradual expansion of skeletal

muscle relative to supporting cell types such as fibro-adipogenic progenitors. Finally, we

conduct an integrative analysis using the multiome data to characterize sexually dimorphic

transcription factor expression and binding activity in a specific cortical layer of the adrenal

gland that emerges during puberty.

In Chapter 4, I present the first phase of our project within the IGVF (Impact of Ge-
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nomic Variation on Function) consortium18 to characterize the transcriptional landscape

at single-cell resolution across eight core tissues in the eight CC and DO founder geno-

types (C57BL/6J, NOD/ShiLtJ, NZO/HlLtJ, A/J, 129S1/SvImJ, WSB/J, PWK/PhJ, and

CAST/EiJ), with four male and four female replicates per genotype, thus christened the “8-

cubed” single-nucleus RNA-seq dataset. I investigate genotype- and sex-specific clustering of

single cells and explore differential gene expression between genotypes across over a hundred

cell types from the same tissues profiled in ENCODE4 as well as kidney, liver, male and

female gonads, and the diencephalon and pituitary brain regions. Notably, we observe early

activation of satellite cells in A/J mice compared to other genotypes, which are predisposed

to late onset muscular dystrophy due to a mutation in the dysferlin gene37,129.

In Chapter 5, I outline future trajectories for the research outlined in this thesis, emphasizing

the forthcoming phases of our IGVF project. I delve into the prospects of characterizing cis

and trans regulation using F1 crosses, elaborate on eQTL analysis leveraging the Collabora-

tive Cross, and explain how integrating single-cell chromatin accessibility or multiome data

will bolster our QTL discovery. Additionally, I offer broader insights and aspirations for the

field gleaned from navigating extensive and biologically diverse single-cell datasets.
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Figure 1.1: Phylogenetic tree of the eight CC founders. Based on single nucleotide
polymorphism (SNP) data for chromosome 1161. Blue background indicates inbred lab
strains and green background indicates wild-derived strains. Of the 3 wild-derived strains,
WSB/EiJ also originates from M. m domesticus, while CAST/EiJ and PWK/PhJ are distinct
subspecies. Mouse pictures courtesy of Jackson Laboratory.

24



Figure 1.2: Breeding scheme for generating a CC line. The order of the founders
is randomized and not repeated across CC lines. Initially, two of the eight founders are
crossed in the outbreeding generation 1 (G1). Subsequently, those lines are intercrossed
with each other in G2. Repeated generations of inbreeding through sibling mating produce
filial generations until reaching (near) homozygosity64.
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Figure 1.3: Cell types and cell states of skeletal muscle. A single muscle cell or myofiber
contains hundreds of myonuclei, the most abundant cell type in skeletal muscle. Type
2A/B/X are subtypes of fast twitch fibers, while Type 1 are slow twitch fibers. Specialized
myonuclei rest underneath the neuromuscular junction (NMJ) and myotendinous junction
(MTJ), and satellite cells or muscle stem cells rest on top of the myofiber.
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Chapter 2

Mapping and modeling the genomic

basis of differential RNA isoform

expression at single-cell resolution

with LR-Split-seq

2.1 Abstract

The rise in throughput and quality of long-read sequencing should allow unambiguous iden-

tification of full-length transcript isoforms. However, its application to single-cell RNA-seq

has been limited by throughput and expense. Here we develop and characterize long-read

Split-seq (LR-Split-seq), which uses combinatorial barcoding to sequence single cells with

long reads. Applied to the C2C12 myogenic system, LR-split-seq associates isoforms to cell

types with relative economy and design flexibility. We find widespread evidence of chang-

ing isoform expression during differentiation including alternative transcription start sites
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(TSS) and/or alternative internal exon usage. LR-Split-seq provides an affordable method

for identifying cluster-specific isoforms in single cells.

2.2 Introduction

Alternative transcript isoform expression is a major regulatory process in eukaryotes that

includes differential TSS (transcription start site) selection, RNA splicing, and TES (tran-

scription end site) selection. These differential choices sculpt the transcriptome and its

resulting proteome during development, across cell types and in disease states. However, it

has proved challenging to fully capture and quantify isoform regulation by standard short-

read RNA-seq because of the ambiguity it leaves in mapping the transcript termini and

full-length exon connectivity that define each mature isoform.

In recent years, long-read RNA sequencing technologies have emerged as a powerful al-

ternative for transcript-level identification and quantification by going beyond the level of

exon-usage to simultaneously identify novel isoforms with alternative TSSs, TESs, and exon

combinations. Furthermore, long-read RNA-seq has been adapted to single-cell sequencing

using high-throughput microfluidics-based methods130–133. Some of these studies sequenced

the same cells with both PacBio and Illumina technologies and relied on short-read gene

quantification to cluster and characterize cell types, while using the long reads to identify

full-length isoforms131,133. However, these prior approaches used expensive equipment, such

as microfluidics platforms, and/or applied very high amounts of long-read sequencing whose

expense limits routine and extensive application.

Differential RNA isoforms discriminate cell types within complex tissues and, within cell

types such as neurons, can further distinguish functionally distinct cell sub-populations134,135.

Isoform choice can even distinguish individual neurons of the same “type” from each other136,137.
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Transcript isoforms also discriminate developmental stages and disease states138. In verte-

brate systems, differential isoform regulation through development has long been appreci-

ated, and in some disease states such as type 1 myotonic dystrophy, fetal or neonatal stage

isoforms of Tnnt2, Atp2a1 (Serca1 ), and Ldb3 (Zasp) are inappropriately expressed139–141.

In addition, several studies have characterized the diversity of gene expression within the

population of nuclei from myotubes112,119. This prior work on skeletal muscle provides known

instances of isoform choices that we can use to benchmark new methods for transcriptome

profiling, while at the same time posing unanswered questions that require single- cell or

single-nucleus long-read data such as nuclear specialization within myotubes.

In vitro differentiation of the myogenic C2C12 cell line from proliferating, mononucleated

myoblasts to multinucleated myotubes is a widely used model of myogenesis due to transcrip-

tional and morphological similarities to the in vivo process142. A subset of cells under differ-

entiation promoting conditions remain mononucleated and are called MNCs90,143. In adult

muscle tissue, satellite cells are mononucleated muscle stem cells that can be stimulated to

proliferate and differentiate to drive muscle repair111. Expression of the satellite cell marker

gene Pax7 decreases as satellite cells are activated into proliferating myoblasts, while expres-

sion of myogenic regulatory factors (MRFs) such as Myod1 and Myog increase and promote

myogenesis111. Satellite cells undergo asymmetric divisions to produce future Pax7 negative,

MRF positive myoblasts and to self-renew Pax7 positive, MRF-negative satellites144. In ad-

dition to major transcriptional changes during myogenesis, C2C12 differentiation exhibits

substantial changes, both qualitative and quantitative, in splice isoforms145. For example,

Pkm undergoes an isoform switch during C2C12 differentiation that results in two distinct

isozymes of the gene, PMK2 and PKM1, which include mutually exclusive exons 9 and 10

respectively146. Proliferating C2C12s express both isoforms of beta-tropomyosin (Tpm2 ),

including exon 6a or exon 6b, but expression of the 6b isoform increases substantially during

differentiation146.
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Here, we combine combinatorial barcoding of individual C2C12 cells and nuclei using the

Split-seq strategy88 with long-read sequencing (LR-Split-seq) to investigate isoform changes

during differentiation. We first examined the technical differences between LR-Split-seq ran-

dom hexamer and oligo-dT priming strategies as well between single-cell and single-nucleus.

We compared the performance of LR-Split-seq to bulk long-read RNA-seq, and further com-

pared the clusters recovered from LR-Split-seq to those from short-read sequencing for the

same cells, as well as a companion dataset of 37,000 cells to show that long-read single-cell

transcriptomes produce similar results to short-read that can be readily integrated. We then

leveraged LR-Split-seq results to identify and quantify TSSs in order to perform differential

TSS testing and examine TSS usage between single-cell clusters. Finally, we integrated the

resulting TSS expression from LR-Split-seq with matching single-cell ATAC-seq to quantify

the extent of coordinated single-cell chromatin accessibility.

2.3 Results

Comparing oligo-dT versus random hexamer primed long-read data

Split-seq uses a combination of oligo-dT and random hexamer primers in order to decrease

the 3’ bias that dominates other single cell RNA-seq methods that prime only with oligo-

dT88. These methods are designed to perform 3’ end counting for sequenced genes but they

give little or no information about the rest of the transcript. In contrast, when Split-seq

is conventionally performed with short reads, the random priming feature should, in the

ideal instance, provide comprehensive information about the entire body of the transcript.

However, this benefit in the short-read format is expected to have a different and unfa-

vorable effect in long-read data. The extent and character of effects from internal priming

will depend on multiple protocol variables (e.g., relative amounts of oligo-dT versus ran-

dom hexamers, substrate RNA integrity) and on filtering steps in the subsequent informatic
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pipeline. We therefore began by testing the impact of priming strategy on the LR-Split-seq

data. We collected proliferating C2C12 myoblasts (0 h) as both whole cells and nuclei, then

differentiated the remainder into myotubes over 3 days to recover 72-h differentiated nuclei

(Methods). We labeled a total of approximately 37,000 cells/nuclei from the three samples

using the Split-seq combinatorial barcoding strategy. We then built a sublibrary of 1000

cells for sequencing by PacBio as well as Illumina (Fig. 2.1a). The LR-Split-seq data was

first debarcoded and demultiplexed using our LR-splitpipe pipeline (Fig. 2.5a) (Methods).

We then analyzed the reads with TALON147, which is designed to assign long reads to their

transcripts of origin and to identify new transcripts (Fig. 2.5b-c, Table S1) (Methods).

TALON’s long-read RNA-seq annotation then assigns each read to a category that specifies

whether the read matches a known transcript in the reference transcriptome GTF file, or if

it represents a novel transcript147,148. Novel reads and transcripts are further broken down

by how they are novel compared to the reference annotation. Incomplete splice match (ISM)

transcripts contain a subsection of an annotated transcript but do not extend all the way to

the annotated 3’ or 5’ end. Novel in catalog transcripts (NIC) contain a new combination

of exons that are all present in the reference annotation. Novel not in catalog transcripts

(NNC) contain at least one splice site that is not present in the reference annotation. An-

tisense transcripts come from the opposite strand of a gene, and intergenic transcripts are

from regions of the genome with no annotated genes. Finally, genomic transcripts overlap

genes but do not share any known splice junctions with those in the annotation. Genomic

transcripts are often monoexonic, short, or contain intronic regions.

Random hexamer priming is expected to start within the body of a transcript rather than

the 3’ polyA tail where oligo-dT primers hybridize, though intronic A-rich runs are known

to serve as additional start points for oligo-dT priming149. This mixed priming strategy,

as it is currently implemented in the Split-seq commercial platform, produced remarkably

little difference in the final LR-Split-seq read length distribution from the two primer types
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(Fig. 2.1b, 2.1c). The distribution of reads per TALON category showed a slightly higher

proportion of incomplete splice match (ISM) reads per cell from the random hexamer priming

strategy versus the oligo-dT priming strategy (Fig. 2.1c). We speculate that the high fraction

of oligo-dT primed reads per cell that begin at internal sites (∼60%) accounts for the overall

similarity of random hexamer primed reads in length profiles and genes detected.

Single nuclei compared with single cells for LR-split-seq

We compared single-cell versus single-nucleus LR-split-seq. Overall, more reads and genes

were recovered from whole cells versus nuclei for both long- and short-read data, which is

expected because cytoplasmic transcripts are left behind during nuclear extraction, making

the nuclei less sensitive than whole cells (Fig. 2.1d, 2.1e). When comparing only 0 h cells

with companion nuclei, we observe shorter read lengths in the nuclei (Fig. 2.1f). And as

expected, we also see a larger proportion of genomic reads per cell/nucleus in nuclei compared

to cells (Fig. 2.1g). These nuclear genomic reads could result from the enrichment of intronic

RNA in the nucleus which would explain the lack of splice junctions.

Comparing LR-Split-seq of whole cells with bulk long-read RNA-seq for myoblasts, we found

that the LR-Split-Seq is modestly shorter than bulk long-read data (Fig. 2.1h, Table S2).

Bulk reads have an average mean length of 2274 bp and a peak from the kernel density

estimate (KDE) distribution of 1875 bp, versus an average mean length of 1735 bp and a

KDE peak of 1791 bp for LR-Split-seq non-genomic reads from whole cells (Fig. 2.1h, Table

S2). The LR-Split-seq reads also had more genomic and incomplete splice match (ISM)

reads than the bulk data (Fig. 2.1i, 2.1j). These differences are in line with expectations,

given other differences in details of the bulk protocol (Methods). Nevertheless, after strictly

filtering our novel transcripts with TALON, we retain 40,982 of the original 466,078 originally

identified isoforms which represent 34.8% of reads and 34.5% of UMIs. The majority of

transcript models are known transcripts annotated in GENCODE (Methods, Fig. 2.5d, Fig.

2.1k). The observed read length differences between LR-Split-seq and bulk is reflected in the
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genes and transcripts that are uniquely detected in the bulk or LR-Split-seq. Transcripts

detected only in bulk transcriptomes were likely to be longer, whereas transcripts detected

only in LR-Split-seq data were enriched for shorter length (Fig. 2.5e, 2.5f). Due to overall

longer read length in bulk long reads, these data were more likely to have multiple exons

than LR-Split-seq (Fig. 2.5g). We conclude that the read length profile of known reads in

single-cell LR-Split-seq is quite similar to bulk long reads, given protocol differences. This

suggests to us that the overall shorter lengths in single-nucleus versus whole cell LR-split-seq

are of biological origin, likely driven by underlying differences between cytosolic RNA, which

is rich in mature mRNA versus nuclear RNA, which contains mature mRNA but in lower

proportions.

LR-Split-seq and bulk long-read RNA-seq detect similar gene sets

Despite differences in transcript length and novelty classification between bulk long-read

RNA-seq and LR-Split-seq, we detected 9584 known genes in both bulk and single-cell LR-

Split-seq, with 5195 of these shared across all assays and sample combinations (Fig. 2.2a).

These results demonstrate the gene detection sensitivity of LR-Split-seq. The next largest

intersections contain >1500 genes recovered in all but the single-nucleus data which is likely

due to the relative loss of cytoplasmic transcripts from the nuclear preparation. Genes

detected in LR-Split-seq but not in the companion bulk RNA-seq tend to be short and are

enriched for short RNA biotypes such as snoRNAs and miRNAs, while genes detected solely

in bulk data are enriched for protein coding genes (Table S2). A plausible explanation is

that Split-seq’s random hexamer priming captured these transcript types whereas the bulk

method, which uses oligo-dT priming exclusively, preferentially captured polyadenylated

transcripts. We also examined the overlap between filtered novel transcript models from

the known, NIC and NNC novelty categories in bulk and LR-Split-seq (Fig. 2.2b). While

the vast majority of novel transcript models were only reproducible between bulk replicates,

251 NIC transcripts and 61 NNC transcripts were reproducible in at least one bulk and
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one LR-Split-seq sample (Fig. 2.5h, 2.5I). These represent isoforms that are most likely to

be real, though not previously annotated. Assuming that only the novel NIC and NNC

transcripts found in bulk are real gives us a true positive rate (TPR) of 0.79 for NIC and

0.59 for NNC. We note that the calculated TPR for NIC based on the bulk is higher than

for known transcripts detected by LR-Split-seq (0.71) and that it is certainly possible that

an additional subset of the NIC/NNC isoforms discovered in LR-split-seq were missed in the

bulk because they are lowly expressed.

LR-Split-seq recapitulates cell classifications recovered from short-read Split-seq

Overall, we recovered 110 0 h myoblast cells, 145 0 h myoblast nuclei, and 209 72 h differen-

tiating nuclei (464 cells total) that passed short-read QC thresholds as well as an additional

requirement of ≥ 500 long reads per cell in the 1000-cell library (Methods) (Fig. 2.6a-e).

Leiden clustering based on short-read sequencing of the 464 cells/nuclei yielded 7 clusters

(SR1-SR7). We observed mixed populations of 0 h myoblast cells and nuclei in clusters

SR1-SR3, while the 72 h differentiating nuclei clustered in SR4-SR7. This overall structure

is consistent with differentiation playing a dominant role in the UMAP structure, while dif-

ferences between nuclei versus whole cells from the 0 h samples were minor by comparison

(Fig. 2.2c). Additional patterns in the dataset that agree with known biology in the system

include expression of the satellite cell marker gene Pax7, which is expressed mainly in 72

h clusters SR4 and SR5, while the key myogenic transcription factor Myog (myogenin) is

expressed mainly in 72 h clusters SR6 and SR7 (Fig. 2.7a). An independent Leiden cluster-

ing performed using the LR-Split-seq data for the same 464 cells proved very similar to the

companion short-read clustering with 7 clusters (LR1-LR7) in which the myoblast progeni-

tor cells/nuclei are in clusters LR1-LR3 while the differentiating sample gives rise to clusters

LR4-LR7 (Fig. 2.2d). This UMAP again separates the latter group into Pax7hi (LR4, LR5)

and contrasting Myoghi sets (LR6, LR7), with the latter expressing additional downstream

markers of myocyte differentiation. Color-coding cells in the long-read UMAP according to
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the cluster identity from the companion short-read data showed high concordance of clus-

ters LR4-LR7 with SR4-SR7 (Fig. 2.2e). The myoblast progenitor clusters SR1-SR3 and

LR1-LR3 also agree, although the short-read clusters were more mixed between 0 h cells and

nuclei.

We furthermore compared our short- and long-read cells using independent RNA velocity

analyses using Velocyto149. We found when comparing the ratio of spliced to unspliced reads

in both read formats that there was typically a higher proportion of spliced reads detected

in the short reads per cell versus the long reads, which may be due to the overall higher

probability of sequencing an intronic region per read in long reads (Fig. 2.7b). However,

the difference is minor and the resulting independent trajectories are very similar between

the short and long read experiments (Fig. 2.7c). We investigated gene expression patterns

for additional known marker genes across the cells and nuclei between the short-read and

long-read clusters (Fig. 2.2f). Most notably, Mybph, Myh3, and Mef2c are highly expressed

in a subset of 72 h nuclei that make up cluster LR7, whereas Myog is expressed in both

clusters LR6 and LR7 of 72 h nuclei (Fig. 2.2f, Fig. 2.7a). Similar to the short-read data,

Pax7 is present in both 0 h and 72 h clusters, but it is most highly expressed in clusters

LR4 and LR5 (Fig. 2.2f). We also capture similar expression patterns in short-read and

long-read Pax7hi 72 h subclusters as indicated by Igfbp5, Col3a1, and Col1a1 (Fig. 2.2f,

Fig. 2.7a). Due to the consistent expression patterns of known marker genes across both

technologies, we postulate that Myoghi clusters SR6, SR7, LR6, and LR7 are mainly nuclei

originating from fused, multinucleated myotubes or mononucleated myocytes on their way

toward fusion, while the Pax7hi clusters SR4, SR5, LR4, and LR5 are nuclei distinct from

both myoblasts and the 72 h Myoghi nuclei.

We examined the isoform complexity of each cell by counting the number of genes that

express multiple isoforms from the same single cell or nucleus. Only one isoform was typically

detected per gene in each cell. The number of genes expressing more than one isoform is
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a linear function of read depth per cell, suggesting that deeper sequencing will increase

isoform complexity per gene (Fig. 2.7d). Furthermore, we noticed a clear difference in the

relationship between isoform complexity and read depth when comparing the single cells

with single nuclei where the nuclei of increasing read depth do not display a similar large

increase in isoform complexity as do the cells (Fig. 2.7d). One explanation for this is that

LR-Split-seq of a nucleus captures a snapshot of its immediate state of splicing, whereas

LR-Split-seq in cells captures the sum of different isoforms produced and exported to the

cytoplasm over a longer period of time. If correct, the implication is that splicing within the

nucleus is transiently biased for one pattern, and conceivably for one allele, the identity of

which changes dynamically.

We additionally performed isoform switching tests across three identified groups of clusters:

0 h myoblast (MB) cells (LR1-LR3), 72 h Pax7hi nuclei (LR4-LR5), and 72 h Myoghi nuclei

(LR6-LR7), with a corrected p-value cutoff from a chi-squared test of 0.05 and a change in

percent isoform usage cutoff of ≥ 10%133 (Methods). We recovered statistically significant

isoform switching genes that have been previously observed in differentiating C2C12s, such

as Tpm2 (Adj. P = 1.06 x10-5 MB vs. 72 h Myoghi) and Pkm (Adj. P = 2.57 x10-11 MB vs.

72 h Pax7hi; Adj. P = 2.98 x10-7 MB vs. 72 h Myoghi). The Tpm2 locus specifically shows an

increase in expression of and preference for isoforms containing exon 6b in the differentiated

nuclei as previously characterized in C2C12s as visualized with Swan (Fig. 2.8a)146,150. We

detect distinct Pkm isoforms with mutually exclusive exons 9 and 10 that correspond to the

isozymes PKM1 and PKM2. The myoblasts tend to produce the exon 10-containing isoform

(Pkm-201) over the major exon 9-containing isoform (Pkm-202), whereas the differentiated

nuclei seem to equally produce Pkm-201 and Pkm-205, which has an alternative TES (Fig.

2.8b). We found 21 significant isoform-switching genes between MB nuclei and 72 h Pax7hi

nuclei as well as 14 significant isoform-switching genes between MB nuclei and 72 h Myoghi

nuclei (Table S3, Table S4).
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C2C12s have distinct Pax7hi subpopulations following differentiation

We confirmed the presence of distinct Pax7hi and Myoghi clusters by short-read sequencing

of an extended set of cells and nuclei from the same labeled pool, comprised of six additional

9000-cell sublibraries on top of the 1000-cell sublibrary with matching long reads (Methods).

After filtering, we recovered 36,869 total cells/nuclei from all seven sublibraries, including

the 464 cells/nuclei with both short and long reads (Fig. 2.6a-e). The 7797 myoblast cells,

10,194 myoblast nuclei, and the 18,878 differentiating condition nuclei clustered primarily

by differentiation state (Fig. 2.3a). The progenitor states form one main group in UMAP

space that slightly separates cells and nuclei, while the differentiating nuclei extend outward

in a spectrum with several smaller groups (Fig. 2.3a). Of the 20 clusters identified by Leiden

clustering, 7 consist mostly of myoblast cells/nuclei while 13 are mainly differentiating nuclei

(Fig. 2.3a) (Methods). Out of the 13 72 h clusters, 8 are Pax7hi and the other 5 are Myoghi,

which is consistent with results from the 464 cells alone (Fig. 2.3a). Accordingly, cells

from each of the 20 clusters are represented by both short and long reads in the 464-cell

subset (Fig. 2.3b, 2.3c). We assign these clusters to the cells we recovered with long reads

to better inform the cellular identities with high resolution (Fig. 2.9a). For example, a

small subset of 12 cells out of 105 total cells in cluster SR5 belong to cluster R12, which is

distinguished by high expression of Col1a1 (Fig. 2.3d). Genes critical for cell cycle phases

G1 and S such as Cdk2 and Pcna are highly expressed in MB cluster R1, while G2 and M

phase marker gene Top2a is highly expressed in MB clusters R2 (made up of mostly cells)

and R3 (made up of mostly nuclei) as well as Pax7hi cluster R9 (Fig. 2.9b)151–153. Myog is

expressed throughout multinucleated myotubes as well as in some mononucleated cells that

are likely to be pre-fusion myocytes (Fig. 2.9c). Myog and myogenic marker gene Mybph are

highly expressed in clusters R16, R17, R18, and R20, indicating that these nuclei most likely

belong to committed myocytes and myotubes (Fig. 2.3d). RNA velocity analysis, which

uses the ratio of intronic (unspliced) and exonic (spliced) reads to predict the transcriptional

trajectory of cells, reveals a lineage from clusters R17 and R18 toward clusters R19 and R20.
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R19 and R20 express terminal myogenic marker genes such as Myh3, Mef2c, Tnnt2, and

Neb (Fig. 2.3d, Fig. 2.9d) (Methods). Of the 8 co-adjacent Pax7hi clusters (R8, R9, R10,

R11, R12, R13, R14, and R15), some also express cluster-discriminating genes such as Igfbp5

(cluster R11), Col1a1 (cluster R12), and Itm2a (cluster R14) (Fig. 2.3d, Fig. 2.9d). We

validated differential cluster-specificity of marker genes using spatial transcriptomic profiling

of Col1a1 (cluster R12), Itm2a (cluster R14) and Myh3 (cluster R20), which showed patterns

fully consistent with the Split-seq data (Fig. 2.3e). Imaging also confirmed that Pax7hi

subcluster marker genes are expressed in MNCs rather than in the multinucleated myotubes

that they surround (Fig. 2.3e). Myh3 is expressed throughout multinucleated myotubes

but less so in mononucleated cells. Pax7hi MNCs appear to either express Col1a1 or Itm2a,

consistent with their mutually exclusive marking of clusters R12 and R14 (Fig. 2.3d, 2.3e).

We observed heterogeneous populations of differentiating cells representing cell populations

and states that are involved in adult muscle tissue repair. Clusters R10 and R11 express

Igfbp5, which promotes muscle differentiation, and Nfix, which controls timing of regeneration

by repressing myostatin (Fig. 2.3d, Fig. 2.9d, Table S5)154,155. Cluster R12, marked by

Col1a1, Fn1 (fibronectin), and a number of other collagen genes, may represent a population

of previously defined MNCs that can transiently remodel their ECM, which is a process shown

to regulate satellite cell numbers in vivo (Fig. 2.3d, Fig. 2.9d, Table S5)156,157. Cluster R13

expresses Lix1, a Pax7 target gene needed for activated satellite cell proliferation (Fig. 2.9d,

Table S5)158. Cluster R14, which expresses Itm2a and Pax7, may be analogous to activated

satellite cells (Fig. 2.3d, Fig. 2.9d, Table S5)159. Appropriately, the cluster R14 RNA

trajectory tends toward cluster R15 which expresses Tead1 (Tef-1 ) and Myog, which are

known to promote muscle differentiation (Fig. 2.9e, Table S5)160.

Chromatin accessibility of myogenic marker genes distinguishesMyoghi and Pax7hi

72 h nuclei

To assess chromatin accessibility in the groups of nuclei we identified with LR-Split-seq, we
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performed snATAC-seq on matching timepoints. We recovered 23,525 single nuclei from our

snATAC-seq experiments following filtering and QC (Fig. 2.10a-b), resulting in 18 clusters

from Leiden clustering: seven 0 h myoblast clusters and eleven 72 h differentiating clusters

(Fig. 2.4a) (Methods). “Gene activity” in this context refers to a measure of chromatin

accessibility of the gene body and 2kb upstream as a rough estimate of transcriptional activ-

ity161. We saw that chromatin gene activity patterns in our snATAC-seq UMAP for Myog

is somewhat similar to scRNA-seq expression patterns, where the Myog locus was highly

accessible in a subset of differentiated clusters (A16, A17, and A18) (Fig. 2.10c). To investi-

gate the agreement between expression and chromatin accessibility for the same time points,

0 h and 72 h, we integrated our short-read Split-seq and snATAC single-cell measurements

using Signac (Methods)104. This integration mapped Split-seq cells on snATAC-seq nuclei,

resulting in predicted snATAC-seq cell types. The predicted Split-seq time point (0 h or 72

h) was mostly accurate, with 96% (10,136 out of 10,508) of true snATAC 0 h nuclei predicted

to be 0 h from the expression data and 79% (10,381 out of 13,017) of true snATAC 72 h

nuclei predicted as 72 h (Fig. 2.10d). When we mapped Split-seq cells grouped by MB

(R1-R7), Pax7hi (R8-R15), and Myoghi (R16-R20) onto snATAC nuclei, we found that 48%

(1502 out of 3148) of nuclei with a Myog activity score >0 were predicted to be Myoghi and

that 27% (5135 out of 18,542) of nuclei with a Pax7 activity score >0 were predicted to be

Pax7hi (Fig. 2.10d). Unlike our Split-seq RNA data, where we detected high expression of

Pax7 in specific clusters, ATAC-based gene activity scores predicted that Pax7 would be

equally active across all clusters (Fig. 2.10e). Taken at face value, this suggests that some

differentially expressed genes do not exhibit corresponding changes in promoter chromatin

state, as reflected by these activity scores. However, there are several distal peaks ATAC

peaks located downstream of Pax7 whose dynamics are coordinated with the RNA. This

suggests, as a working model, that they are regulatory elements governing Pax7 expression.

In contrast, Myog and Mybph illustrate expected coordinated changes in chromatin accessi-

bility and RNA isoform expression during differentiation (clusters A16-A18) at the TSSs of
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these genes (Fig. 2.10d). For uniform terminology between RNA and DNA data, we label 72

h Myoglow snATAC clusters A8-A15 as Pax7hi. While snATAC can clearly capture changes in

chromatin remodeling, the ATAC-only gene activity scores (at least as computed by Signac)

do not reflect the Pax7 expression level changes that we measure in this system.

As expected, investigation of marker peaks for Myoghi clusters A16-A18, using a gene anno-

tation method with gene ontology analysis, revealed significant terms such as muscle system

process (P = 1.55 × 10-115), muscle structure development (P = 5.77 × 10-118), and striated

muscle contraction (P = 3.87 × 10-96) (Methods, Fig. 2.10g, Table S6, Table S7). In com-

parison, MB clusters A1-A7 had broad significant terms such as regulation of anatomical

structure morphogenesis (P = 1.69 × 10-19), cell-cell adhesion (P = 3.45 × 10-13), and cell

motility (P = 3.89 × 10-14) (Table S6, Table S7). The significant terms for Pax7hi clusters

A8-A15, in contrast to Myoghi clusters, were extracellular matrix organization (P = 1.23 ×

10-9), extracellular structure organization (P = 1.35 × 10-9), and blood vessel morphogenesis

(P = 3.92 × 10-9) (Table S6, Table S7). Most marker peaks defining the Myoghi clusters are

specific to skeletal muscle myogenesis in myotubes while marker peaks for Pax7hi clusters

indicate that they have a supportive role during development, such as by providing struc-

tural integrity to myotubes through ECM remodeling. Interestingly, cluster A9 by itself

displays terms that are related to neuromuscular junction formation such as axonogenesis

(P = 0.0003) and generation of neurons (P = 0.002), which indicates that a subset of dif-

ferentiated nuclei might play a specialized role compared to the rest of the differentiated

population (Fig. 2.10h).

LR-Split-seq identifies differential TSS choice

We developed a peak calling script to identify TSSs and TESs from long-read data (Methods).

For both bulk and single-cell data, reads filtered by known, NIC, NNC, and prefix ISMs for

TSSs or suffix ISMs for TESs were scanned with a window of 50bp to call TSS and TES

peaks. Each end was required to be supported by at least 2 long reads (Fig. 2.11a). We
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further filtered the ends at the level of each gene to achieve a refined set of TSSs and TESs

for the bulk and LR-Split-seq data separately: 22,938 TSSs in bulk (Fig. 2.11b, 2.11c, Table

S10), 23,996 TSSs in LR-Split-seq (Fig. 2.4b, Table S8), 14,120 TESs in bulk (Fig. 2.11d,

2.11e, Table S11), and 12,521 TESs in LR-Split-seq (Fig. 2.11f, 2.11g, Methods, Table S9).

We performed the same complexity analysis on the identified TSSs and TESs per gene per

cell that we did on the isoform level. We found nearly identical results where the cells and

nuclei with more reads have a higher number of genes that express more than one TSS or TES

and that the cells exhibit more TSS or TES complexity overall (Fig. 2.11h). Comparing the

number of distinct ends to the number of distinct splice isoforms revealed that multiple TSSs

are expressed per single splice isoform in both bulk and single cells (Fig. 2.11b, Fig. 2.4b).

Tnnt2 (troponin T2) has multiple known isoforms162 and is differentially expressed between

Myoghi and Pax7hi nuclei in the short-read data, so we decided to investigate chromatin

accessibility and TSS usage at the Tnnt2 locus (Fig. 2.9d, Table S5, Fig. 2.4c). We

recovered four distinct TSSs for Tnnt2, three of which (Tnnt2 2, Tnnt2 3, and Tnnt2 4)

overlap snATAC pseudobulk peaks, and all four of which overlap prior CAGE peaks found

in C2C12163. Tnnt2 4 overlaps a known promoter cCRE and GENCODE vM21 transcript

start site, while Tnnt2 2 overlaps a distal enhancer cCRE (Fig. 2.4c)164. Tnnt2 4 has both

higher expression in the LR-Split-seq data and increased accessibility in snATAC Myoghi

and Pax7hi clusters, while Tnnt2 2 and Tnnt2 3 are more highly expressed and accessible in

MB clusters (Fig. 2.11i-j, Fig. 2.12a). Therefore, an isoform switch occurs in Tnnt2 where

Myoghi and Pax7hi nuclei mainly use the known TSS belonging to the longer isoform, while

the MB nuclei mainly use TSSs belonging to shorter isoforms.

Genome-wide, we validated our TSS calls using an extended set of data: our snATAC pseu-

dobulk peaks, GENCODE vM21 TSSs, ENCODE cCREs (promoter and proximal enhancer)

from mm10, and C2C12 CAGE peaks, and found that the majority of the TSSs identified

from LR-Split-seq are validated by at least one of these five other datasets (Methods, Fig.

2.4d).
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Using the same strategy we implemented to detect isoform switching genes, we performed

differential TSS usage tests on our LR-Split-seq data (Methods). We again subset our LR-

Split-seq data into 0 h MB nuclei, 72 h Pax7hi nuclei, and 72 h Myoghi nuclei, and performed

pairwise tests. In the MB vs. Pax7hi comparison, we found 42 genes with differential TSS

usage (Table S12). In the MB vs. Myoghi comparison, we found 40 genes with differential

TSS usage. Consistent with our previous findings, this list includes Tnnt2 (Adj. P =

6.16x10-14 MB vs. 72 h Myoghi), where the MB nuclei only express isoforms consistent with

downstream TSSs (Tnnt2 1, Tnnt2 2, Tnnt2 3) (Table S13). Conversely, the Myoghi subset

predominantly expresses isoforms using the upstream TSS (Tnnt2 4) (Fig. 2.4c, 2.4e).

Similarly, we found multiple distinct TESs per splice isoform in bulk and LR-Split-seq data

(Fig. 2.11d, 2.11f). We validated genome-wide TESs using GENCODE vM21 TESs and

polyA-seq peaks from C2C12 cells at days 0 and 4 of differentiation, which overlapped the

majority of TESs found in bulk data but not in the LR-Split-seq data (Fig. 2.11e, 2.11g)

(Methods). We believe that the apparent lack of external validation for the LR-Split-seq

TESs is largely driven by the random priming method. When we call TESs instead using

the same set of reads but split by priming strategy, 50.3% of the oligo-dT TESs validate by

at least one form of external support compared to 6% of the random hexamer TESs (Fig.

2.12b). When we use the same strategy to compare TSSs from oligo-dT-primed reads to

those from random hexamer-primed reads, 83.5% of the oligo-dT TSSs validate by at least

one form of external support compared to 84.8% of the random hexamer TSSs (Fig. 2.12c,

2.12d).

We furthermore demonstrated the utility of LR-Split-seq for identifying TSSs and TESs by

comparing how well our long-read ends are supported by external validation in comparison

to those we called with from our companion short-read Split-seq data for the same cells.

Only 50.2% of TSSs called using the short reads had external validation compared to 81.5%

of LR-Split-seq TSSs (Fig. 2.4d, Fig. 2.12e) (Methods). Similarly, the short-read Split-seq
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TESs validate externally at a much lower rate (12.3%) than the LR-Split-seq TESs (44.2%)

(Fig. 2.11g, Fig. 2.12f) (Methods).

Coordination of chromatin accessibility with transcriptional output

We calculated snATAC TSS chromatin accessibility across our refined set of TSSs to de-

termine how TSS accessibility relates to TSS expression. We found that binary chromatin

accessibility at a TSS was a particularly strong indicator of whether or not a TSS was ex-

pressed in MBs (65.7% of TSSs) (Fig. 2.12g) and that the level of accessibility at each TSS

correlated well with the expression level of each TSS (Pearson r = 0.44, Spearman rho =

0.58) (Methods). In the Pax7hi and Myoghi populations, accessibility at each TSS did not

correlate as strongly (Pearson r = 0.58, Spearman rho = 0.20; Pearson r = 0.53, Spearman

rho = 0.16 respectively). We then determined how many genes with more than one TSS dis-

played the highest accessibility level and expression level at the same TSS. In the myoblasts,

the most highly-accessible TSS for a gene was most often also the most highly-expressed

TSS for the gene (77.8% of genes with >1 TSS). This concordance was less strong in the

Pax7hi and Myoghi groups (54.6% and 52.7% respectively).

We then investigated which TSSs are supported by both differential accessibility and expres-

sion (Methods). We compared the average log2 fold change (LFC) in both accessibility and

expression between Myoghi and MB (Fig. 2.4f), Pax7hi and MB (Fig. 2.4g), and Myoghi and

Pax7hi (Fig. 2.4h). Between MB and Myoghi, 19 TSSs are specific to Myoghi with an average

LFC greater than two standard deviations (indicated by dashed lines) in both datasets, and

70 TSSs are specific to MB with average LFC less than two standard deviations in both

datasets (Fig. 2.4f, Table S14). Several of the genes with such TSSs are differentially ex-

pressed (Table S5, Table S14). Only 6 TSSs were Pax7hi-specific relative to MB, but one of

these is Igfbp5, which is a gene that was highly differentially expressed in the Pax7hi sub-

set (Fig. 2.4g, Fig. 2.9d, Table S3, Table S14). Comparing MB and Pax7hi, 77 TSSs are

MB-specific, 36 of which are also MB-specific when comparing Myoghi with MB. Of the 19
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Myoghi-specific TSSs between Myoghi and MB, 15 were also Myoghi-specific when compared

to Pax7hi (out of 53 total) (Fig. 2.4h, Table S14). Several of the 17 Pax7hi-specific TSSs (Fig.

2.4h) belong to differentially expressed genes, such as Pax7, Col4a1, Fn1, and Igfbp5 (Fig.

2.9d, Table S5, Table S14). From a biological perspective, Prox1 and Vgll4 are potentially

interesting; although they were not differentially expressed in the short-read data, they are

known to be involved in skeletal muscle regeneration (Fig. 2.4h, Table S14)165,166.

2.4 Discussion

The first goal of this work was to advance our capacity to directly map and quantify RNA

isoforms in single cells. Using the C2C12 myogenic differentiation as a test system, we

introduce long read-Split-seq (LR-Split-seq) and show that it can be as effective as standard

short-read Split-seq for detecting cell clusters, based on data from the same number of cells

or nuclei. This conclusion applied to nuclei as well as whole cells, although whole-cell data

detected more genes per cell than companion LR-Split-seq data from nuclei. For biological

systems that do not permit uniform whole-cell disaggregation such as our multinucleated

myotubes or brain tissue, the success shown here for nuclei is encouraging. We speculate

that the remaining sensitivity differential between nuclei and whole cells is a consequence

of the smaller starting number of transcripts in nuclei, and some of that could be further

compensated by increasing the nuclear number sequenced and their depth of sequencing. We

also suggest that combining random hexamer primed long-reads with the oligo-dT primed

long-read data helped to capture 5’ ends that are critical for inferring TSS use, although

this adds incomplete PacBio reads to the overall dataset. We also illustrate that LR-Split-

seq affords users the choice of analyzing the oligo-dT primed and hexamer primed read

populations separately. A second motive for developing LR-Split-seq is that it will allow

flexible study designs that can efficiently and more economically refine cell type identities
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by integrating additional standard short-read Split-seq data on the same samples. Results

presented here showed that this strategy was effective in refining stem cell identities and

states in the C2C12 system. Finally, we integrate results from LR-Split-seq with snATAC

to gain insights into the dynamics of chromatin accessibility at the corresponding promoters

with a longer term goal of building a fully integrated model of physically or genetically

affiliated distal regulatory elements.

We were able to detect 79% of the genes and 53% of transcript isoforms detected in bulk

myoblast long-read RNA-seq using LR-Split-seq in single cells. We expect these differences

relative to bulk samples to be a function of the individual study design, including number

and diversity of cells sequenced, depth of sequencing, fixation protocol and, for isoform

detection, the contribution from internal hexamer priming. The largest sets of genes detected

across the entire analysis included the LR-Split-seq assays, supporting the conclusion that

it detects expressed genes reliably and reproducibly. The differences between known gene

and transcript detection rates, relative to bulk data, were largely attributable to internally-

primed Split-seq reads and their management in our computation pipeline. Specifically, we

used TALON, which leverages non-full-length reads for quantification and detection on the

gene-level but not on the transcript-level. Consequently, we achieved high gene detection

concordance but lower transcript detection concordance between long-read bulk and LR-

Split-seq data.

Gene-level clusters in LR-Split-seq are remarkably similar to the results in the equivalent

standard short-read Split-seq. In both assays, clusters of differentiating cells were most

homologous to each other and were distinct from the myoblast clusters. However, in LR-

Split-seq, there was a greater tendency for the clusters to separate by assay format, as

shown in the 0 h myoblast cells and nuclei. We captured expression dynamics of well-

known myogenic marker genes in the differentiating clusters such as Pax7, Myog, Mybph,

and Myh3 that are reproducible in the short-read data we sequenced from the same cells111.
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The additional context from ∼37,000 short-read single cells allowed us to investigate the

Myoghi clusters in greater detail. We found that Myoghi clusters were very distinct from MB

clusters, while Pax7hi clusters were in a spectrum of differentiation stages between MB and

Myoghi clusters. Expression of additional marker genes in Pax7hi subclusters, RNA velocity

trajectories, and validation with spatial transcriptomic profiling confirmed that these nuclei

are from mononucleated cells in varying stages of differentiation.

LR-Split-seq enabled us to investigate transcript-level differences between the various stages

of differentiation in myogenesis. We found novel insights into the biology of the system by

studying differential TSS usage and integrating our TSSs identified from long reads and our

snATAC-seq peaks. Our analysis revealed over 50 significant switches in TSS usage across

clusters of undifferentiated versus differentiated stages, including a pronounced switch in

Tnnt2, where the myoblasts primarily use TSSs that are novel to more recent GENCODE

transcript annotations, while differentiated cells mainly express the known TSS that results

in a longer isoform. This TSS switch was complemented by a corresponding increase in

chromatin accessibility at the newly-expressed TSS in Myoghi clusters.

Unlike previous long-read scRNA-seq methods that rely on sequencing of each cell us-

ing custom microfluidics equipment131,133, LR-Split-seq is immediately accessible with no

cell/droplet handling instrumentation and it is tunable in both cell number and sequencing

depth, depending on the complexity of the underlying sample’s cellular composition. Addi-

tionally, it can be scaled up for long-read sequencing with additional sublibraries and higher

read depth. We believe that this will allow one to optimize the amount and character of

information from short and long-read single-cell technologies when the costs of input cells,

overall platform, and sequencing are all considered. While short-read Split-seq provides a

broad survey of the transcriptional complexity of a biological system by sequencing up to

100,000 cells, corresponding LR-Split-seq can be applied to a targeted number of cells to pro-

vide higher-resolution isoform-level insights using a few million long reads from a few PacBio
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runs. In this way, LR-Split-seq promises relatively affordable, simultaneous transcriptional

profiling of a wide variety of tissues using short and long-read sequencing.
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• Long read RNA-seq experiment for bulk 72hr C2C12

• Paired long read and short read Split-seq experiments for single-cell 0hr C2C12

• Paired long read and short read Split-seq experiments for single-nucleus 0hr C2C12
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• ATAC-seq experiment for single-nucleus 72hr C2C12

• ATAC-seq experiment for filtered single-nucleus 72hr C2C12

Code availability

• Demultiplexing and debarcoding tool designed for LR-Split-seq data

• Data processing and figure generation code

2.5 Supplementary tables

• Table S1: TALON read annotation file for long-read data.

• Table S2: Gene biotype enrichment in long-read bulk vs. single-cell data.

• Table S3: Isoform switching in myoblasts vs. Pax7hi.

• Table S4: Isoform switching in myoblasts vs. Myoghi.

• Table S5: Cluster marker genes for short-read Split-seq.

• Table S6: Cluster marker peaks for snATAC-seq.

• Table S7: GO term enrichment from snATAC-seq marker peaks.

• Table S8: BED file of TSSs in bulk.

• Table S9: BED file of TSSs in LR-Split-seq.

• Table S10: BED file of TESs in bulk.

• Table S11: BED file of TESs in LR-Split-seq.

• Table S12: TSS switching in myoblasts vs. Pax7hi.
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• Table S13: TSS switching in myoblasts vs. Myoghi.

• Table S14: TSS fold changes measured by RNA and ATAC data between

similar comparisons (supplement to 2.4f-h).

2.6 Methods

C2C12 culture and differentiation

C2C12 cells were purchased from the American Type Culture Collection (ATCC, CRL-1772).

All cells used in experiments were passaged less than 10 times from the original plug. C2C12

were authenticated by testing for differentiation efficiency upon receipt. They were not tested

for mycoplasma throughout the course of the study. C2C12 cells were cultured on 10-cm

plates (Thermo Scientific, 172931) in 10 mL myoblast growth media: high-glucose DMEM

with L-glutamine and without sodium pyruvate (HyClone, SH30022.FS), supplemented with

20% fetal bovine serum (Omega Scientific, FB-11), 100 units/mL penicillin, and 100 ug/mL

streptomycin (Gibco, 15140122). Cells were maintained at 20-50% confluency at 37°C with

5% CO2 and passaged at 1:3 or 1:4 every 2 to 3 days. To detach them from plates, cells

were rinsed with 1X PBS (HyClone, SH30256.02) and incubated with 2 mL TrypLE-Express

(Gibco, 12605010) for 5 min at 37°C, which was then neutralized with 8 mL myoblast growth

media. To differentiate, cells at 90-100% confluency were rinsed with 1X PBS and myoblast

growth media was replaced with 10 mL differentiation media: high-glucose DMEM with

L-glutamine and without sodium pyruvate (HyClone, SH30022.FS), supplemented with 2%

donor horse serum (Gibco, 16050130), 100 units/mL penicillin, 100 ug/mL streptomycin

(Gibco, 15140122), and freshly-added 1 µM insulin (Sigma-Aldrich I6634). Differentiation

media was replaced every 24 hours for 3 days. Cells were monitored under a microscope

(EVOS FL Auto 2) to observe changes in morphology and confirm differentiation.
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Preparation of myoblast and myotube single-nucleus suspensions

We followed the Bio-Rad SureCell WTA 3’ Library Prep protocol for preparation of nuclei

samples167. Myoblasts from one 10-cm plate (∼1.5 million cells) and myotubes from one 10-

cm plate (∼5 million cells) with >90% viability were lifted as described above and pelleted

in 15-mL polypropylene falcon tubes (VWR, 89039-670) by centrifuging for 5 min at 1500

RPM. Cells were washed twice with cold 1X PBS + 0.1% BSA (Sigma-Aldrich A9418) and 0

h myoblasts were filtered through a 40-µm strainer; due to their size, 72 h samples containing

myotubes were not filtered. After centrifuging for 3 min at 300 × g, cells were resuspended in

1 mL cold lysis buffer: 10 mM Tris-HCl pH 8 (Thermo Scientific, AM9855G), 10 mM NaCl

(Fisher Scientific, S271), 3 mM MgCl2 (Sigma, M8266), 0.1% IGEPAL CA-630 (Thermo

Scientific, 28324), 0.2 U/µL SUPERase In RNase Inhibitor (Invitrogen, AM2694) and 10

mg/mL BSA in nuclease-free water (Ambion, AM9937). Cells were incubated in lysis buffer

on ice for 10 min, centrifuged at 4°C for 3 min at 300 × g, and washed with 1 ml of cold 1X

PBS + 1% DEPC water (Invitrogen, 750023). The lysis, spin, and wash steps were repeated

two more times for the 72 h samples because myotube cell membranes are more difficult to

fully lyse than mononucleated myoblasts. Nuclei were stained with Trypan Blue (Bio-Rad,

1450021), and cell membrane lysis was confirmed under a microscope and by percent viability

(<10%). Nuclei were stored on ice in 1 mL nuclei storage buffer (lysis buffer without the

addition of IGEPAL CA-630).

Preparation of single-cell barcoded cDNA using Split-seq

Single-cell barcoded cDNA and Illumina libraries were prepared using the Fixation Kit for

Cells, Fixation Kit for Nuclei, and Single Cell Whole Transcriptome Kit (Parse Biosciences,

SB2001) following the manufacturer’s protocols. Nuclei from the 0-h myoblast sample and

72-h sample in single-nucleus suspensions were counted on a TC20 Automated Cell Counter

(Bio-Rad, 1450102), and ∼4 million were filtered through a 40-µm strainer into 15-mL

polypropylene falcon tubes. Nuclei were fixed for 10 min and permeabilized for 3 min on ice,
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then DMSO was added for storage overnight at -80°C in a Mr. Frosty. Myoblast cells were

similarly counted and filtered through a 40-µm strainer, followed by fixation and permeabi-

lization. DMSO was added and cells were stored overnight at -80°C in a Mr. Frosty. Before

storage, single-cell and single-nucleus suspensions were confirmed under a microscope.

To prepare barcoded cDNA, fixed and frozen cells and nuclei were thawed in a 37°C water

bath and counted. Cells were added to the Round 1 reverse transcription barcoding plate at

around ∼15,000 cells/well, with A1-A12 containing 0 h cells, B1-B12 containing 0 h nuclei,

and C1-D12 containing 72 h nuclei (Fig. 2.6a), before in situ reverse transcription and

annealing of barcode 1+linker on a thermocycler (Bio-Rad T100). After RT, cells were pooled

using a multichannel pipette into a 15-mL tube, spun down at 4°C for 5 min at 1000 × g,

and resuspended in 1 mL of Resuspension Buffer (Parse Biosciences, SB2001). Using a basin

and multichannel pipette, cells were distributed in 96 wells of the Round 2 ligation barcoding

plate for the in situ barcode 2+linker ligation. Next, cells were pooled, filtered through a

40 µm strainer, and redistributed into 96 wells of the Round 3 ligation barcoding plate for

the in situ barcode 3+UMI+Illumina adapter ligation. After a final pooling and filtration

through a 40-µm strainer, cells were counted using a hemocytometer and distributed into 7

sublibraries: 6 sublibraries with 9000 cells each, and 1 sublibrary with 1000 cells. The cells

in each sublibrary were lysed and libraries were cleaned with AMPure XP beads (Beckman

Coulter, A63881), then the single-cell barcoded cDNA underwent template switching and

amplification. Importantly, we increased the number of cycles for the 1000-cell library to 20

cycles rather than 18 in order to increase the yield of single-cell barcoded cDNA for use in

Illumina library preparation (50 ng) while having enough leftover cDNA for PacBio library

preparation (500 ng). The cDNA was cleaned using AMPure XP beads and quality checked

using an Agilent Bioanalyzer before proceeding to Illumina and PacBio library preparation.

Preparation of Illumina scRNA-seq libraries using Split-seq and sequencing

All 7 sublibraries were fragmented, size-selected using AMPure XP beads, and Illumina
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adapters were ligated. The cDNA fragments were cleaned again using beads and amplified,

adding the fourth barcode and P5/P7 adapters, followed by a final bead-based size selection

and quality check with a Bioanalyzer. Libraries with 5% PhiX spike-in were loaded at 2.1

pM and sequenced to an average depth of 51 million reads per 9000-cell library and 70

million reads for the 1000 cell library using an Illumina NextSeq 500 with paired-end run

configuration 74/86/6/0. The data are hosted on GEO (GSE168776) and on the ENCODE

portal (ENCBS521YWL, 0 h cells, ENCBS431NOZ, 0 h nuclei; and ENCBS978ZNQ, 72 h

nuclei).

Preparation of PacBio scRNA-seq library and sequencing

The PacBio library was prepared using 500 ng of amplified, single-cell barcoded cDNA with

the SMRTbell Template Prep Kit (PacBio, 100-938-900) according to the manufacturer’s

protocol for sequencing on a Sequel II. The 1000-cell library was sequenced using 2 SMRTcells

(PacBio, 101-008-000) for a sequencing depth of 5,764,421 full-length non-chimeric reads.

The data are hosted on GEO (GSE168776) and on the ENCODE portal (ENCBS521YWL,

0 h cells, ENCBS431NOZ, 0 h nuclei; and ENCBS978ZNQ, 72 h nuclei).

Preparation of bulk PacBio libraries and sequencing

We extracted RNA from two replicates of C2C12 0 h samples and 72 h samples using the

RNA-easy kit (Qiagen, 74104). cDNA synthesis and library preparation using the SMRTbell

Template Prep Kit (PacBio, 100-938-900) were performed as described on the ENCODE por-

tal (https://www.encodeproject.org/documents/77db752f-abf7-4c93-a460-510464134f52).

We sequenced one SMRT cell per replicate on the Sequel II platform. The data are hosted on

the ENCODE portal (ENCBS824FPY, ENCBS649CMC for 0hr cells; and ENCBS373BHL,

ENCBS606QKU for 72hr cells).

Preparation of snATAC-seq libraries using Bio-Rad technology and sequencing
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The single nucleus ATAC-seq experiment was performed using the SureCell ATAC-Seq Li-

brary Prep Kit (Bio-Rad, 17004620) following the manufacturer’s protocol for the OMNI-

ATAC version168. Cells at 0 h differentiation or 72 h differentiation timepoints in one 10-cm

plate per biological replicate were lifted as previously described and washed twice in cold

1X PBS + 0.1% BSA. All 0 h replicates and some 72 h replicates were filtered through a

40-µm strainer (2 technical replicates, 1 biological replicate; 2 technical replicates of 72 h

samples were not filtered), then counted and assessed for viability. 300,000 cells with >90%

viability per biological replicate were lysed with cold OMNI-ATAC lysis buffer on ice for 3

min and washed out with cold ATAC-Tween buffer, at which point non-filtered 72 h nuclei

were filtered through a 40-µm strainer, then spun down at 500 RCF for 10 min at 4°C.

Nuclei were resuspended, counted, and confirmed to be single-nucleus suspensions under a

microscope, then 60,000 nuclei per biological replicate were tagmented at 37°C for 30 min in

a ThermoMixer with 500 RPM mixing. The microfluidics-based ddSEQ Single-Cell Isolator

was used to stream tagmented nuclei in an amplification reaction mix with barcoded beads

to isolate single nuclei in nanodroplets with one or more barcodes. Tagmented cDNA was

barcoded and amplified, then nanodroplets were broken and libraries cleaned with AMPure

XP beads before a second amplification of barcoded fragments and final bead-based cleanup.

A Bioanalyzer was used to verify library quality before loading at 1.5 pM and sequencing to

an average depth of 122 million reads per library using an Illumina NextSeq 500 with paired-

end run configuration 118/40/8/0 and custom sequencing primer. The data are hosted on

GEO (GSE168776) and on the ENCODE portal (ENCBS081AJF, ENCBS562OEW, 0hr nu-

clei; ENCBS779SXF, ENCBS143VME, 72hr nuclei; and ENCBS247OBN, ENCBS090IYH,

72hr nuclei isolated from filtered cells).

Validation of transcript expression with RNAscope

Myoblasts were grown to 90-100% confluency in flasks mounted on slides (Thermo Scientific,

170920) then differentiated over 3 days as previously described. The flasks were removed
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and slides were rinsed in 1X PBS, followed by fixation in 10% neutral buffered formalin

(Sigma-Aldrich, HT501128) for 30 min at room temperature. Following the manufacturer’s

protocol for cultured adherent cells, we rinsed the slides in 1X PBS, then incubated in 50%,

70%, and 100% ethanol for 5 min each169. Slides were stored submerged in 100% ethanol at

-20°C in 50 mL falcon tubes. To rehydrate, slides were incubated in 70% and 50% ethanol

for 2 min each, then in 1X PBS for 10 min. A hydrophobic barrier was drawn around the

edges of the slide (Vector Laboratories, H-4000), then the cells were permeabilized with 1:15

diluted protease III (ACDBio, 322340) for 10 min at room temperature in a humidity control

tray (ACDBio, 310012). Following the manufacturer’s protocol for the RNAscope HiPlex12

kit (ACDBio, 324100/324140), probes for genes of interest were mixed and hybridized for 2

hours at 40°C in a HybEZ II hybridization oven (ACDBio, 321710/321720), then the signal

was amplified over 3 rounds of 30 min incubations at 40°C in the oven170. We then proceeded

to fluorophore hybridization and imaging over four rounds of three channels per round (GFP,

RFP, and Cy5) plus DAPI171. An EVOS FL Auto 2 with programmable stage was used to

automatically image slides at × 40 magnification.

Preprocessing of LR-Split-seq data

Raw PacBio reads were processed into circular consensus reads using the ccs software

from the SMRT analysis software suite (parameters: --skip-polish --min-length=10

--min-passes=3 --min-rq=0.9 --min-snr=2.5) (https://github.com/PacificBiosciences/

ccs). The Split-seq adapters were identified and removed using Lima (v2.0.0) (parameters:

--ccs --min-score 0 --min-end-score 0 --min-signal-increase 0 --min-score-lead

0) (https://github.com/pacificbiosciences/barcoding/). Reads were then processed

with IsoSeq3’s Refine (v3.4.0) to yield full-length non-chimeric reads (https://github.

com/PacificBiosciences/IsoSeq). As around half of our reads are primed using random

hexamer priming, polyA tails were not required nor removed for this step.

Reads were then demultiplexed for their Split-seq barcodes using a custom script (https://
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github.com/fairliereese/LR-splitpipe) by first detecting the spacer sequences between

barcodes and using these as start and end points for the barcodes. Barcodes were corrected

to those that were within an edit distance of 3 of the predetermined list of barcodes used

for each round of barcoding. The resultant reads were then filtered on which combinations

of barcodes were also seen in the Illumina single cell/nucleus RNA-seq data, which yielded

567 of the 568 cells that passed QC in the Illumina data (Fig. 2.6b). The reads were then

trimmed of their barcodes to facilitate mapping, and cell identity barcodes were recorded.

The reads were mapped using Minimap2 (v2.17-r94) (-ax splice:hq -uf --MD)172 and

the mm10 reference mouse genome, corrected for long-read sequencing artifacts with Tran-

scriptClean (--canonOnly --primaryOnly)173. We then used TALON (development branch

on GitHub) (--cb) to annotate each read to its transcript or origin using the GENCODE

vM21 reference147. We filtered for reproducible novel NIC and NNC transcript models for

those that were seen in 4 or more sub-cells (Fig. 2.1k, Fig. 2.5d). Custom LR-Split-

seq demultiplexer can be found at https://github.com/fairliereese/LR-splitpipe174

or on Zenodo at https://doi.org/10.5281/zenodo.5168057. Figure generation code can

be found at https://github.com/fairliereese/2021_c2c12175 or on Zenodo at https:

//doi.org/10.5281/zenodo.5168059. All code is available under the MIT open source

license.

Comparing priming strategies and sample types in LR-Split-seq data

The priming strategy of each read was determined by examining the barcode for the first

round of Split-seq. Reads were separated out by priming strategy and by cell. For sample

comparisons, the oligo-dT and random hexamer primed reads from each cell were merged to

create the final cell, then separated out by sample.

Comparing bulk long-read to LR-Split-seq

To enable this comparison, we re-ran the bulk and single-cell data through TALON using
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the same database so that novel transcripts would have the same IDs across the bulk and

the single-cell. For the bulk novel transcript models, filtering was done using talon filter

transcripts, requiring a novel transcript model to be reproducible in at least 2 of the bulk

replicates with at least 5 copies. For the single-cell, filtering was done that required novel

transcript models to be reproducible in at least 4 sub-cells.

Single-cell processing of LR-Split-seq data

Oligo-dT and random hexamer primed reads from each cell were merged to create the final

cells. Gene-level cells and nuclei were further filtered for those that had ≥ 500 reads per

cell/nucleus using Scanpy (v1.4.6)99 and for those that, in the corresponding Illumina data,

had <200,000 reads, <20% mitochondrial reads, and >500 genes (done in Seurat as detailed

in the Processing of short read scRNA-seq data section) (all on a per cell/nucleus basis);

yielding a final total of 464 single cells and nuclei. Dimensionality reduction, construction of

the UMAP, and Leiden clustering were all performed using Scanpy, yielding 7 clusters (Fig.

2.2d).

Isoform switching gene testing

Testing for isoform switching in LR-Split-seq data was performed as in Joglekar et. al.,

2021133. For each pairwise test, an n × 2 contingency table was created with counts in each

condition for each isoform in a gene, with a maximum of 11 isoforms. In cases where a gene

had more than 11 isoforms, an 11th entry was constructed where counts were summed for the

most lowly expressed isoforms. Each gene was required to have at least 10 supporting reads

from each condition to be considered testable. For each testable gene, a chi-squared test

was performed and, ∆π, or the change in percent isoform usage for the gene, was computed

as the sum of the absolute value of percent isoform usage across the conditions for the top

two expressed isoforms. P values from the chi-squared test were corrected using Benjamini-

Hochberg correction. Tests were performed on the LR-Split-seq Leiden clusters for MB nuclei
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vs. Myoghi nuclei (clusters LR1-LR2 vs. LR6-LR7) and for MB nuclei vs. Pax7hi (clusters

LR1-LR2 vs. LR4-LR5). Genes with significant isoform switching were required to have a

corrected p value ≤ 0.05, ∆π of ≥ 10, and a minimum number of reads per gene per tested

condition of 10.

Processing bulk long-read data

Bulk PacBio data was processed following the ENCODE Long Read RNA-Seq Analysis Pro-

tocol for Mouse Samples (v.1.0) for CCS, Lima, refine and TranscriptClean steps (https://

www.encodeproject.org/documents/a84b4146-9e2d-4121-8c0c-1b6957a13fbf). A TALON

database was initialized using mm10 GENCODE v21 GTF with SIRV set 3 and ERCCs

included. Reads output from TranscriptClean were labeled with the corresponding fasta ref-

erence. TALON was run (--cov 0.9 --identity 0.8). Filtering novel transcript models

was done using TALON’s talon filter transcripts module, requiring a novel transcript

model to be reproducible across biological replicates, and appear 5 times in each replicate,

as well as display a lack of internal priming evidence (--minCount 5 --minDatasets 2

--maxFracA 0.5). Transcript abundances were determined using talon abundance.

Processing of short read Split-seq data

After initial demultiplexing of the 7 sublibraries (6× 9000-cell sublibraries and 1 1000-cell

sublibrary), Parse Bioscience’s split-pipe v0.7.6 software was used to deconvolute reads into

single cells, map to mm10 using STAR (v. 2.6.0c), annotate using GENCODE vM21, and

filter using a UMI cutoff determined by knee plots (Fig. 2.6b, 2.6d)176. The remaining

cells were further filtered in Seurat (v. 3.2.2) by <20% mitochondrial reads, <200,000

counts, and >500 genes per cell/nucleus (Fig. 2.6c, 2.6e)177. The resulting 464 cells with

both short and long reads and 36,405 cells with short-read data only were analyzed using

Velocyto (v.0.1.17)149. 55% of counts from 0 h cells, 46% of counts from 0 h nuclei, and

37% of counts from 72 h nuclei were spliced out of the total number of spliced and unspliced
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counts. After loading the loom file back into Seurat with the ReadVelocity function from the

SeuratWrappers package, SCTransform (v. 0.3.1) was used to regress percent mitochondrial

reads, number of genes, and sublibrary, followed by UMAP dimensionality reduction101,178.

Clustering using the Leiden algorithm (v. 0.8.0) resulted in 20 clusters100. Differentially

expressed genes per cluster were found using Seurat’s FindAllMarkers function (only.pos

= TRUE, min.pct = 0.1, logfc.threshold = 0.1) then further filtered by FDR <0.01.

Processing of snATAC-seq data

After demultiplexing the 8 snATAC-seq libraries (3× 0 h, 5× 72 h samples), Bio-Rad’s dock-

erized ATAC-seq analysis toolkit (v.1.0.0) was used to recover barcodes/UMIs, align reads

with BWA, filter and deconvolute barcodes, perform quality control by UMI thresholding,

and call peaks with MACS2 (Fig. 2.10a)179–181. A custom script (https://github.com/

fairliereese/lab_pipelines/tree/master/sc_atac_pipeline) that takes in the com-

bined peaks file, QC-passing barcode list, and mapped reads was used to generate peaks-

by-cells counts matrices as csv files for each library. In addition, the annotated bam

files were converted to fragment files using scATAC-pro’s simply bam2frags.pl script, which

are bed-like matrices containing chromosome, start, stop, cell ID, and number of frag-

ments contained in the region182. Further QC cutoffs consisted of a TSS enrichment score

>6, >5,000 counts, and <20,000 counts per nucleus (Fig. 2.10b). TSS enrichment is

calculated in Signac (v. 1.0.9004) following the definition by ENCODE (https://www.

encodeproject.org/data-standards/terms/). Signac was used to normalize binarized

peaks-by-cells counts matrices by term frequency inverse document frequency (TF-IDF) fol-

lowed by singular value decomposition and UMAP dimensionality reduction161. The Leiden

algorithm (v. 0.8.0) was used to resolve 18 clusters (Fig. 2.4a). UCSC Genome Browser

tracks were generated by splitting the snATAC bam file by cluster using the sinto pack-

age (https://github.com/timoast/sinto) and creating bigwig tracks using deeptools183.

Differentially accessible peaks per cluster were found using Seurat’s FindAllMarkers func-
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tion (only.pos = TRUE, min.pct = 0.1, logfc.threshold = 0.5) then further filtered

by FDR <0.05. The marker peaks were grouped by MB (A1-A7), Pax7hi (A8-A15), and

Myoghi (A16-A17) and processed using GREAT with mm10 whole genome background and

associating peaks with the single nearest gene within 50kb184. P values for the binomial test

are reported in the text. The resulting genes for cluster A9 were also input into Enrichr to

determine enriched GO Biological Processes185. The clustergram was downloaded from the

Enrichr web tool (https://maayanlab.cloud/Enrichr/).

Integration of short-read Split-seq and snATAC-seq data

Signac’s FindTransferAnchors function was implemented with all 36,869 Split-seq cells as the

reference set and all 23,525 snATAC-seq nuclei as the query set, with canonical correlation

analysis (CCA) used as the dimensional reduction method104. The TransferData function

was used to carry over Split-seq labels “0 h” or “72 h” in one analysis (Fig. 2.10d, left panel)

and labels “MB,” “Pax7hi,” and “Myoghi,” in another analysis (Fig. 2.10d, right panel).

Identification of TSSs from long-read data

For both LR-Split-seq and bulk separately, bam reads were filtered for those that were

annotated by TALON as belonging to the known, novel in catalogue (NIC), novel not in

catalogue (NNC), and prefix-ISM novelty categories as the starts of reads belonging to these

novelty categories are more likely to come from a true 5’ end. TSSs were called on the

filtered bams using the ENCODE PacBio TSS caller (https://github.com/ENCODE-AWG/

tss-annotation/blob/master/long_read/pacbio_to_tss.py) (--window-size=50

--raw-counts --expression-threshold=0), yielding a bed entry for each TSS consisting

of a wide peak, narrow peak, and a summit for each TSS. Resultant Split-seq TSSs were

filtered first by requiring each one to be supported by at least 2 reads, and subsequently

on the gene level, where each called TSS was required to have a number of reads >10%

of the number of reads that supported the most highly expressed TSS for the same gene.
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Bulk TSSs were similarly filtered except using a threshold of >5%. For the oligo-dT versus

random hexamer priming comparison, the aforementioned filtered reads were split based on

their priming strategy before running the TSS caller. The intersection of oligo-dT TSSs and

random hexamer TSSs was determined using bedtools v. 2.30.0186.

Identification of TESs from long-read data

Similarly, for both LR-Split-seq and bulk data separately, bam reads were filtered for those

annotated as belonging to the known, novel in catalogue (NIC), novel not in catalogue

(NNC), and suffix-ISM novelty categories as the ends of reads belonging to these nov-

elty categories are more likely to come from a true 3’ end. TESs were called on the fil-

tered bam using the same ENCODE PacBio TSS caller (https://github.com/ENCODE-AWG/

tss-annotation/blob/master/long_read/pacbio_to_tss.py) (--window-size=50

--raw-counts --expression-threshold=0 --tes), yielding a bed file the same format as

the TSS file. The TESs were then filtered by requiring each to be supported by at least 2

reads and have a number of reads >80% of the number of reads that supported the most

highly-expressed TES for the same gene. For the oligo-dT versus random hexamer priming

comparison, the aforementioned filtered reads were split based on their priming strategy

before running the TSS caller.

Identification of TSSs from short-read data

Bam reads from the short-read Split-seq 464 cells were queried for those that contained

the complete template-switching oligo sequence with no errors using Cutadapt v. 2.10 (-g

AACGCAGAGTGAATGGG -e 0 -O 17), which represent reads that are more likely to contain a

true 5’ end187. TSSs were called on the filtered bams using the ENCODE PacBio TSS caller

(which despite its name works on short reads as well) https://github.com/ENCODE-AWG/

tss-annotation/blob/master/long_read/pacbio_to_tss.py) (--window-size=50

--raw-counts --expression-threshold=0), yielding a bed entry for each TSS consisting

60

https://github.com/ENCODE-AWG/tss-annotation/blob/master/long_read/pacbio_to_tss.py
https://github.com/ENCODE-AWG/tss-annotation/blob/master/long_read/pacbio_to_tss.py
https://github.com/ENCODE-AWG/tss-annotation/blob/master/long_read/pacbio_to_tss.py
https://github.com/ENCODE-AWG/tss-annotation/blob/master/long_read/pacbio_to_tss.py


of a wide peak, narrow peak, and a summit for each TSS. Resultant TSSs were filtered by

requiring each one to be supported by at least 20 reads.

Identification of TESs from short-read data

Bam reads from the short-read Split-seq 464 cells were queried for those that contained a run

of 20bp where at least 10 bases were “A”s using Cutadapt v. 2.10 (-g AAAAAAAAAAAAAAAAAAAA

-e 0.5 -O 20), which represent reads that are more likely to contain a true 3’ end187. TESs

were called on the filtered bams using the ENCODE PacBio TSS caller (which despite its

name works on short reads as well) https://github.com/ENCODE-AWG/tss-annotation/

blob/master/long_read/pacbio_to_tss.py) (--window-size=50 --raw-counts

--expression-threshold=0 --tes), yielding a bed entry for each TES consisting of a wide

peak, narrow peak, and a summit for each TES. Resultant TESs were filtered by requiring

each one to be supported by at least 20 reads.

Processing C2C12 CAGE data

CAGE data was downloaded from GEO accession GSE2158163,188. Wig files corresponding

to CAGE data from days 0 and 9 of C2C12 differentiation were converted to bed format

using bedops wig2bed189 and lifted over from the mm9 genome to the mm10 genome using

UCSC’s liftOver tool (-minMatch=0.95)190. Resultant bed peaks were concatenated.

Processing C2C12 PolyA-seq data

PolyA-seq data was downloaded from GEO accession GSE62001191,192. Entries in the pro-

vided expression matrix were filtered for those belonging to the “C2C12.Pro” (proliferating

C2C12) and “C2C12.Diff” (4-day differentiation C2C12) categories. The data was then con-

verted into bed format using a custom script and lifted over from mm9 to mm10 using the

UCSC liftOver tool (-minMatch=0.95)190.

Intersecting TSSs with validation datasets
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A combined TSS validation bed file was made using the proximal enhancer and promoter

ENCODE cCREs164, GENCODE vM21 TSSs193, our snATAC-seq pseudobulk peaks, and

CAGE peaks163. The filtered TSSs for both bulk (22,938) and LR-Split-seq (23,996) were

intersected with the combination bed file using bedtools intersect 2.30.0 with default param-

eters, meaning minimum of 1bp overlap between the TSSs and the combined validation set

(2,057,291 regions)186.

Intersecting TESs with validation datasets

A combined TES validation bed file was made using our snATAC-seq pseudobulk peaks

and polyA-seq peaks192. Similar to TSS validation, bedtools intersect with default overlap

settings (1bp) was used to determine the number of overlaps between our filtered TESs

for both bulk (14,120) and LR-Split-seq (12,521) and the combined validation set (205,853

regions).

snATAC-seq and TSS integration

TSS regions identified in LR-Split-seq in bed format were used to calculate activity at each

TSS through the Signac interface. Normalized expression values and normalized TSS activity

values were averaged across the three groups of cells (MB, Pax7hi, and Myoghi) and a pseu-

docount of 1 was added to each TSS. Fold change in expression and activity separately was

calculated by dividing the TSS values of one group by another group, such as Myoghi/MB.

The log2 fold change for each TSS was then plotted for both expression (x -axis) and activity

(y-axis), revealing TSSs with chromatin profiles and expression in agreement at the upper

right and bottom left sectors. Twice the standard deviation of each dataset is indicated by

black dashed lines. (Fig. 2.4f-2.4h). We determined whether a TSS was expressed and/or

accessible using a read cutoff of 2 for LR-Split-seq data and a cutoff of 1000 for normalized

snATAC-seq data (Fig. 2.12g).

LR-Split-seq TSS quantification and differential TSS testing
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TSS expression was quantified from the LR-Split-seq data starting from the TALON read

annotation file (Table S1), which tracks the start and end coordinates of every read. Read

starts were converted to a read start bed file and expanded to include ±25 bp from the true

start. Finally, the read start bed was intersected using bedtools with the filtered LR-Split-seq

TSSs (Table S8), requiring at least 1 bp of overlap. The number of reads per TSS was then

computed by counting all of the reads assigned to each TSS. Testing on the TSS level for the

LR-Split-seq data was performed as in Joglekar et. al., 2021133. Tests were performed on the

LR-Split-seq Leiden clusters for MB nuclei vs. Myoghi nuclei (clusters LR1-LR2 vs. LR6-

LR7) and for MB nuclei vs. Pax7hi (clusters LR1-LR2 vs. LR4-LR5). Genes with significant

TSS switching were required to have a corrected p val ≤ 0.05 and a change in percent isoform

usage per condition of ≥ 10, and a minimum number of reads per gene per tested condition

of 10. A custom UCSC Track Hub displaying pseudobulk snATAC peaks per cluster, LR-

Split-seq reads used for TSS calling per cluster, ENCODE cCREs, and GENCODE vM21

transcript models can be found at https://github.com/erebboah/c2c12_trackhub.
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Figure 2.1: Technical comparisons in LR-Split-seq and bulk long-read RNA-seq.
a, Schematic diagram of experimental design. Single cell/nucleus LR-Split-seq, short-read
Split-seq, bulk long-read RNA-seq, and single nucleus ATAC-seq were performed on C2C12
0 h myoblasts and 72 h differentiating cells. The same single-cell/UMI-barcoded cDNA was
used in both short-read and long-read sequencing. b, Kernel density estimation (KDE)
of read length distribution of oligo-dT primed reads (blue) compared to random hexamer
primed reads (orange). c, Proportion of oligo-dT/random hexamer reads in each cell for each
novelty category. d, Comparison of number of reads and e, genes detected between short
and long reads. Cells are labeled by sample type (0 h cells in pink [regression m = 1.4 and 6.5
in genes and reads respectively], 0 h nuclei in blue [regression m = 1.8 and 12.0 in genes and
reads respectively], and 72 h nuclei in green [regression m = 2.7 and 13.9 respectively]) and
marginals on the top and right indicate their distributions. f, KDE read length distribution
of 0 h cells (pink) compared to 0 h nuclei (blue) reads, not including genomic reads. g,
Proportion of 0 h cell (pink)/nuclei (blue) reads per cell/nucleus per novelty category. h,
KDE read length distribution of bulk long reads (yellow) compared to single-cell long reads
(magenta), not including genomic reads. i, Unfiltered reads per novelty category in bulk
long-read data and j, LR-Split-seq data. k, Filtered isoforms per novelty category across all
cells in LR-Split-seq data.

64



Figure 2.2: LR-Split-seq in C2C12 0 h and 72 h samples recapitulates results from
companion bulk and standard short-read Split-seq. a, Upset plots of known genes
found in bulk compared to LR-Split-seq data across all samples. Bars on the left indicate set
size, circles indicate combinations of samples, and bars on top indicate the number of genes
found in each combination (first 20 combinations shown). Outline colors indicate technology
(bulk in yellow, single-cell or single-nucleus in magenta) and fill colors indicate sample type
(72 h nuclei in green, 0 h nuclei in blue, and 0 h cells in pink for single-cell data; 72 h in
green, 0 h in pink for bulk data). Box plots above indicate gene length distribution for each
intersection. Venn diagrams below summarize the overlaps between bulk (left) and single-cell
or single-nucleus (right), for each sample type. Sample type is indicated by outline color.
b, Upset plot and Venn diagrams of known transcripts found in bulk data and LR-Split-
seq data (first 20 combinations shown). c, UMAP of 464 short-read Split-seq cells/ nuclei
labeled by 7 Leiden clusters (S) and breakdown of cell type per cluster: 110 0 h cells (pink),
145 0 h nuclei (blue), and 209 72 h nuclei (Pax7hi in green and Myoghi in dark green). d,
UMAP of 464 LR-Split-seq cells/nuclei using gene-level data labeled by 7 Leiden clusters
(LR) and e, Leiden cluster ID of matching short-read data (SR) shown in c, as well as long-
read cluster makeup of each short-read cluster. f, Expression of marker genes, dark blue =
lowly expressed, yellow = highly expressed.
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Figure 2.3: Short-read Split-seq analysis. a, UMAP of 36,869 short-read Split-seq
cells/nuclei labeled by 20 Leiden clusters (R) with RNA velocity field trajectories and break-
down of cell type per cluster with number of cells per cluster: 7797 0 h myoblast cells (pink),
10,194 0 h myoblast nuclei (blue), 18,878 72 h nuclei (Pax7hi in green and Myoghi in dark
green). b, UMAP of short-read Split-seq cells/nuclei with the 464 cells with matching long
reads in color corresponding to R1-R20. c, Histogram of the number of the 464 cells/nuclei
per R1-R20. d, Distribution of expression of marker genes; dark blue = lowly expressed,
yellow = highly expressed. e, Visualization of transcripts in mononucleated cells and my-
otubes at the 72 h differentiation timepoint. Blue = DAPI, pink = Myh3, green = Col1a1,
yellow = Itm2a. Scale bar: 50 µm.
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Figure 2.4: Identification of TSSs from LR-Split-seq and integration with snATAC-
seq. a, UMAP of 23,525 snATAC- seq nuclei labeled by 18 Leiden clusters (A) and break-
down of cell type per cluster with number of cells per cluster on right: 10,508 0 h myoblast
nuclei (pink) and 13,017 72 h nuclei (Pax7hi in green and Myoghi in dark green). b, Bubble
plot of the number of distinct known splice isoforms per gene per cell compared to the num-
ber of distinct TSSs per gene per cell in LR-Split-seq. c, Track plot of alternative Tnnt2 TSS
usage between 72 h differentiating cells and 0 h myoblasts. From top to bottom: clustered
snATAC-seq pseudobulk peaks, merged psuedobulk peaks, TSS regions called from LR-Split-
seq, ENCODE cCREs, clustered LR-Split-seq reads used to call TSSs, and comprehensive
set of GENCODE vM21. d, Validation of TSSs found in LR-Split-seq using four external
datasets and snATAC-seq pseudobulk peaks (first 20 intersections shown). e, Left, propor-
tion of TSS-assigned reads in LR-Split-seq clusters from each identified Tnnt2 TSSs. Right,
expression of each TALON filtered Tnnt2 isoform in LR-Split-seq clusters with correspond-
ing transcript models associated with each Tnnt2 TSS. f, Comparison of log2 fold change
(LFC) in expression and accessibility across identified TSSs: Myoghi (+LFC) compared to
MB (-LFC), g, Pax7hi (+LFC) compared to MB (-LFC), h, Myoghi (+LFC) compared to
Pax7hi (LFC).
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Figure 2.5: LR-Split-seq preprocessing, QC, and additional analysis. a, Schematic
diagram of LR-Split-seq demultiplexing strategy. b, UMI per ranked barcode plots before
and after barcode correction (both axes log scaled). c, Median number of UMIs per cell
binned by reads per cell before and after barcode correction. d, Unfiltered isoforms per
novelty category across all cells in LR-Split-seq data. e, Gene lengths of annotated genes
detected in bulk only, single-cell only, and single-nucleus only (log scale). f, Transcript
lengths of annotated transcripts detected in bulk only, single-cell only, and single-nucleus
only (log scale). g, Distribution of number of exons in bulk long reads (yellow), single-cell
long reads (pink), and single-nucleus long reads (blue). h, Upset plot of novel in catalog
(NIC) transcripts that passed filtering found in bulk data compared to single cell data across
all samples. Bars on the left indicate set size, circles indicate various combinations of samples,
and bars on top indicate the number of genes found in each combination. Outline colors
indicate technology (bulk in yellow, single-cell in magenta) and fill colors indicate sample
type (72 h nuclei in green, 0 h nuclei in blue, and 0 h cells in pink for single-cell data; 72
h in green, 0 h in pink for bulk data). Box plots above indicate gene length distribution
for each intersection. Venn diagrams below summarize the overlaps between bulk (left) and
single-cell or singlenucleus (right), for each sample type. Sample type is indicated by outline
color. i, Upset plot and Venn diagrams of novel not in catalog (NNC) transcripts that passed
filtering found in bulk data and single-cell data.
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Figure 2.6: Short-read Split-seq QC a, Schematic of sample type per well in the first
round of barcoding (pink = 0 h cells, blue = 0 h nuclei, and green = 72 h nuclei). Panels
to the right show the number of cells per well across each round of barcoding for a 9000-cell
sublibrary. b, UMI per cell knee plots for the 1000-cell sublibrary sequenced with both
long and short reads indicating a threshold of 3,936 reads per cell, leaving 568 cells before
additional QC. c, Violin plots of scRNA-seq QC metrics after filtering for the 464 cells only.
d, An example knee plot for a 9000-cell sublibrary indicating a threshold of 370 reads per
cell, leaving 7,405 cells before additional QC. e, Violin plots of scRNAseq QC metrics after
filtering for all cells.
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Figure 2.7: Short-read and LR-Split-seq additional analysis. a, Distribution of marker
genes within the 464-cell UMAP (dark blue = lowly expressed, yellow = highly expressed).
b, Proportion of spliced vs. unspliced reads per cell in short-read Split-seq and LR-Split-
seq from RNA velocity analysis. Cells are labeled by sample type (0 h cells in pink, 0 h
nuclei in blue, and 72 h nuclei in green) and marginals on the top and right indicate their
distributions. c, Short-read (left) and LR-Split-seq (right) UMAPs for 464 cells with RNA
velocity field trajectories indicated by arrows. d, Isoform complexity (Number of genes with
more than one isoform per cell) vs. number of reads per cell, colored by sample type (0 h
cells in pink, 0 h nuclei in blue, and 72 h nuclei in green).
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Figure 2.8: Swan analysis of Tpm2 and Pkm isoforms. a, Gene report made by Swan
for Tpm2. Relative expression of each isoform, separated by 0 h MB cells, 72 h Pax7hi

nuclei, and 72 h Myoghi nuclei plotted alongside the isoform’s name, transcript novelty, and
structure. Exons 6a and 6b, known to be alternatively spliced during C2C12 differentiation,
are highlighted. b, Gene report made by Swan for Pkm, separated by the same cell types.
Mutually exclusive exons 9 and 10 as well as alternative TES in Pkm-205 are highlighted.
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Figure 2.9: Additional analysis of 38,000-cell short-read Split-seq data. a, UMAP
of 464 cells with both short and long reads colored by 20 clusters derived using 36,869 short-
read cells. b, Heatmap of cell cycle marker genes in the 20 clusters. c, Visualization of
Myog in mononucleated cells and myotubes at the 72 h differentiation timepoint. Blue =
DAPI, green = Myog. Scale bar: 50 µm. d, Heatmap of marker genes in the 20 clusters
(dark blue = low expression, yellow = high expression). e, Dot plot of transcription factors
and marker genes involved in myogenesis found from differential expression testing and/or
literature. Genes that did not pass the differential expression threshold yet are of interest in
the system and significantly expressed in prior classic bulk data are colored grey (Id1, Id2,
Myod1, Myf5, Tcf3, and Tcf12 ).
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Figure 2.10: Additional analysis/QC of snATAC-seq. a, UMI per barcode knee plot
for an example snATAC-seq library (0 h, 6,782 nuclei). b, Violin plots of snATAC-seq QC
metrics after filtering >6 TSS enrichment, <20,000 reads, and >5,000 reads per nucleus. c,
Distribution of marker genes within the UMAP colored by gene activity score (dark blue =
low activity, yellow = high activity). d, Integration of scRNA-seq and snATAC-seq data,
labeled by cell type (0 h in pink and 72 h in green on left; MB in pink, Myoghi in dark
green, and Pax7hi in light green on right). e, Pseudobulk peaks per cluster spanning the
Pax7 locus. TSS track indicates TSSs called from LR-Split-seq data. f, Pseudobulk peaks
spanning the Myog and Mybph loci. g, Heatmap of top 50 marker regions in the 18 snATAC-
seq clusters (dark blue = low accessibility, yellow = high accessibility). h, Cluster A9 GO
term enrichment clustergram. Examples of genes associated with A9 marker peaks belonging
to the GO terms in rows are indicated in red.
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Figure 2.11: Identification and validation of TSSs/TESs from long-read data. a,
Histogram of number of LR-Split-seq reads supporting each TSS. b, Bubble plot of the
number of distinct exon combinations (splice isoforms) detected per gene compared to the
number of distinct TSSs detected per gene in bulk data. c, Validation of TSSs found in
bulk long-read data using 4 external datasets (ENCODE proximal enhancer and promoter
cCREs, GENCODE TSSs, and CAGE peaks) and our snATAC-seq pseudobulk peaks. d,
Bubble plot of the number of distinct exon combinations (splice isoforms) detected per gene
compared to the number of distinct TESs detected per gene found in long-read bulk data.
e, Validation of TESs found in bulk long-reads using GENCODE TESs and polyA-seq data.
f, Bubble plot of splice isoforms per gene per cell compared to TESs detected per gene per
cell found in LR-Split-seq. g, Validation of TESs found in LR-Split-seq. h, TSS and TES
complexity (Number of genes with more than one TSS / TES per cell) vs. number of reads
per cell, colored by sample type (0 h cells in pink, 0 h nuclei in blue, and 72 h nuclei in green).
i, LR-Split-seq TSS expression for the 4 identified Tnnt2 TSSs. j, snATAC accessibility for
the 4 identified Tnnt2 TSSs.
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Figure 2.12: Identification and validation of TSSs/TESs from oligo-dT and random
hexamer long reads, and short-read data. a, Violin plots of TSS expression per long
read cluster for the 4 identified Tnnt2 TSSs. b, Validation of TESs found in LR-Split-seq
data split by oligo-dT primed reads (left) and random hexamer primed reads (right). c,
Validation of TSSs found in LR-Split-seq data split by oligo-dT primed reads (left) and
random hexamer primed reads (right). d, Venn diagram of oligo-dT and random hexamer
TSSs with 7,532 TSSs overlapping by at least 1 bp. e, Validation of TSSs found in short-read
Split-seq data using reads fully containing the TSO (template switching oligo). f, Validation
of TESs found in short-read Split-seq data using reads containing a 20bp poly-A sequence
allowing for 50% mismatches. g, Comparison of thresholded expression and accessibility of
TSSs split by cell type.
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Chapter 3

The ENCODE mouse postnatal

developmental time course identifies

regulatory programs of cell types and

cell states

3.1 Abstract

Postnatal genomic regulation significantly influences tissue and organ maturation but is

under-studied relative to existing genomic catalogs of adult tissues or prenatal development

in mouse. The ENCODE4 consortium generated the first comprehensive single-nucleus re-

source of postnatal regulatory events across a diverse set of mouse tissues. The collection

spans seven postnatal time points, mirroring human development from childhood to adult-

hood, and encompasses five core tissues. We identified 30 cell types, further subdivided into

69 subtypes and cell states across adrenal gland, left cerebral cortex, hippocampus, heart,
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and gastrocnemius muscle. Our annotations cover a span of both known and novel dynamics

ranging from early hippocampal neurogenesis and a new sex-specific adrenal gland popula-

tion during puberty. We used robust Latent Dirichlet Allocation with a curated vocabulary

of 2,701 regulatory genes to identify regulatory topics linked to cell type differentiation, sub-

type specialization, and transitions between cell states. Shared topics emerged in cycling

cells of the adrenal gland and heart, tissue-resident macrophages, neural cell types, and

endothelial cells across multiple tissues. Cell-type-specific topics are enriched in transcrip-

tion factors and microRNA host genes, while chromatin regulators dominate mitosis topics.

Corresponding chromatin accessibility data reveal dynamic and sex-specific regulatory ele-

ments, with enriched motifs matching transcription factors in regulatory topics. Together,

these analyses provide insights into postnatal development across various tissues through the

lens of the factors regulating transcription.

3.2 Introduction

The postnatal period is a critical phase in an individual’s life marked by pivotal processes

such as physical and cognitive development, social and emotional interactions, as well as

sensory and metabolic maturation. Both humans and mice undergo significant changes

during the postnatal period, including puberty, with sex-specific growth and maturation of

their bodies, as well as the advancement of motor skills such as crawling, walking, jump-

ing, and running. Cell type specialization and cell state transitions underlie these biological

processes107,121. Cell types maintain a stable, heritable identity, defined by shared character-

istics such as molecular markers, morphology, location, and functional properties109,110. In

contrast, cell states represent dynamic variations within a cell type, responding to environ-

mental cues, developmental stages, or physiological changes. These variations involve shifts

in gene or protein expression and epigenetic modifications without altering the fundamental
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cell type109,110. Cell types establish cellular identity, while cell states contribute to diversity

and plasticity within a specific cell type109,110. For example, postnatal growth of skeletal

muscle occurs through the overall expansion of myofibers as well as the proliferation of my-

onuclei within them, leading to the emergence of distinct type I and type 2 skeletal myofibers

with specific contractile properties112,113,118,121. While the myonuclei within muscle cells are

defined as a stable cell type, exercise training can induce cell state transitions between type

1 and type 2 fibers121. To fully describe the specialization of cell types and transitions be-

tween cell states, comprehensive characterization of molecular intermediates such as gene

expression and chromatin accessibility must be performed at the single-cell level.

Existing single-cell and single-nucleus catalogs primarily capture limited timepoints, focus-

ing on either prenatal development or aging adults. The Tabula Muris Consortium, a widely

used resource, recently captured over 350,000 cells in 6 age groups and 23 tissues and or-

gans194, building on their previous Tabula Muris catalog of 100,000 cells from 20 organs and

tissues using single-cell RNA-seq (scRNA-seq)195. The Tabula Muris Senis focused on 1-

to 30-month-old mice and identified 155 cell types, averaging around 800 cells per tissue194.

Comparative analysis of gene expression across cell types from 3, 18, and 24-month-old mice

suggested that certain cell types such as microglia exhibit an intermediate cell state before

transitioning to an aged transcriptional profile194. In a focused approach, the systematic

dissection of regions in the adult mouse cortex and hippocampus of the Allen Brain Atlas

followed by scRNA-seq of 1.3 million cells has produced a comprehensive cell type taxonomy

that aligns with the spatial arrangement of the brain196. Although 42 unique subclasses of

predominantly GABAergic and glutamatergic neurons were identified, the annotation lacks

expected mouse adult stem cells in the brain such as oligodendrocyte precursor cells and neu-

ronal progenitor cells. To provide insights into mouse prenatal development, the ENCODE3

mouse embryo project profiled 12 whole tissues from embryonic day 10.5 to birth using bulk

RNA-seq, as well as at the single-nucleus level in forelimb84. This prenatal single-nucleus

timecourse of 91,557 total nuclei and 25 cell types revealed dynamic changes in cell type
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composition and emergence of multiple lineages during skeletal myogenesis in the mouse

forelimb. In contrast, our snRNA-seq study spans five core tissues from just after birth to

late adulthood at comparable depth to the forelimb time course, pinpointing 99 distinct cell

types and states. Our dataset includes an average of around 87,000 nuclei per tissue across

7 timepoints, incorporating 10x Multiome nuclei at two key timepoints.

An ongoing challenge in single-cell RNA-seq analysis is to identify and associate groups of

genes with meaningful traits. When traits such as sex and age are defined in the data, dif-

ferential expression analysis facilitates the direct comparison of genes enriched in one group

compared to another. However, single-cell RNA sequencing notoriously reveals novel cell

types and states without clear definitions. In such cases, identifying genes associated with

these populations presents a significant challenge. While co-expression network analysis is a

popular approach for grouping genes into modules without predefined annotations122,197? , it

limits each gene to a single module. Another favored method applies Latent Dirichlet Allo-

cation (LDA), also known as topics modeling, to gene expression data. LDA was originally

introduced for population genetics125, then a few years later in natural language processing

using machine learning124. In the context of written documents, LDA is a generative model

that groups words into topics, allowing multiple topics to be associated with a single docu-

ment, and assigns a numeric weight to each word in every topic. A word may have a high

weight in more than one topic, or in none. More recently, LDA has been repurposed for

single-cell RNA-seq to model gene expression by considering genes as words, cells as docu-

ments, and latent biological processes as topics126,127. The mixed membership flexibility of

LDA aligns with biological reality, where a gene may be repurposed in multiple cellular pro-

grams. Analyzing gene weights between topics facilitates the comparison of more ambiguous

traits associated with topics, such as dynamic cell types and states, in addition to age and

sex.

The core ENCODE4 mouse time course captures postnatal development at key timepoints
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across cerebral cortex, hippocampus, heart, skeletal muscle, and adrenal glands, encom-

passing 436,440 total nuclei. We apply robust LDA (rLDA) using Topyfic with a curated

vocabulary of 2,701 regulatory mouse genes128. We recover 82 topics associated with 45 cell

types and states including adult stem cells, tissue-resident macrophages, and general prolif-

eration. Using this specific vocabulary allows us to capture cellular programs controlled by

transcription factors (TFs) as well as other transcriptional and chromatin regulators such as

coactivators, microRNAs, and histone modifiers, and compare them across diverse tissues.

Finally, corresponding chromatin accessibility from 10x Multiome at two timepoints ties

TFs within our regulatory topics to age-specific and sex-specific cell type- and state-specific

regulatory element activity.

3.3 Results

The ENCODE4 mouse single-nucleus RNA dataset

For the final phase of the ENCODE Consortium, we comprehensively map the mouse

polyadenylated RNA transcriptome at the single-nucleus level across 5 coordinated tissues

at 7 timepoints in B6/CAST F1 hybrid mice, spanning from postnatal day (PND) 4 to

late adulthood (18-20 months) using the Parse Biosciences combinatorial barcoding plat-

form88,89 (Fig. 3.1a). Complementary genome-wide datasets, including bulk short-read

RNA-seq, long-read RNA-seq, microRNA-seq, and chromatin accessibility are also available

for matching samples at some or all timepoints (Fig. 3.1b). Both polyadenylated RNA and

chromatin accessibility were measured in the same single nuclei across all five tissues at PND

14 and 2-month timepoints using the 10x Multiome platform87. Notably, this mouse time

course mirrors the majority of the human postnatal lifespan, capturing crucial developmental

stages including the dynamic period of puberty and other key milestones in the transition
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from infancy to adulthood.

We recovered 83,467 adrenal gland nuclei, 112,118 left cerebral cortex nuclei, 78,168 hip-

pocampus nuclei, 92,808 heart nuclei, and 69,879 skeletal muscle nuclei, collectively ex-

pressing 47,707 genes (including protein coding, pseudogene, lncRNA, or microRNA gene

biotypes). We annotated each tissue separately for a combined total of 188 clusters, 69 sub-

types and states, and 30 major cell types (Fig. 3.5, 3.6, 3.7, 3.8, 3.9, Methods). Tissues were

clustered with similar resolutions, and each cluster was annotated using established marker

genes, expert consultations, cluster marker gene identification, literature review, and label

transfer from reference datasets where applicable196,198–200(Methods). Annotation occurred

across three hierarchical levels: “subtypes”, “cell types”, and “general cell types”. Every

cluster was assigned a single subtype, with larger subtypes comprising multiple clusters.

During the annotation process, cell states were tracked within subtypes. This resolution

encompasses specialized myonuclei located beneath the neuromuscular junction, as well as

dynamic sex-specific layers within the adrenal cortex. In instances where two clusters ex-

hibited identical marker gene expression, they were annotated similarly. This occurred for

large and relatively homogenous cell types, such as vascular endothelial cells. Evaluation of

the number of unique molecular identifier (UMI) counts and genes across cell types reveals

reproducible patterns across tissues. Neural cell types such as neurons and adrenal medulla

chromaffin cells consistently have more UMIs, and therefore a larger number of detected

genes, compared to other cell types such as endothelial and immune cells regardless of the

total number of nuclei within each respective cell type (Fig. 3.1c). The observed varia-

tion in the number of detected genes across cell types could reflect differences in underlying

biological processes. Neural cell types may express a more extensive and dynamic array

of transcriptional programs compared to other cell types, resulting in a higher number of

actively transcribed genes within the nucleus.
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Sex specific layers expand in the adrenal zona fasciculata during

puberty before shrinking in late adulthood

Previous studies in B6J mouse adrenal gland characterized the X-zone, a mouse-specific

cortical layer situated between the central medulla and the encasing zona fasciculata (ZF)

in both male and female mice107. The mouse X-zone and the human fetal zone are both

transient cortical layers originating from the fetal stage of development107,201. The human

fetal zone disappears rapidly after birth, along with a decrease in steroid secretion, but is

functionally similar to the human-specific zona reticularis in adults201. The mouse X-zone

becomes detectable by PND 8 and fully emerges as a distinguishable layer by PND 14107. In

female mice, this layer persists for several weeks during puberty until beginning to regress by

PND 32 at the earliest, continuing regression during adulthood. During the first pregnancy,

the entire X-zone disappears, while in non-pregnant mice, it undergoes gradual regression

before disappearing between 3 and 7 months107. In male mice, the X-zone recedes entirely

before PND 40107. While the human zona reticularis continues to produce androgens at lower

levels after birth, increasing during puberty, mice adrenals lack expression of Cyp17a1 and

thus do not secrete androgens202. Instead, the X-zone is characterized by the expression of

20-alpha-hydroxysteroid dehydrogenase (Akr1c18 ), which has been shown to be induced by

estrogen and downregulated by testosterone107. Additionally, Pik3c2g, a phosphoinositide

3-kinase involved in cell proliferation, survival, and metabolism is an X-zone marker107. Fur-

thermore, thyroid nuclear hormone receptor beta1 (Thrb) shares X-zone-specific expression

with Akr1c18. Despite the specificity of these markers, corresponding knockout mouse mod-

els lack any X-zone phenotype107. Sex-related factors and other molecules involved in the

formation, maintenance, and regression of the X-zone reportedly have no specific expression

in the X-zone. Thus, the function of the X-zone remains unclear despite the steroidogenic

activity of the fetal adrenal cortex from which it originates.

We identify in males the X-zone counterpart, a large cluster of 8,104 male-specific ZF nuclei
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that emerges from PND 25 to PND 36 and also regresses in later adulthood (Fig.3.1d, Fig.

3.5). Male nuclei make up 95% of the clusters we annotate as male-only ZF, while female

nuclei make up 86% of X-zone clusters (4,505 nuclei). We find 303 differentially expressed

genes with adjusted p-value < 0.01 and log2 fold change (LFC) > 1 upregulated in females

compared to males in the X-zone and male-specific ZF, including Xist and Tsix as well as X-

zone marker Pik3c2g (Methods). Akr1c18 is not significantly upregulated, but still displays

X-zone specific expression (Fig. 3.5). Ten of the genes upregulated in females are TFs,

including Thrb, Runx2, Irf8, and Nr3c1. In males compared to females within sex-specific

clusters, 666 genes are differentially expressed with adjusted p-value < 0.01 and LFC > 1,

including Y-chromosome linked Uty and 35 TFs including Esrrg and Hhex. Considering

these characteristics such as nucleus count, sex specificity, differentially expressed genes, and

dynamics mirroring the X-zone in females, we designated the male ZF as a distinct subtype

within the broader zona fasciculata in males and females.

Postnatal neurogenesis and glial maturation in the brain

The hippocampal dentate gyrus (DG) is one of the few brain regions that exhibits postnatal

neurogenesis across several mammalian species, controversially including humans108,203,204.

In mice and rats, the initial month of postnatal development marks a crucial transitional

phase. The neurogenic processes and maturation trajectory of the granule cell population in

early postnatal development align with those observed in adult neurogenesis108. The most

significant maturation shift in the granule cell population occurs between PND 7 and 14108.

During this period, neuronal progenitor cells (NPCs) expressing doublecortin (Dcx ) become

localized to the innermost region of the granule cell layer, signifying the establishment of the

subgranular zone108. Adult neurogenesis occurs in this specialized niche, from which NPCs

eventually migrate to the overlying granule cell layer and become integrated in hippocampal

circuitry203. These conclusions are supported by our observation that 73% of early PND
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10 and PND 14 DG nuclei belong to separate clusters than 92% of PND 25 and later DG

nuclei. Pseudotime ordering from a starting node of cycling nuclei is consistent with real

time, distinguishing PND 10 and PND 14 from later timepoints (Methods). Our findings

suggest that in later timepoints, the predominant DG cell population is composed of mature

Calb1+ granule cells; however, approximately a quarter of all our immature Dcx+ early

DG cells persist into late adulthood (Fig. 3.1, 3.7). Their presence may have implications

for cognitive functions such as synaptic plasticity, learning, memory formation, and stress

resilience205,206.

Glial maturation is also captured in both the hippocampus and cerebral cortex as a differ-

entiation trajectory from oligodendrocyte precursor cells (OPCs) made up of predominantly

early timepoints, though they are present throughout adulthood at lower proportions, to

myelin-forming oligodendrocytes (MFOL), to mature oligodendrocytes (MOL) (Fig. 3.1d,

3.6, 3.7). Characterized by the expression of proteoglycan neuron-glial antigen Cspg4 207,

homeodomain transcription factor Nkx2-2 207, and mitogen Pdgfra 208, OPCs constitute a

highly dynamic and proliferative group of progenitors (Fig. 3.6, 3.7). The differentiation

of OPCs into oligodendrocytes facilitates ongoing oligodendrocyte generation in adulthood,

contributing to adaptive myelination and the capacity to regenerate myelin in response to

injury or disease208.

Cycling and perinatal populations in early postnatal stages of car-

diac and skeletal myonuclei

Significant postnatal development occurs in both cardiac and skeletal muscle. In heart,

growth is categorized into three phases after birth: hyperplasia until PND 4, rapid hyper-

trophy between PND 5 and 15, and slow hypertrophy from PND 15 onward209. In our

data, proliferating cardiomyocytes marked by expression of Top2a and Mki67 diminish by
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PND 10, indicating that the first wave of growth is mainly due to cellular division (Fig.

3.1d). Clustering of ventricular cardiomyocyte nuclei revealed a spectrum of differentiation

from infant, juvenile, and adult stages. We find 488 TFs differentially expressed (p. adj <

0.01, abs. LFC > 1) between two or more timepoints in non-cycling ventricular cardiomy-

ocytes, such as genes continually upregulated across postnatal development such as Foxo3

and retinoid X receptor gamma (Rxrg) (Fig. 3.8, Methods). Several studies have implicated

Foxo3 as a transcriptional regulator of cardiac hypertrophy by inhibiting cardiomyocyte

growth and promoting autophagy210,211, potentially responsible in part for the decreased

rate of hypertrophy after PND 14. In the mouse embryo, retinoic acid (RA) signaling es-

tablishes polarity and promotes the ventricular phenotype in developing cardiomyocytes212,

therefore Rxrg may also be important in maintaining normal ventricular phenotype in the

postnatal state. Cardiomyocyte markers such as Gata4 and Mef2 family genes, family

genes, well-known transcriptional regulators of cardiac genes in infant, juvenile, and adult

cardiomyocytes213–217 are expressed throughout development, highlighting the strong regu-

latory signature of cardiomyocytes at all ages.

As in the brain, skeletal muscle contains adult stem cells known as satellite cells that contin-

ually replenish myonuclei throughout development and adulthood. As muscles grow, quies-

cent satellite cells characterized by expression of Pax7 are activated to become proliferating

myoblasts144. Post-mitotic myoblasts align and fuse with each other to form multinucle-

ated myotubes, expressing myogenic regulatory factors (MRFs) including Myf5, Myod1, and

Myog 218,219. A portion of satellite cells follows an alternative lineage, where they remain

unfused and undifferentiated to renew the stem cell pool218,219. Myotubes develop further,

undergoing structural organization to become mature myofibers with the ability to perform

coordinated contraction and relaxation. Mature skeletal muscle fiber types are identified

based on the expression of distinct myosin heavy chain proteins. Myh7 serves as a marker

for slow-twitch type 1 fibers, while Myh2, Myh4, and Myh1 are specific to fast-twitch type

2 fibers (2A, 2B, and 2X, respectively)112. Additionally, Myh3 has classically been linked
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to embryonic fibers, and Myh8 to perinatal fibers220. The gastrocnemius, or calf muscle,

extends from two heads attached to the femur and in adults is primarily composed of fast-

twitch type 2B fibers which run towards the Achilles tendon221. However, fiber type alone

provides only a partial understanding of muscle heterogeneity, as the weight of this muscle

is sexually dimorphic, with male gastrocnemius weighing 29% more on average than female

gastrocnemius at matching timepoints. In our dataset, perinatal myonuclei constitute the

majority of myonuclei shortly after birth at PND 4. By PND 10, type 1 myonuclei contribute

significantly to the total myonuclei before being surpassed by type 2 fibers, particularly type

2B. However, traces of type 1, as well as type 2A and 2X, persist into adulthood (Fig. 3.1d,

3.9). Among 47 single-nucleus clusters, 6 exhibit a notable difference in proportion between

males and females, with 5 myonuclei clusters and 1 fibro-adipogenic progenitor cluster show-

ing a difference exceeding 1 standard deviation from the mean (Fig. 3.9). In addition to

tissue-specific cell types, we consistently detect common cell types such as endothelial and

immune cells across all our vascularized tissues, maintaining relatively stable proportions.

However, their relative proportions in the overall tissue composition varies, with heart tissue

having the highest overall counts of endothelial and immune cells (Fig. 3.5, 3.6, 3.7, 3.8,

3.9). In summary, our time course effectively captures dynamics of cell types and cell states

during postnatal development.

Topics modeling identifies cellular programs with a core set of reg-

ulatory genes

While many genes serve as markers for distinct cell types and states, we hypothesize that

cellular programs are fundamentally constructed from a core set of genes including TFs,

microRNAs, and chromatin regulators. While a program often controls expression of protein-

coding markers that may not be regulators themselves, its core set of regulatory genes governs

cell type and state. To study specification of cell types, such as cardiomyocytes, endothelial
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cells, and microglia, and transitions between cell states, such as transient adrenal cortex

zones, granule cell stages, and muscle fiber types, we applied Latent Dirichlet Allocation

(LDA) to our annotated snRNA-seq data in each tissue using Topyfic128.

LDA is a Bayesian model that learns a limited set of hidden “topics” that can generate

the underlying training data124. In the context of single-cell RNA-seq, LDA groups genes

into topics and assigns them numerical scores or weights based on their relevance to the

topic127,128. Notably, genes may appear in multiple topics, reflecting the intricate nature of

biological systems where genes participate in diverse regulatory programs. Unlike some other

methods like WGCNA122,197, LDA’s approach aligns more closely with biological reality128.

By examining the expression patterns of these weighted genes, LDA assigns a participation

score to each cell for each topic, ranging from 0 to 1128. A participation score of 1 indicates

that a cell’s gene expression profile perfectly aligns with the genes associated with that

topic128. However, it is rare for a cell to participate in just one topic, as numerous cellular

processes are affected by regulatory networks222. Through the analysis of gene weights, LDA

enables the comparison of latent traits associated with topics, offering insights into dynamic

cell types and states. Topyfic performs LDA 100 times on a normalized223 genes-by-cells

matrix and determines consensus topics by clustering all 100 runs100,128. The resulting set

of topics represents the regulatory genes learned to characterize the gene expression profiles

in our single cells. These topics can be conceptualized as vectors in gene space, with each

weight representing the value in each gene, or dimension. This nuanced approach contrasts

with a binary set of marker genes, which merely denotes presence or absence, failing to

capture the idea that genes may have multiple roles in different contexts105,106. Overall,

the topics approach acknowledges the complexity of cellular programs, recognizing that cells

likely participate in multiple programs simultaneously, and underscores the diverse roles that

genes may play across various functional contexts.

Our approach to identifying cellular programs involves focusing the LDA vocabulary on genes
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that we categorize as regulatory. TFs are master regulators of the transcriptome and form

the core of cellular programs and gene regulatory networks due to their broad impact on

target genes224. Despite their significance, TFs exhibit a wide range of expression patterns

across different cell types, often being overshadowed by the expression patterns of their tar-

get genes225. In addition to TFs, genes were selected with GO term annotations that impact

transcriptional and chromatin regulation such as chromatin binding genes, transcription reg-

ulators, chromatin organizing genes, host genes representing microRNAs, histone modifying

genes (acetyltransferases, deacetylases, methyltransferases, and demethylases), and TBP-

associated factors as well as members of the Mediator complex (TAF-MED) (Methods).

Bulk RNA-seq measurements of these genes by regulatory biotype reveals most variation in

TF detection at >1 TPM in at least one bulk sample across tissues (Fig. 3.2a). Out of

1,357 known TFs in the mouse genome, 75% are detected across all tissues, with most in

adrenal gland, followed by gastrocnemius and heart, then cortex and hippocampus. Other

gene biotypes such as chromatin binding genes, chromatin organizers, and transcription reg-

ulators are similarly detected across all tissues (Fig. 3.2b, c, d). Of the smallest categories

(microRNA host genes, TAF-MED, and histone modifiers, Fig. 3.2e, f, g), the same pattern

of adrenal gland, gastrocnemius, heart, and brain regions appears again in the microRNA

host gene category, most likely due to the tissue specificity of microRNA expression226. In

summary, topics modeling using a curated vocabulary approach aims to extract impactful

cellular programs and allows for characterization of regulatory gene biotypes.

Regulatory gene expression is sufficient to define cell types and cell

states

To identify topics specific to each cell type within a tissue, we applied Topyfic on each

tissue separately, incorporating batch effect correction between snRNA-seq barcoding plat-

forms128,227. Selecting the appropriate number of topics, denoted as k, is a crucial aspect of
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topic modeling. In our approach, we fine-tuned k within the range of 5 to 35 for each tissue,

ultimately settling on the resolution that yielded the same number of topics as the specified

value of k. This fine-tuning led to an average of approximately 16 topics per tissue, with the

adrenal gland having the highest count at 19, and the hippocampus having the lowest at 14

(Fig. 3.10, 3.11, 3.12, 3.13, 3.14, Methods).

Analysis of topic-trait relationships in hippocampal topics indicates that genes crucial for cell

type specification are highly weighted in our topics. Topic-trait relationships are analyzed

using Spearman correlations to associate specific topics with traits based on cell participa-

tion. We observe that hippocampus topic 1 (HC1) corresponds to astrocytes, HC2 to DG

granule cells, HC4 to oligodendrocytes, HC6 to inhibitory GABAergic interneurons, HC10 to

OPCs, HC11 to endothelial cells, and HC12 to microglia (Fig. 3.2h). Despite the absence of

certain protein-coding genes crucial for cell type-specific functions, such as myelin glycopro-

teins in oligodendrocytes196, our identified topics exhibit strong correlations with annotated

cell types. Developmental progression through the oligodendrocyte lineage is accompanied

by topic switching from HC10 in OPCs, to a mix of HC10 and HC4 in intermediate oligo-

dendrocytes (MFOL) to exclusive enrichment of HC4 in mature oligodendrocytes (MOL).

Breakdown of cell participation in OPCs and oligodendrocytes shows gradual expansion of

HC4 from 3% to 48% to 85%, while HC10 diminishes from 63% in OPCs to 29% in MFOLs

during glial differentiation (Fig. 3.2i). Minor topics HC5 and HC7 remain active throughout

differentiation, potentially representing general glial programs that are turned on regardless

of subtype. Structure plots are very dense stacked bar plots showing the proportion of topic

participation, where each column is a single nucleus grouped by annotated cell type. Order-

ing of nuclei by pseudotime shows that as cells differentiate, HC10 is gradually replaced by

HC4 while minor topics remain constant (Fig. 2i). Notably, topic modeling also captures

annotated cell states. HC9 accounts for 43% of the participation of early cells in the DG,

while HC2 corresponds to 67% of the participation of mature granule cells (Fig. 2j). Once

again, ordering by pseudotime emphasizes topic switching, as HC9 decreases during granule
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cell maturation. Thus, the expression patterns of regulatory genes alone suffices to define

both transcriptional cell types and cell states.

Comparing the number of topics detected per nucleus, we observed that most nuclei in

each tissue are effectively characterized by more than one topic, and a median of 2 topics

accounts for 80% of cell participation (Fig. 3.3a). This result supports our hypothesis

that cells concurrently run multiple programs, especially during transitional processes of

differentiation or maturation194, as evidenced here in hippocampal cell types. Importantly,

topics with high cell participation are consistently enriched for specific cell types and states,

a trend observed across all tissues (Fig. 3.3b, 3.10, 3.11, 3.12, 3.13, 3.14). Conversely, topics

with low participation are typically not associated with any particular cell type (Fig. 3.3b,

shaded gray). At our chosen resolution, all cell types with >1,400 nuclei are captured by at

least one topic. In addition to having the highest number of topics compared to other tissues,

adrenal gland has the most distinct annotated cell types (10), surpassing other tissues (6,

7, 8, and 8 in cortex, hippocampus, heart, and gastrocnemius, respectively). Interestingly,

in both the adrenal gland and heart, a particular topic consistently showed enrichment in

cycling cells, irrespective of their cell type of origin (Fig. 3.10, 3.13).

Tissue-specific signals in microglia and macrophage topics

Immune cells are represented by topics with high cell participation across all five tissues.

In cortex and hippocampus, topics CX8 and HC12 are associated with microglia, while

AD14, HT3, and GC10 correspond to resident macrophages in the adrenal gland, heart,

and gastrocnemius, respectively (Fig. 3.3a). Microglia, the brain’s resident immune cells,

originate from progenitors formed during the first wave of primitive hematopoiesis around

embryonic day (E) 7.5228,229. They migrate to the developing central nervous system (CNS)

through the bloodstream, typically around E9.5 in mice230. After prenatal establishment in
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the CNS, microglia undergo proliferation and expansion, reaching their peak two weeks after

birth and sustained through low proliferation levels into adulthood230. The second wave of

hematopoiesis gives rise to yolk sac macrophages, a portion of which expand and differentiate

into tissue-resident macrophages by E9.5228. While previous studies have compared the gene

expression profiles of macrophages and microglia derived from adult human brain and blood

in culture231,232, as well as infiltrating macrophages and microglia in adult rat brain233, our

approach leverages multiple coordinated tissues from the same individual mice.

An MA plot of gene weights for the microglial topics in hippocampus (HC12) vs cortex (CX8)

reveals very similar topic compositions, aligning with our expectations (Fig. 3.3c). Very few

genes have an absolute log ratio (M) value > 5 (47 in hippocampus, 8 in cortex) (Fig.

3.3c), none of which have been implicated in regional microglial signatures. Genes involved

in microglia polarization (e.g., Irf8 234 and Stat3 235), activation and inflammatory response

(e.g., Spi1 236 and Irf2 237), and establishment of microglia identity and immune response

(e.g. Sall1,238 Sall3 239, Etv5 240, and Zeb1 241 all have high mean average (A) values in both

cortex and hippocampus microglia topics. Thus, regulatory topics assign similar weights for

genes from identical cell types in different tissues when trained independently.

By contrast, comparison of hippocampus microglia topic HC12 and heart macrophage topic

HT3 reveals 165 genes with |M|> 5 (67 in hippocampus, 98 in heart). Microglia-specific genes

such as Sall1, Sall3, Etv5, and Zeb1 are more highly weighted in hippocampus, whereas genes

involved in macrophage differentiation, polarization, and inflammatory pathway signaling

such as Runx3 242, Foxo1 243,244, and Tfec 245,246 exhibit higher weights in heart (Fig.3.3d).

Interestingly, Tfec expression has been shown to be activated by Stat6, another heart-specific

macrophage TF in our comparison, which transduces IL-4 signals and binds to the promoter

of Tfec 246 (Fig. 3.3d). Additionally, Foxo1 expression has been linked to cardiac fibrosis

following macrophage activation247. Due to their similar weights across topics in both tissues,

Spi1, Irf2, Irf8, and Stat3 may belong to a common transcriptional signature of shared
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immune functions between postnatal microglia and macrophages.

Mitosis topics are driven by chromatin regulators

We then asked whether particular classes of regulatory genes were found in most topics or

were more specific to a subset of topics. We calculated the percentage of topics where a gene

surpasses a minimal weight threshold of 1 compared to the median of its weight across all

topics (Fig. 3.3e-k). Notably, 30% or more of genes classified as chromatin regulators (Fig.

3.3f, h, j) occupy the upper right quadrant, indicating they are highly weighted in most

topics. In contrast, transcription factors, transcription regulators, microRNA host genes,

and the TAF and Mediator complex family of genes exhibit a different pattern, with 20% or

less highly weighted in most topics (Fig. 3.3e, g, i, k). TFs are mostly either highly weighted

and topic-specific (59%, upper left quadrant) or specific with lower weights (26%, lower left

quadrant). A simplified analysis of gene biotype enrichment within topics revealed two topics

(HT6 and AD5) highly enriched for chromatin regulators compared to TFs and microRNA

host genes (Fig. 3.3j, Methods). Interestingly, these topics correspond to our cycling topics,

primarily influenced by a proliferative state rather than their cell type of origin (Fig. 3.10,

3.13). Our results suggest that cellular programs essential for mitosis, particularly those

governing chromatin condensation and structure, are primarily orchestrated by chromatin

regulators. In contrast, programs driven by transcription factors play a lesser role in directing

a proliferative cell state.

Topics in shared cell types from diverse tissues cluster together

Cosine similarity between topics serves as a measure to compare gene weights, representing

the angle between two topics in gene space. It is similar to other correlation methods, where

0 indicates low concordance between topics and 1 represents high concordance. By comput-
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ing the cosine similarity for each pair of topics among the 82 total topics, and subsequently

filtering clusters for those with a cosine similarity above 0.9, we identified 20 distinct clus-

ters of topics (Fig. 3.3m, Methods). As expected, cycling topics HT6 and AD5 are highly

correlated with a cosine similarity of 0.93, along with a large cluster of endothelial topics

across all five tissues (C9 and C1, respectively, Fig. 3.3m). Topics representing common

cell types across brain regions cluster in C4 (glutamatergic neurons), C10 (GABAergic in-

terneurons), C11 (microglia), C12 (astrocytes), C13 (OPC), and C14 (oligodendrocytes).

Interestingly, the macrophage cluster C3 is distinct from the microglia cluster C11. As

observed in comparing HC12 and HT3 (cosine similarity 0.83, Fig. 3.3d), tissue-specific

signatures in macrophages and microglia likely drive the differences in gene weights between

microglia and macrophage topics. C1 includes two cardiac heart topics, while C19 and C20

represent additional signatures in cardiac endothelial and endocardial cells, distinct from

the general endothelial signature shared across all five tissues. In summary, the regulatory

topics capture core cellular programs that can be compared across tissues with related cell

types.

Characterization of cell type specificity in candidate cis-regulatory

elements

TFs regulate expression of target genes by binding to cis-regulatory elements (CREs) in open

chromatin225. The landscape of open chromatin, measured using single nucleus ATAC-seq,

provides insight into accessible regulatory elements at the single-cell level. We leveraged

the ENCODE registry of candidate cis-regulatory elements (cCREs) in mouse derived from

chromatin accessibility, histone modifications, and DNA affinity purification sequencing248

to score our snATAC-seq data across a cohesive set of chromatin regions. These elements

play crucial roles in gene regulation by providing binding sites for transcription factors and

influencing chromatin accessibility248. Around 43% of these regions are classified as candidate
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distal enhancers by H3K27ac and DNase I hypersensitivity, 12% as proximal enhancers,

and 31% were determined by chromatin accessibility data alone (Fig. 3.15). Accessibility

across the full set of 926,843 cCREs was scored in pseudobulk snATAC nuclei using the

integrated clusters from snRNA-seq analysis. The cCREs >5 RPM in at least one pseudobulk

cluster per annotated cell type (390,146 total across our tissues) were classified as specific,

shared, general, or global by mapping each cluster to its annotated cell type. We categorized

cCREs accessible in only one cell type as ‘specific’, those accessible in more than one cell

type within or across tissues as ‘shared’, those accessible in all major cell types within a

tissue as ‘general’, and cCREs accessible in all major cell type across all tissues as ‘global’.

Most cCREs are either specific to one cell type (43.1%) or shared (47.9%), with only 9%

classified as general or global (Fig. 3.4a). The cell-type-specific landscape of accessible

regulatory elements, particularly enhancers, sets the stage for transcription factors to bind

and dynamically control gene expression during postnatal development.

Tissue-specific analysis reveals the most cell type-specific elements in cerebral cortex and

hippocampus, driven by robust neuronal signatures, with the heart displaying the least cell

type specificity (Fig. 3.4b). Indeed, breakdown by cell type in the hippocampus emphasizes

glutamatergic neurons as the most specific, and to a lesser extent microglia and pericytes

(Fig. 3.4c). In other tissues, the major cell type also exhibits a robust chromatin signature,

such as myonuclei in the gastrocnemius and cortical cells in the adrenal gland (Fig. 3.4d,

e). To further explore the dynamics and sex specificity of the chromatin landscape, which

likely contribute to variations between certain cell types, differential expression analyses

were conducted between timepoints and sexes in accessible cCREs. The largest proportion of

differentially accessible cCREs between PND 14 and 2 months, are detected in gastrocnemius

tissue, while most sex-differential cCREs are detected in adrenal gland (Fig. 3.4f). These

results likely reflect the ongoing biological processes within the major cell types of these

tissues; myonuclei in the gastrocnemius are transitioning to their mature fiber type, and the

emergence of the X-zone in the adrenal zona fasciculata occurs during puberty, emphasizing
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the dynamic nature of chromatin accessibility during crucial postnatal stages.

Regulatory motifs are enriched in cell-type-specific cCREs

Although most perinatal myonuclei disappear by PND14, type 1 fibers and fibro-adipogenic

progenitors recede while 2B fibers expand, ultimately constituting over three-quarters of

the nuclei in gastrocnemius by 2 months (Fig. 3.9). Given that the majority of dynamic

cCREs are cell-type specific (Fig. 3.4g), and the predominant cell-type-specific cCREs are

found in myonuclei (Fig. 3.4d), we focused on TF binding in myonuclear subtypes. We

performed motif enrichment analysis using ArchR249 in myonuclei-specific cCREs broken up

by accessibility in muscle fibers and satellite cells to identify potential regulators which can

then be matched to TFs featured in our topic modeling (Methods, Fig. 3.16). Notably,

some TFs exhibit concordant motif activity patterns and topic weight. The Pax7 motif is

both enriched in satellite-specific cCREs (Fig. 3.4h) and included in the satellite-associated

topics (Fig. 3.4i). Alternatively, Myog binding is detected and the TF is highly weighted

in one major satellite topic (GC15, 44% participation in satellites), whereas it is not de-

tected in the minor satellite topic (GC8, 12% participation) (Fig. 3.4h,i, 3.14). The more

dominant topic potentially reflects satellite cells undergoing postnatal myogenesis, while the

minor topic may signify the self-renewing pool of satellite cells actively inhibiting the ex-

pression of MRFs218,219. Previous studies have found interactions between Tcf12 and Mef2c

and MRFs such as Myod1 in skeletal muscle implicated in skeletal muscle formation250–254.

While Tcf12 is weighted in nearly all myonuclear topics, motif enrichment shows activity

restricted to satellite cells, in which it has shown to be a crucial regulator of their chromatin

remodeling250. Similarly, Mef2c is found in all non-satellite topics but active only in type 1

myonuclei. Mef2c has been linked to type 1 specification by responding to calcium-dependent

signaling pathways to promote the transition between fast glycolytic fibers to slow oxidative

fibers251–254. These observations may reflect cases where target genes are inaccessible while
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the TF continues to be expressed.

Comparison of sex-specific regulatory activity in the adrenal zona

fasciculata

We then turned to sex-specific cCREs are also celltype-specific in adrenal gland (Fig. 3.4j).

Unsurprisingly, female cCREs overlap those attributed to the X-zone and zona fasciculata

(Fig. 3.4k), as well as adipocytes. In males, a faint signature is seen in the nuclei annotated

as male ZF. We focused motif enrichment on the X-zone, male ZF, and non-sex-specific ZF

to investigate binding activity of key TFs from differential expression analysis and topics

modeling. Runx2, upregulated in female compared to male ZF, has distinct binding activity

in X-zone-specific cCREs (Fig. 3.4l). It is also a top-weighted gene in the X-zone topic

AD6 (Fig. 3.4m). Despite a previous study in Runx2 knockout mice suggesting no direct

contribution to sex determination255, it may regulate genes involved in steroid metabolism, as

evidenced in mouse osteoprogenitor cells256. Furthermore, estrogen receptor alpha has been

observed to colocalize with Runx2 in breast cancer and osteoblasts, although their expression

is inversely related257. In contrast to Runx2, although Thrb is also differentially upregulated

in female ZF but is weighted similarly in X-zone topic AD6 and male ZF topic AD12 with

binding activity solely in the male ZF (Fig. 3.4l, m). Likewise, the androgen receptor Ar is

highly weighted in both the X-zone topic AD6 as well as male ZF topic AD12, but only active

in male ZF (Fig. 3.4l, m). Ar is expressed in both male and female sex-specific regions,

although more so in the X-zone compared to the male-specific ZF (Fig. 3.5). Recent studies

have identified androgen signaling via the androgen receptor as a requirement for X-zone

regression during puberty in male mice258, while Ar signaling is not essential for regression

in female mice259. Our results suggest androgen signaling in male ZF may be mediated by

lower levels of Ar compared to female ZF, perhaps due to co-activator expression, accessible

chromatin at target gene promoters, or involvement of factors from other tissues, such as the
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hypothalamic-pituitary-gonadal axis. More broadly, the sexual dimorphic binding activity

of transcription factors that are similarly expressed in these homologous cells highlights

the fundamental limitations of studying gene regulation using RNA expression alone when

ignoring sex as a biological variable.

3.4 Discussion

The ENCODE4 mouse single-nucleus dataset stands out from other genomic catalogs by

offering a comprehensive map of postnatal development across diverse tissues, spanning from

just after birth to late adulthood. Its strength is further evident in the inclusion of both sexes

at each timepoint, setting it apart from datasets like Tabula Muris Senis, which is limited

to one sex at certain timepoints. This inclusivity allows us to analyze sexual dimorphism

across time, such as the emergence of sex-specific adrenal cortex populations during puberty.

The dataset facilitates comparisons of maturation rates across tissues, revealing significant

differences. For instance, the most significant changes in the adrenal gland occur between

2 months and 18-20 months as sex-specific cortical layers regress, while the largest changes

in gastrocnemius occur from postnatal day 4 to postnatal day 10 as myofibers mature. This

high-resolution timecourse enables investigations into large-scale dynamics as well as the

maintenance of adult stem cell pools like OPCs, NPCs, and satellite cells. Additionally, the

integration of snRNA-seq data between Parse and 10x barcoding platforms underscores the

complementary information captured by each technology. In summary, this dataset presents

a unique opportunity to explore postnatal development throughout the entire mouse body

at unprecedented single-cell resolution, offering insights from various biological and technical

perspectives.

All experiments were conducted in a B6/CAST hybrid genotype, facilitating future explo-

ration of the genetic basis of complex molecular traits. B6J (M. m. domesticus), which
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is the most commonly used laboratory mouse and the first to have its genome published,

diverged from CAST (M. m. castaneus) approximately one million years ago30,56. As a

wild-derived strain, CAST harbors 17.6 million single-nucleotide polymorphisms compared

to the B6J reference genome48 and exhibits differences in phenotypes such as temperament

and hearing ability260. These strains represent broader genetic diversity, resembling natural

populations, and are two of the founders of the Collaborative Cross64. An open question is

whether any of the cell states described here would be specific to the F1. Examining gene

expression differences in both B6 and CAST parents with our results in the offspring would

allow us to determine the impact of a particular allele as acting in cis or trans. Besides

allele-specific gene expression, we could also compare traits such as proportions and dynam-

ics of cell types, as well as participation in the regulatory topics described here, streamlining

the identification and analysis of cell types and states.

We applied Topyfic to integrated combinatorial barcoding and multiome datasets, focusing

on a curated vocabulary of 2,701 regulatory genes. This analysis revealed 82 regulatory

topics associated with 46 distinct cell types and states. Our results indicated an enrichment

of transcription factor (TF) and microRNA gene biotypes in cell-type-specific topics, while

cycling topics are predominantly influenced by chromatin regulators. Although most studies

of polyadenylated RNA ignore the impact of microRNAs, a significant fraction of microR-

NAs are intragenic, most of which are found within introns of protein-coding genes261,262.

MicroRNAs can be transcribed by RNA polymerase II together with their host genes263,

suggesting that cell-type markers may have microRNAs embedded in their introns, poten-

tially playing a major role in the transcriptional regulation of that cell type. Additionally,

our analysis identified correlated regulatory topics across tissues for common cell types, such

as endothelial cells, while immune cells retained a tissue-specific signature, particularly in

trunk organs compared to brain microglia. We further classified ENCODE v4 cCREs based

on accessibility in our cell types, revealing that nearly half of the identified cCREs exhibit

cell-type specificity. Lastly, we explored motif enrichment patterns of TFs within topics in
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cell type- and state-specific regulatory elements.

The behavior of rLDA topics aligns with our hypotheses regarding genuine cellular programs:

they are predominantly cell type- and state-specific, often co-expressed, reproducible across

tissues, and can be defined using regulatory genes alone, especially TFs. Focusing on regula-

tory genes offers a more direct insight into cellular programs by ensuring the inclusion of TFs

in each topic. It’s crucial to note that a TF’s presence in a topic doesn’t automatically im-

ply active involvement in regulatory programs, and further verification may require follow-up

experiments and integration with chromatin accessibility or DNA binding data. By leverag-

ing corresponding chromatin accessibility data, we identified cases where a top-weighted TF

exhibits enriched binding in a cell type associated with its topic, as well as instances where

topic TFs are active in different cell types or states. Our results demonstrate the successful

identification and interpretation of cellular programs using topic modeling across multiple

tissues and barcoding platforms, establishing a foundational understanding of transcriptional

programs in the developing mouse.
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3.6 Methods

Mice and tissue collection

All animals were treated and housed in accordance with the Guide for Care and Use of

Laboratory Animals. Approval for all experimental procedures was granted by Caltech’s In-

stitutional Animal Care and Use Committee (IACUC), aligning with both institutional and

national guidelines. Samples were obtained from animals covered under the approved IACUC

protocol #IA21-1647, “Single-cell transcriptome studies from multiple mouse tissues”. Tis-

sues at postnatal day (PND) 4, PND 10, PND 14, PND 25, PND 36, 2 months, and 18-20

months from C57BL6/J (RRID:IMSR JAX:000664) × CAST/EiJ (RRID:IMSR JAX:000928)

F1 hybrid mice were obtained from Jackson Laboratories (JAX). Adrenal gland and gastroc-

nemius tissues were pooled from 3 individuals for PND 4 and PND 10 timepoints. Hippocam-

pus tissues were pooled from 3 individuals for PND 10 and PND 14 timepoints. Tissues were

flash-frozen in liquid nitrogen and delivered to Caltech on dry ice, where they were stored

at -80°C until RNA extraction.

Isolation of RNA for bulk assays

For bulk RNA-seq, total RNA was extracted from flash-frozen tissues at Caltech using the

Norgen Animal Tissue RNA Purification Kit (Norgen Biotek cat. #25700). The tissue was

lysed using Buffer RL and proteins were digested with proteinase K. Genomic DNA was

removed with DNaseI treatment on the columns. The purified total RNA includes includes

large mRNAs, lncRNAs, and small RNAs. The Qubit dsDNA HS Assay Kit (Thermo cat.

#Q32854) was used to assess RNA concentration and RIN values were determined using the

Bioanalyzer Pico RNA kit (Agilent cat. #5067-1513), with average RIN scores of 8.2 for

the adrenal gland, 9.1 for the hippocampus, 9.3 for the cortex, 9.0 for the heart, and 9.3 for
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gastrocnemius tissues.

Bulk RNA-seq from mouse tissues

Each cDNA library was built from 300 ng total RNA with ERCC spike-ins (Thermo cat.

#4456740) using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB

cat. #E7760), specifically the protocol for use with NEBNext Poly(A) mRNA Magnetic

Isolation Module (NEB cat. #E7490). Ribosomal RNA was depleted from total input RNA

using the NEBNext rRNA Depletion Kit (NEB cat. #E6310). First and second strand

synthesis, cDNA end prep, adapter ligation, and finally PCR amplification resulted in the

final libraries. The libraries were quantified using the Qubit dsDNA HS Assay Kit (Thermo

cat. #Q32854) and sequenced on an Illumina HiSeq 2500 as 100 bp single-end reads to 50

M raw read depth. For submission to the ENCODE portal, libraries needed at least 30 M

aligned reads and a Spearman replicate correlation >0.9.

Purification of nuclei for Split-seq

For Parse Split-seq experiments performed at UCI, nuclei were isolated from the 5 core

tissues (adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius) for all

7 timepoints (PND 4, PND 10, PND 14, PND 25, PND 36, 2 months, and 18-20 months).

Flash-frozen tissues shipped from Caltech were transferred to a chilled gentleMACS C Tube

(Miltenyi Biotec cat. #130-093-237) with 2 mL Nuclei Extraction Buffer (Miltenyi Biotec

cat. #130-128-024) supplemented with 0.2 U/uL RNase Inhibitor (NEB cat. #M0314L)

on ice. Nuclei were dissociated from whole tissues using a gentleMACS Octo Dissociator

(Miltenyi Biotec cat. #130-095-937). Suspensions were filtered through a 70 um strainer then

a 30 um strainer (Miltenyi Biotec cat. #130-110-916 and #130-098-458, respectively). Nuclei

were resuspended in cold PBS + 7.5% BSA (Life Technologies cat. #15260037) and 0.2
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U/ul RNase inhibitor for manual counting using a hemocytometer and DAPI stain (Thermo

cat. #R37606). For gastrocnemius tissue, debris was removed from nuclei suspensions with

Debris Removal Solution (Miltenyi Biotec cat. #130-109-398). Nuclei were mixed with

Debris Removal Solution and layered on top of PBS, then centrifuged at 4°C, 3000 x g for

10 minutes with full acceleration and no brake. Nuclei bands were separated from debris

layers and concentrations were determined using a hemocytometer. For Parse Split-seq,

1-4 million nuclei per sample were fixed using Parse Biosciences’ Nuclei Fixation Kit v1

(Parse Biosciences cat. #WN100), following the manufacturer’s protocol. Briefly, nuclei

were incubated in fixation solution for 10 minutes on ice, followed by permeabilization for 3

minutes on ice. The reaction was quenched, then nuclei were centrifuged and resuspended

in 300 uL Nuclei Buffer (Parse Biosciences cat. #WN101) for a final count. DMSO (Parse

Biosciences cat. #WN105) was added before freezing fixed nuclei at -80°C.

Parse Split-seq experiments

Nuclei were barcoded using Parse Biosciences’ Evercode WT Kit v1 (cat. #EC-W01030),

following the manufacturer’s protocol. Briefly, fixed nuclei were thawed and added to the

Round 1 reverse transcription barcoding plate at 15,000 nuclei per well across 48 wells.

Individual samples from each tissue were distributed in sample barcoding plates with at least

1 well per individual. Within the fixed nuclei, RNA was reverse transcribed using oligodT

and random hexamer primers and the first barcode was annealed. After RT, nuclei were

pooled and distributed in 96 wells of the Round 2 ligation barcoding plate for in situ barcode

ligation. After Round 2, nuclei were pooled and redistributed into 96 wells of the Round

3 ligation barcoding plate for barcode 3 and Illumina adapter ligation. Finally, nuclei were

counted using a hemocytometer and distributed into 6 subpools for adrenal, 6 subpools for

cortex, 5 subpools for hippocampus, 4 subpools for heart, and 5 subpools for gastrocnemius,

each containing 12,000 nuclei, with 2 additional subpools of 15,000 nuclei for gastrocnemius.
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Nuclei from each tissue were also distributed into 1-2 small subpools of 1,000-2,000 nuclei

each, for a target of around 75,000 nuclei per tissue (>500 UMI). The nuclei in each subpool

were lysed and the barcoded cDNA underwent template switching and amplification. The

cDNA was cleaned using AMPure XP beads (Beckman Coulter cat. #A63881) and quality

checked using the Qubit dsDNA HS Assay Kit (Thermo cat. #Q32854) and a Bioanalyzer

2100 (Agilent cat. # G2939A) High Sensitivity DNA Kit (Agilent cat. #5067-4626) before

proceeding to Illumina library preparation with 100 ng of full-length cDNA per subpool.

Subpool cDNA was fragmented and Illumina P5/P7 adapters were ligated during the final

amplification, followed by size selection and quality check with the Bioanalyzer and Qubit.

Libraries with 5% PhiX spike-in were sequenced on an Illumina NextSeq 2000 sequencer with

P3 200 cycles kits (Illumina cat. #20040560) as paired-end, single-index reads (115/86/6/0)

to an average depth of 181 M reads per 12,000-15,000-nucleus library and an average depth

of 134 M reads per 1,000-2,000-nucleus library.

Purification of nuclei for 10x Multiome

For 10x Multiome experiments performed at Stanford University, nuclei were isolated from 5

core tissues for PND 14 and 2 month timepoints. Flash-frozen tissues were dissociated in a

Douce homogenizer with 1 mL homogenization buffer: 0.26 M sucrose (Sigma cat. #S7903-

250G), 0.03 M KCl (Thermo cat. #AM9640G), 0.01 M MgCl2 (Thermo cat. #AM9530G),

and 0.02 M Tricine-KOH pH 7.8 (Sigma cat. #T0377), supplemented with 0.6 U/uL RNase

Inhibitor (Thermo cat. #EO0384). Suspensions were filtered through a 40 um strainer

(Fisher Scientific cat. #22363547) and debris was removed using an iodixanol gradient.

Iodixanol solution was diluted from 60% iodixanol (Sigma cat. #D1556-250ML) with dilu-

tion buffer consisting of 0.15 M KCl, 0.03 M MgCl2, and 0.12 Tricine-KOH pH 7.8. Nuclei

were mixed 1:1 with 50% iodixanol solution, then 30% iodixanol solution was layered under-

neath the 25% mixture, and 40% iodixanol solution was layered at the bottom. Nuclei were
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centrifuged at 4°C, 3000 x g for 20 minutes with full acceleration and no brake and the nuclei

band was separated from the debris layer. Concentrations of the final suspensions were deter-

mined using a hemocytometer. Nuclei were immediately processed following the Chromium

Next GEM Single Cell Multiome ATAC + Gene Expression User Guide (CG000338).

10x Multiome experiments

Gene expression and chromatin accessibility were profiled simultaneously in the same nuclei

using the Chromium Next GEM Single Cell Multiome ATAC + Gene Expression kit (10x

Genomics cat. #1000283) following the manufacturer’s protocol. Briefly, around 16,000 nu-

clei were loaded per well in the microfluidic chip and partitioned into gel beads-in-emulsions

(GEMs) for a target recovery of 5,000-10,000 nuclei per sample (around 80,000 nuclei per tis-

sue). During incubation, transposase cleaved open regions of DNA and added GEM-specific

adapter sequences to the fragments. After transposition, the nuclei lysates were reverse

transcribed using oligodT primers, which also adds GEM-specific barcodes and UMIs to the

resulting cDNA. The GEMs were then broken and the transposed DNA and barcoded cDNA

underwent pre-amplification PCR to produce the input material for parallel snATAC-seq and

snRNA-seq library building. For snATAC-seq, Illumina P5/P7 adapters were added during

sample index PCR and the final libraries were cleaned using SPRIselect beads (Beckman

Coulter cat. #B23318). For snRNA-seq, the barcoded cDNA underwent template switch-

ing and amplification, and was then fragmented and size-selected using SPRIselect beads.

Illumina P5/P7 adapters were added during sample index PCR and the final snRNA-seq

libraries were cleaned using SPRIselect beads. The snATAC-seq libraries were sequenced

on an Illumina NovaSeq 6000 sequencer as paired-end, dual-indexed reads (50/50/8/24) to

an average depth of 180 M reads per library. The snRNA-seq libraries were sequenced on

an Illumina NovaSeq 6000 sequencer as paired-end, dual-indexed reads (28/90/10/10) to an

average depth of 194 M reads per library.
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Demultiplexing Parse Biosciences snRNA-seq data

Due to the combinatorial barcoding approach, raw fastqs from Parse snRNA-seq libraries

contain all samples included in the experiment. In order to provide sample-level fastqs to the

ENCODE portal, Parse Biosciences’ split-pipe software v0.7.6p and custom code were used

to assign reads to samples. Briefly, split-pipe v0.7.6p was used to generate an annotated

fastq with read names containing cell barcodes (process/single cells barcoded head.fastq.gz)

as well as a cell metadata file (all-well/DGE unfiltered/cell metadata.csv) mapping barcode

to sample for each pair of subpool fastqs associated with an experiment. A custom python

script calls seqtk v. 1.3-r106 (https://github.com/lh3/seqtk) to extract reads from the

original fastqs and output them as sample-level fastq files.

Read mapping and quantification

All data quantifications were downloaded from ENCODE portal using carts, organizing the

data based on assay and/or tissue (refer to Table S1 for links to carts).

Bulk and single-nucleus RNA-seq data were processed through ENCODE uniform process-

ing pipelines using the mm10 genome with Gencode vM21 annotations. For bulk RNA-

seq, the data were aligned using STAR v. 2.5.1b176 and quantified using RSEM, which

provides FPKM, TPM, and raw counts (https://www.encodeproject.org/pipelines/

ENCPL862USL/).

The snRNA-seq data were aligned using STARSolo v. 2.7.10a94 with GeneFull Ex50pAS

settings to generate UMI count matrices (https://www.encodeproject.org/pipelines/

ENCPL257SYI/), similar to the intronic count option in 10x’s Cell Ranger. Single-nucleus

ATAC-seq data were processed using the standard ENCODE snATAC-seq pipeline with the

mm10 genome to generate fragment files which were used as input to downstream analyses
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(https://www.encodeproject.org/pipelines/ENCPL952JRQ/).

Bulk RNA-seq analysis

Normalized bulk RNA-seq quantifications were concatenated across all samples using the

TPM column from the ENCODE pipeline. In each tissue, the number of regulatory genes

in each category were counted if they were expressed at >1 TPM in at least 1 bulk sample.

QC and filtering of single-nucleus data

Analyses were performed on a per-tissue basis and all input files were downloaded from the

ENCODE portal. The snRNA-seq tar files contain sparse matrices with corresponding gene

and barcode CSV files. The corresponding snATAC-seq tar files for 10x Multiome contain

compressed TSV fragments and indices. For Parse Split-seq, the number of datasets varies

depending on the number of subpools set aside per tissue.

To perform the integrated snRNA-seq analysis, 42 Parse Split-seq datasets and 8 10x Multi-

ome datasets for adrenal gland, 32 Parse Split-seq datasets and 8 10x Multiome datasets for

cortex, 34 Parse Split-seq datasets and 8 10x Multiome datasets for hippocampus, 28 Parse

Split-seq datasets and 8 10x Multiome datasets for heart, and 56 Parse Split-seq datasets

and 8 10x Multiome datasets for gastrocnemius were downloaded from the ENCODE portal

(Table S3). Genes were filtered for protein coding, lncRNAs, pseudogenes, and microRNAs.

Ambient RNA was filtered from droplet-based 10x data using Cellbender v. 0.2.2264. Dou-

blet detection was performed on nuclei with > 500 UMIs detected per nucleus using Scrublet

v. 0.2.397.

Data were filtered differently for the “standard” Parse Split-seq libraries (12,000-15,000-

nucleus subpools), small Parse Split-seq libraries (1,000-2,000-nucleus subpools), and 10x
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Multiome nuclei (5,000-nucleus libraries). The Parse Split-seq nuclei belonging to the 12-

15,000-nucleus subpools were filtered by > 500 and < 30,000 UMIs per nucleus, > 500

genes expressed, < 0.2 doublet score, and < 0.5 percent mitochondrial gene expression for

adrenal gland, cortex, and hippocampus, and the 1-2,000-nucleus subpools by > 1000 and

< 50,000 UMIs. For heart, the filters were relaxed slightly to < 0.25 doublet score and < 1

percent mitochondrial gene expression and further relaxed for gastrocnemius to < 5 percent

mitochondrial gene expression. The 10x Multiome nuclei were filtered slightly differently: >

500 and < 30,000 UMIs, > 300 genes, < 0.25 doublet score, and < 5 percent mitochondrial

gene expression for cortex, hippocampus, and gastrocnemius, and > 1000 UMIs, < 0.2

doublet score, and < 0.5 percent mitochondrial gene expression for adrenal gland and heart.

In addition, 10x Multiome nuclei were also filtered by > 1000 unique nuclear fragments, TSS

enrichment > 4, and < 1 ArchR doublet score in the corresponding snATAC-seq data. After

initial processing of snATAC-seq data (described below), barcode sequences from snRNA-

seq and snATAC-seq multiome nuclei were matched and nuclei failing snATAC-seq QC were

excluded from downstream snRNA-seq analysis. All filtering parameters per library can be

found in Table S2.

Preprocessing 10x snATAC-seq data

ArchR Arrow files were generated for each tissue using the ENCODE processed fragments

files from 8 experiments with a minimum TSS enrichment of 4, minimum 1,000 unique

fragments per cell, and excluding reads from mitochondrial DNA in downstream analysis249.

Doublets were scored and filtered using ArchR’s “addDoubletScores” and “filterDoublets”

functions with an enrichment threshold of 1249. ArchR projects for each tissue were saved

and barcode sequences were translated into their snRNA-seq counterpart and saved as csv

files. After snRNA-seq filtering, nuclei failing snRNA QC were dropped from the ArchR

project using “subsetArchRProject”.
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Integration of Parse and 10x snRNA-seq data

After filtering the 3 Seurat objects per tissue (standard Parse, small Parse, and 10x Mul-

tiome), each was normalized using the function “SCTransform” in Seurat v. 4.1.198, with

number of genes expressed per nucleus and percent mitochondrial gene expression regressed

out. Anchors for integration across the 3 objects were calculated using “SelectIntegrationFea-

tures” with 3,000 genes, “PrepSCTIntegration”, and “FindIntegrationAnchors” in Seurat,

with the standard Parse dataset serving as the reference due to inclusion of all 7 timepoints.

After integrating data (“IntegrateData”), principal component analysis was performed on the

integrated assay by the “RunPCA” function with 50 principal components, with the UMAP

(“RunUMAP”) calculated from the first 30 components. Clustering was performed with the

Louvain clustering algorithm (“FindClusters”) with resolution 0.8, with sub-clustering per-

formed as necessary on specific clusters in gastrocnemius and hippocampus due to expression

of known marker genes (Fig. 3.7, 3.9).

Integrated cell type annotation

When available, reference datasets were used to transfer annotations using “FindTransfer-

Anchors” in Seurat v. 4.1.198. For both cortex and hippocampus, a downsampled version

of the 1M whole cortex and hippocampus 10x atlas from 8 week old mice available on the

Allen data portal196 was used to transfer subtype-level annotations. Downsampling was

performed per “cell type alias label” group, with 1,000 nuclei taken per cell type (or all nu-

clei, if < 1,000 were available) for a total of 250,734 nuclei used for label transfer. For the

heart dataset, both a human heart cell atlas198 (486,134 nuclei) and a dataset of 8-14 week

old stressed mouse ventricles199 (29,615 nuclei) were used separately for label transfer. For

gastrocnemius, label transfer was performed using P10, P21, and 5-month mouse tibialis

anterior datasets112 (28,047 total nuclei). In addition to label transfer, curated marker genes
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were used to refine predictions (Fig. 3.5, 3.6, 3.7, 3.8, 3.9, Table S3). In lieu of a reference

dataset in the case of adrenal gland, marker genes alone were used to annotate celltypes

per cluster (Fig. 3.5, 3.6, 3.7, 3.8, 3.9, Table S3). Each cluster was annotated at the finest

possible resolution in a grouping titled “subtypes” (in all figures, metadata, and data ob-

jects). This resolution includes dynamic cell states such as OPCs, early DG, the sex-specific

populations in the adrenal cortex, and layer-specific neuronal subtypes in cerebral cortex.

Depending on the downstream analysis, subtypes and states were grouped into a coarser

resolution titled “celltypes”. For example, transient sex-specific populations in the adrenal

cortex are collapsed along with zona fasciculata, and cerebral cortex layers are all annotated

as glutamatergic neurons.

Transferring cell type annotations to corresponding snATAC-seq

Cell type annotations were added to each ArchR project using the per-cell metadata ex-

tracted from Seurat objects. Barcode sequences were matched between assays and annota-

tions carried over from snRNA-seq analysis with no modifications.

Differential gene expression analysis of pseudobulk snRNA-seq

The raw, unnormalized counts were extracted from the annotated Seurat object for subtypes

of interest and summed across all nuclei in each individual mouse for a sample-level pseu-

dobulk counts matrix across all expressed genes. Using pydeseq2265, defined groups such as

sex were compared within subtypes. Results were filtered by an absolute log fold change >1

and adjusted p-value < 0.01.
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Pseudotime ordering of dynamic cell states in hippocampus

Cell types of interest were subset from the tissue-level Seurat object for pseudotime ordering

using Monocle 3100,266–269. The root cells were chosen for “order cells” according to the

known stage of the cells. The oligodendrocytes and OPCs were subset from the hippocampus

dataset, with root cells corresponding to the OPCs. For ordering of the DG cells, root cells

correspond to the cells from early timepoints. Pseudotime values for the ordered cells were

incorporated into their metadata for downstream analysis.

Calculating single-nucleus regulatory topics using Topyfic

The raw, unnormalized counts were extracted from each filtered Seurat object per tissue

and barcoding technology (Parse and 10x). Genes were filtered to 2,701 regulatory genes128

determined by microRNA-host gene correlations, annotated transcription factors, and genes

annotated with the following Gene Ontology (GO) terms: 0004402 (histone acetyltransferase

activity), 0004407 (histone deacetylase activity), 0042054 (histone methyltransferase activ-

ity), 0032452 (histone demethylase activity), 0016592 (mediator complex), 0006352 (DNA-

templated transcription, initiation), 0003682 (chromatin binding), 0006325 (chromatin or-

ganization), 0030527 (structural constituent of chromatin), and 0140110 (transcription reg-

ulator activity). MicroRNA host genes were included if they are annotated as a host gene

(e.g. Mir133a-1hg, Mir124a-1hg) and/or their Spearman correlation with expression of the

mature microRNA was ≥ 0.3128.

Depth normalization was performed on each raw counts matrix by tissue (x 5) and technol-

ogy (Parse and 10x; 10 total matrices) by a round of proportional fitting followed by log

transformation, then another round of additional proportional fitting270. An anndata object

was constructed from the normalized matrix, 2,701 regulatory genes, and per-cell metadata

including subtype and celltype annotations.
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Topyfic was run with a range of k values for each tissue and technology using 100 runs of LDA

with batch size of 128 and 5 minimum iterations128. The best k per tissue and technology

was determined by comparing k to the number of resulting topics, n. The closest k to the

resulting n value was chosen: k = 15 for Parse and 13 for 10x adrenal, 14 for Parse and 13

for 10x cortex, 13 for Parse and 21 for 10x hippocampus, 11 for Parse and 13 for 10x heart,

and 12 for Parse and 8 for 10x gastrocnemius. Harmony227 was used to combine the best

models learned separately from each technology to a unified set of topics, filtering out topics

with participation in less than 1% of nuclei in the smaller of the two datasets. Downstream

analysis such as comparisons between topics was facilitated by analysis of the gene weights

in each topic (Tables S4-S8).

Topics analysis

Harmonized snRNA-seq topics in each tissue were characterized by analysis of topic-trait

enrichment (Topyfic function “TopicTraitRelationshipHeatmap” on the analysis TopModel

object), a measurement of how highly-weighted topic genes are specifically expressed in traits

like celltypes, subtypes, ages, and sexes128. Topics were further interpreted by cell participa-

tion across celltypes and subtypes, represented as pie charts (function “pie structure Chart”)

and structure plots (function “structure plot”)128. Two specific topics of interest, such

as immune-related topics in heart and brain, were compared using an MA plot (function

“MA plot”), and topics were compared across tissues by Pearson correlation based on gene

weights128.

Characterizing ENCODE cCRE specificity with snATAC-seq

The ENCODE V4 catalog of candidate cis-regulatory elements (cCREs) for mm10 was down-

loaded from the ENCODE portal (https://www.encodeproject.org/files/ENCFF167FJQ/)248.
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All 926,843 cCREs were added to each tissue’s ArchR project by the function “addPeakSet”,

then scored using “addPeakMatrix”, which counts the number of fragments per region with

a maximum count of 4 to prevent large biases in the counts249. The raw counts matrices

were extracted (“getMatrixFromProject”), pseudobulked by integrated snRNA cluster, and

normalized by RPM. RPKM was not used due to the limited distribution of cCRE lengths,

between 150 and 350 bp with a mean of 269 bp and standard deviation of 64.9 bp (Fig. 3.15).

For clarity in downstream analysis, small clusters of less than 100 multiome nuclei were re-

moved (such as a cluster corresponding to 16 hepatocytes detected in adrenal gland, most

likely a dissection artifact). Each cCRE was classified as accessible in a celltype if it scored

≥ 5 RPM in at least one cluster corresponding to that celltype. Categories of “specific”,

“shared”, “general”, or “global” were assigned based on the number of celltypes within and

across tissues with open chromatin at each cCRE. “Specific” refers to cCREs accessible in

only one celltype above the RPM threshold across all tissues. Common celltypes such as

macrophages and endothelial cells were considered one celltype. “Shared” refers to cCREs

accessible in more than one celltype within or across tissues. “General” refers to cCREs

accessible in all major celltypes within a tissue, and “global” refers to cCREs accessible in

all major celltype across all tissues. Major celltypes were defined as those whose cumulative

sum makes up 90% of the cell types in the tissue; for example neurons in the brain, myonu-

clei in skeletal muscle, and adrenal cortical cells, followed by other major types such as glial

cells, endothelial cells, and fibroblasts.

Differential accessibility analysis of pseudobulk snATAC-seq

Pseudobulk cCRE counts matrices were generated per sample and tissue by extracting raw

single-nucleus counts and summing per cCRE across all nuclei from each individual mouse.

Using pydeseq2265, accessibility of the previously characterized cCREs accessible in pseu-

dobulk clusters was compared between sexes and timepoints within each tissue and group,
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i.e. female vs. male adrenals at PND 14, female vs. male adrenals at 2 months, PND 14 vs.

2 month male adrenals, PND 14 vs. 2 month female adrenals, etc. Results were filtered by

an absolute log fold change >2 and adjusted p-value < 0.01. Unique cCREs open in each

group were counted and normalized by the total number of cCREs accessible in the tissue.

Motif enrichment analysis

Motif enrichment was calculated using ArchR to analyze transcription factor activity in

celltype specific cCREs. The JASPAR2024 CORE vertebrate non-redundant PFMs271 were

formatted as a custom RangedSummarizedExperiment, and matches with the full set of

cCREs were extracted with motifmatchr272,273. ArchR’s “customEnrichment” function was

used to run hypergeometric-based enrichment testing on the matched motifs and a custom

subset of specific cCREs as a GenomicRanges object249,273. Motifs were filtered by bulk

RNA-seq expression in each tissue for downstream analysis (>5 TPM in at least 1 sample).
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Figure 3.1: Overview of the ENCODE4 mouse dataset of postnatal development.
a, Samples from 5 coordinated B6/CAST F1 hybrid mouse tissues were collected at 7 key
timepoints from postnatal day 4 to 18-20 months (excluding hippocampus, which was col-
lected from PND 10 onwards). The mouse postnatal timecourse corresponds to human
infancy to late adulthood. b, Overview of the sampled tissues, timepoints, and assays from
each tissue in the ENCODE mouse dataset. The majority of assays have successful experi-
ments in 4 replicates, 2 males and 2 females, per timepoint. 10x Multiome experiments were
selectively performed on PND 14 and 2 month timepoints. c, Comparison of gene and UMI
counts in cell types across all five tissues, with point sizes reflecting the number of nuclei in
each cell type within its respective tissue. In common brain cell types, cerebral cortex data
points are represented by squares. d, Dynamics of cell subtype composition across postnatal
development in all five tissues. Highlighted subtypes are shown in color, while all others are
represented in shades of grey (see Fig. 3.5, 3.6, 3.7, 3.8, 3.9 for full-color versions).
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Figure 3.2: Characterization of hippocampus topics in annotated subtypes. a,
Number of transcription factors detected at > 1 TPM in bulk RNA-seq data in each tissue.
Sixth column reports the union of TFs in all tissues, and the last column reports the total
number of TFs in our regulatory gene set. b, Number of chromatin binding genes detected
in bulk RNA-seq data. c, Number of chromatin organizing genes detected in bulk RNA-seq
data. d, Number of transcription regulators detected in bulk RNA-seq data. e, Number of
host genes representing microRNAs. f, Number of histone modifying genes such as acetyl-
transferases, deacetylases, methyltransferases, and demethylases detected in bulk RNA-seq
data. g, Number of TBP-associated factors and members of the Mediator complex detected
in bulk RNA-seq data. h, Topic-trait relationship heatmap between 14 hippocampus topics
and 10 cell types (23 subtypes). i, Proportion of topics in OPC (oligodendrocyte precur-
sor), MFOL (myelin-forming oligodendrocyte), and MOL (mature oligodendrocyte) subtypes
summarized in pie charts and displayed as a compressed stacked bar plot (structure plots) for
single nuclei ordered by pseudotime. Pseudotime, timepoint, sex, and snRNA-seq barcoding
technology are indicated for each nucleus below the structure plots. j, Proportion of topics
in early DG (dentate gyrus) and DG subtypes.
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Figure 3.3: Characterization of topics across diverse tissues. a, Comparison of the
number of topics required to constitute 80% of cell participation when sorted from the largest
to the smallest proportion per nucleus, along with the percentage of nuclei in each category
out of the total nuclei per tissue. b, Distribution of cell participation in each topic across
all five tissues, with violins colored by associated celltype, when possible (see Fig. 3.1c for
color legend). c, MA plot comparing microglia-specific HC12 with microglia-specific CX8.
X-axis (A) represents average weight of the gene between both topics in the comparison, and
y-axis (M) represents log base 2 of the fold change of gene weight between topics. Genes of
interest are labeled. d, MA plot comparing HC12 with macrophage-specific HT3. e, Percent
of topics containing each gene in the TF biotype vs. median of the gene’s weight across all
topics when the gene weight is >= 1. Percentages of genes in each quadrant, out of the
total number in the biotype, are labeled. Percent of topics containing each gene in each
biotype vs. median weight across topics for f, chromatin binders, h, chromatin regulators,
i, microRNA host genes, j, histone modifiers, and k, TAF-MED complex-associated genes.
l, Gene biotype simplex with a sector for chromatin (left), encompassing chromatin binders,
chromatin regulators, and histone modifiers, a sector for TFs and microRNA host genes
(top), and a sector for all other biotypes (right). Topics are color-coded by tissue and scaled
by number of genes. m, 20 clusters of correlated topics (C1 - C20), filtered to connections
>= 0.9 cosine similarity. Each node represents a topic, color-coded by tissue, and edges
labeled by cosine similarity score calculated on the basis of gene weights between topics.
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Figure 3.4: Characterization of celltype-specific candidate cis-regulatory elements
and motif enrichment analysis. a, 390,146 ENCODE mm10 cCREs filtered by > 5 RPM
in 10x snATAC-seq data pseudobulked by integrated snRNA-seq clusters. Specific cCREs
in blue (168,443) are accessible in only one celltype above 5 RPM across all tissues, shared
in grey (186,805) are accessible in more than one celltype within or across tissues, general
in dark grey (21,314) are accessible in all major celltypes within a tissue, and global in
black (13,584) are accessible in all major celltype across all tissues. b, Number of cCRE
per specificity category in each tissue. c, Breakdown of cCRE specificity by percent of
cCREs detected in each celltype in hippocampus and number of nuclei per celltype in 10x
Multiome. Breakdown of cCRE specificity and total number of nuclei per celltype in d,
gastrocnemius and e, adrenal gland. f, Percentage of the cCREs detected in each tissue
with significant increase in accessibility in each group compared to its counterpart across
all tissues. g, Overlap of differentially accessible cCREs between timepoints with specificity
categories, reported as percent differentially accessible out of total detected in each tissue.
h, Motif enrichment (adj. p-value < 0.05) of expressed TFs (TPM > 5 in at least 1 bulk
RNA-seq sample) in satellite, perinatal, and myonuclear fiber type-specific cCREs. i, Weight
of TFs as ordered in h across topics corresponding to satellite and myonuclear subtypes. j,
Overlap of differentially accessible cCREs between sexes with specificity categories, reported
as percent differentially accessible out of total detected in each tissue. k, Overlap of sex-
specific cCREs with celltype-specific cCREs, reported as percent differentially accessible out
of total detected in each tissue. l, Motif enrichment (adj. p-value < 0.05) of expressed TFs
(TPM > 5 in at least 1 bulk RNA-seq sample) in adrenal ZF subtype-specific cCREs. m,
Weight of TFs as ordered in l across topics corresponding to adrenal ZF subtypes.
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Figure 3.5: Clustering and annotation of integrated adrenal gland snRNA-seq
data. a, UMAP representation of 83,468 adrenal gland nuclei integrated between Parse and
10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers
of nuclei per cluster are annotated to the right of the bar plots, and numbers of nuclei per
annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition
across postnatal development in adrenal gland, with the same color legend as in a. For
consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker
genes across subtypes in adrenal gland.
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Figure 3.6: Clustering and annotation of integrated left cerebral cortex snRNA-
seq data. a, UMAP representation of 112,118 left cerebral cortex nuclei integrated between
Parse and 10x Multiome platforms and breakdown of age, sex, and technology per cluster.
Numbers of nuclei per cluster are annotated to the right of the bar plots, and numbers of
nuclei per annotated cell subtype are included in the legend. b, Dynamics of cell subtype
composition across postnatal development in cortex, with the same color legend as in a. For
consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker
genes across subtypes in cortex.

120



Figure 3.7: Clustering and annotation of integrated hippocampus snRNA-seq
data. a, UMAP representation of 78,167 hippocampus nuclei integrated between Parse
and 10x Multiome platforms and breakdown of age, sex, and technology per cluster. Num-
bers of nuclei per cluster are annotated to the right of the bar plots, and numbers of nuclei
per annotated cell subtype are included in the legend. b, Dynamics of cell subtype composi-
tion across postnatal development in hippocampus, with the same color legend as in a. For
consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker
genes across subtypes in hippocampus.
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Figure 3.8: Clustering and annotation of integrated heart snRNA-seq data. a,
UMAP representation of 78,167 heart nuclei integrated between Parse and 10x Multiome
platforms and breakdown of age, sex, and technology per cluster. Numbers of nuclei per
cluster are annotated to the right of the bar plots, and numbers of nuclei per annotated cell
subtype are included in the legend. b, Dynamics of cell subtype composition across postnatal
development in heart, with the same color legend as in a. For consistent sampling at each
timepoint, only Parse data is shown. c, Expression of marker genes across subtypes in heart.
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Figure 3.9: Clustering and annotation of integrated gastrocnemius snRNA-seq
data. a, UMAP representation of 69,879 gastrocnemius nuclei integrated between Parse and
10x Multiome platforms and breakdown of age, sex, and technology per cluster. Numbers
of nuclei per cluster are annotated to the right of the bar plots, and numbers of nuclei per
annotated cell subtype are included in the legend. b, Dynamics of cell subtype composition
across postnatal development in gastrocnemius, with the same color legend as in a. For
consistent sampling at each timepoint, only Parse data is shown. c, Expression of marker
genes across subtypes in gastrocnemius.

123



Figure 3.10: Regulatory topic enrichment and proportions in adrenal gland cell
subtypes. a, Topic-trait correlation in 19 regulatory adrenal topics. b, Structure plots in
adrenal cell subtypes, summarized in above pie charts. Topics AD7, AD9, AD12, and AD6
are specific to adrenal cortex. c, AD19, AD8, and AD18 are specific to adrenal medulla,
while AD15 is specific to Sox10+ progenitor cells. d, AD2 is endothelial-specific and AD3
is adipocyte-specific. AD5 is a general cycling topic enriched in proliferating cells regardless
of subtype. e, Topics AD14 and AD10 are specific to macrophages, and topic AD4 is shared
across stromal, fibroblast, and smooth muscle cells. AD15 is enriched in the adrenal capsule
and fibroblasts.
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Figure 3.11: Regulatory topic enrichment and proportions in left cerebral cortex
cell subtypes. a, Topic-trait correlation in 16 regulatory cortex topics. b, Structure plots
in cortex cell subtypes, summarized in above pie charts. CX4 is a general GABAergic topic
other than Meis2+ and early GABAergic cells, which are described by a mix of topics. c,
Topics CX1, CX2, CX10, and CX12 are all enriched in various excitatory neuronal subtypes.
d, CX9 is enriched in OPC and COP progenitors, while CX7 is enriched in mature oligo-
dendrocytes. e, CX3 is astrocyte-specific and CX8 is microglia-specific. f, CX5 is enriched
in endothelial and pericytes and CX13 is specific to VLMC (vascular leptomeningeal cells).
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Figure 3.12: Regulatory topic proportions in left hippocampus cell subtypes. a,
Structure plots in hippocampus cell subtypes, summarized in above pie charts. HC8 is
enriched in CA1 and shared across various other glutamatergic subtypes, and HC13 is CA3-
specific. b, HC1 is astrocyte-specific, while HC12 is microglia-specific. c, HC6 and HC5
are general GABAergic neuron topics, while the Meis2+ subtype is described by a mix of
topics. d, HC11 is enriched in endothelial, pericytes, and VLMC (vascular leptomeningeal
cells), while HC1 is shared in VLMC and ependymal cells.
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Figure 3.13: Regulatory topic enrichment and proportions in heart subtypes. a,
Topic-trait correlation in 17 regulatory heart topics. b, Structure plots in heart cell subtypes,
summarized in above pie charts. Topics HT2, HT11, and HT13 are shared by cardiomyocytes
at all developmental stages. c, HT7 and HT14 are enriched in endothelial cells, while HT9
is enriched in endocardial and lymphatic endothelial cells. d, HT1 is enriched in cardiac
fibroblasts at all developmental stages. e, HT8 is specific to pericytes and one subtype of
smooth muscle, while the other smooth muscle subtype is enriched in HT16 and HT1. f,
HT3 is the macrophage-specific topic in heart. HT6 is a general cycling topic enriched in
proliferating cells regardless of subtype. g, HT12 is specific to epicardial cells. Adipocytes
and Schwann cells are made up of several topics, the largest fraction being HT1 which is also
shared with fibroblasts and smooth muscle.
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Figure 3.14: Regulatory topic enrichment and proportions in gastrocnemius sub-
types. a, Topic-trait correlation in 16 regulatory gastrocnemius topics. b, Structure plots
in gastrocnemius cell subtypes, summarized in above pie charts. GC10 is enriched in both
macrophages and lymphocytes. c, Topics GC2, GC5, GC6, and GC11 are shared across
mature myofiber subtypes. Most cell participation in type 2B and type 2X is attributed to
topic GC2, but type 2X also shares GC6 with type 2A and type 1. Perinatal myonuclei are
described by GC16 and GC11, while GC15 and GC8 are specific to satellite cells. Specialized
NMJ (neuromuscular junction) and MTJ (myotendinous junction) myonuclei have no spe-
cific regulatory topic, but share a mix of muscle-enriched topics. d, GC7, GC12, and GC13
are specific to endothelial, smooth muscle, and Schwann subtypes, respectively. FAP (fibro-
adipogenic progenitors) are enriched for GC4 and GC11 which are also timepoint-specific,
with GC11 enriched in infants and GC4 specific to adults and juveniles.
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Figure 3.15: cCRE classification by regulatory signature. a, Breakdown of 390,146
cCREs >5 RPM in at least 1 pseudobulk cluster in 10x Multiome snATAC-seq data across
all 5 tissues. Most cCREs are classified as dELS (distal enhancer-like signature), CA (chro-
matin accessible), and pELS (proximal enhancer-like signature). Less than 15% of accessible
cCREs are CA-CTCF (chromatin-accessible CTCF), CA-H3K4me3 (chromatin-accessible
with promoter-associated histone modification), CA-TF (chromatin-accessible, TF signal),
and TF (TF signal). b, All cCREs are between 150 and 350 bp with an average of 284
bp with consistent distributions across the 8 categories. Therefore, we opted to normalize
snATAC-seq quantifications across the cCREs using reads-per-million (RPM).
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Figure 3.16: Motif enrichment in subtype-specific cCREs across all tissues. Out
of 765 possible JASPAR motifs, 317 were enriched in at least 1 subtype with an adjusted
p-value ≤ 0.05, enrichment ≥ 1.5, and bulk RNA-seq expression ≥ 5 TPM in at least 1
sample in the tissue.
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Chapter 4

Characterizing the impact of genetic

diversity on gene expression across

adult cell types and states in mice

4.1 Abstract

Mapping the impact of genomic variation on gene expression is crucial for understanding the

molecular basis of complex phenotypic traits. The identification of genomic loci quantita-

tively associated with regulation of gene expression is a major focus of genetics but is affected

by factors such as the large sample size required and the significant influence of environmental

factors on biological traits. Mouse models of natural genetic diversity overcome these prob-

lems, providing a controlled and reproducible framework for capturing the breadth of genomic

variation observed in different genotypes. As part of the IGVF consortium’s efforts to cata-

log the effects of genetic variation on tissues, we characterize the transcriptional landscape

of the mouse founder strains for the Collaborative Cross and Diversity Outbred that com-

131



prise 5 classical inbred strains (C57BL6/J, A/J, NOD/ShiLtj, NZO/HlLtJ, 129S1/SvImJ)

and 3 wild-derived strains (PWK/PhJ, WSB/EiJ, and CAST/EiJ). We sequenced samples

from 8 tissue groups for 4 male and 4 female replicates per mouse strain using single-nucleus

RNA-seq to generate an “8-cube” dataset of 5.9 million nuclei passing our filters across 108

cell types and cell states. We observe that genetic divergence correlates with transcriptional

variation across most cell types, with most transcriptional variation found in PWK and

Castaneus. Further analysis of specific cell types revealed substantial variation in common

laboratory strains associated with known traits in those strains. The characterization of

these founders will enable the interpretation of gene expression in matching tissues from

F1 hybrids and Collaborative Cross lines as well as facilitate the identification of cis and

trans contributions to gene expression variation and eQTL mapping at the cell type level.

The founder 8-cube dataset presented here lays the foundation for advancing our systematic

understanding of the genomic basis for cell type-specific transcriptional regulation.

4.2 Introduction

Understanding the impact of genetic variation on gene expression is fundamental for deci-

phering the molecular mechanisms underlying complex traits, diseases, and developmental

processes. Genetic variation, such as single nucleotide polymorphisms (SNPs) and struc-

tural variants, can modulate gene expression levels by affecting regulatory elements such

as promoters, enhancers, and transcription factor binding sites. This modulation can lead

to phenotypic diversity among individuals, including susceptibility to diseases, response to

therapies, and variation in physiological traits. Studying the influence of genetic variants

on gene expression across different tissues, disease states, and developmental stages provides

crucial insights into the regulatory networks governing cellular functions. Cell-type-specific

gene expression patterns are essential for the proper function of tissues and systems within
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the body. Researchers can unravel cell-type-specific regulatory mechanisms and identify po-

tential targets for therapeutic interventions by examining how genetic variants impact gene

expression in certain cell types, A central aim of the IGVF (Impact of Genomic Variation on

Function) consortium is to comprehensively map the influence of genetic variants on molec-

ular traits such as gene expression across diverse tissues and disease contexts in human and

mouse18.

Recombinant inbred (RI) mouse strains are a valuable platform for investigating complex

mammalian traits and diseases24,59. They are generated by crossing genetically diverse

founder strains to produce F1 hybrids. These F1 hybrids are then bred together to generate

a large set of F2s, which are paired as founders for strains inbred over 20 generations24. This

results in RI strains with stabilized genetic compositions that are genetically identical within

each strain but differ between strains, ideal for genetic mapping studies24. More recently,

numerous diverse strains have been crossed with the specific aim of analyzing complex traits.

This effort has resulted in the creation of widely used community resources like the Collab-

orative Cross (CC) RI panel and the Diversity Outbred (DO) panel58,62. The CC panel is

an invaluable tool for modeling natural genetic diversity while also retaining the benefits

of inbred characteristics such as stable, homozygous genomes, ensuring reproducibility and

consistency across experiments58,64. Each CC strain represents a unique combination of hap-

lotypes from 8 founder strains, comprising five laboratory strains (C57BL/6J, NOD/ShiLtJ,

NZO/HlLtJ, A/J, 129S1/SvImJ) and three wild-derived strains (WSB/J, PWK/PhJ, and

CAST/EiJ). While the DO panel is based on the same 8 founders, random crosses result

in unique heterozygous genomes that more closely mirror the diversity observed in human

genomes and refine the landscape of QTL mapping62. The 8 founder strains collectively

encompass a broad spectrum of natural genetic variation that enable investigation of phe-

notypes within a controlled yet genetically diverse framework60–62,64.

While C57BL/6J (“B6”) is the most used laboratory strain, other strains are also used
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for specific disease research. For example, NOD/ShiLtJ (non-obese diabetic, “NOD”) is a

commonly used model for type 1 diabetes and NZO/HlLtJ (New Zealand obese, “NZO”) for

type 2 diabetes32,33. A/J (“AJ”) also serves as a model for asthma35, emphysema36, and

age-onset muscular dystrophy37. Other lab strains are preferred for specific experimental

techniques, such as embryonic stem cell (ESC) derivation. Although ESC lines are now

available for all 8 founder strains39, they were first readily derived from 129S1/SvImJ mice

(“129S”), leading to the establishment of widely used cell lines such as CJ738. Wild-derived

strains originate from individuals captured from wild mouse populations that were then

inbred to homozygosity. WSB/J (Mus musculus domesticus, “WSB”), PWK/PhJ (Mus

musculus musculus, “PWK”), and CAST/EiJ (Mus musculus castaneus, “CAST”) represent

the three main Mus musculus subspecies that diverged approximately one million years ago56.

Each wild-derived strain has distinct genetic and phenotypic traits. For example, CAST mice

are immune to flaviviruses but highly susceptible to other viruses such as orthopoxviruses

and influenza A, while PWK show resistance to influenza A and sex-specific responses to diet-

induced obesity. Despite typical fertility rates, WSB mice have significantly reduced sperm

count and altered sperm morphology54. Together, these strains encompass approximately 23

million unique SNP sites and 350 million base pairs of structural variation39,48. The genetic

diversity among the CC and DO founders exceeds that of the current humans56.

Here, we characterize gene expression in the 8 founder strains of the Collaborative Cross and

Diversity Outbred panels across 8 distinct tissue groups: (1) cortex and hippocampus, (2)

diencephalon and pituitary gland, (3) muscle (gastrocnemius), (4) heart, (5) liver, (6) kidney,

(7) adrenal gland, and (8) male and female gonads. We sample 4 adult males and females

per genotype in each tissue and recover 108 heterogeneous cell types and states. We uncover

strain-specific differences in cell type prevalences and cell states. Understanding the cell

type-specific genetic regulation of gene expression is crucial for deciphering the mechanisms

underlying complex traits. By leveraging single-nucleus RNA-seq, we are poised to unlock a

deeper understanding of how genetic variation shapes cellular identity and function.
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4.3 Results

Variation in body and tissue weight based on genotype and sex

We comprehensively collected 8 coordinated tissue groups across 8 diverse genotypes from

young adult mice aged 10 weeks for a minimum of 4 males and females for each of the 8

founder strains. Wherever possible, the same set of 64 individuals are profiled for each tissue

resulting in a coordinated whole-body dataset in each mouse. Our core dataset thus consists

of 8 tissues x 8 strains x 8 reps/strains, for a total of 512 samples, which we call the “8-cube”

dataset (Fig. 4.2a). We collected detailed metadata during sample collection including body

and tissue weight, collection times, and estrus stage in females. As expected, NZO is the

heaviest, weighing 1.95 times more than the average weight of 22 grams (g) across all strains

(Fig. 4.1a-i). Whereas NZO is 43 g on average, the wild-derived strains are typically the

smallest with a mean weight of 14.4 g. Sexual dimorphism is apparent in both body weight

(with males weighing 16% more than females on average within each strain) as well as in

certain tissues such as kidney and gastrocnemius muscle, where male tissues weigh 20.5%

and 31.1% more than female tissues within each strain, respectively. Females and males are

roughly the same size in AJ and NZO while B6 and NOD have the most sexual dimorphism

in terms of body weight, with males weighing almost 1.5 times more than females. The

correlation of body weight to tissue weight ranges from a Pearson R2 to 0.94, with brain

regions having the lowest (Fig. 4.1a, b) and kidney and liver having the highest correlation

(Fig. 4.1h, i). As tissue size increases, the correlation between body weight and tissue

weight strengthens, with most tissues exhibiting a positive correlation (> 0.4), except for

brain regions and adrenal glands. In summary, sexual dimorphism based on body weight

varies across genotypes and tissue weight generally scales with body weight depending on

the tissue type.

We identify 108 unique cell types across 5.9 million nuclei
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We extracted the nuclei from each tissue of our 8-cubed dataset, with a few repeats increasing

the total number to 515 samples. As we have 64 samples per tissue, we performed combina-

torial cell barcoding for two tissues in each split-pool experiment88 to detect experimental

batch effects and maximize sample multiplexing (Methods). In the first 8 out of 12 columns

of our 96 well first barcoding plate, each sample from one tissue is loaded in its own well. In

the remaining 4 columns, two samples from the second tissue of the same sex and replicate

but distinct genotypes are multiplexed in a single well in 32 wells. The chosen genotype

pairs to multiplex were based on calculating pairwise Hamming distances between strains

based on 1,537,904 SNP regions followed by a maximal weight matching algorithm. This

approach pairs the most distinct strains to each other, resulting in CAST multiplexed with

129, NOD with B6, PWK with AJ, and WSB with NZO (Fig. 4.2b). These wells need to be

genetically demultiplexed to assign the mouse of origin correctly. This pattern was repeated

for all 8 tissues (Fig. 4.2c). Each plate corresponds to an experiment with an expected

yield of 1 million nominal nuclei conducted using Parse Biosciences Evercode Mega kits89

(Methods). Thus, each tissue for each mouse replicate is sequenced twice – once as a single

well and a second time mixed with one other genotype (Fig. 4.2c). We loaded approximately

1 million nuclei per tissue, which we sequenced with 20 billion reads for a depth of 20,000

reads per nucleus. The complete dataset consists of 8 million nominal nuclei sequenced with

160 billion short reads.

After quality control filtering (Methods), we recovered 5.9 million nuclei, 640,918 of which

are from B6: 713,239 nuclei from muscle, 725,168 from liver, 617,453 from kidneys, 488,092

from ovary and oviduct, 256,090 from testes and epididymis, 612,840 from cortex and hip-

pocampus, 814,531 from diencephalon and pituitary gland, 539,011 from adrenal glands,

and 497,703 from heart. A principal component analysis of the tissues by grouping all nuclei

from each individual into a pseudobulk gene expression matrix reveals high replicate con-

cordance and expected clustering patterns between tissues (Fig. 4.2d). PC1 (33.23% of the

variance) separates brain regions from other tissues, PC2 (20.02% of the variance) separates
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liver and kidney from other trunk tissues, and both PC2 and PC3 (12.75% of the variance)

separate male gonads from other tissues. These results agree with previous studies that have

also shown a distinct transcriptional signature in liver and brain that distinguish them from

other trunk organs84, and that testis expresses the most tissue-specific genes when compared

to 17 other tissues274.

We annotated each tissue separately for a combined total of 363 clusters and 108 subtypes

and states, compared to the 53 subtypes and states detected in the ENCODE4 (B6CAST

F1) mouse dataset at the same 2-month timepoint in 4 of the same tissues. We recovered

comparable proportions of major cell types across previously characterized tissues. Most

tissues contain a primary cell type such as neurons in the brain, myonuclei in skeletal muscle,

and cortical cells in adrenal gland (Fig. 4.2e). As in ENCODE4, the heart is roughly split

by thirds into cardiomyocytes, fibroblasts, and endothelial cells. Most newly added tissues

are also dominated by a major cell type: hepatocytes in liver, spermatocytes in male gonads,

and epithelial cells in kidney (Fig. 4.2e). Evaluation of the number of genes detected across

general cell types reflects similar trends as in ENCODE4, where neurons have the largest

nuclear transcriptomes (Fig. 4.2f). Increased sequencing depth also increased the median

number of genes detected in neurons and adipocytes, while genes detected in other cell

types such as myonuclei, adrenal cortex, and endothelial cells remain similar to ENCODE4.

Variations in cell type ratios and gene detection compared to ENCODE4 could stem from

technical factors or illustrate how genetic background shapes cellular characteristics, as the

ENCODE4 data is from an F1 cross. Further investigations using F1 mice (crosses between

B6 females and each of the other seven founder strains) will help elucidate the underlying

reasons for these differences.

Enhanced granularity elucidates minor cell types

Of the minor cell types (<25% of the tissue), 12 are shared between two or more tissues

including immune cells and endothelial cells (Fig. 4.2g). Other shared cell types include
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adipocytes in all tissues except brain and liver and Schwann cells shared between heart and

muscle. The increased number of captured nuclei resolved three subtypes that did not form

their own clusters in ENCODE4: myelinating and non-myelinating Schwann cells as well as

lymphatic endothelial cells in skeletal muscle (Fig. 4.11a). Myelinating Schwann cells form

a myelin sheath around axons of motor neurons to facilitate transmission of nerve impulses

that control muscle contraction275. Non-myelinating Schwann cells, also called perisynaptic

Schwann cells, cap the motor nerve endings at the neuromuscular junction (NMJ)275. They

have been shown to maintain synapse stability and regulate synapse plasticity, aiding in

repair after injury or weakening275. While myelinating Schwann cells are marked by upregu-

lation of Mpz, Pmp22, and Prx, non-myelinating markers include Scn7a and Slc35f1 276 (Fig.

4.11b). We recover 2,447 myelinating Schwann cell nuclei, or 0.34% of the entire muscle

dataset, and 1,175 non-myelinating Schwann, or 0.16% (Fig. 4.11a). Thus our sequencing

of a greater number of nuclei achieved the granularity needed to recover these minor yet

essential cell types.

Brain regions have the most cell type diversity across all tissues

Despite having the highest number of distinct cell types compared to all other tissues, brain

regions display the least genotype-specific clustering. The cortex (CX) and hippocampus

(HC), which we sequenced separately in ENCODE4, are involved in learning and memory,

which are critical functions for the survival of the organism in the environment277. The

CX/HC clusters exhibit the most even distribution across genotypes and sexes of all our

tissues (Fig. 4.3a). We identified 25 cell types distributed across 41 clusters. CX/HC

cell types also exhibit the least proportional variation by genotype compared to all other

tissues (Fig. 4.3a, b, c, d). However, we noted some genotype-driven cluster with higher

clustering resolutions in mature oligodendrocytes of CX/HC, as well as a cluster composed

of PWK and CAST nuclei alone in diencephalon/pituitary (Fig. 4.4a). Oligodendrocytes

are responsible for myelination, the process of forming insulating myelin sheaths around
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axons of neurons to increase the speed and efficiency of signal conduction196. Regulatory

topic modeling using Topyfic128 in 61,368 CX/HC oligodendrocytes identified one PWK

and CAST-specific topic out of the 9 recovered topics (Fig. 4.3e, f) (Methods). Some of

the highly weighted genes specific to topic 3 are known to play crucial roles in mammalian

neurogenesis, including Cic, Ski, and Med12 278–280. Additionally, oligodendrocyte-specific

expression of top-weighted genes like Foxo3 and Ptma have been associated with multiple

sclerosis in humans281,282. While clustering all nuclei from a given tissue reveals robust

signatures, particularly if genotype and/or sex influences gene expression in the primary cell

type, the results in oligodendrocytes (15.8% of the total number of nuclei in the CX/HC

dataset) suggest that conducting analyses within individual cell types may uncover additional

genotype-associated transcriptional variation.

The diencephalon is located between the cerebral hemispheres and the brainstem and includes

the thalamus, hypothalamus, epithalamus, and subthalamus283. Though much smaller than

the thalamus, the hypothalamus regulates essential bodily functions such as hunger and

stress responses through specialized clusters of neurons (also called nuclei), such as the

corticotropin-releasing hormone (Crh) producing neurons in the paraventricular nucleus284.

The hypothalamus communicates with the pituitary gland through the release of hormones

such as Crh to form systems such as the hypothalamic-pituitary-adrenal (HPA) axis and

the hypothalamic-pituitary-gonadal (HPG) axis that control stress and reproductive func-

tions, respectively285,286. While we focused our dissection on recovering primarily the hy-

pothalamus, we also included neighboring regions of the thalamus, which are characterized

by high Tcf7l2 expression, as well as the pituitary gland. Of the 23 cell types recovered

in diencephalon/pituitary, 6 are neuroendocrine cell types found in the pituitary gland

(Fig. 4.4a, b). Even smaller than hypothalamus, the pituitary gland is anatomically di-

vided into three main sections287. The anterior lobe constitutes the bulk of the gland and

contains five primary hormone-secreting cell types: somatotropes, lactotropes, thyrotropes,

corticotropes, and gonadotropes287. These cells produce growth hormone (Gh), prolactin
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(Prl), thyrotropin (Tsh), adrenocorticotropic hormone (Acth), and gonadotropins (includ-

ing Fsh), respectively287 (Fig. 4.4b). Out of all other celltypes in diencephalon/pituitary,

only mature oligodendrocytes show evidence of genotype-driven clustering, but are repre-

sented evenly across the genotypes (Fig. 4.4c, d). Among other tropes, melanotropes have

apparent differences in proportion by genotype, particularly enriched in 129. The 129 di-

encephalon/pituitary dataset contains 2.9% melanotropes compared to 1.3% on average in

the rest of the genotypes. Melanotropes are found in the intermediate lobe of the pitu-

itary, or pars intermedia288. They generate melanocyte-stimulating hormone (Msh) from

pro-opiomelanocortin, a precursor protein that undergoes post-translational processing to

produce various peptides, including Acth and beta-endorphin288. Once released into the

bloodstream, Msh can travel to other tissues where it exerts effects including stimulating

melanocytes to produce melanin, the pigment responsible for coloration in skin, hair, and

eyes288,289. Msh also has immunomodulatory effects and plays a role in the HPA axis, inter-

acting with Crh and Acth to regulate the secretion of stress hormones288. Regulatory topics

modeling in 12,204 melanotropes of the diancephalon/pituitary revealed 8 topics, most of

which display enrichment in particular genotypes and/or sexes (Fig. 4.4e,f). Notably, B6 is

strongly enriched in topic 3, while 129 is split between topic 5 and female-specific topic 7.

Some of the genes shared in topic 5 and 7 include Etv5, Lmna, and Xbp1, while genes spe-

cific to topic 7 include Xist, Mir224, and Npm1. Sex-specific expression in Pomc-expressing

cells has been previously observed, with males co-expressing Pomc and Gh, and females

co-expressing Pomc and Prl 290, a pattern also shown in our data. However, prior single-cell

studies have not concentrated on exploring sex differences in melanotropes specifically290,291.

Notably, these studies were conducted in CD1290 or B6291, whereas we observe sex-specific

topic enrichment in 129, AJ, and NOD.

Genotype-specific clustering in multiple cardiac cell types

Cardiomyocytes (27.0%, atrial and ventricular), endothelial cells (19.9%), and fibroblasts
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(26.6%) constitute the bulk of heart tissue. Both ventricular cardiomyocytes and fibroblasts

show evidence of genotype-specific clustering driven by PWK (Fig. 4.5a). Unique to cardiac

fibroblasts out of all other celltypes except hepatocytes, B6 shows enrichment in a partic-

ular cluster (cluster 31, 34,395 nuclei). PWK and CAST share ventricular cardiomyocyte

clusters and are almost completely absent in Mus musculus domesticus clusters, suggesting

a strong association with subspecies. Despite the relatively equivalent size of the endothelial

cell population to cardiomyocytes and fibroblasts, all four endothelial clusters are evenly

distributed across the genotypes. This observation is shared in other tissues such as skeletal

muscle, kidney, and male gonads.

Due to the high proportion of immune cells in the heart, subtypes such as B and T cells cluster

separately from macrophages and are identified by marker gene expression (Fig. 4.5b). The

largest shift in genotype distribution is in B cells, where PWK and CAST have the highest

proportion compared to other genotypes and relative to their total number of nuclei (Fig.

4.5c). Proportions of major cell types are consistent across all strains (Fig. 4.5d). In order

to further elucidate genotype-specific signatures, we performed regulatory topics modeling

using Topyfic in 116,325 ventricular cardiomyocytes and recovered 10 topics (Fig. 4.5e, f).

Distinct topics are enriched for PWK and CAST. The two topics enriched in CAST are also

sex-specific; topic 6 is used more in males compared to topic 10 in females. Highly weighted

genes in topic 6 include Bhlhe40 and Dbp, known circadian rhythm factors292,293, while

highly weighted genes in topic 7 (enriched in PWK) include Srebf1, Gtf2e1, and Gtf2e2.

Interestingly, CAST mice have been shown to demonstrate an “early runner” phenotype

based on the timing of wheel-running relative to light/dark cycles294. Prediction of circadian

rhythm based on expression of known circadian genes could help elucidate genotype-, sex-,

and/or celltype-specific patterns in our data.

Differential proportions of sex-specific layers in the adrenal zona fasciculata

across genotypes
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In stark contrast to other celltypes, particularly in the brain, major celltypes in adrenal

glands display significant sex-specific gene expression (Fig. 4.6a). Adrenal glands, paired

endocrine organs resting on top of the kidneys, are responsible for hormone production295.

The adrenal cortex synthesizes hormones such as glucocorticoids, aldosterone, and some

sex hormones to regulate metabolism, electrolyte balance, and reproductive functions295.

The adrenal cortex is subdivided into the zona glomerulosa (ZG) layer that secretes aldos-

terone (Cyp11b2 ) and zona fasciculata (ZF) that produces corticosterone295 (Fig. 4.6b).

The adrenal gland plays a pivotal role in orchestrating systemic responses through the

hypothalamic-pituitary-adrenal axis285. The HPA axis orchestrates a hormonal cascade,

beginning with signaling from the hypothalamus which releases Crh285. Crh stimulates

the pituitary gland to secrete the adrenocorticotropic hormones, which in turn signals the

adrenal cortex to produce glucocorticoids, including corticosterone285. Finally, the inner

adrenal medulla secretes epinephrine (adrenaline) and norepinephrine in response to stress

with widespread effects on the body such as heart rate and blood pressure296. Integrative

analyses between diencephalon/pituitary and adrenal glands hold promise to unveil deeper

insights into the comprehensive regulation orchestrated by the HPA axis.

We recovered the same cell types as in the ENCODE4 adrenal gland dataset in similar

proportions (14 total). The majority of the nuclei belong to the ZF with a smaller amount

associated with the ZG (Fig. 4.6a). We can distinguish epinephrine-producing chromaffin

cells of the adrenal medulla from norepinephrine-producing cells based on expression of

Pnmt, the primary enzyme that converts norepinephrine to epinephrine296. Previous studies

identified the X-zone, a female-specific cortical layer that arises during puberty with marker

genes Akr1c18, Pik3c2g, and Thrb 107. Characterization of gene expression and transcription

factor activity in adrenal gland in ENCODE4 also revealed male-specific patterns in the

zona fasciculata that we annotated as “male-only ZF”. While consistent proportions of male-

specific ZF are observed across the 8 genotypes, remarkable variations are detected in the

X-zone composition (Fig. 4.6b). Very few nuclei from B6 and NOD females fall into the
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clear X-zone cluster identified by high expression of canonical marker genes (Fig. 4.6b, c).

In contrast, CAST and NZO display substantial enrichment in the X-zone cluster relative

to the total number of nuclei recovered from the genotypes (Fig. 4.6c, d). Comparing the

ENCODE4 dataset, the proportion of the X-zone at the 2-month timepoint in B6/CAST

F1 females (3.9% of all 2 month nuclei) is roughly halfway between the proportion in CAST

shown here (7.0%) and several fold higher than B6 (0.6%). This observation may reflect that

hybrids will sometimes exhibit an average phenotype between the two parents. However,

these results are also surprising given that several experiments tracking X-zone dynamics

are conducted in B6107,258,259. Planned IGVF experiments conducted in the F1 hybrids will

help elucidate the technical or biological origin of this finding.

Topic modeling in 26,638 X-zone nuclei (Fig. 4.6 e, f) reveals topics highly specific to PWK

and CAST in addition to NZO and WSB. Some of the top weighted and highly specific

genes in NZO topic 1 compared to other genotype-specific topics 3, 5, 6, 7, and 9 include

Esr1, Rarb, and Bcl3. In PWK topic 3, top genes include Nfatc2, Aff3, and Padi2. Two

topics were enriched in both WSB and CAST with top genes Dach1, Ppm1d and Pak1,

and Irf8, Bcorl1, and Maf, in the topics specific to each genotype, respectively. Of these

genes, Dach1 and Padi2 have interesting implications in the adrenal gland. Dach1 has been

shown to inhibit aldosterone secretion in human adrenals and serves as a zona glomerulosa

marker297. While Padi2 has no direct evidence in adrenal gland, ablation of this gene in mice

caused a delayed onset of puberty and had consistently lower serum testosterone levels298.

Although mouse adrenals do not synthesize Cyp17a1 and thus do not secrete androgens such

as testosterone202, from our ENCODE4 postnatal mouse study we found X-zone dynamics

are intricately linked to puberty.

Sexually dimorphic gene expression in cell types of kidneys and liver

Located directly below the adrenal glands, kidneys serve as primary excretory organs that

filter blood to maintain fluid and electrolyte balance in the body299. The basic filtration unit
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in the kidney is the nephron, a complex structure consisting of several distinct segments299.

The nephron comprises the renal corpuscle, which includes Bowman’s capsule, and a tubular

system consisting of the proximal convoluted tubule, loop of Henle, distal convoluted tubule,

and collecting duct299,300. Blood is initially filtered through the glomerulus, a network of

capillaries within Bowman’s capsule301. The glomerular basement membrane is made up of

podocytes, endothelial cells, and basement membrane, where the foot-like podocyte projec-

tions form a size-selective barrier301. The filtrate then passes through the epithelial cell-lined

proximal convoluted tubule where reabsorption of water and ions occurs299. Subsequently,

the filtrate enters the loop of Henle, which establishes the osmotic gradient within the kidney

to facilitate water reabsorption299,302. The loop of Henle, also lined by specialized epithelial

cells, consists of a descending limb where water is reabsorbed and an ascending limb where

ions are actively transported299,300. Following the loop of Henle, the filtrate enters the distal

convoluted tubule where further reabsorption and secretion of ions occur299. The filtrate

passes into the collecting duct, where additional water and ion reabsorption is carried out

by principal cells, while intercalated cells are responsible for acid-base balance299,300. The

filtrate is then transported to the bladder for excretion.

We detect epithelial cells of all segments of the nephron as well as specialized cells such

as podocytes. The largest clusters correspond to epithelial cells of the proximal (42.9% of

the dataset) and distal (4.9%) tubules, loop of Henle (16%), and principal cells (4.9%) and

intercalated (4.1%) cells of the collecting duct (Fig. 4.7a). Endothelial cells and fibroblasts

also make up a substantial fraction of the total dataset at 10.3% and 4.9%, respectively.

One small cluster making up less than 1% of the total kidney nuclei can only be identified

by expression of common epithelial markers and additional marker Megf11 (Fig. 4.7b). A

previous single-nucleus study in mouse kidney303 also identified this Megf11+ cluster as well

as an Ncam1+ cluster, which in our data also expresses Cp and Wt1 and thus most likely

consists of parietal epithelial cells (PSCs), an important glomerular cell type304. Additional

Megf11+ cluster markers include Erbb4, Pax2, and Prox1, which may indicate a subtype

144



of loop of Henle epithelial cells305,306. All kidney cell types apart from fat cells, likely a

dissection artifact, are evenly distributed across genotypes, although PWK and CAST have

a smaller proportion of proximal tubule epithelial cells than others (Fig. 4.7c, d).

Previous single-cell transcriptome studies in the kidney identified sexual dimorphism in the

proximal tubule300, a finding supported by our data. The majority of our proximal tubule nu-

clei (71%) fall into sex-specific clusters, defined as those comprising over 90% of one sex, with

approximately a third (27.8%) showing genotype-specific clustering, characterized by over

90% representation of a single genotype (Fig. 4.7a). The majority of genes previously shown

to be differential by sex in proximal tubules300 are also identified in our data (Methods). For

example, the prolactin receptor (Prlr), nephronectin (Npnt), prominin-1 (Prom1 ), solute

carriers (Slc22a29, Slc39a5, and Slc6a18 ), and of course Xist are upregulated in females of

all genotypes. In males, alcohol dehydrogenase (Adh1 ), cytochrome P450 enzymes (Cyp2e1,

Cyp2j13, Cyp4a12a, and Cyp4b1 ), solute carriers (Slc22a28, Slc22a30, Slc7a13 ) and steroid

dehydrogenases (Hsd17b11 and Hsd3b3 ) are upregulated in all genotypes. Thus, we decided

to apply regulatory topics modeling to 264,996 proximal tubule epithelial cells (Fig. 4.7e,

f). Out of 11 topics, 5 are sex-specific and one, topic 2, is enriched in PWK and CAST

(Fig. 4.7e). Topic 2 is not enriched in either sex, indicating a non-Mus musculus domesti-

cus cellular program independent from sex. Some of the top-weighted regulatory genes in

our genotype-specific proximal tubule topic include genes that are mutated (Brca2, Fancm)

or serve as biomarkers (Riox2 ) in kidney cancer307–309. In summary, our kidney dataset

supports the sex-driven transcriptional differences noted previously in proximal tubules in

addition to differences depending on genotype that are both linked to and independent from

sex.

The liver plays a crucial role in maintaining homeostasis by regulating various metabolic

processes310. The functional units of the liver are lobules310,311. Each lobule is a hexagonal

arrangement of hepatocytes radiating outward from a central vein310. Blood from the hep-
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atic portal vein, rich in nutrients and toxins absorbed from the digestive tract, enters the

lobule through sinusoids, specialized capillaries lined with endothelial cells, Kupffer cells,

and stellate cells310,312. As blood traverses through the sinusoids, hepatocytes facilitate

metabolism of nutrients, detoxification, and secretion of bile310. The network of bile ducts,

lined with cholangiocytes, collects and transports bile synthesized by hepatocytes towards

the bile ductules and ultimately to the gallbladder for storage or to the intestines for aiding

digestion310,313. We detect 14 cell types in liver, the majority of which (79% of the total

nuclei) are hepatocytes (Fig. 4.8a, b). Of the 574,931 hepatocyte nuclei, 100% and 70%

are in sex-specific and/or genotype-specific clusters, respectively (over 90% consisting of one

genotype or sex) (Fig. 4.8a). While sexes are for the most part evenly distributed across

all non-hepatocyte clusters, we note enrichment of female B6 and AJ in a cluster of cycling

cells (Fig. 4.8a, c). AJ and NZO have a significantly higher proportion of Kupffer cells than

other genotypes (Fig. 4.8a, c). As the resident macrophages of the liver, Kupffer cells play

a crucial role in eliminating pathogens such as bacteria that enter the bloodstream through

the gastrointestinal tract314. In NZO, 5.2% of nuclei are from Kupffer cells, double the

average in all other genotypes (2.1%) (Fig. 4.8d). Metabolic stresses that promote insulin

resistance and type 2 diabetes (T2D) also activate inflammation- and stress-induced signal-

ing pathways, resulting in chronic inflammation in tissues including the liver315. Given the

propensity of NZO to develop T2D33 and its early-onset obesity at 2 months (Fig. 4.1), we

hypothesize that this increase in the proportion of Kupffer cells may be intricately linked to

early progression of T2D.

Applying regulatory topics modeling to hepatocytes results in 11 topics, 3 of which show

strong sex specificity (Fig. 4.8e, f). As in kidney, the genotype-specific topics are indepen-

dent from sex. Despite genotype-driven clustering in the full dataset (Fig. 4.8a), only 2

topics are clearly genotype-specific (PWK topic 6 and CAST topic 11) (Fig. 4.8e). Com-

paring female topic 2 to the two male topics 3 and 8 reveals several known female-specific

transcriptional regulators, such as Cux2, Tox, and Trim24 316. In the liver, Cux2 acts as a
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master regulator by activation of female-specific target genes including Tox and Trim24 316.

Genes with significant weights in male-specific topics include Bcl6, Stat5b, Ppargc1b, Smad3,

Nr1d1, and Nr1d2. These genes have previously been linked to male-specific patterns of gene

and/or protein expression in the liver317–320. Bcl6 controls masculinization of hepatic gene

expression during puberty, enhancing survival in male mice during severe bacterial infec-

tion317. However, it also contributes to fatty liver and glucose intolerance under conditions

of dietary excess, leading to a male predisposition for these conditions317. In PWK topic

6, top-weighted genes Mir22 and E2f7 have both been found to act as tumor suppressors

in liver cancer321,322. Conversely, Atf7 appears exclusively in CAST topic 11, and has been

implicated in epigenetic regulation of gene expression in mouse liver in response to metabolic

changes induced by diet323. To summarize, the analysis of hepatocyte topics uncovers both

established sex-specific patterns and novel genotype-specific expression signatures.

The testes/epididymis dataset captures dynamic stages of spermatogenesis

We identify 14 distinct cell types in testes and epididymis, with spermatogenic cells com-

prising 39% of the total recovered nuclei (Fig. 4.9a, b). Unlike other tissues where a dif-

ferentiated primary cell type also makes up the majority of the tissue, here we can detect

the dynamic stages of its differentiation process. Spermatogenesis is the continuous process

of sperm production in males that begins during puberty and continues throughout adult-

hood324. It starts with spermatogonia, which are the stem cells in the testes324. These

cells undergo mitosis to produce primary spermatocytes, which then undergo meiosis to

form secondary spermatocytes324. Further division results in spermatids, which undergo a

process of maturation called spermiogenesis, during which they develop into spermatozoa,

or sperm cells324. We capture the most cells at the spermatid phase, followed by mature

sperm, spermatocytes, and spermatogonium (59%, 18%, 16%, and 7% of the total germ cell

population) (Fig. 4.9a). In the epididymis, principal cells play a crucial role in the matu-

ration and storage of sperm325. These cells are specialized according to the segment of the
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epididymis they inhabit, with distinct gene expression in each region325 (Fig. 4.9b). We

recover 10,929 principal cells of the caput, 22,006 of the corpus, and 18,667 of the cauda

(21%, 43%, and 36% of the principal cell population) (Fig. 4.9b, c). Overall, major germ

cell and principal cell populations are represented evenly across genotypes (Fig. 4.9c, d). Of

the minor cell types, Sertoli cells appear enriched in WSB (22% vs. 14% average in other

genotypes) while Leydig take up a larger proportion in NZO (10% vs. 5.5% average in other

genotypes) (Fig. 4.9d). Located within the seminiferous tubules of the testes, Sertoli cells

provide structural support to developing germ cells and are regulated by follicle-stimulating

hormone from the pituitary gland as part of the HPG axis324. In contrast, Leydig cells found

in the tubule interstitium produce testosterone in response to luteinizing hormone from the

pituitary, thereby regulating male secondary sexual characteristics and spermatogenesis324.

The notable increase in Leydig cells in NZO is intriguing considering the association be-

tween obesity in males and decreased testosterone levels326. This heightened presence of

Leydig cells might serve as a compensatory mechanism to counteract the impact of obesity

on testosterone production. Due to the abundance of spermatogenic cells in the dataset

and their key role in reproduction, we decided to apply topics modeling to 18,111 mature

sperm cells. We recovered 12 regulatory topics, two of which are specific to CAST (topic

6) and PWK (topic 8), while topic 1 and to a lesser extent topic 12 are enriched in both

non-Mus musculus domesticus strains (Fig. 4.9e, f). Some of the top-weighted genes shared

in CAST topic 6 and non-domesticus topic 12 include Bcl9l, a cofactor in Wnt/Beta-catenin

signaling327, and Sin3b, overexpression of which has been shown to promote the formation

of microcephalic sperm in a human study328. Kdm4b, a histone demethylase associated with

spermatogenesis, is highly weighted in non-domesticus topic 1, 12, and PWK topic 8329.

In summary, the male gonads dataset facilitates the examination of the dynamic stages of

spermatogenesis, where genotype may impact gene expression at each developmental stage,

as demonstrated here in mature spermatozoa.

Mus musculus domesticus variation in ovarian theca
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We collected both ovaries and oviducts along with estrus stage (Methods) and detect 14 cell

types in the female gonads dataset (Fig. 4.10a, b). The ovaries are the primary cite of oocyte

production and hormone secretion and consist of specialized cell types such as theca and

granulosa cells330. Theca cells are in the outer layer of the ovarian follicles and are involved

in producing androgens, which are precursors to estrogen330. Granulosa cells are found

in the inner layer of the follicles, producing estrogen and supporting oocyte development

and maturation331. The oviducts, also known as fallopian tubes in humans, are lined by

ciliated and secretory endothelial cells that facilitate the transport of oocytes332. Unlike

other tissues, major cell types make up even proportions of the total number of nuclei, with

25% granulosa, 18% theca, 14% secretory and 8% ciliated endothelial. The ovarian stroma

fills in 10%. The remaining 15% of nuclei are made up of vascular endothelial, epithelial,

smooth muscle, and immune cells. Although the granulosa cells are the predominant cell

type in ovary, theca cells display more genotype-driven clustering, with 27% of theca nuclei

falling into a genotype-specific cluster (Fig. 4.10a). Thus, we performed topics modeling in

86,282 ovarian theca cells and recovered 10 regulatory topics. Interestingly, we detect strong

topic enrichment in Mus musculus domesticus strains WSB and NZO. The top-weighted

gene in NZO topic 9, Mir218-1, is embedded in the Slit2 host gene. Both the microRNA

and its host have been implicated in ovary, with Mir218 associated with anti-cancer effects

and Slit2, a ligand in the Slit-Robo signaling pathway, associated with degradation of the

corpus luteum333,334. We detect a cluster of nuclei that appear to be derived from the corpus

luteum, characterized by specific expression of the prostaglandin F receptor (Ptgfr)335 and

steroidogenic acute regulatory protein (Star)336 specifically enriched in B6 and AJ with

very little contribution from other genotypes (Fig. 4.10a, b, c, d). These proportional

differences may be associated with the estrus stage, which is closely linked to genotype in

our dataset. This association arises from the shared estrus cycle observed among females of

the same genotype during sample collection, possibly a result of being housed together. The

corpus luteum forms from the collapsed pre-ovulatory follicle after ovulation, which occurs
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just after the end of estrus337. Metestrus follows estrus, when the corpus luteum begins to

develop337. It eventually declines during diestrus337. Therefore, we may be detecting the

early corpus luteum as a distinct cluster. In conclusion, we observe robust genotype-specific

expression patterns that may also be influenced by estrus stage, which must be considered

when evaluating differences in gene expression and cell type proportions.

Impact of subspecies on gene expression in type 2 myonuclei

As is observed in multiple tissues, a predominant cell type, specifically myonuclei, dominates

the majority of clusters in skeletal muscle. Subspecies significantly influences clustering in

type II myonuclei, with PWK and CAST often clustering separately from Mus musculus

domesticus strains (Fig. 4.11a). Some clusters are specific to WSB in major cell types,

such as type IIb skeletal muscle cells. The gastrocnemius, or calf muscle, primarily consists

of fast-twitch (type II) fibers with a smaller population of slow-twitch (type I) fibers221.

Subtypes of type IIa fibers are distinguished by expression of myosin heavy chain protein

isoforms, with type IIa corresponding to high expression of Myh2, type IIb to Myh4, and

type IIx to Myh1 112,113 (Fig. 4.11b). Additionally, type I and IIa oxidative fibers primarily

use aerobic respiration for energy production, while type IIx and IIb glycolytic fibers rely

on anaerobic glycolysis338. Glycolytic fibers fatigue faster than oxidative fibers due to the

lower ATP production per cycle in anaerobic glycolysis338. Although type IIb fibers are

evenly represented across the genotypes, CAST have a much smaller proportion of type IIa,

while type IIx is enriched in both CAST and PWK (Fig. 4.11c, d). Interestingly, CAST

exhibits resistance to disuse-induced muscle atrophy compared to other strains, particularly

NOD and NZO339. CAST mice with an immobilized limb remained active and lost the

least body weight during the experiment, especially compared to AJ, which experienced the

greatest weight loss and decreased activity339. CAST also displayed potential fast-to-slow

fiber type switching in the gastrocnemius upon unloading, indicated by increased expression

of type I marker Myh7 339. The lack of type IIa in CAST suggests that inherently low levels
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of oxidative fast-twitch fibers may contribute to this strain-specific fast-to-slow phenotype.

The transition to slow fibers during unloading presumably increases oxidative metabolism

overall, as slow fibers are oxidative. This change in fiber type proportion may counteract the

fatigue-prone type IIb glycolytic fibers, potentially aiding in maintaining the activity levels

observed in CAST.

We performed topics modeling to investigate the regulatory programs driving the transcrip-

tional variation in type II myonuclei. We recovered 9 subtype- and/or genotype-specific

topics in 523,897 nuclei (Fig. 4.11e, f). Several topics also display sex specificity. Topic

7 shows enrichment in CAST and PWK while topic 5, which is also type IIb-specific, is

enriched in NOD (Fig. 4.11e, f). Some of the top-weighted genes in topic 7 compared to

all other topics include Klf7, Egfr, Asah1, and Lrif1. Egfr inhibition has been associated

with promoting an oxidative slow-twitch phenotype in mouse tissue and C2C12 cell line340.

Although topic 7 is not specific to any particular subtype, it is slightly less enriched in type

IIa compared to type IIb and IIx. Mutations in both Asah1 and Lrif1 have been associated

with human diseases such as spinal muscular atrophy and facioscapulohumeral muscular

dystrophy, although neither has evidence in mice341,342. Further investigation by directly

comparing topics and cross-referencing known protein-coding variants in these strains with

genotype-specific topic genes may help elucidate their role in type II myonuclei.

Satellite cell activation in AJ skeletal muscle

Thus far, we focused on major cell types or subtypes thereof in each tissue for deeper explo-

ration through differential expression analysis and topics modeling. Some cell types exhibit

surprising genotype-driven expression differences, as observed in oligodendrocytes. Hence,

we opted to investigate a small yet significant cell type in skeletal muscle: satellite cells,

constituting only 0.7% of the dataset. As the resident stem cells in skeletal muscle, satellite

cells play a crucial role in muscle development and repair. Upon myofiber damage, satel-

lite cells become activated and initiate transcriptional programs by expressing key myogenic
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regulatory factors (MRFs) such as Myog, Myod1, Myf5, and Myf6 111. Through asymmetric

division, a fraction of Pax7+ satellite cells remains quiescent to sustain the stem cell pool111.

Activated satellite cells persistently express myogenic genes and eventually fuse with dam-

aged myofibers111. We recovered 7 topics, two of which (topics 3 and 4) showed enrichment

in AJ mice while topics 5 and 6 were depleted in AJ and enriched in PWK, WSB, and 129S1

(Fig. 4.12a). AJ is known to be susceptible to muscular dystrophy due to dysferlin defi-

ciency37, caused by a 6,000 bp retrotransposon that spontaneously inserted itself into intron

4 of the gene, leading to splicing disruption129. Dysferlin is a protein of the sarcolemma

associated with limb girdle muscular dystrophy 2B, Miyoshi myopathy, and distal anterior

myopathy when mutated129. Previous studies in humans have shown that the proportion of

activated satellite cells in dysferlinopathic muscle is higher than in control, but lower than in

other myopathies343. The same study shows that dysferlin is upregulated in activated satel-

lite cells of dystrophic muscle compared to control, despite the mutation causing an overall

deficiency343. We detect upregulation of Dysf in AJ satellite cells, but downregulation in

mature myonuclei compared to other genotypes (Fig. 4.12b). Differential expression analysis

between genotypes in satellite cells reveals key regulatory genes specifically upregulated in

AJ satellite cells, most notably Myog (log2 fold change of 2.7 and adjusted p-value of 0.0002)

(Fig. 4.12c). Comparison of gene weights in our topics identifies Pax7 as specific to topics

5 and 6 while Mef2c and Mir133a-1 are highly weighted in AJ topics 3 and 4 (Fig. 4.12d).

Mef2c synergizes with MRFs to activate myogenesis and Mir133a is a classic “myomiR”,

or microRNA whose expression is highly specific to skeletal muscle and required for muscle

development344,345. Notably, some fraction of satellite cells in all genotypes participate in

topics 3 and 4, although to a much lesser extent than AJ (Fig. 4.12e). This observation

suggests that the activated program may not inherently be pathogenic, but rather exces-

sively activated in AJ. A study conducted on satellite cells isolated from dystrophic mouse

muscle demonstrated that their regenerative capacity remained intact compared to control

muscle, implying that the in vivo environment plays a crucial role in regulating satellite
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cell function346. Further exploration of other cell types that interact with satellite cells,

such as fibro-adipogenic progenitors, may uncover additional genotype-driven changes in ex-

pression that influence the satellite cell microenvironment. In summary, our findings reveal

over-activation of myogenic regulatory programs in AJ satellite cells compared to other geno-

types, potentially reflecting its predisposition to early onset dysferlinopathy. While AJ is

widely used as a mouse model across diverse research domains, including cancer and emphy-

sema, researchers must remain aware of all phenotypes inherent to their selected genotype.

Our findings demonstrate that even at 2 months, genotype-specific functional changes in

gene expression occur in a critical cell type.

4.4 Discussion

Our 8-cube founder dataset of 5.9 million nuclei across 512 samples is a comprehensive map

of transcriptional variation across diverse genotypes and both sexes, shedding light on the

intricate relationship between genomic variation and gene expression regulation. This re-

source is particularly significant in the context of mouse research, where genetic background

is often overlooked despite its profound impact on experimental outcomes. By systematically

characterizing the transcriptional landscape across multiple genotypes and sexes, we high-

light the importance of considering these factors in experimental design and interpretation.

Notably, our findings challenge the common assumption that B6 mice are the prototypical

mouse, as we detect substantial transcriptional variation even among commonly used labora-

tory strains. This underscores the necessity of considering genetic diversity in mouse studies,

as it may significantly influence phenotypic traits and confound experimental results. More-

over, our study underscores the significance of sex as a biological variable in gene expression

regulation. While sex differences in certain tissues have been well-documented, our analysis

across diverse genotypes reveals sex-specific transcriptional patterns that extend beyond pre-
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viously characterized tissues. By providing a coordinated dataset encompassing both males

and females across various strains and subspecies, we offer a valuable resource for under-

standing the impact of sex on gene expression in diverse genetic contexts. Importantly, our

findings highlight genotype-specific functional changes in critical cell types, even in healthy-

looking, young adult mice where physiological symptoms are not yet apparent. For instance,

we observed enrichment of Kupffer cells in NZO livers and over-activation of satellite cells

in AJ muscle, indicative of transcriptional signatures associated with diseases like type 2

diabetes and muscular dystrophy, respectively. Furthermore, our study demonstrates the

power of single-cell RNA-seq in elucidating cell type-specific transcriptional regulation with

enhanced resolution. By profiling millions of nuclei across diverse tissues, we not only cap-

ture cell type interactions within individual tissues but also have the potential to uncover

coordinated responses across different tissue systems, such as the HPA and HPG axes. Ad-

ditionally, the large number of cells profiled enables the detection of minor cell types and

cell states that may be overlooked or averaged out in bulk RNA-seq approaches. For ex-

ample, we characterized satellite cells across the 8 strains, a cell type that comprises less

than 1% of the muscle dataset, highlighting the enhanced granularity afforded by single-cell

analysis. Overall, our dataset provides a foundational resource for advancing the systematic

understanding of the genomic basis for cell type-specific transcriptional regulation.

While our study offers comprehensive insights into transcriptional variation across genotypes

and sexes, several considerations highlight the need for transparency and interpretability.

One notable challenge stems from the inadvertent association between estrus stage and

genotype. For instance, we observed that PWK females are predominately in estrus, whereas

CAST are in diestrus or proestrus. This inherent link between genotype and estrus stage

complicates the differentiation of genotype-specific effects from those attributable to estrus

stage, particularly in tissues where estrus stage is pivotal, such as the ovary. Although

literature does not indicate estrus cycle synchronization among co-housed mice, we speculate

that cohabitation of females from each genotype with males in neighboring cages may have
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influenced the observed distribution of estrus stages. Additionally, the timing of tissue

collection presents another challenge, especially concerning its impact on circadian rhythm.

To streamline the collection process, females of each genotype were typically collected in the

morning (9-11am), followed by males from 11am to 1pm. This sequential collection resulted

in a circadian rhythm linked to sex, potentially confounding analyses of circadian-regulated

genes. Moreover, the collection of NZO samples occurred later, with females starting at

11am and males ending at 4pm, introducing additional variability in circadian rhythms

across genotypes. Additionally, our study’s combinatorial barcoding approach and high

degree of multiplexing result in somewhat less control over the number of nuclei recovered

per sample compared to more traditional droplet-based methods. This variability in nuclei

recovery is particularly evident in heart, where we recover nearly half as many nuclei in WSB

(8.9%) than in NZO (16%) in the same dataset. Although efforts were made to address

this variability through makeup experiments using leftover nuclei, it is crucial to exercise

caution when comparing cell type proportions, always considering the overall number of

nuclei recovered. While some are inherent to the experimental design, these complexities

underscore the necessity of carefully addressing potential biases in downstream analyses.

Future integration of the founder snRNA-seq data presented here with an F1 “8-cube datasets

(B6 females crossed with each of the seven founder strains plus a B6 control) will facilitate

the development of allele-specific gene expression pipelines. This will enable precise mapping

of cis and trans regulatory effects at the cell type level, elucidating the regulatory mecha-

nisms governing gene expression. Expanding our snRNA-seq dataset to include 33 strains of

the Collaborative Cross enables genome-wide mapping of expression quantitative trait loci

(eQTLs) at a broad resolution. We aim to supplement single-nucleus chromatin accessibility

data in selected or all tissues to refine eQTL loci. The insights gleaned from the founder

dataset presented here lay a solid foundation for hypothesis generation in subsequent F1 and

CC analyses. Leveraging this rich dataset and building upon our observations, we aim to

deepen our understanding of the genetic architecture underlying complex phenotypic traits.
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Ultimately, our findings will not only inform QTL mapping approaches in human data but

also identify potential therapeutic targets in mouse models of human disease, thereby paving

the way for targeted therapeutic interventions.
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4.6 Methods

Mice and tissue collection

Mice were ordered from Jackson Laboratories and housed at the UCI Transgenic Mouse Fa-

cility under controlled conditions. All animal procedures were approved by the Institutional

Animal Care and Use Committee, protocol #AUP-21-106. Metadata for each animal and

tissue, including mouse ID, sex, date of birth and euthanasia, time of euthanasia, dissector

ID, body and tissue weights, and estrus stage are detailed in Table S1. Euthanasia was per-

formed by anesthesia using isoflurane, followed by decapitation for the collection of whole

blood in EDTA-coated tubes (BD cat. #367856). A pap smear was conducted on female

mice before tissue collection and stored on Superfrost slides (Fisher Scientific cat. #12-550-

15 ). Organs and tissues were dissected by three expert dissectors in parallel: brain regions

(left and right cortex and hippocampus, cerebellum, and diancephalon and pituitary), trunk

organs (heart, lungs, liver, adrenal gland, kidney, gonads, perigonadal fat, and brown adipose

tissue), and specific hindlimb muscles (soleus, plantaris, gastrocnemius, tibialis anterior, and

EDL). Trunk and muscle tissues were washed in ice-cold HBSS. Tissues were then flash-

frozen in liquid nitrogen and biobanked at -80°C until further processing. Estrus stage was

determined by crystal violet staining and observation under a light microscope.

Purification of nuclei from mouse tissues

Eight replicates of each tissue from each of the founder genotypes were processed per day.

Flash-frozen tissues were transferred to a chilled gentleMACS C Tube (Miltenyi Biotec cat.

#130-093-237) with Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-024) supple-

mented with 0.2 U/ul RNase Inhibitor (NEB cat. #M0314L) on ice. Nuclei were dissociated

from whole tissues using a gentleMACS Octo Dissociator(Miltenyi Biotec cat. #130-095-

937). The suspensions were sequentially filtered through 70 um and 30 um strainers (Miltenyi

Biotec cat. #130-110-916 and #130-098-458, respectively). Nuclei were then resuspended
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in cold PBS (Life Technologies cat. #15260037) with 0.1% BSA (Life Technologies cat.

#15260037) and 0.2 U/ul RNase inhibitor for manual counting using a hemocytometer and

DAPI stain (Thermo cat. #R37606). Debris removal solution (Miltenyi Biotec cat. #130-

109-398) was applied to gastrocnemius tissue, forming a density gradient to separate nuclei

bands from debris layers. For most tissues, 4 million nuclei per sample were fixed using

Parse Biosciences’ Nuclei Fixation Kit v2 (Parse Biosciences cat. #) according to the man-

ufacturer’s protocol. For smaller tissues such as adrenal gland and female gonads, at least 1

million nuclei were used as input for fixation. Briefly, nuclei were incubated in fixation solu-

tion for 10 minutes on ice, followed by permeabilization for 3 minutes on ice. The reaction

was quenched, then nuclei were centrifuged and resuspended in 300 uL Nuclei Buffer (Parse

Biosciences cat. #) for a final count. DMSO was added before freezing fixed nuclei at -80°C.

Parse Split-seq experiments

Nuclei were barcoded using Parse Biosciences’ WT Kit v2 (cat. #ECW02030), following the

manufacturer’s protocol. Fixed, frozen nuclei were thawed in a 37°C water bath and added

to the Round 1 reverse transcription barcoding plate at 37,500 nuclei per well. The plate

design alternated females and males across columns. A majority of the plate comprised a

main tissue, where each individual sample was loaded into a unique well (64 wells in total

for the 8 genotypes and 4 male and female replicates). The remaining 32 wells contained

a multiplexed tissue, different from the main tissue, where two replicates were pooled from

two distinct genotypes in the same well. In situ reverse transcription (RT) and annealing

of barcode 1, then nuclei were pooled and distributed into 96 wells of the Round 2 liga-

tion barcoding plate for in situ barcode 2 ligation. Finally, nuclei were pooled again and

redistributed into 96 wells of the Round 3 ligation barcoding plate for in situ barcode 3 +

UMI + Illumina adapter ligation. Finally, nuclei were counted using a hemocytometer and

distributed into 16 subpools of 67,000 nuclei each. The nuclei in each subpool were lysed,

and cDNA was purified using AMPure XP beads (Beckman Coulter cat. #A63881). The
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barcoded cDNA then underwent template switching and amplification. After cleaning the

cDNA using AMPure XP beads and performing quality checks with an Agilent Bioanalyzer,

the libraries were prepared for Illumina sequencing. The cDNA samples were fragmented,

size-selected using AMPure XP beads, and Illumina adapters were ligated. To create the

final libraries, cDNA fragments underwent another round of amplification, adding the fourth

barcode and P5/P7 adapters, followed by size selection and quality check with a Bioanalyzer

(Agilent cat. #G2938A). Libraries were sequenced with two runs of the Illumina NovaSeq

6000 sequencer using the S4 Reagent Kit v1.5 300 cycle kit (cat. #20028312). All 16 sub-

pools were sequenced together with 5% PhiX spike-in were sequenced to an average depth

of total of 20 billion reads per experiment (approximately 20,000 reads per cell).

Read mapping and quantification

Cell-by-gene counts matrices were generated from NovaSeq fastqs using a custom in-house

pipeline based on the kallisto bustools suite95, https://github.com/mortazavilab/parse_

pipeline. We used kallisto bustools to pseudoalign reads to the mm39 genome with GEN-

CODE vM32 annotations, assign reads to genes, demultiplex cell barcodes, deduplicate

UMIs95. The counts matrices, gene information, and cell barcodes were compiled into ann-

data H5ad files99. Auxiliary code merged detailed sample- and mouse-level metadata into the

corresponding observation or “obs” table. Where appropriate, such as in this experimental

design, the pipeline uses a custom genetic demultiplexing package klue (https://github.

com/Yenaled/klue) to quantify the number of genotype-specific reads per cell to each multi-

plexed nucleus. Genome sequences for the mouse strains were downloaded from from NCBI

https://api.ncbi.nlm.nih.gov/datasets/genome/?taxon=10090 to generate a custom

reference, and each genotype combination (B6J/NODJ, AJ/PWKJ, 129S1J/CASTJ, and

WSBJ/NZOJ) was compared in each library. Nuclei were assigned a genotype based on the

maximum number of counts in one of the two expected genotypes. Doublet detection was

performed with Scrublet97 in each sample within each subpool. Other than a baseline UMI
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threshold of 200 UMIs per nucleus, the pipeline performs no additional filtering. Data from

all nuclei belonging to the same tissue in the experiment were merged into a single H5ad file.

QC and clustering single-nucleus data

The count matrices and metadata as adata objects were further aggregated at the tissue

level after all experiments were quantified. All tissues were filtered for nuclei with >500 and

<150,000 UMIs, >250 expressed genes (>=1 UMI), <1% mitochondrial gene expression,

and <0.25 doublet scores. Nuclei with ambiguous genotypes (around 0.2% of the dataset)

were also excluded from downstream analysis. Scanpy99 (version 1.9.5) was used to cluster

nuclei for celltype and subtype annotation. Briefly, the counts matrices for each tissue were

normalized by total UMI count followed by logarithmic transformation and filtration for

highly variable genes (min mean=0.0125, max mean=3, min disp=0.5). Percent mitochon-

drial gene expression and number of genes detected were regressed and normalized counts

were scaled to unit variance and zero mean. Dimensionality reduction using PCA with the

top 30 principal components was used to construct a neighborhood graph (n neighbor =

20). Initial leiden clustering was performed for each tissue at the same resolution = 1. In

most tissues (adrenal gland, gonads, diancephalon/pituitary, kidney, and liver), cell type

annotation was performed in two rounds. The first round identified low-quality clusters that

were discarded from the dataset. Clustering was performed again with the same parameters

as above, except in kidney where maximum doublet score was decreased to 0.2.

Cell type annotation

Clustered nuclei were manually annotated using expression of known marker genes, discus-

sions with expert collaborators, identification of cluster marker genes and cross-referencing

with literature, and integration with label transfer from a reference dataset using scvi-tools

when possible347,348. Cluster markers were determined by the rank genes groups Scanpy

function with the t-test method. Annotation was performed at three levels, from fine to
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coarse resolution: subtype, cell type, and general cell type. For the most part, each cluster

was assigned to a single subtype, with multiple clusters making up larger subtypes. Sub-

clustering was performed in kidney, adrenal gland, diencephalon/pituitary, and male gonads

datasets based on clear marker gene expression separating loop of Henle ascending and de-

scending thin limb epithelial cells, adrenal cortical layers, corticotropes from thyrotropes,

and mature sperm from spermatid. In liver, hepatocytes were annotated and separated from

other cell types, which were clustered and annotated independently. Cell types are also

annotated by a Cell Ontology (CL)349 ID which matches the “cell type” level annotations.

When necessary, “subtypes” extend CL cell types into cell subtypes and/or cell states. For

example, “subtypes” captures specialized myonuclei such as those resting underneath the

neuromuscular junction and myotendinous junction112,113. The “general cell type” level uses

the hierarchical structures embedded in the CL database to group cells into broaded anno-

tations such as “epithelial cell” and “germ cell”.

Pseudobulk differential expression analysis

Within a cell type such as satellite cells or proximal tubules, raw, unnormalized counts were

extracted from the annotated Scanpy adata for each genotype pair (28 pairs total). The

sample-level pseudobulk matrices grouped were calculated using the get pseudobulk function

from the decoupler package (mode=’sum’, min cells=10, min counts=10000). Multifactor

differential expression analysis with pydeseq2265 was used to compare genotypes to C57BL6/J

and each other as well as females compared to males. Gene ontology analysis was performed

with Metascape350.

Calculating regulatory topics using Topyfic

Regulatory topics were calculated using a curated vocabulary of regulatory genes with the

Topyfic package as previously described128. With a curated set of 2,789 regulatory genes

and a chosen resolution k = 10 for all 9 tissues, we recovered between 7 and 13 topics. Since
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satellite cells are a small population, we adjusted k to k = 8 and recovered 7 topics. All

robust LDA topics were calculated using 100 runs. Structure plots were generated using the

structure plot function in Topyfic. Gene weights between topics of interest were compared

for downstream analysis.
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Figure 4.1: Relationship between body weight and tissue weight in 9 diverse tissues
a, Body weight compared to cortex/hippocampus weight with a Pearson R2 of 0.00. b, Body
weight compared to diencephalon/pituitary weight with a Pearson R2 of 0.03. c, Body weight
compared to adrenal gland weight with a Pearson R2 of 0.04. d, Body weight compared to
ovary/oviduct weight with a Pearson R2 of 0.43. e, Body weight compared to heart weight
with a Pearson R2 of 0.51. f, Body weight compared to gastrocnemius weight with a Pearson
R2 of 0.61. g, Body weight compared to testes/epididymis weight with a Pearson R2 of 0.65.
h, Body weight compared to kidney weight with a Pearson R2 of 0.80. i, Body weight
compared to liver weight with a Pearson R2 of 0.94.
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Figure 4.2: Overview of the IGVF mouse dataset in 8 founder genotypes a, Visual-
ization of “8-cubed” dataset across 8 genotypes and 8 tissues/tissue groups replicated with
4 males and 4 females. b, Experimental design of sample barcoding plate. Nuclei derived
from one tissue serves as the main tissue on the plate, where each sample has its own unique
sample well and corresponding barcode. Nuclei from a different tissue are multiplexed in the
remaining third of the plate, where two samples from distinct genotypes for the same sex
and replicate are loaded into one well. c, Tissue loading pattern for all 8 sample barcoding
plates. Note the first main tissue, cortex/hippocampus (yellow), serves as the multiplexed
tissue in the final plate. d, Pseudobulk principal component analysis of 515 total samples
colored by tissue. PCA was calculated using sum of raw counts across nuclei from individu-
als within each tissue with read depth normalization. e, Cell type proportions within each
tissue, with point sizes reflecting the number of nuclei in each cell type. f, Median number
of genes detected in nuclei within each cell type, with point sizes reflecting the number of
nuclei in each cell type. g, Proportions of 20 minor cell types that make up less than 25%
of each tissue.
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Figure 4.3: Overview of celltypes recovered in cortex and hippocampus and reg-
ulatory topics modeling in oligodendrocytes a, Proportion of genotype and sex in 41
cortex/hippocampus clusters. Clusters are ordered by largest to smallest annotated cell type
(grouped color bars). Middle numeric column indicates the number of mice to constitute
90% of the cluster. Right numeric column indicates number of nuclei per cluster. b, Dot plot
showing expression of marker genes in 25 annotated celltypes (refer to color legend in a). c,
Distribution of genotypes in each cortex/hippocampus celltype. d, Distribution of celltypes
in each genotype. e, Enrichment of genotype and sex in 9 regulatory topics. f, Structure
plots of topic proportions per nucleus grouped by genotype. Each column is a stacked bar
plot showing the proportion of participation across topics for each nucleus across 61,368 total
nuclei in the celltype.
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Figure 4.4: Overview of celltypes recovered in diencephalon and pituitary gland
and regulatory topics modeling in melanotropes a, Proportion of genotype and sex in
38 diencephalon/pituitary clusters. Clusters are ordered by largest to smallest annotated cell
type (grouped color bars). Middle numeric column indicates the number of mice to constitute
90% of the cluster. Right numeric column indicates number of nuclei per cluster. b, Dot
plot showing expression of marker genes in 23 annotated celltypes (refer to color legend in
a). c, Distribution of genotypes in each diencephalon/pituitary celltype. d, Distribution
of celltypes in each genotype. e, Enrichment of genotype and sex in 8 regulatory topics.
f, Structure plots of topic proportions per nucleus grouped by genotype. Each column is a
stacked bar plot showing the proportion of participation across topics for each nucleus across
12,204 total nuclei in the celltype.
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Figure 4.5: Overview of celltypes recovered in heart and regulatory topics model-
ing in ventricular cardiomyocytes a, Proportion of genotype and sex in 30 heart clusters.
Clusters are ordered by largest to smallest annotated cell type (grouped color bars). Middle
numeric column indicates the number of mice to constitute 90% of the cluster. Right numeric
column indicates number of nuclei per cluster. b, Dot plot showing expression of marker
genes in 16 annotated celltypes (refer to color legend in a). c, Distribution of genotypes in
each heart celltype. d, Distribution of celltypes in each genotype. e, Enrichment of genotype
and sex in 10 regulatory topics. f, Structure plots of topic proportions per nucleus grouped
by genotype. Each column is a stacked bar plot showing the proportion of participation
across topics for each nucleus across 116,325 total nuclei in the celltype.
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Figure 4.6: Overview of celltypes recovered in adrenal gland and regulatory topics
modeling in X-zone a, Proportion of genotype and sex in 38 adrenal clusters. Clusters
are ordered by largest to smallest annotated cell type (grouped color bars). Middle numeric
column indicates the number of mice to constitute 90% of the cluster. Right numeric column
indicates number of nuclei per cluster. b, Dot plot showing expression of marker genes in
14 annotated celltypes (refer to color legend in a). c, Distribution of genotypes in each
adrenal celltype. d, Distribution of celltypes in each genotype. e, Enrichment of genotype
and sex in 10 regulatory topics. f, Structure plots of topic proportions per nucleus grouped
by genotype. Each column is a stacked bar plot showing the proportion of participation
across topics for each nucleus across 26,606 total nuclei in the celltype.
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Figure 4.7: Overview of celltypes recovered in kidney and regulatory topics model-
ing in proximal tubules a, Proportion of genotype and sex in 48 kidney clusters. Clusters
are ordered by largest to smallest annotated cell type (grouped color bars). Middle numeric
column indicates the number of mice to constitute 90% of the cluster. Right numeric column
indicates number of nuclei per cluster. b, Dot plot showing expression of marker genes in
18 annotated celltypes (refer to color legend in a). c, Distribution of genotypes in each kid-
ney celltype. d, Distribution of celltypes in each genotype. e, Enrichment of genotype and
sex in 11 regulatory topics. f, Structure plots of topic proportions per nucleus grouped by
genotype. Each column is a stacked bar plot showing the proportion of participation across
topics for each nucleus across 264,996 total nuclei in the celltype.
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Figure 4.8: Overview of celltypes recovered in liver and regulatory topics modeling
in hepatocytes a, Proportion of genotype and sex in 48 liver clusters. Clusters are ordered
by largest to smallest annotated cell type (grouped color bars). Middle numeric column
indicates the number of mice to constitute 90% of the cluster. Right numeric column indicates
number of nuclei per cluster. b, Dot plot showing expression of marker genes in 14 annotated
celltypes (refer to color legend in a). c, Distribution of genotypes in each liver celltype.
d, Distribution of celltypes in each genotype. e, Enrichment of genotype and sex in 11
regulatory topics. f, Structure plots of topic proportions per nucleus grouped by genotype.
Each column is a stacked bar plot showing the proportion of participation across topics for
each nucleus across 574,931 total nuclei in the celltype.
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Figure 4.9: Overview of celltypes recovered in testes and epididymis and reg-
ulatory topics modeling in sperm cells a, Proportion of genotype and sex in 44
testes/epididymis clusters. Clusters are ordered by largest to smallest annotated cell type
(grouped color bars). Middle numeric column indicates the number of mice to constitute
90% of the cluster. Right numeric column indicates number of nuclei per cluster. b, Dot plot
showing expression of marker genes in 19 annotated celltypes (refer to color legend in a). c,
Distribution of genotypes in each testes/epididymis celltype. d, Distribution of celltypes in
each genotype. e, Enrichment of genotype and sex in 12 regulatory topics. f, Structure plots
of topic proportions per nucleus grouped by genotype. Each column is a stacked bar plot
showing the proportion of participation across topics for each nucleus across 18,111 total
nuclei in the celltype.
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Figure 4.10: Overview of celltypes recovered in ovary and oviduct and regulatory
topics modeling in theca cells a, Proportion of genotype and sex in 35 ovary/oviduct
clusters. Clusters are ordered by largest to smallest annotated cell type (grouped color bars).
Middle numeric column indicates the number of mice to constitute 90% of the cluster. Right
numeric column indicates number of nuclei per cluster. Right bar plot indicates estrus stage.
b, Dot plot showing expression of marker genes in 14 annotated celltypes (refer to color
legend in a). c, Distribution of genotypes in each ovary/oviduct celltype. d, Distribution
of celltypes in each genotype. e, Enrichment of genotype and sex in 10 regulatory topics.
f, Structure plots of topic proportions per nucleus grouped by genotype. Each column is a
stacked bar plot showing the proportion of participation across topics for each nucleus across
86,282 total nuclei in the celltype.
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Figure 4.11: Overview of celltypes recovered in skeletal muscle and regulatory
topics modeling in type II myonuclei a, Proportion of genotype and sex in 43 skeletal
muscle clusters. Clusters are ordered by largest to smallest annotated cell type (grouped
color bars). Middle numeric column indicates the number of mice to constitute 90% of
the cluster. Right numeric column indicates number of nuclei per cluster. b, Dot plot
showing expression of marker genes in 17 annotated celltypes (refer to color legend in a).
c, Distribution of genotypes in each skeletal muscle celltype. d, Distribution of celltypes in
each genotype. e, Enrichment of genotype and sex in 11 regulatory topics. f, Structure plots
of topic proportions per nucleus grouped by genotype. Each column is a stacked bar plot
showing the proportion of participation across topics for each nucleus across 523,897 total
nuclei in type IIb myonuclei.
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Figure 4.12: Satellite cells are activated in AJ a, Heatmap of pseudobulk dysferlin
expression in satellite cells (muscle stem cells) and myonuclei subtypes grouped by genotype.
b, Overview of topics modeling analysis on 5,269 satellite cells, similar to the approach used
for specific celltypes in all tissues. c Differentially expressed genes (log fold change > 2.5 and
adjusted p-value < 0.01) upregulated in one specific genotype overlapping with regulatory
genes. d, Heatmap of regulatory genes differentially weighted between AJ-specific topics
3 and 4 compared to shared topics 5 and 6. e, Structure plots of topic proportions per
nucleus grouped by genotype. Each column is a stacked bar plot showing the proportion of
participation across topics for each nucleus across 5,269 total nuclei in satellite cells.
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Chapter 5

Future directions

Towards cohesive cell type annotation

As single-cell technologies become more mainstream, initial “atlases” of cell types are built in

a wide range of tissues and conditions. These studies typically profile whole transcriptomes or

genome-wide chromatin accessibility in increasingly large numbers of single cells196,198,351,352.

While some studies organize cell types into hierarchical trees352 or taxonomies196, most

represent them as discrete clusters within a single tissue. Cell types are described using

human-readable terms198,351 or more obscure acronyms196. Integrated analysis involves rela-

beling cell types with a unified naming strategy to address inconsistencies across studies352.

Thus, there is a pressing need for a widely agreed-upon and cohesive naming convention in

the single-cell field that remains flexible to different levels of resolution. Such a convention

should accommodate increasingly rarer but distinct cell types and states while preserving

biological relationships between previously annotated cell types. Initiatives such as the Cell

Ontology (CL) offer a structured approach, providing human-readable descriptors, synonyms,

numerical IDs, and hierarchical structures for cell types349. However, CL currently does not

encompass distinct cell states within individual nuclei such as those observed in specialized
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myonuclei112. Expanding CL to include such states would significantly benefit the single-cell

field as a whole.

Long-read single-cell RNA-seq

While standard short-read single-cell RNA-seq is the most widely used method for quanti-

fying transcript expression in single cells, it falls short in preserving the structure of alter-

natively spliced full-length isoforms. Alternative splicing is a co-transcriptional regulatory

process353 occurring in almost every mammalian gene that enhances the diversity of the

proteome. Transcript isoforms encoding distinct proteins may possess different functional

properties that contribute to cell type specialization. For instance, the length of isoforms for

the sarcomere protein titin correlates with muscle fiber extensibility354. Shorter isoforms ex-

pressed solely in cardiac tissue yield proteins with higher passive tensile strength than those

encoded by longer isoforms354. Long-read RNA-seq has recently been adapted to single-cell

platforms to identify isoforms expressed in heterogeneous populations but is hindered by

either low throughput, limiting resolution for discerning less abundant cell types, or high

expense131,133. We addressed this issue in our 2021 paper by employing combinatorial bar-

coding to subset cells or nuclei from the main barcoded pool and sequence them with both

long and short reads using a dual library preparation strategy from the same input cDNA.

The remaining majority of cells or nuclei are deeply sequenced with more cost-effective short

reads. However, our reliance on single nuclei extracted from flash-frozen tissues instead of

whole cells introduced downstream artifacts evident during long-read data processing, par-

ticularly the capture of unspliced RNA from the nucleus. These artifacts lead to non-full

length reads and negatively impact isoform detection. Performing exon capture enrichment

on the barcoded cDNA before long-read sequencing substantially improves the fraction of

fully spliced reads, enhancing isoform quantification and facilitating the discovery of novel

isoforms355.

Leveraging F1 crosses to compare gene regulation in cis and trans
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Crossing distinct strains such as C57BL/6J and CAST/EiJ produces the first filial generation

or F1 (B6CASTF1/J). The F1 offspring inherits one set of alleles from each homozygous

parent. These crosses allow for investigation of the genetic basis of traits by comparing

molecular characteristics in F1 hybrids with those of the parental strains. The F1s may

exhibit similar, diminished, or augmented biological qualities compared to either parent.

For example, B6CASTF1/J males grow beyond the size of either parent in terms of body

weight356. The impact of a particular allele can be determined as either cis or trans by

examining the expression levels of a specific transcript or protein in both the parents and

offspring357,358. In the case of a cis effect, the allelic expression from one parent relative to

the allelic expression from the other parent in the F1 hybrids mirrors the expression ratio

observed when comparing the homozygous parents. In contrast, genes undergoing trans

regulation have alleles that are equally expressed in the F1 hybrids. This indicates that

trans-regulatory factors interact with target sequences to regulate both alleles regardless of

the parental origin. As an example, the allele for age-related hearing loss noted in C57BL/6J

was mapped to a locus on chromosome 10 using B6CASTF1/J hybrids and back-crossing

in 1997 (before the gene itself was even identified359). While C57BL/6J suffer from hearing

loss within a year after birth, CAST/EiJ and B6CASTF1/J have good hearing until at least

18 months old. The variation was later mapped as a cis-acting SNP in Cdh23 260.

Combining the founder snRNA-seq data we generated in IGVF and the B6CASTF1/J

snRNA-seq data we produced in ENCODE4 will allow us to begin testing and develop-

ing allele-specific gene expression pipelines to map cis and trans regulatory effects at the

cell type level. In addition, the second phase of our IGVF project includes snRNA-seq of

our eight core tissues in F1 mice (C57BL/6J females crossed with each of the seven founder

strains). This additional data in all eight core tissues will provide further opportunity for

allele-specific gene expression analysis and determination of cis and trans regulatory effects

in a broad spectrum of cell types and states.

177



Mapping cell type-specific QTLs

The CC lines have been used to map gene expression QTLs (eQTLs) and chromatin acces-

sibility QTLs (caQTLs) in diverse tissues65. Transcript expression was captured through

bulk RNA-seq while bulk ATAC-seq identified open chromatin across whole tissues in 47 CC

strains. Flanking marker loci were used to infer haplotype blocks and the probability of each

founder strain being the ancestor of a given allele was calculated65,360. A linear model was

used to test the genetic effect at each locus as described by Keele et al., 202065:

yi = µ + batchb[i] + QTLi + ε

Here, yi represents the trait level for each individual i, µ is the intercept, batchb[i] accounts

for sequencing batches, ε denotes the residual noise, and QTLi is defined as QTLi = βTxi. In

this equation, xi = (xi,AJ, ..., xi,WSB)T is a vector of inferred haplotype dosages for the eight

founders in each individual and β = (βAJ, ..., βWSB)T corresponds to the additive effect of

each haplotype. The fit of the linear model to the RNA-seq and ATAC-seq data is compared

with and without the QTL term to obtain a p-value. Significant QTLs were identified for

both genes and chromatin regions to highlight local QTLs with cis effects and distal QTLs

with trans effects. Certain eQTLs and caQTLs were found to be shared across multiple

tissues, while others exhibited tissue-specificity65. Tissue-specific effects can be attributed

to distinct regulatory contexts and unique cell type compositions shaped by gene regulatory

programs. Genes within these programs may interact with different sets of transcription

factors and regulatory elements across tissues to contribute to tissue-specific eQTL effects.

This perspective extends to the resolution of individual cell types which also exhibit extensive

specificity in gene expression

While QTLs have traditionally been identified in bulk tissues using the CC panel, our focus

with single-nucleus RNA-seq dataset is to map eQTLs at the level of specific cell types361.
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We aim to collect snRNA-seq data across our eight core tissues from 33 CC lines with

further plans to include snATAC-seq data in some or all matching samples. The addition

of snATAC-seq data in particular enhances QTL resolution, since CC haplotypes are often

large and span tens of megabases. Chromatin accessibility within these regions can help

pinpoint the genomic locus of active QTLs. The insights gained from mining single-cell-level

QTLs from this large-scale dataset will be invaluable to the mouse research community,

particularly those utilizing the Collaborative Cross and Diversity Outbred panels as well as

human systems geneticists working with more complex genomes.

179



Bibliography

[1] Alfred H. Sturtevant. The Early Mendelians. Genetics, 109(4):199–204, 1965. ISSN
1943-2631.

[2] Michael Turelli. Fisher’s infinitesimal model: A story for the ages. Theoretical Popu-
lation Biology, 118:46–49, 2017. ISSN 0040-5809. doi: 10.1016/j.tpb.2017.09.003.

[3] F J Ayala and W M. Fitch. Genetics and the origin of species: an introduction.
Proceedings of the National Academy of Sciences of the United States of America, 94
(15):7691–7697, 1997. ISSN 1091-6490. doi: 10.1073/pnas.94.15.7691.

[4] J. D. Watson and F. H. Crick. Molecular structure of nucleic acids; a structure for
deoxyribose nucleic acid. Nature, 171(5156):737–738, 1953. ISSN 0028-0836. doi:
10.1038/171737a0.

[5] A. Klug. Rosalind Franklin and the discovery of the structure of DNA. Nature, 219
(5156):808–810, 1968. ISSN 0028-0836. doi: 10.1038/219808a0.

[6] Asude Alpman Durmaz, Emin Karaca, Urszula Demkow, Gokce Toruner, Jacqueline
Schoumans, and Ozgur Cogulu. Evolution of genetic techniques: past, present, and
beyond. BioMed Research International, 2015:461524, 2015. ISSN 2314-6141. doi:
10.1155/2015/461524.

[7] C. Miles and M Wayne. Quantitative Trait Locus (QTL) Analysis. Nature Education,
1(1):208, 2008.

[8] K Weber, R Eisman, L Morey, A Patty, J Sparks, M Tausek, and Z B. Zeng. An anal-
ysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster.
Genetics, 153(2):773–786, 1999. ISSN 1943-2631. doi: 10.1093/genetics/153.2.773.

[9] M C Gurganus, J D Fry, S V Nuzhdin, E G Pasyukova, R F Lyman, and T F. Mackay.
Genotype-environment interaction at quantitative trait loci affecting sensory bristle
number in Drosophila melanogaster. Genetics, 149(4):1883–1898, 1998. ISSN 1943-
2631. doi: 10.1093/genetics/149.4.1883.

[10] T. F. Mackay. Quantitative trait loci in Drosophila. Nature Reviews Genetics, 2(1):
11–20, 2001. ISSN 1471-0064. doi: 10.1038/35047544.

[11] Sergey V Nuzhdin, Aziz A Khazaeli, and James W. Curtsinger. Survival analysis of
life span quantitative trait loci in Drosophila melanogaster. Genetics, 170(2):719–731,
2005. ISSN 1943-2631. doi: 10.1534/genetics.104.038331.

[12] Jeff Leips and Trudy F C Mackay. The complex genetic architecture of Drosophila
life span. Experimental Aging Research, 28(4):361–90, 2002. ISSN 1096-4657. doi:
10.1080/03610730290080399.

[13] Scott N Forbes, Robert K Valenzuela, Paul Keim, and Philip M. Service. Quantitative
trait loci affecting life span in replicated populations of Drosophila melanogaster. I.
Composite interval mapping. Genetics, 168(1):301–311, 2004. ISSN 1943-2631. doi:
10.1534/genetics.103.023218.

[14] H. Forsberg and P. O. Ljungdahl. Sensors of extracellular nutrients in Saccharomyces
cerevisiae. Current Genetics, 40(2):91–109, 2001. ISSN 1432-0983. doi: 10.1007/
s002940100244.

[15] Lars M. Steinmetz, Himanshu Sinha, Dan R. Richards, Jamie I. Spiegelman, Peter J.
Oefner, John H. McCusker, and Ronald W. Davis. Dissecting the architecture of a
quantitative trait locus in yeast. Nature, 416(6878):326–330, 2002. ISSN 0028-0836.

180



doi: 10.1038/416326a.
[16] Rachel B Brem and Leonid Kruglyak. The landscape of genetic complexity across

5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences
of the United States of America, 102(5):1572–1577, 2005. ISSN 1091-6490. doi: 10.
1073/pnas.0408709102.

[17] Michael P Snyder, Thomas R Gingeras, Jill E Moore, Zhiping Weng, Mark B Ger-
stein, Bing Ren, Ross C Hardison, John A Stamatoyannopoulos, Brenton R Graveley,
Elise A Feingold, Michael J Pazin, Michael Pagan, Daniel A Gilchrist, Benjamin C
Hitz, J Michael Cherry, Bradley E Bernstein, Eric M Mendenhall, Daniel R Zerbino,
Adam Frankish, Paul Flicek, and Richard M Myers. Perspectives on ENCODE. Nature,
583(7818):693–698, 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2449-8.

[18] IGVF Consortium. The Impact of Genomic Variation on Function (IGVF) Consortium.
ArXiv, page 2307.13708v1, 2023.

[19] Alessandra Breschi, Thomas R. Gingeras, and Roderic Guigó. Comparative transcrip-
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[166] Riikka Kivelä, Ida Salmela, Yen Hoang Nguyen, Tatiana V Petrova, Heikki A Koisti-
nen, Zoltan Wiener, and Kari Alitalo. Dual function of VGLL4 in muscle re-
generation. The EMBO Journal, 38(17):e101051, 2019. ISSN 1460-2075. doi:
10.15252/embj.2018101051.

196



[167] Bio-Rad Laboratories Inc. Illumina Bio-Rad SureCell® WTA 3’ Li-
brary Prep Kit for Nuclei Samples. Document Number 1000000044178
Ver. 00. 2018. doi: https://support.illumina.com/content/dam/
illumina-support/documents/documentation/chemistry documentation/surecell/
surecell-wta3-nuclei-demonstrated-protocol-1000000044178-00.pdf.

[168] Bio-Rad Laboratories Inc. Illumina Bio-Rad SureCell® ATAC-Seq Library Prepa-
ration Kit User Guide. Document Number 100000106678 Ver. 1.0.1. 2018. doi:
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10000106678.pdf.

[169] Advanced Cell Diagnostics Inc. Cultured adherent cells sample preparation for
RNAscope® Multiplex Fluorescent v2. Document Number MK-50-010. 2019. doi:
https://acdbio.com/technical-support/user-manuals.

[170] Advanced Cell Diagnostics Inc. RNAscope® HiPlex assay with sample preparation
and pretreatment. Document Number 324100-USM. 2019. doi: https://acdbio.com/
technical-support/user-manuals.

[171] Advanced Cell Diagnostics Inc. Tech Note for using RNAscope® HiPlex Alternative
Display Module. Document Number MK-51-132. 2019. doi: https://acdbio.com/
technical-support/user-manuals.

[172] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34
(18):3094–3100, 2018. ISSN 1367-4811. doi: 10.1093/bioinformatics/bty191.

[173] Dana Wyman and Ali Mortazavi. TranscriptClean: variant-aware correction of indels,
mismatches and splice junctions in long-read transcripts. Bioinformatics, 35(2):340–
342, 2019. ISSN 1367-4811. doi: 10.1093/bioinformatics/bty483.

[174] Fairlie Reese and Roger Volden. fairliereese/LR-splitpipe: LR-splitpipe v1.0 (v1.0).
Zenodo, 2021. doi: 10.5281/zenodo.5168059.

[175] Fairlie Reese. fairliereese/2021 c2c12: c2c12 figure code (v1.0). Zenodo, 2021. doi:
10.5281/zenodo.5168057.

[176] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski,
Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras. STAR: ultrafast
universal RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013. ISSN 1367-4811. doi:
10.1093/bioinformatics/bts635.

[177] Rahul Satija, Jeffrey A. Farrell, David Gennert, Alexander F. Schier, and Aviv Regev.
Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5):
495–502, 2015. ISSN 1546-1696. doi: 10.1038/nbt.3192.

[178] Christoph Hafemeister and Rahul Satija. Normalization and variance stabilization
of single-cell RNA-seq data using regularized negative binomial regression. Genome
Biology, 20(1):296, 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1874-1.

[179] Bio-Rad Laboratories Inc. Bio-Rad ATAC-Seq Analysis Toolkit Tutorial. Document
Number 7191 Ver. 1.0.0. 2019. doi: https://www.bio-rad.com/webroot/web/pdf/lsr/
literature/Bulletin 7191.pdf.

[180] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009. ISSN 1367-4811. doi:
10.1093/bioinformatics/btp324.

[181] Yong Zhang, Tao Liu, Clifford A. Meyer, Jérôme Eeckhoute, David S. Johnson,
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Benjamin Pavie, Joris Roels, Bavo Vanneste, Sofie De Prijck, Mathias Vanhocker-
hout, Mushida Binte Abdul Latib, Lindsey Devisscher, Anne Hoorens, Johnny Bon-
nardel, Niels Vandamme, Anna Kremer, Peter Borghgraef, Hans Van Vlierberghe,
Saskia Lippens, Edward Pearce, Yvan Saeys, and Charlotte L. Scott. Osteopon-
tin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer
Cells in the Fatty Liver. Immunity, 53(3):641–657, 2020. ISSN 1097-4180. doi:
10.1016/j.immuni.2020.08.004.

[352] Claudio Novella-Rausell, Magda Grudniewska, Dorien J M Peters, and Ahmed Mah-
fouz. A comprehensive mouse kidney atlas enables rare cell population characteriza-
tion and robust marker discovery. iScience, 26(6):106877, 2023. ISSN 2589-0042. doi:
10.1016/j.isci.2023.106877.

[353] Karan Bedi, Brian R. Magnuson, Ishwarya Narayanan, Michelle Paulsen, Thomas E.
Wilson, and Mats Ljungman. Co-transcriptional splicing efficiencies differ within genes
and between cell types. RNA, 27(7):829–840, 2021. ISSN 1469-9001. doi: 10.1261/
rna.078662.120.

[354] Elena Nikonova, Shao-Yen Kao, and Maria L. Spletter. Contributions of alternative
splicing to muscle type development and function. Seminars in Cell Developmental
Biology, 104:65–80, 2020. ISSN 1096-3634. doi: 10.1016/j.semcdb.2020.02.003.

[355] Simon A Hardwick, Wen Hu, Anoushka Joglekar, Li Fan, Paul G Collier, Careen
Foord, Jennifer Balacco, Samantha Lanjewar, Maureen McGuirk Sampson, Frank
Koopmans, Andrey D Prjibelski, Alla Mikheenko, Natan Belchikov, Julien Jarroux,
Anne Bergstrom Lucas, Miklós Palkovits, Wenjie Luo, Teresa A Milner, Lishomwa C
Ndhlovu, August B Smit, John Q Trojanowski, Virginia M Y Lee, Olivier Fedrigo,
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