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Abstract

Phases of information encoding in many-body quantum states

by

Yimu Bao

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ehud Altman, Chair

Intermediate-scale quantum devices operate controllably and can maintain quantum entangle-
ment in systems of up to a few hundred qubits. From a many-body perspective, these devices
exhibit a novel interplay of entangling unitary evolution, measurements, and decoherence,
which is expected to give rise to new emergent phenomena. In this dissertation, we study the
collective phenomena associated with information encoding and focus on two broad classes of
systems: (i) monitored quantum circuits that consist of unitary evolution and measurements;
(ii) topologically ordered states subject to local decoherence.

Monitored random quantum circuits have been shown to undergo a measurement-induced
phase transition in the steady state when increasing the measurement rate. In the first part
of the dissertation, we develop a theoretical framework that maps the quantum information
dynamics in monitored circuits to equilibrium statistical mechanics models. We show that
the measurement-induced transition can be formulated as a transition in the capacity of
the circuit to encode quantum information and further as symmetry-breaking transitions
in statistical-mechanical models. Within this framework, we also identify new phases of
information flow in monitored circuits, both when symmetry is imposed on circuit elements
and when the circuit is at finite times.

Topologically ordered states in quantum codes can store quantum information in the presence
of local decoherence up to a finite threshold. In the second part of this dissertation, we
study the effect of decoherence on general quantum ground states with topological order. We
develop a theoretical framework based on effective field theory to identify the possible phases
induced by decoherence and characterize their capacity to encode quantum information. We
further propose information-theoretical quantities to define topological order in the ensuing
decoherence-induced mixed states.
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4.2 (a) Two chain model investigated numerically. Internal dynamics of chain-1
is generated by purely unitary two-qubit gates, while that of chain-2 by pure
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unitary gates applied with probability q. All gates and measurements commute
with the Z2-parity symmetry of chain 2. (b) Circuit diagram for the model. Every
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4.3 (a) Phase diagram of the two chain model. q is the inter-chain coupling. r is
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diamonds) and parity variance Π(A = L/2) (red crosses) as a function of r for
two values of q. The nearly overlapping lines correspond to different system sizes
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with probabilities Γsδt and Γbδt respectively. . . . . . . . . . . . . . . . . . . . . 94

4.5 Boundary conditions imposed on the U(1) phase by the boundary operators
corresponding to different probes. (a) The reference state |I⟩⟩ imposes a symmetry
breaking state with U(1) phase locked to zero (blue arrows). (b) The site parity
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anti-vortex pair at the edges of the region. (c) The bond parity variance Π̂b,A

similarly affects a π phase rotation, creating a vortex anti-vortex pair at the edges
of A. However, in this case, the vortex creation operators are bound to a Z2

charge (of the symmetry ϕ→ −ϕ). (d) The swap operator Cℓ,A rotates the phase
in A by π/2 (orange arrows), creating a pair of half-vortices at edges of the region. 102

4.6 Entanglement entropy and subsystem parity variances in three phases of Gaussian
fermionic circuits. (a) Schematic phase diagram in the space of bond measurement
versus site measurement probabilities (pb v.s. ps). Yellow markers represent numer-
ically extracted critical points along marked cuts. (b-d) Results for representative
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phase. The numerical results are obtained with system size L = 160 and averaged
over 400 random circuit realizations and measurement outcomes. . . . . . . . . . 105
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(purple crosses) and αΠ,b/αS (green “+”). The red dashed line represents the
prediction of the two-replica model for the critical phase: αΠ/αS = 4. (d) Parity
variances (blue, left vertical axis) and normalized entanglement entropy (red, right
vertical axis) along cut 3 from (pb, ps) = (0.4, 0.95) to (0.95, 0.4). Πs,A (blue dashed
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and yellow diamonds, respectively. The data used to extract ξ(ps) is presented in
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5.1 (a) Random quantum circuit on N qubits. In each time step δt, we apply single-
qubit Haar random gates to every qubit followed by Nδt two-qubit Haar random
gates. The distribution of two-qubit gates is determined by the geometry of the
circuit. The first qubit is maximally entangled with a reference qubit A, while
the remaining qubits are prepared in |0⟩. We consider the mutual information
between A and an output qubit B, conditioned on local measurements on the rest
of the qubits. (b) Phase diagram of one-dimensional long-range unitary circuits
with power-law decaying interaction. The black markers represent the inverse
critical time 1/tc as a function of power-law exponent α. The transition requires
α ≤ 2, indicated by the pink dotted line. When t > tc, the output state is in the
teleporting phase, corresponding to the low-temperature ferromagnetic phase of
the effective quantum Hamiltonian. The color indicates the conditional entropy
SB|M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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5.2 Finite-time transition in one-dimensional long-range interacting random circuits.
(a,b) The conditional entropy SB|M in circuits with power-law exponents α = 0
[all-to-all, panel (a)] and α = 1.75 [panel (b)] plotted as a function of time t for
various system sizes N from 32 to 512 indicated by increasing opacity. (inset)
Finite-size scaling collapse using Eq. (5.3). The grey dotted line indicates tc. For
the all-to-all circuit (α = 0), we obtain critical exponents ν ≈ 2.0, β ≈ 0.46, and
critical time tc ≈ 1.6. For α = 1.75, we obtain ν ≈ 2.0, β ≈ 0.20, and critical time
tc ≈ 2.1. (c) Critical exponents ν and β for α < 2. The exponents agree with
mean-field theory (MFT) for α ≤ 1.5. Moreover, near α = 2, ν begins to diverge,
as expected near a KT-like transition. The finite-time transition does not exist for
α > 2. The numerical results are averaged over 1.5 · 104 random circuit realizations. 116

5.3 Finite-time teleportation transition in two-dimensional short-range random circuits.
(a) Schematic of a finite-time two-dimensional random circuit of size Lx = Ly = L.
We use periodic boundary conditions and consider reference A to be entangled
with an input qubit separated from output qubit B by L/2 in both directions.
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Chapter 1

Introduction

The complexity of many-body systems underlies a plethora of emergent phenomena. As
explained in Anderson’s famous essay “More is different” [12], many-body systems can
develop macroscopic structures, such as liquids and crystals, which cannot be easily deduced
from understanding only the constituent elements. These emergent structures, arising from
complexity, are universal features shared among different systems and define the phases of
matter.

The complexity of many-body quantum system also underlies another type of emergent
property — their advantage in performing computational tasks. Pioneering works have
demonstrated that quantum computers, programmable devices over many coherent quantum
degrees of freedom, can outperform their classical counterparts in solving many challenging
problems [238, 175, 111, 7]. However, maintaining the coherence of macroscopic quantum
systems is a challenging task, which hinders the experimental realization of full-fledged
quantum computers.

In recent years, quantum technologies have made significant development toward realizing
quantum computers. Several near-term devices based on leading experimental platforms have
emerged, including Rydberg atom arrays [29, 48, 80, 234, 34], trapped ion systems [193, 281,
197], superconducting qubit circuits [15, 275, 226, 284, 180, 6]. These devices now operate
on up to a few hundred qubits, offer control over individual degrees of freedom, and can
perform measurements in underlying quantum states. Despite inevitable decoherence from
environmental noise and imperfection in gate operations, they are able to host large-scale
quantum entanglement, prepare novel quantum states, and perform quantum simulation
tasks [213, 96, 10]. Questions arise regarding the capacity of these devices to process quantum
information and whether they can offer advantages in solving certain computational problems
that are beyond the capabilities of classical computers within a reasonable timeframe.

The questions above can be addressed in part from a many-body perspective using the
tools developed in condensed matter physics. From this perspective, the near-term devices
constitute a new class of many-body systems — quantum circuits. The interplay among
entangling unitary evolution, measurements, and decoherence in quantum circuits is expected
to give rise to new emergent phenomena (“phases” of matter) associated with information
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encoding in the circuits. At the same time, these emergent phenomena may provide insights
into the potential computational advantage that the circuit can offer.

Several key aspects distinguish the emergent phenomena associated with information
encoding in quantum circuits from those in traditional condensed matter systems, making
them particularly intriguing and novel. The first difference lies in the diagnostics of the
phases. Phases in traditional condensed matter physics are characterized by observables
in the quantum state. For example, broken symmetry phases are probed by local order
parameters [223, 266]. The more exotic topological phases feature either gapless edge modes
or deconfined anyon excitations detected by string order parameters [88, 279]. The defining
properties of these phases are operator expectation values, i.e. linear functions of the
density matrix. On the other hand, information encoding in the system is characterized by
information-theoretical quantities, e.g. entanglement entropy, which are non-linear functions
of the density matrix. The associated emergent phenomena do not necessarily manifest in
the expectation values of local operators and therefore require a new framework to study
their properties.

Second, these information-theoretical quantities behave differently than local observables
under local operations. Local operations on quantum states are generally described by
quantum channels, which can always be formulated as local unitary operations coupling
the system to ancillary degrees of freedom [212]. Usual correlation functions, or other
observables, cannot exhibit many-body singularities under such local unitaries. The locality
of their response is ensured by the Lieb-Robinson bound [167]. In contrast, the change in
information theoretical quantities is not subject to this restriction, opening the possibility
for new emergent phenomena in quantum information encoding. For example, topological
quantum memories can undergo a phase transition under local decoherence [74]. The encoded
information becomes irrecoverable when the decoherence strength is above a finite threshold.

Third, quantum circuits can involve measurements, which are inherently non-unitary
operations. The measurement-induced collapse can leave a highly non-local effect in the post-
measurement state1. In particular, measurements can create nonlocal correlations between
far-separated degrees of freedom. This allows phenomena that are strictly impossible in a
purely unitary system due to the Lieb-Robinson bound, such as quantum teleportation over a
long distance [27] and fast preparation of long-range entangled states [47, 216]. Conversely, in
traditional solid-state experiments, measurements are performed only in the end to diagnose
the quantum states, and the post-measurement states are not considered.

Due to the novel aspects above, our understanding of these emergent phenomena remains
limited. In this dissertation, we develop theoretical frameworks to characterize the phases
of information encoding in many-body quantum states in two broad classes of systems: (1)
monitored quantum circuits that consist of unitary gates and measurements; (2) topologically
ordered states subject to local decoherence. In particular, we elucidate the role of symmetry
and topology in characterizing information encoding in these systems.

1The nonlocal effect does not violate causality as we assume instantaneous classical communication of
measurement results.
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In the rest of this chapter, we first present background materials setting the stage for the
subsequent chapters and then provide an overview of the dissertation.

1.1 Quantum measurement and quantum channel

In this section, we introduce the concepts of quantum measurements and quantum channels,
which are used throughout the dissertation.

Quantum measurements

In quantum theory, measurement returns a classical outcome and allows one to read out
from the underlying quantum state. At the same time, measurement imposes a generally
non-unitary operation and allows one to manipulate the quantum state.

According to the axioms of quantum mechanics, measuring an observable, i.e. a hermitian
operator, in a quantum state yields a random outcome drawn from the eigenvalues of the
operator. The probability pm for each outcome m in a quantum state is determined by the
Born rule

pm = tr
(
P̂mρ

)
, (1.1)

where P̂m = |m⟩⟨m| is the projector onto the eigenspace. After the measurement, the state is
projected onto the eigenspace associated with m, i.e.

ρ 7→ P̂mρP̂m

tr
(
P̂mρ

) . (1.2)

The projectors P̂m are orthogonal to each other. We call this type of measurement, projective
measurements.

Measurement in a more realistic setting is generally different from projective measurements
and does not necessarily lead to a projection in the system. The generalized measurement
involves two steps. First, we couple the system qubit to a measurement apparatus represented
by an ancilla qudit (prepared in a given state, e.g. |0⟩). Then, we perform a projective
measurement on the ancilla. The unitary coupling correlates the system Q and the ancilla
M , allowing the measurement on the ancilla to reveal the information about the system. To
understand the post-measurement state of the system, we consider a general unitary coupling
acting on the input state, which can be written as

UQM : |Ψ⟩Q ⊗ |0⟩M 7→
N−1∑

m=0

M̂m |Ψ⟩Q ⊗ |m⟩M , (1.3)
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where
∑N−1

m=0 M̂
†
mM̂m = 1 required by unitarity. Measuring the ancilla in the computational

basis has N outcomes, and each outcome m has a probability pm = tr
(
M̂ †

mM̂mρ
)

. After the

measurement, the system is evolved by a generally non-projective operator M̂m

ρ 7→ M̂mρM̂
†
m

tr
(
M̂ †

mM̂mρ
) . (1.4)

We remark that the probability distribution of measurement outcomes only depends on a
set of non-negative hermitian operators Π̂m := M̂ †

mM̂m, which is said to form a positive
operator-valued measure (POVM).

Quantum channel

Quantum channel describes the most general evolution of a quantum state, which is a linear,
trace-preserving, and completely positive (TPCP) map. According to the Choi-Kraus theorem,
any linear TPCP map acting on a density matrix ρ can always be expressed through a Kraus
decomposition [271]

N [ρ] =
N−1∑

α=0

KαρK
†
α, (1.5)

where Kα is called the Kraus operator and satisfies
∑N−1

α=0 K
†
αKα = 1 2.

A quantum channel can be equivalently formulated as the unitary evolution acting on
an extended system that includes an environment [212]. Specifically, the channel N can be
realized by coupling the system Q to an ancilla qudit E (representing the environment) by a
unitary gate UQE and then tracing over the ancilla, i.e.

N [ρ] = trE

(
UQE (ρ⊗ |0⟩⟨0|E)U †

QE

)
, (1.6)

where

UQE =
N−1∑

α=0

Kα ⊗
N−1∑

β=0

|α + β mod N⟩⟨β|E . (1.7)

The unitary coupling UQE is similar to the coupling between the system and a measure-
ment apparatus when describing a generalized measurement. In fact, if one discards the
measurement outcome, the resulting state of the system is an incoherent superposition of

2The Choi-Kraus theorem works in general for the map N from a finite-dimensional Hilbert space HA

to HB. The resulting Kraus operator is a map Kα : HA → HB, and its total number has an upper bound,
N ≤ dim(HA) dim(HB). We also note that the Kraus decomposition of a quantum channel is not unique,
and in fact, there are infinitely many equivalent decompositions.
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post-measurement states, which is equivalent to the system evolved by a quantum channel
with Kα given by the measurement operator M̂α.

A crucial quantity associated with the quantum channel is the quantum channel capacity,
which quantifies the maximum amount of quantum information one can send from the input
to the output [212, 271]. To define the channel capacity, we first introduce the coherent
information defined for a quantum channel N : HQ 7→ HQ′ and an input state ρ of the system
Q. Considering the input density matrix ρ as an entangled pure state of the system Q and a
reference R, the coherent information is given by

Ic(N , ρ) := SQ′ − SE = SQ′ − SQ′R. (1.8)

where Q′ is the output of the channel. The environment E together with Q′ and R is in
a pure state, thus SE = SQ′R. The coherent information Ic characterizes the amount of
entanglement between R and Q (equiv. the amount of information encoded in Q) that can
be recovered from R and Q′, and Ic is upper bounded by the entropy of the input state ρ,
Ic ≤ SQ

3.
The channel capacity is given by the maximum coherent information per single channel

usage. Specifically, we consider applying n copies of the channel N simultaneously to an
input state ρ(n) in the duplicated Hilbert space. The capacity of N is defined as

Q := lim
n→∞

1

n
max
ρ(n)

Ic

(
N⊗n, ρ(n)

)
, (1.9)

where ρ(n) is allowed to be entangled between different copies of the input Hilbert space. We
note that one needs to consider n copies of the channel because the quantum channel can be
“superadditive” and may transmit more information when channels are applied simultaneously.

1.2 Quantum state teleportation

In this section, we review the canonical protocol of quantum state teleportation as a simple
example to demonstrate that measurements can have a nonlocal effect on an entangled
state [27, 37, 39]. We show that the nonlocal correlations produced by the measurement can
be characterized by the coherent information defined above.

The protocol involves two parties: Alice and Bob. They share a Bell pair and use it as a
resource to teleport an unknown single-qubit quantum state from Alice to Bob. Specifically,
we consider the initial state of Alice and Bob given by

|Ψ0⟩AB = |ϕ⟩A1
⊗ 1√

2
(|00⟩ + |11⟩)A2B

. (1.10)

To teleport the quantum state |ϕ⟩, Alice performs a Bell measurement on two qubits, A1

and A2, and sends the outcome to Bob. The Bell measurement has four different outcomes

3The inequality follows from the subadditivity of von Neumann entropy, SQ = SR ≤ SRE − SE = Ic.
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labeled by two binary variables m1,m2 = 0, 1 and projects the quantum state onto a Bell
basis state

|Ψm1m2⟩ =
1√
2
Xm1

1 Zm2
1 (|00⟩ + |11⟩)A1A2

, (1.11)

where X1 and Z1 are Pauli operators of the first qubit. After the measurement, Bob’s qubit
is in a pure state

|φm1m2⟩B = ⟨Ψm1m2|Ψ0⟩ = Zm2Xm1 |ϕ⟩ . (1.12)

With the information of measurement outcome, Bob can apply a decoding unitary gate
Xm1Zm2 to recover the quantum state |ϕ⟩ that Alice sent. The successful teleportation
demonstrates the nonlocal effect of measurement, namely measurement on Alice can affect
the quantum state of Bob nonlocally when the outcome is communicated.

Instead of considering an explicit decoding scheme, the teleportation can be also understood
by the information flow in the system. Specifically, the successful teleportation is a result
that the encoded information in A1 is retained in the post-measurement state in B together
with classical measurement outcomes. To see this, we quantify the information retained in
the density matrix

ρA′B =
∑

m1,m2

pm1m2 |Ψm1m2⟩⟨Ψm1m2|A′ ⊗ ρB,m1m2 , (1.13)

which is an incoherent mixture of the post-measurement states held by Alice and Bob. Here,
A′ denotes Alice’s qubits after the measurement. Formally, the state in Eq. (1.13) is obtained
by applying a complete dephasing channel in the Bell basis to the input state. The dephasing
channel reflects the fact that measurements only reveal partial information in the state, and
the coherence between different Bell basis states is lost in the post-measurement ensemble.

The amount of encoded information that is retained in the process is characterized by
the coherent information of the quantum channel from A1 to A′B. To compute the coherent
information, we formulate the input state in A1 as an entangled state with a reference R
and the dephasing channel as a unitary coupling UA′E with an environment E. The coherent
information is then given by

Ic(R⟩A′B) = SA′B − SA′BR

= SB|A′ − SBR|A′

=
∑

m1m2

pm1m2 (SB,m1m2 − SBR,m1m2)

=
∑

m1m2

pm1m2Ic(R⟩B)m1m2

, R

A1

A′

A2

BEUA′E

, (1.14)

where SB|A′ = SA′B − SA′ and SBR|A′ = SA′BR − SA′ are the conditional entropies, and
Ic(R⟩B)m1m2 = SB,m1m2 − SBR,m1m2 is coherent information conditioned on the outcome.
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The coherent information saturates its maximum value (i.e. one qubit) when the input
state is a maximally entangled state between A1 and R. In this case, Ic(R⟩B)m1m2 =
SB,m1m2 − SBR,m1m2 = 1 for each outcome m1m2, and therefore Ic(R⟩A′B) = 1. This
indicates the quantum channel has a full channel capacity allowing Alice to send one qubit
to Bob.

It is crucial to note that the encoded information is not present in the quantum state of
B alone, but only when taken together with the classical information in the measurement
outcomes. Discarding the outcomes leads to a maximally mixed state in B. Hence, the channel
from A1 to B carries no quantum information. Indeed, without the classical information of
measurement outcomes, Bob cannot perform the decoding to achieve the teleportation.

In Chapter 2, we show that the monitored quantum circuits in the volume-law phase
retains an extensive amount of encoded information and can be regarded as a many-body
generalization of the teleportation protocol. The measurement-induced transition in the
circuit is characterized by the capacity of the dynamics to retain quantum information,
which, as in the teleportation protocol quantifies the ability to reconstruct the input state
from the output with knowledge of the measurement outcomes. In Chapter 3, we develop a
statistical mechanics description that captures the phase transition in the information flow in
the monitored circuit.

In Chapter 6 and 7, we discuss the effect of decoherence on topologically ordered states
that encode quantum information. The decoherence-induced transition can be similarly
characterized by the coherent information between the input and the output. However, no
classical measurement outcomes is needed to determine the capacity of the state.

1.3 Measurement-induced phase transition

Monitored quantum circuits that consist of random unitary evolution interpersed by measure-
ments were shown to undergo a measurement-induced phase transition (MIPT) [163, 239].
Specifically, the subsystem entanglement entropy in the steady state sharply changes from a
volume- to an area-law scaling when increasing the measurement rate. We here review the
phenomenology and basic properties of MIPT.

In pioneering works, Refs. [163, 239] demonstrated the MIPT in the steady state of
one-dimensional random unitary circuits interrupted by projective measurements. The circuit
consists of unitary gates acting on neighboring qubits and arranged in a brick-layer structure.
Each unitary gate is drawn independently from a distribution, e.g. Haar distribution over
SU(4) group or uniform distribution over Clifford group. After each layer of unitary gates,
a projective measurement is performed in the computational basis on every qubit with a
probability p. We consider the circuit which acts on N qubits initialized in a product state
|Ψ0⟩ = |0⟩⊗N and operates for T time steps. We are interested in the regime N, T ≫ 1. A
schematic of the circuit is presented in Fig. 1.1(a).

The measurements at different spacetime locations generate an ensemble of wavefunctions,
dubbed quantum trajectories, labeled by the collection of outcomes m⃗ [illustrated in Fig. 1.1(b)].



CHAPTER 1. INTRODUCTION 8
Figure 1 v1

Random unitary gate

Projective 
measurement

(a)

T

N

(b)

|Ψ0⟩

m1

m2

m3

|Ψm⃗⟩

Figure 1.1: Monitor random unitary circuit in one dimension. (a) The circuit operates
on N qubits for T time steps. In each time step, random unitary gates (blue boxes) are
applied to neighboring qubits. Each gate is independently drawn from the Haar random
distribution. After each layer of unitary gates, each qubit is projectively measured in the
computational basis with probability p. (b) The measurements (red dots) have random
outcomes m⃗ determined by the Born rule and generate an ensemble of trajectory wave
functions |Ψm⃗⟩.

The resulting unnormalized wave function for each trajectory is given by

∣∣∣Ψ̃m⃗

〉
= P̂mT

UT · · · P̂m2U2P̂m1U1 |Ψ0⟩ , (1.15)

where Ut is the unitary evolution during each time step, and P̂mt denotes the projector
associated with measurement outcomes mt at time step t. The probability for each trajectory
is given by the normalization pm⃗ = ⟨Ψ̃m⃗|Ψ̃m⃗⟩, and the normalized trajectory wave function is
|Ψm⃗⟩ = |Ψ̃m⃗⟩/√pm⃗. The wave functions and their probability together define the trajectory
ensemble, {pm⃗, |Ψm⃗⟩}.

By numerical simulation, Ref. [239, 163] showed that a phase transition exists in the
subsystem entanglement entropy averaged over quantum trajectories

SA =
∑

m⃗

pm⃗SA,m⃗ =
∑

m⃗

−pm⃗ tr ρA,m⃗ log ρA,m⃗, (1.16)

where SA,m⃗ is the von Neumann entropy in the trajectory m⃗. The subsystem entanglement
entropy SA sharply changes from a volume- to an area-law scaling at a critical measurement
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rate pc, and SA exhibits a logarithmic scaling at the critical point:

SA =





O(|A|) p < pc

O(log |A|) p = pc

O(1) p > pc

. (1.17)

The finite-size scaling collapse indicates a diverging correlation length at the critical point
and thus a second-order phase transition. The scaling analysis determines the critical
measurement rate pc ≈ 0.17 for monitored Haar random circuits and pc ≈ 0.15 for monitored
random Clifford circuits [278]4. Further numerical results suggest that the critical point
exhibits conformal invariance [164]. We note that, despite numerical results, an analytical
understanding of the critical point of MIPT is still incomplete [130]. However, the universality
of MIPT in random Clifford and Haar random circuits is believed to be different [165].

The MIPT can be also formulated as a purification transition in a slightly different
setup [104]. Instead of considering qubits initialized in a product state, we prepare the qubits
in the maximally mixed state, i.e. a maximally entangled state with reference qubits. Under
the monitored random circuit dynamics, the purity of the system qubits increases due to
measurements. Ref. [104] showed that the system undergoes a purification transition from a
mixed phase to a pure phase simultaneously with the MIPT. In the mixed phase, the system
density matrix exhibits a low purity, and the system remains extensively entangled with the
reference up to a time scale T ∼ exp(O(N)). In the pure phase, the purity system increases
rapidly to an O(1) value within a time scale T ∼ O(1), and the extensive entanglement
between the system and the reference is destroyed by the measurements. The purification
transition can be detected by the von Neumann entropy of the entire system averaged over
quantum trajectories, S :=

∑
m⃗ Sm⃗, which is of a volume- and an area-law scaling in the

mixed and pure phase, respectively. The average entropy is closely related to the amount
of encoded quantum information retained in the output state and classical measurement
outcomes, which we explain in Chapter 2.

Diagnostics of MIPT.— An important distinction between the MIPT and phase transitions
in statistical mechanics models lies in their diagnostics. The phase transition in statistical
mechanics models can always be detected by an order parameter, which is an observable in
the state. In contrast, detecting MIPT requires non-linear functions of the quantum state,
such as entanglement entropy.

To understand this, we consider the operator expectation value averaged over the entire
trajectory ensemble, which is given by that in an average state, i.e.

⟨O⟩ =
∑

m⃗

pm⃗ tr (O |Ψm⃗⟩⟨Ψm⃗|) = tr (Oρ) . (1.18)

4The accuracy of finite-size scaling based on half-chain entanglement entropy is limited by the subleading
correction in the volume-law phase [239]. To overcome this issue, Ref. [278] divides the system into four
regions of equal size (A,B,C,D) and performs the analysis based on the tripartite mutual information
I3 := SA + SB + SC − SAB − SBC − SAC + SABC , in which the subleading correction is largely canceled.
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The average state ρ :=
∑

m⃗ pm⃗ |Ψm⃗⟩⟨Ψm⃗| undergoes unitary evolution interspersed by averaged
measurements over all different outcomes, which are described by dephasing channels. Such
a dynamics has a steady state being maximally mixed regardless of the measurement rate p.
Therefore, ⟨O⟩ is a smooth function of p and cannot detect the MIPT5.

Experimental observation of MIPT.— The fact that MIPT can be only detected by non-
linear functions of the state poses challenges for observing such phenomena in experiments.
First, measuring an observable in the experiment can be achieved by sampling from a single
copy of the quantum state. However, measuring a non-linear function requires either sampling
observables from multiple copies of the identical quantum states simultaneously [136] or
reconstructing the full density matrix by tomography. Furthermore, measuring quantities in
a particular trajectory requires realizing the same trajectory in the experiment for sufficiently
many times. However, each trajectory typically occurs with an exponentially small probability,
and it takes exponentially many trials to repeat the same trajectory, leading to the so-called
post-selection problem. The current experiments that observe signatures of measurement-
induced phenomena either deal with the exponential difficulty by brutal force [148] or rely on
the complementary classical simulation [197, 117].

While probing MIPT might be challenging in experiments, identifying the phases of
monitored circuits away from the critical point is a scalable task [105]. Both the volume- and
the area-law phase feature a finite correlation length ξ. Hence, it is expected that one can
identify the scaling of entanglement in the system of size comparable to ξ, and the required
number of sample scales as ePoly(ξ). The sample complexity diverges, when approaching
the critical point, due to the divergence of correlation length ξ. This exponential sample
complexity limits the capability to resolve the critical point in experiments.

1.4 Topological quantum memory

Another collective phenomenon of information encoding studied in this dissertation is the
decoding transition in topological quantum memories. Topological quantum memory encodes
quantum information in the degenerate ground states of topologically ordered systems. The
encoded information is stored in nonlocal correlations and is robust when local decoherence is
weak. It has been shown that topological quantum memory undergoes a decoding transition
at a finite decoherence threshold, below which the encoded information can be recovered by
quantum error correction algorithms. In this section, we first introduce the Toric code as a
paradigmatic example of topological quantum memory and then briefly review the decoding
transition in the Toric code.

Toric code.— Toric code is a paradigmatic example of two-dimensional topological
order [144]. The model is defined on an L × L square lattice with periodic boundary
conditions and involves N = 2L2 physical qubits on the edges of the lattice. The Toric code

5The analysis also indicates that the MIPT does not manifest in the entanglement entropy of the averaged
state ρ.
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Hamiltonian is given by

HTC = −
∑

s

As −
∑

p

Bp , (1.19)

where As and Bp are associated with vertices and plaquettes

As =
∏

ℓ∈star(s)

Xℓ , Bp =
∏

ℓ∈boundary(p)

Zℓ . (1.20)

Here, Xℓ and Zℓ denote the Pauli-X and Z operators on link ℓ, respectively. The operators
As and Bp are mutually commuting operators called stabilizers. The ground state |Ψ⟩ is a
simultaneous eigenstate of the stabilizers satisfying the constraints As |Ψ⟩ = Bp |Ψ⟩ = |Ψ⟩.
These constraints are redundant,

∏
sAs =

∏
pBp = 1, and do not uniquely specify the ground

state. By simple counting, one can show the ground state is fourfold degenerate.
The topological quantum memory uses the fourfold degenerate ground states to encode

two logical qubits. The logical operators are closed-loop operators along two incontractible
loops on the torus

l1

l2

Z̄α :=
∏

ℓ∈lα

Zℓ ,

X̄α :=
∏

ℓ∈l∗α

Xℓ ,
(1.21)

where l = lα and l∗ = l∗α with α = 1, 2 are on the original and dual lattice, respectively. Such
operators commute with all the stabilizers and thus relate two distinct ground states.

The excited states contain stabilizers As (and/or Bp) with −1 eigenvalue, which describe
pointlike excitations on the vertices (plaquettes) called e (m) anyon. Anyon e (m) is a self-
boson and can only be created in pairs. Anyon e and m are mutual semion; the wavefunction
acquires a Berry phase eiπ under a 2π-braiding of e around m. The bound state of e and m
is a fermion labeled by f .

Quantum error correction in Toric code.— The quantum memory that encodes information
is inevitably subject to decoherence due to the coupling to the environment. Quantum error
correction (QEC) becomes essential to recover the encoded information from a decohered
memory. In a pioneering work [74], Dennis et al. showed that QEC algorithms can successfully
recover the encoded information in the Toric code as long as the local decoherence rate is
below a finite threshold. Here, we review this result and provide a brief introduction to QEC
algorithms.

We consider a quantum memory that is subject to local decoherence. The memory is
initialized in a Toric code ground state |Ψ0⟩ that encodes information. For simplicity, we
focus on the decoherence that describes single-qubit bit-flip and phase errors

NX,i[ρ] = (1 − px)ρ+ pxXiρXi, (1.22)

NZ,i[ρ] = (1 − pz)ρ+ pzZiρZi, (1.23)
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where px and pz are the corresponding error rates. The resulting decohered quantum memory
is described by a density matrix

ρ =
∏

i

NX,i ◦ NZ,i[|Ψ0⟩⟨Ψ0|]. (1.24)

The error operator X (Z) creates a pair of m (e) anyon excitations on the adjacent plaquettes
(vertices) when acting on the Toric code ground state. These excitations can delocalize and
potentially create logical errors when the error rate is large.

Quantum error correction is a process that recovers the encoded state |Ψ0⟩ from the
corrupted state ρ. It begins with measuring the stabilizers As and Bp. Due to the phase
(bit-flip) errors, certain As (Bp) stabilizers are measured in −1 eigenstates indicating the
presence of local e (m) excitations. The stabilizer with −1 eigenvalue is called a “syndrome”,
and we denote the configuration of e (m) syndromes by sz (sx).

The e (m) syndromes in the state can be annihilated in pairs by applying a string operator
of Pauli Z (X) connecting the two on the original (dual) lattice. The string operator along a
path Rx(z) corrects all the syndromes provided that ∂Rx(z) = sx(z). However, such a string
operator is not unique and can be divided into multiple homological classes; two strings that
differ by a contractible loop belong to the same class, and strings in different classes differ
by a non-contractible loop. The recovery string operators in the different classes are not
equivalent in error correction. If the recovery operator is in the same class as the string
operator that creates the syndromes, one recovers the encoded state |Ψ0⟩. However, applying
the recovery string operator in other homological classes will result in a logical error.

To achieve high fidelity in decoding, we first evaluate the probability that the error string
belongs to each one of the four classes. We then choose the recovery string from the class
with the highest probability to correct the syndromes. This procedure results in a decoding
fidelity

F =
∑

s

P (s)
max{Pαβ(s)|α, β = ±1}∑

α,β=±1 Pαβ(s)
=
∑

s

max{Pαβ(s)|α, β = ±1}, (1.25)

where Pαβ(s) is the probability of strings in each class, and the total probability P (s) =∑
α,β=±1 Pαβ(s).
Ref. [74] showed that the probability for each class maps to the partition function of the

two-dimensional random bond Ising model (RBIM) along the Nishimori line. The RBIM
undergoes a ferromagnetic-to-paramagnetic phase transition when tuning the error rate,
corresponding to a decoding transition in the Toric code. In the ferromagnetic phase, one
homological class has a significantly higher probability, giving rise to a perfect decoding
fidelity in the thermodynamic limit, while the probabilities for different classes are roughly
the same in the paramagnetic phase.

In the above example, we consider a specific QEC algorithm and focus on information
encoding in the Toric code ground states. In Chapter 6 and 7, we show that the decoding
transition originates from an intrinsic transition in the corrupted state without relying on
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QEC algorithms. Furthermore, such a transition can be generalized to topologically order
states perturbed away from the solvable models of topological quantum codes.

1.5 Overview

The rest of the dissertation can be divided into two parts. The first part comprises Chapter 2,
3, 4, and 5 and is devoted to the study of phases and phase transitions in monitored quantum
circuits.

• In Chapter 2, we demonstrate that the monitored circuits can be viewed as a self-
organized quantum error correction code fueled by scrambling dynamics. We identify a
crucial role played by scrambling unitary evolution; the scrambling protects quantum
information from being revealed by measurements and therefore can compete with the
disentangling effects of measurements giving rise to a phase transition. This allows
us to resolve an early debate regarding the stability of volume-law phase. We further
formulate the distinct phases in terms of the capacity of the monitored dynamics to
retain quantum information. This chapter is adapted from Ref. [65].

• In Chapter 3, we develop a theoretical framework for the MIPT based on a mapping
between random quantum circuits and a series of effective classical spin models. Cru-
cially, we identify a Sn replica permutation symmetry in the n-th spin model, which is
spontaneously broken at a critical measurement rate giving rise to distinct phases. The
symmetry-breaking transition in the spin model restores the MIPT in an analytic limit
n→ 1. In this framework, we show the entanglement entropy in the circuit along with
a complementary diagnostics based on measurement outcomes, the Fisher information,
map to quantities that detect the symmetry-breaking order in the spin model and
thus consistently probe the MIPT. Moreover, by exactly solving the spin models, we
identify the universality of the MIPT in one-dimensional random circuits with bond
percolation on a two-dimensional square lattice in the limit of a large local Hilbert
space dimension. Furthermore, we demonstrate that the decoherence in the circuit
immediately destabilizes the MIPT as it manifests as a symmetry-breaking field in the
spin model. This chapter is adapted from Ref. [18].

• In Chapter 4, we address the question regarding the possible phases of monitored
circuits when a physical symmetry is imposed on the circuit elements. Based on the
framework we developed, we find that the physical symmetry does not on its own
dictate the possible phases, and it is instead extended by dynamical replica symmetries
to form an enlarged symmetry. Thus, we predict phases that have no equilibrium
counterpart and could not have been supported by the physical circuit symmetry alone.
This chapter is adapted from Ref. [17].

• In Chapter 5, we turn to the phases of random circuits at finite times (i.e. constant
depths) and showcase a teleportation transition. In concrete examples, we demonstrate
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that quantum information can be teleported over an arbitrary distance by performing
local measurements in the output state when the circuit depth is above a finite threshold,
while the teleportation fidelity decays to zero below the threshold. We provide an
analytic understanding of the finite-time transition as replica symmetry breaking in a
finite temperature Gibbs state and identify the criteria for circuits to exhibit such a
transition. This chapter is adapted from Ref. [16].

The second part comprises Chapter 6, and 7, in which we study the phase transition in
topologically ordered states induced by local decoherence.

• In Chapter 6, we develop an effective field theory that characterizes the impact of
decoherence on topologically ordered ground states. The decoherence appears as a
defect in the topological quantum field theory that describes the topological ground
state, and it drives a boundary anyon condensation at a finite critical decoherence rate.
We show that the defining features of topologically ordered ground states are generally
stable against weak decoherence, allowing one to define topological order in mixed
states. We further classify the decoherence-induced phases in terms of possible boundary
anyon condensates and address their capability in encoding quantum information. This
chapter is adapted from Ref. [19].

• In Chapter 7, we propose three information-theoretical diagnostics of the topological
order in mixed states: (1) quantum relative entropy; (2) coherent information; (3)
topological entanglement negativity. These quantities generalize the diagnostics of
ground-state topological order and are intrinsic to the mixed states. In a concrete
example of Toric code with incoherent errors, we show these quantities consistently probe
the distinct decoherence-induced phases. The threshold in these intrinsic diagnostics is
an upper bound on that achieved in any QEC algorithm and is indeed saturated by
that in the optimal decoding algorithm for the Toric code. This chapter is adapted
from Ref. [84].
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Chapter 2

Information flow in random unitary
circuits with measurements

2.1 Introduction

A generic unitary evolution of a quantum many-body system scrambles information. Any
local degrees of freedom that are initially in an unentangled state become increasingly more
entangled with the rest of the system, making the information encoded in them effectively
unrecoverable [75, 241, 219]. The scrambling dynamics [114, 233, 237, 121], evidenced by the
growth of the entanglement entropy toward an extensive value [186, 140, 183, 132], underlies
the rich complexity of quantum dynamics and the fact that simulating it is beyond the
capability of classical computers.

In a realistic system, however, unitary dynamics is often interspersed by occasional
measurements of local observables made by external observers either controlled or accidental.
This process disentangles the measured degrees of freedom from the rest of the system, which
may reduce the entanglement entropy. Thus, it is natural to ask under what conditions the
growth of entanglement is tamed to a point allowing efficient classical simulations of the
quantum dynamics [4, 259].

This question has been addressed in a number of recent works. In the special case of
non-interacting fermions, quantum states with volume scaling entanglement (volume-law
phase) are unstable to any small rate of measurements in local occupation basis, leading to
steady states in which the entropy only scales with the boundary area of a region (area-law
phase) [55]. However, the corresponding behavior in generic interacting systems appears to
be much more subtle and has not been fully understood. On the one hand, Ref. [239, 163, 59]
suggested that the interplay between the unitary dynamics and measurements can lead to a
transition between two distinct phases: for sufficiently small measurement rates, the system
remains stable in the volume-law phase, while it undergoes a transition into an area-law
phase as the rate exceeds a certain critical value. On the other hand, in its early version,
Ref. [59] pointed out that this phase transition cannot be explained by a simple competition
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Bell pairs

… … …

�N
<latexit sha1_base64="OA1LYSlKPXMorWbXBMAZ4cxPu1s=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYD+gDWWy3bRLd5O4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TRVmDxiJW7QA1EzxiDcONYO1EMZSBYK1gdDP1W09MaR5HD2acMF/iIOIhp2is1O4OUEokd71yxa26M5Bl4uWkAjnqvfJXtx/TVLLIUIFadzw3MX6GynAq2KTUTTVLkI5wwDqWRiiZ9rPZvRNyYpU+CWNlKzJkpv6eyFBqPZaB7ZRohnrRm4r/eZ3UhFd+xqMkNSyi80VhKoiJyfR50ueKUSPGliBV3N5K6BAVUmMjKtkQvMWXl0nzrOqdV937i0rtOo+jCEdwDKfgwSXU4Bbq0AAKAp7hFd6cR+fFeXc+5q0FJ585hD9wPn8AfRiPmQ==</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

UA
<latexit sha1_base64="PrPeSaJM0ojPO13suIb4WLwB8ak=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPVi8eKpi20oWy223bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omDjVjPsslrFuhdRwKRT3UaDkrURzGoWSN8PR7dRvPnFtRKwecZzwIKIDJfqCUbTSg9+97pYrbtWdgSwTLycVyFHvlr86vZilEVfIJDWm7bkJBhnVKJjkk1InNTyhbEQHvG2pohE3QTY7dUJOrNIj/VjbUkhm6u+JjEbGjKPQdkYUh2bRm4r/ee0U+1dBJlSSIldsvqifSoIxmf5NekJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI4q3rnVff+olK7yeMowhEcwyl4cAk1uIM6+MBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wfvOY2P</latexit>

UB
<latexit sha1_base64="autbV8PY9EbtNMMIUXobbYX0gt8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48VTVtoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0O/NbT6g0T+SjGacYxHQgecQZNVZ68Hv1XrniVt05yCrxclKBHI1e+avbT1gWozRMUK07npuaYEKV4UzgtNTNNKaUjegAO5ZKGqMOJvNTp+TMKn0SJcqWNGSu/p6Y0FjrcRzazpiaoV72ZuJ/Xicz0U0w4TLNDEq2WBRlgpiEzP4mfa6QGTG2hDLF7a2EDamizNh0SjYEb/nlVdK8qHqXVff+qlKr53EU4QRO4Rw8uIYa3EEDfGAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPwvY2Q</latexit>

A1
<latexit sha1_base64="APBsDfOTgUT7xuOuNyJvhBgWmxo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+86t5fVGo3eRxFOIJjOAUPLqEGd1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AG4gY1r</latexit>

A2
<latexit sha1_base64="x1GsqrjrBUVchjgk6edzHiAeDGw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj14rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9XPeqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindece8vyrWbPI4CHMMJnIEHl1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AG6BY1s</latexit>

B
<latexit sha1_base64="sVHOAzGHs33lE5PsQrwykCZchyA=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeiz14rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq1Pqlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDWz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LiveVcVtXJertTyOApzCGVyABzdQhXuoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBlQuMyA==</latexit>

(1 � p)N
<latexit sha1_base64="TAVop6lBj+8G34zQju6UZzmaxWg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahHiy7VdBj0YsnqWA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuJKs2keDDjmPoRHggWMoKNlZpl7yw+vesVS27FnQEtEy8jJchQ7xW/un1JkogKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpQJHVPvp7NoJOrFKH4VS2RIGzdTfEymOtB5Hge2MsBnqRW8q/ud1EhNe+SkTcWKoIPNFYcKRkWj6OuozRYnhY0swUczeisgQK0yMDahgQ/AWX14mzWrFO6+49xel2nUWRx6O4BjK4MEl1OAW6tAAAo/wDK/w5kjnxXl3PuatOSebOYQ/cD5/ABYIjiU=</latexit>

pN
<latexit sha1_base64="8/dfhq7rqwdOMb333+stAnbnd9k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh+SuV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt0Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2RC8xZeXSfOs6p1X3fuLSu06j6MIR3AMp+DBJdTgFurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwB2Xo1O</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

qubits qubits

…

Bell pairs

… …

�N
<latexit sha1_base64="OA1LYSlKPXMorWbXBMAZ4cxPu1s=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYD+gDWWy3bRLd5O4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TRVmDxiJW7QA1EzxiDcONYO1EMZSBYK1gdDP1W09MaR5HD2acMF/iIOIhp2is1O4OUEokd71yxa26M5Bl4uWkAjnqvfJXtx/TVLLIUIFadzw3MX6GynAq2KTUTTVLkI5wwDqWRiiZ9rPZvRNyYpU+CWNlKzJkpv6eyFBqPZaB7ZRohnrRm4r/eZ3UhFd+xqMkNSyi80VhKoiJyfR50ueKUSPGliBV3N5K6BAVUmMjKtkQvMWXl0nzrOqdV937i0rtOo+jCEdwDKfgwSXU4Bbq0AAKAp7hFd6cR+fFeXc+5q0FJ585hD9wPn8AfRiPmQ==</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

qubits qubits

UA
<latexit sha1_base64="fQIH9Rdqj8tEkLxnKLXqUJr0AeI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjx4rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+m/jX0=</latexit><latexit sha1_base64="fQIH9Rdqj8tEkLxnKLXqUJr0AeI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjx4rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+m/jX0=</latexit><latexit sha1_base64="fQIH9Rdqj8tEkLxnKLXqUJr0AeI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjx4rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+m/jX0=</latexit><latexit sha1_base64="fQIH9Rdqj8tEkLxnKLXqUJr0AeI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fjx4rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+m/jX0=</latexit>

UB
<latexit sha1_base64="V0jEAIshz40PyHSaezOckqHzs/w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+tDjX4=</latexit><latexit sha1_base64="V0jEAIshz40PyHSaezOckqHzs/w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+tDjX4=</latexit><latexit sha1_base64="V0jEAIshz40PyHSaezOckqHzs/w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+tDjX4=</latexit><latexit sha1_base64="V0jEAIshz40PyHSaezOckqHzs/w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Fj04rGiaQttKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4dua3n7g2IlGPOEl5ENOhEpFgFK304Pdv+pWqW3PnIKvEK0gVCjT7la/eIGFZzBUySY3pem6KQU41Cib5tNzLDE8pG9Mh71qqaMxNkM9PnZJzqwxIlGhbCslc/T2R09iYSRzazpjiyCx7M/E/r5thdB3kQqUZcsUWi6JMEkzI7G8yEJozlBNLKNPC3krYiGrK0KZTtiF4yy+vkla95rk17/6y2qgXcZTgFM7gAjy4ggbcQRN8YDCEZ3iFN0c6L86787FoXXOKmRP4A+fzB+tDjX4=</latexit>

(1 � p)N
<latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit>

pN
<latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit>

A1
<latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit>

A2
<latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit>

B
<latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit>

…

Bell pairs

… …

�N
<latexit sha1_base64="OA1LYSlKPXMorWbXBMAZ4cxPu1s=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYD+gDWWy3bRLd5O4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TRVmDxiJW7QA1EzxiDcONYO1EMZSBYK1gdDP1W09MaR5HD2acMF/iIOIhp2is1O4OUEokd71yxa26M5Bl4uWkAjnqvfJXtx/TVLLIUIFadzw3MX6GynAq2KTUTTVLkI5wwDqWRiiZ9rPZvRNyYpU+CWNlKzJkpv6eyFBqPZaB7ZRohnrRm4r/eZ3UhFd+xqMkNSyi80VhKoiJyfR50ueKUSPGliBV3N5K6BAVUmMjKtkQvMWXl0nzrOqdV937i0rtOo+jCEdwDKfgwSXU4Bbq0AAKAp7hFd6cR+fFeXc+5q0FJ585hD9wPn8AfRiPmQ==</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

qubits qubits

(1 � p)N
<latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit><latexit sha1_base64="k4tiDc1kCdIiQ1PLVpX4cfpxT00=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSLUg2VXBD0WvHiSCvYD2qVk02wbm01CkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmRYozY33/21tZXVvf2CxsFbd3dvf2SweHTSNTTWiDSC51O8KGciZowzLLaVtpipOI01Y0upn6rSeqDZPiwY4VDRM8ECxmBFsnNSvBuTq765XKftWfAS2TICdlyFHvlb66fUnShApLODamE/jKhhnWlhFOJ8VuaqjCZIQHtOOowAk1YTa7doJOndJHsdSuhEUz9fdEhhNjxknkOhNsh2bRm4r/eZ3UxtdhxoRKLRVkvihOObISTV9HfaYpsXzsCCaauVsRGWKNiXUBFV0IweLLy6R5UQ38anB/Wa6hPI4CHMMJVCCAK6jBLdShAQQe4Rle4c2T3ov37n3MW1e8fOYI/sD7/AELJI4B</latexit>

pN
<latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit><latexit sha1_base64="HYsl3GQSstGOj7x/tDJQehdWaBY=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBiyepYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzwlQKg5737ZTW1jc2t8rblZ3dvf0D9/CoZZJMM95kiUx0J6SGS6F4EwVK3kk1p3EoeTsc38z89hPXRiTqEScpD2I6VCISjKKVHtK7vlv1at4cZJX4BalCgUbf/eoNEpbFXCGT1Jiu76UY5FSjYJJPK73M8JSyMR3yrqWKxtwE+fzSKTmzyoBEibalkMzV3xM5jY2ZxKHtjCmOzLI3E//zuhlG10EuVJohV2yxKMokwYTM3iYDoTlDObGEMi3srYSNqKYMbTgVG4K//PIqaV3UfK/m319W66SIowwncArn4MMV1OEWGtAEBhE8wyu8OWPnxXl3PhatJaeYOYY/cD5/AGt6jSo=</latexit>

A1
<latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit><latexit sha1_base64="DwGWqw8BKYcm0tSi7+6EzHXSfZ8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mkoMeKF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5u+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbQuq55b9e5rlfpZHkcRTuAULsCDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCu0Y1L</latexit>

A2
<latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit><latexit sha1_base64="b7iO7WS2sxH8KaOUj9Dllix/apE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0mKoMeKF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0cNOv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4vK/WzPI4inMApXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gCwVY1M</latexit>

B
<latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit><latexit sha1_base64="nk/oaoSInTQV3ORE8nYS6Rl6b+k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuO2XK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIbP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqx6btVrXFVqZ3kcRTiBU7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBi1uMqA==</latexit>
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qubits qubits

Figure 2.1: Quantum state of 2N qubits generated by applying unitaries UA(B) to γN Bell
pairs. Measuring p fraction of qubits (A2) do not reduce the entanglement between A=A1A2

and B as long as 1 − 2p>γ in the limit N→∞.

between rates of entanglement growth and measurements, as it would always predict the
area-law phase for nonzero measurement rates.

In this Chapter, we show that a central ingredient for understanding the entanglement
phase transition is the effective quantum error correction enabled by scrambling unitary
dynamics. Using simple concepts from quantum information theory, we provide new insight
on the mechanism that drives the phase transition. Näıvely, the phase transition seems to
hinge on the competition between the rate of entanglement generation by unitary gates and
that of disentanglement by measurements. If this perspective were true, the volume-law
phase is unstable against an arbitrarily small rate of measurements since the competition
is fundamentally not symmetric. Given a bipartition, a local unitary gate may change
the entanglement only when it acts nontrivially across the boundary of two subsystems.
In contrast, the effect of the measurements could be nonlocal: by disentangling all of the
measured qubits inside a subsystem, the rate of entanglement reduction may be extensive.
Thus, measurements would always overwhelm the entanglement generation and destabilize
the volume-law phase. Here, we argue that this is not the case when information scrambling
is taken into account.

Our key observation is that nonlocal effects of sparse measurements are greatly suppressed
due to the natural quantum error correction (QEC) property of scrambling dynamics. If
quantum information is sufficiently scrambled by unitary evolution, correlations between
two subsystems are hidden in highly nonlocal degrees of freedom and cannot be revealed by
any local measurements. In such case, sparse local measurements, despite their extensive
number, cannot decrease the entanglement entropy significantly. To illustrate this point
and quantify the condition under which the entanglement is robustly protected against
local measurements, we improve and apply the quantum decoupling theorem to a specially
constructed toy model [192, 212], showing the stability of the volume-law phase. We find
that the mechanism of the protection is equivalent to that of the QEC scheme [192, 231,
212]. Motivated by this understanding, we introduce a new model and analyze its dynamics
both analytically and numerically to obtain the phase diagram. Furthermore, we establish
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an exact relation between the steady-state entanglement entropy and the quantum channel
capacity of quantum dynamics.

2.2 Protection against measurement

We now illustrate how entanglement can be protected against measurements using a well-
studied toy example from quantum information theory [76, 120, 3, 212]. Consider a system
of 2N qubits (N≫ 1) as shown in Fig. 2.1. Initially, the two halves of the system, A and B,
share γN Bell pairs (0<γ < 1), which control the amount of the entanglement between the
two. The two subsystems are evolved independently with unitaries UA and UB, respectively.
We assume UA is a random unitary drawn from the Haar distribution (or any unitary 2-
design), and UB can be arbitrary. Following this evolution, a fraction p of the qubits in
A are measured. The pertinent question is by how much these measurements reduce the
entanglement between A and B. We shall show that under a certain condition the change of
entanglement entropy due to the measurements vanishes in the thermodynamic limit even
though an extensive number of qubits are being disentangled. Note that this result can
be generalized to incorporate measurements performed on both A and B by sequentially
analyzing the effect of measurements.

We first simplify the problem. Since UB does not affect the entanglement, we may
replace B with its minimal effective degrees of freedom B̃ entangled with A, i.e., the
original γN entangled qubits. Also, we divide A into two parts: subsystem A1 refers to
the unmeasured qubits and subsystem A2 contains the measured ones. We now apply the
decoupling theorem [76, 120, 3, 212] to this setup, which will imply that, for a sufficiently small
measurement fraction p, the reduced density matrix of A2 and B̃ approximately factorizes

EUA

[
||ρA2B̃

(UA) − ρmax
A2

⊗ ρB̃||1
]
≤ 2−(1−2p−γ)N/2. (2.1)

Here, the left-hand side denotes the distance, in the L1 norm, between the exact density
matrix ρA2B̃

and a factorized one where ρmax
A2

is the maximally mixed state on the measured
part A2. EU [·] represents averaging over the random unitaries. The inequality implies that
the measured qubits are effectively decoupled from B̃ for N≫ 1, provided that the number
of unmeasured qubits A1 is more than half of the total system AB̃, or equivalently

γ + p <
1

2
(1 + γ) , (2.2)

or simply γ < 1 − 2p. If this inequality is satisfied, then any observable in A2 contains no
information about B̃ and vice versa. Therefore, measuring one subsystem does not affect
the other, up to an error exponentially small in N . In particular, any projection (due to
measurements) acting on A2 does not alter ρB̃, and the entanglement entropy of subsystem B
is unchanged. In fact, one can show that even the initial γN Bell pairs can be reconstructed
by local operations in A1 with an exponentially good precision [231].
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Figure 2.2: (a) A model with tunable degrees of information scrambling d and measurements p.
An array of m-qubit blocks undergoes layers of unitary gates (light blue) and random projective
measurements (red). Each unitary acting on neighboring blocks comprises independently
random 2-qubit gates (orange). Each measurement projects a randomly chosen p fraction of
qubits in each block. (b,c) Entanglement dynamics with m= 11, d= 44, and p= 0.4 for two
different system sizes L= 32 (blue) and 48 (light green). (b) The growth of entanglement
density as a function of time t. The dash-dotted line indicates the upper bound 1 − p. (c)
Change in the entanglement entropy before and after projective measurements at each time
step. (d) Steady state entanglement entropy per qubit as a function of p for (d,m) = (44, 11),
(84, 21) and (3, 11). (e) Phase diagram for m = 11. The color-coded background displays
the half-chain entanglement entropies in steady states, normalized by the number of qubits
Lm/2 = 176. Black markers indicate the phase transition points extracted from finite size
scaling analysis up to L = 64. The numerical results in (b-e) are averaged over 240 different
realizations of random circuits and measurements.

The inequality in Eq. (2.2) is enough to prove the stability of volume-law scaling of the
entanglement entropy in the presence of extensive number of measurements. However, it
is not tight. This is because in deriving the inequality we assumed that qubits in A2 are
discarded (i.e., qubit loss errors), whereas in our situation they are projectively measured,
leaving their measurement outcomes as accessible classical information. In Appendix A, we
develop an improved decoupling equality, in which the measurement outcomes from A2 are
treated as accessible information. This leads to a tight bound

γ < 1 − p (2.3)

in the limit N → ∞. This inequality can be saturated by typical Haar random unitaries. An
intuitive way to understand this new result is to realize that the measurement processes of pN
qubits involves entangling those qubits with an equal number of auxiliary qubits representing
the environment (or classical measurement devices). These additional degrees of freedom
effectively add to the right hand side of Eq. (2.2), i.e., γ + p < (1 + γ + p)/2, leading to the
tight bound.
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So far, we have considered an ideal situation where the Bell pairs are hidden over the
entire Hilbert space via a nonlocal unitary. However, we emphasize that such information
scrambling is a generic property of quantum dynamics even in local systems [40, 186, 140,
183, 132]. In such cases, we expect that the amount of entanglement reduction is governed by
the competition between the rate of effective information scrambling and that of projective
measurements.

2.3 Model and phase diagram

Having understood the mechanism to protect the entanglement against measurements through
scrambling, we turn to study a local 1D model in which the rates of effective information
scrambling and measurements can be tuned independently.

Our model consists of a chain of L blocks, each containing a fixed number, m≫ 1, of
qubits, as illustrated in Fig. 2.2(a). In each time step t, the system is evolved by a network of
random unitaries Ud(i, t) acting on pairs of neighboring blocks at i and i+ 1, supplemented
by projective measurements. Crucially, the unitaries Ud(i, t) are constructed from an internal
network consisting of d layers of independent random 2-qubit gates (drawn from any unitary
2-design). Thus, the parameter d controls the degree of information scrambling within a
single Ud(i, t), which becomes maximally scrambling in the limit d/m≫ 1. In this limit the
distribution of Ud(i, t) approaches a unitary 2-design over U(22m) [40]. After applications of
the Ud(i, t) on pairs of blocks, a fraction p of the qubits in each block are randomly chosen to
be measured in the computational basis 1. We note that the special case of our model, d= 1,
is closely related to the previously studied ones [163, 239, 59].

Before obtaining a quantitative phase diagram from numerical simulations [Fig. 2.2(e)],
one can already predict the stability of volume-law phase in the limit m≫ 1 and d/m≫ 1.
Consider the unitary evolution Ud(i, t) for a pair of blocks. If we identify the pair of blocks as
subsystem A and the rest of the system as B, we can use the decoupling inequality as discussed
above. As long as the average entropy per qubit γ satisfies the criteria in Eq. (2.3), the
measured qubits contain almost no information about the rest of the system (up to corrections
exponentially small in m). Here, the entanglement reduction is suppressed by information
scrambling within the blocks. Over multiple time steps, quantum information becomes
scrambled over a larger region, further protecting the entanglement from measurements. Thus
we expect a stable volume-law phase in this regime.

We can also make a definitive statement about the other extreme of small d and high
measurement rate. For example, consider d= 1, m≫ 1 and p= 1 − 1/m. In this case there is
no room for scrambling, thus the probability that a single qubit becomes entangled to other
qubits at distance x away (in units of qubit blocks) is exponentially suppressed as ∼ (1/m)mx

because the information encoded in the qubit needs to propagate without being projected

1For noninteger pm, the number of measured qubits is determined from a binomial distribution between
⌊pm⌋ and ⌈pm⌉ with mean pm.
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at least ∼mx time steps. This implies area-law entanglement [55]. Therefore, we expect a
phase transition between the two extreme cases.

We now complement the theoretical arguments with, a numerical simulation of the half-
chain entanglement entropy S(t) starting from the initial state |Ψ0⟩= |0⟩⊗mL. We construct
the unitary operators Ud(i, t) from random 2-qubit Clifford gates drawn from a uniform
distribution instead of taking Haar random unitaries. Such Ud(i, t) still approaches a unitary
2-design as d increases (see Appendix A), hence this simplification does not affect our
predictions, while allowing scalable numerical simulation [100, 1, 109, 108]. Furthermore,
the wavefunction evolved under Clifford gates always exhibits a flat entanglement spectrum
with respect to any bipartition. Thus, different measures of entanglement entropy, e.g. von
Neumann versus Rényi entropies, yield the same value. In the following, we focus on m= 11.

We first consider a strongly scrambling regime, d/(2m)≳ 1, where the unitary network
within a single block effectively acts as a random 22m× 22m unitary [40] (see Appendix A).
We test if the scrambling property of individual blocks leads to the robust volume-law
entanglement of the entire system. Figures 2.2(b,c) show the detailed dynamics of the
entanglement entropy for two different system sizes. Clearly, the entropy rescaled by the
subsystem size exhibits a strict linear growth until it saturates to a constant value. The
convergence of these values confirms the volume-law scaling of the entropy (see Appendix A).
Moreover, we can directly compute how much the entanglement entropy changes, ∆Smeas(t),
following projective measurements in each time step. Figure 2.2(c) confirms our prediction
that in the strongly scrambling regime d/(2m) ≳ 1 and m≫ 1, the entanglement is unchanged
by measurements until it reaches a saturation value set by the maximal entanglement that
can be protected by the scrambling dynamics 2. Once saturated, the entanglement added
by the unitary gates pushes the entropy above the threshold of the decoupling theorem and
it is reduced back to the saturation value by the subsequent measurements. Thus, upon
reaching the saturation value we see a jump of ∆Smeas from near zero to a negative value.
We further note that the saturation value approaches its maximum, 1 − p, as m is increased
in this regime [Fig. 2.2(d)]. This is natural since our tight bound in Eq. (2.3) becomes exact
when m→ ∞, and it predicts that each qubit on average contributes γ = 1 − p to the global
entanglement. We note that this analysis does not hold in the weakly scrambling regime
d/(2m) ≲ 1, e.g., d= 3, m= 11 [Fig. 2.2(d)].

We now turn to the phase transition that occurs when d is decreased or p is increased.
From numerical simulations, we compute the half-chain entanglement per qubit and tripartite
mutual information in the steady state for various L and p for a fixed d (see Appendix A).
We perform a finite size scaling analysis in order to extract the critical measurement fraction
pc as well as the correlation length critical exponent ν [239, 104]. By repeating the analysis
for various values of d, we obtain a two-dimensional phase diagram shown in Fig. 2.2(e).
We find that the fitted critical exponent ν has a universal value around 1.2 independent of

2We note that, for this purpose, we have only considered odd time steps since in even time steps projective
measurements destroy local entanglement within the qubit blocks that are generated by immediately preceding
Ud(i, t).
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d and m, suggesting the universality of the transition (see Appendix A). When d= 1 the
extracted critical value pc≈ 0.16 is consistent with previously reported results [163, 162]. More
importantly, we find that the volume-law entangled phase extends to a higher measurement
fraction, as d increases to ∼m, and then saturates for d/(2m)≳ 1.

2.4 Discussion

The existence of the stable volume-law phase has a direct interpretation in terms of QEC
for quantum communications [192], where the primary goal is to devise an encoding scheme
to transfer the maximum amount of quantum information over a noisy or lossy channel.
The maximum amount of coherent quantum information that can be transmitted through
such a channel is called the quantum channel capacity Q [212, 271]. Previously, one of the
most important applications of the decoupling theorem, had been to show that by using a
random unitary encoding it is possible to asymptotically transfer 1 − 2p logical qubits per
physical qubit over a lossy channel, in which a fraction p of the physical qubits are lost [212].
In our settings, the projective measurements are distinguished from qubit loss errors since
their measurement outcomes are available as classical information. This allows achieving a
higher quantum channel capacity 1 − p which we prove using a new decoupling inequality
(see Appendix A).

The connection between the quantum channel capacity and the volume-law phase can
be made more precise in two different settings. In the specific setting of our 1D model,
we considered the capacity within a pair of neighboring qubit blocks. Here, the quantum
information we wish to protect is quantified by the entanglement entropy between the qubit
blocks and the rest of the system. The random unitary circuit is equivalent to repeated
encoding of the information without explicit decoding. Since this encoding scheme can protect
∼ (1 − p)2m logical qubits in each pair of m-qubit blocks (see Appendix A), we expect that
our system should exhibit a stable volume-law scaling of entanglement supported by those
logical qubits.

In a more general setting, we consider the entire system dynamics as a quantum channel
and investigate its quantum channel capacity Q. To this end, we take the input state to be
entangled with an auxiliary reference such that its reduced density matrix is ρin. Then, we
ask how much entanglement with the reference can be recovered from the combination of the
output system density matrix ρout and a set of classical measurement outcomes after a long
time evolution. This can be quantified by the coherent information Ic(N , ρin) [77]. For a
quantum channel N consisting of unitary evolution interspersed with measurements (in any
positive-operator valued measures), we show that

Q = max
ρin

Ic (N , ρin) = max
ρin

⟨S(ρout)⟩ (2.4)

where ⟨S(ρout)⟩ is the von Neumann entropy of ρout, averaged over all possible measurement
outcomes during the time evolution (see Appendix A). We note that the first equality in
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Eq. (2.4) is not generically valid, but it holds for a class of so-called degradable quantum
channels that include our cases [77, 212, 271]. Using the second equality, we establish an
exact connection between quantum channel capacity and the average entropy of a system
undergoing any unitary evolution interspersed by measurements. A similar connection was
first suggested in a recent paper by Gullans and Huse [104].

In Ref. [104], ⟨S(ρout)⟩ for the maximally mixed initial state was shown to undergo a
phase transition, which coincides with the entanglement phase transition for pure initial
states. Specifically, in the volume-law phase, ⟨S(ρout)⟩ remains extensive at late time, while
in the area-law phase, it rapidly approaches a value of order one. This transition was
dubbed the purification phase transition [104]. The equivalence between the purification and
entanglement phase transitions has later been established analytically for local Haar random
unitary circuits with measurements [18]. Therefore, Eq. (2.4) also builds a quantitative
connection between the quantum channel capacity and the entanglement phase transition.
We note that, in random circuit models studied in Refs. [239, 163, 104, 18, 130], the channel
N itself is random, whose average Ic is maximized for the maximally mixed input, furthering
the connection (see Appendix A).
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Chapter 3

Statistical mechanical models for
random unitary circuits with
measurements

3.1 Introduction

Quantum states with high degree of entanglement cannot be efficiently emulated by classical
computers and may serve as a resource for quantum science [192]. A natural way to generate
such states is to evolve a quantum system under generic unitary dynamics, which gives rise
to extensive entanglement entropy for any subsystems [186, 140, 183, 141, 215]. However,
in realistic situations, the dynamics is also subject to nonunitary evolution owing to local
measurements of system degrees of freedom (qudits), performed either by an observer or
spuriously by environment. Local measurements generally destroy entanglement within a
quantum system as they project the measured qudits onto a definite state, disentangled from
the rest. This naturally raises a question: how robust is entanglement generation by unitary
evolution against measurements?

Recent works presented numerical results as well as general arguments suggesting that
volume-law entanglement in steady states may persist if the rate of measurements is sufficiently
small, while frequent enough measurements above a critical rate drive a transition to steady
states with area-law entanglement entropy [163, 239, 162, 65, 59, 245, 104]. Despite this
progress, an analytic framework to describe the phase transition is still lacking. Such a
framework is needed in order to understand universal properties of the two distinct dynamical
phases and the nature of the transition between them. Does the phase transition belong
to a known universality class? How does the transition affects physical properties that are
more accessible and relevant to experiments than entanglement entropy such as probability
distributions of certain measurement outcomes? These questions are particularly important
in the context of current experimental efforts to demonstrate computational advantages of
quantum devices over classical computers. In such efforts, quantum systems are interrogated
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both by a controlled measurement device and by an uncontrolled environment, and the
entanglement transition may imply a change in the complexity of the quantum dynamics
they attempt to simulate.

In this Chapter, we address the above questions by developing a theoretical framework,
in which an ensemble of quantum circuits with measurements are exactly mapped to a
series of classical statistical mechanics models. Our construction generalizes previous works
on emergent classical spin models in random tensor networks and random unitary circuits
(RUCs) [115, 214, 253, 183, 283, 124]. In particular, mapping to a statistical mechanics
model has allowed to analyze entanglement phase transitions in random-tensor networks,
which as we will see, are similar to the measurement-induced entanglement transition in
quantum circuits [253]. In the framework of random unitary circuits, such mappings allowed
understanding the universal features of entanglement growth and operator spreading in
a generic unitary time evolution [186, 183, 140, 141, 215]. The essential difficulties in
generalizing the existing approach to include measurements are related to the nonlinearity
of the process; one needs to normalize a many-body wavefunction after each projective
measurement. Furthermore, it is challenging to consider a typical behavior averaged over
different measurement outcomes, since their probabilities are not independent of each other
and depend on the state history.

In order to address these challenges, we find that it is conceptually simpler to consider
quantum circuits in which every qudit is subject to weak measurement at every time step,
instead of ones with a set of randomly distributed strong projective measurements. The weak
measurements are implemented by coupling the system qudits to a set of ancilla qudits that
are subsequently measured by strong projective measurements as illustrated in Fig. 3.1. The
strength of measurement is tuned by the strength of the coupling between the system and
the ancilla qudits. Later, we show that the case of random projective measurements can be
implemented as a special case of this circuit. Hence, our results pertain to random projective
measurements studied in Refs. [163, 239, 59, 162, 65], while they also generalize to the case
of constant weak measurement. Our main results are insensitive to this detail.

3.2 Overview

Before proceeding, we provide a brief overview of the main ideas and results of this Chapter.
First, we present a simple expression of the subsystem entanglement entropy averaged over
different measurement outcomes, which is the quantity considered in previous works [239, 163,
59, 162, 65]. We show how this quantity can be mapped to the excess free energy originating
from a domain wall in a classical spin model, generalizing the analytic approaches introduced
in Refs. [115, 214, 183, 253, 283, 124], and explain the new insights and results obtained from
this mapping.

Next, we identify another signature, or an “order parameter,” of the same transition, that
is more relevant for experiments. The new quantity offers an alternative interpretation of the
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Figure 3.1: Random unitary circuit with weak measurements. After each layer of unitary
gates (blue boxes), a weak measurement (orange box) is performed on every system qudit.
The red box indicates a strong projective measurement of an ancilla qudit performed after
an entangling unitary R̂α.
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Figure 3.2: Signatures of the phase transition. (a) Growth and saturation of entanglement
entropy SA of a subsystem A (of size NA). (b) Phase transition in the saturation value of SA

from volume- to area-law scaling. (c) Probability distributions P0 and Pθ of measurement
outcomes arising from two distinct initial states. (d) The phase transition is also seen in
the Fisher information, quantifying the amount of information that the measurements carry
about the initial state of the system.
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phase transition: a sharp change in the amount of information that can be extracted by the
measurements about the initial state of the system (see Fig. 3.2).

Replica method: conditional entropy

One of the main quantities considered in previous works is the entanglement entropy of a
subsystem A, averaged over measurement outcomes and realizations of the RUC:

⟨⟨SA(U)⟩⟩ ≡
∑

iM

piM (U)S [ρA(U , iM)]. (3.1)

Here, the index iM runs over all possible measurement outcomes, piM (U) is the probability
for the measurement outcome iM , S [ρA(U , iM)] is von Neumann entanglement entropy of A
for a given measurement outcome iM in a particular realization U of RUCs, and the overline
denotes averaging over the RUC U . By using weak measurement formalism, we can rewrite
this quantity in a simpler form by extending the Hilbert space to include the subspace M for
ancilla qudits. That is, it exactly equals the conditional entropy:

⟨⟨SA(U)⟩⟩ = S̃(A|M) ≡ S[ρ̃AM ] − S[ρ̃M ], (3.2)

where ρ̃X denotes the reduced density matrix of subsystem X after ancilla qudits are
projected onto their diagonal elements, i.e., measured in their computational basis |iM⟩:
ρ̃ =

∑
i |iM⟩ ⟨iM | ρ |iM⟩ ⟨iM |.

We employ a replica method in order to map the conditional entropy in Eq. (3.2) to a
classical spin model. Let us define a series of objects enumerated by an integer n,

S̃(n)(A|M) ≡ log
(

tr ρ̃n
AM

)
− log

(
tr ρ̃n

M

)

1 − n
, (3.3)

from which the von Neumann conditional entropy S̃(A|M) is recovered in the limit n→ 1.
It is important to note that S̃(n)(A|M) is not itself an average conditional (Rényi) entropy,
but it recovers its meaning only in the replica limit. Note also that the n-th moments of
the replicated density matrices are averaged over U now inside the logarithms. We will
show S̃(n)(A|M) can be interpreted in terms of free energies of classical spin models in two
dimension. The two dimensions arise from the time, which in our convention flows from
bottom to top, and the space dimension on the original qudit chain. Each classical “spin”
degree of freedom arises from a random unitary gate and may take as its value any one of the
n! elements of the permutation group Sn. For example, the case n = 2 corresponds to Ising
spins, where an up/down spin maps to a trivial/swap element. Increasing the measurement
strength weakens the couplings between the spins, leading to a transition from a ferromagnetic
to a paramagnetic phase at a critical measurement strength.

The generalized entropy S̃(n)(A|M) corresponds to the difference between free energies
that result from different top boundary conditions. These boundary conditions are arranged
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such that S̃(n)(A|M) describes the excess free energy associated with a domain wall that
runs in the bulk and connects the two edges of the subsystem A at the top boundary. The
domain wall free energy scales with the length of A in the ferromagnetic phase, which is
therefore identified with the volume-law phase, whereas the free energy is of order one in the
paramagnetic phase, identified with the area-law phase. We note that entanglement phase
transitions in random tensor networks were similarly interpreted in Ref. [253] as a change of
domain wall free energies in an emergent statistical mechanics model.

The classical spin model description allows infering crucial information about the transition.
First, we obtain an analytic approximation for the critical measurement strength (or the
measurement probability in the case of random projective measurements). The spin model
description greatly simplifies in the limit of a large local Hilbert space dimension q for a qudit,
where our model maps to the n!-state standard Potts model on the square lattice. On this
lattice, we can obtain the critical coupling strength analytically as a function of n and q using
the Kramers-Wannier duality. Taking the replica limit n→ 1, we find a critical measurement
probability pc = 1/2 in the large-q limit. For a small local Hilbert space dimension q = 2, we
perform exact numerical simulations for up to N = 30 qubits and obtain pc = 0.26 ± 0.02.

Furthermore, the mapping to an n!-state Potts model allows one to infer the universality
class of the entanglement transition in the limit q → ∞. Specifically, the partition function of
the Q-state standard Potts model approaches that of bond percolation in the physical limit
Q→ 1. This is similar to the prediction made in Ref. [239] that the special Rényi-0 entropy
undergoes a percolation transition. However, in our case, note that the bond percolation
transition in the von Neumann entanglement entropy is limited to the case of infinite q.

Alternative signature of the transition

It is important to find the signatures of the phase transition that are more accessible and
relevant for experiments than the conditional entanglement entropy. In particular, measuring
the conditional entanglement entropy is extremely challenging, as it requires postselecting a
particular combination of measurement outcomes with occurrence probability exponentially
small in system sizes (in both space and time). Furthermore, for each measurement outcome,
estimating entanglement entropy for the quantum state necessitates additional exponentially
many repetitions of an experiment [202, 161]. Consequently, the operational meaning of the
conditional entanglement entropy is a priori not clear from an experimental point of view. A
quantity with transparent physical meaning is therefore needed.

The quantum circuit we consider involves measurements. Hence, it is natural to seek the
signatures of the transition in the probability distribution (or histogram) of measurement
outcomes. Indeed, we show that there is a sharp transition in the amount of information these
measurements contain on the initial state of the system, quantified by the Fisher information.
The Fisher information can be derived from a closely related quantity, the Kullback-Leibler
(KL) divergence (also known as the relative entropy). Given the two distributions P0(x) and
Pθ(x) of measurement outcomes obtained for two close initial states of the system, the KL
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divergence averaged over the RUC is

DKL(P0||Pθ) =
∑

x

P0(x) log

(
P0(x)

Pθ(x)

)
. (3.4)

Here, θ parameterizes the distance between two initial states. The variable x runs over all
possible ancilla measurement outcomes. The Fisher information is given by the second order
derivative:

F := ∂2θDKL(P0||Pθ)
∣∣
θ=0

. (3.5)

Note that the first order derivative vanishes due to the positivity of the KL divergence and
the fact that it vanishes for θ = 0.

Using the replica method, we recover the KL divergence and the Fisher information in
the limit n→ 1 from a series of auxilliary functions:

D(n)(P0||Pθ) :=
log tr

[
ρ̃M,0 ρ̃

n−1
M,θ

]
− log tr

[
ρ̃n
M,0

]

1 − n
, (3.6)

F (n) := ∂2θD
(n)(P0||Pθ)

∣∣
θ=0

. (3.7)

Note that ρ̃M,θ denotes the diagonal density matrix of ancilla qudits composed of the
probability distribution Pθ(x). We show that D(n) maps to the excess free energy associated
with applying a field on the bottom boundary in the same classical spin model derived for
S̃(n). F (n) is proportional to the probability of finding a certain subset of spin values (out of
the n! possibilities) on the bottom boundary sites. Hence, the Fisher information undergoes
the same transition as the entanglement entropy. Above the critical measurement rate, F
reaches a maximal value, reflecting the fact that the measurement device can obtain, over a
long enough measurement time, maximal classical information on the initial state. Below pc,
the value of F starts to deviate from its maximum, reflecting incomplete information on the
initial state [see Fig. 3.2(d)].

The transition in information flow can be understood in terms of the natural quantum error
correction implemented by the unitary components of the quantum circuit (see Chapter 2).
In the volume-law phase, information scrambling by the unitary evolution hides information
in nonlocal degrees of freedom, thus protecting it from being revealed by local measurements.
The error correction becomes ineffective if the measurement rate exceeds a threshold, or if
the measurements are capable of decoding nonlocal correlations, as we show in this work.

The rest of this Chapter is organized in the following order. In Sec. 3.3, we introduce
our RUC model with weak measurements and elaborate on the generalized quantities S̃(n)

and F (n) as well as their relations to the von Neumann entropy and the Fisher information.
In Sec. 3.4, we derive the mapping between a RUC with weak measurements and a series
of classical statistical mechanics models with various boundary conditions. Section 3.5 is
dedicated to discuss the nature of the phase transition for different n. We analytically
compute the critical/threshold measurement strength in the large q limit and identify the



CHAPTER 3. STATISTICAL MECHANICAL MODELS FOR RANDOM UNITARY
CIRCUITS WITH MEASUREMENTS 29

universality class of the phase transition. Then, in Sec. 3.6, we slightly digress from our
main topic and discuss the absence of the phase transition in the presence of measurements
on ancilla qudits in an arbitrary nonlocal basis. Finally, we conclude with discussions and
outlook in Sec. 3.7.

3.3 Random unitary circuits with weak measurements

We consider an 1D array of N qudits undergoing random unitary circuit evolution and weak
measurements. The unitary circuit consists of independent Haar random q2× q2 unitary gates
acting on the nearest neighboring qudits, each with local Hilbert space dimension q. While
not very important for our results, we assume a periodic boundary condition for concreteness.
The depth of the circuit T corresponds to the discrete time of our model. We are generally
interested in the regime N, T ≫ 1. The layout of the unitary gates is illustrated in Fig. 3.1.

After each layer of unitary gates, every qudit is weakly measured. For each weak
measurement, an ancilla qudit with local Hilbert space dimension q′ is newly introduced and
coupled to the system qudit via an entangling unitary gate R̂α. While a specific choice of q′

or R̂α is not very important for most of our results, we focus on a particular example, where
an ancilla has q′ = q + 1 internal states (enumerated by |i⟩m with i ∈ {0, 1, . . . , q}), and the

coupling R̂α takes the form of a controlled rotation:

R̂α =

q∑

i=1

P̂i ⊗ e−iαX̂i . (3.8)

Here, P̂i = |i⟩s ⟨i|s is the projector onto one of the system qudit states |i⟩s (enumerated
with i ∈ {1, 2, . . . , q}), α ∈ [0, π/2] is a tunable parameter that controls the strength of
the weak measurement, and X̂i = |i⟩m ⟨0|m + |0⟩m ⟨i|m is a generalized Pauli matrix that
rotates the quantum state of an ancilla between |0⟩m and |i⟩m. We assume that every ancilla
qudit is initially prepared in |0⟩m. Figure 3.1 shows diagrammatic representations of weak
measurements.

The entangling gate R̂α correlates the quantum state of a system qudit with that of an
ancilla qudit. For example, after applying R̂α with α = π/2, the ancilla qudit state becomes
|i⟩m if and only if the system qudit is in |i⟩s. Therefore, any strong, projective measurements
of the ancilla qudit in the computational basis |i⟩m reveals the quantum state of the system
qudit. When α < π/2, the correlation between the system and ancilla qudit becomes weaker,
thereby a projective measurement of the ancilla constitutes a weak measurement of the
system qudit.

The weak measurement strictly generalizes projective measurements. In fact, it can be
easily shown that the weak measurement with our choice of R̂α (followed by a projection in
the computational basis) is equivalent to a probabilistic, projective measurement. While the
measurement of |i⟩m with i ≠ 0 necessarily implies the system qudit in |i⟩s, the ancilla in |0⟩m
for any α < π/2 reveals no information about the system qudit. Therefore, the measurement
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of |0⟩m state corresponds to not performing a projective measurement. This relation between
weak and projective measurements can be made precise by explicitly computing the density
matrix of a system-ancilla qudit pair after applying R̂α followed by projective measurements
of the ancilla in the computational basis:

Nϕ

[
R̂α (ρin ⊗ |0⟩m ⟨0|m) R̂†

α

]
=

(1 − p)ρin ⊗ |0⟩m ⟨0|m + p
∑

i

P̂iρinP̂i ⊗ |i⟩m ⟨i|m , (3.9)

where Nϕ[ρ] =
∑

i |i⟩m ⟨i|m ρ |i⟩m ⟨i|m is the dephasing channel acting on ancilla that corre-
sponds to the measurement in the computational basis, ρin is the density matrix of the system
qudit before the weak measurement, and p = sin2 α. We find that the resultant quantum
channel is equivalent to that of performing a projective measurement with the probability
p. Furthermore, by tracing over system degrees of freedom, one can obtain the probability
distribution of different measurement outcomes (including whether or not the measurement
has been performed) from the diagonal components of the ancilla density matrix.

When more than one system/ancilla qudits are considered, one can in principle apply a
(potentially nonlocal) unitary among the ancilla qudits before performing projective measure-
ments. Such a procedure amounts to probabilistically measuring multi-qudit correlations of
physical degrees of freedom. In our work, we first focus on the simple local measurements in
computational basis in Secs. 3.4 and 3.5, until we lift this condition later in Sec. 3.6.

Entanglement entropy within the system

One of the central quantities of interest is entanglement entropy within the system. More
specifically, we are interested in the entanglement between two complementary subsystems A
and B, averaged over all possible measurement outcomes from the collection of ancilla qudit M .
Given a particular set of unitary gates U , and measurement outcomes iM , the system remains
in a pure state after time evolution, and the von Neumann entropy S[ρ] ≡ − tr{[ρ log ρ]} of a
subsystem characterizes the amount of entanglement. Here, we consider its average behavior:

⟨⟨SA⟩⟩ =
∑

iM

piM (U)S[ρA(U , iM)], (3.10)

where · and ⟨⟨·⟩⟩ denote the averaging over U and over measurements iM , respectively;
ρX(U , iM ) is the normalized reduced density matrix of the subsystem X for a given pair of U
and iM ; and piM (U) is the probability associated with a particular outcome iM for a given U .
For a system of N qudits with RUC of depth T , the measurement outcome iM from a set of
ancilla qudits is enumerated by a string of q′ outcomes of length NT , i.e., iM ∈ (Zq′)

⊗NT ,
which encodes both different positioning of projective measurements and their outcomes.
Here and below, we simplify our notations by omitting the explicit dependence of ρA and piM
on U whenever unambiguous, using SX to denote S[ρX ] for any subsystem X, and adapting
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a bold symbol for any indices running over exponentially many possibilities, e.g. basis states
|iM⟩, |jA⟩ or |kB⟩ for subsystems M , A, or B, respectively.

One of the nice properties of the weak measurement formalism is that it allows us to
rewrite the average over measurements ⟨⟨SA⟩⟩ in a simple form that depends only on the
global density matrix of the system-environment combined without any averaging. Consider
the global density matrix ρ̃ABM in an extended Hilbert space that results from the RUC with
given U and a set of couplings R̂α followed by the dephasing Nϕ without projecting onto any
particular outcome,

ρ̃ABM =
∑

iM

piM |Ψ(U , iM)⟩ ⟨Ψ(U , iM)| ⊗ |iM⟩ ⟨iM | ,

where |Ψ(U , iM)⟩ is a normalized pure state of the system for a given pair U and iM . Then,
⟨⟨SA⟩⟩ is exactly the conditional entropy of A on M :

⟨⟨SA⟩⟩ = S̃(A|M) ≡ S̃AM − S̃M , (3.11)

where S̃X indicates that the corresponding entropy is computed from a reduced density matrix
ρ̃X in the extended Hilbert space, i.e., S̃X ≡ S[ρ̃X ]. We note that ρ̃X is diagonal in the
measurement basis of the ancilla qudits. This relation is valid for any U (before averaging)
and can be easily derived from explicit expressions:

S̃AM = −
∑

iM

tr (piMρA,iM log piMρA,iM ) , (3.12)

S̃M = −
∑

iM

piM log piM , (3.13)

where we use ρA,iM to denote ρA(U , iM). We note that Eq. (3.11) holds only when von Neu-
mann (or Shannon) entropy is used as the entropy measure, and the reduced density matrix
ρ̃AM is block-diagonal in the basis |iM⟩. In our case, the latter is satisfied owing to the
dephasing channel Nϕ, which enforces the measurement in the computational basis.

Equation (3.11) greatly simplifies our problem since the conditional entropy S̃(A|M) can
be evaluated without explicitly computing entanglement entropies for different measurement
outcomes. However, exact computation of S̃(A|M) for any given U is still a formidable
task. For this reason, we introduce a series of closely related quantities, the n-th conditional
entropies, that are more accessible for analytic calculation and recover S̃(A|M) averaged over
U in the limit n→ 1. For any n ≥ 1, these objects are defined as

S̃(n)(A|M) ≡ S̃
(n)
AM − S̃

(n)
M , (3.14)

with

S̃
(n)
X ≡ log tr ρ̃nX

1 − n
. (3.15)
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While S̃(n)(A|M) quantifies the amount of the entanglement between subsystems A and B,
it does not correspond to the Rényi conditional entropy. Instead, this object measures the
n-th moment of the entanglement spectrum, weighted by the n-th power of the measurement
outcome probability:

S̃(n)(A|M) =
1

1 − n
log

( ∑
iM
pniM tr ρnA,iM∑
iM
pniM

)
. (3.16)

For a larger n, the averaging is more strongly weighted by relatively more likely measurement
outcomes. A sharp change in the behavior of S̃(n)(A|M) signifies a qualitative change in
the entanglement spectrum in its n-th moment. It is also worth noting that analytically

evaluating S̃(n)(A|M) is much easier than S̃(A|M) as the average over U is taken inside the
logarithm and S̃(n)(A|M) depends only on the n-th moment of the system-ancilla density
matrix.

Crucially, the average von Neumann conditional entropy is recovered in the limit n→ 1

S̃(A|M) = lim
n→1

S̃(n)(A|M). (3.17)

This follows from the analytic relation tr[ρ log ρ] = limn→1(n − 1)−1 log tr ρn. In Sec. 3.4,

we show that both S̃
(n)
AM and S̃

(n)
M (with n ≥ 2) exactly map to the free energies of classical

spin models with n! internal states with different boundary conditions (up to a constant
factor n− 1), which reduce to the n!-state standard Potts models in the limit q → ∞. We
investigate their behaviors in various parameter regimes and show their implications to the

average conditional entropy S̃(A|M) in the interesting physical limit n→ 1.

Kullback-Leibler divergence and Fisher information from
measurement outcomes

We now introduce another signature of the phase transition in the quantum circuit, which
is motivated by the interpretation given in Chapter 2. There, it was argued that the
entanglement phase transition can be understood from the perspective of quantum error
correction: in the volume-law phase, the scrambling of information by the unitary gates
protects quantum correlations from sparse local measurements, thereby providing a natural
error correction mechanism. At higher rate of measurement, this mechanism fails, and
information encoded in the circuit is no longer protected from measurements. Thus, we
expect that there is a sharp difference across the phase transition in the amount of information
that can be gained from local measurements about the state of the system.

Here, we utilize the Fisher information [252] as a measure of how much information about
a system flows into the ancilla degrees of freedom. Fisher information characterizes how
much information a set of observables carry about an unknown parameter, and it can be
derived from the closely related Kullback-Leibler (KL) divergence. For example, consider an
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observable X drawn from a probability distribution P (x; θ) that depends on an unknown
parameter θ. If θ is perturbed away from its original value θ0 (without loss of generality,
we set θ0 = 0), the probability distribution for X also changes. Then, one can quantify
the amount of the information about θ carried in X by measuring how distinct the new
distribution Pθ = P (x; θ) is from its original P0 = P (x; 0), using the KL divergence

DKL(P0||Pθ) ≡
∑

x

P0(x) log

(
P0(x)

Pθ(x)

)
. (3.18)

The Fisher information is defined as the second order derivative

F = ∂2θDKL(P0||Pθ)
∣∣
θ=0

. (3.19)

The KL divergence cannot be negative and vanishes if and only if P0 = Pθ, which implies
that the first order derivative generally vanishes at θ = 0.

In our model, we are interested in the Fisher information carried by a set of measurement
outcomes iM about the initial quantum state of the system. For simplicity, we assume
that the system is initialized in either one of two nearby product states, |Ψ0⟩ = |ψ0⟩⊗N

and |Ψθ⟩ = δU(θ) |ψ0⟩⊗N with local perturbation δU(θ). The parameter θ characterizes the
strength of the perturbation. For concreteness (and without loss of generality), we consider

the perturbation δU(θ) = e−iX̂1θ with θ ≪ 1 applied to a qudit at position x0, where X̂1 is
the generalized Pauli matrix in Eq. (3.8).

Consider two systems with initial states |Ψ0⟩ and |Ψθ⟩ that evolve with identical circuits.
We examine the KL divergence averaged over U :

DKL(P0||Pθ) ≡
∑

iM

p0,iM (T ) log

(
p0,iM (T )

pθ,iM (T )

)
(3.20)

= tr [ρ̃M,0 (log ρ̃M,0 − log ρ̃M,θ)], (3.21)

where ρ̃M,θ is the reduced density matrix of ancilla qudits for a given U and the initial
state |Ψθ⟩. Note that ρ̃M,θ is a diagonal matrix, whose elements denote the probabilities for
different outcomes pθ,iM .

A few remarks are in order. First, DKL(P0||Pθ) is only a function of the local perturbation
strength θ and time T due to the averaging over random unitary gates. Hence, we simplify
our notation by using DKL(θ, T ) below. Second, when θ = 0, the two initial states coincide, so
DKL(0, T ) = 0 at all time. However, for any θ ≠ 0, one expects that DKL(θ, T ) would generally
grow over time as two initial states should be better distinguished by more accumulated
measurement outcomes. Indeed, it can be shown that DKL(θ, T ) is a nondecreasing function
in time, using the monotonicity of relative entropy [14, 169, 251]. Interestingly, we will show
in Sec. 3.4 that in our model DKL(θ, T ) cannot grow indefinitely, but rather approaches a
finite saturation value; a nonanalytic change in the saturation value at long time signifies the
phase transition. Finally, we note that the Fisher information can be directly extracted by
computing the second order derivative in θ.
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Similar to the case of the average von Neumann entropy, direct calculations of DKL(θ, T )
is a formidable task. Once again, we use the replica method and introduce closely related
quantities, the n-th divergence and the n-th Fisher information, based on the n-th moment
of ρ̃M,θ:

D(n)(θ, T ) ≡
log tr

[
ρ̃M,0ρ̃

n−1
M,θ

]
− log tr

[
ρ̃nM,0

]

1 − n
(3.22)

F (n)(T ) ≡ ∂2θD
(n)(θ, T )

∣∣
θ=0

. (3.23)

The KL divergence and the Fisher information can be obtained via the analytic relations:

DKL(θ, T ) = lim
n→1

D(n)(θ, T ), F(T ) = lim
n→1

F (n)(T ). (3.24)

We will show that D(n) also maps to the difference of free energies of the same classical
spin models as those for S(n) with two different bottom boundary conditions, and F (n) is
proportional to the density of spins coupled to a boundary field (closely related to boundary
magnetization) at the bottom boundary.

3.4 Mapping to spin models

In this section, we develop a mapping between the RUC with weak measurements and a
series of classical spin models. Within this mapping, the generalized quantities S̃(n) and D(n)

for integer n ≥ 2 are related to free energies of 2D classical spin models. The distinction
between the two is only in the boundary conditions imposed on the top and bottom, while
the bulk spin model remains the same. This implies that the two quantities detect the same
phase transition.

Our mapping builds on earlier works in which the n-th moment of a density matrix
evolved by a random unitary circuit is mapped to the partition function of a classical spin
model with n! states [186, 283, 124]. Similar emergent classical spin models have been also
studied in random tensor networks [115, 214, 253]. Our mapping generalizes these works by
incorporating projective measurements of ancilla qudits.

An essential building block for calculating both the generalized entropies S̃(n) in Eq. (3.14)
and the generalized KL divergences D(n) in Eq. (3.22) is the n-th moment of a density matrix:

µ
(n)
AM = tr [ρ̃AM,1ρ̃AM,2 · · · ρ̃AM,n] . (3.25)

Here, ρ̃AM,i is the reduced density matrix of the ancilla qudits M together with a subsystem
A obtained from the evolution of an initial state |Ψi⟩ of the system. The form of the quantity
in Eq. (3.25) is sufficiently general to cover the calculation of both S̃(n) and D(n). In the
former, we take all |Ψi⟩ to be identical. In the latter, we take the subsystem A to be an empty
set, while the ρ̃AM,i are evolved from the initial state |Ψ0⟩ or |Ψθ⟩ as dictated by Eq. (3.22).
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Random unitary circuits Classical spin models

tr ρnAM Z(n)
AM

− log tr ρnAM F
(n)
AM

S̃(n)(A|M) (F
(n)
AM − F

(n)
M )/(n− 1)

D(n)(P0||Pθ) (F
(n)
M,θ − F

(n)
M )/(n− 1)

F (n) 2⟨m↓
1⟩/(n− 1)

Table 3.1: Dictionary of the mapping between the RUC with weak measurements and
classical spin models. On the left column, S̃(n), D(n), and F (n) are generalized entropy,
the divergence of probability distributions, and Fisher information that identify the phase
transition, respectively. On the right column, Z(n) and F (n) denote the partition function
and the free energy of a classical spin model under a certain boundary condition specified by
their subscripts. ⟨m↓

1⟩ denotes the probability that a spin at position r = (x0, 1) belongs to
the down-type (see the main text).

The essence of our mapping is the identification of the n-th moment with a classical
partition function

µ
(n)
AM = Z(n)

AM , (3.26)

where Z(n)
AM is the partition function of a classical spin model with n! internal states:

Z(n)
AM =

∑

{σr}

W ({σr}). (3.27)

Here, σr is a classical variable at r = (x, t) that may take n! different values, W ({σr}) is the
Boltzmann weight given the spin configuration {σr}. Depending on the choice of the n-th

moment µ
(n)
AM , the partition function Z(n)

AM is evaluated with different boundary conditions.
The top boundary condition of the spin model is determined by the choice of subsystem
A. The bottom boundary condition depends on initial states of the density matrices. For
example, when ρ̃AM,i have the same initial states, i.e., |Ψi⟩ = |Ψj⟩ for any i, j, the spin model
has an open boundary condition at the bottom. When ρ̃AM,i have the distinct initial states,
the spin model exhibits a boundary “magnetic” field at the bottom boundary. Using this
mapping, S̃(n) and D(n) are mapped to the free energy cost of exciting a domain wall at
the top boundary and applying a magnetic field at the bottom boundary, respectively. A
dictionary of the mapping is provided in Table 3.1.

Before we present any technical details, we provide the outline of the mapping. Our
mapping consists of two steps. In the first step, we consider the n-th moment that involves
n copies of density matrix ρ̃AM,i. We note that the n copies of the density matrix is an
n-th order monomial of random unitary gate U and its conjugate U †. By averaging over the

unitary gates, we rewrite µ
(n)
AM as a sum of terms labeled by two emergent spin variables σ
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and τ , each living on one of the two honeycomb sublattices:

µ
(n)
AM =

∑

{σr ,τr′}

W ({σr, τr′}), (3.28)

where W ({σr, τr′}) is the weight associated with a given spin configuration {σr, τr′}. We

perform this calculation by utilizing a tensor network representation of µ
(n)
AM and present an

explicit expression for W . At this point, the weight W ({σr, τr′}) is not always positive, and
the r.h.s. of Eq. (3.28) cannot be interpreted as the partition function of a spin model. In the
second step of the mapping, we resolve the negative weight in two different cases. In the case
of n = 2, the negative weight W ({σr, τr′}) can be removed by integrating out τ variables
(or alternatively σ variables). The resultant expression can be interpreted as the partition
function of a 2D classical Ising model on a triangular lattice. In the case of n ≥ 3, integrating
out τ variables is not sufficient, and we further consider the limit of large Hilbert space
dimension q. For a sufficiently large but finite q, the weights in Eq. (3.28) become positive,

and µ
(n)
AM can be interpreted as the partition function of a spin model with n! internal states

on a 2D triangular lattice. In the limit q → ∞, this model further reduces to the n!-state
standard Potts model on a square lattice.

In what follows, we provide the details of the above procedure, starting from the simplest
example S̃(n) with n = 2. Its modification for D(n) and the generalization for n ≥ 3 are
straightforward and will be discussed in detail later in this section.

Mapping between purity and partition function of classical Ising
model

Here, we explicitly show that the average purity µ
(2)
AM = tr ρ̃2AM for a subsystem AM maps

to the partition of a 2D classical Ising model under a certain boundary condition. We will
pay close attention to how the partition function of the classical Ising model depends on
various parameters of the original model such as the local Hilbert space dimension q of the
system qudits and the measurement strength α ∈ [0, π/2]. We first discuss the mapping of
S̃(2) and elaborate how the boundary conditions for the spin model depend on the choice
of the subsystem A. Once the relationship between the purity and the partition function is
established, we will discuss how the boundary conditions are modified for the calculation of
D(2). Recall that we choose A to be the empty set when computing D(2). Generalization of
the mapping to S̃(n) and D(n) for n ≥ 2 is deferred to Secs. 3.4 and 3.4.

The first step of our derivation is to rewrite the second moment (purity) using the swap
technique:

µ
(2)
AM = Tr

[(
C(2)
A ⊗ I(2)

B ⊗ C(2)
M

)
(ρ̃ABM ⊗ ρ̃ABM)

]
, (3.29)

where Tr represents tracing over a twofold replicated Hilbert space for ABM , C(2)
X =∑

iX ,i′X
|iX⟩ ⊗ |i′X⟩ ⟨i′X | ⊗ ⟨iX | is an operator that swaps the quantum states of the sub-
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⇤
<latexit sha1_base64="+LHmSPOWExJD/V9Ko31rhlQLUKc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiHsJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCW3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe1flSv26VD3P4sjDCZzCBXhwA1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD2jjjJY=</latexit>

⇤
<latexit sha1_base64="+LHmSPOWExJD/V9Ko31rhlQLUKc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiHsJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCW3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe1flSv26VD3P4sjDCZzCBXhwA1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD2jjjJY=</latexit>

Copy 1

Copy 1
Copy 2

Copy 2

| 0ih 0| ⌦ | 0ih 0|
<latexit sha1_base64="ciCA1i7JRsMkIf6DD4vLmjlLJS4=">AAACMHichVDLSgMxFM34rPU16tJNsCiuykwVdFlwocsK9gGdYcikmTY0kwxJRijTfpIbP0U3Coq49StMp7PQVvBCyOGcc7n3njBhVGnHebWWlldW19ZLG+XNre2dXXtvv6VEKjFpYsGE7IRIEUY5aWqqGekkkqA4ZKQdDq+mevueSEUFv9OjhPgx6nMaUYy0oQL7euw1FA0cTyLeZwR6rPhzFo6hJzSNiYL/+AK74lSdvOAicAtQAUU1AvvJ6wmcxoRrzJBSXddJtJ8hqSlmZFL2UkUShIeoT7oGcmSW8LP84Ak8NkwPRkKaxzXM2Z8dGYqVGsWhccZID9S8NiX/0rqpji79jPIk1YTj2aAoZVALOE0P9qgkWLORAQhLanaFeIAkwtpkXDYhuPMnL4JWreqeVWu355X6SRFHCRyCI3AKXHAB6uAGNEATYPAAnsEbeLcerRfrw/qcWZesoucA/Crr6xsDsqja</latexit>

A
<latexit sha1_base64="bUwDpLUDOK5Iyb5tGL5/9ZbJF7U=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrtookeMF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftsrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1fMsjjycwClcgAfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIu/jK0=</latexit>

B
<latexit sha1_base64="AUpmQrOmdzqNB3Ng3BeNWBH1UgM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrtookeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftsrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1fMsjjycwClcgAfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AI1DjK4=</latexit>

⇤
<latexit sha1_base64="+LHmSPOWExJD/V9Ko31rhlQLUKc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiHsJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCW3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe1flSv26VD3P4sjDCZzCBXhwA1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD2jjjJY=</latexit>

⇤
<latexit sha1_base64="+LHmSPOWExJD/V9Ko31rhlQLUKc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiHsJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6pe9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCW3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe1flSv26VD3P4sjDCZzCBXhwA1W4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD2jjjJY=</latexit>

U ⌦ U⇤ ⌦ U ⌦ U⇤
<latexit sha1_base64="47ImsSYMEwG+I68I6tW3RkWCxrw=">AAACDXicbVDLTgIxFO3gC/E16tJNI2oMCzKDJrokceMSEwdIYCCd0oGGTjtpOyZkwg+48VfcuNAYt+7d+TcWmPgAT9Lk3HPuze09Qcyo0o7zaeWWlldW1/LrhY3Nre0de3evrkQiMfGwYEI2A6QIo5x4mmpGmrEkKAoYaQTDq4nfuCNSUcFv9SgmfoT6nIYUI22krn3ktYWmEVHQ66SlMfyuflin1LWLTtmZAi4SNyNFkKHWtT/aPYGTiHCNGVKq5Tqx9lMkNcWMjAvtRJEY4SHqk5ahHJlFfjq9ZgyPjdKDoZDmcQ2n6u+JFEVKjaLAdEZID9S8NxH/81qJDi/9lPI40YTj2aIwYVALOIkG9qgkWLORIQhLav4K8QBJhLUJsGBCcOdPXiT1Stk9K1duzovVkyyOPDgAh+AUuOACVME1qAEPYHAPHsEzeLEerCfr1XqbteasbGYf/IH1/gXynJq+</latexit>

R̂↵
<latexit sha1_base64="uoOPOxvLD1fjOcqc5UPLsukmcs8=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx6jmAdk19A7mU2GzD6YmVXCkv/w4kERr/6LN//GSbIHTSxoKKq66e7yE8GVtu1vq7Cyura+UdwsbW3v7O6V9w9aKk4lZU0ai1h2fFRM8Ig1NdeCdRLJMPQFa/uj66nffmRS8Ti61+OEeSEOIh5witpID+4QdXY36bkokiH2yhW7as9AlomTkwrkaPTKX24/pmnIIk0FKtV17ER7GUrNqWCTkpsqliAd4YB1DY0wZMrLZldPyIlR+iSIpalIk5n6eyLDUKlx6JvOEPVQLXpT8T+vm+rgyst4lKSaRXS+KEgF0TGZRkD6XDKqxdgQpJKbWwkdokSqTVAlE4Kz+PIyadWqznm1dntRqZ/mcRThCI7hDBy4hDrcQAOaQEHCM7zCm/VkvVjv1se8tWDlM4fwB9bnD7s0kpI=</latexit>

R̂⇤
↵

<latexit sha1_base64="10u/Rea4O1QPbt6btQM/UTa9LCQ=">AAAB+XicbVBNS8NAEN34WetX1KOXxaKIh5JUQY8FLx6r2A9oYphsN+3SzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5YcqZ0o7zba2srq1vbJa2yts7u3v79sFhSyWZJLRJEp7ITgiKciZoUzPNaSeVFOKQ03Y4vJ367RGViiXiUY9T6sfQFyxiBLSRAtv2BqDzh0ngAU8H8HQR2BWn6syAl4lbkAoq0AjsL6+XkCymQhMOSnVdJ9V+DlIzwumk7GWKpkCG0KddQwXEVPn57PIJPjVKD0eJNCU0nqm/J3KIlRrHoemMQQ/UojcV//O6mY5u/JyJNNNUkPmiKONYJ3gaA+4xSYnmY0OASGZuxWQAEog2YZVNCO7iy8ukVau6l9Xa/VWlflbEUULH6ASdIxddozq6Qw3URASN0DN6RW9Wbr1Y79bHvHXFKmaO0B9Ynz9W6pNf</latexit>

R̂↵
<latexit sha1_base64="uoOPOxvLD1fjOcqc5UPLsukmcs8=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx6jmAdk19A7mU2GzD6YmVXCkv/w4kERr/6LN//GSbIHTSxoKKq66e7yE8GVtu1vq7Cyura+UdwsbW3v7O6V9w9aKk4lZU0ai1h2fFRM8Ig1NdeCdRLJMPQFa/uj66nffmRS8Ti61+OEeSEOIh5witpID+4QdXY36bkokiH2yhW7as9AlomTkwrkaPTKX24/pmnIIk0FKtV17ER7GUrNqWCTkpsqliAd4YB1DY0wZMrLZldPyIlR+iSIpalIk5n6eyLDUKlx6JvOEPVQLXpT8T+vm+rgyst4lKSaRXS+KEgF0TGZRkD6XDKqxdgQpJKbWwkdokSqTVAlE4Kz+PIyadWqznm1dntRqZ/mcRThCI7hDBy4hDrcQAOaQEHCM7zCm/VkvVjv1se8tWDlM4fwB9bnD7s0kpI=</latexit>

R̂⇤
↵

<latexit sha1_base64="10u/Rea4O1QPbt6btQM/UTa9LCQ=">AAAB+XicbVBNS8NAEN34WetX1KOXxaKIh5JUQY8FLx6r2A9oYphsN+3SzSbsbgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5YcqZ0o7zba2srq1vbJa2yts7u3v79sFhSyWZJLRJEp7ITgiKciZoUzPNaSeVFOKQ03Y4vJ367RGViiXiUY9T6sfQFyxiBLSRAtv2BqDzh0ngAU8H8HQR2BWn6syAl4lbkAoq0AjsL6+XkCymQhMOSnVdJ9V+DlIzwumk7GWKpkCG0KddQwXEVPn57PIJPjVKD0eJNCU0nqm/J3KIlRrHoemMQQ/UojcV//O6mY5u/JyJNNNUkPmiKONYJ3gaA+4xSYnmY0OASGZuxWQAEog2YZVNCO7iy8ukVau6l9Xa/VWlflbEUULH6ASdIxddozq6Qw3URASN0DN6RW9Wbr1Y79bHvHXFKmaO0B9Ynz9W6pNf</latexit>

N�
<latexit sha1_base64="E9HC52IT6N69dy0elgiEPsIZtEs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYFFclaQKuiy4cSUV7AOaECbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cMOVMacf5ttbWNza3tis71d29/YND++i4o5JMEtomCU9kL8SKciZoWzPNaS+VFMchp91wfFf43QmViiXiSU9T6sd4KFjECNZGCmzbi7EeEczzh1ngpSMW2DWn7syBVolbkhqUaAX2lzdISBZToQnHSvVdJ9V+jqVmhNNZ1csUTTEZ4yHtGypwTJWfz5PP0LlRBihKpHlCo7n6eyPHsVLTODSTRU617BXif14/09GtnzORZpoKsjgUZRzpBBU1oAGTlGg+NQQTyUxWREZYYqJNWVVTgrv85VXSadTdq3rj8brWvCjrqMApnMEluHADTbiHFrSBwASe4RXerNx6sd6tj8XomlXunMAfWJ8/yiGTqw==</latexit>

N�
<latexit sha1_base64="E9HC52IT6N69dy0elgiEPsIZtEs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYFFclaQKuiy4cSUV7AOaECbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cMOVMacf5ttbWNza3tis71d29/YND++i4o5JMEtomCU9kL8SKciZoWzPNaS+VFMchp91wfFf43QmViiXiSU9T6sd4KFjECNZGCmzbi7EeEczzh1ngpSMW2DWn7syBVolbkhqUaAX2lzdISBZToQnHSvVdJ9V+jqVmhNNZ1csUTTEZ4yHtGypwTJWfz5PP0LlRBihKpHlCo7n6eyPHsVLTODSTRU617BXif14/09GtnzORZpoKsjgUZRzpBBU1oAGTlGg+NQQTyUxWREZYYqJNWVVTgrv85VXSadTdq3rj8brWvCjrqMApnMEluHADTbiHFrSBwASe4RXerNx6sd6tj8XomlXunMAfWJ8/yiGTqw==</latexit> M(2)

<latexit sha1_base64="XBZSf7kQQqyxeEsV8gG2xva8ZJ0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBalbkpSBV0W3LgRKtgHtLFMppN26OTBzEQpMZ/ixoUibv0Sd/6NkzYLbT0wcDjnXu6Z40acSWVZ30ZhZXVtfaO4Wdra3tndM8v7bRnGgtAWCXkoui6WlLOAthRTnHYjQbHvctpxJ1eZ33mgQrIwuFPTiDo+HgXMYwQrLQ3Mct/HakwwT27S+6RaP00HZsWqWTOgZWLnpAI5mgPzqz8MSezTQBGOpezZVqScBAvFCKdpqR9LGmEywSPa0zTAPpVOMoueomOtDJEXCv0ChWbq740E+1JOfVdPZkHlopeJ/3m9WHmXTsKCKFY0IPNDXsyRClHWAxoyQYniU00wEUxnRWSMBSZKt1XSJdiLX14m7XrNPqvVb88rjZO8jiIcwhFUwYYLaMA1NKEFBB7hGV7hzXgyXox342M+WjDynQP4A+PzB74Wk5E=</latexit>

T (2)
<latexit sha1_base64="Ycoar6+/Jdlk8tE55qRbHci+e8Y=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBalbkpSBV0W3Lis0Be0sUymk3bo5MHMRCkxn+LGhSJu/RJ3/o2TNgttPTBwOOde7pnjRpxJZVnfRmFtfWNzq7hd2tnd2z8wy4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjBoqVlEHR+PA+YxgpWWhmZ54GM1IZgnrfQ+qdbP06FZsWrWHGiV2DmpQI7m0PwajEIS+zRQhGMp+7YVKSfBQjHCaVoaxJJGmEzxmPY1DbBPpZPMo6foVCsj5IVCv0Chufp7I8G+lDPf1ZNZULnsZeJ/Xj9W3rWTsCCKFQ3I4pAXc6RClPWARkxQovhME0wE01kRmWCBidJtlXQJ9vKXV0mnXrMvavW7y0rjLK+jCMdwAlWw4QoacAtNaAOBR3iGV3gznowX4934WIwWjHznCP7A+PwByOOTmA==</latexit>

c1,`
<latexit sha1_base64="6AQSFAU4sdGpBeHxOC2c5F6z/30=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4kJJUQY8FLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyUPOqLHSI+tl3kUXhZj0SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZhdPyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhjZ9xmaQGJZsvClNBTEym75M+V8iMGFtCmeL2VsKGVFFmbEhFG4K3+PIyaVYr3mWlen9Vrp3lcRTgGE7gHDy4hhrcQR0awEDCM7zCm6OdF+fd+Zi3rjj5zBH8gfP5AxxlkHY=</latexit>

c1,r
<latexit sha1_base64="9l/ZaAGzrcWVBDHtYxch7afZzRE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbFg5SkCnosePFYwX5AG8pmO2mXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8NJME/YgOJQ85o8ZKbdbPvEs17ZcrbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n83PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwls/4zJJDUq2WBSmgpiYzH4nA66QGTGxhDLF7a2EjaiizNiESjYEb/nlVdKqVb2rau3hulI/z+MowgmcwgV4cAN1uIcGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx/mB48x</latexit>

c2,r
<latexit sha1_base64="TTNnwhXFH/WD2c11mX6JF6QllIo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbFg5SkCnosePFYwX5AG8pmO2mXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8NJME/YgOJQ85o8ZKbdbPapdq2i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOyVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhLd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJlWwI3vLLq6RVq3pX1drDdaV+nsdRhBM4hQvw4AbqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz/njo8y</latexit>

d2,r
<latexit sha1_base64="V0Pf+leAku7mRQxzmI7VmVMV8JU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbFg5SkCnosePFYwX5AG8pms22XbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDfz209cGxGrR5wk3I/oUImBYBSt1A77We1ST/vlilt15yCrxMtJBXI0+uWvXhizNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVVCMoi1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNcXDrZ0IlKXLFFosGqSQYk9nvJBSaM5QTSyjTwt5K2IhqytAmVLIheMsvr5JWrepdVWsP15X6eR5HEU7gFC7Agxuowz00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4A6RiPMw==</latexit>

d1,r
<latexit sha1_base64="Og+agu5CywSkA87E0a3Ejc5rAjE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbFg5SkCnosePFYwX5AG8pms22XbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDfz209cGxGrR5wk3I/oUImBYBSt1A77mXepp/1yxa26c5BV4uWkAjka/fJXL4xZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzc6fkzCohGcTalkIyV39PZDQyZhIFtjOiODLL3kz8z+umOLj1M6GSFLlii0WDVBKMyex3EgrNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0mrVvWuqrWH60r9PI+jCCdwChfgwQ3U4R4a0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A55GPMg==</latexit>

d1,`
<latexit sha1_base64="qfEBjbR7Du2cjXxQjzreQjd5PZk=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4kJJUQY8FLx4r2A9sQ9lspu3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyfucUWOlx7CXeRddFGLSK5XdijsDWSZeTsqQo94rfXXDmKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6ekFOrhKQfK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8Tmr6N37GZZIalGy+qJ8KYmIyfZ+EXCEzYmwJZYrbWwkbUkWZsSEVbQje4svLpFmteJeV6v1VuXaWx1GAYziBc/DgGmpwB3VoAAMJz/AKb452Xpx352PeuuLkM0fwB87nDx3ykHc=</latexit>

a1,`
<latexit sha1_base64="VGxIWMAP7ltsZvbAMqGjyyju5js=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4kJJUQY8FLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyUPOqLHSI+1l3kUXhZj0SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZhdPyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhjZ9xmaQGJZsvClNBTEym75M+V8iMGFtCmeL2VsKGVFFmbEhFG4K3+PIyaVYr3mWlen9Vrp3lcRTgGE7gHDy4hhrcQR0awEDCM7zCm6OdF+fd+Zi3rjj5zBH8gfP5AxlLkHQ=</latexit>

b1,`
<latexit sha1_base64="cCKr5C71KHS52fWCsF3JMgWzJpU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4kJJUQY8FLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj26nfekKleSwfzDhBP6IDyUPOqLHSY9DLvIsuCjHplcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6ekFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCGz/jMkkNSjZfFKaCmJhM3yd9rpAZMbaEMsXtrYQNqaLM2JCKNgRv8eVl0qxWvMtK9f6qXDvL4yjAMZzAOXhwDTW4gzo0gIGEZ3iFN0c7L8678zFvXXHymSP4A+fzBxrYkHU=</latexit>

· · ·<latexit sha1_base64="+9GhjdLiyE1L3MrN6aCn6+KwYsI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIviqSRV0GPBi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcY3wYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6u1+6tK/TyPowgncAoX4MM11OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AKc5jxc=</latexit>

Figure 3.3: Tensor network representation of the purity tr{[ρ̃2AM ]}. (a) Two copies of the initial
states |Ψ0⟩ ⟨Ψ0| are evolved under a RUC with weak measurements, before jointly contracted
(or traced out). The asterisk (∗) indicates the complex conjugate for the corresponding tensor.
Notice the different connectivities for contracting the subsystems A, B, and M (blue and
orange lines). (b) The network can be rearranged in such a way that the top boundary
contractions are simplified and that the identical unitary tensors are brought together. Inset:
Four copies of a random unitary gate U ⊗ U∗ ⊗ U ⊗ U∗ form a tensor T (2). The combination
of the coupling unitary R̂α, dephasing gates Nϕ, and the contraction of the ancilla qudits is
denoted by M(2).

space X between two copies, and I(2) is the identity operator. Each copy of the quantum
state ρ̃ABM is generated from an initial product state |Ψ0⟩ = |ψ0⟩⊗N by evolving it under
an identical RUC and weak measurements (i.e., applying the coupling unitaries R̂α followed
by dephasing of every ancilla qudit). Equation (3.29) rewrites a nonlinear function of the
density matrix (on the left-hand side) as a linear expectation value of an operator in an
extended Hilbert space (on the right-hand side). In turn, this allows the tensor network (TN)

representation of µ
(2)
AM [see Fig. 3.3(a)]. Notice that the tensors are contracted across the two

different copies for the subsystems A and M , reflecting the swap operators, while they are
connected within each copy for the subsystem B. For reasons that will become clear below,
we call the operators O(2)

top = C(2)
A ⊗ I(2)

B ⊗ C(2)
M the top boundary operator.

Our next step is to perform averaging over random unitary gates. Owing to their statistical
independence, we can average unitary gates separately. In our diagrammatic representation,
a tensor corresponding to each gate U appears exactly four times: U and U † applied to the
bra and ket vectors of the system in two copies. We rearrange the TN such that four identical
tensors are placed together [see Figs. 3.3(b) and 3.4(a)] and consider their joint tensor T (2)

defined as

T (2)
ab;cd ≡ Ua1c1 ⊗ U∗

b1d1
⊗ Ua2c2 ⊗ U∗

b2d2
, (3.30)

where each index on the right-hand side represents a pair of input or output qudits and there-
fore runs over d = q2 possible quantum states. Specifically, a ≡ (a1, a2) ≡ (a1,ℓ, a1,r, a2,ℓ, a2,r).



CHAPTER 3. STATISTICAL MECHANICAL MODELS FOR RANDOM UNITARY
CIRCUITS WITH MEASUREMENTS 38

Figure 3.3(b) inset shows the diagrammatic representation of Eq. (3.30).
For Haar random unitary gates, the average of T (2) can be exactly computed using a

property of unitary 2-design:

T (2)
ab;cd =

∑

σ,τ=±1

w(2)
g (σ, τ)τ̂abσ̂cd, (3.31)

where σ, τ ∈ {±1} are classical Ising variables,

w(2)
g (σ, τ) =

δσ,τ
d2 − 1

− 1 − δσ,τ
d(d2 − 1)

(3.32)

is a coefficient called the Weingarten function [67], and σ̂ and τ̂ are tensors associated with
the variables σ and τ defined as

ξ̂ab =

{
δa1b1δa2b2 if ξ = +1
δa1b2δa2b1 if ξ = −1

. (3.33)

The diagrammatic representations of Eqs. (3.31) and (3.33) are given in Figs. 3.4(d) and 3.4(e).
Equation (3.31) plays the central role in our mapping; practically, it implies that, after
averaging, each unitary gate in our TN can be replaced by a sum of simpler tensors labeled
by the Ising variables σ, τ ∈ {±1}. The corresponding tensors σ̂, τ̂ with σ, τ ∈ {±1} in
Eq. (3.33) describe different ways to pair up indices associated with bra/ket vectors.

Now, it remains to contract these tensors on the entire network [Fig. 3.4(b)]. In particular,
we need to incorporate the effects of weak measurements by contracting tensors associated
with ancilla qudits M(2) [Fig. 3.3(b) inset] with a pair of diagonally neighboring σ̂ and τ̂
tensors [Fig. 3.4(f)]. As shown in Appendix B.1, these contractions lead to the weight

w
(2)
d (σ, τ) =

{
q2 cos4 α + q sin4 α if σ = τ
q cos4 α + q sin4 α if σ ̸= τ

, (3.34)

where we recall that q and α denote the local Hilbert space dimension and the measurement
strength, respectively. The dependence of w

(2)
d (σ, τ) on α distinguishes our spin model from

the previous result described in Refs. [186, 283, 124], which is recovered when α = 0.
By applying Eq. (3.31) to every gate and Eq. (3.34) to the contraction of the diagonally

neighboring tensors, we obtain an expression for the purity

µ
(2)
AM =

∑

{σr,τr}

WtopWbottom

∏

⟨r,r′⟩

w(2)(σr, τr′) (3.35)

that indeed looks like the partition function of an Ising spin model. The sum is on all the
configurations of the pairs (σr, τr) of Ising variables arising from the unitary gates at r = (x, t)
in two dimension. The weights w(2)(σr, τr′) are functions of nearest neighbor spin variables

at ⟨r, r′⟩ in the network given by w(2) = w
(2)
d or w

(2)
g depending on the orientation of the
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A
<latexit sha1_base64="bUwDpLUDOK5Iyb5tGL5/9ZbJF7U=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrtookeMF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftsrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1fMsjjycwClcgAfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AIu/jK0=</latexit> B

<latexit sha1_base64="AUpmQrOmdzqNB3Ng3BeNWBH1UgM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlItF4IrtookeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftsrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1K9K1fMsjjycwClcgAfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AI1DjK4=</latexit>

T (2)
<latexit sha1_base64="Ycoar6+/Jdlk8tE55qRbHci+e8Y=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBalbkpSBV0W3Lis0Be0sUymk3bo5MHMRCkxn+LGhSJu/RJ3/o2TNgttPTBwOOde7pnjRpxJZVnfRmFtfWNzq7hd2tnd2z8wy4cdGcaC0DYJeSh6LpaUs4C2FVOc9iJBse9y2nWnN5nffaBCsjBoqVlEHR+PA+YxgpWWhmZ54GM1IZgnrfQ+qdbP06FZsWrWHGiV2DmpQI7m0PwajEIS+zRQhGMp+7YVKSfBQjHCaVoaxJJGmEzxmPY1DbBPpZPMo6foVCsj5IVCv0Chufp7I8G+lDPf1ZNZULnsZeJ/Xj9W3rWTsCCKFQ3I4pAXc6RClPWARkxQovhME0wE01kRmWCBidJtlXQJ9vKXV0mnXrMvavW7y0rjLK+jCMdwAlWw4QoacAtNaAOBR3iGV3gznowX4934WIwWjHznCP7A+PwByOOTmA==</latexit>

(a)

- - - + + +

�
<latexit sha1_base64="eSMc7R1L2/eHCgXJ5TMH1X8mRLk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vgmzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Wpn+dxFOEETuECAriGOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPlUGPCw==</latexit>

⌧
<latexit sha1_base64="ZRlFtY4u+1k5geG3kL2fsV76310=">AAAB63icbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqI00Glapbc+cgq8QrSBUKNAeVr/4wYoniGpmk1vY8N0Y/pQYFk3xW7ieWx5RN6Ij3Mqqp4tZP57fOyHmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+qnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPOQvCWX14l7XrNu6rVH66rjYsijhKcwhlcggc30IB7aEILGIzhGV7hzVHOi/PufCxa15xi5gT+wPn8ARoPjjA=</latexit>

(b)

Averaging
over unitary

- - - + + +

(c)

�
<latexit sha1_base64="eSMc7R1L2/eHCgXJ5TMH1X8mRLk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vgmzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Wpn+dxFOEETuECAriGOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPlUGPCw==</latexit>

Jd
<latexit sha1_base64="K2JjKu+WD2aLxVYisRztbFLYnhk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9FjwIp4q2g9oQ9lsNu3SzSbsToRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJXCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaZJMM95giUx0O6CGS6F4AwVK3k41p3EgeSsY3kz91hPXRiTqEUcp92PaVyISjKKVHu56Ya9UdivuDGSZeDkpQ456r/TVDROWxVwhk9SYjuem6I+pRsEknxS7meEpZUPa5x1LFY258cezUyfk1CohiRJtSyGZqb8nxjQ2ZhQHtjOmODCL3lT8z+tkGF37Y6HSDLli80VRJgkmZPo3CYXmDOXIEsq0sLcSNqCaMrTpFG0I3uLLy6RZrXgXler9Zbl2lsdRgGM4gXPw4ApqcAt1aACDPjzDK7w50nlx3p2PeeuKk88cwR84nz8Lyo2N</latexit>

Jh
<latexit sha1_base64="L2ALBT3jSZgnGiwg5O7aaCZ2dIQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9FjwIp4q2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw11v2CuV3Yo7A1kmXk7KkKPeK311+zFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGOppBFqP5udOiGnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhNd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHpFG0I3uLLy6RZrXgXler9Zbl2lsdRgGM4gXPw4ApqcAt1aACDATzDK7w5wnlx3p2PeeuKk88cwR84nz8R2o2R</latexit>

Integrating
out   ⌧

<latexit sha1_base64="ZRlFtY4u+1k5geG3kL2fsV76310=">AAAB63icbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqI00Glapbc+cgq8QrSBUKNAeVr/4wYoniGpmk1vY8N0Y/pQYFk3xW7ieWx5RN6Ij3Mqqp4tZP57fOyHmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+qnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPOQvCWX14l7XrNu6rVH66rjYsijhKcwhlcggc30IB7aEILGIzhGV7hzVHOi/PufCxa15xi5gT+wPn8ARoPjjA=</latexit>

(d)
+ =<latexit sha1_base64="EYv/KXqtDPcBARCrpxapl5INb3I=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/2iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WrUvU8iyMPJ3AKF+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4WvjKk=</latexit> =<latexit sha1_base64="EYv/KXqtDPcBARCrpxapl5INb3I=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/2iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WrUvU8iyMPJ3AKF+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4WvjKk=</latexit>-

+ =
<latexit sha1_base64="EYv/KXqtDPcBARCrpxapl5INb3I=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/2iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WrUvU8iyMPJ3AKF+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4WvjKk=</latexit>

=
<latexit sha1_base64="EYv/KXqtDPcBARCrpxapl5INb3I=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQS9CwIvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/2iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WrUvU8iyMPJ3AKF+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4WvjKk=</latexit>
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Figure 3.4: Mapping between a RUC with weak measurements and classical Ising model. (a)
Tensor network representation of the RUC with weak measurements after the rearrangement
[see also Fig. 3.3(b)]. Each T (2) represents four identical unitary tensors, and M(2) represents
a weak coupling R̂α followed by the contraction of ancilla qudits [Fig. 3.3(b) inset]. (b) After
averaging over unitary, the TN reduces to a network on a honeycomb lattice. Each site of
the lattice hosts a classical Ising variable σ or τ . (c) Integrating out τ variables leads to the
2D classical Ising model on a triangular lattice with nearest-neighbor interactions Jh and
Jd. (d) Averaging T (2) over Haar random unitary allows one to replace the tensor as a sum
of simple diagrams labeled by a pair of classical variables σ, τ ∈ {±1}. (e) Diagrammatic
representations of the tensors τ̂ and σ̂. (f) Contracting a pair of diagonally neighboring σ̂
and τ̂ tensors leads to a closed loop diagram, whose value depends only on the relative sign
between σ and τ .

bond, i.e., the Weingarten function w
(2)
g (σ, τ) is treated as the weight for a vertical bond.

The weights Wtop and Wbottom are the contributions from boundary conditions.
At the top boundary, closed diagrams arise from contracting τ̂ tensors according to

their appropriate boundary conditions: qudit indices are connected across two copies in
the subsystem A and within each copy in the subsystem B. According to Eq. (3.33), these
contractions are equivalent to introducing of a set of additional σ̂ tensors at t = T + 1 with
fixed values σx,T+1 = −1 for x ∈ A and +1 for x ∈ B [Fig. 3.3(b)], leading to the top
boundary contribution 1

Wtop =
∏

x∈A

w
(2)
d (−1, τx,T )

∏

x∈B

w
(2)
d (+1, τx,T ). (3.36)

1When the position x is at the interface between A and B, one needs to first decompose the index
|a⟩ = |a1,ℓ, a2,ℓ⟩ ⊗ |a1,r, a2,r⟩ and use a different boundary condition for each qudit degree of freedom.



CHAPTER 3. STATISTICAL MECHANICAL MODELS FOR RANDOM UNITARY
CIRCUITS WITH MEASUREMENTS 40

In fact, this equivalence is natural since a contraction with σ̂ represents evaluating the
expectation value of an identity I(2) (σ = 1) or swap C(2) (σ = −1) operator for any state in
a two-fold replicated Hilbert space:

σ̂ab =

{
tr
(
I(2) |a⟩ ⟨b|

)
if σ = +1

tr
(
C(2) |a⟩ ⟨b|

)
if σ = −1

, (3.37)

and similarly for τ̂ .
At the bottom boundary, σ̂ variables are contracted with tensors representing the initial

state of the system. Here, both copies are initialized in the same product state |Ψ0⟩ = |ψ0⟩⊗N .
In such a case, tensor contractions lead to unity, independent of the Ising variable since
tr
{(

I(2) |ψ0⟩ ⟨ψ0| ⊗ |ψ0⟩ ⟨ψ0|
)}

= tr
{(

C(2) |ψ0⟩ ⟨ψ0| ⊗ |ψ0⟩ ⟨ψ0|
)}

= 1 from Eq. (3.33). As a
result, Wbottom = 1.

Combining these results, we obtain an intermediate expression

µ
(2)
AM =

∑

{σr ,τr}

∏′

⟨r,r′⟩

w(2)(σr, τr′), (3.38)

where the summation runs over all possible assignment of bulk Ising variables while the
product with prime runs over every neighboring pairs on a honeycomb lattice including the
extra boundary spins at t = T + 1 with fixed σx,T+1 values. We emphasize that the boundary
conditions are implicit and depend on the the choice of the subsystem A [Fig. 3.4(b)]. While
the above expression already resembles the partition function of a classical Ising model on a
honeycomb lattice, there is still a problem that the Weingarten function contributes negative
weights. This sign problem can be fixed by explicitly integrating out all τ variables, which
leads to a model defined on a triangular lattice

µ
(2)
AM = Z(2)

AM =
∑

{σ}

∏′

⟨σ1,σ2,σ3⟩

w̄(2)(σ1, σ2, σ3), (3.39)

where ⟨σ1, σ2, σ3⟩ denotes a lower-facing triangle with three neighboring vertices σ1, σ2, σ3 (in
clockwise order starting from top left), and w̄(2) is a three-body weight that is nonnegative
for arbitrary choice of q and α. The explicit expression of w̄(2) is given in Appendix B.1.
Apparently, the right-hand side of Eq. (3.39) is a partition function of a classical Ising spin
model on the 2D triangular lattice [Fig. 3.4(c)].

Crucially, except for boundary contributions, the model given by Eq. (3.39) preserves the

Ising Z2 symmetry associated with the global transformation σ 7→ −σ since both w
(2)
g (σ, τ)

and w
(2)
d (σ, τ) only depend on the relative sign of two arguments. Consequently, the bulk three-

body weight decomposes into pairwise contributions w̄(2)(σ1, σ2, σ3) ∝ e−Jhσ1σ2−Jdσ1σ3−Jdσ2σ3 .
The couplings, tuned by the measurement strength, are ferromagnetic Jd ≤ 0 along diagonal
bonds and antiferromagnetic Jh ≥ 0 along horizontal bonds (Appendix B.1). It is interesting
to note that this classical Ising model with anisotropic pairwise interaction on the triangular
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lattice is exactly solvable [82, 246]. In our case, Jh + Jd ≤ 0, hence there is a ferromagnetic-
paramagnetic phase transition at a critical value of those parameters tuned by the measurement
strength. A large value of q ≫ 1 and weak measurement α ≪ 1 correspond to the low-
temperature limit of the spin model resulting in the ferromagnetic phase. In the limit of
vanishing measurement strength α = 0, the model reduces to the previous result discussed
in Ref. [186]. On the other hand, the limit of strong measurement α → π/2 maps to high
temperature, giving rise to the paramagnetic phase. We will elaborate on this phase transition
in Sec. 3.5.

Having established the mapping in Eq. (3.39), the second conditional entropy in Eq. (3.16)

can be expressed as S̃(2) = F
(2)
AM − F

(2)
M , where F

(2)
X ≡ − logZ(2)

X with X = AM,M is the free

energy of the spin model. In the case of Z(2)
AM , the Ising symmetry is explicitly broken on

the top boundary; the spin variables on the top boundary (t = T + 1) are pinned to σ = −1

and +1 in subsystem A and B, respectively. Z(2)
M corresponds to the special case when the

subsystem A is an empty set. Therefore, the second conditional entropy is given by the excess
free energy of an Ising domain wall terminating on the edges of region A on the top boundary.

Finally, we discuss the important modification of our mapping that allows analyzing the
second KL divergence D(2). Calculation of this object involves comparing two probability
distributions (diagonal density matrices) ρ̃M,0 and ρ̃M,θ obtained from the evolution of two
distinct initial states with the same quantum circuit. This requires the computation of

µ
(2)
M,θ := tr{[ρ̃M,0ρ̃M,θ]} = Tr

{[(
I(2)
AB ⊗ C(2)

M

)
ρ̃ABM,0 ⊗ ρ̃ABM,θ

]}
. (3.40)

This equation is related to Eq. (3.29) when the subsystem A is an empty set. The average

of µ
(2)
M,θ maps to the same Ising model as Eq. (3.39) in the bulk. A nontrivial modification

arises only in the bottom boundary condition, where density matrices for two initial states
are contracted with the σ̂ tensors in the bottom layer. For product states |Ψ0⟩ = |ψ0⟩⊗N and
|Ψθ⟩ = δU(θ) |ψ0⟩⊗N , this leads to nontrivial additional weights on the bottom boundary

Wbottom = |⟨ψ0| δU(θ) |ψ0⟩|(1−σx0,1) . (3.41)

In terms of the Ising spin model description, the extra weight appears as a “magnetic field”
term on the pertubed site

Z(2)
M,θ =

∑

{σ}

e−h(1−σx0,1)
∏′

⟨σ1,σ2,σ3⟩

w̄(2)(σ1, σ2, σ3). (3.42)

Here, h = − log cos θ with cos θ ≡ | ⟨ψ0| δU(θ) |ψ0⟩ |. We also note that the top boundary
boundary condition is σx,T+1 = +1 everywhere owing to the trivial choice of A. The
generalization of this result for any pair of inhomogeneous product states, e.g. |Ψ⟩ = ⊗k |ψk⟩
is straightforward.

In the Ising model, the second KL divergence D(2) = F
(2)
M,θ − F

(2)
M with F

(2)
M,θ = − logZ(2)

M,θ

is identified as the free energy cost of applying a boundary magnetic field on the perturbed
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site. The corresponding second Fisher information is given by

F (2) = 1 − ⟨σx0,1⟩ , (3.43)

where ⟨σx0,1⟩ is the magnetization at r = (x0, 1).
The boundary magnetization ⟨σx0,1⟩ exhibits distinct behaviors in the two phases of the

Ising model. In the ferromagnetic phase (weak or sparse measurements), the top boundary
condition (σ = +1) induces a nonvanishing magnetization on the bottom boundary so
that ⟨σx0,1⟩ > 0 and F (2) < 1. In the paramagnetic phase (relatively strong or frequent
measurements), the bottom boundary magnetization vanishes in the thermodynamic limit
T → ∞. We conclude that the second Fisher information F (2) is less than unity in the
volume-law phase, increases continuously with measurement strength, and saturates, in a
nonanalytic way, to F (2) = 1 at and beyond the critical point.

Generalization to the n-th moment

We now generalize the mapping discussed in the previous section to arbitrary n ≥ 2. To this
end, consider a generic n-th moment µ

(n)
AM that involves n copies of density matrices:

µ
(n)
AM = tr [ρ̃AM,1ρ̃AM,2 · · · ρ̃AM,n] . (3.44)

All density matrices ρ̃AM,i are obtained from the same RUC with weak measurements, but
starting from a potentially different initial state of the system |Ψi⟩. Similar to the swap trick

in Sec. 3.4, µ
(n)
AM can be written as

µ
(n)
AM = Tr

[(
C(n)
A ⊗ I(n)

B ⊗ C(n)
M

)

(
ρ̃ABM,1 ⊗ ρ̃ABM,2 ⊗ · · · ⊗ ρ̃ABM,n

)]
, (3.45)

where I(n)
B is the identity operator and C(n)

X is a cyclic permutation of n copies of the Hilbert
space of subsystem X:

C(n)
X =

∑

{ik}

|in, i1, i2, · · ·, in−1⟩ ⟨i1, i2, · · ·, in| , (3.46)

where ik (k = 1, 2, · · ·, n) enumerates quantum states of X in the k-th copy. Below we omit
the subscript and simply use I(n) and C(n) to denote the identity and cyclic permutation
operators acting on n copies of an appropriate subsystem. The cyclic permutation C(n)

generalizes the swap operation C(2) between two copies. The TN representations of the
boundary contractions with C(n) and I(n) are shown in Figs. 3.5(a) and 3.5(b), respectively.

We now average µ
(n)
AM over individual random unitary gate U . Since µ

(n)
AM is an n-th order

monomial of U and U †, the joint tensor T (n) takes the form

T (n)
ab;cd ≡ Ua1c1 ⊗ U∗

b1d1
⊗ · · · ⊗ Uancn ⊗ U∗

bndn , (3.47)
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Figure 3.5: TN representations of the top boundary contractions for an n-th moment. (a)
For subsystem A and M , n pairs of indices are cyclically shifted before being contracted. (b)
For subsystem B, indices are contracted within each copy.

where we used the composite indices, e.g. a ≡ (a1, a2, · · · , an), for multiple copies. For
unitary gates drawn from the Haar measure, the average T (n) can be written as

T (n)
ab;cd =

∑

σ,τ∈Sn

w(n)
g (σ, τ)τ̂abσ̂cd, (3.48)

where the emergent spin degrees of freedom σ and τ can be any of the n! members of
the permutation group defined over n elements, Sn. The tensor σ̂ describes different ways
(permutations) to contract indices

σ̂ab =
n∏

k=1

δak,bσ(k)
. (3.49)

The coefficient w
(n)
g (σ, τ) is the Weingarten function for unitary group U(q2) that depends

only on στ−1. An exact expression for w
(n)
g is known [67, 68, 285, 199, 178, 198], and in the

limit of a large q [67], it reduces to

w(n)
g (σ, τ) =

{
1/q2n if σ = τ

o(1/q2n+1) if σ ̸= τ
. (3.50)

Analogous to the case of n = 2, the application of Eq. (3.48) to every gate in the RUC leads
to an intermediate “spin model” defined on a honeycomb lattice:

µ
(n)
AM =

∑

{σr ,τr}

W ({σr, τr}), (3.51)

where the weight W ({σr, τr}) can be evaluated by decomposing the tensor network into
smaller diagrams. In the bulk, closed diagrams associated with diagonally neighboring spin
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pairs take the value (see Appendix B.1)

w
(n)
d (σ, τ) = q#cycle(στ−1) cos2n α + q sin2n α, (3.52)

where #cycle(ξ) denotes the number of cycles in the cyclic representation of a permutation
ξ ∈ Sn

2. The top boundary contractions are equivalent to introducing an additional layer
of tensors σ̂ at time T + 1. The values of the variables σx,T+1 are fixed according to the

top boundary operator. For example, µ
(n)
AM requires σ̂x,T+1 to be the cyclic permutation and

identity operators in the subsystem A and B, respectively. At the bottom boundary, extra
weights arise from the overlap between different initial states

∏n
k=1

〈
ψσ(k),x

∣∣ψk,x

〉
at each site

x.
Integrating out τ variables leads to a spin model on a triangular lattice:

µ
(n)
AM = Z(n)

AM =
∑

{σ}

∏′

⟨σ1,σ2,σ3⟩

w̄(n)(σ1, σ2, σ3). (3.53)

Unlike the case of n = 2, the three-body weight w̄(n) may still be negative for a certain q and
α. Nevertheless, we find that for any given n, there exists a finite range of (q, α) for which
the weight is nonnegative. More specifically, we introduce κ = qn−1 cot2n(α) and show that
the weights are all positive provided q2 > n and

1

n!

(
1

1 + κ

)2

>

(
q2 + n

q2 − n

)n

− 1. (3.54)

The proof is given in Appendix B.1. For a given n, the inequality is generally satisfied when
fixing κ and considering a large q regime, where the right-hand side can be arbitrarily small.

Our spin model exhibits the Sn × Sn symmetry — the system is invariant under the
transformation σ 7→ ξ1 ◦ σ ◦ ξ2 for any pair (ξ1, ξ2) ∈ Sn × Sn. This can be already seen from

w
(n)
g and w

(n)
d , which depends only on the conjugacy class of στ−1. At a sufficiently high

temperature, e.g. π/2 − α ≪ 1, the model is in the disordered (paramagnetic) phase. As the
effective temperature is lowered by varying q and α, the system may spontaneously breaks
the symmetry and undergoes a transition into a ferromagnetic phase. In the limit q → ∞,
the ordering transition can be quantitatively investigated as the symmetry of the spin model
extends to the Potts symmetry Sn! for n ≥ 3, for which the ordering transition has been well
studied. Crucially, the phase transition point lies within the validity regime of our mapping
in Eq. (3.54).

S̃(n) and D(n) in spin model descriptions

We now present the explicit spin model description of our generalized quantities, S̃(n) and
D(n) (see Table 3.1 for a summary of results). We also discuss their qualitative behaviors in
the two different phases.

2For example, when σ = τ , στ−1 = (1)(2) · · · (n) in the cyclic representation, hence #cycle(στ−1) = n.
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The n-th generalized conditional entropy

The n-th generalized conditional entropy S̃(n) in Eq. (3.14) can be rewritten in a more
suggestive form:

S̃(n)(A|M) =
1

n− 1

(
F

(n)
AM − F

(n)
M

)
, (3.55)

where F
(n)
X ≡ − logZ(n)

X is the free energy of the classical spin model with the appropriate

boundary condition for subsystem X. Specifically, in the first term F
(n)
AM , the top boundary

variables are fixed to one of the two distinct elements of Sn – a cyclic permutation for spins
positioned inside subsystem A and an identity element for those in B. In the second term,
all variables on the top boundary are uniformly set to the identity element. Therefore, S̃(n)

corresponds to the excess free energy associated with a domain wall terminating on the top
boundary at the interfaces between regions A and B (up to a constant factor, n− 1).

The free energy cost for having a domain wall is qualitatively different in the two phases
of the spin model. In the ferromagnetic phase, the excitation of a domain wall requires an
energy proportional to its length. Pinning inhomogeneous boundary conditions results in two
ordered domains of spin variables, whose interface scales with the linear size of a subsystem.
In this phase, S̃(n) thus also grows linearly with the subsystem size, corresponding to the
volume-law entangling phase. In contrast, domain wall excitations are condensed in the
paramagnetic phase and do not cost extensive free energies. Hence, in-homogeneous boundary
conditions lead to a free energy change of at most order one, leading to the area-law scaling
of S̃(n).

It is interesting to note the close relation between the statistical mechanics interpretation of
the entanglement entropy of the time-evolving state in the circuit to holographic entanglement
entropy encoded in a random tensor network. In Ref. [253], the latter was similarly mapped to
the free energy of a domain wall in a classical spin model. The entanglement phase transition
in both cases corresponds to a ferromagnetic transition affecting a change in the scaling of
the domain wall free energy.

The n-th generalized KL divergence and Fisher information

The n-th generalized KL divergence D(n) can be rewritten as

D(n)(P0||Pθ) =
1

n− 1

(
F

(n)
M,θ − F

(n)
M

)
, (3.56)

where F
(n)
M,θ = − logZ(n)

M,θ with Z(n)
M,θ = tr ρ̃M,0ρ̃

n−1
M,θ . Similar to the case of S̃(n), D(n) also

corresponds to the free energy difference in spin models with two distinct boundary conditions.
In this case, however, the boundary conditions are identical at the top and distinguished
only at the bottom, originating from the different initial states of the n density matrices.
More specifically, in order to compute F

(n)
M,θ, we consider the system initialized in |Ψ0⟩ for

the first copy (or equivalently any one of the n copies) and in |Ψθ⟩ for the rest. Following
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our derivation in the preceding section, this leads to nontrivial weights Wbottom associated
with the contractions of σ̂ at the site being perturbed: for any σ ∈ Sn that permutes
the first copy to itself, the weight is trivial unity, and otherwise it contributes a factor
| ⟨ψ0| δU(θ) |ψ0⟩ |2 = cos2 θ to Wbottom. Among total n! permutations of Sn, (n− 1)! elements
belong to the former case (up-type) and the remaining n! − (n− 1)! elements constitute the
latter case (down-type). Hence, the bottom boundary weights can be interpreted as an effect
of a boundary “magnetic field” that distinguishes the down-type spin variables from the
up-type ones at site x0. D

(n) corresponds to the free energy cost of applying the boundary
field at site x0 up to a constant prefactor.

The qualitative behaviors of D(n) in two different phases of the spin model can be
intuitively understood by the n-th Fisher information:

F (n) =
2

n− 1

〈
m↓

x0,1

〉
, (3.57)

where ⟨m↓
x0,1

⟩ is the probability that the spin at (x0, 1) belongs to a down-type in the spin
model with open bottom boundary conditions.3 Owing to the translation symmetry of our
model (after averaging over U) and top boundary conditions, ⟨m↓

x0,1
⟩ is independent of x0,

hence we use a simpler notation ⟨m↓
1⟩ in the rest of the Chapter.

For a relatively short evolution time T (i.e., the temporal dimension of the spin system is
short), the density of down-type spins, ⟨m↓

1⟩, is smaller than its näıve statistical average:

⟨m↓
1⟩ <

n! − (n− 1)!

n!
= 1 − 1/n (3.58)

due to the effect of the symmetry-breaking top boundary conditions at t = T + 1 (see Monte
Carlo results in Appendix B.5). This memory of the top boundary conditions persists in
the ferromagnetic phase even in the long-time limit, so limT→∞⟨m↓

1⟩ < 1 − 1/n due to the
long-range order. On the other hand, in the paramagnetic phase. the state of the bottom
boundary becomes uncorrelated with the top boundary; the number of down-type spins
saturates to its simple statistical average 1 − 1/n. Therefore, through Eq. (3.57), the bulk
phase transition of the spin model manifests as a nonanalytic change in the long-time limit
of the n-th Fisher information at the critical point, which reaches its fully saturated value
F (n) = 2/n only in the paramagnetic phase. In the replica limit n→ 1, we get the saturation
value F = 2 (see Fig. 3.2).

The saturation of the Fisher information to its maximal value in the paramagnetic phase
(or equivalently area-law phase) indicates that the measurement device (ancilla qudits) obtains
all the information about the initial state, accessible from a set of local measurements. In
contrast, the saturation to a value less than its maximum in the volume-law phase implies
that some information cannot be extracted even after infinitely many measurements, owing to
the effective quantum error correcting properties of scrambling dynamics. We note that in the
special limit n→ 1, the nondecreasing nature of D(1) as a function of T can be independently
derived from the monotonicity of the relative entropy [14, 169, 251].

3We consider the open boundary condition since F (n) is obtained in the limit θ → 0.
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3.5 Phase transitions

In this section, we provide detailed analysis on the nature of the phase transitions in our
models. The phase transition points in our spin models are analytically solvable in two cases:
(1) n = 2 with an arbitrary choice q, and (2) n ≥ 2 in the limit q → ∞. The former case
is discussed in Sec. 3.5, where we utilize that the emergent 2D Ising model on a triangular
lattice is exactly solvable [82, 246]. The phase transition is described by conformal field
theory (CFT) with known critical exponents. The latter case is elaborated in Sec. 3.5, where
we show that our spin model further reduces to the n!-state standard Potts model on a square
lattice in the large q limit. The phase transition of such models can be exactly computed
using the Kramers-Wannier duality [211, 142] and belongs the first order phase transition for
n ≥ 3. Then, we perform the analytic continuation in order to identify the universality class
and extrapolate the phase transition point for the n = 1 case in Sec. 3.5. In this limit, our
model reduces to a bond percolation problem; the phase transition is described by CFT with
well-known critical exponents. In order to study the phase transition for small local Hilbert
space dimensions, we perform exact numerical simulations up to N = 30 qubits (q = 2) and
extract the critical point. We also present simulation results for the entanglement phase
transition in Rényi-k entropies in Sec. 3.5, which suggests that the phase transition point
may not depend on the Rényi order k.

Classical Ising model (n = 2 with an arbitrary q)

When n = 2, the average purity is mapped to the partition function of 2D classical Ising
model on a triangular lattice with appropriate boundary conditions. The bulk Hamiltonian
of such system in the unit of the effective temperature is

βHIsing =
∑

⟨r,r′⟩d

Jdσrσr′ +
∑

⟨r,r′⟩h

Jhσrσr′ , (3.59)

where ⟨r, r′⟩d/h represents a pair of diagonally/horizontally neighboring sites, and Jd (Jh)
is the corresponding Ising coupling strength that depends on q and α. Exact expressions
for Jd and Jh are provided in Appendix B.1. In our model, it can be shown that Jd ≤ 0 is
ferromagnetic, Jh ≥ 0 is antiferromagnetic, and they satisfy Jd +Jh ≤ 0 for arbitrary q and α.
This model is exactly solvable and exhibits a paramagnetic-to-ferromagnetic phase transition
when Jd and Jh satisfy [82, 246]:

2e2Jh = e−2Jd − e2Jd . (3.60)

From this condition, the critical measurement strength α
(2)
c can be computed for an arbitrary

q

tan4
(
α(2)
c

)
=

(q − 1)(q2 + 1)√
2 + 2q4 − 2

− 1. (3.61)
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Figure 3.6: Our spin models reduce to the standard Potts models on a square lattice in the
limit q → ∞, α → π/2 while keeping κ = qn−1 cot2n(α) fixed (see the main text). The phase

transition occurs at κ
(n)
c =

√
n!.

The universality of this phase transition is described by the Ising CFT with the critical
exponents ν = 1 and β = 1/8.

Standard Potts model (n ≥ 2 with q → ∞)

In the case n ≥ 3, our interpretation of different n-th moments as partition functions of
classical spin models is valid only for a finite range of (q, α). A sufficient condition for the
validity is provided in Eq. (3.54), which can be satisfied by a finite q for any given n. In
this section, we consider a limiting case 1/q → 0, where our spin model description becomes
valid for every n and is further simplified, allowing extracting exact phase transition points.
We believe this analysis should provide insights to the phase transitions even when 1/q ̸= 0,
where we expect small modifications to the critical measurement probability arising from
corrections in powers of 1/q.

We begin our analysis by pointing out that, in the limit q → ∞, the phase transition in
the spin model occurs close to α

(n)
c ∼ π/2 (or p

(n)
c ∼ 1), i.e., the measurement strength is

near its maximum. This can be easily checked by estimating the couplings in the spin model
as a function of q and α (see Appendix B.1 for an example of n = 2). Therefore, we consider
the limit q → ∞ together with α → π/2 while keeping κ = qn−1 cot2n(α) fixed. We will see

that our model exhibits the phase transition point at κ
(n)
c =

√
n!, which is consistent with

our limit as well as the validity criterion in Eq. (3.54).
An important consequence of the limit 1/q → 0 with a fixed κ is the emergence of the

Potts symmetry Sn!. More specifically, both weights w
(n)
d and w

(n)
g become dramatically

simplified from Eqs. (3.50) and (3.52):

w
(n)
d (σ, τ) ≈ q (1 + κδστ ) , (3.62)

w(n)
g (σ, τ) ≈ q−2nδσ,τ , (3.63)

which is invariant under any permutations of n! elements in Sn, hence the symmetry group is
Sn!. By integrating out τ variables, we obtain the three-body weight and its corresponding
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effective Hamiltonian for spin variables on a triangular lattice:

βHPotts ≈
∑

⟨r,r′⟩d

Jδσrσr′ , (3.64)

where J = − ln(κ+ 1) < 0 is a ferromagnetic coupling between diagonally neighboring sites,
and the couplings between horizontally neighboring sites vanish. Thus, our model simplifies to
the standard Potts model defined on a square lattice (Fig. 3.6), for which the phase transition
point as a function of J (in units of effective temperature) has been well studied [211, 142].

The transition point of the standard Potts model is exactly solvable using the Kramers-

Wannier duality [211, 142], which gives Jc = − log
(

1 +
√
n!
)

, or equivalently κ
(n)
c =

√
n!.

For completeness, we review the duality in Appendix B.4. This transition point corresponds
to the strength α

(n)
c and the probability p

(n)
c :

α(n)
c = arctan

((
qn−1

√
n!

)1/2n
)
, (3.65)

p(n)c = 1/


1 +

(√
n!

qn−1

)1/n

 (3.66)

for weak and projective measurements formalisms, respectively. In the case n = 2, this critical
point agrees with the exact solution in Eq. (3.61) in the large q limit. It is well known that
the n!-state Potts model exhibits a first-order phase transition for n ≥ 3 [22, 23]. A summary

of p
(n)
c as a function of q for various n is presented in Fig. 3.7.

Bond Percolation (n→ 1 and q → ∞)

Our exact results when q → ∞ in the preceding section allow one to perform the analytic
continuation to study an important limiting case n → 1, where our generalized quantities
S̃(n) and F (n) approach the averaged von Neumann entanglement entropy and the Fisher
information in measurement outcomes, respectively. Here, we compute the critical point and
identify the universality of class of the phase transition.

In the limit q → ∞, we have seen that our model reduces to the n!-state standard Potts
model on a 2D square lattice with the coupling J = − ln(κ+ 1). Taking another limit n→ 1,
the standard Potts model becomes equivalent to a bond percolation problem [134, 274, 56],
where each bond of a square lattice is “activated” with the probability

f =
κ

1 + κ
= p. (3.67)
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Figure 3.7: Phase transition points p
(n)
c as a function of q. Different curves represent various

replica index n. For n = 2, the critical point is given by the exact solution in Eq. (3.61). For

integer n ≥ 3, p
(n)
c is estimated from Eq. (3.66), which is valid for q ≫ 1. For noninteger n

and n = 1, the transition points are extracted from the analytic continuation of Eq. (3.66).
Solid lines represent the exact value (n = 2) or the results in the large q regime (n ≥ 3 and
noninteger n) while dashed lines indicate that our approximation needs not be valid as q
decreases. The red diamond indicates numerically extracted critical point pc = 0.26 ± 0.02
with q = 2 for von Neumann entanglement entropy.

The set of activated bonds percolates the network of the 2D square lattice when f exceeds the
critical point fc = 1/2. In our model, this criterion leads to limn→1 κ

(n)
c = 1, corresponding to

lim
n→1

α(n)
c = π/4, (3.68)

lim
n→1

p(n)c = 1/2. (3.69)

Thus, the universality class of the phase transition for q → ∞ belongs to that of a bond
percolation transition in the 2D square lattice. At the critical point, the 2D model can be
described by CFT with critical exponents ν = 4/3 and β = 5/36 [138, 139, 102].

A few remarks are in order. First, while the percolation model has been discussed in
Ref. [239], we emphasize that the origin of the model in the present work is different. In
Ref. [239], the model has been adapted primarily to explain the phase transition in the
Rényi-0 entropy, relying on simple geometric properties of tensor network representations
of many-body wave functions. In particular, the probability of projective measurement in
RUCs has been directly identified with the activation probability in the percolation problem.
In this Chapter, however, the percolation problem arises from the analytic continuation
of emergent effective spin models that we obtain only after averaging over unitary gates
and weak measurements. More importantly, we predict a percolation transition in the von
Neumann entanglement entropy only in the limit q → ∞ (i.e., large local dimension). As
discussed in Ref. [253], the 1/q corrections give rise to a reduction of the Potts symmetry
(Sn! → Sn × Sn) and constitute relevant perturbations at the percolation fixed point. It is an
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Figure 3.8: Exact numerical simulations for the entanglement phase transition in a RUC
with probabilistic projective measurements. The horizontal and vertical axes represent the
measurement probability p and the half-chain von Neumann entanglement entropy S for q = 2
and various system sizes up to N = 24. The inset shows the collapse of data from finite-size
scaling analysis based on the scaling formula S(p,N)−S(pc, N) = g((p− pc)N

1/ν) [239] with
a specific choice pc = 0.27 and ν = 2.9. For the scaling analysis, we use the results from
system sizes up to N = 30 with q = 2 and a smaller window of p ∈ [0.2, 0.35].

interesting direction for future research to characterize the critical point in a system of qudits
with a finite number of internal states and in particular qubits with q = 2. Second, in the
previous studies [163, 162, 65], the critical point and critical exponents of the entanglement
phase transition in the Clifford circuit are also obtained from numerics. However, the critical
point and the universality extracted from analytic continuation here may not be applied to
the Clifford circuit owing to the fact that the Clifford group does not form a unitary t-design
for t ≥ 4 [264]. Thus, Eq. (3.66) is not valid for the phase transition in the Clifford circuit
when n ≥ 4. Finally, we note that, in a strict sense, our analytic continuation is valid only
when q → ∞ since our analytic expressions for α

(n)
c (or p

(n)
c ) are exact only in this limit.

Surprisingly, we find that the resultant critical point does not depend on q in its leading
order. A careful quantitative study of potential 1/q corrections may be an interesting future
direction.

Exact Numerical Simulations

In order to see the behavior of the phase transition with a small value of q, we perform exact
numerical simulations of a RUC with projective measurements for q = 2 (qubits). We are able
to obtain exact results for up to N = 30 spins by using a customized algorithm that leverages
tensor representations of many-body wave functions, (see Appendix B.6 for details). Based
on finite size scaling analysis for 10 ≤ N ≤ 30, we extract pc = 0.26 ± 0.02 for von Neumann
entropy, consistent with previous numerical results up to N = 24 qubits [239] (Fig. 3.8). The
extracted critical point seems to deviate from our analytic prediction for q → ∞ limit in
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Figure 3.9: Critical measurement probabilities pc for different orders k of Rényi entropy
fitted from exact numerical simulations. The von Neumann entropy corresponds to k = 1.
Red diamonds represent pc extracted from finite-size scaling analysis using the results from
exact numerical simulation for q = 2 up to N = 30 and p ∈ [0.2, 0.35]. Error bars are
estimated from statistical fluctuations of our scaling analysis based on the bootstrapping
method and may not represent the accuracy to their true value (see Appendix B.6). The
dash-dotted line shows the analytic prediction pc = 1/2 in the large q limit as well as the
critical point for Rényi-0 entropy based on the percolation in the unitary network [239].

Eq. (3.68), which indicates that a significant 1/q correction is present.
We note that the replica limit introduced in the preceding sections is tailored for von Neu-

mann entropy. For many practical applications, it is also important to understand the
behaviors of Rényi entropies of order k ≠ 1. In particular, it is well known that quantum
states in 1D with area-law Rényi-k entanglement entropy with k < 1 can be efficiently simu-
lated by using matrix product state representations [256, 228]. Therefore, the entanglement
phase transition in Rényi-k entropy with k < 1 is directly related to the classical simulability
of quantum dynamics.

With this motivation in mind, we numerically study the phase transitions in Rényi-k
entropy for various k ranging from 0.2 to 5 and extract critical measurement probabilities.
The results are summarized in Fig. 3.9. Interestingly, pc does not exhibit a strong dependence
on the order k. This suggests that phase transitions for different Rényi entropies (k > 0)
occur simultaneously and that the dynamics in the area-law phase for von Neumann entropy
already implies its simulability using a classical algorithm.

3.6 Absence of phase transition for unrestricted

measurements

In previous sections, we focused on the RUC with simple weak measurements, in which the
ancilla qudits are measured only in their local computational basis. In this section, we lift
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this constraint, allowing measurements of any complete set of observables (positive-operator
valued measure), which could be arbitrarily nonlocal. Thus, we must now consider the full
quantum density matrix of the ancilla qudits ρM without applying the dephasing channel, i.e.,
without projecting to its diagonal elements in the computational basis. With the full density
matrix in hand, we can in principle apply, for example, an arbitrary unitary V to the entire
set of NT ancilla qudits before projecting them in the computational basis. By appropriately
choosing V , this setup allows one to extract more information about the system including
nonlocal correlations (in both space and time) hidden among multiple system qudits. We
show that there is no phase transition in the presence of such unrestricted (fully quantum)
measurements.

The absence of phase transition under these conditions can be understood from two
complementary perspectives. The first perspective is based on the insights of Chapter 2,
namely that the volume-law phase remains stable against sufficiently sparse measurements
owing to the natural error correction achieved by the information scrambling of unitary
gates. The scrambling transforms information into a highly nonlocal form, protecting the
information from local measurements. However, if the measurements are also arbitrarily
nonlocal, then information is no longer protected. The scrambling becomes meaningless, and
the volume-law phase immediately destabilizes.

Another perspective on the problem is afforded by considering the entanglement entropy
between the system and ancilla qudits. Through the coupling gates R̂α, the entanglement
entropy generally grows linearly in time as S[ρS] ∼ pNT log q and is expected to saturate to
its maximal possible value N log q, after a time T ∗ ∼ 1/p. In this situation, as we show in
Sec. 3.6 below, the system qudits reach a steady state (at time T ≫ T ∗), which retains no
information about their initial state. Therefore, given the unitarity of the combined system,
all the information must have gone into the ancilla qudits [231]. For this reason, we expect
no phase transition: the ancilla qudits will eventually attain the full information about the
initial state of the system, regardless of the measurement strength.

It is interesting to see how the presence of unrestricted measurements modifies the mapping
to the classical spin models. Below, we show that removing the constraint imposed by the
dephasing channel results in classical spin models that do not respect the permutation
symmetry nor the Potts symmetry when q → ∞, and consequently do not exhibit an ordering
phase transition.

Dynamics of quantum relative entropy of ancilla qudits

To characterize the amount of information stored in the full density matrix of the measurement
device (ancilla qudits), we generalize the classical KL divergence to the quantum relative
entropy

DQ(θ, T ) ≡ tr ρM,0 (log ρM,0 − log ρM,θ). (3.70)
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Here, there is no dephasing of the ancilla qubits. From the quantum relative entropy, one can
readily compute the Kubo-Mori-Bogoliubov (KMB) quantum Fisher information defined as

FKMB ≡ ∂2θDQ(θ, T )
∣∣∣
θ=0

, (3.71)

which is an attainable upper bound to the (conventional) Fisher information, optimized
over all possible choices of positive-operator valued measure [251, 116, 203, 113, 181] (see
Appendix B.7 for a review). Thus, DQ is an appropriate quantum generalization of DKL.

In order to analyze these quantities in the classical spin model description, we again use
the replica method. To this end, we introduce the n-th quantum relative entropy and the
corresponding n-th KMB Fisher information:

D
(n)
Q (θ, T ) ≡ 1

1 − n
log

(
tr ρM,0ρ

n−1
M,θ

tr ρnM,0

)
, (3.72)

F (n)
KMB ≡ ∂2θD

(n)
Q (θ, T )

∣∣∣
θ=0

, (3.73)

which reduce to DQ and FKMB, respectively, in the limit n→ 1.
The mapping to classical spin models described in Sec. 3.4 generalizes to this case in a

straightforward way. The n-th moment ν
(n)
M = tr[ρM,1ρM,2 · · · ρM,n] is mapped to the partition

function of a modified classical spin model after averaging over unitaries. As before, in the
limit θ2 ≪ 1, the leading order contribution to D

(n)
Q can be interpreted as the density of

down-type spins in the bottom layer ⟨m↓
1⟩ up to a constant prefactor. The only modification to

our spin model originates from the absence of the dephasing channels Nϕ, which modifies the

two-body Boltzmann weight w
(n)
d (σ, τ). Crucially, this modification breaks the permutation

symmetry (see Appendix B.2). For this reason, the ferromagnetic to paramagnetic phase
transition cannot exist.

In order to further develop the intuition, we focus on the second quantum relative entropy
D

(2)
Q as a specific example, and explicitly demonstrate the absence of the phase transition

verified with numerical simulations. Similar to the discussion in Sec. 3.4, the second moment
ν
(2)
M is mapped to the partition function of classical Ising model on a triangular lattice (see

Appendix B.2 for detailed derivations). In this case, the down-type spin is identified with a
spin with σ = −1, hence ⟨m↓

1⟩ = ⟨m−
1 ⟩.

Crucially, the Ising symmetry is explicitly broken: the three-body weights v̄(2)(σ1, σ2, σ3)
are larger when the majority of spins are σ = −1 (rather than σ = +1), i.e., v̄(2)(+,−,−) =
v̄(2)(−,+,−) > v̄(2)(+,−,+) = v̄(2)(−,+,+) and v̄(2)(−,−,−) > v̄(2)(+,+,+) for an ar-
bitrary α > 0. These imbalances in weights prefer spin variables σ = −1 over σ = +1.
Furthermore, v̄(2)(−,−,+) = 0 independent of α while v̄(2)(+,+,−) > 0. This implies that if
σ = −1 at every position at a certain time t∗, then all the spins at t < t∗ must also be in the
state σ = −1. This constraint originates from the unitarity of the dynamics of system and
ancilla qudits [183] (see also Appendix B.3). Therefore, we expect ⟨m−

1 ⟩ to saturate to unity
in the limit T → ∞. Numerics provided in Fig. 3.10 verifies this statement.
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Figure 3.10: The density of spins with σ = −1 in bottom layer, ⟨m−
1 ⟩, as a function of

time T when the full density matrix of ancilla qudits is retained, i.e., without projection to
diagonal elements. Different curves represent various measurement strengths α from 0.02
to 0.16 given in the legend. The data collapse shown in the inset clearly demonstrates the
absence of phase transition. The time dependence of ⟨m−

1 ⟩ for all measurement strengths
collapses onto a single curve when plotted as a function of T sin2 α. The results are obtained
from exact numerical simulation using the transfer matrix method with N = 20.

Figure 3.10 presents the exact simulation of ⟨m−
1 ⟩ as a function of time T using the transfer

matrix method for various measurement strengths α from 0.02 to 0.16. ⟨m−
1 ⟩ remains small

for a long time and rapidly increases to unity. In the inset, we obtain a collapse of curves for
various measurement strengths when ⟨m−

1 ⟩ is plotted as a function of rescaled time T sin2 α.
The scaling suggests that ⟨m−

1 ⟩ approaches close to the saturation value at a timescale T ∗,
when every system qudit is measured once on average, i.e., T ∗ sin2 α = T ∗p = O(1). Note that
this timescale T ∗ coincides with the timescale at which the system qudits achieve maximal
entanglement with the ancilla qudits as estimated earlier in this section.

The dynamics of ⟨m−
1 ⟩ is reminiscent of the information dynamics in the Hayden-Preskill

protocol in black holes [114]. The initial state of system qudits (namely, a newly born black
hole) encodes Alice’s diary, and the ancilla qudits act as the Hawking radiation collected by an
external observer, Bob. Bob cannot decode Alice’s diary until the black hole emits sufficiently
large amount of Hawking radiations such that the remaining black hole is maximally entangled
with the early Hawking radiation, at which point Bob suddenly becomes able to decode the
diary by collecting a few more bits of radiation.

Dynamics of the system qudits

In the preceding section, we have shown the absence of a phase transition based on the
amount of information accessible to ancilla qudits when the measurement basis is unrestricted
and potentially nonlocal. Here, we explore the complementary perspective by considering
the reduced density matrix of the system qudits. We will see that the system density matrix
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evolves to a maximally mixed steady state independent of its initial state for any α > 0 [163,
239]. This observation, together with results in preceding sections, provides a clear intuitive
understanding regarding the flow of quantum information: all information about the initial
state of the system is transferred to ancilla qudits at a sufficiently long time for α > 0.
Furthermore, we point out that the presence or the absence of the phase transition cannot
be unambiguously answered by the reduced density matrix of the system alone because it
does not depend on the choice of measurement basis for ancilla qudits. One of the most
important implications of our results in this section is that the phase transition is inherent to
the data collected on individual quantum trajectories of the system, and it goes away when
the quantum state of the system is averaged over those trajectories.

We consider the quantum relative entropy D̄Q ≡ tr ρS,0(log ρS,0 − log ρS,θ) between the
reduced density matrices of the system originating from two close initial states |Ψ0⟩ and
|Ψθ⟩. D̄Q can be similarly analyzed using the spin model description, and we show this
quantity always decays to zero in the limit T → ∞. As before, we define the replicated

objects D̄
(n)
Q ≡ (log tr ρS,0ρ

n−1
S,θ − log tr ρnS,0)/(1 − n), which is proportional to the number of

down-type spins in the bottom layer. An important modification arises from the top boundary
conditions: the additional spin degrees of freedom for the system take the value C(n) (i.e.,
σx,T+1 = C(n)) everywhere, while n copies of ancilla qudits are contracted by the identity

operator I(n) (in contrast to C(n) for D
(n)
Q ). This leads to modified Boltzmann weights. Here,

we focus on the case of n = 2. Instead of favoring C(2), the spin model now favors I(2) in
the bulk for an arbitrary α > 0. Consequently, all the spins at the bottom boundary are
polarized to I(2), leading to a vanishing density of down-type spins as T → ∞.

The vanishing D̄
(2)
Q implies that the density matrix of system qudits evolves to an identical

steady state regardless of its initial state. The steady state is indeed maximally mixed,
which can be shown by considering one of the initial states being the maximally mixed state:
the bottom boundary condition is modified in a nonperturbative way, but our argument
above still holds. Therefore, D̄

(n)
Q (n ≥ 2) and D̄Q decay to zero as T → ∞. From the

information theoretical perspective, the system loses the quantum information of its initial
state. Since the system and ancilla qudits combined undergo a closed unitary time evolution,
one can conclude that the full quantum information about the initial state is recoverable
from the ancilla qudits [231]. Finally, we note that the spin model descriptions of DQ and
D̄Q are identical up to the exchange of C(n) and I(n) in boundary conditions. As a result, the
saturation of DQ and the decay of D̄Q occur exactly on the same timescale T ∗.

3.7 Discussion and outlook

Relation to purification phase transition

Recently, Ref. [104] has pointed out that the entanglement phase transition occurs concurrently
with the change in the purification dynamics of an initially mixed state. More specifically,
Ref. [104] considers the entropy of an initially maximally mixed state undergoing a RUC with
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+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit> +

<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>

+
<latexit sha1_base64="4/4xFke1KIsTpGNgO1S9uME7bac=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMQEMJuFPQY8OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38399hMqzWP5YCYJ+hEdSh5yRo2VGpf9YsmtuAuQdeJlpAQZ6v3iV28QszRCaZigWnc9NzH+lCrDmcBZoZdqTCgb0yF2LZU0Qu1PF4fOyIVVBiSMlS1pyEL9PTGlkdaTKLCdETUjverNxf+8bmrCW3/KZZIalGy5KEwFMTGZf00GXCEzYmIJZYrbWwkbUUWZsdkUbAje6svrpFWteFeVauO6VCtnceThDM6hDB7cQA3uoQ5NYIDwDK/w5jw6L86787FszTnZzCn8gfP5A2sBjJk=</latexit>
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Figure 3.11: The different signatures of the entanglement phase transition as they manifest
in the classical spin model descriptions. For simplicity, we present the descriptions in terms
of the Ising spin model with n = 2. Left and right columns correspond to the ferromagnetic
(volume-law) and paramagnetic (area-law) phases. (a) and (b) Average entanglement entropy
of a subsystem A is related to the excess free energy of a domain wall (red solid line)
terminating at the edges of A on the top boundary. (c) and (d) Fisher information is related
to the average magnetization density at the bottom (red dotted box), via Eq. (3.57), when
the top boundary is fixed at σx,T+1 = +1. (e) and (f) Purification of a mixed state evolution
(or equivalently the average entropy of the system in steady states) is related to the excess
free energy of a domain wall running across the entire system (red solid line).

projective measurements: when p > pc the quantum trajectories of the system density matrix
rapidly approach pure states, while for p < pc the system remains in a mixed state with a
finite entropy density for an exponentially long time in its system size. Based on numerical
simulations of 1D qubit chains evolved under Clifford gates and projective measurements,
it has been observed that the critical measurement probability of the purification phase
transition equals that of the entanglement phase transition with high accuracy [104].

Using our mapping to a series of spin models, we can show that the purification phase
transition is indeed identical to the entanglement phase transition for Haar random unitary
circuits with projective or weak measurements. As a measure of the purity, we consider the
von Neuman entropy of the full system. To this end, we consider the series of generalized
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conditional entropies S̃
(n)
mix(A|M), with A now identified with the entire system and the

subscript ‘mix’ indicates that the initial state is maximally mixed. As before, the special
features of S̃

(n)
mix(A|M) are enacted through bottom and top boundary conditions. For the spins

in the bottom layer, contraction with the maximally mixed initial state ρ⊗n
max = ( 1

qn
I(n))⊗N can

be accounted by introducing additional spins at t = 0 with fixed value σx,0 = I(n) (identity
permutation). In this case, since the subsystem A covers the entire system (we are calculating
the entropy of the whole system), the top boundary conditions are also homogenous. Similar
to the discussion in Sec. 3.4, the conditional entropy now corresponds to the difference between
a configuration with all top spins fixed to C(n) (cyclic permutation) and one with all of them
in the I(n) (identity permutation), while the bottom boundary condition is uniformly I(n).
In the paramagnetic (area-law) phase, such free energy cost is of order unity independent
of the system size. This implies a purified phase. In the ferromagnetic (volume-law) phase,
the excess free energy of a domain wall traversing the the entire system scales as ∼ N . This
corresponds to the mixed phase with total entropy proportional to volume. The spin model
descriptions of the subsystem entanglement entropy, the Fisher information, and the steady
state entropy for a mixed initial state are summarized in Fig. 3.11 for n = 2.

Experimental considerations

There are several potential experimental platforms to investigate the phase transition, includ-
ing superconducting quantum circuits, trapped ions and neutral atoms, and ultracold atomic
systems [29, 281, 191, 110, 51, 174]. For theoretical convenience, we have focused on the
entanglement phase transition in a circuit of random unitary gates. However, we expect that
this is not crucial and a system undergoing a chaotic hamiltonian evolution with measurements
would also exhibit a similar phase transition. In experiments, the projective measurements
can be directly implemented when quantum nondemolition (QND) measurements are possible.
Alternatively, one can introduce a set of ancilla qudits coupled to a system, postponing all
measurements to the end of each experimental run of quantum dynamics.

For experimental observations of the phase transition, the biggest challenge in our view
lies in identifying realistic observables that detect the phase transition. As we discussed in the
introduction, the direct measurement of the (conditional) entanglement entropy is extremely
challenging, as it requires a large number of experimental repetitions that scales exponentially
with the value of the entropy. This exponential overhead is fundamental, limited by the
complexity of estimating an entropy [202, 161]. Furthermore, for quantum dynamics with
projective measurements, there are additional multiplicative overhead scaling exponentially
with ∼ pNT , associated with the postselection of different measurement outcomes. This
is because the entanglement entropy needs to be evaluated for individual trajectory of an
open system dynamics, and, in order to accumulate sufficient statistics for a single trajectory,
experiments need to be repeated over at least ∼ qpNT times.4

4For this conservative estimate, we assumed that different measurement outcomes are not correlated as
expected in RUCs.
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The transition in the KL divergence introduced in Sec. 3.3 can partially alleviate the expo-
nential overhead since its detection only requires a number of samples sufficient to discriminate
two probability distributions without any postselections and/or entanglement measurements.
While precisely computing the KL divergence in general still requires exponentially many
samples, we note that one can utilize other empirical methods such as Kolmogorov-Smirnov
test [73] or evaluating an estimator for cross entropy [35]. It remains open if our phase
transition can be faithfully identified by any local observables, or by interferometric methods.

Another important consideration is the effect of imperfections in experiments. Common
sources of the imperfections include imprecise implementations of unitary evolutions, and
dephasing or depolarization induced by uncontrolled noise. In general, these types of errors can
be formulated as a quantum channel. Following the discussion in Sec. 3.6 and Appendix B.2,
it is straightforward to see that an uncontrolled quantum channel generally leads to an
explicit breaking of the permutation symmetry in the spin model description and hinders the
observation of a sharp phase transition. More specifically, for a system of N qudits evolved
for T time steps, the effects of explicit symmetry-breaking perturbations (experimental
imperfections) become significant when ηNT ≳ O(N), where η is the effective strength of
perturbations for a single qudit per time step obtained in the spin model description. Under
this condition, the strength of symmetry-breaking perturbations arising from experimental
imperfections exceeds that of boundary conditions discussed in Sec. 3.4.

Finally, we note that the effects of experimental imperfections can be relatively more
significant near the phase transition point. In particular, the susceptibility to symmetry-
breaking perturbations is significantly enhanced near the phase transition in our spin model
descriptions with n = 2 or n→ 1. This feature suggests a novel approach to characterize the
amount of experimental imperfections by studying the phase transition or the lack thereof in
quantum systems of finite sizes.

Implications to the simulability of open system dynamics

Quantum dynamics with area-law scaling entanglement entropy can be often simulated
using classical computers. In particular, many-body wave functions of 1D systems can
be efficiently represented by MPS. Therefore, the entanglement phase transition described
in this work may be also interpreted as a phase transition in the simulability of an open
system dynamics. Such interpretation, however, requires additional considerations. For
simulations of quantum dynamics, it is necessary that expectation values of observables
can be approximated within a given accuracy using an MPS with the bond dimension that
scales polynomially in the system size. While this is guaranteed from area-law scaling
Rényi-k entropies with k < 1 [256, 228], it is not necessarily the case for quantum states
with area-law scaling von Neumann or Rényi entropies with k ≥ 1. This is because, under
certain circumstances (see Ref. [228] for examples), small Schmidt coefficients in the tail of an
entanglement spectrum contribute significantly to evaluating an observable. In many physical
quantum states, however, the entanglement spectra often follow well-known distributions,
such as the Boltzmann distribution [75, 241, 219, 136, 188, 2], and an area-law scaling



CHAPTER 3. STATISTICAL MECHANICAL MODELS FOR RANDOM UNITARY
CIRCUITS WITH MEASUREMENTS 60

von Neumann or Rényi-k entropy with k > 1 already provides pragmatic criteria for classical
simulability. Our numerical simulation results in Sec. 3.5 suggest that the phase transition in
von Neumann entropy is indeed accompanied by transitions in Rényi-k entropies with k > 0.
More quantitative analysis of the entanglement spectra of quantum states resulting from
chaotic dynamics and projective measurements would be an interesting future direction.

We emphasize that while the area-law scaling entanglement is a sufficient condition for
efficient simulations, it is not necessary. In particular, we have seen in Sec. 3.6 that the
phase transition (or its existence) sensitively depends on the type of information extracted
by the measurements. By choosing a different measurement basis (nonlocal or quasilocal), it
may be possible to modify the effective phase transition point such that quantum states in
typical trajectories exhibit area-law scaling of entanglement even for p less than its critical
value based on näıve local projections. Thus, our result does not rule out the possibility that
the volume-law phase can also be efficiently simulated by appropriately sampling different
trajectories.

Outlook

Our work opens several new directions. We proposed the KL divergence as a new measure
to detect the entanglement phase transition. One intriguing future direction is to find local
observables that faithfully and efficiently detect the phase transition. In case such observables
do not exist, designing an interferometric method to detect the phase transition or providing
a fundamental complexity bound on the hardness of observing the transition would be
interesting.

Another intriguing direction is to establish quantitative connections between quantum
chaos and the entanglement phase transition. The analyses in Sec. 3.6 and Chapter 2 indicate
that the stability of the volume-law entangling phase is intimately related to the effective
quantum error corrections arising from information scrambling, which is a generic feature of
chaotic many-body dynamics. Quantifying the rate of information scrambling, for instance,
by the critical probability or the rate of quasilocal projective measurements may provide
new insight to quantum chaos from the perspective of information theory. Indeed, it was
previously demonstrated that noninteracting particles or nonscrambling dynamics of Bell
pairs cannot exhibit stable volume-law entangled phases, i.e., pc = 0 [55, 59]. It remains open
whether or not the phase transition can occur in nontrivial integrable systems such as Bethe
ansatz solvable models or strongly disordered systems in many-body localized phases [244,
188, 2]. Alternatively, one may characterize quantum chaos from the Kolmogorov-Sinai
entropy [9, 69] of measurement outcomes, which has been widely used as a diagnostic of
chaotic dynamics in classical settings.

Finally, our mapping technique in Sec. 3.4 may provide a promising framework to
analyze recently proposed quantum supremacy test protocols [35, 38]. We expect that,
using classical spin model descriptions, one can efficiently evaluate the average discrepancy
between sampling distributions from an ideal RUC and from its experimental realization as a
function of the degree of various imperfections. Such analysis would provide an estimate to
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the maximum amount of imperfections that are tolerable to demonstrate quantum supremacy
under reasonable conditions [38], or allow characterizing near-term quantum devices [29, 281,
191, 110, 51].
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Chapter 4

Symmetry enriched phases of quantum
circuits

4.1 Introduction

Experiments with quantum circuits designed as platforms for quantum information processing
have recently shown remarkable advances and present a new class of many body systems [153,
15, 282]. Generic quantum circuits consist of two distinct components: unitary evolution that
generates entanglement and scrambles information and measurements or couplings to a noisy
environment that irreversibly reveal or destroy the encoded information. The interplay of
these components can lead to novel types of emergent phenomena, which bear on the circuit’s
capacity to offer a computational advantage over classical devices [15, 282].

A case in point is the newly discovered phase transition in the dynamics of unitary circuits
subject to local measurements. As the rate of measurements exceeds a certain threshold, the
steady state of the circuit changes from a highly entangled volume-law state to an area-law
state [239, 163, 59]. The establishment of a low entanglement state at high measurement rates
can be viewed in terms of the standard picture of quantum collapse of the wave function due
to the repeated local measurements. On the other hand, the essential mechanism that protects
the wave function from collapse at low measurement rates is understood from the viewpoint
of quantum error correction: generic unitary gates scramble quantum information and encode
it in nonlocal degrees of freedom, thereby affording partial protection of information from the
deleterious effects of measurements. Increasing the measurement rate degrades this encoding
and reduces the capacity of the dynamics to keep information, the so-called quantum channel
capacity, until it vanishes at the phase transition point [65, 104, 85, 127].

In his famous essay “More is Different”, Anderson remarked that “it is only slightly
overstating the case to say that physics is the study of symmetry” [12]. So, it may not be too
surprising that the measurement-induced phase transition (MIPT) in the entanglement entropy
has an appealing theoretical description in terms of spontaneously broken symmetry [18, 130,
185]. What is somewhat unconventional, however, is that the symmetry in question is not a
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physical symmetry of the circuit elements, but is rather a consequence of the ensemble of
quantum states that the circuit generates at its output.

Each member state in this circuit ensemble corresponds to a particular sequence, or
history, of measurement outcomes and appears with probability assigned by the Born rules.
The symmetry arises because distinct features of the ensemble states can be seen only in
nonlinear moments of the density matrix, like the entanglement entropy or fluctuations of
observables between the different histories, while simple averages over observables give a
trivial result. The time dependence of these moments can be expressed through the evolution
of n > 1 identical copies of the density matrix. Such dynamics, generated by unitary gates
and measurements, has a Sn symmetry to permutation among n forward and, separately, n
backward propagating branches (i.e. both ket and bra wave functions). This is the symmetry,
which is spontaneously broken in the MIPT. We note that the independent left and right
replica symmetries arise from the need to describe a quantum state using a density matrix
rather than a probability distribution. This is a crucial distinction from the replica symmetry
breaking in classical spin glasses. We make further remarks on this point in the discussion
section.

A systematic description of the MIPT has been obtained by mapping the circuit with Haar
random unitary gates and measurements to a statistical mechanics model with (Sn×Sn)⋊Z2

symmetry [115, 183, 253, 283, 18, 130, 185]. The extra Z2 symmetry is inherited from a
symmetry of the time evolution to hermitian conjugation of all copies of the density matrix.
In these studies, the random unitary gates were assumed to be uniformly distributed over
the Haar measure. With the purpose of understanding more structured circuits, it is natural
to ask what other phases may arise if physical symmetries or other constraints are imposed
on it.

In this Chapter we elucidate how physical symmetries of the circuit elements combine
with the intrinsic dynamical symmetries discussed above to determine the classification of
the steady state phases. In the time evolution of n copies of the density matrix the physical
circuit symmetry G is replicated to the n forward and n backward propagating branches.
Conjugating a group element acting in one copy by a permutation in Sn transforms it to
the corresponding group element in another copy. Thus, the dynamics of n copies has the
enlarged symmetry G(n) = [(G⊗n ⋊Sn)× (G⊗n ⋊Sn)]⋊ZH

2 . Here ZH
2 acts like an anti-unitary

time-reversal symmetry. We shall see that for broad classes of circuit architecture the actual
effective symmetry that determines the phase structure can be simplified. To substantiate
the classification of phases, we develop an exact map of the dynamics of replicated density
matrices in a broad class of quantum circuits to the imaginary time evolution under an
effective quantum Hamiltonian that inherits the symmetry G(n) (see Section 4.2). The possible
steady states of the circuit ensemble correspond to the ground state phases of this effective
Hamiltonian, which thus transcend a naive classification by the physical circuit symmetries.
Note that having a volume-law state in the circuit does not imply that the corresponding
effective Hamiltonian has a ground state with volume-law entanglement. Rather the volume-
law entanglement of the circuit state translates to a certain boundary operator, which roughly
speaking measures the free energy of a spacetime domain wall.
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We offer an information theoretic interpretation of the phases of the circuit ensemble as
distinct patterns of information encoding in the circuit, which remains well-defined in the
replica limit n→ 1. Nonetheless, we argue and provide numerical evidence that for certain
purposes a model with n = 2 replicas represents the true effective symmetries of the system
and thus gives qualitatively correct predictions.

We demonstrate and explore these ideas on two examples representing different classes of
circuits. The first is a circuit with Z2 symmetry operating on a chain of qubits. The second
example is a Gaussian fermionic circuit, which conserves only the Z2 fermion parity. For the
rest of this introduction, we provide a brief overview of the main results and insights obtained
from studying the two examples and then lay out the general organization of the Chapter.

Overview: quantum circuits with Z2 symmetry

In Section 4.3, we investigate the phases of quantum circuits invariant under a global Z2

symmetry generated by the parity operator π̂ =
∏

j Zj . Thus, the single-qubit measurements
of Zi or two-qubit measurements of XiXi+1, which commute with π̂ are allowed, while
single-qubit measurements of Xi are not. Similarly, all unitary gates must also commute with
π̂.

It was previously demonstrated, based on a specific one-dimensional model [224], that
circuits with Z2 symmetry can exhibit at least two distinct area-law entangled phases in
which the Z2 symmetry is either preserved or spontaneously broken. The former is stabilized
by on-site measurements of Zi, while the latter is driven by measurements of XiXi+1. The
existence of a broken symmetry state in this system agrees with the intuition that area-law
entangled states are akin to quantum ground states, which may spontaneously break a
physical Z2 symmetry in one dimension.

One of our main results, however, is that circuits with Z2 symmetry generally admit a
much richer phase structure derived from the enlarged dynamical symmetry. This includes
multiple area-law and volume-law phases, characterized by distinct broken symmetry order
parameters, which could not have been established in presence of the circuit symmetry alone.
Especially unique to this far-from-equilibrium setting is the establishment of states with
volume-law entanglement entropy, which nonetheless exhibit spontaneously broken circuit
symmetries in a one-dimensional system. In the same vein, we point out the possibility
of establishing a new type of symmetry protected topological (SPT) phase [208, 62] as a
steady state of the quantum circuit evolution, where the protecting symmetry is the enlarged
dynamical symmetry rather than the physical circuit symmetry. In our case, the Z2 circuit
symmetry alone would not be sufficient to support an SPT phase as a ground state. However,
such a state could be protected by a Z2 × Z2 subgroup of the enlarged dynamical symmetry.
Here the second Z2 symmetry originates from the permutation symmetry of forward branches.

We consider a number of physical probes that can distinguish between the symmetry
enriched phases of the circuit. A useful probe of broken symmetry in such a system, which
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was also used in Ref. [224], is the long distance Edwards-Anderson (EA) correlation function

χEA(i, j) =
∑

m

pm⟨XiXj⟩2. (4.1)

Here the sum is over the quantum trajectories of the circuit wave function, corresponding to
different sequences m of measurement outcomes obtained with probabilities pm. The overline
represents averaging over different unitary gates from an ensemble of quantum circuits. In the
conclusions, we will discuss the intriguing connection between this problem and the theory of
spin glasses pioneered by Edwards and Anderson, who also introduced this order parameter
in the 1970s [81].

Another useful diagnostic of symmetry is the subsystem parity variance

Π(A) =
∑

m

pm⟨
∏

j∈A

Zj⟩2, (4.2)

expected to be nondecaying in the limit of a large subsystem size when the state of typical
trajectories has a well-defined parity. At a superficial level, this probe appears to be a
“disorder parameter” dual to the EA correlations. However, we shall see that this duality does
not hold in the enlarged symmetry space, thus allowing phases with coexisting long-range
EA correlations and nondecaying parity variance.

Complementary to these physical observables, we also consider information theoretic
quantities, such as Fisher information obtained by measurement outcomes about specific
perturbations to the initial state. Such information theoretic probes allow to characterize the
phases in terms of the flow of information in the circuit rather than steady state equal time
properties such as χEA or Π(A).

A crucial point is that all of these diagnostics must be defined as second (or even
higher) moments in the ensemble of trajectories. For example, a simple average of order
parameter correlation functions, i.e. ⟨XiXj⟩ vanishes because the broken symmetry state is
characterized by random X orientations in a given trajectory due to random measurement
outcomes. Evaluating second moments necessarily involves the dynamics of two replica copies,
which should therefore be viewed as fundamental to the physics of these systems and not
merely an averaging trick. Thus, we devote much of our attention to classifying phases in a
model with two replicas (n = 2).

We note, however, that to ensure proper averaging over the ensemble one needs to invoke
auxiliary replicas and ultimately take the the replica limit n→ 1. While we do not explicitly
construct models for n > 2 to facilitate such an extrapolation, we show that, apart from
the coexistence phases that feature both nonvanishing χEA and Π(A), the phases predicted
for n = 2 have natural extensions to higher replicas. Furthermore, when two phases can
be distinguished by physical diagnostics in the two-replica model, this distinction holds for
n ≥ 2 and is thus expected to extrapolate to the replica limit.

In Section 4.3, we provide numerical evidence for the phase structure predicted by the
two-replica effective theory. The model we consider consists of two chains where chain 1 is
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unrestricted by symmetry, while operations on chain 2 obey a global Z2 symmetry. In other
words, only qubits of chain 2 carry a global Z2 charge. We show that the volume-law phase
in this system can host more than two distinct broken symmetry phases, confirming that
the symmetry dictating the phase structure is larger than the Z2 circuit symmetry. The
coexistence of long-range quantum orders with volume-law entanglement presents a sharp
contrast with thermal states, which exclude such order in one-dimensional systems.

The fact that the volume-law phase can exhibit long-range order naturally raises the
question if topological states and the ensuing edge modes can also remain protected in
volume-law entangled steady states of quantum circuits. The results of the two-chain model
suggest an affirmative answer. We could replace the qubits in chain 2 with Majorana fermions
conserving the Z2 fermion parity (still coupled to the qubits in chain 1). Under a Jordan-
Wigner transformation this model maps to the one we computed numerically. The broken
symmetry phase of the qubit circuit translates to a topological phase with edge zero modes
and volume-law entanglement in the fermionic model.

Overview: Gaussian fermionic circuits

In Section 4.4 we investigate Gaussian fermionic circuits with unitary gates and measurements
that only conserve the Z2 fermion parity, but not fermion number. The elements in these
Gaussian circuits preserve the gaussianity of the wave function [248]. In particular, we
consider unitary gates generated by a (time-dependent) Hamiltonian that is quadratic in
fermion operators and measurements of quadratic observables associated with rank one
projectors, such as measuring the local parity. These systems provide a second example of
the role played by the enlarged dynamical symmetry in dictating the phase structure.

The effect of local Gaussian measurements on free fermions was first discussed by Cao et
al. [55], who argued that these systems cannot sustain a volume-law state for any nonvanishing
measurement rate (see also [87]). This can be understood as resulting from the absence
of scrambling in Gaussian circuits, which therefore cannot protect quantum information
(or equivalently entanglement) from measurements through nonlocal encoding [65, 104].
Recent numerical results on monitored free fermion dynamics indicated, however, a possible
measurement-induced phase transition from a critical phase, with entanglement entropy
scaling logarithmically in system sizes, to a strict area-law phase [8]. Such a transition is also
found in a specific fermion model via a mapping to classical loop models [225]. We note that
critical states of nonunitary fermion models (though not measurement circuits) were studied
in Refs. [61, 170, 129] as well as in measurement-only models [182].

The framework developed in this Chapter naturally captures the instability of the volume-
law state and the emergence of a critical phase. Both properties stem from the effective
symmetry associated with the dynamics of two copies of the system, which is enlarged with
respect to the physical symmetry of the circuit.

We consider circuits with a Z2 fermion parity symmetry, described using two Majorana
operators on each physical site j, γ2j−1 and γ2j . The local observables measured in the circuit
are the fermion parities on sites π̂s,j = −iγ2j−1γ2j and the fermion parity on bonds connecting
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two nearest neighbor sites π̂b,j = −iγ2jγ2j+1. These operators are also the generators of all
the unitary gates.

Due to the Gaussian constraint and fermion commutation relations, the enlarged dynamical
symmetry of this model is different from that of qubit circuits. In the absence of measurements,
the unitary evolution of n replica copies of a density matrix exhibits a global O(2n) ⋊ ZT

2

corresponding to Bogoliubov rotations of Majorana operators between the 2n branches. ZT
2 is

a time-reversal like symmetry that squares to −1. This is the same symmetry that emerges
in the symplectic class of fermion systems in a random potential [222, 93]. There are two
important differences, however. First, the replica limit in this dynamical problem is n→ 1,
while it is n→ 0 in the Anderson localization problem. Second, the measurements break the
symmetry down to [O(n) ×O(n)] ⋊ ZT

2 .
As in the qubit circuits, we focus on the dynamics of the minimal model with two replica

copies, which is mapped to imaginary time evolution generated by a quantum Hamiltonian.
In absence of measurements, averaging over a purely unitary circuit of Gaussian fermion
gates gives rise to an effective ferromagnetic spin-1 Hamiltonian with O(3) symmetry. The
quantum ferromagnet allows establishment of long-range order, which translates to volume-law
entanglement, even in a one dimensional system.

With non-vanishing rate of measurements the symmetry of the effective model is reduced to
U(1)⋊(Z2×ZT

2 ), which cannot support a broken symmetry state. For moderate measurement
rate this leads to the establishment of a critical ground state of Heff. The sub-system purity

exp
(
−S(2)

A

)
of the circuit state translates to a boundary correlation function, which decays

as a power law in the critical phase of Heff with a decay exponent that decreases continuously
with increasing measurement rate. Accordingly, the entanglement entropy scales as log |A|
with a continuously varying pre-factor.

The two-replica theory predicts that the critical phase ends with a Kosterlitz-Thouless
transition that takes the system into one of two area-law phases. The circuits diagnostics
that allow to distinguish between the two area-law phases are the subsystem site and bond
parity variances:

Πa,A ≡
∑

m

pm⟨
∏

j∈A

π̂a,j⟩2m. (4.3)

Here the subscript a = s, b stands for site or bond.
In the area-law phase with dominant site measurements, the subsystem site parity

variance is non-decaying, whereas the bond parity variance decays exponentially. If the bond
measurements dominate, then the bond parity variance is non-decaying. In terms of the
effective ground state description, these two states correspond to a trivial and a Haldane
SPT phase, respectively. The transition between the two area-law phases with the same
characteristics has been discussed in the context of measurement-only dynamics of a Majorana
chain [182, 154].

The fact that all phases can be diagnosed by quantities that are second moments over
the ensemble of quantum trajectories hints at that a model of two replica copies captures
the correct emergent symmetries in the problem. Nonetheless, appropriate averaging of Πa,A
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requires introducing auxiliary replicas followed by extrapolation to the physical replica limit
n→ 1. This may alter the critical behavior.

In Section 4.4, we compare the predictions of the effective two-replica theory to exact
numerical simulations of the dynamics in the Gaussian fermionic circuits, which can be
done on relatively large systems. We find good agreements with the expected properties
of the critical phase, the two area-law phases and even the Kosterlitz-Thouless transition.
In particular, the correlation length we extract from the numerical simulations shows a
divergence that matches well with the hallmark exponential form of the Kosterlitz-Thouless
transition ξ ∼ exp(A/

√
p− pc). On the other hand the two replica model does not capture

the observed critical behavior associated with the direct transition between the two area-law
phases.

Organization of the chapter

The rest of the chapter is organized as follows. In Section 4.2, we explain the basic formalism
and introduce a broad class of circuits that allows a mapping of the replicated dynamics to
effective quantum ground state problems. We discuss the basic structure and symmetry of
the model and lay out the dictionary for translating between the quantities measured in the
physical circuit and the corresponding operators in the effective ground state problem. In
Section 4.3, we apply the framework to classify the phases of a random circuit model with
Z2 symmetry. We then demonstrate numerically that some of the new phases are found
in the phase diagram of a concrete stabilizer circuit model. In Section 4.4, we consider
Gaussian fermionic circuits as outlined above. Section 4.5 presents a broader discussion and
summary of the results. In particular, we remark on connections between the quantum circuit
ensemble discussed in this Chapter and the theory of spin glasses pioneered by Edwards
and Anderson [81]. Close analogies exist both at the level of emergent symmetries and in
aspects of information theory. We shall also comment on fundamental differences between
the problems associated with the quantum and dynamical nature of the circuit.

4.2 Framework

In this section, we introduce a framework for mapping the time evolution of an ensemble of
quantum trajectories to an effective ground state problem. We identify the symmetry of this
problem as an extension of the physical circuit symmetry by intrinsic dynamical symmetries.

States and operators in duplicated Hilbert spaces

We consider the dynamics of quantum systems undergoing unitary evolution interspersed
by projective measurements. The outcome of each projective measurement is probabilistic,
determined by the usual Born rules. This leads to stochastic dynamics of the unnormalized
density matrix of the system, which for a particular sequence of measurement outcomes is
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given by

ρ̃m(t) = Uk . . . U2Pm1U1ρ0U
†
1Pm1U

†
2 . . . U

†
k . (4.4)

Here ρ0 is the initial state, Uj are the set of unitary evolution, and Pmj
are projection

operators associated with measurement outcome mj . Given Uj , the sequence of measurement
outcomes m = (m1,m2, · · · ) defines the trajectory of the wave function, which occurs with
the probability pm = tr ρ̃m. The set of normalized quantum states ρm ≡ ρ̃m/pm and their
assigned probabilities pm form the measurement ensemble of the circuit. We are interested in
certain steady-state properties of this ensemble.

Recent works have shown that the steady states of quantum circuits with unitary gates
and measurements can exhibit measurement-induced phase transitions, characterized by
non-analyticities in various information theoretic quantities such as entanglement entropy,
the global purity, and the Fisher information [163, 239, 162, 65, 104, 18, 130]. These phase
transitions have no signature in the averaged density matrix over quantum trajectories
ρ =

∑
m pmρm =

∑
m ρ̃m. In fact, it can be shown that ρ approaches the maximally mixed

state in the models considered in the literature [163, 239, 18].
To characterize phase transitions in the measurement ensemble, one needs to consider the

statistics of the ensemble, which is encoded in the time evolution of multiple copies of the
trajectory density matrix, that is ρ̃⊗n

m . In what follows, it will be convenient to view these
objects as state vectors in a duplicated Hilbert space H(n) = (H⊗H∗)⊗n. Thus, for example,
the replicated un-normalized trajectory density matrix is denoted by

|ρ̃(n)m ⟩⟩ ≡ ρ̃⊗n
m . (4.5)

This state vector is evolved linearly by unitary and projection operators

U (n)
i ≡ (Ui ⊗ U∗

i )⊗n, M(n)
mi

≡ (Pmi
⊗ Pmi

)⊗n, (4.6)

defined through their action on the replicated density matrix

U (n)
i |ρ̃(n)m ⟩⟩ ≡

(
Uiρ̃mU

†
i

)⊗n

, (4.7)

M(n)
mi

|ρ̃(n)m ⟩⟩ ≡ (Pmi
ρ̃mPmi

)⊗n . (4.8)

If the state in the duplicated Hilbert space is not factorizable, we use the linearity of the
operators to define the actions of unitary gates and projections.

We will show that pertinent properties of the circuit ensemble are encoded in ensemble
states defined as a sum over the replicated trajectory-states

|ρ̃(n)⟩⟩ ≡
∑

m

|ρ̃(n)m ⟩⟩. (4.9)
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This un-normalized ensemble state is very convenient because it undergoes a linear time
evolution

|ρ̃(n)(t)⟩⟩ = V(n)(t)|ρ̃(n)0 ⟩⟩ (4.10)

≡
∑

m

U (n)
t · · ·M(n)

m2
U (n)
2 M(n)

m1
U (n)
1 |ρ̃(n)0 ⟩⟩.

Later in this section, we present a class of models, in which this time evolution is exactly
mapped to an imaginary time evolution generated by an effective quantum Hamiltonian, so
that

|ρ̃(n)(t)⟩⟩ = e−tH
(n)
eff |ρ(n)0 ⟩⟩. (4.11)

In these models, the properties of the ensemble state |ρ̃(n)(t)⟩⟩ in late times are faithfully

encoded in the ground state of H
(n)
eff .

A key step in mapping of moments in the trajectory ensemble of the circuit to properties
of the effective ground state is to translate the trace operation in the replicated Hilbert
space to the state-vector formalism. For example, we will need the trace (tr ρ̃m)n in order to
normalize the trajectory states. In the state-vector notation, these traces can be expressed as
an inner product with a reference state

⟨⟨I| = 1⊗n =
∑

{τℓ}

⟨⟨τ1τ1, τ2τ2, . . . , τnτn|, (4.12)

where each pair of τℓ labels the ket and bra state of copy ℓ. Now, with the inner product
between states in the replicated Hilbert space defined as ⟨⟨χ|σ⟩⟩ ≡ tr

(
χ†σ
)

we can write the

trace (tr ρ̃m)n = tr(ρ̃⊗n
m ) = ⟨⟨I|ρ̃(n)m ⟩⟩.

The simplest quantities that involve higher moments of the density matrix are the average
k-th moments of an observable Ô over the measurement ensemble and circuit realizations

Ok =
∑

m

pm

[
tr(Ôρ̃m)

trρ̃m

]k
. (4.13)

For example, when dealing with circuits with a global Z2 symmetry (see Section 4.3) it
is natural to consider the fluctuations of a local order parameter Ô = Xi, which is odd
under the symmetry. In this case the object O2 =

∑
m pm⟨Xi⟩2m is an Edwards-Anderson

type order parameter that can detect the broken symmetry in individual trajectories [81].
More precisely, we’ll be interested in the operator Ô = XiXj that gives rise to the EA
correlations O2 =

∑
m pm⟨XiXj⟩2m. Another example of an operator of interest is the Z2

parity on subsystem A, Ô =
∏

j∈A Zj. In this case, O2 =
∑

m pm⟨
∏

j∈A Zj⟩2m measures the
parity variance on A.

The quantities given in Eq. (4.13) can be obtained from a replica limit. To formally
eliminate the denominator in Eq. (4.13), we introduce a replica index n to write p1−k

m =
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limn→1 p
n−k
m . Substituting into (4.13), we can express the k-th moment as a limit n→ 1 of

the sequence of replica quantities

O
(n)
k =

tr
(
O(k)ρ̃⊗n

)

trρ̃⊗n
=

⟨⟨I|O(k)|ρ̃(n)⟩⟩
⟨⟨I|ρ̃(n)⟩⟩ , (4.14)

where we defined

O(n)
k ≡

[
k⊗

i=1

(Ô ⊗ 1)

]
⊗ (1⊗ 1)⊗n−k. (4.15)

The denominator in Eq. (4.14) is added to ensure that the quantities O
(n)
k correspond to

normalized boundary correlations in the effective model. It is exactly equal to unity in the
replica limit n→ 1.

Subsystem purities can also be expressed in the same framework. The average k-th purity
of a subsystem A is given by

µk,A =
∑

m

pm
tr(ρ̃kA,m)

(trρ̃m)k
. (4.16)

We can express it in the form (4.14) by choosing the operator O(k) to be the subsystem cyclic
permutation operator (of kets)

C(k)
ℓ,A =

∑

{αi}

k⊗

i=1

(|αi+1⟩ ⟨αi| ⊗ 1) , (4.17)

where αk+1 ≡ α1 is assumed and the subscript ℓ implies acting on the left of the density

matrices (i.e. permutation of kets). |αi⟩ runs over all basis states of subsystem A, while C(k)
ℓ,A

acts as the identity outside of subsystem A. That is, we have

µ
(n)
k,A =

⟨⟨I|C(k)
ℓ,A|ρ̃(n)⟩⟩

⟨⟨I|ρ̃(n)⟩⟩ , (4.18)

and µk,A = limn→1 µ
(n)
k,A.

In much of this Chapter we study the behavior of second moments in a two replica model
(i.e. k = 2, n = 2). It is therefore worth writing the moments explicitly in this special case

O
(2)
2 =

⟨⟨I|O(2)|ρ̃(2)⟩⟩
⟨⟨I|ρ̃(2)⟩⟩ =

∑
m p

2
m⟨Ô⟩ 2

m∑
m p

2
m

, (4.19)

and similarly

µ
(2)
2,A =

∑
m p

2
m tr

(
ρ2A,m

)
∑

m p
2
m

. (4.20)
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We see that in the two replica model the trajectories are weighted by a distorted probability
distribution p

(2)
m = p2m/(

∑
m′ p2m′).

Finally, for completeness, we discuss the computation of the von Neumann entanglement
entropy within the state-vector formalism. For this purpose it is useful to treat the classical
measurement device M as a part of the extended system, as we have shown in Ref. [18]. In
this picture, the randomness of the measurement outcomes are encoded in the correlation
between the system and measurement device.

The average von Neumann entanglement entropy of subsystem A over the possible
measurement outcomes is

SA =
∑

m

pmSA,m =
∑

m

−pm tr(ρA,m log ρA,m). (4.21)

In the extended system, we can express this average as the conditional entropy

SA = S(A|M) ≡ SMA − SM , (4.22)

where the measurement device is characterized by a diagonal density matrix ρM = δmm′pm.
In this formulation, we can further include an average over the random unitary gates and
express the average conditional von Neumann entropy SA as a limit of “conditional Rényi
entropies” [18],

S
(n)
A =

1

1 − n
log
(

tr ρnMA

)
− 1

1 − n
log
(

tr ρnM
)

=
1

1 − n
log

(∑
m p

n
m tr

(
ρnA,m

)
∑

m p
n
m

)
. (4.23)

The properly averaged von Neumann entropy is restored in the replica limit: SA = limn→1 S
(n)
A .

The conditional Rényi entropies have a simple expression within our formalism as the logarithm
of a boundary matrix element. As in the case of purity, the relevant operator is the permutation
C(n)
ℓ,A of forward propagating trajectories (kets) within subsystem A:

S
(n)
A =

1

1 − n
log

⟨⟨I|C(n)
ℓ,A|ρ̃(n)⟩⟩

⟨⟨I|ρ̃(n)⟩⟩ . (4.24)

Note that Eq. (4.23) implies that each of the conditional Rényi entropies involves weighting
of the subsystem purities by the outcome probabilities to the n-th power. Thus, they are
not identical to the Rényi entropies averaged over the measurement ensemble. However, as
noted above, the von Neumann entropy obtained in the replica limit, is correctly weighted by
the outcome probabilities. In this Chapter, we mainly focus on n = 2 model, the conditional

Rényi entropy and purity are related by e−S
(2)
A = µ

(2)
2,A.
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Enlarged dynamical symmetry

The dynamics V(t) of the quantum state in the duplicated Hilbert space exhibits an enlarged
symmetry, which is an extension of the physical symmetry of the circuit by the dynamical
symmetries inherent to the time evolution of identical copies of the density matrix. In general,
the dynamical symmetry does not commute with the physical circuit symmetry, and the
combination of the two produces the enlarged symmetry of V(t). We shall see that this
enlarged symmetry dictates the possible steady states of the circuit.

We say that the circuit has a physical symmetry G if all the unitary gates Ui and the
projectors Pmi

implementing the measurements commute with the symmetry generators
g ∈ G. In this Chapter, for simplicity, we assume the symmetry group G has a unitary
representation and do not consider the anti-unitary circuit symmetries. Note that the circuit
symmetry is important for characterizing the steady state, however, unlike in purely unitary
dynamics it does not give rise to a conserved quantity enforced at the level of individual
trajectories. Given an initial state with indefinite quantum numbers associated with the
symmetry, projective measurements may lead to the collapse of wave functions, such that
quantum amplitudes or probabilities in each symmetry sector changes. Once the system has
a definite set of quantum numbers, then the measurements cannot change them.

In the dynamics of n replica copies, the physical circuit symmetry G is duplicated to each
of the forward and backward evolving branches, leading to a symmetry group G⊗n ×G⊗n.
We call the first and second G⊗n the left and right circuit symmetry. In addition, the time
evolution V(t) of n copies of the density matrix is invariant to permutation among the different
copies of the identical circuit elements (Ui and Pmi

) operating on the density matrix from the
left and, independently, to permutation of the circuits elements acting from the right. The
operators representing the left and right permutation symmetry are given respectively by

Cℓ,ξ =
∑

{αa}

⊗

a

(∣∣αξ(a)

〉
⟨αa| ⊗ 1

)
,

Cr,ξ =
∑

{αa}

⊗

a

(
1⊗ |αa⟩

〈
αξ(a)

∣∣) , (4.25)

where ξ ∈ Sn is a member of the permutation group of n elements. Here, we omit the
superindex for n replica copies for the simplicity of notation. The left cyclic permutation
Cℓ, which is a special case of Cℓ,ξ, was already introduced in Eq. (4.17). The left and right
permutation symmetries are independent from one another since [Cℓ,ξ, Cr,η] = 0 for any
ξ, η ∈ Sn. These permutation symmetries transform the replicated G⊗n circuit symmetries
into each other giving rise to G⊗n⋊Sn invariance, independently for the forward and backward
branches. The group extension G⊗n ⋊ Sn is also known as the wreath product G ≀ Sn.

Finally, there is one more dynamical symmetry associated with hermiticity of the density
matrix, which the time evolution induced by V(t) must preserve. The operator representing
this symmetry is the hermitian conjugation

H : cαβγδ |α⟩ ⟨β| ⊗ |γ⟩ ⟨δ| 7→ c∗αβγδ |β⟩ ⟨α| ⊗ |δ⟩ ⟨γ| , (4.26)
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which is anti-linear (anti-unitary) and of order 2, such that H2 = 1. We denote this symmetry
by ZH

2 . The physical circuit symmetries combine with the left and right permutation
symmetries and hermiticity to give the complete dynamical symmetry

G(n) =
[(
G⊗n ⋊ Sn

)
×
(
G⊗n ⋊ Sn

)]
⋊ ZH

2 . (4.27)

Equivalently, G(n) can be written in terms of the wreath product G(n) = G ≀ Sn ≀ ZH
2 .

We make a few remarks. While Eq. (4.27) is generically valid, the symmetry of V(t) can be
even larger in the presence of additional constraints. For example, in Section 4.4, we consider
a fermionic circuit that preserves the Gaussianity of the fermionic wave function, which leads
to a continuous symmetry. In addition, while G(n) itself is very large, the physically relevant
symmetry can be a smaller subgroup of G(n), depending on the details of the model. For
instance, if V is averaged over a specific random circuit ensemble, the averaging process can
constrain the state to be in faithful representations only of a subgroup of G(n) thus reducing
the available options for symmetry breaking.

We also note that our analysis only concerns the symmetry of V(t) and does not address
additional physical constraints such as the complete positivity of quantum channels.

Effective quantum Hamiltonian

In this section, we introduce an exact mapping of the dynamics V(t) in a broad class of
qubit circuits to imaginary time evolution generated by an effective Hamiltonian Heff, which
inherits the enlarged dynamical symmetry. Thus, the long-time steady states of the quantum
circuits can be characterized by ground states of Heff.

The structure of the quantum circuits we consider is shown in Fig. 4.1(a). Each “time
step” δt is subdivided into layers. The first layer in each time step is made of single-site
random unitary phase rotations (i.e. rotation about the Z-axis). This is not a necessary
step in our scheme, but we shall see that averaging over the random phases simplifies the
effective model by projecting onto a reduced Hilbert space. The next layer consists of near

identity unitary gates, such as Uij = exp
(
−iθαβij τ

α
i τ

β
j

)
, where ταj with α = 0, . . . , 3 represent

the identity and Pauli operators on the qubit. The random couplings θαβij are drawn from a

symmetric Gaussian distribution with variance var(θαβij ) ≡ Jαβδt. This layer also contains
projective measurements of Pauli string operators Mα, applied with probability pα = Γαδt.

The replicated density matrix |ρ̃(n)⟩⟩ is evolved by the operator V(t), consisting of the
replicated circuit elements. We obtain a transfer matrix by averaging the evolution by one
time step over the “circuit ensemble”, namely the distribution of unitary gates and the
probabilities pα of applying measurement operators. The latter are also replicated on the n
forward and n backward branches [e.g. the case of n = 2 is depicted in Fig. 4.1(b)].

For an infinitesimal time step, δt→ 0, the transfer matrix takes the form T = V(δt) =
exp(−δtHeff). Hermiticity of T (and thus also of Heff) is ensured if the distribution of the
coupling constants in the unitary gates is symmetric about zero. In the long-time evolution,
the steady state |ρ̃(n)⟩⟩ = limt→∞ e−tHeff |ρ0⟩⟩ is given by the ground state of Heff .
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Unitary-measurements

Unitary-measurements
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Figure 4.1: Mapping the dynamics of random quantum circuits to the imaginary time
evolution with an effective Hamiltonian. (a) A quantum circuit with layers of random
on-site Z-rotations UZ = e−iθiZi . The inter-layer elements include measurements and unitary
gates satisfying conditions needed for a hermitian effective Hamiltonian (see text). (b) The
effective time evolution of a doubled density matrix is effected by four copies of the quantum
circuit, two corresponding to forward propagation and two backward. (c,d) Averaging over
the random Z rotations projects on the reduced site Hilbert space |m, s⟩⟩i, which can be
interpreted as quantum spin states. The states at successive time steps are connected by
the transfer matrix T (δt), which is generated by an effective Hamiltonian Heff in the limit
δt→ 0.

For the circuits considered in this section, the effective Hamiltonian Heff has a set
of mutually commuting local integrals of motion. These are the local parity operators
Xj =

∏n
a=1(XaXā)j, Yj =

∏n
a=1(YaYā)j, and Zj =

∏n
a=1(ZaZā)j (see appendix C.1). The

subscript a and ā denote the Pauli operators acting on the a-th forward and backward branch,
respectively. The eigenstates of Heff are labeled by the eigenvalues of the Xj, Yj, and Zj on
all sites.

We will only need to characterize the ground state of Heff in the even sector of the local
parities in order to compute the physical diagnostics in Eq. (4.13) and (4.23). The reason
is that the reference state ⟨⟨I| has definite local parities on all sites, Xj = Zj = +1 and
Yj = (−1)n. Meanwhile, all the duplicated operators associated with diagnostics considered

in this Chapter, e.g. O(2)
2 = (X ⊗ 1)⊗2, preserve the local parities. Therefore, only the
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ground state in the same local parity sector as the reference state |I⟩⟩ has a nonvanishing
contribution to the matrix element in Eq. (4.14) and (4.24).

We now turn to construct the effective Hamiltonian explicitly for the case of n = 2 replicas.
Generalizing to higher replicas n ≥ 3 is straightforward. Consider first the single-site phase
rotation at the entry to each time step. Averaged over the random phase, the two copy
evolution through this layer takes the form

e−iθjZj ⊗ eiθjZj ⊗ e−iθjZj ⊗ eiθjZj =
1

2π

∫ 2π

0

dθje
−iθj(Zj1−Zj1+Zj2−Zj2) =

6∑

k=1

|φk⟩⟩⟨⟨φk|. (4.28)

The averaging over the identical rotation angle of the four branches yields a delta function
that implements a projection onto the six-dimensional subspace defined by vanishing of
Zj1 + Zj2 − Zj1 − Zj2. A convenient basis for this subspace, labeled by |m, s⟩⟩, is given
explicitly by

|1,±⟩⟩ =
1√
2

(|1⟩ ⟨1| ⊗ |0⟩ ⟨0| ± |0⟩ ⟨0| ⊗ |1⟩ ⟨1|) ,

|0,±⟩⟩ =
1√
2

(|1⟩ ⟨1| ⊗ |1⟩ ⟨1| ± |0⟩ ⟨0| ⊗ |0⟩ ⟨0|) ,

| − 1,±⟩⟩ =
1√
2

(|0⟩ ⟨1| ⊗ |1⟩ ⟨0| ± |1⟩ ⟨0| ⊗ |0⟩ ⟨1|) . (4.29)

The quantum numbers si = ±1 on site i happen to be the eigenvalues of the local integrals of
motion Xi (and of Yi). As discussed above, for n = 2, the reference state |I⟩⟩ is in the even
sector of local parities. Hence, we need to consider only the even sector si = +1. This leaves
us with three states on every site m = −1, 0, 1, which can be represented by a spin-1 degree
of freedom.

The left permutation (swap) symmetry S2 has a simple action on the basis (4.29)

Cℓ : |m, s⟩⟩ ↔ | −m, s⟩⟩. (4.30)

Thus, spontaneous breaking of the S2 permutation symmetry will appear as onset of a
spontaneous z-magnetization of the spin-1 degrees of freedom.

We now turn to construct the transfer matrix operating between the states of the reduced
Hilbert space

⟨⟨{m, s}|T |{m′, s′}⟩⟩ = ⟨⟨{m, s}|
∏

ν

Mν

∏

µ

Uµ|{m′, s′}⟩⟩. (4.31)

Here, Uµ and Mν represent the averaged unitary gates and measurements acting on the
duplicated state. The averaging is over both the random couplings in the unitary gates and
the probabilistic application of the measurements. The indices µ, ν run over all different
unitary gates and measurements in the layers of the circuit that are part of a single time step
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δt. All of these operators are designed to be close to unity. The deviation from unity after
averaging is of order δt.

The averaged measurement operators take the form

Mν = (1 − Γνδt)1
⊗4 + Γνδt

∑

mν=±

P⊗4
mν
, (4.32)

where Γν may be viewed as the rate at which a measurement of type ν is performed, and
P± = (1 ±Mν)/2 is the projection onto the ± eigenstate of the Pauli string operator Mν .

The unitary gates operating on qubits are of the general form: Uj = exp
(
−iθαβj ταj τ

β
j+1

)
,

where ταj denote local Pauli operators, including the identity. That is τ 0i ≡ 1j, τ 1j ≡ Xj etc.

Averaging over the Gaussian distribution of θαβj with variance Jαβ δt gives:

Uj = Uj ⊗ U∗
j ⊗ Uj ⊗ U∗

j (4.33)

= e
−

δtJαβ
2

(
ταj,1τ

β
j+1,1−τα

j,1
τβ
j+1,1

+ταj,2τ
β
j+1,2−τα

j,2
τβ
j+1,2

)2

.

For an infinitesimal δt, the transfer matrix (4.31) takes the form T = 1−HMδt−HUδt+
O(δt2). The effective Hamiltonian Heff = HM +HU can be read from Eqs. (4.32) and (4.33)
projected to the reduced Hilbert space of three states per site.

In Appendix C.2 we exemplify a detailed construction of an effective Hamiltonian for the
two replica dynamics of a simple circuit with Z2 symmetry. The result is a spin-1 model
with D4 × ZH

2 symmetry. In the next section, we discuss the possible steady-state phases
of circuits with Z2 symmetry more generally. We present direct simulation of a concrete
quantum circuit, which exhibits a subset of the possible steady-state phases.

4.3 Qubit circuit with Z2 symmetry

We now discuss how the phase structure of a quantum circuit with measurements is enriched
by imposing a physical Z2 symmetry on the circuit elements. To derive general results, we
go beyond the circuit models discussed in Section 4.2. In particular, we do not enforce a
projection to a reduced six-dimensional local Hilbert space.

In Section 4.3 below, we present the general symmetry analysis of the problem to identify
the allowed phases and determine what are their sharp signatures in the physical probes of
the circuit state. In Section 4.3, we present the results of numerical simulations of a concrete
circuit model with Z2 symmetry. The results demonstrate the establishment of at least two
of the possible area-law phases and three of the distinct volume-law phases in the steady
state phase diagram of this circuit model.

Phases protected by enlarged symmetry

The circuits we consider in this section operate on a one-dimensional array of qubits. Unitary
gates in the circuit are generated by Pauli operators with random couplings drawn from
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symmetric distributions as considered in Section 4.2. All circuit operations, unitary gates
and measurements, commute with a global Z2 parity operator defined on a single chain

π̂ =
L∏

j=1

Zj. (4.34)

To make the model more general, we allow additional chains of qubits, which are not
transformed by the above parity operator. Thus, operations applied to qubits on the
additional chains are not restricted by symmetry.

We first focus on the phases that arise in the simplest case of two replica copies (i.e.
n = 2). A model of two copies gives a natural framework to address fluctuations that are
second moments of observables over the trajectory ensemble. This is not an exact approach
because without extrapolating to the replica limit n → 1 the weighting of trajectories is
distorted. To validate key aspects of the phase structure predicted by the two-replica model
we use direct simulations of a quantum circuit model. In particular we confirm the existence
of new phases enabled by the enlarged symmetry.

According to the analysis presented in Section 4.2, the enlarged symmetry of the two-
replica model should be G(2) = (D4 ×D4) ⋊ ZH

2 . The left (right) D4 group consist of the Z2

symmetries of the two copies on the forward (backward) branch, compounded with the S2

permutation symmetry between the two copies, i.e. D4 = (Z2 ×Z2)⋊S2. The Z2 symmetries
of a single copy and branch are generated by product operators which we denote as

∏
j(ZIII)j

(copy 1 forward branch),
∏

j(IZII)j (copy 1 backward),
∏

j(IIZI)j (copy 2 forward) and∏
j(IIIZ)j (copy 2 backward).
The effective symmetry that determines the phase structure can be reduced and simplified

by accounting for additional constraints. Specifically, in our case, the effective Hamiltonian
conserves a set of local parities Xj = (XXXX)j, Yj = (Y Y Y Y )j and Zj = (ZZZZ)j (see
Appendix C.1). This leads to reduction of the effective symmetry G(2) as follows. First, the
fact that the operators Xj have non-vanishing expectation values on every site implies breaking
of all four single-branch Z2 symmetries already at the outset because the Xj anti-commutes
with these symmetries. Second, as noted before, we seek the ground state in the even sector
of Xj, Yj and Zj on every site. The exchange symmetry SX

2 , generated by the product of
left and right permutation CℓCr, acts trivially in this sector (see Appendix C.3). Therefore it
cannot be broken and we can quotient it out. Third, we can also quotient out the symmetry∏

j Zj because it is a product of the local parities, which cannot be broken.

The above considerations leave us with an effective global symmetry G(2)
eff = D4 × ZH

2 ,

where D4 = (ZΠL
2 × ZΠ1

2 ) ⋊ S2. Here, ZΠL
2 and ZΠ1

2 are generated by Π̂L =
∏

j(ZIZI)j

and Π̂1 =
∏

j(ZZII)j, respectively. In Appendix C.2, we explicitly derive the effective

Hamiltonian for a concrete model, demonstrating the D4 × ZH
2 symmetry.

The Hermitian conjugate H in the even parity sector is given by the complex conjugate K
as shown in Appendix C.3 and commutes with the rest symmetry generators in G(2)

eff . Hence,
H can be broken independently. Moreover, the reference state ⟨⟨I| and ⟨⟨I|O2 associated



CHAPTER 4. SYMMETRY ENRICHED PHASES OF QUANTUM CIRCUITS 79

Entropy Name Residual symmetry Π(2)(A) χ
(2)
EA(i, j) Φ(2)

Area law

Symmetric phase
(trivial/SPT)

(ZΠL
2 × ZΠ1

2 ) ⋊ S2 const. → 0 0

Coexistence phase
(trivial/SPT)

ZΠL
2 × S2 const. const. 0

Broken symmetry phase S2 → 0 const. const.

Composite phase ZCℓΠ1
4 const. const. 0

Vol. law

Symmetric phase ZΠL
2 × ZΠ1

2 const. → 0 0

Featureless phase ZΠ1
2 → 0 → 0 const.

Coexistence phase I ZΠ1ΠL
2 const. const. 0

Coexistence phase II ZΠL
2 const. const. 0

Broken symmetry phase ∅ → 0 const. const.

Composite phase ZCℓΠL
2 → 0 const. 0

Table 4.1: Possible phases of a qubit circuit with Z2 symmetry and their diagnostics. Four
area-law and six volume-law phases are characterized by distinct residual symmetries given in
the second column. The generators of the respective Z2 subgroups are specified in superscript.
Π̂L =

∏
j(ZIZI)j is the parity in the two forward branches. Π̂1 =

∏
j(ZZII)j is the parity

in the first copy. For each phase we give the long distance limit of the parity variance Π(2)(A)

and EA correlation χ
(2)
EA(i, j) as well as the value of the Fisher information “order parameter”

Φ(2) = 1 − 1
2
F (2) in the bulk. The phases we observe numerically in the model studied in

Section 4.3 are shaded gray.

with the physical diagnostics are symmetric under Hermitian conjugate, making them blind
to its breaking. Therefore, in this Chapter, we do not distinguish phases by the hermiticity
breaking and consider the phases allowed by the D4 symmetry.

We are now in a position to classify the possible steady states for the case of n = 2
through their correspondence to ground states of an effective Hamiltonian with D4 symmetry.
This includes broken symmetry states, characterized by the residual subgroups of D4, as
well as SPT phases protected by the D4 effective symmetry. The results of this analysis are
summarized in Table 4.1. We shall also discuss the physical diagnostics in quantum circuits
that can distinguish different phases. In Appendix C.4 we comment on the extension to
higher replicas.
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“Conventional” area-law phases

We start from a working definition of the area-law regime as ground states of the effective
Hamiltonian that preserve the S2 permutation symmetry generated by Cℓ.1 Indeed in these
states domain walls of the S2 symmetry are condensed. Therefore the sub-system swap
operator that inserts such domain walls on either side of the sub-system is non-decaying
implying non-decaying purity or O(1) entanglement entropy. However, we shall see that the
working definition needs to be modified slightly to account for one possible area-law state
with broken S2 symmetry.

Under the working definition the different area-law states are characterized by distinct
residual subgroups of D4 that contain S2. Let us start from the most symmetric state, which
retains the full D4 symmetry. We first ask what are the “charges” (order parameters) that
can condense and are invariant under the S2 permutation symmetry.

The first option is to condense the local charge Q1,j ≡ (XXII)j together with (IXXI)j,
which is related to Q1,j by the S2 symmetry. If these two charges condense, then the charges
(IIXX)j and (XIIX)j must also condense because of the definite local parities Xj in the

ground state. Condensing these charges breaks the Π̂L and Π̂1 symmetry, leaving a residual
global symmetry S2 in addition to the local symmetries Xj,Yj,Zj. We call this phase the
broken symmetry area-law phase.

The second route for symmetry breaking, starting from the symmetric phase, is to
condense the charges (XIXI)j and (IXIX)j . This condensate breaks the symmetry Π̂1, but

leaves intact the symmetry Π̂L, which commutes with the order parameter. We shall refer
to this phase as the “coexistence phase” for reasons that will become clear below. From
the coexistence phase, the system can further break the residual symmetry by condensing
Q1,j and its symmetry related charges defined above. This leads to the broken symmetry
area-law phase discussed above. We note that charges containing an odd number of Pauli-X
matrices, such as XIII and XXXI, cannot condense because they anti-commute with the
local parities Yj and Zj, which cannot be broken.

Let us discuss the physical interpretation of the area-law phases outlined above and
how they can be distinguished by diagnostics of the circuit. We consider properties of the
output state, such as the subsystem entanglement entropy, the Edwards-Anderson correlation
function χEA ≡∑m pm⟨XiXj⟩2m and the subsystem parity variance Π(A) ≡∑m pm⟨π̂(A)⟩2m =∑

m pm⟨
∏

j∈A Zj⟩2m. As discussed in Section 4.2, these diagnostics map to different normalized
matrix elements between the ground state and a reference state.

Our measure of the purity and entanglement entropy is obtained from the overlap

e−S(2)(A) =
⟨⟨I|∏j∈A Cℓ,j|ψgs⟩⟩

⟨⟨I|ψgs⟩⟩
. (4.35)

Here the operator acting on |ψgs⟩⟩ creates a pair of domain walls of the left permutation
(swap) symmetry at the two edges of the region A. If the ground state is symmetric under

1The left and right permutation Cℓ and Cr are identified because the exchange operation CℓCr acts as an
identity matrix in the symmetric sector of the local symmetries.
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swap, then these domain walls are condensed, implying
∏

j∈A Cℓ,j|ψgs⟩⟩ ≈ λ|ψgs⟩⟩ for a long
region A, leading to a length independent (area-law) entanglement entropy.

The parity variance in region A is similarly obtained by the matrix element of
a nonlocal operator that creates domain walls of the Z2 symmetry generated by Π̂L,
Π(2)(A) = ⟨⟨I|∏j∈A(ZIZI)j|ψgs⟩⟩/⟨⟨I|ψgs⟩⟩. Finally, the Edwards-Anderson order param-

eter in the circuit maps to the following matrix element in the effective model Ψ
(2)
EA(i) =

⟨⟨I|(XIXI)i|ψgs⟩⟩/⟨⟨I|ψgs⟩⟩. Strictly speaking, we need to consider the long-range EA corre-

lation χ
(2)
EA(i, j) = ⟨⟨I|(XIXI)i(XIXI)j|ψgs⟩⟩/⟨⟨I|ψgs⟩⟩ to detect the spontaneous symmetry

breaking because the initial state time evolution and reference state are all symmetric with
respect to Π̂1. To simplify the explanations below, however, we will assume the presence of
an infinitesimal symmetry-breaking field and thus refer to the establishment of an EA order
parameter.

To understand the behavior of these objects in the different phases, we need to determine,
besides the symmetry of the ground state, also that of the reference state ⟨⟨I| in Eq. (4.12). It
is easy to check that ⟨⟨I| is invariant under the ZΠ1

2 symmetry generated by Π̂1 =
∏

j(ZZII)j ,

the SX
2 exchange symmetry, and the ZH

2 hermiticity symmetry, while breaking all other global
symmetries. In particular, the reference state ⟨⟨I| is a condensate of the charges (XXII)j,
(IIXX)j, (Y Y II)j and (IIY Y )j. For example, we have ⟨⟨I|(XXII)j = ⟨⟨I|.

Consider first the signatures of the symmetric phase, which retains the full D4 symmetry.
Invariance with respect to Π̂L means that the domain wall associated with this symmetry
is condensed in the ground state,

∏
j∈A(ZIZI)j|ψgs⟩⟩ ≈ c|ψgs⟩⟩. Thus, the subsystem parity

variance Π(2)(A) remains constant independent of the size of A. The EA order parameter,
on the other hand, vanishes because both the ground state and the reference state are even
under Π̂1, whereas XIXI is an odd operator with respect to this symmetry (anti-commutes
with ZZII).

Next, consider the broken symmetry phase, obtained by condensing Q1,j = (XXII)j
and its symmetry related charges. When calculating the EA order parameter Ψ

(2)
EA(i) we

can replace (XIXI)i by (IXXI)i = (XXII)i(XIXI)i because the reference state is an

eigenstate of (XXII)i with eigenvalue 1. Hence, we expect a nonzero value of Ψ
(2)
EA(i) owing

to the condensation of (IXXI)i in the ground state |ψgs⟩⟩. At the same time, the parity
variance Π(2)(A) is expected to decay exponentially. The subsystem parity

∏
j∈A(ZIZI)j acts

nontrivially on the broken symmetry ground state |ψgs⟩⟩, creating a domain of a symmetry
related ground state within region A. Since ⟨⟨I| is a uniform broken symmetry state, its
normalized overlap with the transformed region is exponentially decaying, Π(2)(A) ∼ e−LA/ξ

for ξ ≪ LA ≪ L.2

The symmetric and broken symmetry phases outlined above are the same as those discussed
in Ref. [224] and observed there in simulations of a concrete model. The physical intuition
for the establishment of these phases is clear. In the broken symmetry phase, dominant

2The broken symmetry state is strictly speaking a cat-like superposition of the two distinct broken
symmetry states, leading to Π(2)(A) ∼ e−LA/ξ + e−(L−LA)/ξ under periodic boundary condition.
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nearest neighbor XX measurements collapse the individual trajectories to a near product
state with qubits polarized in random directions along X. As in a glassy phase, such random
X orientations are detected by averaging the square of individual trajectory expectation
values ΨEA =

∑
m pm⟨Xi⟩2m. At the same time, the parity of a long region A has a vanishing

expectation value ⟨π̂(A)⟩m = ⟨∏j∈A Zj⟩m → 0 in every trajectory. In the symmetric phase,
dominant single-qubit Z measurements collapse individual trajectories to near product states
with definite, yet random parity on each qubit. This is detected by taking the variance over
trajectories of the parity in region A:

∑
m pm⟨π̂(A)⟩2m → const. At the same time, the EA

order parameter vanishes in the symmetric phase because ⟨Xi⟩m = 0 in every trajectory.
Besides these two phases, we have alluded to the possible existence of another, more

peculiar phase, in which the symmetry is partially broken by condensing just the chargesXIXI
and IXIX. Such a condensate implies the nonvanishing EA order parameter Ψ

(2)
EA(i) → const.

At the same time, the parity symmetry generated by Π̂L remains intact, implying nonvanishing
parity variance on a long subsystem Π(2)(A) → const.

The coexistence of a nonvanishing EA order parameter with a non-decaying parity variance,
allowed within the effective model, may seem paradoxical at first sight when considering
the wave functions of individual trajectories. The EA order parameter must originate from
trajectories m that exhibit nonvanishing ⟨Xi⟩m ̸= 0. The parity expectation value ⟨π̂(A)⟩m
must vanish in these symmetry breaking trajectories. Nonetheless, because we have an
ensemble of trajectories, the EA order parameter and non-vanishing parity variance can
coexist in separate trajectories. In theory, such a phase is established if symmetry breaking
and symmetric trajectories both appear with nonvanishing probability in the ensemble. It is
left as an open question if there are physical obstructions towards realizing such a coexistence
phase.

Having considered area-law states which preserve the S2 symmetry, we now show that
this is not a necessary condition for getting a phase with area-law entanglement. Specifically,
consider breaking the D4 symmetry while preserving a Z4 subgroup generated by the composite
operator Π̂1Cℓ. This state, which we term th “composite area-law phase”, can be obtained
from the symmetric phase by condensing the operator (Y ZXI)j, symmetrized over the
residual Z4 subgroup. The key to calculate the entanglement entropy in this state is to note
that the reference state is an eigenstate of Π̂1,j = (ZZII)j with eigenvalue 1. This allows to

make the replacement ⟨⟨I|Cℓ,j = ⟨⟨I|Π̂1,jCℓ,j when calculating the subsystem purity to obtain

e−S(2)(A) =
⟨⟨I|∏j∈A

(
Π̂1,jCℓ,j

)
|ψgs⟩⟩

⟨⟨I|ψgs⟩⟩
→ const. (4.36)

The subsystem purity tends to a constant for large LA because the operator appearing in the
matrix element creates domain walls of the unbroken Z4 symmetry at the two boundaries of
A.

Besides area-law entanglement, the “composite phase” is also characterized by non-
decaying EA correlations and subsystem parity variance. To see the former we use the fact
that ⟨⟨I| is an eigenstate of (ZZII)j to replace the operator (XIXI)j with i(Y ZXI)j =
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(ZZII)j(XIXI)j in the EA correlation

χ
(2)
EA(i, j) =

⟨⟨I|i(Y ZXI)ii(Y ZXI)j|ψgs⟩⟩
⟨⟨I|ψgs⟩⟩

→ const. (4.37)

This is non-decaying because the operator (Y ZXI)j overlaps with the order parameter of
the state as discussed above. The parity variance is non-decaying because the symmetry
Π̂L = (Π̂1Cℓ)2 is preserved.

We note that the residual Z4 symmetry enforces an exact relation between different
EA correlations, which distinguishes the composite area-law phase from the coexistence
phase. To see this we consider a distinct EA correlation χ′

EA(i, j) ≡ ∑
m pm⟨XiYj⟩2m.

The corresponding quantity in the two-replica model can be written as χ
′(2)
EA(i, j) =

⟨⟨I|i(Y ZXI)i(−i)(XZY I)j|ψgs⟩⟩/⟨⟨I|ψgs⟩⟩. Here, we replace (Y IY I)j with (−i)(XZY I)j =

(ZZII)j(Y IY I)j. In the composite phase, we have an exact relation χ
(2)
EA = χ

′(2)
EA because

charges i(Y ZXI) and (−i)(XZY I) related by the conjugation of Π̂1Cℓ are condensed in the

ground state with the same amplitude. However, in the coexistence phase, χ
′(2)
EA(i, j) and

χ
(2)
EA(i, j) are both nonvanishing but generally of different values. Further reducing the ZCℓΠ1

4

symmetry will give rise to volume-law phases discussed in the subsection 4.3.

SPT area-law phases

In this section, we point to the possibility of establishing symmetry protected topological
(SPT) area-law phases protected by the effective D4 symmetry. To identify and characterize
such phases, we employ the decorated domain wall picture of Ref. [63]. Starting from the
broken symmetry area-law phase, symmetry can be restored by condensing the domain walls
of the symmetry Π̂L. For the ensuing phase to be distinct from the trivial symmetric phase
the domain walls must condense only while bound to charges of an independent symmetry.
In this case the only option is the S2 permutation symmetry. Note that condensing the S2

charges bound to a domain wall, does not lead to breaking of the S2 symmetry in this case
because the condensed object is nonlocal. Indeed, a dual description of the same phase is
a condensate of the S2 domain walls bound to the charges of the symmetry Π̂L. The state
established in this way is a fully symmetric SPT phase, protected by the ZΠL

2 ×S2 symmetry.
Starting from this SPT phase we can obtain another one by condensing the charges XIXI
and IXIX, which commute with the protecting symmetry. This gives the “coexistence” SPT
phase.

We emphasize that the enlarged dynamical symmetry is essential for establishing these
topological phases as the Z2 symmetry of the physical circuit does not, on its own, allow an
SPT phase in a one-dimensional system. This is different from the SPT state obtained in a
measurement-only model in Ref. [156], which is protected by the physical Z2 × Z2 symmetry
of the measurement operators.

Let us confirm that these are indeed area-law phases, by considering the boundary overlap
of the operator that creates a pair of S2 domain walls, Diℓ and Dir , at the ends of the region A
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(4.35), i.e. ⟨⟨I|DiℓDir |ψgs⟩⟩, where Di =
∏

j≤i Cℓ,j. Unlike in the trivial phase, the S2 domain
walls are not individually condensed in the effective ground state. So, one might be tempted
to conclude that the overlap decays exponentially, implying a volume-law state. However,
the area law is saved by the fact that the reference state ⟨⟨I| breaks the Π̂L symmetry, i.e. it
is a condensate of the respective charge Q1,j . This allows us to extract such charges from the
condensate and write

e−S(2)(A) =
⟨⟨I|DiℓDir |ψgs⟩⟩

⟨⟨I|ψgs⟩⟩
(4.38)

=
⟨⟨I|(Q1,iℓDiℓ)(Q1,irDir)|ψgs⟩⟩

⟨⟨I|ψgs⟩⟩
→ const.

In the last line, we used the fact that the S2 domain wall coupled to the Π̂L charge (i.e. Q1,j)
is condensed in the ground state.

Finally we note that these SPT phases cannot be distinguished from their trivial coun-
terparts using the bulk probes discussed above. We can show that the subsystem parity
variance Π

(2)
A is non-decaying using the dual argument to that used for the purity. Π

(2)
A is

given as a boundary matrix element of the Π̂L string operator
∏

j∈A Π̂L,j, which creates a
pair of domain walls on the two ends of subsystem A. While these domain walls are not
individually condensed, a bound state of a Π̂L domain wall and an S2 charge is condensed.
Since ⟨⟨I| breaks the S2 symmetry, when calculating the matrix element we can always
extract S2 charges ⟨⟨I| and attach to the domain walls. This implies non-decaying subsystem
parity. Note that this argument implies that the parity string is identical to the string order
parameter due to the broken symmetry in the reference state. Thus string order parameters
are also ruled out as diagnostics to distinguish the SPT and trivial phases.

Nor do the EA correlations able to distinguish the SPT phases from the trivial ones. The
EA correlations decay exponentially in the symmetric SPT phase, as in the trivial state,
because both the ground state and the reference state ⟨⟨I| are symmetric under Π̂1, while
the EA order parameter is odd under this symmetry. In the “coexistence” SPT phase the
order parameter (XIXI)j is condensed leading to nondecaying EA correlations, as in the
trivial coexistence phase.

We conclude that the SPT phases cannot be distinguished by bulk probes. In Section 4.3
we show that a different type of diagnostic, when applied to the edge of the system, allows to
distinguish between the SPT and trivial phases.

Volume-law phases

Based on the criterion we developed above for establishing an area-law phase, we expect that
a volume-law phase is established if the S2 permutation symmetry is broken along with all
composite symmetries gI Cℓ, where gI is a symmetry present in the reference state ⟨⟨I|. One
example of such composite symmetry is Π̂1Cℓ.
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To identify the volume-law phases, we start from the fully symmetric area-law phase
with the effective D4 symmetry and determine the possible charges that can be condensed to
reduce the symmetry in a way that S2 and required composite symmetries are broken.

The most straightforward option to break symmetry is to condense the S2 charges that
are neutral under the parity symmetries Π̂1 and Π̂L. This gives the symmetric volume-law
phase with a residual symmetry ZΠL

2 × ZΠ1
2 . Due to the presence of the symmetries Π̂L and

Π̂1, the EA order and parity variances behave exactly as they do in the symmetric area-law
phase.

One way to further break symmetry is to condense the pair of charges (XXII)j and
(IIXX)j, which are related by the local conserved parities Xj. A second way is to condense
the charges (XIIX)j and (IXXI)j, similarly related by Xj. Recall that in the area-law
phase the first pair of charges was related to the second pair by the S2 permutation symmetry,
which is broken in the volume-law phase. Thus, the phase transition, which in the area-law
phase involved simultaneous condensation of all four charges, generically splits into two
transitions. Which intermediate phase is established between the symmetric and the broken
symmetry volume-law states depends on which pair of charges condenses first.

Yet another way to break symmetry, starting from the symmetric volume-law phase, is
to condense the charges XIXI and IXIX to establish a third distinct intermediate phase.
These three routes of breaking successive symmetries starting from ZΠL

2 ×ZΠ1
2 are summarized

as follows

1)ZΠL
2 × ZΠ1

2 → ZΠ1
2 → ∅,

2)ZΠL
2 × ZΠ1

2 → ZΠ1ΠL
2 → ∅,

3)ZΠL
2 × ZΠ1

2 → ZΠL
2 → ∅. (4.39)

We note that these phases are not necessarily realized in a given model, and one may be able
to make physical arguments why certain phases can be hard or even impossible to realize in
the quantum circuit.

Route 1 is realized if, starting from the symmetric volume-law phase, XXII and IIXX are
condensed first. Because this condensate breaks the Π̂L and Π̂1Π̂L symmetry, the subsystem
parity variance decays exponentially in this phase. Furthermore, we cannot create the EA
order parameter XIXI out of any pair of condensed charges. Hence, the EA order also
vanishes. We therefore term this phase the featureless volume-law phase. It is worth pointing
out that this state has exactly the same symmetry breaking pattern as the maximally mixed
state |I⟩⟩ = 1⊗2. Hence, we can view this state as being smoothly connected to a conventional
thermal state. From this phase, the system can go into the broken symmetry volume-law
phase by condensing the charges XIIX and IXXI.

Route 2 is realized if the charges XIIX and IXXI are the first to condense starting
from the symmetric volume-law phase, leaving the symmetry generated by Π̂1Π̂L intact.
The ensuing intermediate phase exhibits both long-range EA order and nondecaying parity
variance. The former is seen by writing the EA order parameter as the product XIXI =
(XXII)(IXXI). The first factor is condensed in ⟨⟨I|, whereas the second factor is condensed
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in |ψgs⟩⟩. The latter is seen by factoring Π̂L(A) = Π̂1(A)(Π̂1(A)Π̂L(A)). We call this phase
the volume-law coexistence phase I. The broken symmetry phase is reached from here by
further condensing the charges XXII and IIXX

Finally, route 3 is realized, starting from the symmetric volume-law phase, by condensing
the charges XIXI and IXIX. As in the area-law case, this again gives rise to coexistence
of long-range EA order and nondecaying parity variance. We thus term this phase the
volume-law coexistence phase II.

There is yet one more volume-law phase, obtained from the symmetric area-law phase
by breaking the S2 symmetry while retaining a composite Z2 symmetry generated by CℓΠ̂L.
This is achieved by condensing the order parameter ZY XI symmetrized over the residual
symmetry CℓΠ̂L and the local symmetries. This “composite” volume-law phase, as we term
it, exhibits an exponentially decaying parity variance because the ground state breaks the
Π̂L symmetry along with all the composite symmetries gI Π̂L. At the same time, there is a
long-range EA order, which can be seen by factoring XIXI = (Y Y II)i(ZY XI). The first
factor is condensed in ⟨⟨I|. The second is a component of the order parameter of this phase.
Further reducing the residual symmetry leads to the broken symmetry volume-law phase.

Fisher Information as a probe of circuit states

So far we have considered equal-time properties of the output state, which translate to
boundary matrix elements in the effective model. An alternative diagnostic approach, which
is more natural to implement experimentally, focuses on the probability distribution of
measurement outcomes obtained along the time evolution. In Ref. [18], we showed that the
sensitivity of the measurement outcome distribution to changes in the initial state is a direct
probe of the emergence of an encoding state. This sensitivity to initial conditions, is measured
by a quantity known as the Fisher information in the distribution. The Fisher information is
depressed below its maximal attainable value upon entering the volume-law phase, indicating
that information about the perturbation to the initial state remains partially hidden and thus
protected from the measurements. Within the effective model of random unitary circuits,
the behavior of the Fisher information is a direct probe of spontaneous breaking of the Sn

permutation symmetries established in the volume-law phases [18].
The Fisher information probe can be adapted to characterize the symmetry enriched

phases of the circuit. Specifically, we consider the sensitivity of the measurement outcome
distribution to a symmetry breaking perturbation of the initial state. We will show that the
corresponding Fisher information allows to distinguish between different broken symmetry
states and even identify SPT phases.

Let us start by giving a precise definition of the probing scheme. In the first, initialize
the system in a pure state with definite parity |ψ0⟩ =

⊗L
j=1 |0⟩. The next step is to apply a

weak parity changing perturbation at site i, Uθ,i = e−iθXi . Then operate the hybrid circuit on
this state. We denote by pθ,m the distribution of measurement outcomes resulting from the
initial state perturbed by Uθ, dropping the site index i for simplicity. The Fisher information,
which quantifies the sensitivity of the measurement outcome distribution to the perturbation
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θ is defined as

F =
d2

dθ2
DKL(p0,m||pθ,m)

∣∣∣
θ=0

. (4.40)

DKL, the Kullback-Leibler (KL) divergence, measures the distinguishability of two probability
distributions DKL(p0,m||pθ,m) =

∑
m p0,m log(p0,m/pθ,m). The first order derivative of DKL is

zero as DKL is non-negative and vanishes at θ = 0.
In close analogy with the von-Neumann entropy we analyze KL divergence by defining a

replica sequence

D(n) ≡ 1

1 − n
log

(∑
m p0,mp

n−1
θ,m∑

m p
n
0,m

)
, (4.41)

where DKL is recovered in the replica limit n→ 1, i.e. DKL = limn→1D
(n). The n = 2 replica

quantity D(2) can be formulated in our framework as

D(2) = lim
t→∞

− log

(⟨⟨I|e−tHeffUθ,X |ψ0⟩⟩
⟨⟨I|e−tHeff|ψ0⟩⟩

)

= − log

(
⟨⟨ψI

gs|Uθ,X |ψ0⟩⟩
⟨⟨ψI

gs|ψ0⟩⟩

)
, (4.42)

where |ψ0⟩⟩ =
⊗L

j=1 |0000⟩⟩ represents the initial state |ψ0⟩ in the duplicated Hilbert space

H(2), and Uθ,X = 1 ⊗ 1 ⊗ Uθ,i ⊗ U∗
θ,i is the unitary operation in H(2) generated by the

single-qubit rotation Uθ,i acting on one copy of the density matrix. The ground state
⟨⟨ψI

gs| = limt→∞ ⟨⟨I|e−tHeff is obtained from long imaginary time evolution of the reference
state. We distinguish this state by the superscript I from the ground state obtained by
evolving the initial state |ψ0⟩⟩. There is a subtle difference between these two states in the
broken symmetry phase. Because the reference state ⟨⟨I| has broken symmetries, the ground
state evolved from it can break symmetries explicitly. By contrast, the state |ψgs⟩⟩ in the
broken symmetry phase is a macroscopic superposition of the two broken-symmetry states
(i.e. a cat state).

From the KL divergence, we define the n-th Fisher information as F (n) ≡ d2
θD

(n)|θ=0.
Thus, the second Fisher information F (2) is given by a boundary matrix element

F (2) ≡ d2
θD

(2) = 2
⟨⟨ψI

gs|1 −OX,i|ψ0⟩⟩
⟨⟨ψI

gs|ψ0⟩⟩

= 2

(
1 − ⟨⟨ψI

gs|ÕX,i|ψ0⟩⟩
⟨⟨ψI

gs|ψ0⟩⟩

)
. (4.43)

Here OX,i = [(IIXX)i + (XXII)i]/2 and in the last equality we claim that OX,i can be

replaced with the operator ÕX,i = [(IIXX)i + (XXII)i + (XIIX)i + (IXXI)i]/2 without



CHAPTER 4. SYMMETRY ENRICHED PHASES OF QUANTUM CIRCUITS 88

changing the Fisher information. This is because XIIX and IXXI are odd under the
symmetry Π̂1, whereas ⟨⟨I|, |ψ0⟩⟩ and exp(−tHeff) are even. Therefore, the matrix element of
these components vanishes.3

For convenience, we define the “order parameter”

Φ(2) ≡ 1 − 1

2
F (2) =

⟨⟨ψI
gs|ÕX,i|ψ0⟩⟩
⟨⟨ψI

gs|ψ0⟩⟩
. (4.44)

Because ÕX,i is symmetric under both left and right swap, while it is odd under Π̂L, the
order parameter can detect breaking of circuit symmetries that anti-commute with XXII
and IIXX, while it is insensitive to breaking of the S2 permutation symmetry.

It is important to note that this behavior is special to circuits with physical Z2 symmetry.
In particular, the replacement of OX,i with ÕX,i can be made only if Heff inherits the Ising

symmetry Π̂1 from the circuit. To define a probe that differentiates between area-law and
volume-law phases as in Ref. [18], we would need to consider the Fisher information, which
measures the sensitivity of the measurement outcomes to a different perturbation, which
respects the circuit symmetries. Note also that the matrix element Φ(2) is necessarily positive
in the broken symmetry state because ⟨⟨ψI

gs| breaks the symmetry in a definite way inherited
from ⟨⟨I|, which is a positive weight superposition of symmetric and anti-symmetric states.

The behavior of Φ(2) in the different phases is summarized in Table 4.1. From the
information theoretical perspective, Φ(2) > 0 (i.e. Fisher information below its maximal value)
means that the information about the perturbation to the initial state remains partially
hidden from the measurement results.

The Fisher information can furthermore allow detection of the SPT area-law phases by
directly probing edge states. Recall that the reference state ⟨⟨I| provides symmetry breaking
initial conditions to the imaginary time evolution ⟨⟨I|e−tHeff → ⟨⟨ψI

gs|. In the SPT phase, the
broken symmetry can propagate to infinite time by coupling to the edge zero mode. This
implies the order parameter has a spatial dependence, and Φ

(2)
i > 0 for i near the edge, but

decaying exponentially into the bulk of the qubit chain. It is also possible to probe the broken
permutation symmetry at the edge of the SPT phase by measuring the Fisher information
associated with a perturbation that respects the physical circuit symmetry.

Crucially, this detection scheme for the edge modes of the SPT phase is efficient and
scalable in the sense that the number of repetitions of the experiment needed to gather
enough data does not grow with the system size. Since we are probing a gapped state with a
finite correlation length ξ in space and time, the natural expectation is that it is enough to
produce the Fisher information from a partial measurement record including only a finite
space-time bubble of radius r ≫ ξ away from the perturbation. Indeed, within the effective
theory, discarding measurement results creates a bulk field that breaks the S2 symmetry
in the discarded region outside of the bubble [18]. The effect of these symmetry breaking

3Note that even if the ground state spontaneously breaks the Π̂1 symmetry, it manifests in ⟨⟨ψI
gs| through

emergence of a cat state because the reference state is symmetric under Π̂1.
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Figure 4.2: (a) Two chain model investigated numerically. Internal dynamics of chain-1
is generated by purely unitary two-qubit gates, while that of chain-2 by pure projective
measurements (of Zi or XiXi+1). The two chains are coupled by random unitary gates applied
with probability q. All gates and measurements commute with the Z2-parity symmetry of
chain 2. (b) Circuit diagram for the model. Every time step consists of three types of
operations: two-qubit unitary gates within chain-1 (blue boxes) are randomly drawn from the
Clifford group; measurements in XiXi+1- or Zi-basis are performed on chain-2 (green boxes
with rounded corners) with the probabilities r and 1 − r, respectively; and the inter-chain
gates (orange bonds) are randomly drawn from the Clifford elements preserving Zi on the
chain-2 and applied to the circuit with the probability q.

conditions on the perturbed site in the bubble decays exponentially with r/ξ, leading to
a correspondingly small effect on the Fisher information. Thus, the required number of
repetitions is expected to scale as eξ, allowing an efficient detection.

Numerical demonstration of transitions between volume-law phases

Having classified the possible phases of quantum circuits enriched by the physical Z2 circuit
symmetry, we now demonstrate that parts of this phase structure is realized in a concrete
circuit model illustrated in Fig. 4.2. We simulate the circuit directly without relying on
replica tricks. The results therefore give further confidence that the effect of the enlarged
dynamical symmetry persists to the physical replica limit n→ 1.

Our model consists of two coupled L-qubit chains in a ladder geometry, undergoing a
hybrid dynamics that consists of unitary gates and projective measurements. We restrict the
set of unitary gates to the elements of the two-qubit Clifford group, which allows efficient
simulation of large systems [1]. This restriction should not affect any qualitative features of
our analysis as Clifford gates are statistically indistinguishable from Haar random unitary
gates up to third moments, i.e. Clifford group forms unitary 3-design [264].
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Figure 4.3: (a) Phase diagram of the two chain model. q is the inter-chain coupling. r is the
probability of measuring XiXi+1 on chain 2 (versus 1 − r of measuring Zi). The red crosses
indicate phase boundaries extracted from the numerics. All three phases exhibit volume-law
entanglement. (b) Numerical simulation results. Top panels: Half-chain entanglement entropy
normalized by volume. Insets: system size dependence of the entanglement entropy density at
points r = 0.6, 0.8, 0.9 (indicated by arrows) indicates convergence to a non-vanishing value
as L→ ∞. Bottom: Behavior of the Edwards-Anderson correlation function χEA(L/2) (blue
diamonds) and parity variance Π(A = L/2) (red crosses) as a function of r for two values of
q. The nearly overlapping lines correspond to different system sizes L = 70, 110, 180, 280, 450.

The circuit dynamics can be summarised as follows. First, all unitary gates and measure-
ments respect the global Z2 symmetry generated by π̂ =

∏
j Zj, where Zj are the Pauli-Z

operators acting on the qubit at site j in chain-2. Thus, the qubits of chain-1 are neutral
with respect to the Z2 symmetry. The time evolution internal to chain-1 is generated purely
by unitary gates, which are unrestricted by symmetry. The time evolution internal to chain-2
is generated purely by measurements: with probability r a pair of qubits at sites j and
j + 1 are measured in the XjXj+1-basis or, with probability 1 − r the qubit at site j is
measured in the Zj-basis. These measurements are denoted by the green boxes in the figure.
Finally, a coupling between the two chains is implemented by two-qubit unitary gates on
the rungs of the ladder, applied with probability q per gate at each time step. These gates,
represented by orange rungs in Fig. 4.2, are drawn uniformly from one of the 384 elements in
the Clifford group that commute with Zj in the chain-2. Thus, the parameter q controls the
unitary coupling strength between two chains, and r tunes the ratio between different kinds
of measurements on chain-2. The system is initialized in the state |ψ0⟩ = |0⟩⊗2L, and we are
interested in its steady-state properties.

We can easily understand the steady-state behavior of our model in the decoupled
chains limit q = 0. In this case, chain-1 evolves as a random unitary circuit, in which the
entanglement entropy of any subsystem grows linearly until it saturates to its maximum [186,
140]. In contrast, chain-2 undergoes measurement-only dynamics. Numerical simulations
and analytical arguments in Ref. [224] have shown that this leads to two area-law phases
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separated by a phase transition at rc = 1/2. For r < rc, chain-2 is in the symmetric
area-law phase characterized by nondecaying parity variance and exponentially decaying
EA correlations. Chain-2 with r > rc realizes the broken symmetry area-law phase with
long-range EA correlations and exponentially decaying parity variance.

When the two decoupled chains are considered as a single system, they trivially realize a
volume-law entanglement scaling (due to chain-1), which undergoes Z2 symmetry breaking
phase transition (due to chain-2) at r = rc. Within our formalism these two volume-law
phases are represented by gapped ground states of an effective Hamiltonian. Thus, they are
expected to be robust to (at least) weak coupling between the chains.4 Furthermore, we can
use the symmetry analysis of Section 4.3 to predict which phases would be realized.

Since chain-1 has broken S2 symmetry, its leading effect at weak coupling q ≪ 1 is to
exert an effective S2-symmetry breaking field on chain-2, which does not affect the properites
associated with the parity symmetry. Thus, from the symmetry perspective the state
established for r < rc at an infinitesimal coupling is identical to the symmetric volume-law
phase (row 5 in Table 4.1). Similarly, the state established for r > rc at an infinitesimal
coupling is identical to the broken symmetry volume-law phase (row 9 in Table 4.1).

Finally, coupling to the symmetry breaking field produced by chain-1 is relevant at the
critical point separating the two area-law phases of chain-2. As discussed in subsection 4.3,
the critical point at q = 0 is characterized by condensation of the charges Q1 = XXII and
Q2 = IIXX together with Q′

1 = IXXI and Q′
2 = XIIX. Because the two pairs of charges

are connected by the S2 symmetries, they must condense together when these symmetries
are present. However, once we turn on the field breaking the S2 symmetries, the critical
point will generically split into two critical points, one involving condensation Q1 and Q2

and the other involving condensation of Q′
1 and Q′

2. This gives rise to an intermediate phase
in which only one of the two pairs of charges is condensed (the featureless phase in row 6 or
the coexistence phase I in row 7 of Table 4.1). Which intermediate phase is realized depends
on the charges that acquire a lower energy, which in turn may depend on the details of the
model.

The persistence of the two distinct volume-law phases and the emergence of an intermediate
phase between them in the coupled-chain model are nontrivial predictions of the effective
theory, which we now turn to test numerically. To this end, we simulate the time evolution of
systems with length L ≤ 450. We evaluate Π(A), χEA, and the volume-normalized half-system
entanglement entropy, S(L/2)/(L/2) averaged over ∼ 500 random circuit realizations. To
focus on the long-range and late-time behaviors, we use iℓ ≈ L/3 and ir ≈ 2L/3 for evaluating
χEA(iℓ, ir) and Π(A) (as the left and right edges of A) and we evaluate all quantities at time
T ≈ 3L.5

4By the same token, the phases are also robust to any other small perturbation to the circuit, which
respects the symmetry.

5More precisely, we choose T = 3L+ 1− a with a = 0 or a = 1 depending on whether L or L+ 2 is a
multiple of 4, respectively. We always choose even L. This choice is introduced in order to avoid artifacts
associated the gates acting across the half-chain boundaries at the very last time step. We did similar
regularizations for the choice of i and j for Π(A) and χEA.
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The results of our numerical simulations are summarized in Fig. 4.3. For the decoupled
chains (q = 0), we find, as expected, a single phase transition tuned by the ratio r of bond
to site measurements. Upon increasing the inter-chain coupling to q = 0.3 and q = 0.5, we
observe a splitting into two critical points and emergence of an intermediate phase. As seen
in the bottom of panel (b), the intermediate phase is characterized by vanishing of both the
the EA correlations and the parity variance, consistent with the featureless phase in row 6 of
Table 4.1. Physically, this may be interpreted as a result of the unitary inter-chain coupling
countering the effect of the XiXi+1 measurements, favoring the state without long-range order.
We see that for sufficiently large q there is no broken symmetry state for any value of r. At
the same time, the unitary coupling q involving a single-site Zi operator on chain 2 commutes
with the sub-system parity. Therefore introducing this coupling does not change the point
at which non-decaying sub-system parity variance is established. It would be interesting
to check if coupling the chains by various measurements that preserve the Z2 symmetry
instead of unitary gates could favor a volume-law coexistence state (row 7 in Table 4.1) as
the intermediate phase.

The top panels of Fig. 4.3(b) confirm that all the observed phases are indeed characterized
by volume-law scaling of the entanglement entropy. For large values of r, we observe a slow
drift of the entropy-density S(L/2)/(L/2) as a function of system sizes [inset of Fig. 4.3(b)].
We attribute this drift to the additive contribution S0 of chain-2 to S(L/2). Indeed, plotted
as a function of 1/L, the entanglement entropy density shows a clear linear dependence,
S(L/2)/(L/2) = 2S0/L + s with a finite entropy density s > 0 in the limit L → ∞ (the
dotted lines in the inset).

The establishment of long-range order in a one-dimensional system with extensive entropy,
may appear, at first sight, contradictory to theorems prohibiting such order at any non-
vanishing temperature. But, this is not a thermal system.

As we mentioned above, an appropriate description of the volume-law phase at weak
coupling (q ≪ 1) is to replace chain-1 by an effective field that breaks the S2 permutation
symmetries. In the physical circuit, this corresponds to coupling chain-2 to an effective
infinite temperature bath in place of chain-1. We are then interested in the trajectories of the
mixed state in chain-2, connected by coupling q to an infinite temperature bath and subject
to local measurements. For each individual trajectory, the measurements act as couplings to
zero temperature bath, wherein the measurement projection collapse the local wave function
into a definite quantum state with zero entropy. Because of this coupling to two very different
baths, each trajectory is very far from being in thermal equilibrium and establishment of
long-range order is not prohibited.

One of the nontrivial results of this section is that measurements can facilitate the
establishment of quantum order in one dimension, even in states with volume-law entanglement
entropy. We may further argue that this protection extends also to topological order and edge
states. To this end, we note that our model can be also interpreted as the system of Majorana
fermions on chain-2 via Jordan-Wigner transformation. On-site Z measurements map to
measurement of the Majorana parity iγ2i−1γ2i on odd bonds, whereas the XX measurements
map to measurements of parity on even bonds iγ2iγ2i+1. Chain-1 is coupled to chain-2 with
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unitary coupling q to the Majorana bond parities. The broken symmetry volume-law phase of
the qubit system (phase III in Fig. 4.3) translates to a topological volume-law state with free
Majorana edge modes. The symmetric volume-law phase (phase I in Fig. 4.3) translates to a
volume-law phase which is distinct from a thermal state by having subsystem fermion-parity
variance that is nondecaying with subsystem size. Finally, phase II in Fig. 4.3 is smoothly
connected to the conventional thermal phase of the Majorana system, where there is no
long-range correlation and the fermion parity of a subsystem fluctuates.

4.4 Gaussian fermionic circuits

We turn to investigate hybrid quantum circuits that operate on fermionic degrees of freedom
rather than on qubits. Specifically we consider quadratic gates and measurements that
preserve the Gaussianity of the fermionic wave function. Such circuits cannot sustain a
volume-law state for any finite rate of measurements [55, 87]. However, recent numerical
work indicated that a critical phase with entanglement that scales as log(L) is established at
low measurement rates [8, 225].

Here, we provide a simple description of this critical phase using the framework developed
in Section 4.2 to map the dynamics to an effective ground state problem. While we describe
the general structure of the theory for any number of replicas n, we carry out a more
detailed study only of the case of n = 2. This theory predicts a measurement-induced
Kosterlitz-Thouless (KT) transition from the critical phase into two area-law phases, which
are distinguished by the sign of the vortex fugacity. These are identified as a trivial and a
topological area-law phase. We map pertinent properties of the circuit dynamics to universal
boundary operators in this theory, thus facilitating a detailed comparison to exact numerical
simulations of the circuit. The numerical results, obtained for systems of size L ≤ 160, are
consistent with a KT transition.

Before proceeding we note that the two area-law phases, a topological and a trivial
phase have been previously discussed in the context of measurement only models [182, 154].
Furthermore, Sang et al. [225] argued that adding a specific set of gates to the measurement
only model, allows a mapping to the completely packed loop model with crossings [184], which
also hosts a critical state known as the Goldstone phase. We comment on the connections of
our results to these loop model predictions at the end of the section.

Model

The general structure of the circuits we consider here is shown in Fig. 4.4. Circuit elements
are operating on a one-dimensional chain of Majorana modes γ2j−1 and γ2j. We view such
pairs of “Majorana sites” (2j − 1, 2j) as making up a single “physical site” j, hosting a single
complex fermion fj = (γ2j−1 + iγ2j)/2 on site j. For simplicity, we take the initial state to be
the vacuum of all fermionic modes, i.e. fj|vac⟩f = 0 ∀j.
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Figure 4.4: Gaussian fermionic circuit. Each time step δt consists of sequential application of
one layer of site unitary gates, bond unitary gates, site measurements, and bond measurements.
The quadratic site and bond parity measurements are applied with probabilities Γsδt and
Γbδt respectively.

The unitary elements of the circuit are generic Gaussian gates operating on the nearest
neighbor Majorana pairs

Us,j = eθs,jγ2j−1γ2j , Ub,j = eθb,jγ2jγ2j+1 . (4.45)

We call Us,j the site unitary and Ub,j the bond unitary as they operate on physical sites and
bonds, respectively. These gates are depicted as gray and yellow boxes in Figure 4.4.

Similar to the qubit circuits discussed in the previous section, drawing the couplings θs,j
and θb,j from symmetric distributions ensures a mapping to imaginary time evolution with an
effective Hermitian Hamiltonian. Here, we shall draw the bond coupling θb,j from a Gaussian
distribution N(0, σ2

J) with zero mean and variance σ2
J , while the site coupling θs,j is taken

from a uniform distribution over [0, 2π). We note that this specific choice of the distributions
is made to simplify the exact mapping and the resulting effective Hamiltonian, and it is not
crucial for our general discussion in this section.

After each layer of unitary gates in the circuit, measurements are made on a certain
fraction of the fermion parity operators defined on sites and bonds:

π̂s,j = −iγ2j−1γ2j, π̂b,j = −iγ2jγ2j+1. (4.46)

Measurements of the site parity are performed with a probability ps at each time step and
those of bond parity with probability pb. Upon the measurement of π̂a,j with a ∈ {s, b},
the quantum state evolves according to the Born rules: projection onto a definite parity
eigenstate P±|Ψ⟩/

√
⟨Ψ|P±|Ψ⟩ with probability ⟨Ψ|P±|Ψ⟩, where P± = (1 ± π̂a,j)/2.
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We investigate the quantum state at the output of this circuit after a long time evolution
of NT ≫ 1 steps. As before, we are interested in quantities that are nonlinear in the system
density matrix, such as the entanglement entropy of a subsystem A or the variance of fermion
parities taken over the ensemble of trajectories:

Πa,A ≡
∑

m

pm

〈∏

j∈A

π̂a,j

〉2
m
. (4.47)

The sum is over different trajectories (runs of the circuit) characterized by a specific set of
measurement outcomes m and the angled brackets represent a quantum expectation value in
the output state of that trajectory.

Enlarged Symmetry

The entanglement entropy and other quantities that depend on high moments of observables
can be derived from the average replicated density matrix |ρ̃(n)⟩⟩. Thus, it is important to
identify the symmetry of the dynamics of n replicas, which will allow us to classify distinct
steady state phases. Due to the special structure of Gaussian fermionic circuits, this symmetry
is different from the dynamical symmetry identified for the qubit circuits in Section 4.2.

To facilitate the analysis, we introduce second quantized operators acting in the duplicated
Fock space. The Majorana operators γj acting on the wave-function of the physical circuit
are extended to γj,ασ, where α ∈ {1, 2, . . . , n} indicates the replica on which this Majorana
operates and σ ∈ {↑, ↓} indicates forward and backward branch of the evolution, respectively.
Note that the mapping from tensor product operators, such as γj⊗1⊗1⊗1 or 1⊗γj⊗1⊗1
to the second quantized operators in the duplicated Hilbert space requires extra phase factors
to ensure anti-commutation relations between all fermionic operators. The precise mapping
is given in Appendix C.5.

The evolution of the replicated density matrix in a single time step of the fermionic circuit
in Fig. 4.4 is given by

|ρ̃(n)(t+ δt)⟩⟩ = M(n)
b M(n)

s U (n)
b U (n)

s |ρ̃(n)(t)⟩⟩. (4.48)

As discussed in Section 4.2, M(n)
s/b is a linear operation on the unnormalized quantum state

|ρ̃(n)⟩⟩ generated by a layer of site/bond measurements performed with probabilities ps/b.
We first focus on the the dynamical symmetry in the case of pure unitary evolution, i.e.

when ps = pb = 0. The generators of the unitary time steps take the form of decoupled
quadratic Majorana Hamiltonians in the duplicated Fock space:

h(n)s =
n∑

α=1

L∑

j=1

iθs,j (γ2j−1,α↑γ2j,α↑ − γ2j−1,α↓γ2j,α↓) ,

h
(n)
b =

n∑

α=1

L∑

j=1

iθb,j (γ2j,α↑γ2j+1,α↑ − γ2j,α↓γ2j+1,α↓) . (4.49)
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Using the Majorana operators of the 2n chains, it is natural to construct a local so(2n)

algebra on every Majorana site ℓ, generated by Γασ,βσ′

ℓ = i
4
[γℓ,ασ, γℓ,βσ′ ]. From these local

objects, we construct a global so(2n) algebra with elements

Γασ,βσ′
=

L∑

j=1

(
σσ′Γασ,βσ′

2j−1 + Γασ,βσ′
2j

)
, (4.50)

which commute with the generators (4.49) of the unitary dynamics. Note that here and below
σ =↑ (σ =↓) is identified with σ = +1 (σ = −1).

The Γ matrices generate proper rotations among the 2n species of Majorana fermions. In
addition we have the single-branch fermion parity symmetries Π̂α,σ =

∏L
j=1 iγ2j−1,α,σγ2j,α,σ,

which constitute improper rotations, e.g. Π̂1,↑ that maps γj,1,↑ 7→ −γj,1,↑. Thus, altogether
the purely unitary dynamics on n copies have an O(2n) symmetry.

In addition, the Hamiltonian admits a fermionic time-reversal symmetry T, under which
Tγα,↑T−1 = γα,↓, Tγα,↓T−1 = −γα,↑, and T iT−1 = −i. We conclude that the unitary dynamics
exhibits the symmetry O(2n) ⋊ ZT

2 . Note that the effective time-reversal symmetry is not
exactly the Hermiticity symmetry, which appears as a nonlocal transformation in the fermionic
duplicated Hilbert space (see Appendix C.5).

Adding measurements reduces the symmetry. Only the subset of the generators (4.50)
having σ = σ′ commute with the measurement operators. These generators, supported only
on either the forward or the backward branches, form a so(n) ⊕ so(n) algebra and give rise
to a O(n) × O(n) symmetry. Together with fermionic time reversal, the symmetry of the
n-copy unitary evolution with measurements is [O(n) ×O(n)] ⋊ ZT

2 .
It is worth pointing out that the dynamical symmetry of the pure unitary evolution is the

same as the static symmetry in the case of free fermions in the symplectic class AII [222,
93]. Moreover, the addition of measurements here breaks the O(2n) symmetry in the same
way as adding a non-Hermitian quadratic coupling does in the free fermion problem. There
is, however, an important difference in taking the replica limit, which in our case is n→ 1,
whereas it is n→ 0 for the disordered fermion ground state problem.

We note on passing that a measurement-only model (i.e. no unitary gates) also has an
enlarged dynamical symmetry O(2n) ⋊ ZT

2 like the purely unitary model. In this case, the
O(2n) symmetry generators are given as simple zero momentum sums of the local generators.
That is, the first term in Eq. (4.50) does not have an additional sign σσ′.

Similar to the case of the qubit circuits considered in Section 4.3, the effective global sym-
metry is reduced when we account for the presence of local integrals of motion. Specifically, the
fermion gates and measurements commute with all the local operators Rℓ =

∏n
α=1 iγℓ,α↑γℓ,α↓

that measure the total parity of fermions from all species at Majorana site ℓ (see Appendix C.1).
Thus |ρ̃(n)⟩⟩ evolves to a ground state of Heff with definite eigenvalues of Rℓ. Such a state
necessarily breaks the single branch parity symmetries that anti-commute with the Rℓ.

Having removed the improper rotations generated by the single-branch parities, we are left
with the effective symmetry SO(2n) ⋊ZT

2 for the purely unitary circuit. With measurements,
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the effective symmetry is reduced to G(n)
f,eff ≡ (SO(n) × SO(n)) ⋊ (Z2 × ZT

2 ), where the first
Z2 is generated by fermion parity in both the forward and backward branch of the first copy,
i.e. Π̂1 = Π̂1↑Π̂1↓. Finally, we note that the global symmetry

∏n
α=1 Π̂α =

∏
ℓ Rℓ, which is

part of G(n)
f,eff, cannot be broken because it is a product of local integrals of motion.

We now elaborate on how this scheme applies to the case of two replicas. The dynamical
O(2) × O(2) symmetry in presence of measurements, implies two conserved U(1) charges,
which we can write as the total occupation numbers of complex fermion modes

Nσ =
L∑

j=1

Nσ,j =
L∑

j=1

c†2j−1,σc2j−1,σ + c†2j,σc2j,σ, (4.51)

The complex fermions are not local to a single copy of the system and are rather defined as
superpositions of Majorana modes on the two copies:

c2j−1,↑ =
γ2j−1,1↑ + iγ2j−1,2↑

2
, c2j,↑ =

γ2j,2↑ − iγ2j,1↑
2

,

c2j−1,↓ =
γ2j−1,1↓ − iγ2j−1,2↓

2
, c2j,↓ =

γ2j,2↓ + iγ2j,1↓
2

. (4.52)

The U(1) symmetries are supplemented by the single branch Z2 parity symmetries to give
the two copies of O(2) = U(1) ⋊ Z2. These parity transformations act on the two conserved
fermion species independently as particle-hole transformations, namely cj,σ 7→ (−1)jc†j,σ.

Together with the time-reversal we have the full symmetry G(2)
f ≡ [O(2) ×O(2)] ⋊ ZT

2 .

For purely unitary dynamics, the symmetry is enlarged to O(4)⋊ZT
2 = (SO(4)⋊Z2)⋊ZT

2 .
The SO(4) symmetry has a useful and intuitive representation in terms of two SU(2)
symmetries, which stems from the isomorphism SO(4) ∼= [SU(2) × SU(2)]/Z2. One of the
SU(2) symmetries is associated with rotations between the forward and backward branches,
labeled as up and down spins. We call this the Σ spin symmetry. The other SU(2) symmetry
is a charge “η-symmetry” [276]. The respective generators of the spin and charge symmetries
can be written explicitly as

Σ+
j ≡ c†2j−1,↑c2j−1,↓ + c†2j,↑c2j,↓, (4.53a)

Σ−
j ≡

(
Σ+

j

)†
, (4.53b)

Σz
j ≡

1

2

∑

σ

σ
(
c†2j−1,σc2j−1,σ + c†2j,σc2j,σ

)
, (4.53c)

η+j ≡ −c†2j−1,↑c
†
2j−1,↓ + c†2j,↑c

†
2j,↓, (4.53d)

η−j ≡
(
η+j
)†
, (4.53e)

ηzj ≡ 1

2

∑

σ

(
c†2j−1,σc2j−1,σ + c†2j,σc2j,σ − 1

)
. (4.53f)

Here, the ladder operators Σ±
j = Σx

j ± iΣy
j and η±j = ηxj ± iηyj . The SU(2)×SU(2) is quotient

by Z2 because the total η and Σ spins must add to an integer spin representation to give the
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required SO(4) symmetry. Finally, the SO(4) symmetry is supplemented by the time-reversal
symmetry and the single branch parity symmetry to complete the full O(4) ⋊ ZT

2 symmetry.
When acting on the spin and η-operators, the single-branch fermion parity transformation

exchanges two sets of SU(2) generators, i.e. Σ±,z
j 7→ η±,z

j and η±,z
j 7→ Σ±,z

j , and the time
reversal flips the sign of spin operators, while keeping charge η-operators invariant, i.e.
TΣ±,z

j T−1 = −Σ±,z
j and Tη±,z

j T−1 = η±,z
j .

As explained above, the ground state of the effective Hamiltonian must break the single-
branch symmetries and thus exhibits a reduced effective symmetry. For purely unitary
dynamics, the full symmetry O(4) ⋊ ZT

2 is thus reduced to SO(4) ⋊ ZT
2 . With measurements,

the reduced symmetry is G(2)
f,eff ≡ (U(1)×U(1))⋊ (Z2 ×ZT

2 ). Here the first Z2 is generated by

the particle-hole transformation P for both conserved fermion species, which maps Pη±,z
j P−1 7→

−η∓,z
j and PΣ±,z

j P−1 7→ −Σ∓,z
j .

Effective 1D quantum Hamiltonian

We now carry out the program developed in Section 4.2 to map the dynamics of the averaged
replicated density matrix |ρ̃(2)⟩⟩ to effective imaginary time evolution with a one-dimensional
quantum Hamiltonian. Almost everything proceeds exactly as detailed in Section 4.2 for
qubit circuits. Here we elaborate on distinct features in our fermionic model related to the
enlarged dynamical symmetry.

As a first step in the program, we consider averaging over probabilistic measurements
and bond unitary gates. The site unitary gates, designed in this model to project onto a
reduced Hilbert space, will be considered later. It is straightforward to integrate over the
Gaussian distribution of the bond coupling θb,j to obtain the averaged bond unitary acting
on the doubled density matrix

Ub,j = exp

[
−Jbδt

2

(∑

α,σ

σ iγ2j,ασγ2j+1,ασ

)2
]
, (4.54)

where we have denoted the variance θ2b,j ≡ Jbδt. The averaged measurement in the duplicated
Hilbert space takes the form

Ma,j = (1 − Γaδt) + Γaδt
∑

m=±

P⊗4
a,j,m, (4.55)

where a ∈ {s, b} indicates the site and bond measurements implemented by the projections
Ps,j,± = (1 ± π̂s,j)/2 and Pb,j,± = (1 ± π̂b,j)/2 on measurement outcomes m = ±. Γa is the
measurement rate so that the measurement probability in a time step is pa = Γaδt. Crucially,
the evolution operators Ub,j and Ma,j are both Hermitian. Thus in the limit δt → 0 they
describe imaginary time evolution over an infinitesimal time step, generated by an effective
quantum Hamiltonian Heff = HU +HM.
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We could have also included site unitary gates

Us,j = exp

[∑

α,σ

θs,jσiγ2j−1,ασγ2j,ασ

]
(4.56)

on the same footing in this program, averaging over θs,j drawn from a Gaussian distribution
of coupling constants. This would result in a complete effective Hamiltonian written in terms
of the Majorana operators on the four chains. However, to obtain a simpler effective model
without changing the essential structure and symmetries of the problem, we choose the site
coupling constants θs,j to be uniformly distributed on [0, 2π). In this case, exactly as in
Section 4.2, averaging over the site unitaries implements a projection on a six-dimensional
local Hilbert space on physical sites (i.e. Majorana sites 2j−1, 2j). However, in the fermionic
system, it is advantageous to use a different basis of the reduced Hilbert space, which makes
use of the fermionic symmetries.

We recall the above observation that unitary gates, including the single-site gates, commute
with generators of the SU(2) spin (Σ) and SU(2) charge (η) symmetry. Therefore, the basis
of the projected Hilbert space can be organized into multiplets of the Σ and η spins on each
physical site j. Three of the basis states |m⟩⟩η with m = ±1, 0 form the η triplet which
transform as the Σ singlet. The other three states |m⟩⟩Σ with m = ±1, 0 form the Σ triplet
and transform as the η singlet. These basis states can be written explicitly in terms of the
second quantized conserved fermion operators defined in Eq. (4.52):

|−⟩⟩η = |vac⟩⟩, (4.57a)

| 0 ⟩⟩η =
1√
2

(
c†2j−1,↑c

†
2j−1,↓ − c†2j,↑c

†
2j,↓

)
|vac⟩⟩, (4.57b)

|+⟩⟩η = c†2j−1,↑c
†
2j,↑c

†
2j−1,↓c

†
2j,↓|vac⟩⟩, (4.57c)

|−⟩⟩Σ = c†2j−1,↓c
†
2j,↓|vac⟩⟩, (4.57d)

| 0 ⟩⟩Σ =
1√
2

(
c†2j−1,↓c

†
2j,↑ + c†2j−1,↑c

†
2j,↓

)
|vac⟩⟩, (4.57e)

|+⟩⟩Σ = c†2j−1,↑c
†
2j,↑|vac⟩⟩, (4.57f)

where |vac⟩⟩ is defined by the annihilation cj,σ|vac⟩⟩ = 0. Intuitively we can view the system
as hosting on each physical site a single spin-1 particle, which can be either an η or a Σ spin.
The occupation of η or Σ triplet at site j corresponds to distinct eigenvalues of the local
conserved quantities: R2j−1 = R2j = ±1 for η and Σ, respectively.

The effective Hamiltonian that generates the imaginary time evolution directly follows
from Eqs. (4.54) and (4.55) projected on the reduced six-dimensional local Hilbert space.
After straightforward algebra, we find that Heff simplifies to

Heff = Heff,η +Heff,Σ, (4.58)



CHAPTER 4. SYMMETRY ENRICHED PHASES OF QUANTUM CIRCUITS 100

where each term in Heff,η (Heff,Σ) acts nontrivially only for η-spins (Σ-spins) and otherwise
annihilates the wave function. We can write this explicitly as

Heff,κ =
∑

j

∆
(
Sz
κ,j

)2 −
∑

j

J⊥
(
Sx
κ,jS

x
κ,j+1 + Sy

κ,jS
y
κ,j+1

)
+ JzS

z
κ,jS

z
κ,j+1, (4.59)

where the spin-1 operators S⃗κ,j = (Sx
κ,j, S

y
κ,j, S

z
κ,j) annihilate the singlet state of the species

κ = η,Σ. The coupling constants in this Hamiltonian are determined from the parameters
of the unitary gates and the measurements as follows: ∆ = Γs, J⊥ = 2Jb + Γb/4, and
Jz = 2Jb − Γb/4.

Let us make a few remarks on the effective Hamiltonian. First, Heff conserves the total z
components as well as the parities associated with Sz

κ,j 7→ −Sz
κ,j transformation of η and Σ

spins, separately. Besides, Heff is the same in η and Σ sector and therefore invariant under the
exchange of η and Σ spins. Thus, Heff respects the symmetry [(U(1)⋊Z2)× (U(1)⋊Z2)]⋊ZT

2

as expected. Second, the occupation of η and Σ triplet states is locally conserved at every
site. Note that the number of local integrals of motion is reduced from 2L to L upon
averaging over the unitary gates and projection unto the six-dimensional local Hilbert space
PR2j−1P = PR2jP . Accordingly, the dynamics is partitioned into 2L sectors corresponding
to configurations of the η and Σ occupations.

In our case, the physical circuit is initialized in the vacuum state of the fermions fj.
When extended to the duplicated Hilbert space, this state can be written using the conserved
fermions as

|ρ0⟩⟩j =
1

2

(
c†2j−1,↑ + c†2j,↑

)(
c†2j−1,↓ − c†2j,↓

)
|vac⟩⟩j

=
1√
2

(
|0⟩⟩η − |0⟩⟩Σ

)
. (4.60)

We see that the initial state is already in the reduced Hilbert space and equally populates
both η and Σ triplet states at every site.

In the long imaginary time evolution, the wave function is dominated by the global ground
states of the Hamiltonian (4.58) among all 2L sectors. The ground states are found in the two
uniform sectors, i.e. the η sector with all sites occupied by η spins (Rℓ = 1) and the Σ sector
with all sites occupied by Σ spins (Rℓ = −1). Thus, the limt→∞ |ρ(t)⟩⟩ ≈ |ψgs⟩⟩η + |ψgs⟩⟩Σ

The steady state phases of the circuit can be classified based on the reduced effective
symmetry within either one of the two relevant sectors. The symmetry is reduced because
in each sector the two U(1) charges are not independent. In the η sector every site is a
sigma singlet with N↑,j = N↓,j, so only N↑ +N↓ is a non trivial charge. In the Σ sector two
fermions occupy each site, so N↑,j +N↓,j = 2, so only N↑ −N↓ is a non trivial charge. Hence,
either sector only forms a faithful representation of U(1) ⋊ (Z2 × ZT

2 ), which is a subgroup

of G(2)
f,eff. One can verify U(1) ⋊ (Z2 × ZT

2 ) is exactly the symmetry of Heff in either sector.
For vanishing measurement rates, owing to local conserved quantities, each sector only forms
a faithful representation of either SU(2) spin or charge symmetry, reducing the effective
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symmetry down to O(3) = SO(3) ⋊ ZT
2 .6 Indeed in this limit the effective Hamiltonian in

each of the two sectors is the Heisenberg ferromagnet, which manifests the O(3) symmetry.
Finally, we establish the correspondence between the ground state properties of Heff and

the steady states of quantum circuits by mapping various physical observables measured on
the circuit to the matrix elements of different boundary operators in the effective spin model.
As explained in Section 4.2, properties related to the second moments of the density matrix
(conditional on the measurement device) generally take the form

O(2) ↔ ⟨⟨I|O|ρ(2)⟩⟩
⟨⟨I|ρ(2)⟩⟩ , (4.61)

where ⟨⟨I| is the reference state that implements the (doubled) trace operation in the
duplicated Hilbert space, i.e. ⟨⟨I|ρ(2)⟩⟩ = tr ρ(2).

Within the effective description, the state ⟨⟨I|O can be viewed as the boundary condition
to the imaginary time evolution at the latest time. The action of O to the left transforms the
boundary conditions set by the reference state ⟨⟨I| in the region on which O is supported.
The kind of boundary condition imposed is dictated by the symmetries of ⟨⟨I|. We show
in appendix C.6 that the reference state breaks the U(1) symmetry in both the η and Σ
sector, exhibiting the long range order ⟨⟨I|ηyi ηyj |I⟩⟩ → c and ⟨⟨I|Σy

i Σy
j |I⟩⟩ → c as |i− j| → ∞.

Thus, ⟨⟨I| effectively imposes a symmetry breaking boundary condition on the imaginary
time evolution by Heff [see Fig. 4.5(a)].

The various operators we use to probe the circuit transform the broken symmetry boundary
conditions in different ways. Consider first the site parity variance Π

(2)
s,A on subsystem A,

which is mapped to the boundary matrix element (4.61) of the operator

Π̂s,A =
∏

j∈A

(−iγ2j−1,1,↑γ2j,1,↑)(−iγ2j−1,2,↑γ2j,2,↑)

=
∏

j∈A

e−iπ(ηzj+Σz
j ). (4.62)

This operator rotates the U(1) order parameters for both η and Σ spins by π everywhere
in subsystem A. The ensuing boundary condition is illustrated schematically in Fig. 4.5(b).
We’ll see that this is equivalent to inserting a pair of topological defects (vortices) at the
edges of the region A.

The bond parity variance operator Π̂b,A can be obtained by simply translating Π̂s,A by
half of a physical site (one Majorana site). Thus, the operator leads to the same π rotation
of the U(1) orders of the boundary state within region A, but it is bound to a Z2 charge (of
the symmetry ϕ → −ϕ) on each edge of the region [see Fig. 4.5(c)]. As we will see in the
next section, this difference has nontrivial implications on the behavior of the bond parity
variance in the different phases.

6The symmetry is SO(3) rather than SU(2) because the ground state occupies an integer representation.
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(a)

(c)

(b)

(d)

Figure 4.5: Boundary conditions imposed on the U(1) phase by the boundary operators
corresponding to different probes. (a) The reference state |I⟩⟩ imposes a symmetry breaking
state with U(1) phase locked to zero (blue arrows). (b) The site parity variance Π̂s,A rotates
the phase by π-phase in region A, which creates a vortex anti-vortex pair at the edges of the
region. (c) The bond parity variance Π̂b,A similarly affects a π phase rotation, creating a
vortex anti-vortex pair at the edges of A. However, in this case, the vortex creation operators
are bound to a Z2 charge (of the symmetry ϕ → −ϕ). (d) The swap operator Cℓ,A rotates
the phase in A by π/2 (orange arrows), creating a pair of half-vortices at edges of the region.

The entanglement entropy of a subsystem is associated with the matrix element of a swap
operator Cℓ,A as discussed in Section 4.2. Because Cℓ,A is nonlocal when written in terms

of fermionic operators, we replace it with a local operator C̃ℓ,A which has exactly the same

action as Cℓ,A on the reference state, namely C̃ℓ,A|I⟩⟩ = Cℓ,A|I⟩⟩ (see Appendix C.7). The

operator C̃ℓ,A can be simply expressed in terms of the f -fermions defined on the forward
branches and in terms of the η and Σ spins,

C̃ℓ,A =
∏

j∈A

f †
j,1,↑fj,2,↑ + fj,1,↑f

†
j,2,↑ +

1

2

(
1 + Π̂j,1,↑Π̂j,2,↑

)

=
∏

j∈A

e−iπ
2
(Σz

j+ηzj ), (4.63)

where Π̂j,α,↑ = 1 − 2f †
j,α,↑fj,α,↑ is the fermion parity in the forward branch of copy α at site

j. Since C̃ℓ,A only operates on the forward branches, it naturally breaks the time-reversal

symmetry of spin-1/2 fermions. Specifically, the unitary operator C̃ℓ,A rotates both U(1)
order parameters in the region A by an angle π/2. We’ll see below that this is equivalent
to inserting a pair of half vortices at the edges of region A leading to the boundary state
illustrated in Fig. 4.5(d).
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Phases of the effective model

The effective Hamiltonian Heff consists of two identical and decoupled spin-1 Hamiltonians
Heff,κ, each acts on the κ = η,Σ sectors. The ground states and phase transitions of Heff,κ

have been extensively investigated numerically [60] and admit a simple long-wavelength
description [229].

In the physically relevant parameter regimes, Γb,Γs, Jb ≥ 0, the ground state phase
diagram of Heff,κ contains three phases, as illustrated schematically in Fig. 4.6(a). For
vanishing measurement rates, Heff,κ is a O(3) ferromagnet, which admits a fluctuation-free
broken symmetry state. This is a singular point in the phase diagram corresponding to the
volume-law state established for purely unitary dynamics of free fermions. For any non-zero
measurement rate, the O(3) symmetry is broken down to U(1)⋊(Z2×ZT

2 ) leading to a critical
phase with algebraic long-range order. Increasing the measurement rates Γs and Γb beyond a
critical threshold leads to two possible gapped phases, depending on the ratio between the
two measurement processes. The site measurements Γs contribute to the ∆-term (also known
as single-ion anisotropy), leading to a trivial gapped phase when they are dominant. The
bond measurements Γb, on the other hand, leads to the Haldane gapped phase, which is an
SPT phase of the spin-1 model.

The above phases and phase transitions can be captured within a long wavelength theory.
First, note that the imaginary time evolution with the effective Hamiltonian has a coarse-
grained description in terms of the 2d XY model SXY = K

2

∫
dxdτ(∇θ)2 with θ = θ + 2π.

We can gain even more insight, however, by framing the long-wavelength theory of the XY
model in the form of the one-dimensional sine-Gordon Hamiltonian

H =
1

2

∫
dx

[
K(∇θ̂)2 +

1

K
(∇ϕ̂)2

]
− g

∫
dx cos

(
2ϕ̂
)
. (4.64)

Here, θ̂ is related to the U(1) phase in the XY model (though it is not compact). ∇ϕ̂/π is
the long wavelength fluctuation of the conserved charge conjugate to θ̂, so that [θ̂(x), ϕ̂(x′)] =
iπΘ(x− x′). The coupling g is related to the vortex fugacity implicit in the XY model. This
model is invariant to a shift of ϕ̂ → ϕ̂+ π, which corresponds to a translation by a lattice
constant, and to ϕ̂→ −ϕ̂ related to the Z2 “particle-hole” symmetry.

In the critical phase of the spin-1 Hamiltonian, the renormalized Luttinger parameter
K > 2 and the coupling g is irrelevant in the long wavelength limit. As the microscopic
parameters are varied, the system eventually undergoes a Kosterlitz-Thouless transition into
a gapped phase at a critical universal value Kc = 2. The long wavelength theory distinguishes
the two gapped phases through the sign of the coupling g. If g > 0, the dual field ϕ̂ is locked
to ϕ = 0 giving rise to a trivial gapped phase. If g < 0, then ϕ̂ is locked to ϕ = π/2, which
corresponds to the SPT (Haldane) phase. Note that the two phases are related through a
shift by half a lattice constant (equivalently, one Majorana site).

We now turn to discuss how the different phases of the effective model are probed by the
boundary operators. As noted in the previous section, the action of these operators on the
boundary state imposes the boundary conditions depicted in Fig. 4.5. Hence, they correspond
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to boundary condition changing operators in the long wavelength theory. The logarithm of
the boundary overlap (4.61) is directly related to the excess free energy of the effective 2d
XY model with the modified boundary conditions relative to the free energy with the uniform
boundary conditions set by the reference state.

Consider first the parity string operators Π̂s,A and Π̂b,A, which enter the calculation of
the parity variances. These operators affect a π-phase flip on region A, which creates a
pair of vortices on the boundary of the 2d XY model. In the long wave length limit, the
vortex insertion is affected by the operators e±iϕ̂. To compute the site parity string Π̂s,A, we

must choose the symmetric combination cos ϕ̂(x) at each end because the site parity string
preserves the particle-hole symmetry on every site. Thus, in the long wavelength limit we
can write Π̂s,A ∼ cosϕ(xℓ) cosϕ(xr), where xℓ, xr are the two ends of the region A. The bond
parity string is obtained from the site parity string through translation by half a physical site
(one Majorana site), implemented by a shift ϕ̂→ ϕ̂+π/2 in the long wavelength theory. Thus,
Π̂b,A ∼ sinϕ(xℓ) sinϕ(xr). This is consistent with the fact that, on each end of the region
A, the bond parity string carries a residual parity operator of half a physical site, which is
anti-symmetric with respect to the particle-hole symmetry. The swap string, which enters
the calculation of the entanglement entropy, affects a π/2 rotation of the U(1) phase, which
creates a pair of half-vortices on the boundary of the 2d XY model. In the long wavelength
theory, this is achieved by the operators C̃ℓ,A ∼ e−iϕ(xℓ)/2eiϕ(xr)/2.

Having established the long wavelength form of the operators associated with the different
boundary observables, we can determine the behavior of the boundary matrix element in the
different phases. In the critical phase, the distinction between the site and bond parity strings
is not important. Both decay as a power law, dictated by the scaling dimensions of boundary
vortex insertions Π

(2)
a,A ∼ |xℓ − xr|−K/4 [97]. The behavior of the entanglement entropy on

the other hand is dictated by a pair of half-vortex insertions at the boundary, each having

half the scaling dimension of a vortex insertion. Thus, we expect e−S
(2)
A ∼ |xℓ − xr|−K/16. So,

while the decay exponents vary continuously in the the long wavelength theory, the theory
predicts a universal ratio of 4 between the decay exponent of the parity variance and that of

exp
(
−S(2)

A

)
in the critical phase. Furthermore, the KT transition is expected to occur at a

universal value of the stiffness Kc = 2, which implies a critical exponent αc
Π = 1/2 for the

decay of the parity variance and αc
S = 1/8 for exp

(
−S(2)

A

)
.

In the low energy fixed points corresponding to gapped ground states, ϕ̂(x) is nonfluctu-
ating; it is locked to ϕ = 0 in the trivial phase and to ϕ = π/2 in the SPT phase. Hence,
we can immediately deduce the action of parity and swap strings on the ground states. The

swap does not vanish in either phase, thus giving exp
(
−S(2)

A

)
→ const at long distances in

both the trivial and SPT state. The two phases are distinguished by the action of the parity
strings. The site parity string, which involves cos ϕ̂, acts as a constant on the trivial ground
state and vanishes on the SPT ground state at the fixed point. Conversely, the bond parity
string acts as a constant on the SPT ground state and vanishes on the trivial ground state.
Therefore, in the trivial phase, we expect Π

(2)
s,A → const and Π

(2)
b,A → exp(−|xℓ − xr|/ξ). In
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Figure 4.6: Entanglement entropy and subsystem parity variances in three phases of Gaussian
fermionic circuits. (a) Schematic phase diagram in the space of bond measurement versus
site measurement probabilities (pb v.s. ps). Yellow markers represent numerically extracted
critical points along marked cuts. (b-d) Results for representative points of the three phases
R1 : (0.2, 0.2), R2 : (0.6, 0.8), R3 : (0.8, 0.4) shown on the phase diagram. (b) Entanglement
entropy e−SA shows power-law decay (logarithmic entanglement scaling) with subsystem size
LA in the critical phase (R1, red diamonds) and a constant (area law) in the trivial and SPT
phases. (c) Subsystem site parity variance Πs,A shows a power-law decay with LA in the
critical phase (red diamonds), faster than power-law in the SPT phase (green squares) and is
nondecaying in the trivial phase (blue triangles). (d) Subsystem bond-parity variance Πb,A

shows a power-law decay in the critical phase (red diamonds), exponential decay in the trivial
phase and is nondecaying in the SPT phase. The numerical results are obtained with system
size L = 160 and averaged over 400 random circuit realizations and measurement outcomes.

the SPT phase, this is inverted, Π
(2)
b,A → const, whereas Π

(2)
s,A → exp(−|xℓ − xr|/ξ). In the

following section, we examine the predictions of the long wave-length theory for the various
phases by numerically simulating the quantum circuit.

Numerical simulation in Gaussian fermionic circuits

The fermions circuit defined in Section 4.4 can be simulated efficiently because it preserves
the Gaussianity of the wave function in each quantum trajectory [248]. This allows us to test
the predictions of the effective model by direct numerical calculation of the circuit dynamics.
Technically, it is enough to propagate the O(N2) two point functions Gij ≡ ⟨Ψ|iγiγj|Ψ⟩− iδij ,
which fully determine the Gaussian wave function. Indeed, all quantities of interest, including
the subsystem entanglement entropy SA and parity variances Πs,A and Πb,A, can be directly
read out from Gij . We perform the calculation with system sizes of up to L = 160 sites using
periodic boundary conditions to facilitate better finite size scaling. We operate the circuit to
depth 3L to achieve a steady state.

We explore a two-dimensional phase space defined by the site and bond measurement
probabilities as illustrated in Fig. 4.6(a). The behavior of the three observables we extract
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Figure 4.7: Tuning across the critical points on the three cuts shown in Fig. 4.6(a): cut 1
(pb = 0), 2 (ps = 0.02), 3 (pb + ps = 1.35). (a, b) Fitted power-law decay exponent of e−SA

(αS, blue diamonds), site parity variance (αΠ,s, red triangles), and bond parity variance (αΠ,b,
yellow squares) along cut 1 [panel (a)] and cut 2 [panel (b)]. The horizontal axis represents
the tuning parameter along each cut. The exponents are extracted from simulations with
the system size L = 160 averaged over 400 random circuit realizations and measurement
outcomes. (c) Ratio between exponents αΠ,s/αS and αΠ,b/αS along cut 1. Results for αΠ,s/αS

(purple crosses) and αΠ,b/αS (green “+”). The red dashed line represents the prediction of
the two-replica model for the critical phase: αΠ/αS = 4. (d) Parity variances (blue, left
vertical axis) and normalized entanglement entropy (red, right vertical axis) along cut 3 from
(pb, ps) = (0.4, 0.95) to (0.95, 0.4). Πs,A (blue dashed line) and Πb,A (blue dotted line) are
for LA = L/2. The plotted entanglement entropy is taken for subsystem size LA = L/2
and normalized by logLA. The three red lines correspond to system sizes L = 40, 80, 160;
the peak gets sharper with increasing system size and indicates logarithmic entanglement
scaling only at the critical point. The numerical results are averaged over 400 random circuit
realizations and measurement results.

indicates the establishment of three phases. Panels (b-d) of the figure demonstrate this
for three representative points in the phase diagram. At the point (pb, ps) = (0.2, 0.2) (red
diamond), we observe the expected behavior of the critical phase with entanglement entropy
scaling as logLA and power-law decay of the parity variances. The point (pb, ps) = (0.6, 0.8)
(blue triangle) exhibits the behavior we expect in the trivial phase with entanglement
entropy and the site parity variance saturating to a constant, while the bond parity variance
decaying exponentially. Finally, the point (pb, ps) = (0.8, 0.4) (green square) shows a constant
entanglement entropy and bond parity variance as well as an exponential decaying site parity
variance, as expected in the SPT phase.

Having confirmed these basic behaviors, we turn to investigate the critical phase and the
transitions from this phase into the two gapped states. To this end, we vary the measurement
probabilities ps and pb along the two cuts depicted as cut 1 and cut 2 in Fig. 4.6(a). Along
these cuts, we aim to fit the subsystem size dependence of Πs,A, Πb,A and exp(−SA) to a
power law of LA. More precisely, since we anticipate that the critical phase has a conformal
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field theory description, we can account for the finite system size and periodic boundary
conditions by fitting the decay of these objects to a power law of the conformal coordinate
zA = L sin(πLA/L). Figure 4.7(b,c) shows the variation of the fitted exponents αΠ,s, αΠ,b, and
αS along the cuts. We see that the exponents αΠ,s and αΠ,b coincide and decrease together
on increasing the measurement rate toward the transition, as expected in the critical phase.
The exponents then start to deviate, presumably near the critical point, in order to match
the opposite behavior of the two parities in the gapped phases. For example, in the trivial
phase, we expect αΠ,s → 0, which encodes Πs,A → const, and αΠ,b → ∞ in order to mimic
Πb,A ∼ exp(−LA/ξ).

In the range of tuning parameter, where the two parity exponents coincide, we find that
the ratio between these exponents and the one controlling the decay of exp(−SA) is pinned
to a constant value. The ratio, as seen in Fig. 4.7(c), is pinned to αΠ/αS ≈ 3, which deviates
from the ratio of 4 predicted by the low energy effective theory. This discrepancy could be
related to the difference between the von Neumann entropy computed here and the second
conditional Rényi entropy calculated in the effective model.

We now focus on the phase transition from the critical phase to the trivial phase along
cut 1 in Fig. 4.6(a). To establish the universality class, we analyze the behavior of the
correlation length and compare it to the hallmark exponential divergence associated with a
KT transition.

We extract the correlation length ξ from the behavior of the entanglement entropy in the
area-law phase near the transition since it gives much cleaner data than the parity variances.
On distances small compared to the correlation length, i.e. LA ≪ ξ, we expect the critical
behavior

S(zA, ps, L) = b(ps) + αS(ps) log zA, (4.65)

while for LA ≫ ξ we should see a saturation to b(ps) +αS(ps) log(zξ). Here, zξ = L sin(πξ/L)
is the conformal coordinate for the correlation length ξ.

To accurately obtain ξ, we first fit b(ps) and αS(ps) from the short distance behavior of
S(zA, ps, L). We then use the interpolating function

S(zA, ps, L) =
αS(ps)

β
log

(
zβξ tanh

zβA
zβξ

)
+ b(ps) (4.66)

to obtain ξ(ps, L) for different values of ps and system sizes L = 40, 80, 160. The parameter
β is added to improve the fit and details of the procedure are given in Appendix C.8.

The fitted values of the correlation length are presented in Fig. 4.8 at all points for which
ξ ≤ L/2. We find that ξ(ps, L) fall close to the same curve for the different values of L. The
figure shows a fit of the data for the largest length L = 160 to the KT form of the correlation
length ξ(ps) = exp(A/

√
ps − ps,c +B).

The results are consistent with a KT transition within the range of system sizes reached
and also provide an estimate of the critical point ps,c = 0.17. We note that the finite size
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corrections to the critical stiffness Kc in the KT transition exhibit a slow logarithmic decay
with system size. Therefore, it is not surprising that the critical exponents governing the
decay of the various boundary correlations are larger than the expected thermodynamic
value.

Having analyzed the critical phase and the phase transition into the area-law phases, we
turn to the phase transition between the two area-law states along cut 3 in Fig. 4.6(a). The
variation of the half system entanglement entropy normalized by log(L/2) is shown by the red
curves in Fig. 4.6(d) for the three system sizes L = 40, 80, 160. The normalized value is seen
to be size independent at a single point and the curve appears to sharpen with increasing
system size. This gives strong evidence for single critical point along the cut as expected
from the O(2) long-wavelength description (4.64). Thus we do not find an indication of a
generic critical phase intervening between the two area-law phases as suggested based on a
relation to the completely packed loop model [225].

The details of the transition, however, also do not precisely match the predictions of the
effective theory (4.64). On the critical line separating the two area-law phases, the effective
theory predicts a stiffness constant K < 2, which is continuously decreasing with increasing
measurement rate along this line. Accordingly the coefficient of the logarithmic half-system
entropy is expected to be αS < 1/8, which is violated by the observed value of αS ≈ 0.43.

The variation of the half-system site and bond parity variances across the transition
behave broadly as expected, but again show a mismatch with the effective theory upon more
detailed comparison. These variations are shown by the blue curves in the figure for a single
system size of L = 160. The two string “order parameters” are seen to switch roles between
the two phases, as expected. However, the sharp suppression of both order parameters at the
critical point is unexpected. The effective model implies a slow decay of the parity variance
with an exponent αΠ < 1/2. This should produce a rather broad finite size coexistence region
of the two “order parameters” [28], which is not observed in the numerical results.

Beyond the two-replica theory

In our analysis of the Gaussian fermion circuits we focused on the two-replica theory without
taking the replica limit n → 1. Nonetheless, several key predictions of this model are
supported by the numerical results obtained from direct simulation of fermion circuits. These
includes the establishment of a critical phase characterized by logarithmic entanglement
entropy with variable coefficient αS, the connection between αS and the power-law decays of
the site and bond parity variances, and the KT transition separating the critical phase from
the area-law states. At the same time, the numerical results suggest that the phase transition
between the two area-law states is not captured correctly within the two-replica model.

To gain insights into the success and the limitations of this model, we consider an
approximate scheme to evaluate O2 in Eq. (4.13) in terms of a statistical mechanics model
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with quenched disorder. The second moment O2 is again given by

O2 =
∑

m

pm(U)




tr
(
Ô ρ̃m(U)

)

tr (ρ̃m(U))




2

. (4.67)

Here U runs over the different realizations of unitary gates, and we explicitly note the
dependence of the trajectory state ρ̃m(U) on U .

Now, if pm(U) ≡ tr (ρ̃m(U)) has a narrow distribution over U , we can approximate it by
its average pm = pm(U) and perform the average over unitaries in Eq. (4.67) before averaging
over measurement outcomes to obtain

O2 ≈
∑

m

pm
⟨⟨I|O(2)|ρ(2)m ⟩⟩
⟨⟨I|ρ(2)m ⟩⟩

. (4.68)

In this expression the measurements enter as quenched disorder. Typical trajectories m consist
of imaginary time evolution with an effective Hamiltonian generated by the averaged unitary
dynamics, interrupted by isolated measurements located in random space-time positions.
The isolated measurements reduce the O(3) symmetry of the Heisenberg ferromagnet down
to O(2). We note that a similar scheme, which avoids the replica limit at the expense of
introducing disorder, was considered in Ref. [283] for purely unitary circuits.

Such a model with quenched disorder has a true symmetry O(2). In the case of low
measurement rates, the stiffness is large enough such that the only relevant effect of the
disorder is the reduction of the symmetry from O(3) to O(2); the space-time randomness is
expected to be irrelevant in the ensuing O(2) critical phase. In contrast the disorder does
become relevant beyond the KT transition. Thus, taking a proper replica limit may be
important for describing the transition between the two area-law states, which explains the
failure of the two-replica theory to describe this critical behavior correctly.

It remains an interesting challenge to evaluate the second moment O2 in the proper replica
limit n→ 1. One perturbative approach to the problem suggested in Ref. [93] in the context
of disordered fermion models, is through an expansion of the O(n) nonlinear sigma model in
ϵ = 2 − n. Alternatively, Sang et al. [225] proposed to utilize a mapping of certain Majorana
fermion circuits to the completely packed loop model with crossings [184]. Although the
more generic model we considered does not map exactly to the loop model, it is possible that
the two models are in the same universality class. The numerical results at the available
system sizes do not appear consistent with this possibility. These results indicate a direct
transition between the two area-law states, while in the loop model the two area-law states
are generically separated by a finite region of the critical phase.

4.5 Discussion

The quantum circuits we have considered in this Chapter generate the time evolution of
many-body wave-functions or density matrices through a series of unitary gates and local
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Figure 4.8: Correlation length ξ in the trivial area-law phase along cut 1 indicated on
Fig. 4.6(a). The green line represents the fitted correlation length according to the scaling
log ξ(ps) = A/

√
ps − ps,c +B in the KT transition with A = 0.58, ps,c = 0.17, and B = 0.34.

The results for L = 40, 80, 160 are denoted by blue, red, and yellow diamonds, respectively.
The data used to extract ξ(ps) is presented in Appendix C.8.

measurements. Such a time evolution gives rise to a special kind of ensemble, whose members
are the quantum states corresponding to all possible histories of measurement outcomes. Our
goal has been to characterize the phases that can emerge as steady states in this new kind of
ensemble. A key observation of this work is that, unlike in thermal equilibrium or in quantum
ground states, the symmetry that governs the classification of phases in quantum circuits is
not simply the symmetry of the physical interactions imposed by the circuit elements. Rather,
many statistical properties of the ensemble in steady states are dictated by an enlarged
symmetry group, which combines the physical circuit symmetry with intrinsic dynamical
symmetries of the problem.

The enlarged symmetry emerges because distinctive properties of the circuit steady state
can be seen only in the fluctuations of physical observables over the different measurement
histories, while a simple average over all possible measurement outcomes looks trivial. In
particular, the variance of physical observables, which is the minimal nontrivial fluctuation,
is encoded in the time evolution of two identical copies of the density matrix. A symmetry
to permute quantum states between the two copies naturally arises and combines with the
physical circuit symmetries.

This symmetry enlargement has an illuminating analogy in Anderson’s pioneering work
on spin glasses (see also Ref. [185]). Edwards and Anderson famously pointed out that spin
glass order is characterized by the random frozen magnetic moment, which can be diagnosed
by the variance of the spin moment over the ensemble of random samples qEA = ⟨si⟩2 [81].
In close analogy with the diagnostics, we considered for the quantum circuits, the EA order
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parameter can be expressed as a standard average (correlation function) in an effective
probability distribution constructed from two identical copies of the system. This doubling
naturally gives rise to a permutation symmetry between replicas, which is reminiscent of the
permutation symmetries in our system.

The analogy with the spin glass also extends to information theoretic aspect of the
problem. We have shown that broken symmetry phases of the circuit are states that encode
and protect information on symmetry breaking in the initial state. Similarly, the onset of
an EA order parameter in a spin glass signals the emergence of an error correcting code,
allowing to encode information in random broken symmetry spin configurations [240, 195].

There is however a fundamental difference between the quantum measurement ensemble
and the spin glass problem. Due to the quantum nature of the circuit, fluctuations in the
measurement ensemble are obtained from the time evolution of doubled density operators
rather than from (static) probability distributions. This leads to a richer symmetry, since
the forward (ket) and backward (bra) evolution of the density operators are associated with
independent permutation symmetries. Spontaneous breaking of these inherently quantum
symmetries signals a capacity to encode quantum information [65, 104, 18, 85, 127].

To facilitate the classification of phases, we formulated a mapping between the steady
states of the circuit ensemble and the ground states of an effective Hamiltonian, which inherits
the enlarged dynamical symmetry. This leads to establishment of phases that would not have
been possible in presence of the physical circuit symmetry alone. Here is a summary of the
most striking consequences. (i) A topological area-law phase can form in a one-dimensional
model with only Z2 physical circuit symmetry, owing to protection from an enlarged symmetry
Z2×S2 that combines the circuit symmetry and the dynamical permutation symmetry between
trajectories. We argued that this state admits an efficient experimental detection scheme using
the Fisher information associated with perturbations applied at the edge. Demonstrating
the existence of this state in a numerical simulation of a concrete model, or alternatively
showing a fundamental obstruction to realize it, remains a challenge for future work. (ii)
Several distinct volume-law phases, characterized by different broken symmetry patterns,
arise as ground states of a circuit with Z2 symmetry. We demonstrate the existence of three of
these volume-law entangled states in numerical simulations of a one-dimensional model. An
interesting conclusion from this result is that the quantum measurements allow to stabilize
orders, which could not have existed in a finite entropy equilibrium state. We argue, as a
corollary, that measurements can even facilitate the establishment of topological order and
protected edge modes in a state with volume-law entanglement. (iii) A Gaussian fermionic
circuit with only Z2 fermion parity conservation exhibits a critical phase facilitated by a U(1)
dynamical symmetry of two copies of the density matrix. We predict a Kosterlitz-Thouless
transition to area-law states above a critical rate of measurement. We show numerical
evidence supporting this transition.

It is worth noting that the predictions of the effective model rely on analysis of quantum
dynamics with two replicas without taking the formal replica limit n→ 1. The rather detailed
agreement with exact numerical results may suggest that two replicas play a special role
in this problem because the minimal diagnostics of the ensemble are fundamentally second
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moments. It is worth exploring alternative schemes to average over the ensemble, which avoid
introducing auxiliary replicas, possibly at the expense of retaining space-time disorder [283].
We also remark that our classification of phases in this Chapter was based on symmetry alone.
It would be important to understand if additional constraints on the dynamics, such as the
complete positivity of quantum channels, could inhibit the establishment of certain states.

Arguably the most pressing challenge for the theory right now is to connect with the rapidly
advancing experimental work on quantum circuits. An important first step would be to extend
the theoretical framework to more realistic models, which include, at a minimum, decoherence
and possibly other dissipative processes in addition to unitary gates and measurements. Such
an extension would also be interesting from the theoretical perspective because decoherence
changes the symmetry of the problem. Any weak coupling to the environment explicitly
breaks the independent permutation symmetries among replicated quantum states propagating
forward or backward, and it only respects simultaneous permutations of forward and backward
states. We have noted that the separation of the two permutation symmetries is a signature
of quantumness that is absent in classical settings, such as the replica theory of a spin glass.
Nonetheless, the universal behavior and encoding power may not immediately collapse to
that of a classical circuit. There is another quantum symmetry associated with the exchange
between forward and backward propagating states, namely the hermiticity of the density
matrix, which is neither removed nor trivialized immediately by the addition of decoherence.
A nontrivial hermiticity symmetry, in principle distinguishes the quantum dynamics of
density matrices from classical probability distributions even in the presence of decoherence.
It would be interesting to explore under what conditions the hermiticity symmetry can be
spontaneously broken and to understand the implications of such order on the capacity for
encoding quantum information.

We close by recalling a dialogue that had not occurred in Paris in the 1920s. Hopefully it
sums up our message clearly:

FITZGERALD: Quantum circuits are different from spin glasses.
HEMINGWAY: Yes, they have more symmetry.
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Chapter 5

Finite-time teleportation phase
transition in random quantum circuits

5.1 Introduction

The dynamics of entanglement in many-body time evolution and in quantum circuits is the
focus of intense theoretical [143, 186, 239, 163] and experimental interest [136, 15, 64, 197];
indeed, it provides crucial insights for understanding the capacity of physical systems to
process quantum information as well as the computational complexity involved in simulating
their dynamics [258]. In generic unitary evolution with short-range interactions, the Lieb-
Robinson bound [167] ensures that quantum entanglement propagates along light cones. Thus,
two degrees of freedom separated by a distance L take a time of order L to get entangled.

Entanglement can be created much faster by supplementing unitary evolution with
measurements [46, 164, 70]. As a simple example, we consider a chain of qubits initialized
in a product of Bell pairs on the odd links, which can be prepared from a product state
by a single layer of two-qubit gates. By performing Bell measurements on the even links,
one can create a Bell pair of the (unmeasured) first and last qubit. As another example, a
two-dimensional cluster state can be used for measurement-based quantum computation [217];
one can create any desired entangled state by appropriate local measurements.

In the schemes described above, entanglement is generated over arbitrarily long distances
using a unitary circuit of constant depth followed by a single layer of measurements. These
states are said to possess finite localizable entanglement and infinite entanglement length [257,
209]. However, the examples above are highly fine-tuned. It is natural to ask how long
it would take to create quantum correlations between distant qubits using generic unitary
evolution followed by local measurements.

In this Chapter, we show that the creation of infinite range entanglement, i.e. states with
infinite entanglement lengths, can occur as a phase transition at a critical time of order one.
In the simplest setup, an initial product state is evolved for a time t, after which all but
two infinitely separated qubits are measured. In two (or higher) dimensional systems with
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Figure 5.1: (a) Random quantum circuit on N qubits. In each time step δt, we apply
single-qubit Haar random gates to every qubit followed by Nδt two-qubit Haar random
gates. The distribution of two-qubit gates is determined by the geometry of the circuit.
The first qubit is maximally entangled with a reference qubit A, while the remaining qubits
are prepared in |0⟩. We consider the mutual information between A and an output qubit
B, conditioned on local measurements on the rest of the qubits. (b) Phase diagram of
one-dimensional long-range unitary circuits with power-law decaying interaction. The black
markers represent the inverse critical time 1/tc as a function of power-law exponent α. The
transition requires α ≤ 2, indicated by the pink dotted line. When t > tc, the output state is
in the teleporting phase, corresponding to the low-temperature ferromagnetic phase of the
effective quantum Hamiltonian. The color indicates the conditional entropy SB|M .

short-range interactions, entanglement between the two distant qubits onsets at a critical time
tc. The same is true for one-dimensional systems with sufficiently long-range interactions.
An equivalent scheme, shown in Fig. 5.1(a), is to consider the teleportation from an input
qubit to an infinitely distant output qubit after measuring all other output qubits, which can
be achieved with nonvanishing fidelity after time tc.

We provide a theoretical picture of this transition by mapping the random circuit evolution
to an effective equilibrium problem. This approach builds on recent developments in describing
entanglement dynamics through mapping circuits consisting of random unitaries to the
statistical mechanics of classical spins located at the space-time positions where the gates
operate [115, 183, 253, 18, 130]. In the case of continuous time evolution, the classical
spin model can be viewed as imaginary time evolution generated by an effective quantum
Hamiltonian [17, 33].

Previously, this mapping was primarily applied to understand the steady-state entangle-
ment properties, which are determined by the ground state of the effective Hamiltonian (i.e.
infinite imaginary time evolution). Similarly, the finite-time evolution, which we consider
here, is related to a thermal state of the effective Hamiltonian (i.e. finite imaginary time
evolution). The key point is that a finite-temperature transition in the thermal state indicates
a finite real-time transition in the circuit.

We demonstrate this phenomenon by considering the transition in continuous-time random
unitary circuits (RUC) with different architectures including: two-dimensional short-range
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systems, all-to-all coupled systems, and one-dimensional long-range systems with power-law
decaying interactions. In the last case, our theory predicts a finite-time transition for power-
law exponent α ≤ 2, and specifically a Kosterlitz-Thouless (KT) like transition at α = 2. We
corroborate these predictions with numerical simulations of random Clifford circuits.

Before proceeding, we remark on a related paper by Napp et al. [189] dealing with the
sampling complexity of shallow two-dimensional brick-layer RUCs. This work claimed and
provided evidence that approximate sampling from such circuits is hard if the depth t is
above a threshold tc of O(1) while it is easy for t < tc. Sampling requires measuring all
qubits following the final layer of unitary gates. The essence of the argument is that this
network can be contracted sideways, showing it is equivalent to simulating the dynamics of a
one-dimensional quantum circuit with measurements. Hence, one expects a phase transition
in sampling complexity in shallow two-dimensional RUCs which is of the same universality
as the measurement-induced transition in one dimension [163, 239, 162, 65, 104]. In our
discussion, we argue heuristically that this sampling transition can be understood as a specific
example of the teleportation transition, and may therefore occur in a broad class of systems
for which the effective Hamiltonian exhibits a finite-temperature transition.

5.2 Setup and theoretical framework

Our model consists of N qubits with N − 1 qubits initialized in a product state and a single
qubit prepared in a maximally entangled state with the reference A. In each time step δt,
we apply a layer of single-qubit Haar random unitary gates followed by Nδt two-qubit Haar
random unitary gates [Fig. 5.1(a)]. The sites (i, j) on which each two-qubit gate operates are
drawn independently from a distribution P (i, j), which depends on the specific models we
discuss below. The single-qubit gates do not generate entanglement and are introduced only
for analytical convenience 1. After evolving for time t, we measure all N − 1 qubits except
for a distant qubit B.

The resulting fidelity of teleportation between qubits A and B is quantified by the entan-
glement entropy of B, conditioned on outcomes of the measured qubits M (see Appendix D).
To analytically determine the conditional entropy SB|M averaged over circuit realizations and
measurement outcomes, we formulate it as the n→ 1 limit (replica limit) of the quantities [18]

S
(n)
B|M =

1

1 − n
log

∑
m tr ρ̃nB,m∑
m tr ρ̃nm

, (5.1)

where ρ̃m := P̂mρP̂m is the projection of the density matrix onto the set of measurement
outcomes labeled by m, and the overline indicates the average over the Haar ensemble.

Accordingly, the probability for this set of measurement outcomes is pm = tr
(
ρP̂m

)
= tr ρ̃m,

1We note that single-qubit gate on site i can in principle change the circuit ensemble provided that no
two-qubit Haar random gate acts on i.
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(a) (b) (c)

Figure 5.2: Finite-time transition in one-dimensional long-range interacting random circuits.
(a,b) The conditional entropy SB|M in circuits with power-law exponents α = 0 [all-to-all,
panel (a)] and α = 1.75 [panel (b)] plotted as a function of time t for various system sizes
N from 32 to 512 indicated by increasing opacity. (inset) Finite-size scaling collapse using
Eq. (5.3). The grey dotted line indicates tc. For the all-to-all circuit (α = 0), we obtain
critical exponents ν ≈ 2.0, β ≈ 0.46, and critical time tc ≈ 1.6. For α = 1.75, we obtain
ν ≈ 2.0, β ≈ 0.20, and critical time tc ≈ 2.1. (c) Critical exponents ν and β for α < 2. The
exponents agree with mean-field theory (MFT) for α ≤ 1.5. Moreover, near α = 2, ν begins
to diverge, as expected near a KT-like transition. The finite-time transition does not exist
for α > 2. The numerical results are averaged over 1.5 · 104 random circuit realizations.

and the normalized density matrix is ρm = ρ̃m/pm. We note that the S
(n)
B|M are not precisely

the conditional Rényi entropies because the average is taken inside the logarithm.
The simplest quantity that captures the qualitative features of SB|M is S

(2)
B|M , although

the critical exponents of their respective transitions may be different [253, 18, 130]. The

quantity S
(2)
B|M involves the second moments of the density matrix, which can be determined

from the double density matrix ρ⊗ ρ. Formally, ρ⊗ ρ can be represented as a state vector
|ρ⟩⟩ in the replicated Hilbert space H(2) := (H⊗H∗)⊗2, where H (H∗) denotes the ket (bra)
Hilbert space. A unitary gate U in the circuit acts as U = (U ⊗ U∗)⊗2 on |ρ⟩⟩. Hence, the
replicated density matrix undergoes unitary evolution |ρ(t)⟩⟩ =

∏Nt

τ=1 U2,τU1,τ |ρ(0)⟩⟩, where
U1,τ and U2,τ denote the layer of single- and two-qubit gates in each time step τ , respectively.

The average dynamics of the double density matrix can be analytically mapped to
imaginary time evolution under an effective Hamiltonian [17, 33]. First, the average over
single-qubit gates effects a projection from a sixteen-dimensional local Hilbert space to
the two-dimensional Hilbert space of a spin-1/2 (see Appendix D). Then, the layer of two-
qubit gates reduces to a transfer matrix for the transition amplitude between the spin-1/2
configurations in consecutive time steps, T = 1+Nδt

∑
ij P (i, j)U2,τ (i, j).

The transfer matrix T can be viewed as the infinitesimal imaginary time evolution
generated by an effective quantum Hamiltonian operating on spin-1/2 degrees of freedom,
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T = e−δtHeff . For our circuit, the effective Hamiltonian takes the form

Heff =
∑

i,j

Jij

[
−2

5
σz
i σ

z
j −

1

10
σy
i σ

y
j −

1

5
(σx

i + σx
j )

]
, (5.2)

where the coupling Jij = NP (i, j) is given by the average number of two-qubit gates acting
between qubit i and j in every unit time 2. Accordingly, the replicated, un-normlized, density
matrix evolves as |ρ(t)⟩⟩ = e−tHeff|ρ(0)⟩⟩. We note that the Hamiltonian exhibits a global Ising
symmetry generated by

∏
i σ

x
i , which stems from the invariance of U under the permutation

of two copies of ket (or bra) Hilbert space.
The effective imaginary time evolution above yields a thermal state of the ferromagnetic

Ising Hamiltonian in Eq. (5.2) at inverse temperature t. For two-dimensional RUCs, the
associated two-dimensional Ising model will undergo a ferromagnetic transition at a tem-
perature corresponding to a finite critical time tc. Similarly, for one-dimensional RUCs, the
associated one-dimensional Ising model can exhibit a finite-temperature transition provided
the unitary couplings decay with a sufficiently small power of distance α ≤ 2 [221, 79, 249,
13]. This finite-temperature phase transition implies a transition in the output state of the
circuit occurring at a finite time.

This transition indeed manifests in the conditional entropy S
(2)
B|M . The projective mea-

surements of the output state play a crucial role in revealing the transition: they impose
a boundary condition in the finite imaginary time evolution that preserves the Ising sym-
metry [18, 130]. In more detail, S

(2)
B|M is mapped to the excess free energy associated with

imposing symmetry-breaking fields only at the space-time locations of qubit A and B.
This can be further reduced to the imaginary time order parameter correlation function,
S
(2)
B|M ∼ ⟨σz

B(t)σz
A(0)⟩ (see Appendix D). Consequently, S

(2)
B|M is non-decaying in the ordered

phase (t > tc) due to the long-range order in the Ising model, whereas S
(2)
B|M rapidly decays

to zero in the disordered phase (t < tc).
We remark that the finite-time transition cannot be detected in the purity (or entanglement

entropy) of an an extensive subsystem of the output state. Indeed, in the imaginary time
evolution, this quantity involves breaking of the Ising permutation symmetry through the
boundary condition at the final time [115, 183, 253]. Since the symmetry-breaking boundary
conditions are imposed on the top of a slab of finite thickness (time), they eliminate the
transition in the bulk.

5.3 Examples and numerical results

We demonstrate the finite-time teleportation transition predicted above in three exemplary
models: (1) all-to-all interacting quantum circuits, (2) one-dimensional quantum circuits with
power-law decaying long-range interactions, and (3) two-dimensional quantum circuits with

2We note that because only N gates are applied per unit time,
∑

(i,j) Jij = N , and therefore the energy
of the Ising model is always extensive.
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short-range interactions. To verify the predictions obtained from the approximate mapping
of these circuits to finite-temperature quantum states, we compute the conditional entropy in
random Clifford circuits, which can be efficiently simulated [100, 1]. While these circuits are
not generic, they form a unitary 3-design [264] and are therefore expected to give the same
qualitative results as circuits of Haar random unitaries.

As the first example, we consider the circuit with all-to-all unitary gates. Within a time
step δt, each two-qubit gate is drawn independently and operates on a random pair of qubits
(i, j) with equal probability. Hence, the effective quantum Hamiltonian that describes S

(2)
B|M

has all-to-all couplings Jij ∼ 1/N (see Appendix D). In the limit N → ∞, the Ising phase
transition in this Hamiltonian is described exactly by mean-field theory, which predicts critical
exponents νMF = 2, βMF = 0.5, and a critical time t

(2)
c = 2.0 (see Appendix D). We note

that the mean-field theory does not yield a reliable tc for SB|M as the effective Hamiltonian

is derived for an approximate quantity S
(2)
B|M .

To characterize the transition of the conditional entropy SB|M , we simulate this quantity
in all-to-all Clifford circuits of system sizes up to N = 512 as shown in Fig. 5.2(a) 3 4. We
perform a finite-size scaling analysis using the scaling formula to extract critical exponents
(see Appendix D):

SB|M(t, N) = N−2β/νF((t− tc)N
1/ν). (5.3)

This analysis yields critical exponents ν = 2.1±0.2, β = 0.4±0.1, which are in close agreement
with the predictions of the mean-field theory, and also the critical time tc ≈ 1.6.

As a second example, we consider a one-dimensional array of N qubits evolving with
power-law decaying couplings and periodic boundary conditions. Here, for each two-qubit gate,
we independently choose a random pair of sites (i, j) with a probability P (i, j) ∝ 1/|i− j|α.
The effective model for this circuit is a one-dimensional finite-width classical Ising model
with long-range coupling Jij ∼ 1/|i− j|α.

This model is in the same universality class as the one-dimensional long-range classical
Ising chain at finite temperature, which has been extensively studied and shown to have
an ordering transition when α ≤ 2 [221, 79, 249, 13], with Kosterlitz-Thouless universality
at α = 2 [150, 57, 30, 31, 126, 173]. Furthermore, for 3/2 < α < 2, the transition features
continuously varying critical exponents, whereas for α ≤ 3/2, it is described by mean-field
theory with α-independent exponents [150].

These predictions from the classical Ising chain are borne out clearly in our Clifford
numerics. For α ≤ 2, we simulate SB|M for A and B separated by N/2 sites and observe
a crossing for various N , as exemplified at α = 1.75 in Fig. 5.2(b) and Appendix D. This
indicates the finite-time transition and enables using finite-size scaling to extract critical
exponents. For α ≤ 3/2 we find approximately constant critical exponents, consistent with
mean-field theory. In contrast, for 3/2 < α < 2 we obtain continuously varying critical

3We ignore the single-qubit gates in the Clifford simulation as they do not affect the information dynamics.
4We note that IA:B|M saturates to a maximum value 0.8 in the long time limit, which is universal for

random Clifford evolution [70].
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Figure 5.3: Finite-time teleportation transition in two-dimensional short-range random
circuits. (a) Schematic of a finite-time two-dimensional random circuit of size Lx = Ly = L.
We use periodic boundary conditions and consider reference A to be entangled with an input
qubit separated from output qubit B by L/2 in both directions. (Inset) A realization of Nδt
gates within a time step δt. (b) The conditional entropy IB|M plotted as a function of time t
for various system sizes L from 8 to 24 indicated by increasing opacity. (Inset) Finite-size
scaling collapse using Eq. (5.3). We obtain ν ≈ 1.2 ± 0.1, β ≈ 0.11 ± 0.03, and critical time
tc ≈ 4.2 (indicated by the grey dashed line). The numerical results are averaged over 9000
random circuit realizations.

exponents as shown in Fig. 5.2(c). On the other hand, we observe no evidence of a finite-time
transition in SB|M for α > 2 (see Appendix D). A phase diagram is presented in Fig. 5.1(b).

The point α = 2 requires special attention. In this case, the effective model exhibits a
finite-temperature KT transition, which does not admit single-parameter scaling as postulated
in Eq. (5.3). The exponential divergence of the correlation length can be viewed as having
ν → ∞. Indeed Fig. 5.2(c) shows a sharp increase of ν upon approaching α = 2. At
α = 2 we compare the observed scaling of SB|M (t, N) to the scaling form a exp[1/(logN + b)]
expected in an Ising chain with inverse square interaction [30]. We find an accurate fit at the
critical time tc ≈ 5.0 (see Appendix D), which provides circumstantial evidence for a KT-like
transition. However, simulations on larger system sizes are needed to precisely determine the
universality of this transition. Altogether, the qualitative understanding gleaned from the
effective spin model agrees with our numerical findings.

In the last example, we consider the finite-time transition in short-range interacting circuits
in higher dimension (d ≥ 2). Specifically, we consider P (i, j) to be uniformly distributed over
pairs of nearest-neighbor qubits. The critical exponents extracted from the two-dimensional
Clifford simulation are ν ≈ 1.2, β ≈ 0.11 [Fig. 5.3(b)]. These exponents are in agreement
with the exponents found in the measurement-induced entanglement transition [278] 5. This
result is indeed expected by mapping the dynamics of a finite depth two-dimensional brick-
layer RUC with final-time measurements to hybrid quantum dynamics (i.e. unitary and
measurement) in one dimension [189].

5The anomalous dimension in two dimensions is given by η = 2β/ν ≈ 0.2 in agreement with the result
of [278].
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5.4 Discussion

The above analysis of two-dimensional circuits suggests that the finite-time teleportation
transition may generally correspond to a transition in approximate sampling complexity [189,
177]. Specifically, we consider the problem of sampling measurement outcomes from N qubits
initialized in a product state and evolved under a finite-time RUC. To draw a connection to
the teleportation transition, we divide the output qubits into three regions: A and B, each
with a sub-extensive number of qubits Nγ with 0 < γ < 1, and M , the remaining qubits.

In the teleporting phase (t > tc), measurements on M generate long-range entanglement
between subsystems A and B. In the spin model, SB|M is the excess free energy of imposing a
domain wall separating A from B, which scales as a power law of min(|A|, |B|) in the ordered
phase 6. Thus, we expect approximate sampling from the pure joint state |ψAψB⟩ to be as
complex as sampling from a Haar-random state of a sub-extensive power-law number of
qubits, which is believed to be classically hard [38].

On the other hand, in the non-teleporting phase (t < tc), the classical spin model has a
finite correlation length ξ, i.e. sampling from a given qubit is independent from sufficiently
distant qubits. Indeed, it has been shown for brick-layer circuits that approximate sampling
can be achieved by patching simulations of sub-regions of size O((logN)d) together, resulting
a Poly(N) runtime in two dimensions and quasi-Poly(N) runtime in higher dimensions [189].
However, establishing a rigorous connection between finite-time teleportation in Haar-random
circuits with arbitrary connectivity and sampling complexity remains an open question for
future work.

Although 1d short-range RUCs do not feature a finite-time transition, the spin model
mapping indicates an exponentially diverging correlation length ξ ∼ exp(Jt) with circuit
depth t. This results from the correlation length ξ ∼ exp(J/T ) in the 1d quantum Ising
model at temperature T with coupling J . Therefore, one can teleport qubits over a distance
N in circuits of depth t ∼ logN 7.

The teleportation transition we describe can potentially be realized on leading quantum
simulation platforms, such as trapped-ion systems, which feature tunable long-range interac-
tions [210], and two-dimensional superconducting circuits [15, 226]. We note, however, that
obtaining the conditional entropy in experiments is challenging as naive evaluation of SB|M
requires post-selection on an extensive number of qubits. Alternatively, one can verify the
entanglement by decoding from the output qubit, which is a topic of ongoing research for
generic evolution beyond Clifford circuits [105, 197]. We remark our protocol demonstrates a
distinct teleportation mechanism from those inspired by quantum gravity [114, 153, 49, 232],
in which the teleportation distance is limited by the lightcone of the evolution.

Our framework is also applicable to studying finite-time transitions in circuit ensembles
beyond Haar-random unitary circuits. In particular, in circuits with conserved quantities, the

6The sub-extensive symmetry breaking boundary conditions on A, B do not destroy the long-range order
in the effective spin model.

7However, the approximate sampling from logN -depth 1d RUCs is tractable since IA:B|M =
O(logN) [205].
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effective Hamiltonian is governed by an enlarged symmetry allowing a richer phase structure
at finite times [17]. For example, in free fermion dynamics that conserve fermion parity, the
effective Hamiltonian exhibits a continuous U(1) symmetry. In two dimensions, the effective
model undergoes a finite-time KT transition and can support power-law decaying SB|M , while
in dimension d ≥ 3, the continuous symmetry can be broken, leading to non-decaying SB|M .
Moreover, we note that the key dynamical feature that enables the teleportation transition is
the protection of quantum information against local measurements. Thus, we conjecture that
the transition can also occur in non-random chaotic Hamiltonian dynamics in which local
scrambling protects information.
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Chapter 6

The errorfield double formulation of
mixed-state topological order

6.1 Introduction

Recent experiments in many-body quantum simulation platforms, such as arrays of Rydberg
atoms and superconducting qubit systems, have shown compelling evidence for the estab-
lishment of topological order [234, 34, 226, 5]. While these platforms offer a high degree of
control, the state preparation is subject to inevitable decoherence, leading ultimately to a
mixed state. Experimental probes of topological order have a long history in the context
of the fractional quantum Hall effect in semiconductors [250, 21, 187]. In this case, it is
understood that the imperfection due to non-vanishing temperature broadens the signatures
of topological order [265, 200, 201, 41, 152, 50]. However, the states prepared in these new
platforms do not have time to reach thermal equilibrium before they are probed and therefore
cannot be described as Gibbs states. Instead, they are better modeled as a topologically
ordered pure state corrupted by local channels describing decoherence for a finite time. It is
natural to ask how to characterize the topological order in such corrupted topological states.

Different perspectives on this problem suggest seemingly conflicting answers. On one
hand, the operation of the local quantum channels has an equivalent description as a finite-
depth unitary process in an extended Hilbert space that includes an ancilla qubit for every
system qubit. This finite-depth unitary circuit cannot lead to a singular change in the
expectation value of any conventional diagnostic used to probe topological order, such as
Wilson loops or open string operators [88], which support in a finite region. From this
perspective, the topological order persists for any strength of decoherence, short of full
dephasing or depolarization.

On the other hand, we can assess the effect of decoherence on the topological order through
its ability to destroy the protection of quantum information encoded in the degenerate ground-
state subspace [145, 43]. In this vein, Dennis et al. [74] calculate a finite error threshold for
the Toric code subject to local Pauli X and Z errors. These errors create pairs of syndromes
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(i.e. anyon excitations) detected by stabilizer measurements. The recovery scheme is an
algorithm for annihilating the syndromes in pairs, which fails when the error rate exceeds the
threshold. The existence of a recovery threshold strongly suggests that there is an underlying
decoherence-induced transition in the intrinsic properties of the mixed state, which is not
captured by standard probes used to detect ground-state topological order. We note, however,
that the recovery fidelity itself is not an intrinsic property as it may depend on the recovery
algorithm. Furthermore, theories of recovery thresholds are limited to solvable topological
stabilizer codes and do not offer insight into the effect of decoherence on topologically ordered
states more generally.

In this Chapter, we develop a universal description of topological order and decoherence-
induced transitions in corrupted mixed states that is based on the underlying topological
quantum field theory (TQFT). A key step is treating the density matrix as a state vector in
a double (ket and bra) Hilbert space, |ρ⟩⟩ = N |Ψ0⟩ ⊗ |Ψ∗

0⟩. The action of the decoherence
channel N , which couples the ket and bra states, can induce anyon condensation in the
double space. We argue that this transition is described in terms of boundary criticality in
close analogy to the effect of measurement on quantum ground states analyzed in Ref. [95].

To derive an effective theory of the decoherence-induced transition, we utilize the descrip-
tion of the state |Ψ0⟩ as a (2+1)-dimensional TQFT. Then, |ρ⟩⟩ is given as a double TQFT
coupled by the quantum channel N only at the temporal boundary τ = 0, and the induced
transition corresponds to anyon condensation on the boundary. Accordingly, the distinct
decoherence-induced phases are classified by the possible boundary anyon condensates [158,
20, 263]. We note that the description in terms of boundary phase transitions explains
why the error threshold transitions in stabilizer models invariably map to transitions in 2D
classical statistical mechanics or (1+1)D quantum models despite representing transitions in
2D quantum states [74, 262, 135, 36, 151, 66, 58, 254, 24].

6.2 Errorfield double state

The basic subject for our analysis is a topologically ordered state |Ψ0⟩ affected by local
decoherence channels Ni:

ρ =
∏

i

Ni[|Ψ0⟩ ⟨Ψ0|] , (6.1)

where i is a site index. The local channel Ni[·] :=
∑

k Kk,i(·)K†
k,i is defined by the Kraus

operators Kk,i, which satisfy
∑

k K†
k,iKk,i = ⊮; they create different kinds of errors in the

state. For example, the channel that causes bit-flip errors consists of two Kraus operators
K1,i =

√
1 − p⊮ and K2,i =

√
pXi, where p is the error rate.

To understand the effect of decoherence on a quantum ground state, it is convenient
to express the Kraus operators in terms of the quasiparticles they create. In particular, a
Kraus operator acting on a topological state generally creates a superposition of different
clusters of anyons, i.e. Kk,i =

∑
α ck,αAi[α], where ck,α is a complex coefficient, and Ai[α]
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Figure 6.1: (a) Errorfield double state |ρ⟩⟩ describing a topologically ordered pure state
corrupted by local errors (red dots). (b) Path integral representation of the norm ⟨⟨ρ|ρ⟩⟩.
Two path integrals in the past (τ < 0) and the future (τ > 0) prepare the double ground
states at τ = 0− and 0+. The states are coupled by the quantum channel N †N (red cuboid).
Red lines represent the worldlines of anyon αᾱ created by the incoherent errors. (c) The π/2
rotation converts the 2D temporal defect at τ = 0 to a (1+1)D spatial defect at x = 0. (d)
The rotated path integral represents the norm of the ground state of double 2D topological
order with a 1D defect.

creates a cluster of anyons in the vicinity of site i 1. Here, we focus on Kraus operators
that are dominated by a single term rather than a coherent superposition, i.e. Kk,i is
approximately proportional to a certain Ai[α]. Such Kraus operators are said to create
incoherent errors 2. The resulting mixed state is an incoherent mixture of states with different
anyon configurations.

An essential step in characterizing the phases of the corrupted state is to regard the
density matrix as a state vector in a double Hilbert space, i.e.

|ρ⟩⟩ = N |Ψ0⟩ ⊗ |Ψ∗
0⟩ =

∏

i

∑

k

Kk,iK̄k,i |Ψ0⟩ ⊗ |Ψ∗
0⟩ , (6.2)

1Strictly speaking, such a decomposition is well-defined for fixed-point states where the sizes of anyons
are zero. In more general situations, e.g., Laughlin states, one can regard this decomposition as a definition
of phenomenological error models that we choose to work with.

2For example, one type of incoherent error creates a single anyon pair, an anyon and its anti-particle, on
neighboring sites.
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where we define barred operators as acting on the bra space, e.g. a super-operator K(·)K†

acting on a density matrix is denoted as K K̄ when acting on |ρ⟩⟩. We refer to |ρ⟩⟩ as an
errorfield double (EFD) because of its analogy to the thermofield double state [106].

In absence of decoherence, |ρ⟩⟩ contains two decoupled copies of conjugate topologically
ordered states. The non-unitary evolution affected by the operator N can induce phase
transitions at finite error rates that can be diagnosed by operator expectation values in the
EFD. Up to normalization, these expectation values are of the form ⟨⟨ρ|O Ō|ρ⟩⟩ = tr

(
ρOρO†).

This object is the overlap between ρ and ρ′ = OρO†, which measures the distinguishability
between these two states.

6.3 Decoherence-induced transition as anyon

condensation

To begin, we consider the example of the Toric code [145] subject to bit-flip errors. The
Kraus operator Xi = mrmr′ is incoherent and creates two m anyons at neighboring locations
r, r′. In the EFD, the corresponding super-operator creates two neighboring anyon pairs,
XiX̄i = (mm̄)r(mm̄)r′ , where each pair mm̄ creates an anyon of the double Toric code. The
resulting EFD is given by

|ρ⟩⟩ = exp


µ

∑

⟨rr′⟩

(mm̄)r(mm̄)r′


 |Ψ0⟩ ⊗ |Ψ∗

0⟩ , (6.3)

where µ = tanh−1[p/(1 − p)]. The operation of the error channel generates an effective
imaginary time evolution of the pure topological state. As shown in Appendix E, this leads to
anyon condensation of mm at p

(2)
c = 0.178, with the solvable transition in the 2D (classical)

Ising universality class 3.
The anyon condensation can be detected by the open string operator

⟨⟨Wmm(P)⟩⟩ :=
⟨⟨ρ|Wmm(P)|ρ⟩⟩

⟨⟨ρ|ρ⟩⟩ =
tr ρwm(P) ρw†

m(P)

tr ρ2
, (6.4)

where wm(P) :=
∏

i∈P Xi, and Wmm̄ = wm ⊗ w∗
m creates the paired anyon mm at each end

of the open path P 4. In the topological phase, this quantity decays exponentially with the
distance between two endpoints. In other words, the density matrix obtained by injecting
an extra pair of far-separated anyons into ρ is orthogonal to ρ and hence distinguishable

3The superscript of p
(2)
c indicates the transition in EFD is detected by the quadratic function of the

density matrix. For the general n-th moment of the density matrix, the critical point p
(n)
c depends on n. It

approaches the error-correction threshold pc = 0.109 in the replica limit n→ 1 (see Chapter 7).
4We remark that the condensate can also be generally probed by the Fredenhagen-Marcu (FM) order

parameter of mm̄ [89, 90, 91, 101, 255].
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from it. In this sense, the m anyons remain well-defined excitations. Once the paired anyon
condenses, the open string saturates to a non-vanishing value at a long distance.

Other types of incoherent errors in the Toric code, i.e. Pauli-Y and -Z errors, can induce
distinct phases with condensed fermion pairs ff̄ and electric anyon pairs eē, respectively. All
of these transitions are mutually independent because the paired anyons are mutual bosons,
and they occur at the same p

(2)
c . If two types of paired anyons condense simultaneously, it

implies a condensate of the third type as well because each two are equivalent (i.e. fuse) to
the third type, e.g. e×m = f .

We remark that the anyon condensation can be also probed by the topological entanglement
entropy (TEE) of the EFD [146, 160], which changes discontinuously at the transition. In the
toric code without decoherence, the TEE is 2 log 2, with each of the two states contributing
log 2. The condensation of mm̄ reduces the TEE to log 2, and further condensing also eē
completely removes the TEE (see Appendix E).

The results in the above example can be readily extended to general Abelian topological
orders subject to incoherent errors. The paired anyon αᾱ in the EFD are self-bosons and
may condense at a large error rate. Moreover, different types of paired anyons, αᾱ and ββ̄,
are always mutual bosons and can condense independently.

Anyon condensation in the EFD affects the information encoding in the corrupted state.
In topological quantum memory, the information is manipulated by the logical operator wα(ℓ)
that moves an anyon α along non-contractible loops ℓ = ℓ1, ℓ2 on the torus. These logical
operators are non-commuting and therefore encode quantum information.

In the condensed phase of αᾱ, Wαᾱ acting on the EFD does not produce an orthogonal
state, i.e. two states have a finite overlap, indicating the loss of information encoded in wα.
Furthermore, the condensation identifies Wββ̄ with Wηη̄ provided that α× β = η. Thus, two
logical operators wβ(ℓ) and wη(ℓ) are no longer independent. By analyzing the commutation
relations between independent logical operators, one can determine the encoding ability. If
the remaining operators are non-commuting, the corrupted state remains a quantum memory,
otherwise, only classical information can be encoded. The memory is completely destroyed if
no operators remain.

6.4 Effective field theory

To generalize the decoherence-induced transitions to other topologically ordered states and
gain insight into the nature of the ensuing phases, we formulate the problem within an effective
field theory. To this end, we employ the path integral representation of the normalization

⟨⟨ρ|ρ⟩⟩ = ⟨⟨ρ0| N †N |ρ0⟩⟩ , (6.5)

which plays the role of a generating function for expectation values in the EFD. Since
|ρ0⟩⟩ = |Ψ0⟩ ⊗ |Ψ∗

0⟩ is a double topologically ordered state, it is given as a double TQFT
in the Euclidean half spacetime τ < 0. Similarly, ⟨⟨ρ0| is represented by a double TQFT
in τ > 0. Therefore, in absence of decoherence, the norm ⟨⟨ρ0|ρ0⟩⟩ is represented by two
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decoupled TQFT in the entire spacetime. The decoherence, represented by N †N , creates a
temporal defect in the double TQFT, which couples the conjugate copies on the plane τ = 0
[Fig. 6.1(b)]. We note that the effect of measurements on a quantum ground state is similarly
represented by a temporal defect in the Euclidean action [95].

The transition induced by the coupling at τ = 0 must be a boundary transition. This
renders a distinction between the condensation of αᾱ in the EFD and that in a quantum
ground state. The latter involves the proliferation of αᾱ loops of arbitrary size in the (2 + 1)D
spacetime, while the former is marked by the proliferation of small loops of the condensed
object αα, fluctuating near τ = 0 [Fig. 6.1(b)]. The distinction has consequences on the
signatures of the decoherence-induced anyon condensate.

In the Toric code example, the usual ground-state condensation of mm̄ would lead to
confinement of anyon e that has non-trivial mutual statistics with mm̄ [52]. This would be
detected, for example, by the Wilson loop We(C) :=

∏
i∈C Zi ⊗ ⊮ along a contractible loop C.

Once mm̄ is condensed, We(C) is affected by a finite density of large mm̄ loops that pierce C,
leading to exponential decay of We(C) with an area law, i.e. We(C) ∼ e−bArea(C). By contrast,
the decoherence-induced condensate only involves the proliferation of small mm̄ loops that
only affect We(C) along its perimeter leading to perimeter-law scaling, We(C) ∼ e−a|C|,
regardless of the error rate. Thus, the anyon condensation in the EFD does not lead to
confinement, and the Wilson loop cannot probe the transition.

6.5 Mapping to (1+1)D boundary phases

To classify the possible decoherence-induced phases it is convenient to perform a π/2-spacetime
rotation of the (2+1)D TQFT, τ → −x and x→ τ . The bulk action is invariant under this
rotation [272, 86, 235], whose sole effect is therefore to convert the temporal defect to a
spatial defect in a quantum ground state [Fig. 6.1(c)]. Thus, the decoherence-induced phases
are mapped to the quantum phases of a 1D defect in a double topologically ordered state
[Fig. 6.1(d)], which can be equivalently formulated as boundary phases [25, 133] (see also
Appendix E).

The possible phases can be understood using the field theory description. The Lagrangian
characterizing the low-energy physics has three contributions

L = L0 + L1 + LN . (6.6)

L0 describes the low-energy excitation in the TQFT, which involves only the edge degrees of
freedom since the bulk is gapped. L1 represents the coupling between the edge modes on the
left and right of the defect in Fig. 6.1(d), which stems from the continuity of the TQFTs in
the two half spacetimes before the rotation. This is the coupling ensuring that the system
before decoherence is described by a gapped theory without temporal boundaries. Lastly,
LN represents the effect of the error channels, which couple the edge modes in the ket and
bra copies.
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We now focus on the case of Abelian topological order, which is captured by Abelian
Chern-Simons theories. The low-energy excitations are described by a theory of compact
bosons on the edge [83, 267]

L0[ϕ] =
1

4π

∑

I,J

K(2)
IJ i∂τϕ

I∂yϕ
J − V(2)

IJ ∂yϕ
I∂yϕ

J , (6.7)

where ϕ := [ϕ̄R, ϕR, ϕL, ϕ̄L], ϕs and ϕ̄s are the field variables in the ket and bra Hilbert spaces,
respectively, while s = L, R denote the two copies of the EFD. A central object of the
theory is the K-matrix K(2) = K ⊕ (−K) ⊕ K ⊕ (−K) with K an integer-valued matrix.
V(2) = V ⊕ V ⊕ V ⊕ V with V a non-universal positive definite matrix. In this theory, L1 is
a non-linear coupling of ϕL to ϕR and ϕ̄L to ϕ̄R, and LN couples field variables within the
same copy of the EFD, i.e. ϕs and ϕ̄s.

The gapped phase of the defect is obtained by condensing bosonic excitations. The
excitations in L0 are of the form eil

T ·ϕ labeled by an integer vector l. Such excitations
are bosonic if their self statistics θl := πlT (K(2))−1l = 0 mod 2π. For Abelian topological
order, the condensed bosonic excitations on the edge form a group termed the Lagrangian
subgroup [158, 20, 263].

The possible edge phases are classified by inequivalent Lagrangian subgroups M. In our
case, the allowed subgroup is subject to symmetry constraints, i.e. it is invariant under the
global symmetry G(2) = Z2 × ZH

2 of the defect theory. Here, Z2 is an anti-unitary symmetry
associated with the Hermitian conjugation in the double Hilbert space, i.e. ϕI

R(ϕ̄I
R) ↔ ϕI

L(ϕ̄I
L)

and i ↔ −i, and ZH
2 is an anti-unitary symmetry originated from the hermiticity of density

matrix and acts as ϕI
s ↔ ϕ̄I

s with s = L,R and i ↔ −i 5 6. Furthermore, the interaction only
creates specific excitations: paired anyon αsαs = eil

T ·(ϕs−ϕ̄s) by the incoherent errors, and
αLα

′
R = eil

T ·(ϕL+ϕR), ᾱLᾱ
′
R = e−ilT ·(ϕ̄L+ϕ̄R) by L1. This requires the condensed object in M

to be the fusion of such paired anyons.
The Lagrangian subgroup M therefore must satisfy the following criteria:

1. eiθmm′ = 1,∀m,m′ ∈ M;

2. ∀l /∈ M, ∃m s.t. eiθml ̸= 1;

3. ∀m ∈ M, gmg−1 ∈ M, ∀g ∈ G(2);

4. (Incoherent error) [1,1,−1,−1]T ·m = 0 mod K(2)Λ,∀m ∈ M 7.

5The K-matrix K(2) flips sign under the anti-unitary symmetry, however, the Lagrangian L0 is invariant
as the minus sign cancels that from the imaginary identity.

6The effective theory for the norm of the EFD ⟨⟨ρ|ρ⟩⟩ = tr ρ2 is expected to have a Z2 unitary symmetry
permuting two copies of density matrix. This permutation is a combination of the Hermitian conjugation of
the EFD and that of the density matrix and thus is included in G(2).

7The equation is held modulo physical excitations, where Λ is an integer vector. 1 is a vector with each
component being 1 and of the same dimension as the matrix K.
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Here, θml := 2πmT (K(2))−1l characterizes the mutual statistics between two anyons. In three
examples, the Toric code, double semion model [159], and ν = 1/3 Laughlin state [155], we
enumerate the possible phases (i.e. Lagrangian subgroups) summarized in Table 6.1 (see
Appendix E).

6.6 Discussion

We have introduced the errorfield double formulation to characterize the breakdown of
quantum memories described by Abelian topological orders, generalizing error recovery
transitions in specific quantum codes. We showed that the breakdown of quantum memories
corresponds to a boundary transition in a replicated theory consisting of n ≥ 2 copies of the
topological order and its conjugate. We focused on the n = 2 case and incoherent errors and
classified the possible phases. Our results are ripe for multiple lines of generalization.

One useful extension is to characterize the effect of quantum channels that include coherent
errors [42, 123, 128, 254, 24]. A physically important example is provided by amplitude
damping errors applied to the toric code [72, 71]. Here, the decoherence involves terms
that can drive condensation of anyons in a single-copy Hilbert space (i.e. α or ᾱ). The
corresponding Lagrangian subgroup does not need to satisfy the fourth criterion, allowing for
the establishment of additional decoherence-induced phases (see Appendix E).

Another future direction is to investigate the effect of decoherence in non-Abelian topolog-
ically ordered states. Here, decoherence can affect the capacity to perform protected quantum
computation in the fusion space [190]. One complication is that errors are intrinsically
“coherent” as incoherent errors can generate anyons in the individual ket or bra copy due to
non-Abelian fusion rules.

The existence of an error recovery threshold suggests that the decoherence-induced
phases can be characterized by information-theoretic properties. In Chapter 7, we propose
information-theoretic diagnostics of the topological order in corrupted mixed states and
demonstrate their consistency in a concrete example of the Toric code under incoherent
errors. The EFD framework allows computing quadratic functions of the density matrix
and therefore correspond to second Rényi versions of the information-theoretic quantities.
However, the framework is generalizable to a replicated theory of the (1+1)D defect, allowing
us to analyze the n-th moment of ρ (see Appendix E). The information-theoretic quantities
is obtained in the limit n→ 1. We expect that the classification in Table 6.1 still holds in
this limit (see Appendix E).

Finally, the EFD formalism can be applied to the investigation of mixed states beyond
topologically ordered systems. Decoherence-induced transitions may occur in other states that
encode information nonlocally, such as fracton systems [107, 261] and quantum low-density
parity check codes [45]. The recently proposed average symmetry-protected topological
phases [176, 157, 280] is another problem that can be possibly characterized in the EFD
formulation.
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Chapter 7

Diagnostics of mixed-state topological
order

7.1 Introduction

The major roadblock to realizing quantum computers is the presence of errors and decoherence
from the environment which can only be overcome by adopting quantum error correction
(QEC) and fault tolerance [98]. A first step would be the realization of robust quantum
memories [53, 242, 247]. Topologically ordered systems in two spatial dimensions, owing to
their long-range entanglement and consequent degenerate ground states, serve as a promising
candidate [190, 265, 145, 94]. A paradigmatic example is the surface code [43, 74], whose
promise as a robust quantum memory has stimulated recent interest in its realization in
near-term quantum simulators [193, 226, 255, 234, 34, 5, 11].

One of the central quests is to analyze the performance of topological quantum memory
under local decoherence. In the case of surface code with bit-flip and phase errors, it
has been shown that the stored information can be decoded reliably up to a finite error
threshold [74]. Namely, as the error rate increases, the success probability of the decoding
algorithm drops to zero at a critical value that depends on the choice of the algorithm. These
decoding transitions imply an error-induced singularity in the mixed state of the system. The
algorithmic dependence of the error thresholds is a mere reflection of the suboptimality of
specific algorithms. It is then natural to inquire how this transition can be probed through
the behavior of intrinsic properties of the quantum state.

Such a characterization has at least two important consequences. First, the critical
error rate for the intrinsic transition should furnish an upper bound for decoding algorithms,
saturating which implies that the optimal decoder has been found. Second, the correspondence
between successful decoding and intrinsic properties of the quantum state acted upon by errors
points to the existence of topologically distinct mixed states. In another word, answering this
question amounts to relating the breakdown of topological quantum memory to a transition in
the mixed-state topological order. Progress towards this goal lies in quantifying the residual
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long-range entanglement in the error-corrupted mixed state. We will consider quantities that
are motivated from both perspectives and explore their unison.

In this work, we investigate three information-theoretical diagnostics: (i) quantum relative
entropy between the error-corrupted ground state and excited state; (ii) coherent information;
(iii) topological entanglement negativity. The first two are natural from the perspective of
quantum error correction (QEC). More specifically, the quantum relative entropy quantifies
whether errors ruin orthogonality between states [147], and coherent information is known
to give robust necessary and sufficient conditions on successful QEC [230, 231, 120]. The
third one is a basis-independent characterization of long-range entanglement in mixed states
and is more natural from the perspective of mixed-state topological order. This quantity
has been proposed to diagnose topological orders in Gibbs states [171, 172], which changes
discontinuously at the critical temperature. We borrow and apply this proposal to error-
corrupted states. Our transition occurs in two spatial dimensions at a finite error rate, in
contrast to the finite temperature transitions in four spatial dimensions.

The presence of three seemingly different diagnostics raises the question of whether they
all agree and share the same critical error rate. Satisfyingly, we indeed find this to be the case
in a concrete example, surface code with bit-flip and phase errors. The n-th Rényi version of
the three quantities can be formulated in a classical two-dimensional statistical mechanical
model of (n − 1)-flavor Ising spins, which exhibits a transition from a paramagnetic to a
ferromagnetic phase as the error rate increases. The three quantities are mapped to different
probes of the ferromagnetic order and must undergo the transition simultaneously, which
establishes their consistency in this concrete example.

Interestingly, the statistical mechanical model derived for the information-theoretic diag-
nostics is exactly dual to the random-bond Ising model (RBIM) that governs the decoding
transition of the algorithm proposed in [74]. This duality implies that the error threshold of
the algorithm in [74] saturates the upper bound. Therefore, it confirms that this decoding
algorithm is optimal, and its threshold reflects the intrinsic properties of the corrupted state.
We remark that mappings to statistical mechanical models have been tied to obtaining error
thresholds of decoding algorithms [74, 262, 135, 36, 151, 66]. Here such mappings arise from
characterizing intrinsic properties of the error corrupted mixed state.

The rest of the Chapter is organized as follows. Sec. 7.2 gives a concrete definition of the
error-corrupted states and introduces the three diagnostics. Sec. 7.3 studies the concrete
example, the 2D Toric code subject to local bit-flip and phase errors. We close with discussions
in Sec. 7.4.

7.2 Setup and diagnostics

In this section, we begin with introducing the error-corrupted mixed state. We show that
any operator expectation value in a single-copy corrupted density matrix cannot probe the
transition, and instead one needs to consider the non-linear functions of the density matrix.
Next, we introduce three information-theoretic diagnostics of the transition: (i) quantum
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relative entropy; (ii) coherent information; (iii) topological entanglement negativity. These
quantities generalize the diagnostics of ground-state topological order.

Error-corrupted mixed state

The type of mixed state we consider throughout the Chapter describes a topologically ordered
ground state ρ0 = |Ψ0⟩ ⟨Ψ0| subject to local errors

ρ = N [ρ0] =
∏

i

Ni[ρ0] , (7.1)

where the quantum channel Ni models the local error at site i and is controlled by the error
rate p. We refer to ρ as the error-corrupted mixed state.

The transition in the corrupted state, if exists, cannot be probed by the operator expec-
tation value in a single-copy density matrix. To demonstrate it, we purify the corrupted
state by introducing one ancilla qubit prepared in |0⟩i for each physical qubit at site i. The
physical and ancilla qubits are coupled locally via unitary Ui(p) such that tracing out the
ancilla qubits reproduces the corrupted state ρ. This leads to a purification

|Φ⟩ =
∏

i

Ui(p) |Ψ0⟩ (⊗i |0⟩i) , (7.2)

which is related to the topologically ordered state by a depth-1 unitary circuit on the extended
system [see Fig. 7.1]. It follows that the expectation value of any operator supported on a
large but finite region of the physical qubits, e.g., a Wilson loop operator, must be a smooth
function of the error rate [see Fig. 7.1 for a schematics]. Thus, it is indispensable to consider
the non-linear functions of the density matrix, e.g. quantum information quantities, to probe
the transition in the corrupted state. This property holds when ρ describes a general mixed
state in the ground-state subspace under local errors.

We remark that the above argument does not prevent observables in a single-copy density
matrix from detecting topological order in finite-temperature Gibbs states [112]. The key
difference is the purifications of the Gibbs states at different temperatures are not necessarily
related by finite-depth circuits.

Quantum relative entropy

Anyon excitations are crucial for storing and manipulating quantum information in a topo-
logically ordered state. For example, to change the logical state of the code one creates a
pair of anyons out of the vacuum and separates them to opposite boundaries of the system.
The first diagnostic tests if the process of creating a pair of anyons and separating them by a
large distance gives rise to a distinct state in the presence of decoherence.

Specifically, we want to test if the corrupted state ρ = N [ρ0] is sharply distinct from
ρα = N [wα(P)ρ0wα(P)†]. In the second state, wα(P) is an open string operator that creates
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Φ〉=

U1 (p) U2 (p) ...... UN (p)

Ψ0〉
0〉1 0〉2 0〉N......

Physical observable
Tr(Oρ)

Information quantities
e.g. γN

ppc0

Figure 7.1: Physical observables verses information quantities in error corrupted states.
Each error corrupted state can be obtained from applying local unitaries to the system
(topological order) plus ancilla qubits (trivial product state). Thus, physical observables
must be smooth functions of the error rate p. In contrast, information quantities, e.g. the
topological entanglement negativity γN , can have discontinuities that identify the many-body
singularities.

an anyon α and its anti-particle α′ at the opposite ends of the path P . We use the quantum
relative entropy as a measure for the distinguishability of the two states

D(ρ||ρα) := tr ρ log ρ− tr ρ log ρα . (7.3)

In absence of errors the relative entropy is infinite because the two states are orthogonal, and
it decreases monotonically with the error rate [168, 14, 169]. Below the critical error rate,
however, the states should remain perfectly distinguishable if the anyons are separated by a
long distance. Therefore we expect the relative entropy to diverge as the distance between
the anyons is taken to infinity. Above the critical error rate on the other hand we expect the
relative entropy to saturate to a finite value reflecting the inability to perfectly distinguish
between the two corrupted states. In this regard, the relative entropy describes whether
anyon excitations remain well-defined and is a generalization of the Fredenhagen-Marcu order
parameter for ground state topological order [89, 90, 91, 101].

To facilitate calculations, we consider a specific sequence of the Rényi relative entropies

D(n)(ρ||ρα) :=
1

1 − n
log

tr ρρn−1
α

tr ρn
, (7.4)

which recovers D(ρ||ρα) in the limit n→ 1. In Sec. 7.3 we map the relative entropies D(n) in
the corrupted Toric code to order parameter correlation functions in an effective statistical
mechanics model, which is shown to exhibit the expected behavior on two sides of the critical
error rate.
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Coherent information

The basis for protecting quantum information in topologically ordered states is encoding it
in the degenerate ground state subspace. The second diagnostic we consider is designed to
test the integrity of this protected quantum memory.

We use the coherent information, as a standard metric for the amount of quantum
information surviving in a channel [230, 231, 120]. In our case, the relevant quantum channel
consists of the following ingredients illustrated below. (i) A unitary operator U that encodes
the state of the logical qubits in the input R into the ground state subspace. (ii) A unitary
coupling UQE of the physical qubits Q to environment qubits E, which models the decoherence.
The coherent information in this setup is defined as

Ic(R⟩Q) := SQ − SQR.
R Q EUQE

U
(7.5)

Here SQ and SRQ are the von Neumann entropies of the systems Q and RQ respectively and
we used the Choi map to treat the input R as a reference qubit in the output. It follows
from subadditivity that the coherent information is bounded by the amount of encoded
information in the degenerate ground state subspace, i.e. −SR ≤ Ic ≤ SR. In the absence
of errors Ic = SR, and we expect this value to persist as long as the error rate is below the
critical value. Above the critical error rate, we expect Ic < SR, indicating the loss of encoded
information.

Physically the coherent information is closely related and expected to undergo a transition
at the same point as the relative entropy discussed above. The quantum information is
encoded by separating anyon pairs across the system. It stands to reason that if this state
remains perfectly distinguishable from the original state, as quantified by the relative entropy,
then the quantum information encoded in this process is preserved.

The critical error rate for preserving the coherent information is an upper bound for the
threshold of any QEC algorithms

pc ≥ pc,algorithm . (7.6)

The key point is that coherent information is non-increasing upon quantum information
processing and cannot be restored once it is lost. Thus, a successful QEC requires Ic = SR.
Moreover, the QEC algorithm involves syndrome measurements that are non-unitary and
generically do not access the full coherent information in the system giving rise to a lower
error threshold.

To facilitate calculations and mappings to a statistical mechanics model we will need the
Rényi coherent information

I(n)c := S
(n)
Q − S

(n)
RQ =

1

n− 1
log

tr ρnRQ

tr ρnQ
, (7.7)

which approaches Ic in the limit n→ 1. In the example of Toric code with incoherent errors
discussed in Sec. 7.3, we show that I

(n)
c takes distinct values in different phases.
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Topological entanglement negativity

The topological entanglement entropy provides an intrinsic bulk probe of ground state
topological order and does not require a priori knowledge of the anyon excitations. The third
diagnostic we consider generalizes this notion to the error-corrupted mixed state.

A natural quantity often used to quantify entanglement in mixed states, is the logarithmic
negativity of a sub-region A [206, 119, 260]

EA(ρ) := log ||ρTA||1, (7.8)

where ρTA is the partial transpose on the subsystem A and ∥ · ∥1 denotes the trace (L1) norm.
The logarithmic negativity coincides with the Rényi-1/2 entanglement entropy for the pure
state and is non-increasing with the error rate of the channel, a requirement that any measure
of entanglement must satisfy [192, 207]. The logarithmic negativity was previously used in
the study of ground state topological phases [270, 269, 236] and more recently for detecting
topological order in finite temperature Gibbs states [171, 172].

We expect that the universal topological contribution to the entanglement [146, 160]
will survive in the corrupted mixed state below a critical error rate and be captured by the
logarithmic negativity. Thus, the conjectured form of this quantity is

EA = c|∂A| − γN + . . . , (7.9)

where |∂A| is the circumference of the region A, c is a non-universal coefficient, and ellipsis
denotes terms that vanish in the limit |∂A| → ∞. The constant term γN is the topological
entanglement negativity of a simply connected subregion A, and is argued to originate from
the long-range entanglement [103, 171]. One of the essential reasons for γN being topological
is the conversion property EA = EĀ, i.e. negativity of a subsystem is equal to that of the
complement. In contrast, the von Neumann entropy of a subregion in the error-corrupted
mixed state exhibits a volume-law scaling, and its constant piece is not topological because
of SA ̸= SĀ.

To facilitate the calculation of the negativity, we consider the Rényi negativity of even
order

E (2n)
A (ρ) :=

1

2 − 2n
log

tr
(
ρTA
)2n

tr ρ2n
. (7.10)

The logarithmic negativity is recovered in the limit 2n → 1. Here, we choose a particular
definition of the Rényi negativity such that it exhibits an area-law scaling in the corrupted
state. In Sec. 7.3, we show explicitly that in the Toric code the topological part γ

(2n)
N of the

Rényi negativity takes a quantized value log 2 in the phase where the quantum memory is
retained and vanishes otherwise.

To summarize, we expect the topological negativity takes the same universal value as the
topological entanglement entropy in the uncorrupted ground state and drops sharply to a
lower value at a critical error rate. It is a priori not clear, however, that the transition in the
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negativity must occur at the same threshold as that marks the transition of the other two
diagnostics we discussed. In Sec. 7.3 we show, through mapping to a statistical mechanics
model that, in the example of the Toric code, a single phase transition governs the behavior
of all three diagnostics.

Diagnostics Observable PM FM

D(n) Logarithm of
order parameter correlation function

O(|il − ir|) O(1)

I
(n)
c

Related to the excess free energy for
domain walls along non-contractible loops

2 log 2 0

E (2n)
A

Excess free energy for
aligning spins on the boundary of A

c|∂A|/ξ − log 2 c|∂A|/ξ

Table 7.1: Dictionary of the mapping. The Rényi-n version of the diagnostics of topological
order in error corrupted states and their corresponding observables in (n− 1)-flavor Ising
models are listed in the first and second columns, respectively. We consider 2D Toric code
subject to one type of incoherent error (bit-flip or phase errors). The asymptotic behaviors
of these diagnostics in the paramagnetic (PM) and ferromagnetic (FM) phases of the spin
model are provided.

7.3 Example: Toric code under bit-flip and phase

errors

In this section, we use the three information-theoretical diagnostics to probe the distinct
error-induced phases in the 2D Toric code under bit-flip and phase errors. In particular, we
develop 2D classical statistical mechanical models to analytically study the Rényi-n version
of the diagnostics in this example. The statistical mechanical models involve (n− 1)-flavor
Ising spins and undergo ferromagnetic phase transitions as a function of error rates. We show
that the three diagnostics map to distinct observables that all detect the ferromagnetic order
and undergo the transition simultaneously. We remark that our results also apply to the
planar code.

In Sec. 7.3, we introduce the Toric code and the error models. We derive the statistical
mechanical models in Sec. 7.3 and analyze the phase transition in Sec. 7.3. Sec. 7.3 discusses
the three diagnostics and their corresponding observables in the statistical mechanical models.
See Table 7.1 for a summary. We discuss the replica limit n→ 1 in Sec. 7.3.
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Toric code and error model

We consider the 2D Toric code on an L× L square lattice with periodic boundary conditions.
This code involves N = 2L2 physical qubits on the edges of the lattice, and its code space is
given by the ground state subspace of the Hamiltonian

HTC = −
∑

s

As −
∑

p

Bp , (7.11)

where As and Bp are mutually commuting operators associated with vertices and plaquettes

As =
∏

ℓ∈star(s)

Xℓ , Bp =
∏

ℓ∈boundary(p)

Zℓ . (7.12)

Here, Xℓ and Zℓ denote the Pauli-X and Z operators on edge ℓ, respectively. The ground
state satisfying As |Ψ⟩ = Bp |Ψ⟩ = |Ψ⟩ is four-fold degenerate and can encode two logical
qubits.

We consider specific error channels describing uncorrelated single-qubit bit-flip and phase
errors

NX,i[ρ] = (1 − px)ρ+ pxXiρXi ,

NZ,i[ρ] = (1 − pz)ρ+ pzZiρZi ,
(7.13)

where the Pauli-X (Z) operator acting on the Toric code ground state creates a pair of m
(e) anyons on the adjacent plaquettes (vertices), px and pz are the corresponding error rates.
The corrupted state reads

ρ = NX ◦ NZ [ρ0] ,

where NX(Z) =
∏

i NX(Z),i. We assume that the error rate is uniform throughout our
discussion.

We make a few remarks. First, the error channels in Eq. (7.13) do not create coherent
superposition between states with different anyon configurations and are referred to as
incoherent errors. Second, Pauli-Y errors create f anyons incoherently and can also be
analyzed. It leads to a similar physics and will be not discussed in the work.

Statistical mechanical models

Here, we map the n-th moment of the corrupted density matrix tr ρn to the partition function
of the (n− 1)-flavor Ising model. In this statistical mechanical model, one can analyze the
singularity in the Rényi version of the three diagnostics, which will be presented in Sec. 7.3.

To begin, we consider the maximally mixed state in the ground state subspace

ρ0 =
1

4

∏

s

1 + As

2

∏

p

1 +Bp

2
. (7.14)
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For our purpose here, it is convenient to write ρ0 in a loop picture

gz
gx

ρ0 =
1

2N

∑

gz

gz
∑

gx

gx , (7.15)

where gz and gx are Z and X loops on the original and dual lattice given by the product of
As and Bp operators, respectively. The summation runs over all possible loop configurations.
In what follows, we will use gx(z) to denote both the operators and the loop configurations.
The meaning will be clear in the context.

Two error channels act on the loop operators gx, gz by only assigning a real positive
weight:

NX,i[gz] =

{
(1 − 2px)gz Zi ∈ gz

gz Zi /∈ gz
,

NZ,i[gx] =

{
(1 − 2pz)gx Xi ∈ gx

gx Xi /∈ gx
.

Thus, the corrupted state remains a superposition of loop operators

ρ =
1

2N

∑

gx,gz

e−µx|gx|−µz |gz |gxgz, (7.16)

where |gx(z)| denotes the length of the loop, and µx(z) = − log
(
1 − 2pz(x)

)
can be understood

as the line tension. Using Eq. (7.16), it is straightforward to see that the expectation values
of operators, such as the Wilson loop and open string, behave smoothly as the error rate
increases, in consistence with the general argument in Sec. 7.2.

Using this loop picture Eq. (7.16), we can write the n-th moment as

tr ρn =
1

2nN

∑

{g(s)x ,g
(s)
z }

tr
( n∏

s=1

g(s)x g(s)z

)

e
∑

s −µx|g(s)x |−µz |g(s)z |,

(7.17)

where g
(s)
x(z), s = 1, 2, · · · , n is the X(Z) loop operator from the s-th copy of density matrix.

The product of loop operators in Eq. (7.17) has a nonvanishing trace only if the products
of X and Z loops are proportional to identity individually, which leads to two independent
constraints

g(n)a =
n−1∏

s=1

g(s)a , a = x, z . (7.18)

The n-th moment factorizes into a product of two partition functions

tr ρn =
1

2(n−1)N
Zn,xZn,z , (7.19)
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where Zn,a =
∑

{g(s)a } e
−Hn,a with a = x, z is a statistical mechanics model that describes

fluctuating X(Z) loops with a line tension. The Hamiltonian takes the form

Hn,a = µa

( n−1∑

s=1

∣∣g(s)a

∣∣+
∣∣
n−1∏

s=1

g(s)a

∣∣
)
. (7.20)

Here, we have imposed the constraints (7.18), and the summation in each partition function
runs over the loop configurations only in the first n− 1 copies.

The loop model can be mapped to a statistical mechanical model of n − 1 flavors of
Ising spins with nearest neighbor ferromagnetic interactions. The mapping is established
by identifying the loop configuration g

(s)
a with s = 1, 2, . . . , n− 1 with domain walls of Ising

spins. Specifically, for a Z loop configuration on the original lattice, we associate a Ising spin
configuration σi on the dual lattice such that

σ
(s)
i

σ
(s)
jg

(s)
z,ℓ

∣∣∣g(s)z,ℓ

∣∣∣ =
(

1 − σ
(s)
i σ

(s)
j

)
/2 ,

where i, j are connected by the link dual to ℓ, and |g(s)z,ℓ | is a binary function that counts the

support of loop on link ℓ. The total length of the loop is given by |g(s)z | =
∑

ℓ |g
(s)
z,ℓ |. Similarly,

we can define the Ising spins on the original lattice that describe the X loop configuration on
the dual lattice.

In terms of the Ising spins, the effective Hamiltonian is given by

Hn,a = −Ja
∑

⟨i,j⟩

(
n−1∑

s=1

σ
(s)
i σ

(s)
j +

n−1∏

s=1

σ
(s)
i σ

(s)
j

)
(7.21)

with a ferromagnetic coupling Jx(z) = − log
√

1 − 2pz(x) . In what follows, we refer to this
model as the (n − 1)-flavor Ising model. We remark that the model exhibits a global
symmetry G(n) = (Z⊗n

2 ⋊Sn)/Z2, where Sn is the permutation symmetry over n elements. As
is shown below, increasing the error rate the model undergoes a paramagnetic-to-ferromagnetic
transition that completely breaks the G(n) symmetry.

Phase transitions

Here, we study the ferromagnetic transition in the (n− 1)-flavor Ising model. The transition
points depend on n and are determined using both analytical methods (e.g. Kramers-Wannier
duality for n = 2, 3) and Monte-Carlo simulation (for n = 4, 5, 6, etc). The results are
presented in Fig. 7.2.

For n = 2, the statistical mechanical model is the standard square lattice Ising model:

H2,a = −2Ja
∑

⟨i,j⟩

σiσj . (7.22)
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Figure 7.2: Critical error rates for various Rényi index n. p
(2)
c ≈ 0.178 and p

(3)
c ≈ 0.211

are determined by the exact solution (blue diamonds). For n ≥ 4, p
(n)
c is determined by

calculating the crossing of the Binder ratio for various system sizes via Monte-Carlo (red

squares). p
(n)
c in the replica limit n → 1 (the yellow star) is given by the critical point of

random-bond Ising model (RBIM) in 2D, p
(1)
c ≈ 0.109, as explained in Sec. 7.3. In the limit

n→ ∞, the spin model is asymptotically decoupled Ising models with p
(∞)
c ≈ 0.293 (the grey

dashed line).

The critical point is determined analytically by the Kramers-Wannier duality [211, 142]

p(2)c =
1

2

(
1 −

√√
2 − 1

)
≈ 0.178. (7.23)

For n = 3, the model becomes the Ashkin-Teller model on 2D square lattice along the S4

symmetric line. The Hamiltonian is

H3,a = −Ja
∑

⟨i,j⟩

σ
(1)
i σ

(1)
j + σ

(2)
i σ

(2)
j + σ

(1)
i σ

(2)
i σ

(1)
j σ

(2)
j . (7.24)

The model is equivalent to the standard four-state Potts model [149] with a critical point
determined by the Kramers-Wannier duality

p(3)c =
1

2

(
1 − 1√

3

)
≈ 0.211. (7.25)

For n ≥ 4, we are not aware of any exact solution and resort to the Monte-Carlo simulation.
To locate the transition point pc, we consider the average magnetization per spin,

m :=
1

(n− 1)L2

n−1∑

s=1

∑

i

σ
(s)
i . (7.26)

We calculate the magnetization square ⟨m2⟩ and the Binder ratio B = ⟨m4⟩/⟨m2⟩2 numerically

and display the results in Fig. 7.3. Assuming a continuous transition, we determine p
(n)
c by
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Figure 7.3: Phase transition in the statistical mechanical model for n = 4. Magnetization (a)
and Binder ratio (b) as a function of error rate p for various system sizes up to Lx = Ly =
L = 64. The crossing of B(p, L) yields pc = 0.231. The exponents ν = 0.74 and β = 0.04 are
extracted from the finite-size scaling collapse in the insets. The results are averaged over 105

independent Monte-Carlo measurements for each of 48 initial configurations.

the crossing point of B(p, L) for various system sizes L and extract the critical exponents
using the scaling ansatz B(p, L) = Fb((p−pc)L

1/ν) and ⟨m2⟩(p, L) = L−2β/νFm((p−pc)L
1/ν).

The analysis yields p
(4)
c = 0.231 for n = 4. However, the sharp drop of magnetization and the

non-monotonic behavior of B(p, L) near p
(4)
c hint at a possible first-order transition [32, 125].

The critical error threshold pc increases monotonically with n and is exactly solvable in
the limit n→ ∞. In this case, the interaction among different flavors is negligible compared
to the two-body Ising couplings. Thus, the critical point is asymptotically the same as that
in the Ising model with coupling Ja and is given by

p(∞)
a,c =

1

2

(
2 −

√
2
)
≈ 0.293. (7.27)
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Three diagnostics

The Rényi version of the three information theoretic diagnostics, quantum relative entropy,
coherent information, and topological entanglement negativity, translate into distinct physical
quantities in the statistical mechanical model. We write these quantities explicitly below and
show that all three detect the establishment of ferromagnetic order. Therefore the transition
in all three quantities is governed by the same critical point, a fact that is not evident before
mapping to statistical mechanical models.

Quantum relative entropy

We start with the Rényi version of the quantum relative entropy given by Eq. (7.4). Let ρ
be the corrupted ground state of the Toric code, and ρm = N [|Ψm⟩ ⟨Ψm|] where |Ψm⟩ :=
wm(C) |Ψ0⟩ has a pair of m-particles at the end of path C. The phase errors do not change the
distinguishability between the two states and can be safely ignored here. Only the statistical
mechanics model for the Z loops/spins is relevant. Let iℓ and ir denote the positions of
two m-particles, we show in Appendix F.1 that the Rényi relative entropy is mapped to a
two-point function of the Ising spins

D(n)(ρ||ρα) =
1

1 − n
log⟨σ(1)

iℓ
σ
(1)
ir
⟩ , (7.28)

where σ
(1)
j is the first flavor of the Ising spin at site j, and the subscription z is suppressed.

When the error rate is small and the system is in the paramagnetic phase, the correlation
function decays exponentially, and thus D(n) = O(|iℓ − ir|) which grows linearly with the
distance between iℓ and ir. This indicates that the error-corrupted ground state and excited
state remain distinguishable. When the error rate exceeds the critical value and the system
enters the ferromagnetic phase, D(n) is of O(1) due to the long-range order, which implies
that the error-corrupted ground state and excited state are no longer distinguishable.

Coherent information

Next consider the Rényi version of the coherent information I
(n)
c in Eq. (7.7). We let the

two logical qubits in the system Q be maximally entangled with two reference qubits R. As
detailed in Appendix F.1, I

(n)
c can be mapped to the free energy cost of inserting domain

walls along non-contractible loops that are related to the logical operators. More explicitly,
let dal with a = x, z and l = l1, l2 be a (n− 1)-component binary vector. Each component of
dal dictates the insertion of domain walls for a = x, z spins along the non-contractible loop l,
respectively, in n− 1 copies of the Ising spins. Here, along the domain walls, the couplings
between nearest neighbor spins are flipped in sign and turned anti-ferromagnetic. Then, we
have

I(n)c =
1

n− 1

∑

a=x,z

log
( ∑

da1da2

e−∆F
(da1,da2)
n,a

)
− 2 log 2 , (7.29)
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∂AA

Figure 7.4: Entanglement negativity between region A and its compliment Ā corresponds
to the excess free energy for aligning Ising spins on the boundary of A (pink plaquettes)
pointing to the same direction.

where ∆F
(da1,da2)
n,a is the free energy cost associated with inserting domain walls labeled by

binary vectors dal, the sum runs over all possible dal.
When the error rate is small and the system is in the paramagnetic phase, the domain wall

along a non-contractible loop costs nothing, i.e. ∆F
(da1,da2)
n,a = 0. It follows that the corrupted

state retains the encoded information, i.e. I
(n)
c = 2 log 2. When the error rate exceeds the

critical value and the system enters the ferromagnetic phase, inserting a domain wall will
have a free energy cost that is proportional to its length. Namely, ∆F

(da1,da2)
n,a is proportional

to the linear system size unless no defect is inserted. One can deduce I
(n)
c = 0 when the spin

model for either Z or X loop undergoes a transition to the ferromagnetic phase, namely,
the corrupted state corresponds to a classical memory. When both spin models are in the
ferromagnetic phase, we have I

(n)
c = −2 log 2, indicating that the system is a trivial memory.

Topological entanglement negativity

The Rényi negativities of even order are given in Eq. (7.10). Let us specialize here to the
Toric code with only phase errors. As shown in Appendix F.1, the 2n-th Rényi negativity of
a region A is given by

E (2n)
A = ∆FA , (7.30)

where ∆FA is the excess free energy associated with aligning a single flavor of Ising spins on
the boundary ∂A in the same direction (illustrated in Fig. 7.4).

The excess free energy ∆FA, or more precisely, its subleading term can probe the fer-
romagnetic transition in the statistical-mechanical model. The excess free energy has two
contributions. The energetic part is always proportional to |∂A|. The entropic part is
attributed to the loss of degrees of freedom due to the constraint. In the paramagnetic
phase, the Ising spins fluctuate freely above the scale of the finite correlation length ξ.
Hence, enforcing each constraint removes O(|∂A|/ξ) degrees of freedom proportional to the
circumference of A, which yields the leading term (area law). Importantly, there is still one
residual degree of freedom, namely, the aligned boundary spins can fluctuate together, which
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Figure 7.5: Topological negativity γ
(4)
N as a function of the phase error rate pz. We consider

the subsystems A,B, and C as in Eq. (7.31) and choose the side of the region ABC to be

L/4. γ
(4)
N approaches log 2 and zero at small and large pz, respectively. The curves become

steeper as the system size L increases. The dashed line indicates the predicted behavior
in the thermodynamic limit. The results are averaged over 107 independent Monte-Carlo
measurements from each of 48, 96 random initial configurations for L = 8, 12, respectively.
The errorbars for L = 8 are negligible and thus omitted.

results in a subleading term log 2. Altogether, we have E (2n)
A = c|∂A|/ξ − log 2. Here, it is an

interesting question to verify whether the prefactor c is universal or not [179], and we leave it
for future study 1. In the ferromagnetic phase, the finite correlation length ξ sets the scale
of the critical region, below which the spins can fluctuate. Thus, imposing each constraint
removes O(|∂A|/ξ) degrees of freedom. However, the aligned boundary spins should also
align with the global magnetization resulting in a vanishing subleading term in the excess free
energy. Hence, the negativity E (2n)

A exhibits a pure area law without any subleading term.
To support our analytical argument, we also numerically calculate the Rényi-4 negativity

(the Rényi-2 negativity is trivially zero) and show that the topological term γ
(4)
N indeed

exhibits distinct behaviors across the transition. We adopt the Kitaev-Preskill prescription
to extract γN [146]. More specifically, we consider the subsystems A, B, C depicted below,
and γN is given by

A

B

C

−γN := EA + EB + EC + EABC

− EAB − EBC − EAC .
(7.31)

Our choice of the subsystems further simplifies the above expression to −γN = 2EA − 2EAC +
EABC

2.

1We thank Tarun Grover for pointing it out to us.
2Obtaining the negativity from the Monte-Carlo simulation is not an easy task. Here, one directly
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The result is presented in Fig. 7.5, where γ
(4)
N approaches log 2 and 0 for small and large

pz, respectively. The curves become steeper as the system size increases, which is consistent
with the predicted step function in the thermodynamic limit. One can also observe a dip of
γ
(4)
N below zero. This phenomenon has also appeared in the numerical study of the topological

entanglement entropy across transitions [255]. We believe that this dip is due to the finite-size
effect, which might be more severe for information quantities with a large Rényi index n [131].

So far, we only considered a simply connected sub-region. If A is not simply connected,
that is, ∂A contains k disconnected curves (for example the boundary of an annular region
that contains two disconnected curves), then the constraints only require the Ising spins to
align with other spins on the same boundary curve. In this case the topological entanglement
negativity is k log 2. This is the same dependence on the number of disconnected components
as in the topological entanglement entropy of ground states [160].

n→ 1 limit, duality and connection to optimal decoding

In this subsection, we determine pc in the limit n→ 1 via a duality between the statistical
mechanical model established in Sec. 7.3 and the 2D random bond Ising model (RBIM) along
the Nishimori line. The RBIM is also known to govern the error threshold of the optimal
decoding algorithm for the 2D Toric code with incoherent errors [74]. The duality shows
that the decoding threshold indeed saturates the upper bound given by the threshold in our
information theoretical diagnostics. This duality was derived before via a binary Fourier
transformation [196, 204]. Here, it follows naturally from two distinct expansions of the
error-corrupted state.

The statistical mechanical model in Sec. 7.3 is based on the loop picture (7.15). Here, we
work in an alternative error configuration picture, writing the error corrupted state as

e

e
m

m

Cz Cx
ρ =

∑

Cx,Cz

P (Cx)P (Cz)

ZCzXCxρ0X
CxZCz ,

(7.32)

where Cz (Cx) denotes the error strings on the original (dual) lattice. The corresponding error
syndromes are e and m anyons on the boundary ∂Cz and ∂Cx, respectively. Let |Ca| denote
the total length of the error string, the probability for each string configuration is

P (Ca) = p|Ca|a (1 − pa)
N−|Ca| , (7.33)

where N is the total number of qubits.

computes e(2−n)E(n)
A , which is exponentially small due to the area-law scaling of E(n)

A and thus requires
exponentially many samples to accurately determine its value. This limits the largest accessible subsystem
size.
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The expansion in error configurations allows writing the n-th moment as

tr ρn =
∑

{C(s)
x , C(s)

z }

n∏

s=1

P
(
C(s)
x

)
P
(
C(s)
z

)

tr
( n∏

s=1

ZC(s)
z XC(s)

x ρ0X
C(s)
x ZC(s)

z

)
.

(7.34)

We choose ρ0 = |Ψ0⟩ ⟨Ψ0| to be an eigenstate of the logical operators. Then, we can rewrite
the trace as

n−1∏

s=1

⟨Ψ0|XC(s)
x ZC(s)

z ZC(s+1)
z XC(s+1)

x |Ψ0⟩ ,

and see that the trace is non-vanishing only if error strings of different copies differ only by
homologically trivial loops. Namely, the error strings in the 2, . . . , n-th copies are related to
that in the first copy via

v
(s)
z

e

e

C(1)
z

C(s+1)
z(x) = C(1)

z(x) + ∂v
(s)
z(x),

s = 1, 2, . . . , n− 1 ,
(7.35)

where v
(s)
z(x) is a set of plaquettes on the original (dual) lattice, and its boundary ∂v

(s)
z(x) only

consists of homologically trivial loops. Noticing the decoupling between Z and X, we have

tr ρn = Z ′
n,zZ ′

n,x ,

Z ′
n,a =

∑

C(1)
a

P
(
C(1)
a

) ∑

{v(s)a }

n−1∏

s=1

P
(
C(1)
a + ∂v(s)a

)
.

(7.36)

By comparing the above expression with Eq. (7.19), we must have the following duality

Zn,x = 2
(n−1)N

2 Z ′
n,z , Zn,z = 2

(n−1)N
2 Z ′

n,x . (7.37)

In the following, we will focus on Z ′
n,z and suppress the subscripts for the sake of clarity. The

analysis of Z ′
n,x is similar.

We now interpret Z ′
n,z as a partition function of Ising spins that is related to the replicated

RBIM. Let us replace v(s), s = 1, . . . , n − 1 by n − 1 flavors of Ising spins that live on the
plaquettes such that each v(s) is in one-to-one correspondence to a configuration of Ising
spins, as is drawn below
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Namely, the boundary ∂v(s) is mapped to the domain walls of the s-th Ising spin. There are
nearest neighbor antiferromagneticinteractions between spins of the same flavor on links that
cross the path C(1) and ferromagnetic interaction across other links. More explicitly, one can
verify

Z ′
n = ((1 − p)p)N/2

∑

{Jij}

P ({ηij})

∑

{τ (s)}

exp
(
J

n−1∑

s=1

∑

⟨ij|ij⟩

ηijτ
(s)
i τ

(s)
j

) (7.38)

where e−2J = p/(1 − p) and ηij ∈ {−1, 1} is a binary random variable on links determined by

C(1). Hence, we recognize Z ′
n = Zn−1

RBIM as the disorder-averaged partition function of n− 1
copies of RBIM along the Nishimori line [194].

The replicated RBIM in the error configuration picture and the spin model in the loop
picture are both derived from the n-th moment of the error corrupted state. Therefore, they
must be dual to each other and share the same critical error rate for all replica indices. Note
that the replicated RBIM exhibits two phases, a ferromagnetic and a paramagnetic phase at
small and large error rates, respectively. This is exactly opposite to the phase diagrams of
the spin model in the loop picture, which is a common feature in Kramers-Wannier dualities.

In the replica limit n → 1, the replicated RBIM reduces to the RBIM derived for the
optimal quantum error correction algorithm [74] and undergoes an ordering transition at
pc = 0.109 [118]. This implies that all three diagnostics should also undergo the transition at
the same pc in the replica limit and confirms that the optimal decoding threshold saturates
the upper bound in Eq. (7.6).

7.4 Discussion

In this work, we introduced information theoretic diagnostics of error-corrupted mixed states
ρ =

∏
i Ni[ρ0], which probe their intrinsic topological order and capacity for protecting

quantum information. We focused on a concrete example, where ρ0 = |ψTC⟩⟨ψTC | is in the
ground state subspace of the Toric code and Ni the bit-flip and phase errors. We noted
that the n-th moment tr ρn can be written as the partition function of a 2D classical spin
model, that is dual to the (replicated) random-bond Ising model along the Nishimori line,
which is used to establish the following results. We consider three complementary diagnostics,
quantum relative entropy, coherent information, and topological entanglement negativity,
which are mapped to different observables in the spin model and shown to undergo a transition
at the same critical error rate. Generally speaking, this critical error rate is an upper bound
for the error threshold that can be achieved by any decoding algorithm. The aforementioned
duality implies that the critical error rate identified here is exactly saturated by the famous
error threshold of the optimal decoding algorithm for the Toric code proposed by Dennis
et al [74]. This result unveils a connection between the breakdown of topological quantum



CHAPTER 7. DIAGNOSTICS OF MIXED-STATE TOPOLOGICAL ORDER 149

memory and a transition in the mixed-state topological order, and also provides physical
interpretation for the decoding transition.

We have focused on Toric code with incoherent errors. It will be interesting to generalize
the discussion to coherent errors that create anyons with coherence, e.g., amplitude damping
or unitary rotations [72, 71, 42, 254]. In these cases, one has to concatenate coherent
errors and dephasing channels that mimic the syndrome measurement in order to make
better contact to quantum error correction based on that syndrome measurement. It is also
interesting to further consider non-Abelian quantum codes [44, 273, 227].

It might be surprising that the intrinsic properties of the 2D error corrupted quantum
states are captured by 2D classical statistical mechanical models. In Appendix F.2, we give
a brief discussion on ZN Toric code with specific incoherent errors and show that this is
also the case. A more general perspective is the so-called errorfield double formalism, which
is proposed by the same authors. It follows from this general formalism that the intrinsic
properties of the 2D error corrupted states can always be captured by a 1+1D quantum
model. Details are reported in Chap. 6.

For the 2D random-bond Ising model along the Nishimori line, physical quantities, such as
the specific heat, change smoothly despite crossing the phase transition [194]. For quantum
memories under local errors, we have argued in Sec. 7.2 that any physical observables must
also behave smoothly across the error-induced transition. This similarity between the two
sides may be the deeper underlying reason why the corrupted quantum memories are mapped
to the Nishimori line. It will be interesting to leverage this to identify more exotic Nishimori
physics and also help develop a better understanding of quantum memory.

As we have commented in Sec. 7.2, the error-induced transition acquires a different nature
from the thermal transition in finite-temperature topological order. This distinction suggests
a hierarchy of topological transitions in general mixed states. For example, it suffices to use
physical observables (linear in the density matrix) to detect the thermal transition, while
it requires at least second Rényi quantities (quadratic in the density matrix) to detect the
error-induced transition. It is interesting to explore more exotic topological transitions in
mixed states that are detectable only by non-linear functions of the density matrix of even
higher orders, such as the entanglement Hamiltonian.

The above task is intimately related to the goal of classifying mixed-state topological
order. A suitable definition of mixed state topological order should be both operationally
meaningful and also identify computable topological invariants. Our discussion which focuses
on the error-corrupted mixed states represents one particular aspect of this more general
question. Here, the coherent information provides the operational definition, namely, a locally
corrupted state is in a different phase if QEC is impossible, while the topological entanglement
negativity is believed to provide a computable topological invariant that diagnoses the present
transition. However, note that both the local error channel and QEC process are generally
non-unitary, for which the Lieb-Robinson bound does not apply. Therefore, understanding
the role of locality is key to obtaining a general notion of equivalence classes of mixed states.
Similarly, a more general justification of topological negativity and its universality, in the
sense of establishing its invariance under the application of local quantum channels at a



CHAPTER 7. DIAGNOSTICS OF MIXED-STATE TOPOLOGICAL ORDER 150

certain place, is left for future work. The main difficulty comes from understanding how
local perturbations affect the spectrum of a partially transposed density matrix, which is an
interesting problem in its own right and is left to future work.
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[36] Héctor Bombin et al. “Strong resilience of topological codes to depolarization”. In:
Physical Review X 2.2 (2012), p. 021004.

[37] Danilo Boschi et al. “Experimental realization of teleporting an unknown pure quantum
state via dual classical and Einstein-Podolsky-Rosen channels”. In: Physical Review
Letters 80.6 (1998), p. 1121.

[38] Adam Bouland et al. “On the complexity and verification of quantum random circuit
sampling”. In: Nature Physics 15.2 (2019), pp. 159–163.

[39] Dik Bouwmeester et al. “Experimental quantum teleportation”. In: Nature 390.6660
(1997), pp. 575–579.

[40] Fernando GSL Brandao, Aram W Harrow, and Micha l Horodecki. “Local random
quantum circuits are approximate polynomial-designs”. In: Communications in Math-
ematical Physics 346 (2016), pp. 397–434.

[41] Sergey Bravyi and Barbara Terhal. “A no-go theorem for a two-dimensional self-
correcting quantum memory based on stabilizer codes”. In: New Journal of Physics
11.4 (2009), p. 043029.

[42] Sergey Bravyi et al. “Correcting coherent errors with surface codes”. In: npj Quantum
Information 4.1 (2018), p. 55.

[43] Sergey B Bravyi and A Yu Kitaev. “Quantum codes on a lattice with boundary”. In:
arXiv preprint quant-ph/9811052 (1998).

[44] Courtney G Brell et al. “Thermalization, error correction, and memory lifetime for
ising anyon systems”. In: Physical Review X 4.3 (2014), p. 031058.

[45] Nikolas P Breuckmann and Jens Niklas Eberhardt. “Quantum low-density parity-check
codes”. In: PRX Quantum 2.4 (2021), p. 040101.

[46] H-J Briegel et al. “Quantum repeaters: the role of imperfect local operations in
quantum communication”. In: Physical Review Letters 81.26 (1998), p. 5932.

[47] Hans J Briegel and Robert Raussendorf. “Persistent entanglement in arrays of inter-
acting particles”. In: Physical Review Letters 86.5 (2001), p. 910.



BIBLIOGRAPHY 154

[48] Antoine Browaeys and Thierry Lahaye. “Many-body physics with individually con-
trolled Rydberg atoms”. In: Nature Physics 16.2 (2020), pp. 132–142.

[49] Adam R Brown et al. “Quantum gravity in the lab. i. teleportation by size and
traversable wormholes”. In: PRX quantum 4.1 (2023), p. 010320.

[50] Benjamin J Brown et al. “Quantum memories at finite temperature”. In: Reviews of
Modern Physics 88.4 (2016), p. 045005.
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Appendix A

Supplementary material for Chapter 2

A.1 Random Clifford circuits as unitary 2-design

One of the main results of our work relies on the decoupling inequality, which requires that the
set of random unitaries to be averaged over forms a unitary 2-design. While it is well-known
that the n-qubit Clifford group forms a unitary 2-design [78], it is yet to be verified that
an ensemble of random quantum circuits of depth d made out of 2-qubit Clifford gates also
approximates a unitary 2-design for n qubits. In this section, we numerically compute the
frame potential for such unitary circuits, which quantifies the extent to which it approximates
unitary designs. Our results confirm that the ensemble of depth d circuits of local 2-qubit
Clifford gates indeed approximates a unitary 2-design when d is large. In what follows, we
first review the frame potential, introduce our algorithm to compute it, and then present
numerical results.

Frame potential

The k-th frame potential of a unitary ensemble ν is defined by

F (k)
ν =

1

|ν|2
∑

U,V ∈ν

∣∣tr
(
U †V

)∣∣2k, (A.1)

where |ν| denotes the order of the ensemble. One of the nice properties of the k-th frame

potential F
(k)
ν is that this quantity is minimized when the unitary ensemble is drawn from

the Haar measure (in which the summation in Eq. (A.1) is replaced by integration):

F (k)
ν ≥ F (k)

µhaar
= k!. (A.2)

Furthermore, it is well known that the k-th frame potential saturates this lower bound if
and only if the unitary ensemble ν forms a unitary k-design [220]. Therefore, by explicitly

computing the second frame potential F
(2)
ν , we can verify if the ensemble of Clifford circuits

forms an approximate 2-design.
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Figure A.1: (a) Left: the layout of the random Clifford circuit U considered in this work. For
a pair of circuits U and V drawn from an ensemble νd of depth d circuits, U †V is, equivalently,
a unitary drawn from ν2d−1 of depth 2d−1. (b) An illustration of matrix T . The first and the
second n rows of T represent operators X̃1X1, · · · , X̃nXn and Z̃1Z1, · · · , Z̃nZn, respectively.
Each operator is specified by using a length 2n+ 2 binary vector, based on the Eq. (A.5).

Numerical algorithm

While it is well known that the unitary evolution of a quantum state under Clifford gates
can be efficiently simulated using classical computers [26, 54, 99, 100], this does not imply
that one can explicitly evaluate the matrix that implements the unitary time evolution.
Computing the exact frame potential for an ensemble of Clifford circuits is a formidable task
mainly due to two reasons. First, in a näıve approach, taking the trace of a Clifford unitary
requires simulating the evolution of exponentially many different initial states owing to the
large Hilbert space. Second, the summation over every element, U, V , from the ensemble of
random Clifford circuit is computationally expensive due to the large size of the ensemble.
While the second difficulty can be resolved by performing Monte Carlo sampling of the group
elements, the first challenge is non-trivial.

In this section, we provide an efficient algorithm to compute the trace of a Clifford circuit.
In comparison to the näıve approach of simulating the evolution of exponentially many
different initial states, our approach takes only a polynomial time as a function of system
size n.

Recall that the k-th frame potential for an ensemble of Clifford circuits of depth d is of
the form

F (k)
νd

=
1

|νd|2
∑

U,V ∈νd

∣∣tr
(
U †V

)∣∣2k. (A.3)

Here, we focus on the layout of the circuit shown in Fig. A.1(a), while our technique introduced
here is more broadly applicable. Since both U and V consist of d layers of random Clifford
gates, we note that U †V can be also regarded as a circuit of depth 2d − 1 without loss of
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generality. Therefore, we can rewrite the frame potential as

F (k)
νd

=
1

|ν2d−1|
∑

U∈ν2d−1

|trU |2k =
1

|ν2d−1|
∑

U∈ν2d−1

∣∣trU trU †∣∣k =
1

|ν2d−1|
∑

U∈ν2d−1

|QU |k, (A.4)

where QU ≡ trU trU †. Thus, our problem reduces to computing QU exactly for a given
unitary U , and then performing a Monte-Carlo sampling of U over different realizations of the
depth 2d− 1 random Clifford circuits. Below, we focus on the computation of QU assuming
U is given as a Clifford circuit.

Our key idea is to further simplify the expression QU using Pauli operators. In particular,
we are interested in evaluating QU without having to explicitly construct the unitary matrix
U . This is in fact possible, because, by the definition of the Clifford group, the unitary U
can be fully characterized by specifying how generators of n-qubit Pauli group P transform
under the conjugation by U [1]. To this end, it is important to introduce an efficient notation
to denote a Pauli element. Here and below, we adapt and extend the notation for Pauli
operators in the existing literature [1] and denote an element in the n-qubit Pauli group by a
binary string v = v1v2 · · · v2n+2 of length 2n+ 2:

Pv = (−1)v2n+1iv2n+2

n∏

j=1

Kj(vj, vj+n), (A.5)

where Kj(1, 0) = Xj , Kj(0, 1) = Zj , or Kj(1, 1) = Yj represents one of the Pauli operators for
a qubit at site j, following the convention in [1]. In other words, the first 2n bits in a string
v specify the n-qubit Pauli string, and the last two digits control the overall coefficient. We
will find that the global prefactor (−1)v2n+1iv2n+2 is often not very important other than that
it gives rise to exactly four elements in P per a single Pauli string (with different prefactors).
Hence, for notational brevity, we denote the first 2n bits of v as v̄ = v1v2 . . . v2n. In this way,
the product of two Pauli strings can be concisely represented as a simple XOR operation
on corresponding binary strings: if Pv ≡ PuPw, then v̄ = ū + w̄, where the “+” operator
should be interpreted as element-wise XOR operations. This establishes the one-to-one
correspondence between a binary string of length 2n and every group element in P up to a
prefactor. In particular, the group multiplication in P corresponds to a linear operation in
the binary string. Furthermore, the set of binary strings forms a vector space with respect to
XOR operations. We note that the prefactor of v can be also computed from u and w.

In order to compute QU , we first re-express it using the fact that the Pauli group P
forms a unitary 1-design. More specifically, for any n-qubit operator O, we have, tr(O) · 1 =
1
4D

∑
P∈P POP

†. Then, it follows:

QU = trU † trU = tr
(
U †
1 · tr(U)

)
=

1

D

∑

P∈P+

tr
(
U †PUP †) =

1

D

∑

P∈P+

tr
(
P̃P †

)
, (A.6)

where D = 2n is the Hilbert space dimension, P̃ ≡ U †PU , and the summation is over
the operators in the set P+ = {1, X, Y, Z}⊗n, ignoring the irrelevant complex prefactor
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(which cancels the factor 1/4). We note that P̃P † is also a Pauli operator and its trace is
non-vanishing if and only if P̃P † ∝ 1. Therefore, in order to evaluate QU , we only need to
count how many P ∈ P+ gives rise to a non-vanishing contribution. We denote the set of
such Pauli operators as KU .

Our key observation is that KU is closed under multiplications to form a subgroup of P ,
and its binary representation form a linear vector space over binary field. Therefore, counting
the number of element in KU can be efficiently achieved by computing the dimension of the
vector space KU . Here and below, we use the same notation KU to refer to both the vector
space and the subgroup of Pauli group whenever there is no ambiguity. Below, we will discuss
some important properties of KU . In particular, we will demonstrate that the computation
of QU always falls into one of three cases:

• KU contains only the identity operator. Namely, the Pauli operator P satisfies P̃P † ∝ 1

only when P = 1. QU = 1;

• KU of dimension N is generated by N Pauli operators P with P̃P † = 1. KU contains
2N Pauli operators, QU = 2N ;

• There exists at least one generator P of KU satisfying P̃P † = −1. Then, there are
equal numbers of Pauli operators P with P̃P † = 1 and P with P̃P † = −1, i.e., the
operators satisfying P̃P † = 1 and −1 come in pairs. QU = 0.

To see this, we notice that, for any Pv ∈ P , tr
(
P̃vP

†
v

)
is always real since

tr
(
P̃vP

†
v

)∗
= tr

(
U †PvUP

†
v

)∗
= tr

(
PvU

†P †
vU
)

= (−1)2v2n+2 tr
(
P †
vU

†PvU
)

= tr
(
P̃vP

†
v

)
.

(A.7)

This implies tr
(
P̃vP

†
v

)
̸= 0 if and only if P̃vP

†
v = ±1. We use K±

U to denote the set of

operators Pv satisfying P̃vP
†
v = ±1, respectively. K+

U forms a normal subgroup of KU . If K−
U

is trivial, i.e., contains no element, K+
U is exactly KU . When K−

U is non-trivial, we require
at least one generator P of KU satisfies P̃P † = −1. In this case, K+

U becomes the maximal
normal subgroup of KU , and the quotient group KU/K+

U = Z/2Z. Therefore, K±
U contain the

same number of elements, and, as a result, QU = 0.
Due to this correspondence between P satisfying the property P̃P † ∝ 1, and the linear

space KU , counting the number of such operators can be efficiently accomplished by finding
out a set of mutually commuting generators of the group, or, equivalently, the basis of the
linear space KU in the binary representation. Namely, the number of elements in KU is given
by 2mK , where mK is the dimension of KU . In the second case where all operators P in KU

satisfy P̃P † = 1, QU = 2mK .
Now, the calculation of QU reduces to figuring out mK and the existence or the absence

of any generator P satisfying P̃P † = −1. In order to find out mK, we introduce a matrix T
of size 2n by 2n+ 2. The first and the second n rows of T represent the Pauli operators X̃iXi

and Z̃iZi, respectively [see Fig. A.1(b)]. We denote the first 2n columns of T by T̄ . Since the
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Figure A.2: Numerical computation of the first, second, third, and fourth frame potentials
(from (a) to (d)) as a function of circuit depth 2 ≤ d ≤ 44 for system size n = 22 qubits.
The frame potentials are estimated from 50000 randomly generated Clifford circuits. The
depths of circuit d is taken from 2 to 44 (blue markers). Orange dashed lines represent the
corresponding values for the Haar random unitary ensemble.

identity operator 1 ∈ P corresponds to the zero in the binary representation, one can easily
check that the linear space KU can be determined from the kernel of T̄ (over the binary field).
Furthermore, one can determine the sign of P̃αPα for every basis vector in KU by explicitly
performing the effective “Gaussian elimination” (or row operations) that properly accounts
for the changes in the prefactors of Pauli operators. Motivated from Ref. [1], we define a
modified rowsum() function. The rowsum() function takes two rows of T (corresponding
to operators P̃uP

†
u and P̃vP

†
v ) as input and returns a binary representation for the operator

P̃vP̃uP
†
uP

†
v :

rowsum(P̃uP
†
u , P̃vP

†
v ) = P̃vP̃uP

†
uP

†
v = (−1)−t̄Λnv̄P̃vPvPt, (A.8)

where Pt = P̃uP
†
u , and Λn = [0,1n;−1n, 0] is the symplectic form. By checking the value in

the (2n+ 1)-th column, we can determine the sign for generators P̃vPv of the kernel KU . In
this way, we can compute QU for each realization of the circuit and further obtain the frame
potential.

Numerical results

The results of our numerical calculations are summarized in Fig. A.2, which shows that, the
first, second, and third frame potentials for the random Clifford circuit ensemble approach to
corresponding values for a unitary 1, 2 and 3-design when the depth of circuit d is sufficiently
large, ∼ O(n), as predicted in [40]. In contrast, the fourth frame potential significantly
deviates from the value for a unitary 4-design, which is expected since it has been proved
that even the n-qubit Clifford group does not form a unitary 4-design [264].

In the model proposed in the main text, each cluster consists of m = 11 qubits, hence a
nearest neighboring cluster pair have total n = 2m = 22 qubits. Our numerical results in
Fig. A.2(b) indicate that random Clifford circuits of depth d = 44 are sufficient to approximate
a unitary 2-design in such a case.
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Figure A.3: Half-chain entanglement dynamics in various parameter regimes. Simulations
are performed for systems with L = 32, m = 11. Upper panels in (a-h): the growth of
entanglement entropy per qubit as a function of time t. Black dash-dotted lines indicate 1−p,
which correspond to the maximum possible entanglement entropy per qubit after projective
measurements. Lower panels in (a-h): the change of entanglement entropy before and after
random projective measurements in each time step. The errorbars represent the standard
deviation of entanglement reduction by measurements. (a-d): The depth of the local Clifford
circuit d = 3, and the measurement fraction is p = 0.1, 0.2, 0.3, 0.4, respectively (from left
to right). (e-h): The depth of the local Clifford circuit d = 44, and p = 0.2, 0.4, 0.6, 0.8,
respectively (from left to right). In this regime, the local circuit approximates a unitary
2-design. The red dotted vertical lines in (e) and (f) indicate when the entanglement entropy
per qubit, S/(Lm/2), reaches its steady-state value. All the results in this figure are averaged
over 240 different realizations of the random unitary circuit.

A.2 Detailed numerical simulation results for the

entanglement growth

Figure A.3 provides detailed information on the entanglement growth and saturation in
vaious parameter regimes. We focus on two different values of the local circuit depth, d = 3
or 44, and simulate the quantum dynamics for various values of the measurement fraction
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p 1. When d = 3, each local circuit fails to approximate a unitary 2-design, and quantum
information cannot be fully scrambled even within the local Hilbert space of a m-qubit
box. In this regime, the growth of entanglement entropy can be significantly affected by
random projective measurement. Indeed, we find that the projective measurements reduce
the half-chain entanglement starting from the early time evolution at t = 0.

In contrast, when d = 44, each Clifford unitary U approximates a unitary 2-design for
2m = 22 qubits as demonstrated in the previous section. One can apply the decoupling
inequality as discussed in the main text (see Section A.5 for its derivation). In this regime,
the entanglement entropy should not be significantly decreased by projective measurements
during early time evolution as long as γ < 1 − p, or more precisely 2−(1−γ−p)m ≪ 1, where
γ is the entanglement entropy per qubit. This regime is indicated by using a vertical line
with the identification γ = S/(Lm/2). Strictly speaking, this identification is not exact, since
the relevant γ for decoupling theorem should have been obtained from the entanglement
entropy between a neighboring qubit blocks and the rest of the system, rather than from
the half-chain entanglement S. Still, we expect the qualitatively similar behavior. Our
expectation is explicitly verified in Figs. A.3(e-g), where ∆Smeas ≈ 0 within errorbars. For
the largest measurement probability p = 0.8 in Fig. A.3(h), ∆Smeas is nonnegligible as the
required condition, 2−(1−γ−p)m ≪ 1, for our improve decoupling inequality in Section A.5 is
no longer satisfied.

A.3 Detailed numerical simulation results for the

phase transition

In this section, we present detailed numerical simulation results for the entanglement phase
transition. We first study the phase transition when the size of qubit block m = 11 is large.
We extract critical measurement probabilities pc and critical exponents ν using the finite-size
scaling analysis of half-chain entanglement entropy and tripartite mutual information in
Sec. A.3 and A.3, respectively. Furthermore, we investigate the phase transition for various
m with a fixed d/m = 3 in Sec. A.3. We extract pc, ν as well as the prefactor of logarithmic
scaling of entanglement entropy at the critical point for various m and compare the results
to the existing theoretical predictions.

Half-chain entanglement entropy

Following the entanglement scaling hypothesis proposed in a recent work [162], we perform a
finite-size scaling analysis with the scaling ansatz:

S(p, L) = α lnL+ F
(
(p− pc)L

1/ν
)
, (A.9)

1We measure pm number of qubits within each block after applying a layer of unitary gates to pairs of
qubit blocks. For a noninteger pm, the number of measured qubits is determined from a binomial distribution
between ⌊pm⌋ and ⌈pm⌉ with the mean value being pm.
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Figure A.4: Finite size scaling analysis and critical exponents. (a-c) The entanglement density
S/(Lm/2) as a function of system size L for different depths of local circuits, d = 1, 7, 31,
respectively (from left to right). Different curves correspond to our numerical results with
different measurement fractions. System size L ranges from 4 to 64. (d-f) The entanglement
density as a function of measurement fraction for d = 1, 7, 31, respectively (from left to right).
Different curves correspond to results from different system sizes L = 12, 16, 24, 32, 48, 64.
Data collapses are presented in the insets using the scaling hypothesis Eq. A.9. (g) Numerically
extracted critical exponents ν for different values of d. The error bars are estimated using
the bootstrapping method.

where α is a constant, characterizing the logarithmic entropy at the critical point, pc is the
critical measurement fraction, ν is the correlation length critical exponent, and F(x) is a
universal function. We expect that the universal function F (x) takes the following qualitative
behaviors:

F (x) ≈





|x|ν (x→ −∞)
const. (x = 0)

−αν lnx (x→ ∞).
(A.10)

Thus, in the thermodynamic limit L → ∞, when p > pc, S(p, L) converges to a constant
with no dependence on L, indicating the area-law phase. In the case p < pc, S(p, L) scales
linearly in L with a log correction. In practice, we substract the entropy at the critical point,
α lnL, (with numerically optimized pc) from both sides of Eq. (A.9), converting it into a
conventional finite size scaling form [239], i.e.,

S(p, L) − S(pc, L) = F
(
(p− pc)L

1/ν
)
. (A.11)
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More specifically, we numerically optimize the parameter pc and ν by minimizing the cost
function

Q =
1

N
∑

i,j

(yij − Yij)
2

dy2ij + dY 2
ij

, (A.12)

where Yij, dYij are the values given by the scaled function and its standard error at xij, and
yij, dyij are the data points at xij. The index j labels different system sizes and i labels
different measurement fractions. The detailed algorithm can be found in [122, 137].

In Figs. A.4(a-f), we present our numerical results for the phase transition with various
local circuit depths d and fixed qubit block size m = 11. The half-chain entanglement entropy
normalized by the number of qubits S/(Lm/2) approaches a constant in the volume-law phase,
while it decays as 1/L in the area-law phase [see Figs. A.4(a-c)]. S/(Lm/2) as a function of
measurement probability p shows that the transition becomes sharper when increasing the
system size [see Figs. A.4(d-f)]. We obtain data collapses in the insets of Figs. A.4(d-f) using
the scaling formula in Eq. (A.11) [239]. Critical measurement probabilities pc and critical
exponents ν are extracted by optimizing the cost function Q in two steps: (1) choose a pc in
the critical regime and find the minimum of the cost function Qmin(pc) for the given pc by
optimizing over ν; (2) find the global minimum of Qmin(pc) to extract the optimal pc and
ν. The extracted pc and ν for various d with fixed m = 11 are presented in Fig. 2(e) in
the main text and Fig. A.4(g), respectively. We estimate the error bars for ν in Fig. A.4(g)
using the bootstrapping method. More specifically, out of 100 measurement probabilities in
the critical regime for each d, we randomly choose 80 data points and perform the scaling
analysis described above to extract ν and pc. We repeat the analysis for 100 times and use the
standard deviation of ν as an estimation of the error bars. We note that the estimated error
bars only reflect the goodness of data collapse using the aforementioned method (statistical
errors), and do not reflect the accuracy of this method, i.e. any potential systematic errors
may not be accounted for. Using this method, we numerically extract critical exponents
ν ≈ 1, which is in rough agreement with the results in Refs. [162]. However, the extracted
ν fluctuates as a function of d. This is due to the presence of a logarithmic correction to
entanglement entropy in the volume-law phase. The resulting scaling formula in Eq. (A.11)
requires an additional optimization over pc, which limits the accuracy (pc, ν) of finite size
scaling. For these reasons, we find that extracting ν from tripartite mutual information is
more reliable as we discuss in the next section.

Tripartite mutual information

In order to improve the accuracy of the extracted critical measurement strength pc and critical
exponent ν, Ref. [104] proposed to use the tripartite mutual information I3 as an alternative
probe of the phase transition. More specifically, we consider an one-dimensional chain of
qubits with the periodic boundary condition that contains four contiguous subsystems A,
B, C and D of size L/4. The tripartite mutual information I3 characterizes the nonlocal
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Figure A.5: Finite size scaling analysis and critical exponents. (a-c) The tripartite mutual
information I3 as a function of measurement probability p for different depths of local circuits,
d = 1, 7, 31, respectively (from left to right). Different curves correspond to our numerical
results for various system sizes ranging from 4 to 64. (d-f) Data collapses for d = 1, 7, 31
(from left to right) obtained using the scaling hypothesis Eq. (A.14). (g) Extracted critical
exponents ν for various local circuit depth d. The numerical values of pc and ν are also
summarized in Table A.1.

entanglement among four partitions and is defined as

I3(A : B : C) ≡ SA + SB + SC − SAB − SBC − SAC + SABC , (A.13)

where S represents the entropy for the corresponding reduced density matrix. This quantity
scales with the size of the system L in the volume-law phase, while exhibits an area-law
scaling in the area-law phase. More importantly, the logarithmic corrections to the entropy in
the volume-law phase cancel in the expression for I3(A : B : C), and I3 takes an O(1) value
at the critical point.

Near the critical point, I3 follows the scaling ansatz [104]:

I3(p, L) = G
(
(p− pc)L

1/ν
)
, (A.14)

where G(·) is a universal function. Our finite-size scaling and numerically extracted pc and ν
are summarized in Fig. A.5 and Table A.1. The extracted critical exponent ν ≈ 1.25 shows no
(or very weak) dependence on the depth d, suggesting its universal behavior. The exponent ν
in our model is consistent with the value from the brick-layer random Clifford circuit model
studied in Refs. [162], which (approximately) corresponds to the special case d = 1 in our
model.
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d 1 3 5 7
ν 1.28 ± 0.03 1.28 ± 0.05 1.27 ± 0.03 1.26 ± 0.04
pc 0.162 0.412 0.589 0.707
d 11 15 23 31
ν 1.12 ± 0.05 1.30 ± 0.03 1.25 ± 0.02 1.21 ± 0.02
pc 0.826 0.862 0.883 0.886

Table A.1: Critical exponents ν and phase transition points pc for our toy model in the main
text with different depths d for local random Clifford circuits. The results are extracted from
the finite-size scaling analysis of tripartite mutual information I3 according to the scaling
ansatz given in Eq. (A.14). The number of qubits in a cluster m = 11. The error bars of the
critical exponent ν are estimated using the bootstrapping method.

Phase transition for various sizes of qubit block

In this section, we focus on deep local Clifford circuits, i.e., d/(2m) ≳ 1, in which the local
circuit approximates a unitary 2-design (see Sec. A.1). The entire local unitary circuit of
depth d can be considered as a single Clifford gate acting on nearest neighbor qudits with a
local Hilbert space dimension q = 2m. Therefore, changing the size of qubit blocks in this
regime is equivalent to tuning local Hilbert space dimension q, and it allows us to study the
phase transition for various q. The behavior of the limiting case q → ∞ (or m → ∞) has
been previously discussed for a brick-layer circuits in Ref. [18, 130].

In our model, the critical measurement probability pc approaches unity in the limit of
m→ ∞, as we can show by using the newly developed decoupling inequality in Sec. A.5. We
note that this limit in our model is different from the q → ∞ limit in the brick layer random
unitary circuit model studied in Refs. [18, 130]. The projective measurements in our model
measures a deterministic fraction of qubits within each qubit block, while the measurements in
the brick-layer random circuit projects qudits of dimension q (or, equivalently, the entire qubits
in a block) with a certain probability. This distinction may lead to a different universality of
the phase transition, which remains largely unexplored. We also note that Refs. [18, 130] has
shown that brick-layer random circuit models with measurements can be mapped to a 2D
bond percolation problem on square lattice in the q → ∞ limit. However, the mapping to
the percolation problem is not applicable to our present model in the same limit.

Here, we investigate the phase transition as a function of q in our qubit-block model by
fixing d/m = 3. We extract critical measurement probabilities pc and critical exponents ν
for various m, as presented in Figs. A.6(a,b). The critical measurement probability pc grows
monotonically with m [Fig. A.6(a)]. This is consistent with the prediction that pc → 1 when
m→ ∞. The critical exponent ν shows no obvious dependence on m and takes a universal
value ν ≈ 1.25 [Fig. A.6(b)], which suggests the universality of the phase transition remains
the same for different m’s. In addition, the entanglement entropy at the critical point scales
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Figure A.6: Numerically extracted phase transition points and critical exponents for various
sizes of qubit clusters m with a fixed relative depth d/m = 3, based on the finite size scaling
ansatz of I3 in Eq. (A.14) for system sizes up to L = 64. (a) Critical measurement strength
pc for various m = 3, 5, 7, 9, 11, 13. (b) Critical exponent ν for various m. The error bars
are estimated by using the bootstrapping method. (c) Coefficient α for the logarithmic
entanglement entropy scaling at the critical point pc for various m.

logarithmically with the system size:

S(pc, L) = α logL, (A.15)

where α is expected to be universal [239, 130] and determined by the underlying theory of
the critical point. Here, we evaluate the entropy S(pc, L) at the critical point for various
system sizes up to L = 64. We observe a logarithmic scaling of the entanglement entropy
and extract α as a function of m [Fig. A.6(c)], which does not show any substantial change
for different values of m.

A.4 Quantum channel capacity and entanglement

phase transition

In this section, we establish a connection between the quantum channel capacity and the
entanglement phase transition. More specifically, we consider a generic unitary evolution
interspersed by projective measurements as a quantum channel jointly acting on the system
and measurement devices, and show that the quantum channel capacity Q of such a channel
can be related to the entropy of the system ⟨S⟩ conditioned on measurement outcomes when
the system is initialized in a certain optimized state [see Fig. A.7(a)]. We note that the former,
Q, characterizes the maximum amount of quantum information that can be transmitted
through a quantum channel, while the latter, ⟨S⟩ is proposed as an alternative signature to
identify the entanglement phase transition in Ref. [104]. In what follows, we first introduce
our setup and notations that would allow us to quantitatively study the quantum channel
capacity. Then, we derive the relation between Q and ⟨S⟩.
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<latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit>

|0i|M |
<latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit><latexit sha1_base64="YkwAqRCN+aXJTVGOGWlsZIN5Eyw=">AAACCnicbVDLSsNAFJ34rPUVdelmtAhdlUQEXUnBjRuhgn1AG8tkOmmHTiZh5kYoaddu/BU3LhRx6xe482+cNllo64ELZ865l7n3+LHgGhzn21paXlldWy9sFDe3tnd27b39ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/eDX1mw9MaR7JOxjFzAtJX/KAUwJG6tpHHcECGDsdxfsDuLxPsze+wZkynnTtklNxZsCLxM1JCeWode2vTi+iScgkUEG0brtODF5KFHAq2KTYSTSLCR2SPmsbKknItJfOTpngE6P0cBApUxLwTP09kZJQ61Hom86QwEDPe1PxP6+dQHDhpVzGCTBJs4+CRGCI8DQX3OOKURAjQwhV3OyK6YAoQsGkVzQhuPMnL5LGacV1Ku7tWalazuMooEN0jMrIReeoiq5RDdURRY/oGb2iN+vJerHerY+sdcnKZw7QH1ifP21dmqI=</latexit>

Unitary w/ 
measurements

S
<latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit>

M
<latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit>

⇢in
<latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit>

Unitary w/ 
measurements

S
<latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit><latexit sha1_base64="gbvol9KIgM8bOiDyZr0dp6VDzt4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48t2g9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AplOMvQ==</latexit>

M
<latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit>

E
<latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit>

(a) (b)

⇢in
<latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit><latexit sha1_base64="vIPEQE1mTIyFhZi0r2WyKS9Hvgo=">AAAB+XicbVBNS8NAEN34WetX1KOXxSL0VBIR9Fjw4rGC/YA2hM120y7d7IbdSbGE/BMvHhTx6j/x5r9x2+agrQ8GHu/NMDMvSgU34Hnfzsbm1vbObmWvun9weHTsnpx2jMo0ZW2qhNK9iBgmuGRt4CBYL9WMJJFg3WhyN/e7U6YNV/IRZikLEjKSPOaUgJVC1x3osQrzAbAnyLksitCteQ1vAbxO/JLUUIlW6H4NhopmCZNABTGm73spBDnRwKlgRXWQGZYSOiEj1rdUkoSZIF9cXuBLqwxxrLQtCXih/p7ISWLMLIlsZ0JgbFa9ufif188gvg3sQ2kGTNLlojgTGBSex4CHXDMKYmYJoZrbWzEdE00o2LCqNgR/9eV10rlq+F7Df7iuNetlHBV0ji5QHfnoBjXRPWqhNqJoip7RK3pzcufFeXc+lq0bTjlzhv7A+fwBey6UHQ==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

Figure A.7: (a) We consider an maximally mixed input state ρin evolved under unitary
dynamics interspersed with measurements. The output of the system and the classical
measurement outcomes are denoted as S and M . (b) The scenario illustrated (a) can be
understood as a unitary evolution by considering the measurements as unitary coupling
between the system and measurement device, followed by the dephasing of the measurement
device. The measurement device M is dephased through the coupling with an auxiliary
environment E. The coupling is realized by the controlled-X operation that couples every
single ancilla qudit in M to a qudit in E. Here, we consider a specific environment E that
contains |M | qudits prepared in |0⟩.

The quantum channel capacity is given by the coherent information about the input state
that remains in the output state, optimized over all possible input encoding state ρin. In our
case, we are interested in the coherent information stored in the resultant quantum state of
the system as well as in the set of projective measurement outcomes. In order to quantify
the coherent information that remains in both the system and measurement outcomes, we
adapt the weak measurement framework for projective measurements.

In this framework, for each weak measurement, we introduce an ancilla qudit, representing
a part of a measurement device M , prepared in a predetermined state, e.g. |0⟩. The ancilla is
then correlated with system degrees of freedom by a generic unitary operation. Finally, the
ancilla qudit is dephased by additional degrees of freedom, E, that represents environment
[Fig. A.7(b)]. The dephasing by the environment ensures that only the classical information
remains in the measurement devices. By varying the unitary operation that correlates the
ancilla and system degrees of freedom, this formulation allows to characterize measurements
in arbitrary positive operator-valued measure (POVM). The dephasing of M can be realized
by coupling to E with generalized controlled-X gates,

CXab = |0⟩a ⟨0|a ⊗ 1b +
d−1∑

i=1

|i⟩a ⟨i|a ⊗ exp
[
−iπ

2
(|i⟩b ⟨0|b + |0⟩b ⟨i|b)

]
, (A.16)

acting on a ∈M (control) and b ∈ E (target). Here, |i⟩ with i ∈ {0, 1, . . . d− 1} forms the
computational basis for a qudit in M or E. Tracing out every qudit in E after applying the



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 182

set of CXab gates indeed realizes a dephasing channel Dϕ,M applied to M . Therefore, an
arbitrary quantum channel M that consists of generic unitary evolutions interspersed by
measurements in any POVM can be formulated as

M[ρ] = Dϕ,M

[
U
(
ρ⊗ (|0⟩ ⟨0|)|M |

)
U †
]
, (A.17)

with some unitary U . Here, |M | denotes the number of qudits in M . Fig. A.7 illustrates our
framework, in which each of M and E consists of |M | number of qudits.

In this setting, we investigate the quantum channel capacity of M. We note that the
output of the quantum channel M can be explicitly divided into two parts: (i) the density
matrix of the system quantum state and (ii) classical information (diagonal density matrix)
associated with the dephased measurement device M . The quantum channel capacity Q for
a channel M is defined by the maximum coherent information per single channel usage when
n copies of the channel are simultaneously utilized [212, 271]:

Q = lim
n→∞

1

n
max
ρ(n)

Ic

(
M⊗n, ρ(n)

)
, (A.18)

where ρ(n) ∈ H⊗n is an input quantum state in the n-replicated Hilbert space to be optimized,
Ic is the coherent quantum information defined below. For a special class of quantum channel,
so-called degradable quantum channels [77, 212, 271], Eq. (A.18) dramatically simplifies to

Q = max
ρ

Ic (M, ρ) . (A.19)

This is because, for degradable quantum channels, the quantum channel capacity is additive [77,
212, 271].

A degradable quantum channel is defined by the following property. For a quantum
channel N that transmits a quantum state from a sender A to receiver A′, let Nc be the
complementary channel of N : HA → HA′ . That is, we consider an isometric embedding
UN : HA → HA′ ⊗HB of N in an extended Hilbert space, i.e. for any ρA ∈ HA,

N [ρA] = trB

(
UNρAU

†
N

)
. (A.20)

Then, the complementary channel Nc is defined by

Nc[ρA] ≡ trA′

(
UNρAU

†
N

)
. (A.21)

The channel N is degradable if there exists another quantum channel T such that Nc = T ◦N .
For any quantum channel of the form in Eq. (A.17), its isometric embedding can be written
as a unitary. This is illustrated in Fig. A.7(a,b). Therefore, by identifying A = S, A′ = SM
and B = E, we find that

M[ρ] ≡ trE
(
UρU †) , (A.22)

Mc[ρ] ≡ trSM
(
UρU †) . (A.23)
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Crucially, by tracing out system degrees of freedom, M can be degraded into Mc, i.e.
Mc[ρ] ≃ trS M[ρ]. This can be easily shown by considering the reduced density matrix of
M and E after applying the set of generalized controlled-X gates, which must be of the
form ρME =

∑
ij ρij |i⟩M ⟨j|M ⊗ |i⟩E ⟨j|E. In turn, the reduced density matrices for M and E

are given by ρM(E) =
∑

i ρii |i⟩ ⟨i| in their corresponding Hilbert spaces. Below, we focus on
establishing a relation between Eq. (A.19) and ⟨S⟩.

For an input state ρ and a quantum channel N : HA → HA′ , the coherent information
Ic(N , ρ) is defined as

Ic(N , ρ) ≡ SA′ − SB, (A.24)

where SA′(B) is the von Neumann entropy of the output reduced density matrix for subsystem
A′(B), and B is an auxiliary system introduced for an isometric embedding of N . In our
case, the identification A = S, A′ = SM , and B = E leads to

Ic(M, ρin) = SSM − SE = SSM − SM = ⟨S⟩, (A.25)

where the second equality arises from the fact that ρB ≃ ρE discussed above. For the
third equality, we used the definition of the entropy of the system averaged over different
measurement outcomes

⟨S⟩ =
∑

i

piS(ρS[i]), (A.26)

where the index i runs over all possible projective measurement outcomes, pi is the probability
for a particular outcome i, and ρS[i] is reduced density matrix of the system conditioned on
the measurement outcome i. Then, the third equality in Eq. (A.25) holds because of the
block diagonal form of the reduced density matrix for S and M [18]:

ρSM =
∑

i

piρS[i] ⊗ |i⟩M ⟨i|M . (A.27)

Finally, combining Eq. (A.19) and (A.25), we obtain the key result presented in the main
text, which we produce here:

Q = max
ρin

⟨S⟩. (A.28)

In general, the optimization over ρin for a given channel M is difficult because it may
depends on the detailed information of the unitary evolution as well as set of POVMs. In
the case M is random, as random circuit models, we can define a closely related quantity to
characterize the maximal amount of information that can be transmitted through M without
a priori specifying the instance M:

Q̄ ≡ max
ρin

E [⟨S⟩] , (A.29)
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where E denotes averaging over random unitary gates and measurement positions. We note
that Q̄ is distinct from average quantum channel capacity E[Q] since the optimization over
ρin is performed after averaging over different realization of quantum circuits. Nevertheless, Q̄
has an operational meaning; it quantifies the maximum amount of coherent information that
a randomly chosen random unitary circuit with randomly positioned projective measurements
can achieve. In other words, Q̄ is the capacity for random quantum channel M in which the
random realizations of unitary gates and measurement positions are a priori not known to an
encoder.

In Ref. [104], for a maximally mixed input state ρin = ρmax, E[⟨S⟩] has been identified as
an alternative signature of the entanglement phase transition based on numerical simulations
of random Clifford circuits with projective measurements. In more recent work [18], it has
been proven that the transition in the scaling behavior in E[⟨S⟩] indeed coincides with the
entanglement phase transition for Haar random unitary circuits with measurements. Based
on the mapping of such quantum circuits to a class of statistical mechanics models and
the replica technique introduced in Ref. [18], one can show E[⟨S⟩] is maximized when ρin
is maximally mixed. Therefore, Q̄ exactly corresponds to the numerical results of E[⟨S⟩]
studied in Ref. [104] and is indeed a signature of the entanglement phase transition.

An alternative way to understand the meaning of Q̄ is to introduce a new channel M̃
that incorporates the randomness of M as parts of the definition. To be more specific,
one can consider that unitary gates applied to the system are determined by quantum
states of additionally introduced ancilla qudits MU . If the qudits are initialized in equal
superposition of their computational basis states, the projective measurements on MU in the
basis realize a certain instance of random unitary gates. A similar argument can be made
for different positioning of measurements on system qudits (with additional ancilla MP ). In
this way, the classical information associated with the randomness (in unitary gates and
measurement positions) corresponds to the diagonal elements of the density matrix of ancilla
MU,P . Following the same analysis described above for M, it follows that Q̄ is the quantum
channel capacity of M̃:

Q̃ = max
ρin

E [⟨S⟩] = Q̄. (A.30)

This channel capacity is achieved with the maximally mixed input state ρin since it must be
invariant under any local unitary rotations. We note that the new channel M̃ defined by
the dynamics of the system and entire collection of ancilla is again a degradable quantum
channel following the same reasoning as in the case of M. This completes the relation
between the quantum channel capacity and the averaged entropy of the system conditioned
on measurement outcomes.
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Bell pairs

�N
<latexit sha1_base64="OA1LYSlKPXMorWbXBMAZ4cxPu1s=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYD+gDWWy3bRLd5O4uxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TRVmDxiJW7QA1EzxiDcONYO1EMZSBYK1gdDP1W09MaR5HD2acMF/iIOIhp2is1O4OUEokd71yxa26M5Bl4uWkAjnqvfJXtx/TVLLIUIFadzw3MX6GynAq2KTUTTVLkI5wwDqWRiiZ9rPZvRNyYpU+CWNlKzJkpv6eyFBqPZaB7ZRohnrRm4r/eZ3UhFd+xqMkNSyi80VhKoiJyfR50ueKUSPGliBV3N5K6BAVUmMjKtkQvMWXl0nzrOqdV937i0rtOo+jCEdwDKfgwSXU4Bbq0AAKAp7hFd6cR+fFeXc+5q0FJ585hD9wPn8AfRiPmQ==</latexit>

(1 � �)N
<latexit sha1_base64="dv30He16M6q8kTpKddf+utO0Qpo=">AAAB83icbVBNSwMxEM3Wr1q/qh69BItQD5ZdFfRY9OJJKtgP6C5lNs22oUl2SbJCWfo3vHhQxKt/xpv/xrTdg7Y+GHi8N8PMvDDhTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKXjVBHaJDGPVScETTmTtGmY4bSTKAoi5LQdjm6nfvuJKs1i+WjGCQ0EDCSLGAFjJb/qnfkDEAJO8X2vXHFr7gx4mXg5qaAcjV75y+/HJBVUGsJB667nJibIQBlGOJ2U/FTTBMgIBrRrqQRBdZDNbp7gE6v0cRQrW9Lgmfp7IgOh9ViEtlOAGepFbyr+53VTE10HGZNJaqgk80VRyrGJ8TQA3GeKEsPHlgBRzN6KyRAUEGNjKtkQvMWXl0nrvOZd1NyHy0r9Jo+jiI7QMaoiD12hOrpDDdREBCXoGb2iNyd1Xpx352PeWnDymUP0B87nDyIukHA=</latexit>

qubits

… …

M
<latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit>

E
<latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

pN
<latexit sha1_base64="8/dfhq7rqwdOMb333+stAnbnd9k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh+SuV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt0Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2RC8xZeXSfOs6p1X3fuLSu06j6MIR3AMp+DBJdTgFurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwB2Xo1O</latexit>

qubits

pN
<latexit sha1_base64="8/dfhq7rqwdOMb333+stAnbnd9k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh+SuV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt0Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2RC8xZeXSfOs6p1X3fuLSu06j6MIR3AMp+DBJdTgFurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwB2Xo1O</latexit>

qubits

R
<latexit sha1_base64="78BURh3UTb4z9inWFJXg8ehrjNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF4+t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ApM+MvA==</latexit><latexit sha1_base64="78BURh3UTb4z9inWFJXg8ehrjNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF4+t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ApM+MvA==</latexit><latexit sha1_base64="78BURh3UTb4z9inWFJXg8ehrjNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF4+t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ApM+MvA==</latexit><latexit sha1_base64="78BURh3UTb4z9inWFJXg8ehrjNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF4+t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeT8oV9yauwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVnz3JrXvKrUq3kcRTiDc6iCB9dQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4ApM+MvA==</latexit>

X<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

U ⌦ U⇤ ⌦ U ⌦ U⇤
<latexit sha1_base64="HQb9lzYF4bC1MRjxkqlU2/Q4Us4=">AAACDHicbVDLSgMxFM34rPVVdekmWITiosyIoMuCG5cVnLbQjiWTZtrQTDIkd4Qy9APc+CtuXCji1g9w59+YtgPW1gOBwznncnNPmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYMCrVlPlUCaVbITFMcMl84CBYK9GMxKFgzXB4PfGbD0wbruQdjBIWxKQvecQpASt1S2UfdxTwmBns35/98nnVptyqOwVeJl5OyihHvVv66vQUTWMmgQpiTNtzEwgyooFTwcbFTmpYQuiQ9FnbUknsoiCbHjPGp1bp4Uhp+yTgqTo/kZHYmFEc2mRMYGAWvYn4n9dOIboKMi6TFJiks0VRKjAoPGkG97hmFMTIEkI1t3/FdEA0oWD7K9oSvMWTl0njvOq5Ve/2olyr5HUU0DE6QRXkoUtUQzeojnxE0SN6Rq/ozXlyXpx352MWXXHymSP0B87nD2sNmdo=</latexit><latexit sha1_base64="HQb9lzYF4bC1MRjxkqlU2/Q4Us4=">AAACDHicbVDLSgMxFM34rPVVdekmWITiosyIoMuCG5cVnLbQjiWTZtrQTDIkd4Qy9APc+CtuXCji1g9w59+YtgPW1gOBwznncnNPmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYMCrVlPlUCaVbITFMcMl84CBYK9GMxKFgzXB4PfGbD0wbruQdjBIWxKQvecQpASt1S2UfdxTwmBns35/98nnVptyqOwVeJl5OyihHvVv66vQUTWMmgQpiTNtzEwgyooFTwcbFTmpYQuiQ9FnbUknsoiCbHjPGp1bp4Uhp+yTgqTo/kZHYmFEc2mRMYGAWvYn4n9dOIboKMi6TFJiks0VRKjAoPGkG97hmFMTIEkI1t3/FdEA0oWD7K9oSvMWTl0njvOq5Ve/2olyr5HUU0DE6QRXkoUtUQzeojnxE0SN6Rq/ozXlyXpx352MWXXHymSP0B87nD2sNmdo=</latexit><latexit sha1_base64="HQb9lzYF4bC1MRjxkqlU2/Q4Us4=">AAACDHicbVDLSgMxFM34rPVVdekmWITiosyIoMuCG5cVnLbQjiWTZtrQTDIkd4Qy9APc+CtuXCji1g9w59+YtgPW1gOBwznncnNPmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYMCrVlPlUCaVbITFMcMl84CBYK9GMxKFgzXB4PfGbD0wbruQdjBIWxKQvecQpASt1S2UfdxTwmBns35/98nnVptyqOwVeJl5OyihHvVv66vQUTWMmgQpiTNtzEwgyooFTwcbFTmpYQuiQ9FnbUknsoiCbHjPGp1bp4Uhp+yTgqTo/kZHYmFEc2mRMYGAWvYn4n9dOIboKMi6TFJiks0VRKjAoPGkG97hmFMTIEkI1t3/FdEA0oWD7K9oSvMWTl0njvOq5Ve/2olyr5HUU0DE6QRXkoUtUQzeojnxE0SN6Rq/ozXlyXpx352MWXXHymSP0B87nD2sNmdo=</latexit><latexit sha1_base64="HQb9lzYF4bC1MRjxkqlU2/Q4Us4=">AAACDHicbVDLSgMxFM34rPVVdekmWITiosyIoMuCG5cVnLbQjiWTZtrQTDIkd4Qy9APc+CtuXCji1g9w59+YtgPW1gOBwznncnNPmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYMCrVlPlUCaVbITFMcMl84CBYK9GMxKFgzXB4PfGbD0wbruQdjBIWxKQvecQpASt1S2UfdxTwmBns35/98nnVptyqOwVeJl5OyihHvVv66vQUTWMmgQpiTNtzEwgyooFTwcbFTmpYQuiQ9FnbUknsoiCbHjPGp1bp4Uhp+yTgqTo/kZHYmFEc2mRMYGAWvYn4n9dOIboKMi6TFJiks0VRKjAoPGkG97hmFMTIEkI1t3/FdEA0oWD7K9oSvMWTl0njvOq5Ve/2olyr5HUU0DE6QRXkoUtUQzeojnxE0SN6Rq/ozXlyXpx352MWXXHymSP0B87nD2sNmdo=</latexit>

tr⇢2
RE =

1

D2
R

<latexit sha1_base64="ekHwniTDcKWz2PZHSA9uINrI9HY=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0Wom5IUQTdCQQWXtdgHNG2YTCft0JkkzEyEEvINbvwVNy4UcevKnX/jpM1CWw8MHM65lzvneBGjUlnWt1FYWV1b3yhulra2d3b3zP2DtgxjgUkLhywUXQ9JwmhAWooqRrqRIIh7jHS8yVXmdx6IkDQM7tU0In2ORgH1KUZKS6556nCkxoInSqTQEePQTZo36aAGL6HjC4QTO02u3eaglrpm2apaM8BlYuekDHI0XPPLGYY45iRQmCEpe7YVqX6ChKKYkbTkxJJECE/QiPQ0DRAnsp/MIqXwRCtD6IdCv0DBmfp7I0Fcyin39GQWQC56mfif14uVf9FPaBDFigR4fsiPGVQhzPqBQyoIVmyqCcKC6r9CPEa6CaVbLOkS7MXIy6Rdq9pW1b47K9creR1FcASOQQXY4BzUwS1ogBbA4BE8g1fwZjwZL8a78TEfLRj5ziH4A+PzB5bQnUw=</latexit><latexit sha1_base64="ekHwniTDcKWz2PZHSA9uINrI9HY=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0Wom5IUQTdCQQWXtdgHNG2YTCft0JkkzEyEEvINbvwVNy4UcevKnX/jpM1CWw8MHM65lzvneBGjUlnWt1FYWV1b3yhulra2d3b3zP2DtgxjgUkLhywUXQ9JwmhAWooqRrqRIIh7jHS8yVXmdx6IkDQM7tU0In2ORgH1KUZKS6556nCkxoInSqTQEePQTZo36aAGL6HjC4QTO02u3eaglrpm2apaM8BlYuekDHI0XPPLGYY45iRQmCEpe7YVqX6ChKKYkbTkxJJECE/QiPQ0DRAnsp/MIqXwRCtD6IdCv0DBmfp7I0Fcyin39GQWQC56mfif14uVf9FPaBDFigR4fsiPGVQhzPqBQyoIVmyqCcKC6r9CPEa6CaVbLOkS7MXIy6Rdq9pW1b47K9creR1FcASOQQXY4BzUwS1ogBbA4BE8g1fwZjwZL8a78TEfLRj5ziH4A+PzB5bQnUw=</latexit><latexit sha1_base64="ekHwniTDcKWz2PZHSA9uINrI9HY=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0Wom5IUQTdCQQWXtdgHNG2YTCft0JkkzEyEEvINbvwVNy4UcevKnX/jpM1CWw8MHM65lzvneBGjUlnWt1FYWV1b3yhulra2d3b3zP2DtgxjgUkLhywUXQ9JwmhAWooqRrqRIIh7jHS8yVXmdx6IkDQM7tU0In2ORgH1KUZKS6556nCkxoInSqTQEePQTZo36aAGL6HjC4QTO02u3eaglrpm2apaM8BlYuekDHI0XPPLGYY45iRQmCEpe7YVqX6ChKKYkbTkxJJECE/QiPQ0DRAnsp/MIqXwRCtD6IdCv0DBmfp7I0Fcyin39GQWQC56mfif14uVf9FPaBDFigR4fsiPGVQhzPqBQyoIVmyqCcKC6r9CPEa6CaVbLOkS7MXIy6Rdq9pW1b47K9creR1FcASOQQXY4BzUwS1ogBbA4BE8g1fwZjwZL8a78TEfLRj5ziH4A+PzB5bQnUw=</latexit><latexit sha1_base64="ekHwniTDcKWz2PZHSA9uINrI9HY=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0Wom5IUQTdCQQWXtdgHNG2YTCft0JkkzEyEEvINbvwVNy4UcevKnX/jpM1CWw8MHM65lzvneBGjUlnWt1FYWV1b3yhulra2d3b3zP2DtgxjgUkLhywUXQ9JwmhAWooqRrqRIIh7jHS8yVXmdx6IkDQM7tU0In2ORgH1KUZKS6556nCkxoInSqTQEePQTZo36aAGL6HjC4QTO02u3eaglrpm2apaM8BlYuekDHI0XPPLGYY45iRQmCEpe7YVqX6ChKKYkbTkxJJECE/QiPQ0DRAnsp/MIqXwRCtD6IdCv0DBmfp7I0Fcyin39GQWQC56mfif14uVf9FPaBDFigR4fsiPGVQhzPqBQyoIVmyqCcKC6r9CPEa6CaVbLOkS7MXIy6Rdq9pW1b47K9creR1FcASOQQXY4BzUwS1ogBbA4BE8g1fwZjwZL8a78TEfLRj5ziH4A+PzB5bQnUw=</latexit>

tr⇢2
E =

1

D2
R

<latexit sha1_base64="p3sNeRWG5m6Il0yzdEsBiiQotQ4=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRF0I1QUMFlFfuAJg2T6aQdOpmEmYlQQn7Bjb/ixoUibt2582+ctFlo64ELh3Pu5d57/JhRqSzr2yitrK6tb5Q3K1vbO7t75v5BR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr+5DL3uw9ESBrxezWNiRuiEacBxUhpyTNrTojUWISpEhl0xDjy0uts0IAX0AkEwqmdpVfe3aCReWbVqlszwGViF6QKCrQ888sZRjgJCVeYISn7thUrN0VCUcxIVnESSWKEJ2hE+ppyFBLpprOPMniilSEMIqGLKzhTf0+kKJRyGvq6M79fLnq5+J/XT1Rw7qaUx4kiHM8XBQmDKoJ5PHBIBcGKTTVBWFB9K8RjpJNQOsSKDsFefHmZdBp126rbt6fVZq2IowyOwDGoARucgSa4AS3QBhg8gmfwCt6MJ+PFeDc+5q0lo5g5BH9gfP4A5rqc8A==</latexit><latexit sha1_base64="p3sNeRWG5m6Il0yzdEsBiiQotQ4=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRF0I1QUMFlFfuAJg2T6aQdOpmEmYlQQn7Bjb/ixoUibt2582+ctFlo64ELh3Pu5d57/JhRqSzr2yitrK6tb5Q3K1vbO7t75v5BR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr+5DL3uw9ESBrxezWNiRuiEacBxUhpyTNrTojUWISpEhl0xDjy0uts0IAX0AkEwqmdpVfe3aCReWbVqlszwGViF6QKCrQ888sZRjgJCVeYISn7thUrN0VCUcxIVnESSWKEJ2hE+ppyFBLpprOPMniilSEMIqGLKzhTf0+kKJRyGvq6M79fLnq5+J/XT1Rw7qaUx4kiHM8XBQmDKoJ5PHBIBcGKTTVBWFB9K8RjpJNQOsSKDsFefHmZdBp126rbt6fVZq2IowyOwDGoARucgSa4AS3QBhg8gmfwCt6MJ+PFeDc+5q0lo5g5BH9gfP4A5rqc8A==</latexit><latexit sha1_base64="p3sNeRWG5m6Il0yzdEsBiiQotQ4=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRF0I1QUMFlFfuAJg2T6aQdOpmEmYlQQn7Bjb/ixoUibt2582+ctFlo64ELh3Pu5d57/JhRqSzr2yitrK6tb5Q3K1vbO7t75v5BR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr+5DL3uw9ESBrxezWNiRuiEacBxUhpyTNrTojUWISpEhl0xDjy0uts0IAX0AkEwqmdpVfe3aCReWbVqlszwGViF6QKCrQ888sZRjgJCVeYISn7thUrN0VCUcxIVnESSWKEJ2hE+ppyFBLpprOPMniilSEMIqGLKzhTf0+kKJRyGvq6M79fLnq5+J/XT1Rw7qaUx4kiHM8XBQmDKoJ5PHBIBcGKTTVBWFB9K8RjpJNQOsSKDsFefHmZdBp126rbt6fVZq2IowyOwDGoARucgSa4AS3QBhg8gmfwCt6MJ+PFeDc+5q0lo5g5BH9gfP4A5rqc8A==</latexit><latexit sha1_base64="p3sNeRWG5m6Il0yzdEsBiiQotQ4=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0XoqiRF0I1QUMFlFfuAJg2T6aQdOpmEmYlQQn7Bjb/ixoUibt2582+ctFlo64ELh3Pu5d57/JhRqSzr2yitrK6tb5Q3K1vbO7t75v5BR0aJwKSNIxaJno8kYZSTtqKKkV4sCAp9Rrr+5DL3uw9ESBrxezWNiRuiEacBxUhpyTNrTojUWISpEhl0xDjy0uts0IAX0AkEwqmdpVfe3aCReWbVqlszwGViF6QKCrQ888sZRjgJCVeYISn7thUrN0VCUcxIVnESSWKEJ2hE+ppyFBLpprOPMniilSEMIqGLKzhTf0+kKJRyGvq6M79fLnq5+J/XT1Rw7qaUx4kiHM8XBQmDKoJ5PHBIBcGKTTVBWFB9K8RjpJNQOsSKDsFefHmZdBp126rbt6fVZq2IowyOwDGoARucgSa4AS3QBhg8gmfwCt6MJ+PFeDc+5q0lo5g5BH9gfP4A5rqc8A==</latexit>

(a) (b) (c)

(1 � p)N
<latexit sha1_base64="TAVop6lBj+8G34zQju6UZzmaxWg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahHiy7VdBj0YsnqWA/oF1KNs22sdlkSbJCWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuJKs2keDDjmPoRHggWMoKNlZpl7yw+vesVS27FnQEtEy8jJchQ7xW/un1JkogKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpQJHVPvp7NoJOrFKH4VS2RIGzdTfEymOtB5Hge2MsBnqRW8q/ud1EhNe+SkTcWKoIPNFYcKRkWj6OuozRYnhY0swUczeisgQK0yMDahgQ/AWX14mzWrFO6+49xel2nUWRx6O4BjK4MEl1OAW6tAAAo/wDK/w5kjnxXl3PuatOSebOYQ/cD5/ABYIjiU=</latexit>

pN
<latexit sha1_base64="8/dfhq7rqwdOMb333+stAnbnd9k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRiyepYj+gDWWznbRLN5uwuxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh+SuV664VXcGsky8nFQgR71X/ur2Y5ZGKA0TVOuO5ybGz6gynAmclLqpxoSyER1gx1JJI9R+Nrt0Qk6s0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZv0uUJmxNgSyhS3txI2pIoyY8Mp2RC8xZeXSfOs6p1X3fuLSu06j6MIR3AMp+DBJdTgFurQAAYhPMMrvDkj58V5dz7mrQUnnzmEP3A+fwB2Xo1O</latexit>

U
<latexit sha1_base64="Kd2yNkybdNWhIfKB0PbbMtRy6bs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF0xbaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LBTFMMYjqSPOKMGiu1/EGl6tbcBcg68QpShQLNQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni0Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJqoHOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7YheKsvr5P2dc1za17rptqoF3GU4Bwu4Ao8uIUG3EMTfGCA8Ayv8OY8Oi/Ou/OxbN1wipkz+APn8weuK4zP</latexit><latexit sha1_base64="Kd2yNkybdNWhIfKB0PbbMtRy6bs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF0xbaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LBTFMMYjqSPOKMGiu1/EGl6tbcBcg68QpShQLNQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni0Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJqoHOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7YheKsvr5P2dc1za17rptqoF3GU4Bwu4Ao8uIUG3EMTfGCA8Ayv8OY8Oi/Ou/OxbN1wipkz+APn8weuK4zP</latexit><latexit sha1_base64="Kd2yNkybdNWhIfKB0PbbMtRy6bs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF0xbaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LBTFMMYjqSPOKMGiu1/EGl6tbcBcg68QpShQLNQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni0Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJqoHOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7YheKsvr5P2dc1za17rptqoF3GU4Bwu4Ao8uIUG3EMTfGCA8Ayv8OY8Oi/Ou/OxbN1wipkz+APn8weuK4zP</latexit><latexit sha1_base64="Kd2yNkybdNWhIfKB0PbbMtRy6bs=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokI9ljw4rEF0xbaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LBTFMMYjqSPOKMGiu1/EGl6tbcBcg68QpShQLNQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni0Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJqoHOZdpZlCy5aIoE8QkZP41GXKFzIipJZQpbm8lbEwVZcZmU7YheKsvr5P2dc1za17rptqoF3GU4Bwu4Ao8uIUG3EMTfGCA8Ayv8OY8Oi/Ou/OxbN1wipkz+APn8weuK4zP</latexit>

A1

<latexit sha1_base64="V5OKWXogIlHA7p+r+ynxg1heqxQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8VLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3V/3vX654tbcOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R9XvPqtYu7eqVRzeMowgmcQhU8uIQG3EITWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8weynY1X</latexit>

A2

<latexit sha1_base64="XJdkizvy5jTZPuw9k9jsYXpZrBI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHYJRo8YLx4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38799hPXRsTqEScJ9yM6VCIUjKKVHm761X6x5FbcBcg68TJSggyNfvGrN4hZGnGFTFJjup6boD+lGgWTfFbopYYnlI3pkHctVTTixp8uTp2RC6sMSBhrWwrJQv09MaWRMZMosJ0RxZFZ9ebif143xfDanwqVpMgVWy4KU0kwJvO/yUBozlBOLKFMC3srYSOqKUObTsGG4K2+vE5a1YpXq1ze10r1chZHHs7gHMrgwRXU4Q4a0AQGQ3iGV3hzpPPivDsfy9ack82cwh84nz+0IY1Y</latexit>

A1

<latexit sha1_base64="V5OKWXogIlHA7p+r+ynxg1heqxQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8VLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3V/3vX654tbcOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R9XvPqtYu7eqVRzeMowgmcQhU8uIQG3EITWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8weynY1X</latexit>

A2

<latexit sha1_base64="XJdkizvy5jTZPuw9k9jsYXpZrBI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHYJRo8YLx4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnIbm1vbO/ndwt7+weFR8fikZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38799hPXRsTqEScJ9yM6VCIUjKKVHm761X6x5FbcBcg68TJSggyNfvGrN4hZGnGFTFJjup6boD+lGgWTfFbopYYnlI3pkHctVTTixp8uTp2RC6sMSBhrWwrJQv09MaWRMZMosJ0RxZFZ9ebif143xfDanwqVpMgVWy4KU0kwJvO/yUBozlBOLKFMC3srYSOqKUObTsGG4K2+vE5a1YpXq1ze10r1chZHHs7gHMrgwRXU4Q4a0AQGQ3iGV3hzpPPivDsfy9ack82cwh84nz+0IY1Y</latexit>

A1

<latexit sha1_base64="V5OKWXogIlHA7p+r+ynxg1heqxQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIRY8VLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3V/3vX654tbcOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R9XvPqtYu7eqVRzeMowgmcQhU8uIQG3EITWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8weynY1X</latexit>

M
<latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit>
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Figure A.8: (a) An illustration of the toy model. (b, c) Tensor network representations of
tr ρ2RE and tr ρ2E, respectively.

A.5 An improved bound on the entanglement

reduction by measurements

In the previous section, we define a quantum channel M that describes a generic unitary
evolution interspersed by measurements. The channel M acts on both the system and ancilla
(representing measurement devices) qubits. The coherent information Ic(M, ρin) associated
with the quantum channel M describes the transmission of quantum information encoded
both in the output state of the system qubits and in the classical measurement outcomes.
Furthermore, we have shown that the coherent information exactly equals the entanglement
entropy of the output quantum state averaged over different classical measurement outcomes
[see Eq. (A.25)].

Motivated by these new understandings, we revisit the analysis of the toy model in Fig. 1
of the main text and present an improved, tight version of the decoupling inequality, analogous
to Eq. (1). The newly derived decoupling inequality is strictly stronger than the previous
one. In particular, our new inequality predicts that the phase transition point asymptotically
approaches to pc = 1 as m → ∞ for the qubit-block model introduced in the main text
in the strongly scrambling regime d/(2m) ≳ 1. The key idea behind our approach is to
explicitly separate out the accessible classical information and inaccessible (lost) information
in projective measurement processes.

We consider an N -qubit system A initially sharing γN bell pairs with the reference R.
The rest (1 − γ)N qubits in the system are prepared in an unentangled product state. We
apply a random unitary U ∈ U(2N) drawn from a unitary 2-design to the system qubits
and perform projective measurements on randomly chosen pN qubits. We use A1 and A2 to
denote the unmeasured and measured qubits, respectively. Our goal is to show that, under
certain conditions, the extensive number of measurements on A2 do not reduce the initial
entanglement, SR = γN , between A and R. We show this in two steps: (i) we evaluate the
coherent information Ic of this quantum channel and prove Ic ≈ SR = γN up to exponentially
small corrections in N , and (ii) we use Eq. (A.25) to show that ⟨S⟩ = Ic = γN . This implies
that the average entanglement ⟨S⟩ after projective measurements equals its initial value γN ,
hence no entanglement is reduced by measurements. Here, we focus on proving (i).
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Our first step is to formulate the projective measurements on A2 as weak measurements
explained in Sec. A.4. This formalism is useful to keep track of classical information encoded
in measurement outcomes. Instead of projective measurements, we introduce a set of ancilla
qubits M (representing measurement devices), apply entangling unitaries between A and M
(to represent the measurement processes), and then dephase M with a dephasing bath E by
applying control-X gates between M and E. The last dephasing procedure is crucial and
necessary because a measurement device can hold only classical information (i.e., diagonal
elements of its reduced density matrix in computational basis). Using this formalism does
not lead to any loss of generality. An illustration of the setup is presented in Fig. A.8(a).
We are interested in how much of the initial entanglement (γN Bell pairs) remains (can be
recovered) in the quantum state of A and classical measurement outcomes in M . This can
be quantified by the coherent quantum information [77]:

Ic(M, ρin) ≡ SR − I(R : E), (A.31)

which implies that the reduction in Ic is determined by the mutual information I(R : E)
between the reference and environment. Therefore, it suffices to show I(R : E) = 0. Instead
of directly evaluating the vanishing mutual information, we show an equivalent statement
that the reference R and the dephasing bath E are decoupled,

ρRE ≈ ρR ⊗ ρE (A.32)

up to exponentially small corrections, provided that inequality p < 1 − γ is satisfied. More
specifically, we provide an upper bound to the L1-distance between both sides of Eq. (A.32).
According to the Cauchy-Schwarz inequality, we have

∥ρRE − ρR ⊗ ρE∥21 ≤ DRDE tr
[
(ρRE − ρR ⊗ ρE)2

]
(A.33)

= 2γN2pN

[
tr ρ2RE − 1

2γN
tr ρ2E

]
, (A.34)

where DR = 2γN and DE = 2pN are the Hilbert space dimension of the reference R and
dephasing bath E, respectively, and the reduced density matrix for the reference is maximally
mixed, i.e., ρR = 2−γN1R. Two terms, tr ρ2RE and tr ρ2E on the right-hand side, can be written
as the expectation value of a swap operator in a duplicated Hilbert space [212]:

tr ρ2X = tr [SWAP (ρX ⊗ ρX)] with X ∈ {RE,E}, (A.35)

where SWAP is an operator that swaps wavefunctions in two different copies. Equation (A.35)
can be pictorially represented by using tensor network diagrams in Figs. A.8(b,c), where
taking the trace or the expectation values of SWAP correspond to different contractions at
the top of diagrams.

Evaluating the right hand side of Eq. (A.34) for an arbitrary U is computationally
intractable. However, we can exactly evaluate it once it is averaged over all possible unitaries
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in U(2N) in Haar measure (or any unitary 2-design). On the right-hand side, evaluating the
average tr ρ2RE and tr ρ2E involves computing the second moment EU [U ⊗ U∗ ⊗ U ⊗ U∗] of
random unitary U :

EU [U ⊗ U∗ ⊗ U ⊗ U∗] =
∑

σ,τ=±1

w(2)
g (σ, τ)τ̂abσ̂cd, (A.36)

where the coefficient

w(2)
g (σ, τ) =

δσ,τ
d2 − 1

− 1 − δσ,τ
d(d2 − 1)

, (A.37)

which is the so-called Weingarten function [67], and σ̂ and τ̂ are tensors associated with the
binary variables σ, τ ∈ {±1} defined as

ξ̂ab =

{
δa1b1δa2b2 if ξ = +1
δa1b2δa2b1 if ξ = −1

. (A.38)

Using this property, we can explicitly evaluate EU [tr ρ2RE] and EU [tr ρ2E]:

EU

[
tr ρ2RE

]
=

1

D2
R

[
DRD

2
A1

D2
A − 1

− D2
RD

2
A1

DA(D2
A − 1)

− DRDA1

DA(D2
A − 1)

+
D2

RDA1

D2
A − 1

]
DA2

≃ 2−(γ+p)N − 2−(1+p)N − 2−(2+γ)N + 2−N , (A.39)

1

2γN
EU

[
tr ρ2E

]
=

1

2γN

1

D2
R

[
D2

RD
2
A1

D2
A − 1

− DRD
2
A1

DA(D2
A − 1)

− D2
RDA1

DA(D2
A − 1)

+
DRDA1

D2
A − 1

]
DA2

≃ 2−(γ+p)N − 2−(1+2γ+p)N − 2−(2+γ)N + 2−(1+2γ)N , (A.40)

where DA1 = 2(1−p)N , DA2 = 2pN and DA = 2N are the Hilbert space dimension of subsystem
A1, A2 and system A, respectively, and we considered the limit N ≫ 1 in the second line of
both equations. In the first equalities of Eqs. (A.39) and (A.40), we used the results of tensor
contractions presented in Fig. A.9. Plugging above two results into Eq. (A.34), we obtain
a new decopuling inequality. In particular, in the limit N ≫ 1, the decoupling inequality
becomes

EU [∥ρRE − ρR ⊗ ρE∥1] ≤
√

EU [∥ρRE − ρR ⊗ ρE∥21] ≲ 2−(1−γ−p)N/2. (A.41)

We find that when p < 1 − γ with N → ∞, ρRE factorizes as desired. We emphasize that
this condition is strictly stronger than the näive sufficient condition p < (1−γ)/2 presented in
the main text, which demands the decoupling between R and A2. At the technical level, the
distinction between two results arises from the fact that we include dephased measurement
devices M as part of accessible information in the present approach.

Using this newly derived inequality, we can obtain a quantitative prediction on the
critical measurement probability in the 1D qubit-block model. When d/(2m) ≳ 1, we can
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= DA2
= 2(1�p)N
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X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

M
<latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit><latexit sha1_base64="TwqFEFX6OKEJgNpqs8rn23ME3nc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCFy9CC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjv3O0+oNI/lg5km6Ed0JHnIGTVWat4PyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEOGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/nTuMtw==</latexit>

E
<latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit><latexit sha1_base64="ZaqiSkGAephk6kpPyDFihoH6vx4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCCB5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFS825Qrrg1dwGyTrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHRGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQlv/IzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynZELzVl9dJ+7LmuTWveVWpV/M4inAG51AFD66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBkRuMrw==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

X
<latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit><latexit sha1_base64="5/w86jHCieRPMCrJKIhiw3rCqKw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzcsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IS3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqk0qnkcRbiAS6iCB3VowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AreeMwg==</latexit>

=<latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit>

A2

<latexit sha1_base64="E2hmfXh84eVVGmosFqFTj4FKKx4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrsEo0eMF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjp4aZX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrdInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrli/vq6XaWRZHHk7gFC7AgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Asu2NVA==</latexit>

A2

<latexit sha1_base64="E2hmfXh84eVVGmosFqFTj4FKKx4=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIpp4IrsEo0eMF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjp4aZX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrdInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrli/vq6XaWRZHHk7gFC7AgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Asu2NVA==</latexit>

Figure A.9: Tensor network diagrams associated with the measured qubits A2, measurement
device M and the dephasing bath E in Eqs. (A.39) and (A.40).

approximate the local Clifford circuit by a random unitary gate drawn from a unitary 2-design
acting on 2m qubits. Further considering the limit m≫ 1, we can directly apply our analysis
here to estimate the amount of entanglement reduction due to measurements. The decoupling
inequality above suggests no (or exponentially small in m) entanglement reduction as long
as the entanglement entropy per qubit cluster γ < 1 − p. Since the phase transition occurs
when the entanglement density vanishes γ = 0, we expect pc = 1, provided d/(2m) ≳ 1 and
m→ ∞. This prediction suggests pc(m) in Fig. A.6(a) should asymptotically approach unity
in the strongly scrambling regime d/(2m) ≳ 1 as m → ∞, consistent with our numerical
simulation results.
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Appendix B

Supplementary material for Chapter 3

B.1 Details of the mapping to classical spin models

Derivation of w
(n)
d

As discussed in the main text, contracting a pair of diagonally neighboring σ̂ and τ̂ tensors
leads to a weight w

(n)
d (σ, τ) that depends on q and α. Using the TN representation given in

Fig. B.1, a simple expression of w
(n)
d can be written as

w
(n)
d (σ, τ) =

∑

aba′b′

σ̂abτ̂a′b′M(n)
ab,a′b′ , (B.1)

where σ̂ab and τ̂a′b′ denotes the rank-2n tensor in Eq. (3.49) for a single qudit and M(n)
ab,a′b′

denotes the tensor associated with the contraction of ancilla degrees of freedom. We note
that M(n)

ab,a′b′ vanishes unless a = a′ and b = b′ due to our choice R̂α, which does not have
any off-diagonal element for system qudits in the computational basis [Fig. B.1(b)]. Hence,

we simplify our notation by using M(n)
ab . For given indices ab, M(n)

ab takes the form

M(n)
ab = tr

[
n∏

k=1

(
Nϕ

[
ρ
(k)
akbk

])]
, (B.2)

where ρ
(k)
akbk

is the k-th copy of the density matrix of ancilla qudits defined as

ρ
(k)
akbk

≡ e−iX̂ak
α |0⟩ ⟨0| eiX̂bk

α. (B.3)

We note that the subscript ak, bk ∈ {1, . . . q} (c.f. not including 0) are indices for system

qudits and do not refer a matrix element, i.e., ρ
(k)
ak,bk

is a density matrix for an ancilla

by itself. The dephasing channel removes the off-diagonal elements of ρ
(k)
akbk

: Nϕ[ρ
(k)
akbk

] =

cos2 α |0⟩ ⟨0| + sin2 α δakbk |ak⟩ ⟨ak|, leading to a simple expression

M(n)
ab = cos2n α + sin2n α

n∏

k=1

δbkak+1
δakbk , (B.4)
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(a)

h0|
<latexit sha1_base64="cjvzREaZAYNtEFM64RRfk23bZf8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/cA2lM120i7dbMLuRiix/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9dAWVA4HEfeqVym7FnYEsEy8nZchR75W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NLp6QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEzfJ32ukBkxtoQyxe2thA2poszYkIo2BG/x5WXSrFa8i0r17rJcO8vjKMAxnMA5eHAFNbiFOjSAgYRneIU3RzsvzrvzMW9dcfKZI/gD5/MH/faQYQ==</latexit>

|0i
<latexit sha1_base64="TKFdj2bcgMJTKzdfWTZBXYiOnTE=">AAAB8HicbVBNS8NAEJ34WetX1aOXYFE8laQKeix48VjBfkgbymY7aZfubsLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLE8608bxvZ2V1bX1js7BV3N7Z3dsvHRw2dZwqig0a81i1Q6KRM4kNwwzHdqKQiJBjKxzdTP3WIyrNYnlvxgkGggwkixglxkoPT15XETng2CuVvYo3g7tM/JyUIUe9V/rq9mOaCpSGcqJ1x/cSE2REGUY5TordVGNC6IgMsGOpJAJ1kM0OnrinVum7UaxsSePO1N8TGRFaj0VoOwUxQ73oTcX/vE5qousgYzJJDUo6XxSl3DWxO/3e7TOF1PCxJYQqZm916ZAoQo3NqGhD8BdfXibNasW/qFTvLsu1szyOAhzDCZyDD1dQg1uoQwMoCHiGV3hzlPPivDsf89YVJ585gj9wPn8ArguQPQ==</latexit>

N�
<latexit sha1_base64="E9HC52IT6N69dy0elgiEPsIZtEs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYFFclaQKuiy4cSUV7AOaECbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cMOVMacf5ttbWNza3tis71d29/YND++i4o5JMEtomCU9kL8SKciZoWzPNaS+VFMchp91wfFf43QmViiXiSU9T6sd4KFjECNZGCmzbi7EeEczzh1ngpSMW2DWn7syBVolbkhqUaAX2lzdISBZToQnHSvVdJ9V+jqVmhNNZ1csUTTEZ4yHtGypwTJWfz5PP0LlRBihKpHlCo7n6eyPHsVLTODSTRU617BXif14/09GtnzORZpoKsjgUZRzpBBU1oAGTlGg+NQQTyUxWREZYYqJNWVVTgrv85VXSadTdq3rj8brWvCjrqMApnMEluHADTbiHFrSBwASe4RXerNx6sd6tj8XomlXunMAfWJ8/yiGTqw==</latexit>

h0|
<latexit sha1_base64="cjvzREaZAYNtEFM64RRfk23bZf8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/cA2lM120i7dbMLuRiix/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9dAWVA4HEfeqVym7FnYEsEy8nZchR75W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NLp6QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEzfJ32ukBkxtoQyxe2thA2poszYkIo2BG/x5WXSrFa8i0r17rJcO8vjKMAxnMA5eHAFNbiFOjSAgYRneIU3RzsvzrvzMW9dcfKZI/gD5/MH/faQYQ==</latexit>

|0i
<latexit sha1_base64="TKFdj2bcgMJTKzdfWTZBXYiOnTE=">AAAB8HicbVBNS8NAEJ34WetX1aOXYFE8laQKeix48VjBfkgbymY7aZfubsLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLE8608bxvZ2V1bX1js7BV3N7Z3dsvHRw2dZwqig0a81i1Q6KRM4kNwwzHdqKQiJBjKxzdTP3WIyrNYnlvxgkGggwkixglxkoPT15XETng2CuVvYo3g7tM/JyUIUe9V/rq9mOaCpSGcqJ1x/cSE2REGUY5TordVGNC6IgMsGOpJAJ1kM0OnrinVum7UaxsSePO1N8TGRFaj0VoOwUxQ73oTcX/vE5qousgYzJJDUo6XxSl3DWxO/3e7TOF1PCxJYQqZm916ZAoQo3NqGhD8BdfXibNasW/qFTvLsu1szyOAhzDCZyDD1dQg1uoQwMoCHiGV3hzlPPivDsf89YVJ585gj9wPn8ArguQPQ==</latexit>

N�
<latexit sha1_base64="E9HC52IT6N69dy0elgiEPsIZtEs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYFFclaQKuiy4cSUV7AOaECbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cMOVMacf5ttbWNza3tis71d29/YND++i4o5JMEtomCU9kL8SKciZoWzPNaS+VFMchp91wfFf43QmViiXiSU9T6sd4KFjECNZGCmzbi7EeEczzh1ngpSMW2DWn7syBVolbkhqUaAX2lzdISBZToQnHSvVdJ9V+jqVmhNNZ1csUTTEZ4yHtGypwTJWfz5PP0LlRBihKpHlCo7n6eyPHsVLTODSTRU617BXif14/09GtnzORZpoKsjgUZRzpBBU1oAGTlGg+NQQTyUxWREZYYqJNWVVTgrv85VXSadTdq3rj8brWvCjrqMApnMEluHADTbiHFrSBwASe4RXerNx6sd6tj8XomlXunMAfWJ8/yiGTqw==</latexit>

h0|
<latexit sha1_base64="cjvzREaZAYNtEFM64RRfk23bZf8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/cA2lM120i7dbMLuRiix/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9dAWVA4HEfeqVym7FnYEsEy8nZchR75W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NLp6QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEzfJ32ukBkxtoQyxe2thA2poszYkIo2BG/x5WXSrFa8i0r17rJcO8vjKMAxnMA5eHAFNbiFOjSAgYRneIU3RzsvzrvzMW9dcfKZI/gD5/MH/faQYQ==</latexit>

|0i
<latexit sha1_base64="TKFdj2bcgMJTKzdfWTZBXYiOnTE=">AAAB8HicbVBNS8NAEJ34WetX1aOXYFE8laQKeix48VjBfkgbymY7aZfubsLuRiixv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLE8608bxvZ2V1bX1js7BV3N7Z3dsvHRw2dZwqig0a81i1Q6KRM4kNwwzHdqKQiJBjKxzdTP3WIyrNYnlvxgkGggwkixglxkoPT15XETng2CuVvYo3g7tM/JyUIUe9V/rq9mOaCpSGcqJ1x/cSE2REGUY5TordVGNC6IgMsGOpJAJ1kM0OnrinVum7UaxsSePO1N8TGRFaj0VoOwUxQ73oTcX/vE5qousgYzJJDUo6XxSl3DWxO/3e7TOF1PCxJYQqZm916ZAoQo3NqGhD8BdfXibNasW/qFTvLsu1szyOAhzDCZyDD1dQg1uoQwMoCHiGV3hzlPPivDsf89YVJ585gj9wPn8ArguQPQ==</latexit>

N�
<latexit sha1_base64="E9HC52IT6N69dy0elgiEPsIZtEs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYFFclaQKuiy4cSUV7AOaECbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cMOVMacf5ttbWNza3tis71d29/YND++i4o5JMEtomCU9kL8SKciZoWzPNaS+VFMchp91wfFf43QmViiXiSU9T6sd4KFjECNZGCmzbi7EeEczzh1ngpSMW2DWn7syBVolbkhqUaAX2lzdISBZToQnHSvVdJ9V+jqVmhNNZ1csUTTEZ4yHtGypwTJWfz5PP0LlRBihKpHlCo7n6eyPHsVLTODSTRU617BXif14/09GtnzORZpoKsjgUZRzpBBU1oAGTlGg+NQQTyUxWREZYYqJNWVVTgrv85VXSadTdq3rj8brWvCjrqMApnMEluHADTbiHFrSBwASe4RXerNx6sd6tj8XomlXunMAfWJ8/yiGTqw==</latexit>

· · ·<latexit sha1_base64="+9GhjdLiyE1L3MrN6aCn6+KwYsI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIviqSRV0GPBi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcY3wYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6u1+6tK/TyPowgncAoX4MM11OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AKc5jxc=</latexit>

⌧
<latexit sha1_base64="ZRlFtY4u+1k5geG3kL2fsV76310=">AAAB63icbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqI00Glapbc+cgq8QrSBUKNAeVr/4wYoniGpmk1vY8N0Y/pQYFk3xW7ieWx5RN6Ij3Mqqp4tZP57fOyHmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+qnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPOQvCWX14l7XrNu6rVH66rjYsijhKcwhlcggc30IB7aEILGIzhGV7hzVHOi/PufCxa15xi5gT+wPn8ARoPjjA=</latexit>

�
<latexit sha1_base64="eSMc7R1L2/eHCgXJ5TMH1X8mRLk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vgmzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Wpn+dxFOEETuECAriGOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPlUGPCw==</latexit>

↵
<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit>

↵
<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit> ↵

<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit>

↵
<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit>

↵
<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit>

↵
<latexit sha1_base64="w2jB+R6gI1RQYbhSddzgLgu3k6I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Ae0oUy2m3btJht2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVlDWpFFJ1AtRM8Jg1DTeCdRLFMAoEawfj25nffmJKcxk/mEnC/AiHMQ85RWOlVg9FMsJ+ueJW3TnIKvFyUoEcjX75qzeQNI1YbKhArbuemxg/Q2U4FWxa6qWaJUjHOGRdS2OMmPaz+bVTcmaVAQmlshUbMld/T2QYaT2JAtsZoRnpZW8m/ud1UxPe+BmPk9SwmC4WhakgRpLZ62TAFaNGTCxBqri9ldARKqTGBlSyIXjLL6+SVq3qXVZr91eV+nkeRxFO4BQuwINrqMMdNKAJFB7hGV7hzZHOi/PufCxaC04+cwx/4Hz+AIRjjwA=</latexit>

M(n)
<latexit sha1_base64="r+UWDgBYhk9k1OzHvsxNzPFDpJg=">AAAB+nicdVDLSgMxFM3UV62vqS7dBItSN0NmWmy7K7hxI1SwD2hryaRpG5rJDElGKWM/xY0LRdz6Je78G9OHoKIHAodz7uWeHD/iTGmEPqzUyura+kZ6M7O1vbO7Z2f3GyqMJaF1EvJQtnysKGeC1jXTnLYiSXHgc9r0x+czv3lLpWKhuNaTiHYDPBRswAjWRurZ2U6A9YhgnlxOb5K8OJ327BxySqhcQS5EjlfyXA8Zgs4KxUoBug6aIweWqPXs904/JHFAhSYcK9V2UaS7CZaaEU6nmU6saITJGA9p21CBA6q6yTz6FB4bpQ8HoTRPaDhXv28kOFBqEvhmchZU/fZm4l9eO9aDcjdhIoo1FWRxaBBzqEM46wH2maRE84khmEhmskIywhITbdrKmBK+fgr/Jw3PcQuOd1XMVU+WdaTBITgCeeCCEqiCC1ADdUDAHXgAT+DZurcerRfrdTGaspY7B+AHrLdPdjyUDQ==</latexit>

(b)

�
<latexit sha1_base64="eSMc7R1L2/eHCgXJ5TMH1X8mRLk=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vgmzJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ipp1arBZbV2f1Wpn+dxFOEETuECAriGOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPlUGPCw==</latexit>

⌧
<latexit sha1_base64="ZRlFtY4u+1k5geG3kL2fsV76310=">AAAB63icbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqI00Glapbc+cgq8QrSBUKNAeVr/4wYoniGpmk1vY8N0Y/pQYFk3xW7ieWx5RN6Ij3Mqqp4tZP57fOyHmmDEkYmaw0krn6eyKlytqpCrJORXFsl71c/M/rJRje+qnQcYJcs8WiMJEEI5I/TobCcIZymhHKjMhuJWxMDWWYxVPOQvCWX14l7XrNu6rVH66rjYsijhKcwhlcggc30IB7aEILGIzhGV7hzVHOi/PufCxa15xi5gT+wPn8ARoPjjA=</latexit>

· · ·<latexit sha1_base64="+9GhjdLiyE1L3MrN6aCn6+KwYsI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIviqSRV0GPBi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9Wik0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcY3wYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6u1+6tK/TyPowgncAoX4MM11OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AKc5jxc=</latexit>

h0|
<latexit sha1_base64="cjvzREaZAYNtEFM64RRfk23bZf8=">AAAB8XicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGC/cA2lM120i7dbMLuRiix/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LejBP0IzqQPOSMGis9dAWVA4HEfeqVym7FnYEsEy8nZchR75W+uv2YpRFKwwTVuuO5ifEzqgxnAifFbqoxoWxEB9ixVNIItZ/NLp6QU6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7xOasJrP+MySQ1KNl8UpoKYmEzfJ32ukBkxtoQyxe2thA2poszYkIo2BG/x5WXSrFa8i0r17rJcO8vjKMAxnMA5eHAFNbiFOjSAgYRneIU3RzsvzrvzMW9dcfKZI/gD5/MH/faQYQ==</latexit>

|0i
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Figure B.1: Tensor network representation of the diagonal weight w
(n)
d . (a) Every qudit

is coupled to an ancilla qudit for a weak measurement. The ancilla qudits undergo the
dephasing channel, Nϕ, before contracted across different copies. (b) Rearrangement of the
tensor network representation. Note that the diagrammatic representations of dephasing
gates are simple in the computational basis of ancilla qudits.

where an+1 ≡ a1, and the product of delta function is nonvanishing unless all 2n indices take

the same value. Using this expression for M(n)
ab , we obtain

w
(n)
d (σ, τ)

=
∑

ab

σ̂abτ̂ab

(
cos2n α + sin2n α

n∏

k=1

δakbk+1
δakbk

)

= q#cycle(στ−1) cos2n α + q sin2n α. (B.5)

In the second equality, the tensor contraction of σ̂ab and τ̂ab can be represented by a
disconnected TN that consists of #cycle(στ−1) loops. Each loop contributes a factor of

q to the summation and leads to
∑

ab σ̂abτ̂ab = q#cycle(στ−1). Hence, we derive w
(n)
d in

Eq. (3.52). Equation (3.34) can be obtained as a special case of n = 2. In the limit α = 0,

w
(n)
d = q#cycle(στ−1) reduces to the result in Ref. [183].
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Derivation of w̄(2)

In the case of n = 2, we have seen that the purity of a subsystem maps to the partition
function of the classical Ising model on triangular lattice. Here, we derive and explicitly
present the three-body weight w̄(2)(σ1, σ2, σ3) in Eq. (3.39) associated with three spin variables
living on the vertices of a lower facing triangle, where σ1, σ2, and σ3 refer to the spin variables
located at the top left, top right, and bottom center of a triangle. The three-body weight
w̄(2)(σ1, σ2, σ3) is given by

w̄(2)(σ1, σ2, σ3) =
∑

τ=±1

w
(2)
d (σ1, τ)w

(2)
d (σ2, τ)w(2)

g (σ3, τ). (B.6)

Using w
(2)
d in Eq. (3.34) and w

(2)
g in Eq. (3.32), we can derive the full expression for

w̄(2). Considering that w̄(2) is symmetric with respect to the exchange of σ1 and σ2, i.e.,
w̄(2)(σ1, σ2, σ3) = w̄(2)(σ2, σ1, σ3), and that it has Ising symmetry, we only need to specify

w̄(2)(σ, σ, σ) =
(q2 cos4 α + q sin4 α)2 − (cos4 α + sin4 α)2

q4 − 1
, (B.7)

w̄(2)(σ, σ, σ̄) =
(q cos4 α + q sin4 α)2 − (q cos4 α + sin4 α)2

q4 − 1
, (B.8)

w̄(2)(σ, σ̄, σ) =
(q cos4 α + sin4 α)(cos4 α + sin4 α)

q2 + 1
, (B.9)

where σ̄ = −σ represents the negation of σ.
We notice that, unlike in the absence of measurements studied in Ref. [183], w̄(2)(σ, σ, σ̄) ̸=

0 for α > 0. We provide an explanation and discuss the implication of unitarity in Ap-
pendix B.3.

Derivation of Ising couplings Jh and Jd

The three-body weight factorizes into pairwise contributions in the presence of Ising symmetry.
Here, we derive the two-body Ising coupling Jh and Jd in Eq. (3.59). In terms of Jh and Jd,
w̄(2) can be written as

w̄(2)(σ, σ, σ) = Ce−2Jd−Jh , (B.10)

w̄(2)(σ, σ̄, σ) = CeJh , (B.11)

w̄(2)(σ, σ, σ̄) = Ce−2Jd+Jh , (B.12)

where C is a constant prefactor. Using the expressions for w̄(2), we have

Jd =
1

4
log

(−u22/q2 + u21
u22 − u21/q

2

)
, (B.13)

Jh =
1

4
log

(
(u1u2(1 − 1/q2))

2

(u22 − u21/q
2)(u21 − u22/q

2)

)
, (B.14)
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where

u2 = q2 cos4 α + q sin4 α, (B.15)

u1 = q cos4 α + q sin4 α. (B.16)

Since u2 ≥ u1, we can explicitly show that Jd ≤ 0 is ferromagnetic, Jh ≥ 0 is anti-
ferromagnetic, and Jd + Jh ≤ 0.

Using the explicit expressions for the Ising couplings, we can analyze the phase transition
in the spin model. In the large q limit, Jd dominates over Jh for any given α (i.e., |Jd| ≫ |Jh|).
The phase transition happens when Jd ∼ O(1). For this reason, αc is close to π/2, and it’s
reasonable to consider the physically interesting limit q ≫ 1 and π/2 − α ≪ 1.

A sufficient condition for nonnegative weights for n ≥ 3

In general, the negative weights in the expression of the n-th moment cannot be eliminated
for arbitrary q and α by simply integrating out τ variables. Here, we derive a sufficient
condition [Eq. (3.54)] for the weights being nonnegative, which allows the interpretation of
the n-th moment as the partition function of a classical spin model.

After integrating out τ variables, the three-body weight in our classical spin model takes
the form

w̄(n)(σ1, σ2, σ3)

=
∑

τ∈Sn

w
(n)
d (σ1, τ)w

(n)
d (σ2, τ)w(n)

g (σ3τ
−1; q2). (B.17)

Here, we simplify the notation by using w
(n)
g (σ3τ

−1; q2) for Weingarten function instead of

w
(n)
g (σ3, τ ; q2) in the main text as it only depends on σ3τ

−1. Also, we will often omit the

dependence on q2. An exact formula for w
(n)
g is known [67, 68, 285, 199, 178, 198],

w(n)
g (σ; d) =

1

n!

∑

λ⊢n
ℓ(λ)≤d

dλ

J (1)
λ (1d)

χλ(σ), (B.18)

where λ denotes a partition of n elements and labels the irreducible representation (irrep) of
the permutation group Sn, ℓ(λ) is the length of the partition λ, χλ is the character of the

irrep λ, dλ is the dimension of the irrep λ, and J (1)
λ is the Jack Polynomial given by

J (1)
λ (1d) =

ℓ(λ)∏

j=1

Γ(λj + d− j + 1)

Γ(d− j + 1)
. (B.19)

In Chapter 3, we are generally interested in the large q behavior in the model and consider
the case d = q2 > n. We can therefore ignore the criterion ℓ(λ) ≤ d in the summation.
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The three-body weight w̄(n) can be negative owing to the existence of negative characters
that appear in w

(n)
g . Here, we provide a lower bound of w̄(n) and show that the lower bound

becomes positive in a certain limit of q and α. The key idea is to realize that the leading
order term in Eq. (B.17) is positive and parametrically larger than the rest of the terms for a
sufficiently large q and fixed κ. More specifically, the summation in w̄(n) contains n! terms,
among which the term involving w

(n)
g (1; q2) > 0 provides the leading order contribution in

the limit of a large q and fixed κ. To start with, we have a lower bound of the three-body
weight:

w̄(n) >
(
u
(n)
1

)2
w(n)

g (1)

− (n! − 1)
(
u(n)n

)2
max
σ ̸=1

(∣∣w(n)
g (σ)

∣∣
)
, (B.20)

where u
(n)
m ≡ qm cos2n α + q sin2n α. We note that u

(n)
m ≥ u

(n)
1 > 0.

Now, we provide a lower bound of w
(n)
g (1) and an upper bound of |w(n)

g (σ)| for σ ̸= 1.
The lower bound

w(n)
g (1) >

1

n!

∑

λ

d2λ
(q2 + n)n

=
1

(q2 + n)n
(B.21)

is obtained by considering the upper bound of the Jack Polynomial. In order to obtain the
upper bound of |w(n)

g (σ)| with σ ̸= 1, we first introduce Kλ = 1/J (1)
λ (1d) and utilize the

orthogonality relation between characters
∑

λ⊢n χλ(1)χλ(σ) = 0. We note that χλ(1) = dλ.
Multiplying both sides of this equation by K1n/n! and subtracting it from an expression for

w
(n)
g (σ), we obtain

|w(n)
g (σ)| =

1

n!

∣∣∣∣∣
∑

λ⊢n

(Kλ −K1n)dλχλ(σ)

∣∣∣∣∣

≤ 1

n!

√∑

λ

(Kλ −K1n)2d2λ
∑

λ

χλ(σ)2

≤ 1

n!
max |Kλ −K1n|

√∑

λ

d2λ
∑

λ

χλ(σ)2

< max |Kλ −K1n|. (B.22)

In the second line, we used the Cauchy-Schwarz inequality, and in the the fourth line, we
used the properties of irreps of a finite group

∑
λ χλ(σ)2 <

∑
λ d

2
λ = n!. max |Kλ −K1n| has

an upper bound

max |Kλ −K1n| <
1

(q2 − n)n
− 1

(q2 + n)n
, (B.23)
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when q2 > n. Combining these bounds in Eqs. (B.21), (B.22), and (B.23) together and
plugging them into Eq. (B.20), we obtain a lower bound

w̄(n) >
u21

(q2 + n)n
− n!

(
u2n

(q2 − n)n
− u2n

(q2 + n)n

)
. (B.24)

Finally, a sufficient condition of nonnegative w̄(n)(σ1, σ2, σ3) for an arbitrary (σ1, σ2, σ3)
can be written as

1

n!

1

(1 + κ)2
>

(
q2 + n

q2 − n

)n

− 1. (B.25)

When κ = qn−1 cot2n α is fixed and q ≫ 1, the leading order on the right-hand side is 2n2/q2,
and the inequality can be satisfied for a sufficiently large but finite q. This completes the
proof that there exists a finite region of (q, α) in which w̄(n) is nonnegative and the n-th
moment can be interpreted as the partition function of a classical spin model.

B.2 Spin model for quantum relative entropy

We provide detailed derivations of the spin model for quantum relative entropy in Sec. 3.6.

Derivation of two-body weight

Here, we derive the two-body weight v
(n)
d in the spin model description of the quantum

relative entropy. Compared to the derivation of w
(n)
d in Appendix B.1, the only modification

is the absence of the dephasing channel Nϕ applying to ancilla qudits. The two-body weight
is written as

v
(n)
d (σ, τ) =

∑

ab

σ̂abτ̂abM(n)
Q,ab, (B.26)

where M(n)
Q,ab is the tensor associate with the tensor contraction of ancilla density matrices in

the case without dephasing:

M(n)
Q,ab = tr

(
n∏

k=1

ρ
(k)
akbk

)
=

n∏

k=1

(
cos2 α + δbkak+1

sin2 α
)
. (B.27)

An explicit expression for v
(n)
d can be obtained using Eq. (3.49) and the expression for

M(n)
Q,ab above. We should notice the two-body weight v

(n)
d does not respect the permutation

symmetry for any integer n ≥ 2. This is manifested in both the mathematical expression and
diagrammatic representation of M(n)

Q,ab. Diagrammatically, without dephasing, n copies of

ancilla density matrices are contracted by C(n) at the top illustrated in Fig. 3.5(a), which
explicitly breaks the symmetry Sn associated with the permutation of n replicated Hilbert
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spaces. Mathematically, the permutation symmetry transformation maps σ, τ 7→ ξ1◦σ◦ξ2, ξ1◦
τ ◦ξ2 for any pair (ξ1, ξ2) ∈ Sn×Sn, and the invariance of v

(n)
d requires M(n)

Q,ab = M(n)

Q,ξ1(a)ξ
−1
2 (b)

,

which is generally not satisfied. Despite the absence of the symmetry, v
(n)
d has interesting

properties. Particularly, v
(n)
d has the maximally value qn when σ = τ = C(n). Furthermore,

when either σ or τ represents the cyclic permutation C(n), v
(n)
d becomes independent of α and

reduces to q#cycle(στ−1), which is the result for the spin model description of a RUC without
measurements [183, 283].

Specifically, in the case of n = 2, v
(2)
d takes the form

v
(2)
d (+,+) = q2 cos2 α + q sin2 α, (B.28)

v
(2)
d (+,−) = v

(2)
d (−,+) = q, (B.29)

v
(2)
d (−,−) = q2. (B.30)

Derivation of three-body weight

The negative weights in the second moment due to negative Weingarten functions can be
eliminated by integrating out τ variables. Hence, we obtain a Ising spin model on a triangular
lattice with three-body interaction. The three-body weights v̄(2)(σ1, σ2, σ3) associated with
three spins living on the vertices of lower-facing triangle can be explicitly written down.
Considering the symmetry of exchange σ1 and σ2, i.e., v̄(2)(σ1, σ2, σ3) = v̄(2)(σ2, σ1, σ3), all
the independent v̄(2) are written as

v̄(2)(+,+,+) =
(q2 cos2 α + q sin2 α)2 − 1

q4 − 1
, (B.31)

v̄(2)(+,+,−) =
q2 − (q cos2 α + sin2 α)2

q4 − 1
, (B.32)

v̄(2)(+,−,+) =
q3 cos2 α + q2 sin2 α− q

q4 − 1
, (B.33)

v̄(2)(+,−,−) =
q3 − q cos2 α− sin2 α

q4 − 1
, (B.34)

v̄(2)(−,−,+) = 0, (B.35)

v̄(2)(−,−,−) = 1. (B.36)

The three-body weight v̄(2) is nonnegative, which allows the interpretation of the second
moment as the partition function of classical Ising model on a triangular lattice. Monte
Carlo simulation in Fig. 3.10 is based on the Ising spin model derived here. In this Ising
spin model, we note that the spin variable with σ = −1 is preferred. More specifically, the
average density of spins with σ = −1 is strictly increasing towards the bottom boundary (as
t decreases). In the thermodynamic limit T → ∞, the spin at the bottom layer will polarize
to σ = −1, which implies ⟨m−

1 ⟩ = 1.
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B.3 Implication of unitarity in classical spin models

The presence of weak measurements leads to a significant difference between weights from our
mapping to spin models and those in Ref. [183]. In what follows, we show that, in the absence
of measurements, the three-body weight satisfies a special property that w̄(n)(σ, σ, σ′) = δσσ′

when q2 ≥ n. We note that this property is explicitly shown in Ref. [183] for a special case
n = 2 without measurements. This property is a consequence of the unitarity of the RUC
and generally not satisfied in the presence of measurements.

The three-body weight w̄(n)(σ, σ, σ′) for three spins living on the vertices of lower-facing
triangle can be written as

w̄(n)(σ, σ, σ′) =
∑

τ∈Sn

w
(n)
d (σ, τ ; q)2w(n)

g (τ, σ′; q2), (B.37)

where we put the explicit q dependence in w
(n)
d and w

(n)
g . In the case without measurements,

w
(n)
d (σ, τ ; q) = q#cycle(στ−1), the three-body weight reduces to

w̄(n)(σ, σ, σ′) =
∑

τ∈Sn

(
q2
)#cycle(στ−1)

w(n)
g (τ, σ′; q2). (B.38)

We notice that the Weingarten function w
(n)
g (σ, τ ; d) can be interpreted as a matrix with two

indices σ and τ running over n! elements of Sn when d ≥ n. A simple expression is written
as [220]

w(n)
g (σ, τ ; d) =

(
M−1(d)

)
στ
, (d ≥ n) (B.39)

where the matrix (M(d))στ ≡ d#cycle(στ−1). Hence, the unitarity leads to the property of w̄(n):

w̄(n)(σ, σ, σ′) =
∑

τ∈Sn

(
q2
)#cycle(στ−1)(

M−1(q2)
)
τσ′ ,

= δσσ′ . (B.40)

In our model, weak measurements explicitly break the unitarity, and this property does not
hold.

B.4 Duality in standard Potts models

The phase transition point of the 2D standard Potts model on square lattice given by Eq. (3.64)
is known to be exactly solvable using the Kramers-Wannier duality [211, 142]. Here, we
briefly review the duality and derive the phase transition point.

In the low-temperature limit, J < 0 and |J | ≫ 1, we can perform the low temperature
expansion of the partition function Z = exp(−βHPotts):

Z = Qe−2NsqJ
[
1 + e4JNsq(Q− 1) + 2e6JNsq(Q− 1)

+ 2e7JNsq(Q− 1)(Q− 2) + O(e8J)
]
, (B.41)
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where Nsq is the total number of sites on the square lattice, the Potts model contains Q = n!
local degrees of freedom.

In the high-temperature limit, |J | ≪ 1, we can perform the high temperature expansion
of the partition function:

Z =
∑

{σi}

∏

⟨i,j⟩

(
1 + κδσi,σj

)
=
∑

{σi}

∏

⟨i,j⟩

(
1 + rQs(σi, σj)

1 − r

)

=
QNsq

(1 − r)2Nsq

[
1 + r4Nsq(Q− 1) + 2r6Nsq(Q− 1)

+ 2r7Nsq(Q− 1)(Q− 2) + O(r8)
]
, (B.42)

where we recall that κ = e−J − 1, the small parameter r ≡ κ/(Q+ κ) and s(σi, σj) ≡
δσiσj

− 1/Q.
A duality is observed in the low- and high-temperature expansion. This connects the

partition function at high and low temperature through the relation eJ = r:

1

κ̃+ 1
=

κ

Q+ κ
, (B.43)

where κ and κ̃ parametrize the high- and low-temperature expansion. The phase transition
point, where the free energy exhibits a singular behavior, satisfies the self-dual relation κ̃ = κ.
Hence, the transition point κc is given by

κc =
√
Q. (B.44)

At Q = 2, the result reduces to the well-known Kramers-Wannier duality in 2D classical Ising
model on a square lattice.

B.5 Monte-Carlo simulation of the transition in F (2)

We present the numeric simulation of the phase transition using the Monte Carlo algorithm.
Here, we focus on the case of n = 2, where the second divergence and Fisher information have
an Ising spin model description. In the spin model description, the second Fisher information
F (2) is given by the density of σ = −1 spins at the bottom through the relation F (2) = 2⟨m−

1 ⟩.
In Fig. B.2, we show ⟨m−

1 ⟩ as a function of time for various measurement strengths α
computed from Monte-Carlo simulations. ⟨m−

1 ⟩ generally grows at early time, indicating
that the measurement device gains more information about the initial state. As T is further
increased, ⟨m−

1 ⟩ eventually saturates to a value determined by α and q. When α > α
(2)
c ,

⟨m−
1 ⟩ saturates to 1/2, which implies the equal numbers of σ = ±1 spins at the bottom,

corresponding to the paramagnetic phase. In contrast, when α < α
(2)
c , the saturation value

of ⟨m−
1 ⟩ is less than 1/2, implying long range correlations between spin variables at top and

bottom boundaries. This phase corresponds to the ferromagnetic phase.
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Figure B.2: Density of spins with σ = −1 in the bottom layer ⟨m−
1 ⟩ as a function of time

T . Different curves represent different measurement strength α given on the right. The
Monte-Carlo simulation is done with q = 2, N = 32. The data are averaged over 72000 Monte
Carlo samples.
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Figure B.3: Phase diagram of the transition in the second Fisher information F (2), a proxy of
the ability of the measurements to distinguish between two different initial states. Horizontal
and vertical axes represent q and α, respectively. The gray line represents the exact solution of
critical point in the classical Ising model in Eq. (3.61). The color-coded background displays
the density of spins with σ = −1 in the bottom layer ⟨m−

1 ⟩. The simulation is done in a
system of N = 20, T = 40.

Figure B.3 shows the phase diagram of the transition in the second Fisher information
F (2) as a function of α and q. Two distinct phases are seen in the color-coded background
representing ⟨m−

1 ⟩. Large α and small q correspond to the high-temperature limit in the
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classical Ising model and lead to the paramagnetic phase. On the contrary, small α and large
q correspond to the low-temperature limit and lead to the ferromagnetic phase. We find that
the phase boundary between two phases matches with the exact solution of critical point in
classical Ising model in Eq. (3.61) as expected.

B.6 Exact Numeric simulation for the entanglement

phase transition

Algorithm

Here, we provide the details of the numerical simulations presented in Sec. 3.5. In order to
efficiently store exact many-body wave functions for as large as N = 30 qubits, we leverage
the fact that a fraction of qudits are disentangled in every time step. More specifically,
we define a single discrete time step at even (odd) time t as the applications of nearest
neighboring two-qubit unitary gates at site i and i + 1 for every even (odd) i and the
projective measurement of each qubit in the computational basis with probability p. The
measurement outcomes are probabilistically determined according to the Born rules, and the
wave function is normalized after each measurement. At any given time t, on average pN
qubits are projected and remain disentangled from the rest of the system. In our numerical
algorithm, we only store the wave function for the entangled spins and separately keep track
of the configuration of the disentangled ones. In order to simulate the time evolution, we
update the many-body wave function at every time step in the following way: (1) generate
N/2 (or N/2 − 1) random two-qubit gates to apply and determine which qubits to measure
projectively, and (2) sequentially update the wave function by applying a unitary gate at
site i and i + 1 followed by the projection of the qubit(s) at i, i + 1, or both, if necessary.
Crucially, our sequential update of the wave function and the sampling of the projective
measurement outcomes are equilvalent to applying the entire unitary gates first and then
performing projective measurements, since different unitary gates within a single time step
have disjoint supports. The order of the sequential updates within a single time step can
be further optimized in order to minimize the number of entangled spins during the time
evolution. Our simulation involves only even N with open boundary conditions. Half chain
entanglement entropies are computed after time step t = 3N (or t = 3N − 1) when N/2
is even (odd), in order to minimize the even/odd effect associated with the layout of our
unitary circuits.

Finite-size scaling

Here, we present the details of finite size scaling in Sec. 3.5. We use the scaling ansatz
proposed in Ref. [239]:

S(p, L) − S(pc, L) = g
(
(p− pc)N

1/ν
)
. (B.45)
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The critical measurement probability pc and critical exponent ν are extracted by numerically
optimizing the quality function of data collapse introduced in Refs. [137, 122]:

K(pc, ν) =
1

N
∑

i,j

(yij − Yij)
2

dy2ij + dY 2
ij

, (B.46)

where i and j run over the set of measurement probabilities and system sizes in the simulation,
respectively. yij and dyij are the data points S(pi, Lj) − S(pc, Lj) and its error, Yij and dYij
are the estimated value of the master curve and its corresponding error. The master curve
is obtained by linear fit with weighted least squares using the data points nearby, and its
error is obtained from the fit as described in Refs. [122, 243]. Specifically, the optimization is
done in the following way: (1) choose a pc ∈ [0.2, 0.35] and compute S(pc, L) by polynomial
fitting of S(p,N) using the seventh-th order polynomials; (2) find ν that optimize to the
quality function for the given pc, which gives the corresponding minimum Kmin(pc); (3) find
the global minimum of Kmin(pc) for pc ∈ [0.2, 0.35] in order to extract the optimal pc and ν.
The error bars of pc and ν are estimated using the bootstrapping method. More specifically,
out of 15 measurement probabilities for p ∈ [0.2, 0.35] in our simulation, we randomly choose
10 data points and perform the aforementioned finite size scaling analysis to obtain pc and ν.
We repeat the analysis for 100 times with independently randomly chosen data points and
use the standard deviation of pc and ν as the estimated error bars.

B.7 The Fisher information for nonlocal measurements

Here, we review the connection between the KMB Fisher information and measurements
in an optimal nonlocal basis. The most general form of projective measurement can be
characterized by the positive-operator valued measure (POVM) Π [192], which consists of
a complete set of observables {Πi} that need not be mutually orthogonal. For a given Π,
the measurement outcome i is drawn from a probability distribution pΠi ≡ tr{ρΠi}. Hence,
analogous to local projective measurements, we can compute the KL divergence

DΠ(θ) ≡
∑

i

pΠ0,i
(
log pΠ0,i − log pΠθ,i

)
, (B.47)

where pΠθ,i = tr[ρθΠi] is the measurement probability distribution when the system is initialized
in |Ψθ⟩. We note that our original simple local measurements in the main text correspond to
a special choice of Π that consists of a set of (q′)NT projectors in the computational basis of
ancilla qudits. The amount of information carried in the measurement outcomes is quantified
by the Fisher information

FΠ = ∂2θDΠ(θ)
∣∣∣
θ=0

. (B.48)
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Most importantly, the KMB Fisher information FKMB provides an attainable upper bound
to FΠ [251, 116, 203, 113, 181]:

FKMB = max
Π

FΠ, (B.49)

where Π is optimized over all possible POVM. In our work, we compute FKMB averaged over
unitary gates U , and the optimal Π for each U may not be the same.



202

Appendix C

Supplementary material for Chapter 4

C.1 Local symmetries

Qubit circuit

Here we show that, for the circuits considered in Section 4.2 and 4.3, the average hybrid dy-
namics in H(n) exhibits local symmetries generated by Xj =

∏n
a=1(XaXā)j , Yj =

∏n
a=1(YaYā)j ,

and Zj =
∏n

a=1(ZaZā)j. Our proof relies on the facts: (i) unitary gates U = e−iθOP are

generated by Pauli string operators OP , e.g. OP = ταi τ
β
j ; (ii) the random couplings θ are

drawn from a symmetric distribution to zero; (iii) measurement operators are Pauli strings.
We note that, as a special case discussed in Section 4.2, the average hybrid dynamics in
H(2) generated by uniformly random single-qubit phase rotations e−iθiZi exhibits these local
symmetries. In the following, we demonstrate the symmetries for the average dynamics in
H(n) generated by unitary gates and projective measurements separately.

Without lose of generality, we consider a unitary gate Ui = e−iθαβ
i ταi τβi+1 . Ui acts on H(n)

after averaging over the random coupling as

U (n)
i = e−iθαβ

i H
(n)
i =

∞∑

k=0

(−1)k

(2k)!

(
θαβi

)2k (
H

(n)
i

)2k
, (C.1)

where H
(n)
i =

∑n
a=1 τ

α
i,aτ

β
i+1,a − ταi,āτ

β
i+1,ā. Here, we use the fact that θαβi is drawn from a

symmetric distribution to zero, and odd powers of H
(n)
i in the expansion of U (n)

i vanish.

A special case of U (n)
i with n = 2 and Gaussian random θαβi is given in Eq. (4.33). To

demonstrate the local symmetries in the averaged dynamics U (n)
i , it suffices to show

[(
H

(n)
i

)2
,Rj

]
= 0 (C.2)

for any i, j and Rj ∈ {Xj,Yj,Zj}. Each nontrivial term in (H
(n)
i )2 contains a product of

Pauli matrices ταi,aτ
α
i,a′ on site i and τβi+1,aτ

β
i+1,a′ on site i+ 1, which commutes with Rj . Hence,
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(H
(n)
i )2 commutes with Rj , and Rj are local symmetries of U (n)

i . The generalization to other
unitary gates generated by Pauli string operators is straightforward.

The probabilistic application of a projective measurement averaged over measurement
results acts on H(n) as

M(n)
ν = (1 − Γνδt)1

⊗2n + Γνδt
∑

mν=±

P⊗2n
mν

. (C.3)

A special case of M(2)
ν is given in Eq. (4.32). Here, Pmν = (1 ±Mν)/2 are the projection

operators associated with the measurements on the Pauli string Mν . We note that measure-
ment results for any Pauli string can only be mν = ±1. To demonstrate the local symmetries
of M(n)

ν , it suffices to show

[P⊗2n
+ + P⊗2n

− ,Rj] = 0 (C.4)

for any j and Rj ∈ {Xj,Yj,Zj}. To verify that Eq. (C.4) is satisfied, we expand P⊗2n
+ +P⊗2n

−
according to the power of operator Mν . Each nonvanishing term contains a product of even
number of operator Mν (acting on different branches) and therefore commute with Xj,Yj,
and Zj.

Fermionic circuit

For the Gaussian fermionic circuits considered in Section 4.4, the averaged dynamics pre-
serves local symmetries generated by Rℓ =

∏n
α=1 iγℓ,α↑γℓ,α↓ at every Majorana site ℓ. The

local symmetry Rℓ commutes with any Majorana bilinear defined on the same site, i.e.
[Rℓ, γℓ′,ασγℓ′,βσ′ ] = 0. Using this property, we can verify, for any replica index n, both the

averaged unitary gates U (n)
s/b,j and the averaged measurements M(n)

s/b,j commute with Rℓ.

C.2 Effective quantum Hamiltonian for Z2 symmetric

quantum circuits

To demonstrate our method, we present an explicit formula of Heff for a simple paradigmatic
1D circuit model with Z2 symmetry that conserves the total parity of Pauli-Z operator. Our
model follows the structure depicted in Fig. 4.1. The inter-layer hybrid dynamics involves the
following unitary gate and measurements: (i) random θxxij XiXj interactions with Gaussian
random θxxij of zero mean, (ii) random θzzij ZiZj interactions with Gaussian random θxxij of zero
mean, (iii) measurements of Zj with probability Γz

jδt, and (iv) measurements of XiXj with
probability Γxx

ij δt. All unitary couplings and measurement projections in this model respect
the Z2-parity symmetry generated by π̂ =

∏
j Zj . As explained in Appendix C.1, Xj are local

conserved quantities, and sj variables denote local integrals of motion.
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Using the framework developed in Section 4.2, we can show the effective Hamiltonian
Heff,+ for the dynamics of two copies of density matrices in the even sector of local parities is
of the form

Heff,+ = HJXX +HJZZ +HPZ +HPXX , (C.5)

where HJXX and HJZZ arise from unitary gates with random couplings θxxij and θzzij , and HPZ

and HPXX arise from Zj and XiXj measurements. The Hamiltonian terms can be written in
terms of spin-1 operators

HJZZ =
∑

i<j

Jzz
ij (Mi,+Mj,− +Mi,−Mj,+) , (C.6)

HJXX =
∑

i<j

− Jxx
ij

(
Sx
i S

x
j + Sy

i e
iπSx

i eiπS
x
j Sy

j − LiLj

)
, (C.7)

HPXX =
∑

i<j

− Γxx
ij

4

(
Sx
i S

x
j + Sy

i e
iπSx

i eiπS
x
j Sy

j + LiLj

)
, (C.8)

HPZ =
∑

j

Γz
j

(
Sz
j

)2
, (C.9)

where the coupling Jzz
ij δt = 8(θzzij )2, Jxx

ij δt = 2(θxxij )2, the operator Li = [(S+
i )2 + (S−

i )2]/2
with S±

i being the spin ladder operators, and Mj,± = |m = ±1⟩⟩⟨⟨m = ±1|j are projectors to
the state |m = ±1⟩⟩ at site j.

The effective Hamiltonian exhibits a D4 × ZH
2 symmetry, where D4 = (ZΠL

2 × ZΠ1
2 ) ⋊ S2.

In the spin-1 Hilbert space, the symmetry generators are given by Π̂L =
∏

j diag(−1, 1,−1)j,

Π̂1 =
∏

j diag(1, 1,−1)j, and Cℓ =
∏

j − exp
(

iπ
∑

j S
x
j

)
. The Hermitian conjugate H man-

ifests as the complex conjugation K. This D4 × ZH
2 symmetry agrees with the analysis in

Section 4.3.

C.3 Exchange symmetry and hermiticity symmetry in

the n = 2 qubit model

In this section, we derive the exchange operation CℓCr and Hermitian conjugation H in the
representation of G(2)

eff on the even parity sector of the n = 2 qubit model. In particular, we
show the exchange operation acts trivially as an identity matrix in the even parity sector
and therefore cannot be broken. This proof only relies on the presence of local conserved
quantities Xj, Yj, and Zj = 1 in the qubit model and does not require the physical circuit
symmetry.

To start with, the exchange operation CℓCr is given by a product of single-site exchange
operations Cℓ,iCr,i. The single-site left and right permutation can be written in terms of Pauli
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operators as

Cℓ,i = (IIII +XIXI + Y IY I + ZIZI)i/2, (C.10)

Cr,i = (IIII + IXIX + IY IY + IZIZ)i/2. (C.11)

In the even parity sector, one can show the product Cℓ,iCr,i acts as an identity matrix regardless
of the physical symmetry, and so is CℓCr. Hence, SX

2 is in the kernel of the representation
and cannot be broken.

The hermiticity symmetry can be written as a combination of transpose T and complex
conjugation K. The transpose operation T = T1T2 is a product of transpose for the first
and second copy. T1 and T2 can be further written respectively as a product of single-site
transpose operations T1,i and T2,i which take the form

T1,i = (IIII +XXII + Y Y II + ZZII)i/2, (C.12)

T2,i = (IIII + IIXX + IIY Y + IIZZ)i/2. (C.13)

We can verify the product T1,iT2,i is identity in the even parity sector, and so is T =
∏

i T1,iT2,i.
Hence, the Hermitian conjugate H = K in the even parity sector.

C.4 Higher replicas (n ≥ 3)

Having shown the existence of a broad array of symmetry enriched phases in the case of two
replica copies n = 2, we here discuss the correspondence of each phase in the higher replica
models (n ≥ 3). We verify that two area-law and three volume-law phases found in the
two-chain model in Section 4.3 have natural generalizations in the higher replica models with
identical physical signatures. This provides evidence that these phases can be extrapolated
to the replica limit n→ 1, predicting distinct phases of quantum circuits.

Among the rest five (two area-law and three volume-law) phases which haven’t been
realized in a concrete model, we show that only the composite volume-law phase has a
higher replica generalization. The coexistence of EA order and parity variance is generically
not allowed in the higher replica models; four coexistence phases (two area-law and two
volume-law phases) do not have natural higher replica generalizations. However, we note this
does not exclude the possibility of the realizing these phases in the replica limit. Whether
there is fundamental physical obstruction to realizing these phases in a concrete quantum
circuit remains an open question.

According to the analysis in Section 4.2, the dynamics of n replicas exhibits an enlarged
symmetry G(n) = (Bn×Bn)⋊ZH

2 , where the hyperoctahedral group Bn = Z2 ≀ Sn = Z⊗n
2 ⋊Sn

is the symmetry group of an n-dimensional hypercube. The dynamics also conserves local
parities Xj, Yj, and Zj (see Appendix C.1).

Similar to the case of two replicas n = 2, the effective symmetry that determines the ground
state phases is reduced due to the conservation of local parities. We are interested in the
ground state in the same sector of local parities as the reference state, i.e. Xj = Zj = +1 and
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Yj = (−1)n. In this sector, the nonvanishing expectation values of local parities necessitate
the breaking of single-branch symmetries. Hence, we are left with an effective global symmetry
G(n)
eff generated by the elements of the left and right permutation in Sn, H together with

Π̂1 ≡
∏

j(Z1Z1̄)j and Π̂12 ≡
∏

j(Z1Z2)j . Distinct phases of quantum circuits are characterized

by the residual symmetry which is a subgroup of G(n)
eff .

We note that, in contrast to the case of two replicas (n = 2), the generators of the SX
n

exchange symmetry, i.e. Cℓ,ξCr,ξ for ξ ∈ Sn, act nontrivially in the even parity sector; SX
n can

in principle be broken for n ≥ 3.
Area-law phases.— The area-law phase is again characterized by the unbroken Sn symmetry

or the composite symmetry of the cyclic permutation Cℓ and gI present in the reference
state |I⟩⟩. The presence of the hermiticity symmetry necessitates the dynamical symmetry
(Sn × Sn) ⋊ ZH

2 .

Starting from the fully symmetric area-law phase with residual symmetry G(n)
eff , we can

condense the charge Q1 ≡ X1X1̄ together with all operators related to it by the (Sn×Sn)⋊ZH
2

symmetry. This leads to a broken symmetry area-law phase with the residual symmetry
(Sn × Sn) ⋊ ZH

2 . It is easily verified that both the symmetric and the broken symmetry state
have exactly the same physical signatures as their corresponding state in the n = 2 model.

The coexistence of EA order and parity variance is generically not allowed in the model
of higher replicas. To obtain a nonvanishing EA order, one needs to condense Qab ≡ XaXb

for a, b = 1, 2, · · · , n. Such a condensate breaks not only Π̂a ≡ ∏j(ZaZā)j but also Π̂ab ≡∏
j(ZaZb)j, indicating an exponentially decaying parity variance. One can also verify that

condensing XaZbYc and its related charges by (Sn×Sn)⋊ZH
2 in the composite area-law phase

breaks both Π̂a and Π̂ab, giving a vanishing parity variance. Hence, two area-law phases with
coexisting orders do not have a higher replica generlation.

The symmetric SPT phase, generalized to n ≥ 3, is found starting from the broken
symmetry area-law phase. We can restore the full symmetry by condensing domain walls
of Π̂12 and Π̂1 as well as all domain walls related to them by the symmetry (Sn × Sn) ⋊ ZH

2 .
The symmetric SPT phase is obtained by condensing Π̂ab and Π̂a domain walls bound to
charges of the Sn symmetries. The dual picture of the same phase is a condensate of the Sn

domain walls bound to the charge Q1 and symmetry related operators.
Volume-law phases.— We now turn to the volume-law regime. One correspondence of

the symmetric volume-law phase in the higher replicas is the phase with fully broken left
and right Sn, while retaining the symmetry Π̂a ≡ ∏j(ZaZā)j, Π̂ab ≡

∏
j(ZaZb)j, and ZH

2 .1

One can check that the physical quantities in this phase behave the same as in its n = 2
correspondence.

Starting from the symmetric volume-law phase, we can condense Qa = XaXā, leading
to a featureless phase preserving symmetry Π̂a, while breaking Π̂ab = ZaZb. We can further
condense Qab in the featureless phase to break the symmetry Π̂a, leading to the broken

1We note that the volume-law phase in the replica limit is believed to be a condensate of elementary
domain walls [130], which breaks the full Sn symmetry. Hence, in higher replica models, we only consider the
volume-law phase with fully broken Sn.
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symmetry volume-law phase with ZH
2 symmetry. Two coexistence volume-law phases do not

have natural generalizations in the higher replicas as condensing either Qab or Qab̄ ≡ XaXb̄

for all a, b = 1, 2, . . . , n breaks Π̂a′b′ leading to vanishing parity variance.
A correspondence of the composite volume-law phase can be shown to exist in the model

of even number of replicas (n being even). This phase features a residual symmetry group
(Zn × Zn) ⋊ ZH

2 . Two Zn subgroups are generated respectively by the composite symmetry
CℓΠ̂L and CℓCr, where Π̂L ≡∏j(

∏n
a=1 Za)j. Starting from the symmetric area-law phase, we

can obtain this phase by condensing (X1Y1̄Z2)j symmetrized under the residual symmetry.
We note that the symmetrized operator is nonvanishing for the even replicas.

C.5 Fermionic states and operators in the duplicated

Hilbert space

Here we detail the correspondence between second quantized fermionic operators fj , acting in
the Hilbert space of a single copy of quantum circuit, and the fj,α,σ acting in the duplicated
Hilbert space of the effective Hamiltonian.

We start from the Fock states |n⃗⟩ =
∏

j(f
†
j )nj |0⟩ in the Hilbert space of quantum circuit.

The space of double density matrices is accordingly spanned by the states: |n⃗1⟩ ⟨m⃗1|⊗|n⃗2⟩ ⟨m⃗2|.
To define a proper fermionic Fock space for the duplicated system, we make the correspondence:

|n⃗1⟩ ⟨m⃗1| ⊗ |n⃗2⟩ ⟨m⃗2| ↔ (C.14)
∏

i

(f †
i,1,↑)

n1i

∏

j

(f †
j,1,↓)

m1j

∏

k

(f †
k,2,↑)

n2k

∏

l

(f †
l,2,↓)

m2l |vac⟩⟩f

≡ |n⃗1, m⃗1, n⃗2, m⃗2⟩⟩.

Here, the second quantized operators f †
i,α,σ create a fermion in the σ branch (ket or bra) of

copy α.
The above correspondence between states gives a simple representation of the boundary

state ⟨⟨I|, which implements the doubled trace operation:

⟨⟨I| =
∑

n⃗1,n⃗2

⟨⟨n⃗1, n⃗1, n⃗2, n⃗2|. (C.15)

Indeed we can check that ⟨⟨I|ρ(2)⟩⟩ = tr ρ(2).
The above correspondence between states implies a correspondence between operators

f †
j ⊗ 1⊗ 1⊗ 1↔ f †

j,1,↑, (C.16a)

1⊗ fj ⊗ 1⊗ 1↔ f †
j,1,↓(−1)N1↑ , (C.16b)

1⊗ 1⊗ f †
j ⊗ 1↔ f †

j,2,↑(−1)N1↑+N1↓ , (C.16c)

1⊗ 1⊗ 1⊗ fj ↔ f †
j,2,↓(−1)N1↑+N1↓+N2↑ . (C.16d)
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The sign factors on the right are needed to ensure that operators on the two sides of the
correspondence have identical action on the respective states. Nασ denote the total number
in copy α and “branch” σ (ket ↑ or bra ↓). We make the following remarks. First, with this
correspondence, all the fermion parity conserving local operators, acting on a single circuit
state (in any copy or branch) remain local and the sign factors cancel out of them. The
extension to any number of copies is obvious. Second, due to the additional sign factors, the
hermiticity symmetry transformation appears to be nonlocal in the duplicated Hilbert space,
namely Hf †

j,α,↑H−1 = (−1)Nα,↑f †
j,α,↓. However, H is local for any bosonic operator made of

fermionic bilinears and therefore becomes a local symmetry in the effective Hilbert space.
Having defined the operators in the duplicated Hilbert space H(2), we can write the

effective Hamiltonian in a Fock basis using any ordering convention of the fermions. In
particular, the form of the effective spin-1 Hamiltonian in Section 4.4 implicitly assumes that
it operates between Fock states with a site-local ordering convention:

⊗

j

|nj,1,↑, nj,1,↓, nj,2,↑, nj,2,↓⟩⟩ ≡ (C.17)

∏

j

[
(f †

j,1,↑)
nj,1,↑(f †

j,1,↓)
nj,1,↓(f †

j,2,↑)
nj,2,↑(f †

j,2,↓)
nj,2,↓

]
|vac⟩⟩f .

The same Hamiltonian will take a different form if written in terms of Fock states with copy-
local ordering |n⃗1↑, n⃗1↓, n⃗2↑, n⃗2↓⟩⟩. In particular, the U(1) symmetries will become nonlocal

and not be explicitly apparent because they are generated by conservation of the c†ℓ,σ, which
are not local to one copy.

The price we pay for working with the site-local Fock states |n⟩⟩ in which the effective
spin Hamiltonian is simple and the U(1) symmetry apparent is that we also need to rewrite
the boundary state ⟨⟨I| with the same Fock states. This in order to compute its overlap with
the state generated by the effective imaginary time evolution (together with any boundary
operators we want to measure). We have seen that ⟨⟨I| has a simple representation in terms
of the copy-local Fock states in Eq. (C.15). The Fock states in the two ordering conventions
are related to each other by a sign factor which is a function of the occupation numbers in
the state. These factors take a simple form for the basis states included in the boundary
state, giving:

⟨⟨I| =
∑

n⃗1,n⃗2

g(N1, N2)
⊗

j

⟨⟨nj,1, nj,1, nj,2, nj,2|, (C.18)

where the factor g(N1, N2) = (−1)
1
2
N1(N1−1)+ 1

2
N2(N2−1).

C.6 U(1) symmetry breaking in |I⟩⟩
In this section, we show the boundary state |I⟩⟩ breaks both U(1) symmetries corresponding
to the conservation of Σz and ηz. We demonstrate the long-range order in |I⟩⟩ manifested by
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nondecaying correlation functions of order parameters ⟨⟨I|ηyi ηyj |I⟩⟩/4L = ⟨⟨I|Σy
i Σ

y
j |I⟩⟩/4L =

1/2.
To evaluate the correlation of order parameters in |I⟩⟩, we write the boundary state |I⟩⟩

[Eq. (C.15)] in terms of second quantized fermionic operators fj,α,σ acting on the Hilbert
space of branch σ of copy α

|I⟩⟩ =
N∏

i=1

[
1 + f †

i,1,↑f
†
i,1,↓e

iπ
∑N

i′=i+1 n1i′
]

[
1 + f †

i,2,↑f
†
i,2,↓e

iπ
∑N

i′=i+1 n2i′
]
|vac⟩⟩f . (C.19)

Here, the state |I⟩⟩ has a definite f -fermion parity on every site in the Hilbert space of forward
and backward branch of each copy, i.e. ⟨⟨I|Π̂j,α,↑Π̂j,α,↓|I⟩⟩ = 1, where Π̂j,α,σ = 1− 2f †

j,α,σfj,α,σ
is the f -fermion parity.

In terms of f -fermion operators, the order parameters Σ±
j and η±j take the form

Σ+
j = − iOj,1↑,1↓ −Oj,1↑,2↓ −Oj,2↑,1↓ + iOj,2↑,2↓, (C.20)

Σ−
j =iOj,1↑,1↓ −Oj,1↑,2↓ −Oj,2↑,1↓ − iOj,2↑,2↓, (C.21)

η+j =iOj,1↑,1↓ −Oj,1↑,2↓ + Oj,2↑,1↓ + iOj,2↑,2↓, (C.22)

η−j = − iOj,1↑,1↓ −Oj,1↑,2↓ + Oj,2↑,1↓ − iOj,2↑,2↓, (C.23)

where Oj,ασ,βσ′ is the fermion bilinear defined as

Oj,ασ,βσ′ =
i

2

(
f †
j,α,σf

†
j,β,σ′ − fj,β,σ′fj,α,σ

)
. (C.24)

Operator Oj,ασ,βσ′ flips the local f -fermion parity in Hilbert space of copy α and β on site
j. Therefore, the correlation function of Oj,ασ,βσ′ in the boundary state |I⟩⟩ is non-vanishing
only when α = β. We can further show the only nonvanishing two-point correlations are
given by

1

4L
⟨⟨I|Oi,α↑,α↓Oj,α↑,α↓|I⟩⟩ =

1

4
, (C.25)

where 1/4L is the normalization of |I⟩⟩, i.e. ⟨⟨I|I⟩⟩ = 4L. Using Eq. (C.25), we can show the
order parameter correlation functions in the boundary state |I⟩⟩ is nondecaying

1

4L
⟨⟨I|Σy

i Σ
y
j |I⟩⟩ =

1

4L
⟨⟨I|ηyi ηyj |I⟩⟩ =

1

2
. (C.26)

Hence, the boundary state exhibits long-range orders and breaks both the U(1) symmetries
generated by ηz and Σz. Furthermore, we note that the expectation value of order parameters
in |I⟩⟩ is vanishing, i.e. ⟨⟨I|Σ±

j |I⟩⟩ = ⟨⟨I|η±j |I⟩⟩ = 0. For this reason, the boundary state |I⟩⟩
can be understood as a superposition of U(1) symmetry breaking states with the ordering of
U(1) phase in different directions.
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C.7 Swap operator in fermionic duplicated Hilbert

space

The swap operator Cℓ,A is in general nonlocal in the fermionic duplicated Hilbert space
H(2). In this section, we show that Cℓ,A bears a simple local description when acting on the
boundary state |I⟩⟩. This allows a long wavelength description for the swap boundary state
|Cℓ,A⟩⟩ ≡ Cℓ,A|I⟩⟩ in Section 4.4.

To start with, we consider the swap operator in the Hilbert space of two copies of quantum
circuits

CA =
∑

n⃗1,n⃗2

|n⃗2An⃗1B⟩ ⟨n⃗1An⃗1B| ⊗ |n⃗1An⃗2B⟩ ⟨n⃗2An⃗2B| , (C.27)

where n⃗α = (n⃗α,A, n⃗α,B) is the occupation of fermionic modes in the subsystem A and its
complement B. The purity of subsystem can be obtained by applying the permutation
operator to the double density matrix either from left and then taking the trace, i.e. tr ρ2A =
tr(CA ρ⊗ ρ).

Using the correspondence established in Appendix C.5, we can formulate the purity as an
overlap between the swap boundary state ⟨⟨Cℓ,A| and |ρ⟩⟩, where |Cℓ,A⟩⟩ takes the form

|Cℓ,A⟩⟩ =
∑

n⃗1,n⃗2

|n⃗2An⃗1B, n⃗1An⃗1B, n⃗1An⃗2B, n⃗2An⃗2B⟩⟩. (C.28)

Alternatively, we can write |Cℓ,A⟩⟩ in the site-local ordering convention as

|Cℓ,A⟩⟩ =
∑

n⃗1,n⃗2

g(N1, N2) (C.29)

⊗

j∈A

|nj,2, nj,1, nj,1, nj,2⟩⟩
⊗

j∈B

|nj,1, nj,1, nj,2, nj,2⟩⟩.

We note that the boundary state |Cℓ,A⟩⟩ [Eq. (C.29)] and |I⟩⟩ [Eq. (C.18)] in the site-local
convention only differ by a local exchange of the occupation in the forward branches of copy
1 and 2 in subsystem A. This allows one to define an effective swap operator C̃ℓ,A =

∏
j∈A C̃ℓ,j

such that C̃ℓ,A|I⟩⟩ = |Cℓ,A⟩⟩, where C̃ℓ,j is the single-site swap operator satisfying

C̃ℓ,j|nj,1, nj,1, nj,2, nj,2⟩⟩ = |nj,2, nj,1, nj,1, nj,2⟩⟩. (C.30)

The single-site swap operator C̃ℓ,j can be written in terms of f -fermionic operators and further
in terms of U(1) symmetry generators

C̃ℓ,j =f †
j,1,↑fj,2,↑ + fj,1,↑f

†
j,2,↑ +

1

2

(
1 + Π̂j,1,↑Π̂j,2,↑

)

=e−iπ
2 (Σz

j+ηzj ), (C.31)



APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 211

101 102

10-2

100(a)

101 102

10-5

100(b)

101 102

10-8

10-4

(c)

Figure C.1: Phase transition in Gaussian fermionic circuits along Cut 1 in Fig. 4.6. Entan-
glement entropy exp(−SA) [panel (a)], parity variances Πs,A [panel (b)] and Πb,A [panel (c)]
as function of the conformal coordinate zA for various measurement probabilities ps. Data
points for the same ps are marked in the same color in different panels. ps ranges from 0.02
to 0.25 and increases from the bottom to the top in panel (a). The numerical results are
obtained with system size L = 160, averaged over 400 realizations, and plotted in a log-log
scale.

where Π̂j,α,↑ = 1 − 2f †
j,α,↑fj,α,↑ is the fermion parity in the forward branch of copy α at site j.

Therefore, the swap operator Cℓ,A, when acting on the boundary state |I⟩⟩, is equivalent to

C̃ℓ,A, which rotates both U(1) order parameters (η+j and Σ+
j ) counterclockwise by an angle

π/2 in region A. In the long-wavelength description developed in Section 4.4, C̃ℓ,A inserts a
pair of half vortices at the edges of region A on the boundary of (1+1)d XY model. Here, we

note again that C̃ℓ,A is not the swap operator when acting on a general state and C̃2
ℓ,A ̸= 1.

We also note that the swap operator breaks the time-reversal symmetry for the spin-1/2
fermions as it only operates on the forward branches (σ =↑).

C.8 Details of the numerical simulation in Gaussian

fermionic circuits

Power-law decay exponents of correlations in the critical phase

In this section, we present the numerical results of e−SA , Πs,A and Πb,A in Gaussian fermionic
circuits along cut 1. We use the numerical results to extract power-law exponents presented
in Fig. 4.7(a-c).

Figure C.1 presents e−SA [panel(a)], Πs,A [panel(b)] and Πb,A [panel(c)] as a function of
the conformal coordinate zA for various measurement probabilities ps. We show that these
quantities exhibit power-law decay in the critical phase (when ps < ps,c on cut 1). The
scaling deviates from power laws when increasing the measurement probability ps. Numerical
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results show an area-law SA, a constant Πs,A, and an exponentially decaying Πb,A in the
trivial area-law phase (when ps > ps,c on cut 1), which verifies our theoretical predictions.
Our theoretical understanding also explains the non-monotonic behavior in the bond parity
variance Πb,A as a function of ps. In the critical phase, Πb,A increases with ps owing to the
decreasing Luttinger parameter K towards the critical point. On the other hand, in the
trivial area-law phase, Πb,A decreases with ps due to the decreasing correlation length. We
note that the values of Πb,A are small along cut 1 owing to the vanishing bond measurement
probability, i.e. pb = 0.

Correlation length in the area-law phase of Gaussian fermionic
circuit

We present the details on numerically extracting correlation length in the area-law phase of
the Gaussian fermionic circuit. Specifically, we show the entanglement entropy data used
to extract the correlation length and provide the procedure to determine the logarithmic
coefficient αS(ps) and constant b(ps) in Eq. (4.65).

To start with, we show in Fig. C.2 the entanglement entropy along cut 1 exhibits distinct
behaviors across the phase transition. When measurement rate ps is small, the entanglement
exhibits a critical scaling as a function of the subsystem size LA (linear in log zA). Increasing
ps along cut 1, the circuit enters an area-law phase, which is characterized by the saturation
of entanglement entropy as a function of LA.

0 1 2 3 4 5
0

1

2

3

4

5

0 0.5
0

0.5

1

Figure C.2: Subsystem entanglement entropy as a function of conformal coordinate zA =
L cos(πLA/L) for various different measurement probabilities ps along cut 1. ps ranges from
0.05 to 0.35 and increases in the data points from the top to the bottom. (Inset) Logarithmic
coefficient α(ps) of the entanglement entropy as a function of ps.
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Here, we focus on the area-law phase and use the entanglement data to extract the finite
correlation length ξ. The entanglement exhibits distinct scaling for different subsystem sizes
LA. When LA ≪ ξ, the entanglement exhibits critical scaling as Eq. (4.65). Increasing the
subsystem size LA, the entanglement scaling changes to Eq. (4.66). We extract ξ in two
steps: (1) extract α(ps) and b(ps) using the entanglement data for small subsystem sizes, i.e.
LA ≪ ξ; (2) extract ξ using the entanglement data for larger subsystem sizes by fitting to
Eq. (4.66).

To extract α(ps) and b(ps), we use the data for various LA and L in the following way:
(1) For a given ps, we plot S(zA, ps, L) as a function of log zA for various L; (2) We choose
at least seven consecutive data points of zA and perform the linear regression according to
Eq. (4.65). We optimize the r2 of the linear regression over all possible choices to obtain the
best α(ps) and b(ps). The optimized α(ps) is shown in the inset of Fig. C.2.

Using the optimized α(ps) and b(ps), we perform the least square fitting for S(zA, ps, L)
as a function of zA according to Eq. (4.66) for every ps and L to extract ξ(ps, L). The result
is presented in Fig. 4.8.
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Appendix D

Supplementary material for Chapter 5

D.1 Teleportation in the finite-time circuit

In the finite-time circuit [shown in Fig. 1(a) of the main text], we are interested in the
teleportation from the reference qubit A to the output qubit B. The teleportation is equivalent
to transmitting quantum information through a quantum channel from the leftmost qubit in
the initial state to the output of the circuit. The maximum number of teleported qubits (or in
our case the fidelity of teleporting a single qubit A) is characterized by the channel capacity.
It is worth noting that we here consider the information retained in both the quantum state
of qubit B and the classical measurement results in M . Thus, the output of the channel is
the entire system including B and M .

In Ref. [65], the authors showed that the channel capacity of such a monitored circuit
is given by the entropy of the output B conditioned on measured qubits M , which is also
the averaged entropy of B over measurement outcomes in M , i.e.

∑
m pmSB,m. We use this

quantity throughout Chapter 5 to detect the potential transition in teleportation fidelity.

D.2 Effective quantum Hamiltonian

In this section, we show that the finite-time random unitary circuit evolution maps to the
thermal state of an effective ferromagnetic Ising Hamiltonian at a finite temperature. As
emphasized in the main text, the finite-temperature ferromagnetic transition in the effective
Hamiltonian manifests as the finite-time transition in the maximum teleportation fidelity, i.e.
the conditional entropy, SB|M . In particular, we derive the boundary conditions associated
with SB|M and show it maps to the order parameter correlation function that detects the
transition.

We consider random unitary circuits in Fig. 1(a) of the main text and compute the entropy
of the output qubit B conditioned on measurement results on the rest of the output qubits
M . The conditional entropy SB|M provides an upper bound on the teleportation fidelity. We
seek its average value over the ensemble of trajectories defined by random circuit realizations
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and measurement results on M ,

SB|M =
∑

m

pmSB,m, (D.1)

where · represents the average over unitary gates, and m labels the measurement results.
Using the framework developed in Ref. [17, 33], we can express SB|M using the replica method
as the n→ 1 limit of the replicated quantities

S
(n)
B|M =

1

1 − n
log

(∑
m tr ρ̃nB,m∑
m tr ρ̃nm

)
, (D.2)

where ρ̃m := PmρPm is the unnormalized density matrix after measurements. These replicated
quantities are analytically tractable and capture the qualitative behaviors of SB|M despite
exhibiting a different universality at the critical point [18, 130]. To study the transition in

SB|M , one needs to consider S
(n)
B|M for all n and then take the replica limit n→ 1.

To gain qualitative insights, we focus on S
(2)
B|M , which can be studied analytically via a

mapping to the effective Hamiltonian. The essence of the mapping is to identify the average
second moments tr ρ̃2B,m and tr ρ̃2m in Eq. (D.2) with the partition function of a classical
spin model with certain boundary conditions. To establish the mapping, we formulate the
dynamics of the average purity, which involves two copies of density matrix, as the evolution
of state vector |ρ⟩⟩ ≃ ρ⊗ ρ in the duplicated Hilbert space H(2) = (H⊗H∗)⊗2. Computing
the subsystem purity is given by the overlap between |ρ⟩⟩ and a reference state, which will
manifest as boundary conditions in the classical spin model at final times [17, 33].

To start with, the dynamics of |ρ⟩⟩ in the random unitary circuits [illustrated in Fig. 1(a)
of the main text] is generated by an unitary operator U = (U ⊗ U∗)⊗2 in H(2). Two copies
of U and U∗ in U act on ket and bra vector spaces, respectively. The output state can
be expressed as |ρ(t)⟩⟩ =

∏Nt

τ=1 U2,τU1,τ |ρ0⟩⟩, where U1,τ and U2,τ are the single-qubit and
two-qubit Haar random gates in the τ -th time step, respectively, and Nt is the total number
of time step, i.e. t = Ntδt.

Averaging over the single-qubit unitary gates yields a projector onto a two-dimensional
reduced local Hilbert space

(Uj,τ ⊗ U∗
j,τ )⊗2 =

1

3
|Ij⟩⟩⟨⟨Ij| +

1

3
|Cj⟩⟩⟨⟨Cj| −

1

6
|Ij⟩⟩⟨⟨Cj| −

1

6
|Cj⟩⟩⟨⟨Ij|, (D.3)

where |Ij⟩⟩ ≡
∑

ab |aabb⟩⟩ and |Cj⟩⟩ ≡
∑

ab |abba⟩⟩ with a, b run over the local Hilbert space
of qubit j. The coefficients on the right-hand side are given by the Weingarten function for
a single-qubit random unitary [67, 183]. We note that |I⟩⟩ and |C⟩⟩ are not orthogonal and
choose an orthonormal basis labeled by a spin-1/2 variable sj,τ =↑, ↓ such that

(Uj,τ ⊗ U∗
j,τ )⊗2 =

∑

sj,τ=↑,↓

|sj,τ ⟩⟩⟨⟨sj,τ |. (D.4)
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We choose to define Pauli matrices such that the eigenstates of σx
j are given by

|+⟩⟩ =
1√
2

(| ↑⟩⟩ + | ↓⟩⟩) ≡ 1

2
√

3
(|Ij⟩⟩ + |Cj⟩⟩), (D.5)

|−⟩⟩ =
1√
2

(| ↑⟩⟩ − | ↓⟩⟩) ≡ 1

2
(|Ij⟩⟩ − |Cj⟩⟩). (D.6)

Analogously, the average two-qubit unitary operation Uij,τ on site i and j leads to a
projector onto reduced Hilbert space of two spins

Uij,τ = (Uij,τ ⊗ U∗
ij,τ )⊗2

=
1

15
|IiIj⟩⟩⟨⟨IiIj| +

1

15
|CiCj⟩⟩⟨⟨CiCj| −

1

60
|IiIj⟩⟩⟨⟨CiCj| −

1

60
|CiCj⟩⟩⟨⟨IiIj|,

(D.7)

where the coefficients on the right-hand side are given by the Weingarten functions for a
random unitary on two qubits [67, 183].

In each time step δt, the layer of two-qubit gates U2,τ consists of Nδt gates Uij,τ . Each
gate acts on a pair of qubits at site i and j drawn randomly from distribution P (i, j). The
projection of U2,τ onto the reduced Hilbert space of each site defines a transfer matrix
T ≡ ⟨⟨{sj,τ+1}|U2,τ |{sj,τ}⟩⟩ that describes the transition amplitude between the effective
Hilbert space at two consecutive time steps. In the limit δt → 0, the transfer matrix can
be written as the imaginary time evolution T = e−δtHeff generated by the effective quantum
Hamiltonian of the form [Eq. (1) in the main text]

Heff =
∑

i,j

Jij

[
−2

5
σz
i σ

z
j −

1

10
σy
i σ

y
j −

1

5
(σx

i + σx
j )

]
. (D.8)

We note that the effective Hamiltonian Heff exhibits an Ising symmetry generated by
∏

i σ
x
i ,

which originates from the invariance of U under swapping two copies of U .
Having established the mapping for the dynamics of double density matrix, we now

discuss the boundary conditions associated with tr ρ̃2B,m. In the output state, we first perform
measurements on M , which enforce a projection on the replicated density matrix by Pm = P⊗4

m .
Then, we compute the purity of subsystem B which is given by the overlap

tr ρ̃2B,m = ⟨⟨I|CBPm|ρ(t)⟩⟩, (D.9)

where CB is the swap operator of two copies of ket vectors in region B, and CB|I⟩⟩ = |CB⟩⟩.
Measurements enforce symmetric boundary conditions on M at final times since the

reference state ⟨⟨I|Pm = ⟨⟨mmmm| is symmetric under swapping of two ket vectors. Similarly,
the initial product state also enforces open boundary conditions as |ρ0⟩⟩ = |0000⟩⟩. At the
position of the input qubit A and output qubit B, Eq. (D.9) imposes symmetry breaking
boundary conditions: ⟨⟨IA| at site iA and ⟨⟨CB| at site iB. The overlap contributes a Boltzmann
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weight e−hs

⟨⟨IA|sA⟩⟩ =

√
3

2
+
sA
2
, (D.10)

⟨⟨CB|sB⟩⟩ =

√
3

2
− sB

2
, (D.11)

which corresponds to a magnetic field h = log
(√

3/2 −
√

1/2
)

= −0.66 for I boundary

conditions and −h for C boundary conditions. We use sA and sB to label the basis states of
the Hilbert space at spacetime locations (iA, 1) and (iB, Nt), respectively. For the denominator
tr ρ̃2m in Eq. (D.2), I boundary conditions are imposed at both A and B.

Hence, S
(2)
B|M is given by

S
(2)
B|M = − log

( ⟨⟨I|Pme
hσz

Be−tHeffe−hσz
A|ρ0⟩⟩

⟨⟨I|Pme−hσz
Be−tHeffe−hσz

A|ρ0⟩⟩

)
. (D.12)

where σz
A/B is the Pauli-Z operator at site A/B. In the case that magnetization is small, e.g.

close to the critical point, one can treat the magnetic field perturbatively. We expand S
(2)
B|M

to second order in h and obtain

S
(2)
B|M = 2h2

⟨⟨I|Pmσ
z
Be

−tHeffσz
A|ρ0⟩⟩

⟨⟨I|Pme−tHeff|ρ0⟩⟩
:= 2h2⟨σz

B(t)σz
A(0)⟩. (D.13)

Hence, S
(2)
B|M is proportional to the imaginary time order parameter correlation function

⟨σz
B(t)σz

A(0)⟩ near the critical point and reflects the universal properties of the phase transition
in the effective spin model.

D.3 Mean-field theory for finite-temperature

transition in all-to-all coupled quantum Ising

model

In this section, we perform the exact mean-field calculation for the phase transition in
the effective Hamiltonian for all-to-all coupled random unitary circuits. We first perform
the quantum-to-classical mapping. Then, we use mean-field theory, which is exact in the
thermodynamic limit, to determine the critical time and critical exponents.

The effective quantum Hamiltonian of the all-to-all coupled RUC is given by

Heff =
∑

(i,j)

hij =
∑

(i,j)

2

N − 1

[
−2

5
σz
i σ

z
j −

1

10
σy
i σ

y
j −

1

5
(σx

i + σx
j )

]
, (D.14)
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Figure D.1: Mean-field theory of the ordering phase transition in the effective classical spin
model of the all-to-all coupled quantum circuit. (a) Average magnetization Ψ as a function
of time t. We obtain critical time tc = 1.96 and critical exponent β = 0.49 ± 0.04. The red
solid line represents Ψ = c1(t− tc)

β for t > tc. (b) Critical scaling of magnetization Ψ as a
function symmetry breaking field hz. We obtain hz ∼ Ψδ with δ = 3.1 ± 0.1 at the critical
point. The green solid line represents Ψ(tc, hz) = c2h

1/δ
z .

where (i, j) represents a pair of qubits on sites i and j. We note that Jij = 2/(N − 1) such
that

∑
(i,j) Jij = N . The partition function of the effective spin model for the circuit of finite

time t is

Z =

∫
Ds e−

∫ t
0 dτHeff . (D.15)

The only difference between this partition function and that of the quantum Hamiltonian at
finite temperature are the boundary conditions in the temporal direction. The spin model we
derived takes open boundary conditions at τ = 0 and t. If one assumes periodic temporal
boundary conditions, the finite temperature transition can be analyzed by standard mean-field
theory, which gives rise to critical exponents β = 1/2 and ν = 2.

To incorporate the effects of open temporal boundary conditions, we perform the quantum-
to-classical mapping. First, we divide the time interval [0, t] into Nt steps, i.e. t = Ntδt,
and index these time steps by τ . Within each time step τ , we Trotterize the imaginary
time evolution into the product of N(N − 1)/2 terms as e−δtHeff =

∏
(i,j) e

−δthij . Then, we
insert resolutions of the identity using the eigenstates of σz

i , labeled by a classical spin
si = ±1, before and after each Trotterized time step ζ. The classical spins at two consecutive
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Trotterized time steps ζ and ζ + 1 are coupled by the transfer matrix

Tij,τ ≡⟨si,τ,ζ+1sj,τ,ζ+1| e−δthij |si,τ,ζsj,τ,ζ⟩

= − log(1 − 2h)
1 + si,τ,ζ+1si,τ,ζ

2

1 + sj,τ,ζ+1sj,τ,ζ
2

− log(h)
1 − si,τ,ζ+1si,τ,ζsj,τ,ζ+1sj,τ,ζ

2
(D.16)

−
(

log(Jyy) + iπ
1 + si,τ,ζsj,τ,ζ

2

)
1 − si,τ,ζ+1si,τ,ζ

2

1 − sj,τ,ζ+1sj,τ,ζ
2

− Jzzsi,τ,ζsj,τ,ζ ,

where h = 2δt/5(N − 1), Jyy = δt/5(N − 1), and Jzz = 4δt/5(N − 1).
In terms of the classical spins si,τ,ζ , the partition function is

Z =
∑

{si,τ,ζ}

Nt∏

τ=1

∏

(i,j)

Tij,τ . (D.17)

In the following, we analyze the phase transition as a function of t.
We use mean-field theory, which is exact in the thermodynamic limit N → ∞. To this

end, we introduce the mean fields Ψτ,ζ =
∑

i⟨si,τ,ζ⟩/N and Φτ,ζ =
∑

i⟨si,τ,ζsi,τ,ζ+1⟩/N . This

allows one to factor the transfer matrix as Tij,τ = T (MF )
i,τ T (MF )

j,τ , yielding

Z =
∏

i

Z1d,i =
∏

i


 ∑

{si,τ,ζ}

Nt∏

τ=1

(
T (MF )
i,τ

)N−1


 , (D.18)

where the partition function Z decouples into N 1d classical Ising models in the temporal
direction for spins living on every spatial site, Z1d,i =

∑
{sτ,ζ} e

−H1d . We note that, after the
Trotterization, N − 1 transfer matrices Tij,τ act on site i.

Before we derive the mean-field solution, we can first simplify the classical model. Each
Trotterized time step eδthij can only change the order parameter by at-most O(δt/N), where
the factor 1/N from the coupling Jij ∼ 1/N . Hence, Φτ,ζ which measures the correlation in
two consecutive Trotterized steps is given by Φτ,ζ = 1 +O(δt/N). We can therefore, to the
leading order, replace Φτ,ζ by unity. Moreover, we drop ζ dependence in Ψτ,ζ because Ψτ,ζ is
slowly varying within each time step, i.e. we approximate Ψτ,ζ ≈ Ψτ in δt, where Ψτ is the
average Ψτ,ζ over Trotterized steps ζ.

After the simplification, the 1d classical Hamiltonian takes the form

H1d =
Nt∑

τ=1

N−1∑

κ=1

−J̃τsτ,κsτ,κ+1 − h̃τsτ,κ, (D.19)

where sτ,κ are spins inserted before and after N − 1 transfer matrices T (MF )
i,τ labeled by κ,

and sτ,N ≡ sτ+1,1. The couplings in the 1d Ising model to the leading order in 1/N are given
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by

J̃τ = − log h

2
, (D.20)

h̃τ = JzzΨτ . (D.21)

We determine the critical point and critical exponents by numerically solving the self-
consistency equations

Ψτ =
1

Z1d

∑

{sτ}

sτe
−H1d . (D.22)

The global magnetization Ψ as a function of time is plotted in Fig. D.1(a). We obtain a
critical time tc = 1.96. Near the critical time, Ψ ∼ (t− tc)

β with the order parameter critical
exponent β = 0.49±0.04. We determine the other critical exponent by considering the scaling
of the order parameter as a function of external magnetic field hz at the critical time, i.e.
hz ∼ Ψδ. The external magnetic field introduces an additional term to the 1d Hamiltonian
[Eq. (D.19)]

Hm(hz) =
Nt∑

τ=1

N−1∑

κ=1

− hzδt

N − 1
sτ,κ. (D.23)

Now solving the self-consistency equations in the presence of hz yields δ = 3.1 ± 0.1 as
shown in Fig. D.1(b). Using the scaling relations in 1d, we have ν = β(δ + 1) = 2.0 ± 0.2.
The numerically extracted critical exponents agree with the standard mean-field exponents
β = 1/2, δ = 3, and ν = 2.

D.4 Details of finite-time transition in 1d long-range

circuits

The effective quantum Hamiltonian predicts ordering phase transitions for α < 2 [221, 79,
249, 13], a Kosterlitz-Thouless (KT) like phase transition at α = 2 [150, 57, 30, 31, 126, 173],
and the absence of a phase transition for α > 2. In this section, we present details concerning
our numerical evidence for these qualitative predictions, as well as on our estimation of the
critical exponents shown in Fig. 2(c) of the main text.

Phase transitions for α < 2

Based on the mapping of the conditional entropy to the order parameter correlation function in
the effective spin model, we can derive a finite-size scaling formula. Assuming the second-order
phase transition, the order parameter ⟨σz⟩ would vanish as ⟨σz⟩ ∼ (t− tc)β close to the critical
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Figure D.2: (Top row) Finite time teleportation transition in 1d long-range circuits with
α = 1.0, 1.5, 1.625, 1.875 (from left to right) for various system sizes N from 32 to 512
indicated by increasing opacity. (Bottom row) Finite-size scaling collapse using Eq. (3) in
the main text. The numerically extracted critical exponents are presented in Fig. 2(c) in the
main text. The x-axis represents (t− tc)N

1/ν . The results were averaged over 1.5 · 104 circuit
realizations (as for α = 0.0, 1.75 in the main text).

point in the ordered phase (t > tc). Here, we use β to denote the order parameter critical
exponent. Accordingly, the conditional entropy decays as SB|M ∼ ⟨σz

B(t)σz
A(0)⟩ ∼ (t− tc)

2β.
In numerical simulation, the singularity at t = tc is smeared out due to the finite size effect.
Specifically, we have SB|M = (t− tc)

2βf(N/ξ), where f(N/ξ) is a universal function that only
depends on the ratio between the system size N and the correlation length ξ. Knowing that
the correlation length diverges as ξ ∼ (t− tc)

−ν , we can obtain the scaling formula in Eq. (3)
of the main text, which we recast here

SB|M = N−2β/νF((t− tc)N
1/ν). (D.24)

Figure D.2 shows the numerical results for SB|M(t, N) (top row) and associated finite-
size scaling (FSS) collapse (bottom row) for α = 1.0, 1.5, 1.625, 1.875 (analogous plots for
α = 0.0, 1.75 are in the main text). The analysis yields the critical exponents ν and β,
and the critical time tc. Specifically, we optimize the least-squared error (LSE) of the fit
of SB|M(t, N) as a function of β, ν, and tc. We weight errors in the collapse according to
a Gaussian distribution centered near the critical time with standard deviation 40 for the
parameter (t − tc)L

1/ν . The critical exponents are close to their mean-field values below



APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 5 222

α = 1.5 and vary continuously when 1.5 < α < 2, which is consistent with the prediction
from the effective Hamiltonian. We note that the effective Hamiltonian also predicts the
divergence of ν as ν = 1/(2 − α) [150]. To confidently examine this behavior requires a more
accurate scheme to extract ν, which is left for future work.

To obtain estimates and errors for our FSS analysis, we employ a standard bootstrap
scheme: (1) 15000 circuit realizations are simulated for N ∈ {32, 64, 128, 256, 512}, from
which we obtain samples of SB|M(t, N); (2) we select 7500 random sub-samples which we
average to estimate SB|M(t, N); (3) we perform 3-parameter curve-fitting to extract samples
ν, β and tc; (4) steps (2-3) are repeated 1000 times to obtain distributions for ν, β and tc.
We report the mean of the distribution as our estimate and all error bars reflect one standard
deviation from the mean. This procedure is used for all FSS analysis except α = 2.0, which
requires special attention due to the expected failure of scaling form Eq. (3) (see discussion
below).

We note that the saturation value of SB|M at a long time to 0.4 is universal for the Clifford
simulation. After projective measurements on M , the unmeasured qubit A and B are in the
projective ensemble defined by measurement results and circuits realizations [70, 64]. In the
projective ensemble of deep Clifford circuits, A and B are entangled by a two-qubit random
Clifford gate with an average entropy 0.4, which can be shown analytically.

Kosterlitz-Thouless like transition at α = 2

The effective quantum Hamiltonian for the 1d long-range random circuit at α = 2 is given by

Heff =
∑

i,j

J

|i− j|2
[
−2

5
σz
i σ

z
j −

1

10
σy
i σ

y
j −

1

5
(σx

i + σx
j )

]
. (D.25)

At finite temperature, the model is in the same universality as the 1d classical Ising model
with inverse square interaction, which exhibits a finite-temperature Kosterlitz-Thouless phase
transition [150, 57, 30, 31, 126, 173].

According to the mapping discussed above, the conditional entropy is related to the
order parameter correlation function, i.e. SB|M ≃ ⟨σz

B(t)σz
A(0)⟩. Near the critical point,

the correlation function ⟨σz
B(t)σz

A(0)⟩ is of the same asymptotic form as the correlation
G(r) := ⟨s(r)s(0)⟩ in the 1d classical Ising model, where r is the distance between qubits A
and B. Using the renormalization group method developed in Ref. [277], the scaling form of
G(r) has been derived [30]. In the ordered phase close to the critical point, G(r) exhibits a
subleading power-law decay

G(r) = s̄2

(
1 +

4
√

|(T − Tc)/Tc|
r4
√

|(T−Tc)/Tc|

)
, (T < Tc). (D.26)

At the critical point, the scaling changes to

G(r) = s̄2e1/ ln r, (T = Tc). (D.27)
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(a) (b) (c)

Figure D.3: Finite-time teleportation transition in 1d long-range circuits with α = 2. (a)
Conditional entropy SB|M as a function of time t for various system sizes N from 32 to
512 indicated by increasing opacity. The results are averaged over 15000 random circuit
realizations. (b) SB|M as a function of N for various time t given in the legend. Dash-dotted
line indicates the best fit of critical scaling form SB|M (tc, N) = A exp[1/(logN + b)] for a KT-
like transition. (c) LSE (obtained fitting SB|M to the critical scaling form A exp[1/(logN + b)])
divided by the variance σ2. Error bars on this figure of merit (FOM) are obtained from 1000
“synthetic” simulations where noise is added to SB|M (t, N) according to the observed noise in
the true simulation. The critical time tc = 4.95 ± 0.12 is determined by the minimum of the
FOM (error obtained from the same synthetic simulations).

In the numerical simulation, we obtain SB|M as a function of t for various system sizes N .
We fix the distance between A and B to be N/2. Hence, at the critical point, SB|M exhibits
the finite-size scaling

SB|M(tc, N) = A exp

[
1

lnN + b

]
. (D.28)

To determine the critical point, we fit SB|M (t, N) as a function of N for each t to the critical
scaling form. The LSE divided by the total variance is plotted in Fig. D.3(c) as a function
of time. We determine the critical time tc = 4.95 ± 0.12 according to the minimum of the
LSE/variance curve – this is the time at which the most variance in the raw data is explained
by the critical scaling function. The excellent agreement between the critical scaling function
and the numerical data is shown in Fig. D.3(b), where the dashed-dotted line denotes the
expected critical behavior.

Absence of phase transition for α > 2

The effective Hamiltonian does not exhibit finite temperature phase transition for α > 2. As
an example, in the circuit with α = 3, we compute the conditional entropy as a function of t
for various system sizes (see Fig. D.4). Notably, the SB|M curves do not exhibit a crossing
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Figure D.4: Absence of finite-time teleportation transition in 1d long-range circuits with
α = 3.0. SB|M is plotted as a function of t for various system sizes N from 32 to 512. The
numerical results are averaged over 3.0 · 104 random circuit realizations.

with varying system sizes, indicating the lack of a finite-time singularity in the thermodynamic
limit.
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Appendix E

Supplementary material for Chapter 6

E.1 Phase transition in Toric code subject to

incoherent errors

In this section, we provide details of the phase transition in the Toric code subject to bit-flip
errors. In Sec. E.1, we show that the anyon condensation transition in the EFD is exactly
solvable. It occurs at p

(2)
c = 0.178 and is of the 2D classical Ising universality. In Sec. E.1, we

compute the topological entanglement entropy in the EFD state and show it sharply changes
from 2 log 2 to log 2 at the condensation transition.

Critical point

As mentioned in the main text, the bit-flip errors in the Toric code can induce a condensation
of mm̄-anyon in the EFD at a finite error threshold. The transition is exactly solvable and of
2D classical Ising universality. Here, we provide details on exactly solving the transition.

To start, we consider the EFD state describing the Toric code subject to bit-flip (Pauli-X)
errors

|ρ⟩⟩ =
∏

l

((1 − p) + pXl ⊗Xl) |Ψ0⟩ ⊗ |Ψ∗
0⟩ ∝ eµ

∑
i Xl⊗Xl |Ψ0⟩ ⊗ |Ψ∗

0⟩ , (E.1)

where p is the bit-flip error rate, µ = tanh−1[p/(1−p)], l labels the edges in the square lattice,
and |Ψ0⟩ is one of the Toric code ground states specified below.

We work in a loop picture of the Toric code ground state

|Ψ0⟩ ∝
∏

p

1 +Bp

2
|+⟩ ∝

∑

{g}

|g⟩ , (E.2)

where p in the subscript labels the plaquette, |+⟩ :=
∏

i |+⟩i is a product state with each
qubit initialized in the +1 eigenstate of Pauli-X operator, i.e. Xi |+⟩ = |+⟩. A product of
Bp gives gz, which is a product of the Pauli-Z operators along a closed loop. When acting
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on |+⟩, gz flips qubits into −1 eigenstates of Xi along a loop g and leads to a product state
|g⟩ := gz |+⟩. This allows writing the ground state in terms of closed loops g, represented by
binary variables.

The EFD can be written in the loop picture accordingly. Before applying the error channel,
the double ground state is expressed as

|ρ0⟩⟩ = |Ψ0⟩ ⊗ |Ψ∗
0⟩ =

1√
Z(0)

∑

g,ḡ

|g, ḡ⟩⟩, (E.3)

where |g, ḡ⟩⟩ := (gz ⊗ ḡz) |+⟩ ⊗ |+⟩, g and ḡ label two independent loop configurations in the
ket and bra copy, respectively. The error channel assigns a weight in the summation of loops
and leads to

|ρ⟩⟩ =
1√
Z(µ)

∑

g,ḡ

e−2µ|g+ḡ||g, ḡ⟩⟩, (E.4)

where g + ḡ is a binary sum and represents the relative loop configuration, Z(µ) is the
normalization factor, and µ can be interpreted as the loop tension. We note that only the
relative loop h := g + ḡ acquires a loop tension. Hence, it is more convenient to rewrite the
EFD as

|ρ⟩⟩ =
1√
Z(µ)

∑

g,h

e−2µ|h||g, h⟩⟩. (E.5)

The anyon condensation transition is detected by the open string operator

⟨⟨Wmm(P)⟩⟩ =
⟨⟨ρ|wm(P) ⊗ wm(P)|ρ⟩⟩

⟨⟨ρ|ρ⟩⟩ =
1

Z(µ)

∑

g,h

(−1)#crossing(P,h)e−4µ|h|, (E.6)

where #crossing(P , h) counts the number of crossings between the open string P and loop
h. In this expression, the open string ⟨⟨Wmm(P)⟩⟩ can be interpreted as an observable in a
statistical mechanical model of loops. The normalization factor Z(µ) is the partition function
Z(µ) = Ω(0)Ω(µ), where the partition function Ω(0) of g loops is a constant independent
of µ, and the partition function of h loop, Ω(µ) =

∑
h e

−H(µ), has an effective Hamiltonian
H(µ) = 4µ|h|.

We can identify the loop configuration h with domain walls in a spin model with Ising
degrees of freedom living on the plaquettes, i.e.

σi

σjhl
, hl =

1 − σiσj
2

. (E.7)

Then, the loop model reduces to the square lattice Ising model up to a constant

H =
∑

⟨i,j⟩

−2µσiσj. (E.8)
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Thus, the condensation transition in the EFD is of the 2D classical Ising universality class.
The critical point is exactly solvable and determined by the Kramers-Wannier duality,
µc = (1/4) log

(
1 +

√
2
)
, i.e. p

(2)
c = 0.178. We remark that this critical point is associated

with the partition function Z(µ) = tr ρ2 and indicates the singularity in the second moment
of ρ.

Topological entanglement entropy

Another diagnostic of the anyon condensation is the topological entanglement entropy (TEE)
of the EFD state. In the case of the Toric code subject to incoherent errors, the EFD state
can be written as the ground state of a gapped local Hamiltonian. One can therefore use
TEE to detect the transition. In this subsection, we first construct the parent Hamiltonian of
the EFD. We then compute the Rényi-n entropy of the EFD and show that the subleading
topological term undergoes a transition from 2 log 2 to log 2 upon the condensation of mm̄
regardless of the Rényi order n. This indicates a singularity also in the topological term of
von Neumann entropy (n → 1). We remark that, in a related problem of the Toric code
undergoing imaginary time evolution, the TEE changes sharply from log 2 to zero across the
phase transition as shown in Ref. [58].

The EFD describing the Toric code subject to bit-flip errors is the ground state of a local
parent Hamiltonian 1

H̃ = V −1H0V V H0V
−1, (E.9)

where V = eµ
∑

i Xi⊗Xi , and H0 is a projector Hamiltonian given by

H0 =
∑

s

1 − As ⊗ I
2

+
1 − I⊗ As

2
+
∑

p

1 −Bp ⊗ I
2

+
1 − I⊗Bp

2
. (E.10)

Here, the eigenvalue of H̃ is non-negative. One can show |ρ⟩⟩ is a zero eigenstate of H̃
and therefore is the ground state. It is then legitimate to use the TEE to characterize the
topological order in the EFD. The TEE sharply changes when the gap of H̃ closes.

We now compute the TEE in the EFD and show it undergoes a transition when tuning
the error rate. First, we show the TEE takes distinct values in two limits, the error rate
p = 0 and p = 1/2. To gain an understanding away from these two limits, we then consider
the Rényi-n entropy and map it to the free energy cost of spin pinning in a classical spin
model. We show its subleading term undergoes a transition at the critical point and take
the analytic limit n→ 1 to extract the behavior of the TEE. We remark that, as far as the
entanglement entropy of a finite disk is concerned, the boundary condition of the total system
is not important and will not be specified explicitly throughout the entire calculation.

In the limits p = 0, 1/2, the EFD state is a stabilizer state, and the TEE can be easily
determined. In the absence of errors, the EFD contains two copies of decoupled Toric code

1We thank Meng Cheng for pointing this out to us.
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states and exhibits a TEE γ = 2 log 2. In the case of p = 1/2, the tension µ→ ∞ imposes
the stabilizers Xi ⊗Xi in the EFD. The resulting EFD is the mutual eigenstate of stabilizers

{As ⊗ I, I⊗ As, Xi ⊗Xi, Bp ⊗Bp}.

For a simply connected region A, its entanglement entropy is given by

SA/ log 2 = 2|A| − #stabilizer(supp(s) ∈ A) (E.11)

where 2|A| counts the total number of degrees of freedom in regionA, and #stabilizer(supp(s) ∈
A) is the number of stabilizers whose support is completely in A. One can show SA =
(|∂A| − 1) log 2, and the TEE γ = log 2. The distinct values of TEE in two limits indicate its
potential singularity as a function of error rate.

To understand the TEE away from two limits, we consider the Rényi-n entropies of a
simply connected region A and develop a classical spin model description. The first step is
to write down the reduced density matrix. Here, we separate the loop configuration g (h)
into two parts gA and gĀ (hA and hĀ), which support on region A and its complement Ā,
respectively. To form a closed loop configuration, two parts must agree on the boundary of
A, i.e., ∂gA = ∂gĀ = b, and ∂hA = ∂hĀ = c.

gA

gĀ

The reduced density matrix can be written as

ϱA(µ) = TrĀ |ρ(µ)⟩⟩⟨⟨ρ(µ)|

=
1

Z(µ)

∑

b,c

∑

gA,g̃A,
∂gA=∂g̃A=b

∑

hA,h̃A,

∂hA=∂h̃A=c

ΩĀ(0; b)ΩĀ(µ; c)e−2µ|hA|−2µ|h̃A||gA, hA⟩⟩⟨⟨g̃A, h̃A|,

(E.12)

where ΩĀ(0; b) and ΩĀ(µ; c) are the partition function of g and h loops in region Ā with a
given boundary condition b and c, respectively,

ΩĀ(µ; c) =
∑

hĀ, ∂hĀ=c

e−4µ|hĀ|. (E.13)

The normalization factor Z(µ) = Ω(0)Ω(µ) can be written accordingly as

Ω(µ) =
∑

c

ΩA(µ; c)ΩĀ(µ; c). (E.14)
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Next, we write down the n-th moment of the reduced density matrix

Tr ϱnA(µ) = ΓA(0)ΓA(µ), (E.15)

where ΓA(0) and ΓA(µ) are associated with g and h loops, respectively, and

ΓA(µ) =
1

Ωn(µ)

∑

c

Ωn
A(µ; c)Ωn

Ā(µ; c). (E.16)

Equation (E.16) can be viewed as a ratio between two partition functions. The denominator
represents the partition function of n copies of loop models, while the loop model in the
numerator is further subject to the constraint that loops in different copies have the same
boundary condition c.

The Rényi entropy therefore can also be interpreted as the excess free energy related to
the above constraint

S
(n)
A =

1

1 − n
log Tr ϱnA(µ) =

1

n− 1

(
F

(n)
A (0) − nF0(0)

)
+

1

n− 1

(
F

(n)
A (µ) − nF0(µ)

)
(E.17)

where F0(µ) = − log Ω(µ) is the free energy of the loop model with tension µ, F
(n)
A (µ) =

− log
∑

c Ωn
A(µ; c)Ωn

Ā
(µ; c) is the free energy of n copies of the loop model subject to the

constraint.
The scaling of the excess free energy is easier to analyze when formulating the loop model

in terms of Ising spins. We again identify the loop configuration with Ising domain walls

g
(s)
l =

1 − σ
(s)
i σ

(s)
j

2
, h

(s)
l =

1 − σ
′(s)
i σ

′(s)
j

2
, s = 1, 2, · · · , n (E.18)

Furthermore, we redefine the Ising variables

σ
(s)
i := σ

(1)
i τ

(s−1)
i , σ

′(s)
i := σ

′(1)
i τ

′(s−1)
i , s = 2, 3, · · · , n. (E.19)

The constraints on the loop configurations require n copies of the Ising spins, σ(s) and σ′(s),
on the boundary of the region A having the same domain wall configurations. Thus, they
require the relative Ising spin τ

(s)
i and τ

′(s)
i having no domain wall on the boundary of A,

i.e. pointing in the same direction. There are (n− 1) such constraints in F
(n)
A (µ), therefore

F
(n)
A (µ) = nF0(µ)+(n−1)∆F (µ), where ∆F is the excess free energy for aligning one copy of

the τ spins on the boundary of A. Correspondingly, the Rényi entropy S
(n)
A = ∆F (0)+∆F (µ).

The excess free energy has two contributions. The energetic part is always proportional
to |∂A|. The entropic part counts the loss of degrees of freedom due to spin aligning. In the
ferromagnetic phase, the spins can fluctuate below the scale of correlation length ξ. Thus,
∆F ∝ |∂A|/ξ exhibits a strict area-law scaling. In the paramagnetic phase, the spins can
both fluctuate freely above the scale of correlation length ξ. At the leading order, the free
energy cost is proportional to |∂A|. However, the aligned spin can fluctuate globally giving
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rise to a subleading correction, i.e. ∆F = a|∂A| − log 2. Thus, the subleading term sharply
changes at the ferromagnetic transition.

The above analysis indicates the Rényi entropy exhibits an area-law scaling S
(n)
A =

a|∂A| − γ(n), and the topological term γ(n) distinguishes two phases of the effective spin
model. When µ < µc, both spin models for σ and σ′ are in the paramagnetic phase, giving
rise to γ(n) = 2 log 2. When µ > µc, the spin model for σ′ (i.e. the loop model for h) is in the
ferrmagnetic phase, reducing γ(n) to log 2. The result holds for an arbitrary Rényi order n
and also in the replica limit n→ 1. Hence, the TEE of the EFD state sharply changes from
2 log 2 to log 2 when mm̄ condenses at p

(2)
c .

We make an important remark that the effective model for the Rényi-n entropy of the
EFD is merely n decoupled loop models. The partition function Zn(µ) = (tr ρ2)n. Therefore,

the transition occurs at the same critical threshold p
(2)
c regardless of n. This is fundamentally

different from the transition in the n-th moment tr ρn of the corrupted density matrix, which
occurs at a different critical threshold p

(n)
c .

The Toric code state subject to Pauli-Y and Z errors can be similarly analyzed. These
errors can induce a condensation of ff̄ and eē in the EFD at the same critical threshold
p
(2)
c . We also note that, anyon bound states αᾱ and ββ̄ are mutual bosons and therefore can

condense independently. When two types of anyons are condensed, e.g. eē and mm̄, the rest
one ff̄ is also condensed as e ×m = f . The resulting EFD no longer contains condensed
loop objects and will exhibit a vanishing TEE.

E.2 Mapping decoherence-induced phases to boundary

anyon condensates

In this section, we map the decoherence-induced phases in the EFD to the boundary phases
of a topologically ordered system. In Sec. E.2, we start with the path integral formulation of
the EFD state. In Sec. E.2, we map the decoherence-induced phases to the boundary phases
of topologically ordered systems. In particular, we establish the classification scheme for the
possible phases in abelian topological order subject to incoherent errors. In Sec. E.2, we
carry out the classification in three examples, the Toric code, double semion, and ν = 1/3
Laughlin state with incoherent errors. The results are summarized in Table I of the main
text. Section E.2 generalizes the field theory description for the second moment to the
n-th moment tr ρn. We remark that, for abelian topological order with incoherent errors,
the number of possible phases is independent of n. The possible phases in the EFD have
one-to-one correspondence to that in the replica limit n→ 1.

Path integral formulation of the EFD

Here, we develop a path integral formulation of the EFD |ρ⟩⟩. The double ground state
|Ψ0⟩ ⊗ |Ψ∗

0⟩ in the EFD can be prepared using an infinite imaginary time evolution from an
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arbitrary state, which is equivalently a Euclidean path integral in spacetime region τ < 0.
The wavefunction component at τ = 0 can be formally written as

Zτ<0[φ, φ̄] :=
(
⟨φ| ⊗ ⟨φ̄|

)(
|Ψ0⟩ ⊗ |Ψ∗

0⟩
)

=

∫

(φ′,φ̄′)|τ=0−=(φ,φ̄)

D(φ′, φ̄′)e−S(φ′)−S∗(φ̄′)
, (E.20)

where φ and φ̄ are the dynamical variables in the ket and bra Hilbert space, the path integral
is defined in the past spacetime region τ < 0, S(φ′) and S∗(φ̄′) are a pair of conjugate
Euclidean actions that yield the ground states |Ψ0⟩ and |Ψ∗

0⟩, respectively. The EFD |ρ⟩⟩ is
then obtained by turning on the error channel which couples the field φ and φ̄ at τ = 0 time
slice locally [illustrated in Fig. 1(b) of the main text].

The norm ⟨⟨ρ|ρ⟩⟩ is accordingly written as a Euclidean path integral in the entire spacetime,
i.e. two path integrals in the future (τ > 0) and past (τ < 0) glued at τ = 0:

⟨⟨ρ|ρ⟩⟩ =

∫
D(φp, φ̄p, φf , φ̄f )Zτ>0[φf , φ̄f ]Zτ<0[φp, φ̄p]e

−Sint(φf ,φ̄f ,φp,φ̄p), (E.21)

where φf(p) and φ̄f(p) denote the future (past) field variables at the time slice τ = 0+ (τ = 0−).
The future and past fields are coupled by the error channel, and the coupling is formally
written as

e−Sint(φf ,φ̄f ,φp,φ̄p) = ⟨⟨φf , φ̄f |N †N|φp, φ̄p⟩⟩ .
In the absence of errors, N = I and e−Sint = δφp,φf

δφ̄p,φ̄f
becomes a constraint. We further

remark that individual Kraus operators and N are generally non-Hermitian. However, Sint

only contains terms determined by the Hermitian combination N †N , which guarantees ⟨⟨ρ|ρ⟩⟩
being a real number.

Mapping to (1+1)D boundary phases

In this subsection, we take advantage of the path-integral formulation and work with the
topological quantum field theory (TQFT) describing the long-distance physics of topological
orders. The invariance of TQFT under the π/2 spacetime rotation allows mapping decoherence-
induced phases in the EFD to (1 + 1)D quantum phases on the edge of topologically ordered
systems. Here, we consider specifically the abelian topological order described by the Chern-
Simons (CS) theory. In the case of incoherent errors, we carry out a classification of the
possible decoherence-induced phases using the effective theory on the edge. We demonstrate
our general ideas with two concrete examples, the Toric code and double semion, and find five
phases in each model. The possible phases in the case of coherent errors are also commented.

We consider the EFD for the Abelian topologically ordered ground state subject to
incoherent errors. The ground state |Ψ0⟩ is described by a U(1)M Chern-Simons theory with
the following Lagrangian

LCS[a] =
1

4π

M∑

I,J=1

KIJ a
I ∧ daJ + · · · , (E.22)
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where K is a symmetric M ×M integer matrix and aI=1,2,...,M are the U(1) gauge fields, the
ellipsis denotes parts that involve matter fields [218, 268, 92, 267]. Matter fields are gapped
and do not enter the dynamics at long distances, yet, they are necessary in giving rise to the
anyonic excitations. Accordingly, |Ψ∗

0⟩ carries the conjugate topological order and is described
by the same Lagrangian except that the K-matrix has an additional minus sign. To better
distinguish them, we use āI=1,2,...,M to denote the gauge fields for |Ψ∗

0⟩. We can combine these
two parts and write the path integral Zτ<0 or Zτ>0 in terms of the following Lagrangian

LCS[a] =
1

4π

2M∑

I,J=1

KIJ a
I ∧ daJ + · · · , (E.23)

where K = K ⊕ (−K), and a = [a, ā]T is a 2M component vector of the gauge fields in the
Hilbert space H⊗H.

Studying the decoherence-induced phases and the potential phase transitions in the EFD
in the current form is not convenient. On one hand, in general, anyonic excitations created
by local errors explicitly involve matter fields and are complicated to analyze. On the other
hand, the transition, which happens at the temporal interface, is different from a ground
state problem and largely unexplored.

These technical difficulties necessitate our following trick. We perform a spacetime rotation
to exchange the imaginary time τ and the spatial coordinate x [Fig. 1(c) of the main text],
i.e.,

τ → −x , x→ τ , y → y , (E.24)

where x, y denote the spatial coordinates. The rotation turns the temporal interface at τ = 0
into a spatial one at x = 0. The original path integral (E.21) can be formally rewritten as

⟨⟨ρ|ρ⟩⟩ =

∫
D(φL, φ̄L, φR, φ̄R)Zx>0[φR, φ̄R]Zx<0[φL, φ̄L]e−S̃int(φR,φ̄R,φL,φ̄L) ,

where Zx<0, obtained by rotating Zτ<0, is the path integral on the left side of the spatial
interface x = 0−, and (φL, φ̄L) specify the value of the fields at the spatial interface. The
meaning of Zx>0 and (φR, φ̄R) is similar. S̃int describes the coupling between the two half
systems at the spatial interface and generally takes a different form from the original one Sint.

After the rotation, the path integral is translationally invariant in the new time direction
and describes the norm of a (2 + 1)D ground state [Fig. 1(c) of the main text]. In the rotated
picture, the decoherence-induced phases correspond to the (1 + 1)D phases on the 1D defect
at x = 0.

The Lagrangian that describes the 1D defect has three contributions

L = L0 + L1 + LN , (E.25)

where L0 describes the low energy edge excitations for the (2 + 1)D theory in the region
x > 0 and x < 0. The interaction on the defect is derived from S̃int and contains two parts.
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The first part originates from the definition of path integral and couples degrees of freedom
on the left and the right given by L1, which is present even in the absence of a quantum
channel. The second part LN is introduced by the quantum channel. In what follows, we
explicitly write down the three terms in the Lagrangian and analyze the possible phases.

We start with the low energy edge theory L0 for the CS theory in the bulk. We consider
how the path integral for the past Zτ<0 changes under the rotation:

• Originally, Zτ<0[φp, φ̄p] describes the path integral that prepares the ground state of
a system on a whole plane, where φp, φ̄p specifies the component of the wavefunction.
Note that φp and φ̄p includes both the CS gauge fields and the matter fields, and thus
they are complicated to deal with.

• The spacetime rotation transforms it into Zx>0[φR, φ̄R], a path integral defined on the
half-space but the entire time domain, and φR, φ̄R specifies the boundary value of the
fields. The bulk part of the path integral contains the same CS action as that before the
rotation and the part involving matter fields. The boundary has a simple description in
terms of compact bosons, which is the main reason why the rotation trick can be useful.

• From now on, we will replace φR and φ̄R by the compact boson fields ϕR, ϕ̄R, which
correspond to the bulk gauge fields a, ā. Then, the low-energy dynamics of the boundary
of the CS theory is governed by the following effective Lagrangian

LR[ΦR] =
1

4π

2M∑

I,J=1

−KIJ i∂τΦI
R∂yΦ

J
R − VIJ∂yΦ

I
R∂yΦ

J
R, (E.26)

where ΦR := [ϕR, ϕ̄R], K is the same K-matrix as the one for the bulk CS action, and
V is a positive semi-definition matrix that determines the velocity of the boson fields.
The path integral with fixed boundary values of the boson fields is then determined by
LR[ΦR] classically:

Zx<0[ΦR] = exp

(
−
∫

dτdyLR[ΦR]

)
. (E.27)

The transformation of the path integral for the future Zτ>0 can be analyzed similarly. The
result is related to what we have obtained above by a spatial reflection

LL[ΦL] =
1

4π

2M∑

I,J=1

KIJ i∂τΦI
L∂yΦ

J
L − VIJ∂yΦ

I
L∂yΦ

J
L,

where ΦL := [ϕL, ϕ̄L], and the minus sign in front of the K-matrix comes from the spatial
reflection. The path integral Zx>0[ΦL] can also be determined classically

Zx>0[ΦL] = exp

(
−
∫

dτdyLL[ΦL]

)
. (E.28)
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We combine the low-energy excitations from the left and the right and obtain the
Lagrangian describing the edge of the quadruple topological order

L0[ϕ] =
1

4π

∑

I,J

K(2)
IJ i∂τϕ

I∂yϕ
J − V(2)

IJ ∂yϕ
I∂yϕ

J , (E.29)

where the 4M × 4M K-matrix K(2) = K ⊕ K, velocity matrix V(2) = V ⊕ V, and ϕ :=
[ϕ̄R, ϕR, ϕL, ϕ̄L].

Next, we discuss the interaction in the effective theory. The first part L1 is associated with
the definition of path integral and couples ϕL to ϕR and ϕ̄L to ϕ̄R. It leads to a gapped phase
of the defect in the absence of errors. The second part LN is introduced by the error channel.
It couples the bosonic fields from the same copy of the density matrix (or equivalently EFD),
namely ϕs to ϕ̄s for s = L,R.

To explicitly write down the interaction in terms of the compact bosons, we first list the
excitations in the effective theory L0. The excitations are labeled by integer vectors lα and
are created by eil

T
α ·ϕ. They have anyonic statistics, and the braiding of two anyons lα and lβ

yields a phase
θαβ = 2πlTα(K(2))−1lβ. (E.30)

We remark that, in general, a single anyon cannot be created using a local operator. Instead,
a pair of anyon α and its antiparticle α′ can be created using a local operator, which is
described by ΨΛ := ei(K

(2)Λ)T ·ϕ with Λ being an integer vector. Such excitation has trivial
braiding with other excitations, i.e. θα,K(2)Λ = 0 mod 2π,∀α.

Furthermore, the form of the interaction is limited by the global G(2) = Z2×ZH
2 symmetry

of 1D defect. The first Z2 is an anti-unitary symmetry generated by the hermitian conjugation
in the double Hilbert space. The path integral represents the norm of the EFD, which is a
real number. Thus, the effective theory is invariant under the transformation

ϕI
L ↔ ϕI

R, ϕ̄I
L ↔ ϕ̄I

R. (E.31)

In addition, the EFD represents the density matrix, which is hermitian in the original Hilbert
space. Thus, edge theory exhibits another anti-unitary ZH

2 symmetry due to the hermiticity
of the density matrix, which acts as

ϕI
s ↔ ϕ̄I

s, s = L,R. (E.32)

We remark that the K-matrix K(2) flips the sign under the anti-unitary symmetry, however,
the Lagrangian L0 is invariant as the minus sign cancels that from the imaginary identity.

We are now ready to explicitly write down the interaction in terms of edge excitations. The
first part L1 from the definition of path integral can be written in terms of the back-scattering
between the left and the right fields. It is generally given by a hopping term between the left
and the right

∑

Λ

BΛ(y)eiθ(y)

2

(
Ψ†

L,ΛΨR,Λ + Ψ̄†
R,ΛΨ̄L,Λ

)
+ h.c., (E.33)
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where ΨL,Λ := ei(KΛ)TϕL , ΨR,Λ := e−i(KΛ)TϕR , Ψ̄L,Λ := ei(−KΛ)T ϕ̄L , and Ψ̄R,Λ := ei(KΛ)T ϕ̄R are
local operators on the edge, Λ is a M -component integer vector, the real coefficient BΛ and
phase factor θ have spatial dependence in general. In terms of the compact boson fields, the
back-scattering takes the form

L1 =
∑

Λ

BΛ

[
cos
( M∑

I=1

(KΛ)I(ϕ
I
L + ϕI

R) + θ
)

+ cos
( M∑

I=1

(KΛ)I(ϕ̄
I
L + ϕ̄I

R) + θ
)]
. (E.34)

We remark that the coefficients for two cosine terms are forced to the same real number
due to the global symmetry G(2). With large coefficients, such cosine terms tend to pin the
bosonic fields ϕ + ϕ̄ and lead to a gapped phase of the defect without any error channel.
These interaction terms only create anyon bound states on the left and the right in the form
αLα

′
R = eil

T ·(ϕL+ϕR) and ᾱLᾱ
′
R = e−ilT ·(ϕ̄L+ϕ̄R).

The second part LN of the interaction is introduced by the quantum channel and couples
the fields from the same copy of the density matrix. For incoherent error channels, before the
rotation, only anyon bound states αᾱ are created in the EFD. In the rotated picture, the
quantum channel creates excitations αsᾱs = eil

T ·(ϕs−ϕ̄s). At the 1D defect, it corresponds to
the cosine term

LN =
∑

Λ

CΛ

∑

s=L,R

cos

(
M∑

I=1

(KΛ)I(ϕ
I
s − ϕ̄I

s)

)
, (E.35)

where CΛ is a real coefficient with spatial dependence. We remark that the coefficient of the
different cosine terms for s = L,R are the same due to the Z2 symmetry.

The possible phases of the defect are classified by the inequivalent ways of gapping out L0

in Eq. (E.29) by condensing bosonic excitations. For abelian topological order, the bosonic
objects form a group, dubbed the Lagrangian subgroup M [158, 20]. Thus, the phases of
abelian topological order subject to incoherent errors are classfied by the subgroup M that
satisfying the following criteria:

1. eiθmm′ = 1,∀m,m′ ∈ M;

2. ∀l /∈ M, ∃m s.t. eiθml ̸= 1;

3. ∀m ∈ M, gmg−1 ∈ M, ∀g ∈ G(2);

4. (Incoherent error) [1,1,−1,−1]T ·m = 0 mod K(2)Λ,∀m ∈ M,

where Λ is a 4M -component integer vector, 1 is an M -component vector with each element
being unity. Here, the third criterion originates from the symmetry constraints, i.e. the
excitations related by symmetry transformations must condense simultaneously. The last
criterion is due to incoherent errors. The interaction on the edge only creates anyon bound
states αLᾱL, αRᾱR, αLα

′
R, ᾱLᾱ

′
R and their fusion results. Therefore, the condensed objects

satisfy the last criterion.
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In the case of coherent errors, the phases are still classified by the Lagrangian subgroup.
However, since the Kraus operators can, for example, create anyon excitation α and ᾱ in a
single copy, the condensed objects need not to satisfy the last criterion. Correspondingly,
in the Lagrangian, the coherent errors can introduce the cosine terms, cos

(
(KΛ)T · ϕs

)
and

cos
(
(KΛ)T · ϕ̄s

)
, which solely depends on the compact boson in an individual copy of the

topological order. This can possibly lead to additional decoherence-induced phases.
Each edge condensate corresponds to a distinct phase of the EFD, and its condensed

objects also determine the capability of encoding information in the error-corrupted state. In
the main text, we mention that the logical operator Wαᾱ(ℓ) can no longer encode quantum
information in the condensate of anyon bound state αᾱ in the EFD, which is equivalent to
condensing αsᾱs with s = L,R in the (1+1)D theory of the defect. Hence, examining whether
αsᾱs is condensed on the edge can determine the encoding properties in the error-corrupted
state.

Examples

Here, we classify the possible phases by enumerating the Lagrangian subgroups in three
examples, 2D Toric code, double semion model, and ν = 1/3 Laughlin state, subject to
incoherent errors. We comment on the information encoding in each phase. The results are
summarized in Table I of the main text.

Example 1: Toric code.— The first example we consider is the 2D Toric code subject to
incoherent errors. We find five distinct gapped phases [see Table I 2].

To start with, the low energy excitations in 2D Toric code are described by the CS theory
with K-matrix

KTC =

(
0 2
2 0

)
. (E.36)

The Toric code has four superselection sectors: 1, e,m, f . Here, e and m are self-boson and
exhibit mutual semionic statistics. The fermion f is a composite object of e and m. These
anyonic quasiparticles are labeled by integer vectors

le =

(
1
0

)
, lm =

(
0
1

)
, lf =

(
1
1

)
. (E.37)

The first gapped phase is achieved when no error is present. In this case, the definition of
path integral introduces the cosine terms in Eq. (E.34)

L1 =
∑

I=1,2

BI

[
cos
(
2(ϕI

L + ϕI
R) + θ

)
+ (ϕs ↔ ϕ̄s)

]
+ · · · . (E.38)

Here, the ellipses represent the less relevant terms. With sufficiently large coefficients BI ,
these cosine terms can induce an edge condensate of eLeR, ēLēR,mLmR, and m̄Lm̄R (Phase I

2Here and in the following, Table I refers to the table in the main text.
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in Table I). The corrupted density matrix in this phase can encode quantum information
because αsᾱs is not condensed.

The incoherent error channel can induce distinct edge phases. Here, we have three cosine
terms in the form of Eq. (E.35)

LN ,e = Ce

∑

s=L,R

cos
(
2(lTe · ϕs − lTe · ϕ̄s)

)
,

LN ,m = Cm

∑

s=L,R

cos
(
2(lTm · ϕs − lTm · ϕ̄s)

)
,

LN ,f = Cf

∑

s=L,R

cos
(
2(lTf · ϕs − lTf · ϕ̄s)

)
,

(E.39)

which are generated by the incoherent channels that create e, m, and f , respectively. With
a sufficiently large coefficient, any one of three cosine terms can develop a classical value
leading to a condensate of αsᾱs with α = e,m, f , which corresponds to Phase II-IV in Table I,
respectively. In these phases, the remaining logical operators mutually commute, and the
corrupted state is a classical memory.

Finally, when two cosine terms develop a classical value, the remaining one also achieves
a classical value (Phase V in Table I). Here, the corrupted state is a trivial state, and one
cannot encode any information.

Allowing coherent errors may lead to additional gapped phases beyond the above five
possibilities. For example, the amplitude-damping channel

K1,i =
1 +

√
1 − κ

2
I +

1 −
√

1 − κ

2
Zi, K2,i =

√
κ

2
(Xi + iYi), (E.40)

which can generate es, ēs,ms, m̄s, esm̄s,msēs for s = L,R in the effective theory. These
anyons cannot be created by incoherent errors; condensing a subset of them can lead to
distinct phases. This possibly leads to additional phases of the 1D defect labeled by the
Lagrangian subgroups with following generators:

• es, ēs for s = L,R;

• ms, m̄s for s = L,R;

• esm̄s,msēs for s = L,R.

However, as the coherent channel creates all these anyons together with the anyon bound
state αsᾱs, these possible phases will compete. It requires numerical simulation to determine
which anyon condenses at low energy. It remains open whether a specific coherent error
channel can realize any of these phases.

We make a few remarks. First, the phase with e or m anyon condensed in individual
copies can be obtained by an imaginary time evolution of the Toric code ground state. For
example, |Ψ0⟩ → eµ

∑
i Zi |Ψ0⟩ can realize the edge condensate of es and ēs. Second, the above
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three phases are studied in the context of 1D defect phases in double Toric code and are
referred to as the “cut-open” and “SPT” boundary [166].

Example 2: Double semion.— The second example we consider is the double semion model
subject to incoherent errors [159]. Again, we enumerate the possible Lagrangian subgroups
that characterize the distinct phases. We find five phases summarized in Table I.

The low-energy theory for double semion topological order is the abelian CS theory with
K-matrix

KDS =

(
2 0
0 −2

)
. (E.41)

The double semion model has four superselection sectors: 1,ma,mb, b, where ma is a semion,
mb is an anti-semion, and the boson b is a composite object of ma and mb. The semion ma

and anti-semion mb are mutual boson. These anyons are characterized by the integer vectors

lma =

(
1
0

)
, lmb

=

(
0
1

)
, lb =

(
1
1

)
. (E.42)

The double semion model on the torus has a four-fold degenerate ground state that can
encode two logical qubits. The logical operators are the loop operators wα(ℓ) transporting
α = ma,mb along two inequivalent large loops ℓ = ℓ1, ℓ2. Distinct from the case of Toric code,
the operators along different loops, wα(ℓ1) and wα(ℓ2) for α = ma,mb, anti-commute due to
the anyon self-statistics and therefore serve as Pauli-X and Z operators for a logical qubit.

The first gapped phase (Phase I in Table I) of the defect is realized when no error is
present. The backscattering term L1 condenses the anyon bound states αLα

′
R and ᾱLᾱ

′
R for

α = ma,mb, b. This phase can encode two qubits of quantum information.
The incoherent channel in the double semion model can introduce the following cosine

terms:
LN ,ma = Cma

∑

s=L,R

cos
(
2(lTma

· ϕs − lTma
· ϕ̄s)

)
,

LN ,mb
= Cmb

∑

s=L,R

cos
(
2(lTmb

· ϕs − lTma
· ϕ̄s)

)
,

LN ,b = Cb

∑

s=L,R

cos
(
2(lTb · ϕs − lTb · ϕ̄s)

)
,

(E.43)

which creates anyon bound states αsᾱs for α = ma,mb, b, respectively. Condensing each
one of these terms induces Phase II-IV in Table I, respectively. In Phase II [III], one can
encode information in wma(ℓ) [wmb

(ℓ)] for ℓ = ℓ1, ℓ2. These logical operators do not mutually
commute and therefore can encode one qubit of quantum information. In Phase IV, the
corrupted state can still encode one qubit of quantum information, despite that wma and wmb

are identified due to the condensation of bsb̄s. Condensing two terms in Eq. (E.43) indicates
the third is condensed and leads to Phase V, which cannot encode information.

Introducing coherent errors can potentially realize an additional phase by condensing the
boson in individual copies, bs and b̄s. Again, designing a specific coherent error channel to
possibly realize this phase is left for future study.
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(a) 1D defect

2 × (topo. order)

(b)

Folding
ϕ1

ϕ̄1

ϕ2

ϕ̄2

(c)
ϕ1

ϕ̄1

ϕ2

ϕ̄2
...ϕn

ϕ̄n

Figure E.1: (a) The path integral represents the norm of the ground state of double 2D
topological order with 1D defect (red region). (b) Folding the double topological order around
the 1D defect results in quadruple topological order with a 1D boundary. The red regions
represent the coupling LN induced by the quantum channel. The couplings between ϕ1 and
ϕ̄2 (also ϕ̄1 and ϕ2) are denoted by L1 inherited from the definition of path integral. (c) The
edge theory associated with the n-th moment tr ρn of the density matrix. The generalized
swap interaction L(n)

1 couples the compact bosons in the neighboring copies, i.e. ϕ̄s and ϕs+1

for s = 1, 2, · · · , n.

Example 3: ν = 1/3 Laughlin state.— The third example is ν = 1/3 Laughlin state [155]
with incoherent errors. In this case, we find two phases summarized in Table I.

The low-energy excitations in the Laughlin state is described by the abelian CS theory
with K-matrix K1/3 = (3). It contains three superselection sectors {1, η, η2}. η and η2 are the
quasiparticle and quasihole, and they are labeled by the charge vector lη = (1) and lη2 = (2)
and carry charge e/3 and −e/3, respectively.

There is only one type of incoherent channel; its Kraus operators create a pair of
quasiparticle and quasihole. When the error is below the threshold, the corrupted state is a
quantum memory characterized by the Lagrangian subgroup generated by ηLη

2
R and η̄Lη̄

2
R

(Phase I in Table I). When error proliferates, we obtain a trivial phase with a subgroup
generated by ηLη̄L and ηRη̄R (Phase II in Table I).

Generalization to the n-th moment

So far, the analysis focuses on the distinct phases in the EFD, which pertains to analyzing
the second moment of the density matrix, i.e. the norm of the EFD ⟨⟨ρ|ρ⟩⟩ = tr ρ2. In this
subsection, we generalize the problem to the n-th moment tr ρn and map the decoherence-
induced phases to (1 + 1)D boundary phases.

Before discussing the n-th moment, we develop an equivalent formulation of the second
moment tr ρ2. The phases of the (1 + 1)D defect can be converted to the (1 + 1)D edge phases
by folding around the defect as shown in Fig. E.1(b) [25, 133]. In the folded picture, we have
four copies of the topological order. On the edge, we relabel the bosonic fields as

ϕ := [ϕ̄R, ϕR, ϕL, ϕ̄L] = [ϕ1, ϕ̄1, ϕ2, ϕ̄2], (E.44)
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where ϕ1(2) and ϕ̄1(2) denote the fields associated with the copy-1(2) of the density matrix.
The path integral describing the ground state of quadruple topological order with an edge

corresponds to an overlap in the quadruple Hilbert space H⊗4 before the rotation

tr ρ2 = ⟨⟨C(2)| (|ρ⟩⟩ ⊗ |ρ⟩⟩) :=

∫
D(φ1, φ2) (⟨φ1| ⊗ ⟨φ2|) ⊗ |ρ⟩⟩ (⟨φ2| ⊗ ⟨φ1|) ⊗ |ρ⟩⟩, (E.45)

where ⟨⟨C(2)| is a “swap” reference state that couples the fields in the ket and bra Hilbert
space of the different copies of the EFD.

The overlap is readily generalized to describe the n-th moment tr ρn. Here, in 2n copies
of the Hilbert space H⊗2n, we consider

tr ρn = ⟨⟨C(n)|
(
|ρ⟩⟩⊗n) :=

∫
D(φ1, φ2, · · · , φn)

n∏

s=1

(⟨φs| ⊗ ⟨φs+1|) ⊗ |ρ⟩⟩, (E.46)

where φn+1 := φ1, and ⟨⟨C(n)| is a generalized swap reference state.
We can similarly develop a path integral formulation of the overlap. In the rotated picture,

it corresponds to the ground state of 2n copies of the topological order with an (1 + 1)D edge.
The effective edge theory also contains three parts

L(n) = L(n)
0 + L(n)

1 + L(n)
N . (E.47)

The first part L(n)
0 describes the low-energy excitations in 2n copies of the topological order

L(n)
0 [ϕ] =

1

4π

∑

I,J

K(n)
IJ i∂τϕ

I∂yϕ
J − V(n)

IJ ∂yϕ
I∂yϕ

J (E.48)

where the compact bosonic field ϕ := [ϕ1, ϕ̄1, ϕ2, ϕ̄2, · · · , ϕn, ϕ̄n] is a 2nM -component vector,

K(n) = [K ⊕ (−K)]⊕n , and V(n) = V ⊕2n. The second part L(n)
1 is the interaction introduced

by the reference state, which takes a general form

L(n)
1 =

∑

Λ

BΛ

n∑

s=1

cos

(∑

I

(KΛ)I(ϕ
I
s + ϕ̄I

s+1) + θ

)
. (E.49)

where ϕ̄n+1 := ϕ̄1. The last part L(n)
N describes the error channel. For incoherent errors, we

have

L(n)
N =

∑

Λ

CΛ

n∑

s=1

cos

(∑

I

(KΛ)I(ϕ
I
s − ϕ̄I

s)

)
. (E.50)

The edge theory exhibits a global symmetry G(n) = Zn × ZH
2 . We note that the Zn

symmetry is a unitary symmetry generated by the cyclic permutation over n copies of the
density matrix

ϕs ↔ ϕs+1, ϕ̄s ↔ ϕ̄s+1. (E.51)
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In the case of n = 2, G(n) reduces to G(2) in Sec. E.2 as the permutation over two copies of
the density matrix is a combination of the Hermitian conjugation of the EFD and that of the
density matrix.

We remark that the incoherent errors can induce condensation of αsᾱs for s = 1, 2, · · ·n
on the edge. Since the different anyon bound states αsᾱs and βs′ β̄s′ are mutual bosons,
different incoherent channels do not compete with each other. Thus, the number of possible
condensates is independent of the replica index n, and so is the classification for abelian
topological with incoherent errors. Hence, we expect each phase of tr ρ2 in Table I has a
correspondence in the replica limit n→ 1.
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Appendix F

Supplementary material for Chapter 7

F.1 Details of the mapping

In this section, we detail the mapping between the three diagnostics and observables in the
statistical mechanical models.

Quantum relative entropy

We here explicitly show that the Rényi quantum relative entropy is related to the correlation
function in the classical spin model. Specifically, we consider the relative entropy between
the error corrupted ground state and an excited state |Ψm⟩ := wm(C) |Ψ0⟩ with a pair of
m-particles created at the end of path C.

First, we write down the error corrupted state ρm in the loop representation

ρm =
1

2N

∑

g

sgn
(
gz, X

C)gzgxe−µx|gx|−µz |gz |. (F.1)

where the commutation relation between the loop operator and the string operator is accounted
by sgn(gz, X

C); the sign function equals +1 when gz and XC commute and −1 otherwise.
The above expression allows one to write tr ρρn−1

m as

tr ρρn−1
m =

Zn,x

2(n−1)N

∑

{g(s)z }

O(n)
D e−Hn,z , (F.2)

where O(n)
D denotes the product of sign functions in n− 1 copies of ρm

O(n)
D = sgn

(
g(1)z , XC). (F.3)

Here, we have used the constraint g
(1)
z =

∏n
s=2 g

(s)
z for nonvanishing trace in the loop

representation. Using this expression, the n-th Rényi relative entropy takes the form

D(n)(ρ||ρm) =
1

1 − n
log⟨O(n)

D ⟩ . (F.4)
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Our next step is to express the observable ⟨O(n)
D ⟩ in terms of the Ising spins. In the spin

model, the closed loop g
(1)
z is identified with the domain wall of σ

(1)
i , and the Ising spins on

two sides of g
(1)
z anti-align. Thus, σ

(1)
il

and σ
(1)
ir

on the two ends of the open string C is aligned

if g
(1)
z crosses C for even number of times and is anti-aligned otherwise. The parity of the

crossing is exactly measured by the sign function sgn(g
(1)
z , XC). Hence, the observable ⟨O(n)

D ⟩
maps to the correlation function

⟨O(n)
D ⟩ = ⟨σ(1)

il
σ
(1)
ir
⟩ . (F.5)

Coherent information

We now develop a spin model description for the Rényi coherent information I
(n)
c in Eq. (7.7).

In the definition of coherent information, the system density matrix ρQ is the error corrupted
state ρ in Sec. 7.3, and its n-th moment is mapped to the partition function of the (n−1)-flavor
Ising model on the torus. Here, we show that the n-th moment of ρRQ maps to the partition
function of the same model with defects (domain walls) inserted along large loops on the
torus.

First, we write down the initial state of the system Q and the reference R. We consider
two reference qubits and two logical qubits in the ground state subspace, and maximally
entangle them in a Bell state. Let sa=x,z

l be the Pauli operator of two reference qubits, and
ḡal be the four logical operators

l1

l2

ḡzl :=
∏

ℓ∈l

Zℓ ,

ḡxl :=
∏

ℓ∈l∗
Xℓ ,

(F.6)

where l = l1,2 and l∗ = l∗1,2 are on the original and dual lattice. We consider the Bell state
prepared as the +1 eigenstate of stabilizers ḡzls

z
l and ḡxls

x
l , and write the initial density

matrix for the system and reference as

ρ0,RQ =
∏

l=l1,l2

∏

a=x,z

1 + ḡals
a
l

2

∏

s

1 + As

2

∏

p

1 +Bp

2
. (F.7)

Here, we again work in the loop picture of ρ0,RQ, and further factorize the density matrix
into a product

ρ0,RQ =
1

2N+2
Γx
0,RQΓz

0,RQ , (F.8)

where Γa
0,RQ is a summation of a = x, z loops and takes the form

Γa
0,RQ =

∑

ga

ga
∏

l=l1,l2

(1 + ḡa,ls
a
l ) . (F.9)
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In the error corrupted state ρRQ, the X and Z error channels act on Γz
0,RQ and Γx

0,RQ,
respectively, giving rise to ρRQ = Γx

RQΓz
RQ/2

N+2 with

Γa
RQ =

∑

ga

∑

dal=0,1

e−µa|∏l=l1,l2
(ḡal)

dalga|

ga
∏

l=l1,l2

(ḡals
a
l )

dal , (F.10)

where dal is a binary variable indicating whether the loop operator in the summation acts on
the non-contractible loop l of the torus.

Our next step is to write down the n-th moment of ρRQ in the loop picture

tr ρnRQ =
1

2n(N+2)
tr
((

Γx
RQ

)n (
Γz
RQ

)n)
, (F.11)

where each Γ
x(z)
RQ is a sum over all possible X(Z) loop operators with positive weights. The

product of loop operators from n copies has a non-vanishing trace only if the product is
identity. This imposes the constraint on loop configurations and allows expressing the n-th
moment as a sum of partition functions

tr ρnRQ =
1

2(n−1)(N+2)

∏

a=x,z

∑

da1da2

Z(da1,da2)
n,a , (F.12)

where dal with l = 1, 2 is a (n−1)-component binary vector, the sum runs over all possible dal,

and Z(da1,da2)
n,a =

∑
{g(s)a } e

−H
(da1,da2)
n,a is the partition function with an effective Hamiltonian

H(d1a,d2a)
n,a = µa

n−1∑

s=1

∣∣∣(ḡ(s)a1 )da1,s(ḡ
(s)
a2 )da2,sg(s)a

∣∣∣

+µa

∣∣∣∣∣
n−1∏

s=1

(ḡ
(s)
a1 )da1,s(ḡ

(s)
a2 )da2,sg(s)a

∣∣∣∣∣ .
(F.13)

Here, dal,s denotes the s-th component of vector dal.
The loop model in Eq. (F.13) can be identified with a classical spin model similar to

Eq. (7.21). However, there is an important difference due to the presence of the homologically

nontrivial loop ḡ
(s)
al . Here, we interpret the homologically trivial loop g

(s)
a as the Ising domain

wall and ḡ
(s)
al as a defect along the non-contractible loop. The defect corresponds to flipping

the sign of Ising coupling along a large loop. Specifically, for Z (X) loops on the original
lattice, we introduce Ising spin on the plaquettes (vertices) such that

∣∣∣(ḡa1)da1,sℓ (ḡa2)
da2,s
ℓ g

(s)
a,ℓ

∣∣∣ =
1 − (−1)λ

(s)
ℓ σ

(s)
i σ

(s)
j

2
, (F.14)
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where i, j are connected by the link ℓ, and λ
(s)
ℓ = |(ḡa1)da1,sℓ (ḡa2)

da2,s
ℓ | is binary variable that

denotes whether the defect goes through the link ℓ. This results in an effective Hamiltonian

H(d1a,d2a)
n,a = − Ja

∑

⟨i,j⟩

n−1∑

s=1

(−1)λ
(s)
ℓ σ

(s)
i σ

(s)
j

+
n−1∏

s=1

(−1)λ
(s)
ℓ σ

(s)
i σ

(s)
j .

(F.15)

Hence, Z(da1,da2)
n,a becomes the partition function of the classical spin model with defects

inserting along the non-contractible loops labeled by binary vectors dal.
The mapping developed above allows a spin model description for the n-th Rényi coherent

information I
(n)
c . The n-th moment of ρQ is identified with the partition function with no

defect, i.e. tr ρnQ = Z(0,0)
n,x Z(0,0)

n,z /2(n−1)N . Therefore, we have

I(n)c =
1

n− 1

∑

a=x,z

log

∑
da1da2

Z(da1,da2)
n,a

2n−1Z(0,0)
n,a

. (F.16)

Thus, the Rényi coherent information is associated with the excess free energy of inserting
defects along non-contractible loops

∆F (da1,da2)
n,a := − log

(
Z(da1,da2)

n,a /Z(0,0)
n,a

)
. (F.17)

Entanglement negativity

Here, we show that the Rényi negativity in the error-corrupted state maps to the excess free
energy for aligning spins in the statistical mechanical model. Specifically, we consider the
case when only one type of error, e.g. bit-flip errors, is present.

The first step is to write down the partially transposed density matrix ρTA . We again
work in the loop representation, where the error corrupted state is expressed as a sum of Pauli
strings g = gxgz in Eq. (7.16). The Pauli string g is invariant under the partial transpose up
to a sign factor yA(g) = (−1)NY depending on the number NY of Pauli-Y operators inside
the subsystem A. Hence,

ρTA =
1

2N

∑

g

yA(g)e−µx|gx|−µz |gz |g. (F.18)

Using the above expression, one can write down the n-th moment of ρTA

tr
(
ρTA
)n

=
1

2(n−1)N

∑

{g(s)}

O(n)
N e−Hn,x−Hn,z . (F.19)
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Here, similar to tr ρn, the trace imposes a constraint on the loop operators g(s), and the
summation runs over g(s) only in the first n− 1 copies. The sign factors collected from the
partial transpose in each copy are combined in O(n)

N ,

O(n)
N =

[
n−1∏

s=1

yA

(
g(s)
)]

yA

( n−1∏

s=1

g(s)
)
. (F.20)

Eq. (F.19) allows expressing the 2n-th Rényi negativity in terms of the expectation value of
O2n:

E (2n)
A =

1

2 − 2n
log
〈
O(2n)

N

〉
. (F.21)

Yet, analyzing the number of Pauli-Y operators in Eq. (F.20) is a formidable task.

Moreover, the observable O(n)
N derived from the partial transpose should be a basis-independent

quantity. Indeed, one can express O
(n)
N in terms of loop configurations

O(n)
N =

n−2∏

r=1

sgnA

( r∏

s=1

g(s), g(r+1)
)

=
n−1∏

r=2

r−1∏

s=1

sgnA

(
g(s), g(r)

)
. (F.22)

Here, we use the property

yA(g)yA(h) = yA(gh) sgnA(g, h), (F.23)

where the sign function sgnA(g, h) = ±1 depending on the commutation relation between the
support of Pauli string g and h on subsystem A:

sgnA(g, h) =

{
1 [gA, hA] = 0
−1 {gA, hA} = 0

. (F.24)

In the second equality of Eq. (F.22), we use the property of sign function

sgnA(g1g2, g3) = sgnA(g1, g3) sgnA(g2, g3). (F.25)

In the Toric code, the operator g further factorizes into g = gxgz, where gx, gz are closed
loop operators of Pauli X and Z, respectively. The sign function between two such loop
operators g and h reduces to

sgnA(g, h) = sgnA(gx, hz) sgnA(gz, hx). (F.26)

We then arrive at

O(n)
N =

n−1∏

s,r=1,s ̸=r

sgnA

(
g(s)x , g(r)z

)
. (F.27)
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To develop an analytic understanding of the observable O(n)
N and how it detects the

ferromagnetic transition, we first consider the situation when only X or Z error is present.
In this case, we show that log⟨O(n)

N ⟩ exactly maps to the excess free energy of spin pinning
and sharply distinguish the two phases. After that, we discuss the general situation when
both types of error are present.

We here consider the case when only X errors are present, namely pz = 0 and µx = 0.
The vanishing X-loop tension indicates that Hn,x is in the paramagnetic phase, and the
domain walls gx of arbitrary sizes occur with the same probability. Thus, we can perform an
exact summation over all possible gx and obtain

tr
(
ρTA
)n

=
1

2(n−1)N

∑

{g(s)z }

O(n)
N,ze

−µzHn,z , (F.28)

where O(n)
N,z =

∑
{g(s)x }O

(n)
N . The summation in O(n)

N,z is non-vanishing only if the sign functions

in Eq. (F.27) for different g
(s)
x interfere constructively. This yields a constraint on the g

(s)
z

O(n)
N,z =

n−1∏

r=1

Ngxδh(r)(A) (F.29)

where h(r) =
∏n−1

s=1,s ̸=r g
(s)
z , the Kronecker delta function δh(r)(A) takes the value unity only if

the support of h(r) on subsystem A is a closed loop and equals zero otherwise, and Ngx is
an unimportant prefactor that denotes the number of possible gx in each copy. The n− 1
delta function constraints are independent for odd n, whereas for even n they give rise to
only n− 2 independent constraints as

∏n−1
r=1 h

(r) = I.
The constraint requires h(r) not to go through the boundary of subsystem A. In the

statistical mechanical model of Ising spins, this corresponds to no domain wall going through
the boundary of A, namely forcing |∂A| boundary spins aligning in the same direction (see
Fig. 7.4). Thus, the negativity is associated with the excess free energy for aligning spins

E (2n)
A =

1

2n− 2
(F

(2n)
A − F

(2n)
0 ) :=

∆F
(2n)
A

2n− 2
, (F.30)

where F
(2n)
0 := − logZ2n,xZ2n,z and F

(2n)
A are the free energy without and with constraints,

respectively. Since we have in total 2n − 2 constraints, E (2n)
A = ∆FA with ∆FA being the

excess free energy for aligning one species of Ising spins.

F.2 ZN Toric code

So far, we only focus on the Z2 Toric code with incoherent errors. It is natural to inquire
whether our methods are still applicable to ZN Toric code and whether the results change.
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We provide a brief discussion on the Z3 Toric code in this subsection. We will use similar
symbols to denote the basic operators and stabilizers, although their meanings are different
from those in the Z2 case.

Let us first specify the Hamiltonian and the error models. Consider an L × L square
lattice with periodic boundary conditions. The physical qutrits live on the edges of the lattice.
We introduce the clock and shift operators

XZ = wZX , w = e2πi/3 ,

Z =




1
w

w2


 , X =




1
1

1


 .

(F.31)

In and only in this subsection, X and Z refer to the clock and shift, respectively. The code
subspace is given by the ground state subspace of the Hamiltonian

HZ3 = −
∑

s

As −
∑

p

Bp (F.32)

where As and Bp are mutually commuting projectors associated with vertices and plaquettes,
e.g.,

s

p 1

2

3

4
5
6

As =
1

3

3∑

n=0

(
X4X5X

−1
1 X−1

6

)n

Bp =
1

3

3∑

n=0

(
Z4Z1Z

−1
2 Z−1

3

)n
(F.33)

One can verify that A2
s = As, B

2
p = Bp. The ground state |Ψ⟩ satisfies As |Ψ⟩ = Bp |Ψ⟩ = |Ψ⟩,

and the violation of As and Bp will be refered to as e (and its anti-particle ē) and m (and its
anti-particle m̄) anyons, respectively. For simplicity, we only consider the following incoherent
error

NX,i[ρ] = (1−p1 − p2)ρ

+p1ZiρZ
†
i + p2Z

2
i ρZ

2,†
i ,

(F.34)

which creates a pair of e anyons in two different ways with probabilities p1 and p2. In the
following, we will first assume p1 = p2 = p and comment on what could change without this
assumption.

To compute the three diagnostics, one can still work in the loop picture and map the n-th
momentum of the error-corrupted state to a partition function of a classical spin model that
involves n-flavor 3-state Potts spins. As the error rate increases, the spin model undergoes a
paramagnet-to-ferromagnet transition. The three diagnostics are mapped to the corresponding
observables in a similar fashion as what we have shown in the Z2 case. Therefore, they
should undergo a transition simultaneously and yield a consistent characterization of the
error-induced phase.
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When p1 ̸= p2, the spin models obtained in the loop picture contain complex phases and
do not admit a statistical mechanical interpretation. Technically, it brings sign problems to
the Monte Carlo simulation. It is unclear whether the three diagnostics still exhibit transition
simultaneously, which may be an interesting question for future study.
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