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Abstract

Going beyond the literal meaning of language is key to communicative success. However, the 

mechanisms that support non-literal inferences remain debated. Using a novel meta-analytic 

approach, we evaluate the contribution of linguistic, social-cognitive, and executive mechanisms to 

non-literal interpretation. We identified 74 fMRI experiments (n = 1,430 participants) from 2001–

2021 that contrasted non-literal language comprehension with a literal control condition, spanning 

ten phenomena (e.g., metaphor, irony, indirect speech). Applying the activation likelihood 

estimation approach to the 825 activation peaks yielded six left-lateralized clusters. We then 

evaluated the locations of both the individual-study peaks and the clusters against probabilistic 

functional atlases (cf. anatomical locations, as is typically done) for three candidate brain 

networks—the language-selective network (Fedorenko et al., 2011), which supports language 

processing, the Theory of Mind (ToM) network (Saxe & Kanwisher, 2003), which supports 

social inferences, and the domain-general Multiple-Demand (MD) network (Duncan, 2010), which 
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supports executive control. These atlases were created by overlaying individual activation maps of 

participants who performed robust and extensively validated ‘localizer’ tasks that selectively target 

each network in question (n = 806 for language; n = 198 for ToM; n = 691 for MD). We found that 

both the individual-study peaks and the ALE clusters fell primarily within the language network 

and the ToM network. These results suggest that non-literal processing is supported by both i) 

mechanisms that process literal linguistic meaning, and ii) mechanisms that support general social 

inference. They thus undermine a strong divide between literal and non-literal aspects of language 

and challenge the claim that non-literal processing requires additional executive resources.

Introduction

Communicative success often requires going beyond accessing literal meanings of words 

and combining words to construct phrases and sentences (e.g., Grice, 1975; Sperber & 

Wilson, 1986). Knowledge of ‘non-literal’ meanings of words and phrases (e.g., metaphors, 

idioms), as well as reliance on contextual information and extra-linguistic cues, like prosody 

and gestures, are in many cases necessary for apprehending the intended meaning of 

linguistic input. The neurocognitive mechanisms that support lexical access and phrase-

structure building in comprehension and production are fairly well characterized (e.g., 

Fedorenko et al., 2020), but the mechanisms that enable comprehension beyond those 

core linguistic processes remain debated. In the remainder of the paper, we use the term 

‘non-literal language comprehension’ to refer to the gamut of cognitive processes related to 

language comprehension that go beyond lexical access and phrase-structure building. Our 

use of this term is broader than in some other prior papers and encompasses a) classic 

non-literal phenomena like metaphors; b) discourse-level comprehension; c) pragmatic 

phenomena like irony; and d) prosody.

Early patient investigations linked difficulties in non-literal interpretation with damage to 

the right hemisphere (RH) (e.g., Winner & Gardner, 1977; Myers & Linebaugh, 1981; Delis 

et al., 1983; Brownell et al., 1983; 1986; Bryan, 1988; Joanette et al., 1989; Weylman 

et al., 1989; Burgess & Chiarello, 1996; Myers, 1998). This work motivated the coarse 

semantic coding hypothesis (Beeman & Chiarello, 1998; Jung-Beeman, 2005), which posits 

a RH advantage for processing distantly related concepts, a central aspect of understanding 

non-literal phenomena such as metaphor. More recently, a growing number of empirical 

studies have challenged the notion of RH dominance in non-literal processing: brain imaging 

experiments (e.g., Rapp et al., 2004; Lee & Dapretto, 2006; Bosco et al., 2017; see also 

Oliveri et al., 2004), meta-analyses of such studies (e.g., Bohrn et al., 2012; Rapp et al., 

2012; Reyes-Aguilar et al., 2018), and patient investigations (Ianni et al., 2014; Cardillo et 

al., 2018; Klooster et al., 2020; see Giora et al., 2000; Zaidel et al., 2002; Klepousniotou 

& Baum, 2005 for evidence of bilateral involvement) have instead implicated the left 

hemisphere (LH).

Importantly, both the left and the right hemisphere each contain multiple distinct functional 

networks, including the language-selective network (e.g., Fedorenko et al., 2011) and 

its right homotope, the Theory of Mind network (e.g., Saxe & Kanwisher, 2003), and 

the domain-general Multiple Demand network (e.g., Duncan, 2010). These networks are 
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associated with distinct cognitive operations, all of which have been argued to contribute to 

non-literal language comprehension, including in individuals with communication disorders: 

linguistic processing (e.g., Papagno & Genoni, 2004; Beaty & Silvia, 2013; Whyte & 

Nelson, 2015), social inference (e.g., Sperber & Wilson, 1986; Happé, 1993; Winner et 

al., 1998), and executive control (e.g., McDonald & Pearce, 1998; Champagne-Lavau & 

Stip, 2010), respectively. As a result, focusing on the question of hemispheric dominance 

alone has limited utility with regard to questions about the cognitive mechanisms underlying 

non-literal language processing.

In an effort to characterize the cognitive mechanisms underlying non-literal language 

processing, past neuroimaging studies have primarily relied on the anatomical locations 

of group-level effects to identify the relevant cognitive processes. However, the traditional 

group-averaging approach is limited in the inferences it affords about cognitive processes. 

In particular, in this approach, individual activation maps are averaged in the common 

space and the resulting activation peaks are interpreted via reverse inference from anatomy 

to function (Poldrack, 2006, 2011; Fedorenko, 2021). For example, an activation peak in 

a study on non-literal comprehension that falls within the inferior frontal gyrus may be 

interpreted as indexing the engagement of cognitive control mechanisms because some 

past studies that targeted cognitive control reported activation there. Such inferences are 

not warranted because functional areas vary substantially in their precise locations across 

individual brains, particularly within the association cortex (e.g., Fischl et al., 2008; Frost 

& Goebel, 2011; Tahmasebi et al., 2012). Consequently, any given location in the group 

space may correspond to distinct networks across individual participants (e.g., the language 

network in one participant, and the Multiple Demand network in another participant; 

Fedorenko & Blank, 2020).

The use of individual-subject analyses, or ‘precision fMRI’, offers a way to circumvent 

high inter-individual variability in the locations of functional networks. In this approach, 

the relevant areas are identified in individual brains using robust and extensively validated 

‘localizer’ tasks that selectively target particular functional areas/networks (e.g., Kanwisher 

et al., 1997; Saxe et al., 2006; Fedorenko et al., 2010, 2013; Shashidara et al., 2019; 

Fedorenko, 2021; Gratton & Braga, 2021). The recruitment of these areas during some new, 

critical condition(s) are then examined. For example, a researcher may identify the Multiple 

Demand network using a robust working-memory-based localizer, and then ask whether 

these areas, which are active when participants engage in working memory tasks, are also 

active when participants comprehend a particular type of non-literal language. In this way, 

the functional localization approach allows for a much more straightforward interpretation 

of a phenomenon with respect to its underlying cognitive processes and has already helped 

address many questions that could not be answered using the traditional group-averaging 

approach (e.g., Fedorenko et al., 2011; Deen et al., 2015; Braga & Buckner, 2017).

Despite the limitations of the group-averaging approach, we would ideally not abandon 

many hundreds of past fMRI studies. Here we develop an analysis method that integrates 

individual-subject functional localization and traditional group-averaging experiments and 

apply it to studies of linguistic phenomena that fall within our broad definition of non-

literal language processing. The critical innovation that has enabled this method is the 
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use of probabilistic functional atlases (e.g., Dworetsky et al., 2021; Thirion et al., 2021; 

Lipkin et al., 2022). Such atlases are created from large numbers of individuals (n > 100
for all atlases used here) who have performed extensively validated functional localizers 

that selectively target particular functional networks. Because these atlases capture inter-

individual variability in the locations of the relevant networks, we can estimate for any given 

location in the common space the probability that it belongs to each candidate network. In 

other words, the probabilistic atlases provide a layer of information beyond anatomy.

This new approach differs from other commonly used meta-analytic approaches, particularly 

the Activation Likelihood Estimation (ALE; Turkeltaub et al., 2002; Eickhoff et al., 

2009) approach. The interpretation of ALE estimates still relies on reverse inference from 

anatomical landmarks, or on comparisons between the results of multiple meta-analyses 

performed on group-level data. As such, inter-individual variability in functional architecture 

is not taken into account. A consequence is that the functional resolution of ALE—its ability 

to discriminate between nearby functional networks—is low (the logic described in Nieto-

Castañón & Fedorenko, 2012 for simple group analyses also applies to ALE meta-analyses).

The current approach also offers different information from the information that can 

be obtained from the NeuroSynth database (Yarkoni et al., 2011). NeuroSynth contains 

information about activation peaks that are reported in a large number of past group-level 

fMRI studies. These peaks are associated with keywords that correspond to different 

cognitive constructs. However, Neurosynth i) extracts activation peaks from the results tables 

regardless of the nature of the contrast (e.g., for a study that compares a literal and a non-

literal condition for some phenomenon, it would extract peaks for both the non-literal>literal 

contrast and the literal>non-literal contrasts; and ii) extracts keywords regardless of how 

they are used in a given paper (e.g., for a study that argues that general working memory 

brain areas are dissociated from brain areas that support language processing, NeuroSynth 

would extract keywords such as “working memory” and “language”, and whatever peaks are 

reported in the results tables—distinct peaks for the two sets of areas—would become linked 

with both keywords). Because the probabilistic atlases we use are constructed using tasks 

that have been selectively and robustly linked to particular cognitive processes, relating the 

locations of peak activations to these atlases affords both a higher degree of interpretability 

and a straightforward way to link the results to those from studies that rely on individual-

subject functional localization.

In the present study, we examined data from past fMRI studies (74 studies, 825 activation 

peaks) that contrasted neural responses to non-literal vs. literal conditions across diverse 

phenomena with respect to three candidate networks: the language-selective network 

(Fedorenko et al., 2011), which supports language processing, the Theory of Mind (ToM) 

network (Saxe & Kanwisher, 2003), which supports social inferences, and the domain-

general Multiple Demand (MD) network (Duncan, 2010), which supports executive control. 

In addition to incorporating probabilistic functional atlases in a novel manner, our meta-

analysis improves upon past meta-analyses of non-literal language (e.g., Bohrn et al., 2012; 

Rapp et al., 2012; Reyes-Aguilar et al., 2018) in that we a) include a larger number of 

studies, b) focus on targeted, more interpretable contrasts (i.e., non-literal > literal; cf. 

non-literal > fixation), and c) examine a larger number of phenomena that fall within a 
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broad definition of non-literal language. To foreshadow our results, we find support for the 

role of the language-selective and ToM networks, but not the MD network, in non-literal 

interpretation. Further, in line with past meta-analyses of non-literal language processing 

(Bohrn et al., 2012; Rapp et al., 2012; Reyes-Aguilar et al., 2018), we do not find support for 

an RH bias: the majority of peaks fall in the LH.

Materials and Methods

In the following sections, we report how we determined our sample size, all inclusion/

exclusion criteria (which were established prior to data analysis), all manipulations, and all 

measures in the study. Materials and data for the study are available at: https://osf.io/wfsnj/ 

No part of the study procedures or analyses was pre-registered prior to the research being 

conducted.

Article selection criteria

A literature search was conducted in accordance with PRISMA guidelines (Moher et al., 

2009). Relevant studies were identified in NeuroSynth, Google Scholar, APA PsycInfo, and 

PubMed databases using Boolean searches containing each of the following keywords: 

“anaphora,” “anthropomorphism,” “comedy,” “discourse comprehension,” “figurative 

language,” “figure of speech,” “hyperbole,” “humor”, “idioms,” “indirect request,” “indirect 

speech,” “ironic,” “irony,” “jokes,” “lying,” “metaphor,” “metonymy,” “narrative,” “non-

literal language,” “oxymoron,” “paradox,” “personification,” “platitude,” “pragmatics,” 

“prosody,” “proverbs,” “pun,” “sarcasm,” “sarcastic,” “saying,” “speech act,” “synecdoche,” 

“text coherence,” “text comprehension,” and “understatement”, plus the disjunctive 

combination of “fMRI,” “brain,” and “neuroimaging.” All non-literal keywords appeared 

either in prior fMRI meta-analyses (e.g., Ferstl et al., 2008; Bohrn et al., 2012; Rapp et al., 

2012; Reyes-Aguilar et al., 2018) or in theoretical and experimental papers that focus on 

linguistic phenomena that extend beyond lexical access and phrase-structure building (e.g., 

Grice, 1975; Demorest et al., 1983; Graesser, Singer, & Trabasso, 1994; Gibbs, 1994; 2002; 

Colston & O’Brien, 2000).

In addition to conducting database searches using non-literal language keywords, we also 

examined the reference lists of past neuroimaging meta-analyses on non-literal language 

processing to minimize the possibility of missing relevant studies (Ferstl et al., 2008; Bohrn 

et al., 2012; Rapp et al., 2012; Vartanian, 2012; Vrticka et al., 2013; Lisofsky et al., 2014; 

Yang, 2014; Yang & Shu, 2016; Reyes-Aguilar et al., 2018; Farkas et al., 2021).

260 articles were selected for full-text screening based on the content of their abstracts. The 

selection criteria included: (1) fMRI (not PET or MEG/EEG) was used; (2) participants were 

neurotypical, and not aging, adults; (3) participants were native speakers of the language in 

which the experiment was conducted; (4) a standard whole-brain random effects analysis 

(Holmes & Friston, 1998) was performed; (5) activation peaks were reported in Talairach 

(Talairach & Tournoux, 1988) or Montreal Neurological Institute (MNI) (Evans et al., 1993) 

coordinate systems; and (6) contrasts targeted non-literal language comprehension, in the 

listening or reading modality, versus a literal (or “less non-literal”) linguistic baseline (cf. 

coarser-grain contrasts like non-literal language processing vs. fixation). The 74 studies that 
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satisfied these criteria were published between 2001 and 2021 and targeted ten linguistic 

phenomena (Table 1). Across these 74 studies, 825 activation peaks (from 102 contrasts, 

between 1 and 4 contrasts per study) were extracted for analysis. Participants included 1,430 

individuals (between 8 and 39 individuals per study; M = 19.2) aged 18 to 55 (M = 24.8
years), 55% female (see SI Table 1 for further details). Table 1 summarizes the distribution 

of studies and peaks across the ten phenomena.

The probabilistic functional atlases for the three brain networks of interest

The individual activation peaks and the clusters derived from these peaks via the standard 

activation likelihood estimation (ALE) analysis (e.g., Turkeltaub et al., 2002; Eickhoff et 

al., 2009), as described below (section Activation likelihood estimation (ALE) analysis), 

were evaluated with respect to probabilistic functional atlases for three candidate networks 

of interest: the language network, the Theory of Mind (ToM) network, and the Multiple 

Demand (MD) network. For each network, an activation overlap map was created by 

overlaying a large n > 100  number of individual, binarized activation maps for the 

‘localizer’ task targeting that network, as described below (this is the first step in the 

Group-Constrained Subject-Specific analytic approach, as described in Fedorenko et al., 

2010 and Julian et al., 2012). To account for inter-individual variability in the overall level 

of activation, we selected in each individual the top 10% most localizer-responsive voxels 

across the brain (fixed-statistical-threshold approaches yield near-identical results; Lipkin 

et al., 2022). Specifically, we sorted the t-values for the relevant contrast and took 10% 

of voxels per participant with the highest values. In the resulting activation overlap map, 

the value in each voxel represents the number of participants for whom that voxel belongs 

to the top 10% most localizer-responsive voxels. These values—turned into proportions 

by dividing each value by the total number of participants that contribute to the overlap 

map—can then be used to estimate the probability that a given voxel belongs to the target 

network. Consider the extreme cases: if a voxel does not belong to the top 10% most 

localizer-responsive voxels in any participant, that voxel is extremely unlikely to belong to 

the network of interest, and if a voxel belongs to the top 10% most localizer-responsive 

voxels in every participant, that voxel is extremely likely to belong to the network of 

interest. In practice, for brain networks that support high-level cognitive functions and fall 

within the association cortex, network probability is unlikely to ever be 1 because of high 

inter-individual variability in the precise locations of these networks (e.g., Frost & Goebel, 

2011; Tahmasebi et al., 2012), as discussed above. Our degree of confidence in assigning a 

voxel to a network will therefore be constrained by the maximum inter-subject overlap value 

for that network.

The task used to localize the language network is described in detail in Fedorenko et 

al. (2010) and targets brain regions that support high-level language processing, including 

phonological, lexical-semantic, and combinatorial (semantic and syntactic) processes (e.g., 

Fedorenko et al., 2010, 2012, 2016, 2020; Bautista & Wilson, 2016; Blank et al., 2016; 

Regev et al., 2021). It also identifies right-hemisphere homotopes of the left-hemisphere 

language regions (e.g., Mahowald & Fedorenko, 2016), which have been proposed to play a 

role in non-literal language comprehension / pragmatic reasoning (e.g., Joanette et al.,1990; 

Kuperberg et al., 2000; Mashal et al., 2005; Coulson & Williams, 2005; Diaz & Hogstrom, 
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2011; Eviatar & Just, 2006). Briefly, we used a reading task that contrasted sentences 

(the critical condition) and lists of unconnected, pronounceable nonwords (the control 

condition; Figure 1) in a standard blocked design with a counterbalanced condition order 

across runs. By design, this localizer contrast subtracts out lower-level perceptual (speech or 

reading-related) and articulatory motor processes (see Fedorenko & Thompson-Schill, 2014 

for discussion) and has been shown to generalize across materials, tasks, visual/auditory 

presentation modality, and languages (e.g., Fedorenko et al., 2010; Fedorenko, 2014; Scott 

et al., 2017; Ivanova et al., 2020; Chen et al., 2021; Malik-Moraleda, Ayyash et al., 2021). 

Further, this network emerges robustly from task-free naturalistic data (e.g., Braga et al., 

2020; see also Blank et al., 2014, Paunov et al., 2018). Participants read the stimuli 

one word/nonword at a time in a blocked design, with condition order counterbalanced 

across runs. Each sentence/nonword sequence was followed by a button-press task to 

maintain alertness. A version of this localizer is available from https://evlab.mit.edu/funcloc/

download-paradigm, and the details of the procedure and timing are described in Figure 1 

and Table 2. The probabilistic functional atlas used in the current study (Language Atlas 

(LanA); Lipkin et al., 2022) was constructed using data from 806 participants, and the voxel 

with the highest network probability had a value of 0.82 (i.e., belonged to the top 10% of 

most language-responsive voxels in 82% of participants).

The task used to localize the ToM network is described in detail in Saxe and Kanwisher 

(2003) and targets brain regions that support reasoning about others’ mental states. Briefly, 

we used a task based on the classic false belief paradigm (Wimmer & Perner, 1983) that 

contrasted verbal vignettes about false beliefs (e.g., a protagonist has a false belief about an 

object’s location; the critical condition) versus vignettes about false physical states (physical 

representations depicting outdated scenes, e.g., a photograph showing an object that has 

since been removed; the control condition; Figure 1). By design, this localizer focuses on 

ToM reasoning to the exclusion of affective or non-propositional aspects of mentalizing 

and has been shown to generalize across materials (verbal and non-verbal), tasks, and 

visual/auditory presentation modality (e.g., Gallagher et al., 2000; Saxe & Kanwisher, 2003; 

Saxe et al., 2006; Jacoby et al., 2016). Furthermore, this network emerges robustly from 

task-free naturalistic data (e.g., Braga & Buckner, 2017; DiNicola et al., 2020; see also 

Paunov et al., 2018). Participants read the vignettes one at a time in a long-event-related 

design, with condition order counterbalanced across runs. Each vignette was followed by 

a true/false comprehension question. A version of this localizer is available from http://

saxelab.mit.edu/use-our-efficient-false-belief-localizer, and the details of the procedure and 

timing are described in Figure 1 and Table 2. The probabilistic functional atlas used in the 

current study (unpublished data from the Fedorenko lab) was constructed using data from 

198 participants, and the voxel with the highest network probability had a value of 0.88.

The task used to localize the MD network is described in detail in Fedorenko et al. (2013) 

(see also Blank et al., 2014) and targets brain regions that are sensitive to general executive 

demands. Briefly, we used a spatial working memory task that contrasted a harder and an 

easier condition. On each trial, participants saw a 3 × 4 grid and kept track of eight (the 

critical, harder, condition) or four (the control, easier, condition; Figure 1) locations that 

were sequentially flashed two at a time or one at a time, respectively. Participants indicated 

Hauptman et al. Page 7

Cortex. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://evlab.mit.edu/funcloc/download-paradigm
https://evlab.mit.edu/funcloc/download-paradigm
http://saxelab.mit.edu/use-our-efficient-false-belief-localizer
http://saxelab.mit.edu/use-our-efficient-false-belief-localizer


their memory for these locations in a two-alternative, forced-choice paradigm via a button 

press. Feedback was provided after every trial. There is ample evidence that demanding 

tasks of many kinds activate this network (e.g., Duncan & Owen 2000; Fedorenko et al. 

2013; Hugdahl et al. 2015; Shashidara et al., 2019; and Assem et al., 2020a). Furthermore, 

this network emerges robustly from task-free naturalistic data (e.g., Assem et al., 2020a; 

Braga et al., 2020; see also Blank et al., 2014, Paunov et al., 2019). Hard and easy 

conditions were presented in a blocked design, with condition order counterbalanced across 

runs. This localizer is available from the authors upon request and the details of the 

procedure and timing are described in Figure 1 and Table 2. The probabilistic functional 

atlas used in the current study (MDAtlas; Lipkin et al., in prep.) was constructed using data 

from 691 participants, and the voxel with the highest network probability had a value of 

0.75. (It is worth noting that the three networks of interest differ somewhat in the range of 

their non-zero network probability values: language = 0.001–0.82, ToM = 0.005–0.88, and 

MD = 0.001–0.75. We decided against normalizing these values for each map (so that the 

highest network probability would be set to 1, or to the highest value observed across any of 

the three networks) because doing so would obscure meaningful differences in the likelihood 

that a given voxel belongs to each network.)

Critically, these three networks are robustly spatially and functionally dissociable within 

individuals in both naturalistic (e.g., Blank et al., 2014; Paunov et al., 2018; Braga et al., 

2020) and task-based fMRI paradigms despite their close proximity to each other within 

the association cortex. The language network selectively supports linguistic processing, 

showing little or no response to diverse executive function tasks (e.g., Fedorenko et al., 

2011; Monti et al., 2012; see Fedorenko & Blank, 2020 for a review) and mentalizing tasks 

in individual participants (Deen et al., 2015, Paunov, 2018; Paunov et al., 2021; Shain, 

Paunov, Chen et al., 2022). The data from the patient literature mirrors this selectivity: 

damage to the language network does not appear to lead to difficulties in executive or social 

processing (see Fedorenko and Varley, 2016 for a review). The ToM network selectively 

supports social cognition, showing little or no response to linguistic input without mental 

state content (Deen et al., 2015; Paunov et al., 2021; Deen & Freiwald, 2021; Shain, 

Paunov, Chen et al., 2022) or to executive demands (Saxe et al., 2006; Scholz et al., 

2009; Willems et al., 2010). Finally, the MD network supports diverse executive demands 

(e.g., Duncan, 2010, 2013; Assem et al., 2020a; Smith et al., 2021) and is linked to fluid 

reasoning ability (e.g., Woolgar et al., 2010; Assem et al., 2020b), but plays a limited role 

in language comprehension once task demands are controlled for (e.g., Diachek, Blank, 

Siegelman et al., 2020; Shain, Blank et al., 2020; Wehbe et al., 2021; see Fedorenko & 

Shain, 2021 for a review), and in social cognition (e.g., Willems et al., 2010). Because of 

the selective relationship between each of the three networks and a particular set of cognitive 

processes, activity in these networks can be used as an index of the engagement of the 

relevant processes (see e.g., Mather et al., 2013, for discussion), circumventing the need 

for precarious reverse inference from anatomical locations to function (e.g., Poldrack et al., 

2006, 2011; Fedorenko, 2021). This is the approach that is adopted in studies that rely on 

functional localization (e.g., Brett et al., 2002; Saxe et al., 2006; Fedorenko, 2021). Here, we 

extend this general logic to the meta-analysis of group-level activation peaks by leveraging 
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information about the landscape of each network of interest based on probabilistic functional 

atlases for the relevant localizer tasks.

Extracting network probabilities for the individual-study peaks

Prior to analysis, activation peaks that were reported in Talairach space were converted to 

the MNI space using icbm2tal transform SPM conversion in GingerALE 3.0.2 (Eickhoff et 

al., 2009, 2012). The MNI coordinates of the 825 activation peaks included in the dataset 

were tested against the probabilistic functional atlases (created as described above, section 

The probabilistic functional atlases for the three brain networks of interest) for each of the 

three functional networks of interest. For each coordinate, three network probability values 

were extracted (one from each functional atlas). (Note that because of the variability in the 

precise locations of functional areas and the proximity of the three networks to each other 

in parts of the association cortex, many voxels have non-zero values for more than a single 

network (despite the fact that there is little to no overlap among the networks in individual 

participants)—this is precisely the argument against traditional group-averaging analyses 

in fMRI; e.g., Fedorenko & Blank, 2020; DiNicola & Buckner, 2021; Fedorenko, 2021; 

Gordon & Nelson, 2021; Gratton & Braga, 2021; Smith et al., 2021). It is also important 

to note that what we refer to throughout the manuscript as ‘probability values’ (which may 

be taken to mean posterior probabilities, i.e., p (language | voxel)) are, in fact, likelihood 

values (e.g., p (voxel | language), i.e., the probability that a voxel will be active during 

linguistic processing based on the percentage of people who show activity in that voxel for 

the language localizer contrast). This distinction does not matter given that our critical tests 

compare across different networks (rather than, for example, trying to estimate an absolute 

belief for any particular network).

Activation likelihood estimation (ALE) analysis

In addition to examining the individual-study activation peaks, we used the GingerALE 

software (Eickhoff et al., 2009, 2012) to perform a traditional fMRI meta-analysis via the 

activation likelihood estimation (ALE) method (Turkeltaub et al., 2002). ALE identifies 

regions that show consistent activation across experiments (Eickhoff et al., 2009, 2012). The 

clusters that ALE yields should be less noisy than the individual-study activation peaks, 

especially when multiple-comparison correction is not appropriately applied and participant 

sample sizes are small in individual studies (e.g., Genovese et al., 2002; Eklund et al., 2016; 

Chen et al., 2018).

The 74 studies in our dataset yielded 825 activation peaks (Table 1; see SI Table 1 for 

a complete list of studies), but 39 peaks (fewer than 5%) fell outside the MNI template 

used by GingerALE and were therefore excluded, leaving 786 peaks. For each study, a map 

was created in which each voxel in the MNI space received a modeled activation score. 

Modeled activation scores reflect the likelihood that significant activation for one particular 

experiment was observed at a given voxel. The 74 modeled activation maps were then 

unified, generating an ALE value for each voxel.

Significance was assessed by comparing the observed ALE values to a null distribution 

that was generated by repeatedly calculating ALE values using randomly placed activation 
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peaks (1,000 permutations). A cluster-forming threshold of p < 0.001 (uncorrected) identified 

contiguous volumes of significant voxels (“clusters”), and clusters that survived a cluster-

level family-wise error (FWE) of p < 0.05 were considered significant. Cluster-level FWE 

correction has been argued to be the most appropriate correction for ALE, as it minimizes 

false positives while remaining more sensitive to true effects in comparison to other 

correction methods (Eickhoff et al., 2016).

Applying ALE to the 74 experiments yielded six significant clusters that were located in the 

left frontal and temporal cortex, and in the left amygdala (SI Figure 1). The clusters varied in 

size from 176 to 1,695 voxels.

Critical analyses

We asked two key research questions: the first, critical question examines the locations 

of the activation peaks with respect to the three brain networks of interest: the language 

network, the ToM network, and the MD network, and the second question is motivated by 

the prior claim about the privileged role of the right hemisphere in non-literal language 

processing (e.g., Winner & Gardner, 1977). Note that in all the analyses, we collapse the 

data from across the ten non-literal phenomena. We adopted this approach because i) none 

of the phenomena have a sufficient number of studies to enable meaningful phenomenon-

level examination, and ii) there is currently a lack of consensus about the ways to carve up 

the space of non-literal phenomena (see Discussion). However, in an exploratory analysis, 

we examined the contribution of different phenomena to the peaks/clusters that load on the 

functional networks.

Q1: How are the activation peaks from prior fMRI studies of non-literal 
language comprehension distributed across the language, ToM, and MD 
networks?

Analysis of individual-study peaks: We evaluated the locations of the activation peaks with 

respect to our three brain networks of interest (language, ToM, MD). Almost all the peaks—

820/825 (99%)—were observed in voxels with a non-zero network probability in at least 

one functional atlas. To test whether the network probabilities associated with the activation 

peaks differed between the networks, we developed the following statistical procedure (note 

that for all analyses, we excluded the 13 peaks that fell on the cortical midline, i.e., had an 

x coordinate value of 0, given that we wanted to examine each network in each hemisphere 

separately, which left 812 peaks for analysis):

1. For each of the 812 peaks, we calculated the difference in network probabilities 

between each pair of networks (language vs. ToM, language vs. MD, and 

ToM vs. MD), and recorded the median (across peaks) of these difference 

values for each of the three contrasts in each hemisphere separately. (We used 

median instead of mean values to better capture the central tendencies given the 

skewness of the distributions.)

2. We then created 3D maps from which random peak sets could be selected 

(against which the location of true observed peaks could be evaluated, as 

described in Step 4 below). Specifically, we created a map for each hemisphere 
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whereby we removed the voxels whose locations were associated with a network 

probability of 0 in all three functional atlases (for the language, ToM, and MD 

networks). This restriction was imposed so as to a) constrain the locations of 

the baseline voxel sets to the parts of the brain where true observed peaks were 

found (as noted above, almost all the peaks were observed in voxels that had a 

non-zero network probability in at least one network); and thus, b) to construct 

a more conservative test, making it more difficult to detect between-network 

differences.

3. In each hemisphere, the same number of peaks as in our dataset (n = 490 in 

the LH, and n = 322 in the RH) were then randomly sampled from the maps 

that were created in Step 2, and the median difference (across peaks) for each 

contrast (language vs. ToM, language vs. MD, ToM vs. MD) was computed, as 

in Step 1. This procedure was repeated 10,000 times, yielding an empirical null 

distribution of median network probability differences.

4. Finally, we compared the true median network probability differences against 

the distribution of network probability differences obtained in Step 3 to yield a 

significance value for each of the three contrasts within each hemisphere.

Analysis of activation likelihood estimation (ALE) clusters: We evaluated the locations 

of 1) the center peaks of the six significant ALE clusters, and 2) all voxels contained 

within each cluster with respect to our three brain networks of interest (language, ToM, 

MD). Importantly, whereas individual study peaks might be skewed by a single study with 

a particularly large number of activation peaks, ALE estimates incorporate the sample size 

of each study and are therefore less susceptible to this source of bias. To test whether the 

network probabilities differed between the networks, we evaluated the network probabilities 

of the voxels in each cluster and, for each cluster individually, subsequently performed the 

statistical procedure described above (in Analysis of individual-study peaks).

Q2: Do the activation peaks from prior fMRI studies of non-literal language 
comprehension exhibit a right hemisphere bias?

Analysis of individual-study peaks: To test whether the two hemispheres differed in the 

number of the activation peaks, we ran two logistic mixed effect regression models using 

the “lme4” package in R. The first tested the full set of 812 activation peaks (excluding 

the 13 peaks that fell on the cortical midline), and the second focused on the subset of the 

812 peaks n = 636  that exhibited a network probability of 0.10 or greater in at least one 

network. The second model was included to ensure that the results are not driven by a subset 

of peaks that do not load strongly on any of the three networks of interest. For both models, 

the following formula was used, which included a random intercept for experiment n = 74 :

Location of a peak in LH or RH 1 + (1 ∣ Experiment )

Analysis of activation likelihood estimation (ALE) clusters: We examined the locations 

of the six significant ALE clusters with respect to hemisphere.
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Results

Non-literal language comprehension draws primarily on the language and ToM networks

Across the 812 non-midline peaks, the highest network probability was observed for 

the ToM network functional atlas (maximum=0.86, mean=0.19, SD=0.18, median=0.12; 

802 total peaks with nonzero network probabilities), followed by the language atlas 

(maximum=0.80, mean=0.17, SD=0.17, median=0.10; 807 nonzero peaks), and the MD 

atlas (maximum=0.65, mean=0.11, SD=0.14, median=0.04; 806 non-zero peaks). In 

both hemispheres, the median nonzero network probabilities across the activation peaks 

numerically exceeded the median non-zero probability values across the functional atlases as 

a whole: language atlas (LH: peaks=0.12, atlas=0.04; RH: peaks=0.07, atlas=0.04), ToM 

(LH: peaks=0.13, atlas=0.04; RH: peaks=0.13, atlas=0.04), and MD (LH: peaks=0.03, 

atlas=0.02; RH: peaks=0.04, atlas=0.02). See Figure 2 for a depiction of the network 

probability distributions of the individual-study peaks for each network.

We then examined between-network differences in network probabilities. Among the 490 

LH peaks, the magnitude of the median difference in network probabilities was highest 

between the language and MD networks (language vs. MD = 0.07, language vs. ToM = 

0.02, ToM vs. MD = 0.04). In the RH (322 peaks), the magnitude of the median difference 

in network probabilities was highest between the ToM and MD networks (ToM vs. MD = 

0.04, language vs. ToM = 0.02, language vs. MD = 0.02). Our permutation analysis (see 

Methods) revealed that the LH activation peaks were located more centrally in the language 

network than in either the ToM or the MD network (both ps < 0.0001) and more centrally in 

the ToM network than the MD network p < 0.0001 . The RH activation peaks were located 

more centrally in the ToM network than either the language or the MD network (both 

ps < 0.0001) and more centrally in the language network than the MD network p < 0.0001
(see Figure 2). Importantly, this analysis controls for network lateralization (language=LH, 

ToM=RH) by generating an empirical null distribution of probability differences in each 

hemisphere separately. Higher network probabilities observed in the language network 

among the LH voxels and in the ToM network among the RH voxels therefore exceed 

what would be expected given the (already-skewed) distribution of network probabilities in 

each hemisphere.

With respect to the ALE clusters (see Table 3 and SI Figure 1), the center peaks of four 

clusters, including the largest cluster, exhibited the highest network probabilities in the 

language atlas. Two of these were located in the left temporal lobe (primarily within the 

superior and middle temporal gyri), one within the left inferior frontal gyrus, and one within 

the left amygdala (although note that the network probability for the amygdala peak is 

overall relatively low compared to the cortical peaks). The center peaks of two additional 

clusters exhibited the highest network probabilities in the ToM atlas. One of these clusters 

was located in the left medial frontal gyrus and one in the left superior and middle temporal 

gyri.

Analysis of the network probabilities associated with the full set of voxels comprising each 

ALE cluster yielded similar results (Table 3). The voxels in the four clusters whose center 

peaks had the highest network probabilities in the language atlas also exhibited the greatest 
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median network probabilities in the language atlas, whereas the voxels in the two clusters 

whose center peaks had the highest network probabilities in the ToM atlas also exhibited 

the greatest median network probabilities in the ToM atlas. Results from the permutation 

analysis supported this apparent distinction between the four “language” clusters and the 

two “ToM” clusters: voxels comprising the language clusters had significantly higher 

network probabilities in the language network than in the ToM and MD networks, and 

voxels comprising the ToM clusters had significantly higher network probabilities in the 

ToM network than in the language and MD networks (all ps < 0.0001). These results are 

displayed in Figure 3. In general, the median probability values obtained from the voxels 

comprising ALE clusters are numerically higher than those observed in the individual 

activation peaks that were submitted to the same analysis. This likely reflects the inherent 

noisiness of individual activation peaks culled from experiments that use traditional group 

analyses and varied statistical correction approaches. However, the probability values 

associated with the individual activation peaks in our dataset, although numerically low, 

are not random (see SI Figure 2 and SI Figure 3).

Finally, in an exploratory analysis, we evaluated the phenomena that contributed to the six 

significant ALE clusters (see SI Table 2). No clear differentiation in terms of phenomena 

that contribute to the language vs. the ToM clusters was apparent.

No evidence of an RH bias for non-literal language comprehension

Of the full set of 812 peaks (excluding the 13 that fell on the cortical midline), 322 peaks 

(~40%) were located in the RH, and 490 (~60%) were located in the LH (Figure 4). This 

difference was highly reliable (b = − 0.44, SE = 0.1, z = − 4.42, p < 0.001). Similarly, of the 

subset of the 636 peaks with network probabilities of at least 0.10 in at least one network of 

interest, 245 peaks (~39%) were located in the RH, and 391 (~61%) were located in the LH 

(Figure 4). This difference was highly reliable (b = − 0.50, SE = 0.11, z = − 4.5, p < 0.001). 

ALE analysis yielded six LH clusters and zero RH clusters, suggesting that the RH peaks 

were less reliable across studies and may therefore reflect spurious results (see also Bohrn 

et al., 2012), or that RH involvement is specific to a small subset of non-literal phenomena. 

Collectively, these findings provide additional support for the notion that the LH is 

an important contributor—perhaps more important than the RH—to non-literal language 

processing (Bohrn et al., 2012; Rapp et al., 2012; Reyes-Aguilar et al., 2018).

Discussion

To illuminate the cognitive and neural bases of non-literal language comprehension, 

we performed a meta-analysis of group-level activation peaks from past fMRI studies. 

Specifically, we developed a novel approach that leverages ‘probabilistic functional 

atlases’ for three brain networks (the language network, the Theory of Mind network, 

and the Multiple Demand network) that have been implicated in non-literal language 

comprehension, broadly construed. The atlases are built using large numbers of individual 

activation maps for extensively validated ‘localizer’ tasks (e.g., Saxe et al., 2006; Fedorenko, 

2021) and provide estimates of the probability that a location in the common brain space 

belongs to a particular network. Because each of these networks has been rigorously 
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characterized and selectively linked to particular cognitive processes in past work, activation 

peak locations therein can be interpreted as evidence for the engagement of the relevant 

process(es) (Mather et al., 2013). This approach is therefore superior to the traditional 

meta-analytic approach where activation peaks or ALE clusters (Turkeltaub et al., 2002) 

are interpreted solely based on their anatomical locations or in relation to the results of 

additional meta-analyses.

The three networks that we examined include i) the language-selective network, which 

supports literal comprehension, including lexical and combinatorial operations (Fedorenko 

et al., 2020), ii) the Theory of Mind (ToM) network, which supports social inference, 

including mentalizing (Saxe & Kanwisher, 2003), and iii) the Multiple Demand (MD) 

network, which supports executive control (Duncan, 2010). We asked two research 

questions. The first, critical question concerned the distribution of peaks across the 

networks. The individual peaks and ALE clusters tended to fall in the language and 

ToM networks, but not the MD network. The second question, motivated by past patient 

investigations that have linked non-literal comprehension impairments to RH damage (e.g., 

Winner & Gardner, 1977), asked whether the peaks were more likely to fall in the RH. In 

line with past meta-analyses of non-literal language (Bohrn et al., 2012; Rapp et al., 2012; 

Reyes-Aguilar et al., 2018), we found that the peaks/clusters fell primarily in the LH. Below, 

we discuss several issues that these results inform, and highlight some outstanding questions 

and some methodological implications.

The role of the ToM and language networks in non-literal comprehension

In line with past studies that have reported activations in putative ToM areas for non-literal 

phenomena (e.g., Spotorno et al., 2012; van Ackeren et al., 2012; Feng et al., 2017), some 

individual study activation peaks and two ALE clusters had a high probability of falling 

within the ToM network. What is the role of mentalizing—a capacity supported by the ToM 

network—in language comprehension?

Because linguistic inputs often underspecify intended meaning (Wittgenstein, 1953; 

Sperber & Wilson, 1986), language comprehension routinely requires inferences about 

communicative intent. The computation of such inferences has historically been a focus of 

the field of pragmatics (Grice, 1957, 1975). Some early proposals drew a sharp boundary 

between literal and non-literal/pragmatic processing (Grice, 1975; Searle, 1979). However, 

defining the scope of pragmatic inference has proven challenging, and many have questioned 

the divide between literal and inferred meaning, or between semantics and pragmatics 

(Jackendoff, 2002). But if no such boundary exists, does understanding language always 
recruit the ToM network, in addition to the language network, to enable inferences about 

communicative intent?

The notion of continuous ToM engagement during language comprehension does not 

seem a priori plausible (many phenomena requiring context-based inferences—lexical 

disambiguation or pronoun resolution—are so common that it would seem inefficient and 

unnecessary to constantly engage in full-blown mentalizing) and does not find empirical 

support (Deen et al., 2015; Paunov et al., 2021; Shain, Paunov, Chen et al., 2022). Yet, 

in some cases, the ToM network does appear to contribute to language comprehension 

Hauptman et al. Page 14

Cortex. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e.g., Spotorno et al., 2012). Delineating the precise conditions under which comprehension 

requires ToM resources remains an important goal for future work (Paunov et al., 2021). 

Brain-imaging investigations of diverse non-literal phenomena using approaches with 

functionally localized ToM and language networks may offer some clarity. These approaches 

could be complemented by experiments that test linguistic abilities in individuals with 

impaired ToM reasoning (e.g., Siegal et al., 1996; Happé et al., 1999) or in statistical 

language models (Devlin et al., 2019). The latter can reveal which non-literal phenomena 

can be handled by language models, and which might require additional machinery that 

approximates mental state inference (e.g., Hu et al., 2021; 2022).

Many individual study activation peaks and four ALE clusters had a high probability 

of falling within the language network. Of course, understanding both literal and non-

literal language requires language processing, so both conditions should elicit a strong 

response in the language network. But why do non-literal conditions often elicit a stronger 

response? Differences in linguistic complexity might provide one explanation. The brain’s 

language areas are sensitive to comprehension difficulty (Wehbe et al., 2021). Although 

studies that compare literal and non-literal conditions commonly match stimuli on some 

linguistic variables, this matching is often limited to word-level features, which do not 

account for potential differences in context-based processing difficulty (e.g., surprisal; Smith 

& Levy, 2011). Further, despite the robust dissociation between the language and ToM 

networks, Paunov et al. (2019) found that the two networks show reliable correlation during 

language processing. This inter-network synchronization may lead increased ToM demands 

to additionally manifest in the language network via inter-network connections. Finally, the 

language network may actually support some pragmatic computations, although to argue for 

such effects, linguistic confounds and inter-network information leakage would need to be 

eliminated as possible explanations.

No evidence for the role of the MD network in non-literal comprehension

In contrast to the ToM and language networks, the Multiple Demand network does not 

appear to support non-literal comprehension: individual-study activation peaks and ALE 

clusters were least likely to fall in this network. Selecting the non-literal interpretation 

of linguistic input may tax working memory (because multiple interpretations may be 

activated) or require inhibitory control (e.g., Gernsbacher & Robertson, 1999; Channon & 

Watts, 2003). However, recent work has shown that any such operation related to linguistic 

processing appears to be implemented within the language-selective network (Shain, Blank 

et al., 2020; see Fedorenko & Shain, 2021 for a review). Indeed, as discussed above, greater 

cognitive demands associated with non-literal interpretation may well explain the responses 

in the language network.

We suspect that neural activity observed during non-literal processing in putative executive 

control areas in past studies (e.g., AbdulSabur et al., 2014; Chan & Lavallee, 2015; Bosco 

et al., 2017) is due either to i) reliance on anatomical landmarks, which do not warrant 

functional interpretation in the association cortex (Poldrack, 2006; Fedorenko, 2021), or 

ii) extraneous task demands (see Diachek, Blank, Siegelman et al., 2020 for evidence that 

sentence comprehension only engages the MD network when accompanied by a secondary 
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task, like a sentence judgment). Behavioral investigations that find correlations between 

executive abilities and non-literal interpretation abilities (e.g., Akbar et al., 2013; Caillies et 

al., 2014; Rints et al., 2015) are also likely affected by methodological issues, from small 

sample sizes to confounded experimental paradigms (Matthews et al., 2018). Indeed, recent 

large-scale investigations (Cardillo et al., 2020; Fairchild & Papafragou, 2021) argue against 

the role of executive functions in pragmatic ability.

Possible reasons for the inconsistencies regarding the hemispheric bias

One remaining puzzle concerns the difference between patient work, which has implicated 

the RH in non-literal language processing (e.g., Winner & Gardner, 1977; Myers & 

Linebaugh, 1981; Delis et al., 1983; Brownell et al., 1983; 1986; Van Lancker & Kempler, 

1987; Brownell, 1988; Stemmer et al., 1994; Giora et al., 2000; Ferstl et al., 2005; see 

also Jung-Beeman, 2005) and our results, which demonstrate a LH bias. As noted above, 

left-lateralized activations have also been reported in past studies (e.g., Rapp et al., 2004; 

Lee & Dapretto, 2006; Hillert & Buračas, 2009; Piñango et al., 2015; Bosco et al., 2017) and 

meta-analyses (Bohrn et al., 2012; Rapp et al., 2012; Reyes-Aguilar et al., 2018; Farkas et 

al., 2021). One possibility is that no RH bias exists for non-literal language processing. Both 

hemispheres contribute, perhaps with the LH contributing more strongly, as per the standard 

LH language bias (e.g., Geschwind, 1970). Because lexical and grammatical impairments 

resulting from LH damage are more salient and devastating, non-literal comprehension 

difficulties go unnoticed. In contrast, RH damage, which does not strongly affect basic 

language processing, may make apparent more subtle linguistic impairments, leading to 

the apparent RH bias for non-literal comprehension. In line with this possibility, several 

studies have reported that patients with LH damage show similar, or even greater, deficits in 

non-literal comprehension compared to RH-damaged patients (e.g., Tompkins, 1990; Giora 

et al., 2000; Zaidel et al., 2002; Gagnon et al., 2003; Klepousniotou & Baum, 2005; Ianni et 

al., 2014; Cardillo et al., 2018; Klooster et al., 2020).

Alternatively, the RH may indeed contribute more strongly than the LH to non-literal 

language comprehension, and past fMRI studies may have failed to detect the RH effects 

due the generally low sensitivity of the group-averaging analytic approach (Nieto-Castañón 

& Fedorenko, 2012). This possibility seems unlikely: if the RH were more active than 

the LH during non-literal comprehension, then RH activations should be easier to detect 

in a group analysis. This is because stronger responses would be more spatially extensive 

in individual brains and thus more likely to lead to overlap at the group level. (Further, 

using our probabilistic functional atlases, we did not find evidence for the possibility that 

functional areas in the RH are more variable in their locations across individuals and 

therefore less likely to emerge in a group analysis.) Future fMRI studies where areas of 

interest are identified via functional localizers, as well as intracranial stimulation studies, 

which enable spatially precise perturbations of neural activity, can provide important insight 

into the hemisphere-bias question.

Comparison with prior meta-analyses of non-literal language

Our results are generally consistent with several prior meta-analyses of non-literal language 

processing that report activation in left inferior frontal and anterior/middle temporal lobes as 
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individuals engage in non-literal interpretation (Ferstl et al., 2008; Bohrn et al., 2012; Rapp 

et al., 2012; Reyes-Aguilar et al., 2018; Rapp, 2019). However, in contrast to previous meta-

analyses, which focused on localizing regions that support non-literal language processing 

(i.e., the “where” question), our approach enables us to make stronger inferences about the 

underlying cognitive processes—linguistic processing, mentalizing, or executive control—

that non-literal comprehension involves (i.e., the “how” question). Collectively, this and past 

work point to the primacy of linguistic resources during non-literal language comprehension, 

where “non-literal language” encompasses linguistic phenomena that extend beyond lexical 

access and phrase-structure building. One possible explanation for the recruitment of left-

lateralized language areas is that non-literal language processing places increased demand 

on accessing meanings of words and constructions and combining them into compositional 

representations. Activity in the language brain areas reliably scales with the difficulty of 

language processing: in particular, the magnitude of neural response during naturalistic 

comprehension strongly relates to how long a given word takes to process, as measured 

behaviorally (e.g., Wehbe et al., 2021; see also Shain, Blank et al., 2020 and Shain et al., 

2022). Given that many non-literal phenomena involve accessing words in unusual senses 

and/or combining words in novel ways, it is perhaps expected that processing non-literal 

language would be more linguistically demanding.

Another possibility, informed by recent work on inter-network connections between the 

language and ToM networks (Paunov et al., 2019, 2022), is that non-literal interpretation 

elicits increased crosstalk between these networks. The recruitment of ToM areas observed 

in the present study diverges from the results of prior meta-analyses, where activation 

in classic ToM regions is less consistently observed, perhaps due to the fact that fewer 

studies and non-literal phenomena were incorporated. Although our results cannot speak 

to the existence of a neurally separable pragmatics substrate (see Bendtz et al., 2022), the 

upregulation of inter-network connections between language and ToM may be unique to 

non-literal processing; however, as mentioned above, a rigorously controlled set of stimuli 

would be required to properly address this question (Shain et al., 2022).

The need to carve non-literal processing at its joints

One important limitation of the present study is that there were not a sufficient number 

of studies to evaluate differences between phenomena (or within phenomena; e.g., novel 

vs. conventional metaphors). In an exploratory analysis, we did not observe any systematic 

patterns with regard to the phenomena that preferentially recruit the language vs. the ToM 

network (SI Table 2). In general, the field would benefit from clear, formal hypotheses about 

differences in the cognitive processes that contribute to each non-literal phenomenon. Such 

hypotheses can then be tested using behavioral, brain imaging, and computational modeling 

approaches.

We would like to conclude with a methodological point. fMRI has been a critical tool in 

human cognitive neuroscience. However, two disparate approaches are currently in use: 

i) the traditional approach where brains are averaged voxel-wise in the common space 

(Friston et al., 1999), and ii) the subject-specific functional localization approach where 

regions of interest are identified using functional ‘localizers’ (or other precision mapping 
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approaches, e.g., Braga et al., 2020; DiNicola et al., 2020) and critical effects are examined 

therein (Saxe et al., 2006). Until recently, comparing findings across these approaches—and 

thus establishing a cumulative research enterprise—has proven challenging. Probabilistic 

functional atlases, like the ones we used in the current study (see also Dworetsky et al., 

2021; Thirion et al., 2021), can bridge these two approaches by providing a common 

framework for functional areas/networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The three functional localizer paradigms (language, ToM, MD) and the resulting 

probabilistic functional atlases. The maps illustrate, for each voxel, the proportion of 

participants for whom that voxel belongs to the top 10% of localizer-responsive voxels. 

Despite the apparent “overlap” between language and ToM regions at the level of the 

probabilistic atlases, these networks show little to no overlap in individual participants (see 

Blank et al., 2014; Paunov et al., 2018; Braga et al., 2020).
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Figure 2. 
Individual peaks. The top panel displays individual activation peaks plotted on the smoothed 

(width = 2; kernel size = 3) cortical surface of a high-resolution structural MRI scan in 

MNI space. The bottom panel displays the distribution of nonzero network probabilities 

associated with all individual peaks, by hemisphere. Significance of median differences 

between networks was assessed via a permutation test; all ps < . 0001.
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Figure 3. 
Activation likelihood estimation (ALE) results. The top panel displays ALE scores 

associated with each of the 6 significant ALE clusters, plotted on the smoothed (width 

= 2; kernel size = 3) cortical surface of a high-resolution structural MRI scan in MNI 

space (cluster-forming threshold = p < 0.001 uncorrected, cluster-level family-wise error 

FWE = p < 0.05,1000 permutations). The bottom panel displays the distribution of nonzero 

network probabilities associated with all voxels contained within each cluster. Significance 

of median differences between networks was assessed via a permutation test; all ps < . 0001.
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Figure 4. 
Peaks by hemisphere. In the top panel, A displays the number of non-midline peaks in the 

left vs. right hemisphere. B displays the left vs. right breakdown of non-midline peaks with 

an network probability of at least 0.10 in at least one network. Significance was assessed 

via logistic mixed effects regression; all ps < . 001. Pie charts displaying the proportion of 

activation peaks in the left vs. right hemisphere are shown in the bottom panel.
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Table 1.

Distribution of studies and peaks across linguistic phenomena. (One of the 74 studies included separate 

contrasts for non-sarcastic irony and sarcasm and is therefore counted twice in the table.) Studies on prosody 

that focused on the role of emotionally charged prosodic cues were excluded.

Linguistic phenomenon Number of studies Number of peaks

Humor 8 121

Idiom 6 54

Indirect Speech 10 160

Irony 10 68

Metaphor 19 201

Metonymy 2 10

Prosody 4 64

Proverb 1 9

Sarcasm 2 10

Text Coherence 13 128

TOTAL 74 unique studies 825
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Table 2.

Details on the design and timing of the language, ToM and MD localizer tasks.

Language ToM MD

Design Blocked Long-event-related Blocked

Length of trial 4.8–18 s 14 s 8–9 s

Trials per block 1–5 N/A 2–4

Blocks/events per run 12–18 10 10–12

Blocks/events per condition per run 4–16 5 5–6

Length of run 336–504 s 272 s 288–448 s

Runs 2–8 1–2 2–4

Versions of the design 10 1 3
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Table 3.

Network probabilities for the six significant ALE clusters. The number of voxels in each cluster is listed under 

“Size (in voxels)”. The “Broad Anatomical Area” column lists the macroanatomical region that overlaps the 

most with each cluster (as determined by the ALE). In the “Language,” “ToM,” and “MD” columns, the first 

value represents the network probability associated with that cluster’s center peak and the second value 

represents the median network probability of all voxels contained in the cluster. In bold, we highlighted for 

each cluster the network that has the highest network probabilities.

Cluster Size (in voxels) Hemisphere Broad Anatomical Area x y z Language ToM MD

1 283 LH STG −54 −1 −16 0.743 / 0.634 0.348 / 0.298 0.001 / 0.009

2 357 LH MTG −55 −33 −3 0.738 / 0.638 0.394 / 0.323 0.016 / 0.016

3 1,695 LH IFG −47 26 3 0.424 / 0.298 0.273 / 0.177 0.030 / 0.064

4 176 LH Amygdala −23 −10 −17 0.136 / 0.117 0.030 / 0.040 0.004 / 0.009

5 528 LH STG −49 −63 29 0.197 / 0.272 0.611 / 0.578 0.016 / 0.028

6 454 LH MedFG −3 51 31 0.355 / 0.227 0.449 / 0.369 0.012 / 0.022
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