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Abstract

Density functional theory (DFT) based modeling of electronic excited states is of

importance for investigation of the photophysical/photochemical properties and spec-

troscopic characterization of large systems. The widely used linear response time-

dependent DFT (TDDFT) approach is however not effective at modeling many types

of excited states, including (but not limited to) charge-transfer states, doubly excited

states and core-level excitations. In this perspective, we discuss state-specific orbital

optimized (OO) DFT approaches as an alterative to TDDFT for electronic excited

states. We motivate the use of OO-DFT methods and discuss reasons behind their

relatively restricted historical usage (vs TDDFT). We subsequently highlight mod-

ern developments that address these factors and allow efficient and reliable OO-DFT

computations. Several successful applications of OO-DFT for challenging electronic

excitations are also presented, indicating their practical efficacy. OO-DFT approaches

are thus increasingly becoming a useful route for computing excited states of large
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chemical systems. We conclude by discussing the limitations and challenges still facing

OO-DFT methods, as well as some potential avenues for addressing them.

Electronic excited states play a key role in the photophysics and photochemistry of chem-

ical systems.1 Characterization of such states is consequently not only of interest from a

basic science perspective, but is also critical for efficient design of photovoltaic materials,

photocatalysts, lighting devices etc. The development of theoretical methods to model elec-

tronic excitations is thus of considerable importance. Progress in these directions has been

somewhat slower than comparable efforts to model the ground state, but new and exciting

developments in the area have come a long way in bridging the gap.

Very accurate wave function methods are extremely useful for reliably getting accurate

excitation energies and properties. However, the computational expense of such methods

mostly restrict their use to the development of benchmark datasets2,3 (against which more

approximate methods of lower computational complexity can be assessed). Kohn-Sham den-

sity functional theory (KS-DFT4) offers an excellent balance between accuracy and compu-

tational cost for ground state calculations,5,6 and has greatly contributed to the increasingly

widespread use of quantum chemistry. KS-DFT protocols thus appear to be the natural route

for computationally efficient modeling of electronic excitations.7–10 Indeed, linear-response

time-dependent DFT7,11 (LR-TDDFT, henceforth refered to as TDDFT) is very widely

employed for this purpose. TDDFT obtains excited state energies and properties via the

linear-response of a ground state DFT solution to time-dependent electric fields and (within

the KS formalism) is mathematically quite similar to TD Hartree-Fock (TDHF).12,13

TDDFT is formally exact14 if the exact time-dependent exchange-correlation (xc) func-

tional is employed. In practice, approximate, time-independent ground state xc functionals

are instead utilized, (the so called adiabatic local-density approximation/ALDA7). This

route is capable of yielding reasonable results15,16 but has some well-known shortcomings.

ALDA restricts TDDFT to single excitations alone, making it impossible to model doubly (or

higher) excited states17–19 and excited state bond dissociations.20 Furthermore, ALDA only
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permits orbital relaxation to LR (i.e. first order), which is problematic for modeling excited

states that have substantially different densities than the ground state. The classic example

is long-range charge transfer (CT), for which TDDFT excitation energies are strongly de-

pendent on the fraction of HF exchange present in the functional.7 Similar behavior is also

observed for Rydberg states17 and core excitations21 (effectively CT out of core orbitals).

The CT problem is largely a consequence of ground state delocalization error.22,23 How-

ever, the LR protocol magnifies this error to catastrophic proportions in a manner that

is atypical for ground state calculations. Let us consider the lowest energy CT excitation

between an electron donor A and an electron acceptor B, at infinite separation. TDDFT

predicts the excitation energy to be the difference in energy between the LUMO of B and

HOMO of A,7 which proves to be quite inaccurate in practice and is also quite functional

sensitive (being underestimated by local functionals and overestimated by pure HF). How-

ever, we know that the true excitation energy should equal the difference of the ionization

potential (IP) of A and the electron affinity (EA) of B. Both are typically well approximated

by ground state DFT,5,6,24 indicating the LR protocol is the principal problem. We consider

CT from NH3 to an F2 molecule 1000 Å away as an example. Fig 1 shows that TDDFT

predictions as a function of functional span a wide range from ∼ 0 (TD-LSDA1) to 13 eV

(TDHF), as shown in Fig 1. It is worth noting that optimal tuning of density functionals27

(via enforcement of Koopman’s theorem28) would assist in better modeling of long range

CT, but would entail system-specific functional optimization and might not be as effective

at intermediate separations.29

Rather than using TDDFT to evaluate this excited state, we could instead consider

modeling it as a supersystem consisting of NH+
3 and F−2 fragments. This can be achieved

by separately optimizing the orbitals of the charged fragments, constructing a guess density

from these fragment densities32 and subsequent relaxation of the supersystem orbitals to

the closest stationary point to this initial guess (which ought to preserve integer charges

1We employed the SPW9225,26 functional as the local spin density approximation (LSDA) throughout.
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Figure 1: Comparison of TDDFT and ∆SCF for the lowest CT triplet excited state of NH3—
–F2 at 1000Å separation (between the N and closest F atom), with various functionals and
the def2-QZVPPD basis. The dark line represents the estimate obtained from vertical IP of
NH3 and vertical EA of F2, evaluated via CCSD(T)30 at the complete basis set (CBS) limit.
The electrostatic interaction between unit point charges at 1000 Å separation is a negligible
∼ 0.015 eV. The fully relaxed ∆SCF excited supersystem density has integer charges on
fragments (i.e. NH+

3 and F−2 ), as a consequence of using square gradient minimization31 (as
described later) to find the closest stationary point to the charged fragment initial guess.

on the fragments). The excitation energy can then be computed as the energy difference

between this self-consistent field (SCF) solution and the ground state SCF solution, leading

to this approach being termed as ∆SCF. Fig 1 shows that this orbital optimized approach

yields much more reasonable results than TDDFT with the same functionals, and has much

lower functional sensitivity. This indicates that state specific OO-DFT could be effective

in addressing several of the challenges faced by TDDFT. Indeed, such methods precede

TDDFT in the literature33–37 (dating back to at least Phllipson and Mulliken’s 1958 work

on the 3Σ+
u and 1Σ+

u states of H2
33 with HF), but were not widely used after modern TDDFT

implementations came into existence. In our opinion, there are three principal reasons for

this:

1. TDDFT is capable of simultaneously computing multiple states, without any prior
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knowledge about the nature of individual states. OO methods necessarily require

information about the nature of target states, and are thus not very ‘black box’. For

instance, we had to explicitly specify an initial guess of NH+
3 and F−2 for the example

shown in Fig 1.

2. Excited states are typically not minima of the energy in orbital space. 2 Optimization

of excited state specific orbitals is thus challenging, as it is easy to ‘slip’ into a nearby

local minimum instead of the desired state, which is often described as variational

collapse. As an example, the lowest triplet state of the NH3—F2 supersystem is a local

excitation on F2 (∼ 3 eV excitation energy), and routine SCF cycles would typically

land on this state instead of the desired CT state with ∼ 10 eV excitation energy.

3. Excited states are often intrinsically multireference. KS-DFT is a single determinant

theory by construction, and it is not straightforward to account for multiconfigurational

effects. This is generally not an issue for TDDFT out of closed-shell determinants, as

the LR protocol gives a formally appropriate route for ‘coupling’ excited configurations,

in a manner analogous to configuration interaction singles (CIS). 3

The first challenge is unavoidable in some regards, as some information about the tar-

get state is needed to provide an initial guess for orbital optimization. Specifically, it is

extremely useful to know the potential electronic configurations the target state could have,

out of the combinatorially scaling possibilities in the full Hilbert space. An initial TDDFT

calculation could in fact be useful in identifying the electronic configuration for singly ex-

cited states, that could be subsequently used to initiate OO calculations. Doubly (or higher)

excited states are more challenging as they are inaccessible in TDDFT, and more rigorous

2This can be intuitively understood by noting that the Hessian of the energy vs orbital rotations for
a single, spin-unrestricted determinant is 2 (A + B), where A,B are the well known TDDFT matrices.7

Considering only mean-field one body terms, we find that the Hessian is diagonal, with the eigenvalues being
differences in energy between unoccupied and occupied orbitals. Normally, there exists at least one excited
state occupied orbital with higher energy than an unoccupied one (non-Aufbau filling), leading to at least
one negative eigenvalue for the Hessian, within this approximation.

3It is nonetheless worth noting that the lack of double excitations prevents open-shell TDDFT from fully
addressing multiconfigurational effects, as no rigorous analogues to XCIS38 exist.
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multireference wavefunction methods capable of identifying important configurations are un-

likely to be affordable for sizeable systems. A combination of chemical intuition (perhaps

via visualization of orbitals to determine character) and orbital energies could be effective in

generating potential guess configurations for such excited states, if the precise nature of the

desired states is not known in advance. We will consequently focus on the variational collapse

and multiconfigurational problems for the rest of this work. We also note that there exist

DFT approaches that utilize ensembles of states for computation of excitation energies,39–41

but we do not discuss such methods in this perspective, as they are more ‘state averaged’

than ‘state specific’.

The variational collapse problem has long been a major barrier to widespread use of OO

methods17,42 beyond the lowest energy state within each spin manifold (such as the lowest

energy triplet). It is possible to avert this for certain problems via application of constraints,

such as the lowest energy long-range CT excitation shown in Fig 1, where individual charges

on fragments are unambiguous and can be constrained.43 Similarly, a specific non-Aufbau

configuration can be enforced over all SCF cycles when the orbital energy ordering remains

unchanged (such as insisting upon a 2s hole for an Ar ion44). However, not all problems are

as clear cut—necessitating development of more general solutions. One of the most widely

used approaches is the maximum overlap method (MOM),45 which is used in conjunction

with Fock matrix (F) diagonalization based methods like DIIS.46 Normally, the selection of

occupied orbitals after each SCF cycle is done on the basis of energy, such that the lowest

energy levels are filled first (Aufbau principle). MOM instead selects occupied orbitals via

maximizing the overlap between the newly constructed determinant with the determinant

from the previous iteration, thereby preventing any dramatic change in the density and

permitting smooth relaxation of an initial non-Aufbau configuration to an optimized extrema.

Although effective in many cases, MOM cannot always prevent variational collapse as

orbitals can continuously change character back to the ground state over multiple steps.47,48

This led to the development of the Initial MOM (IMOM) method,48 where the overlap
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was now maximized relative to the initial set of orbitals to prevent continuous drift down

to the ground state. However, dramatic changes in electronic configuration is possible in

IMOM when multiple selections can lead to similar overlaps, leading to potential oscillatory

behavior and convergence failure.31,49 An alternative route to avoiding variational collapse

within the repeated F diagonalization scheme is through the use of level shifts50(as most

recently exemplified by the STEP approach49). This entails shifting the unoccupied orbitals

up in energy prior to F diagonalization, which both permits Aufbau filling of orbitals (as the

undesired levels are pushed up and thus unlikely to be filled) and decelerates occupied-virtual

mixing, permitting slow but steady convergence.

Repeated F diagonalization based approaches however do not guarantee convergence, as is

often painfully evident for nontrivial ground state computations. The most robust solvers for

these problems are (quasi-) Newton schemes51 like geometric direct minimization (GDM),52

that explicitly attempt to minimize the energy and thus guarantee descent, step by step.

Such minimizers however are definitionally unsuited for saddle point convergence, indicating

that it might be useful to transform the energy extremization problem as a minimization

scheme for some other function. A natural choice in this regards is the variance (σ2) of the

Hamiltonian H (i.e. σ2 = H2 − 〈H〉2), as every energy eigenstate corresponds to a global

minimum of 〈σ2〉.53,54 Recent work by the Neuscamman55,56 and Van Voorhis57,58 groups

have examined H2 based approaches, obtaining very promising results. However, H2 is a

rather difficult quantity to work with, as it contains four-particle operators. Furthermore,

there is no analogue of H2 in DFT (i.e. no functionals for 〈H2〉).

We had consequently examined an alternative route for excited state orbital optimization

that focuses on the square of the gradient of the energy E vs orbital degrees of freedom ~θ. By

defining the positive semidefinite quantity ∆ =
∣∣∇~θE

∣∣2, we can see that all stationary points

of E correspond to global minima of ∆ (and vice-versa). Minimization of ∆ from an initial

guess configuration should thus lead to the closest stationary point, as long as the gradient

descent steps are sufficiently small. Furthermore, use of a general Lagrangian L instead of
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E would readily permit use of this square gradient minimization (SGM) approach to any

quantum chemistry method like second order Møller-Plesset perturbation theory (MP2) or

coupled cluster doubles (CCD), and not just DFT.

The details of SGM are provided in Ref 31, and we only touch upon a few aspects here.

SGM requires the orbital gradient ∇~θ∆, which can be computed analytically (when analytic

orbital energy Hessians ∇2
~θ
E are available) or via finite differences. Both approaches have

similar cost (twice the evaluation of a single ∇~θE gradient for the analytic computation,

thrice for two-point centered finite-differences), although the latter is certainly easier to im-

plement for an arbitrary quantum chemistry ansatz. This ensures that SGM preserves the

scaling of ground state orbital optimization, and thus the largest problems tractable with

modern day DFT should be accessible with SGM as well. A reasonable diagonal precondi-

tioner can also be obtained by following the spirit of GDM and only preserving F matrix

terms, which works out to be twice the square of the GDM preconditioner. Furthermore,

SGM for a single determinant can be viewed as minimization of the variance of F, permit-

ting an interpretation of ∆ as a mean-field analogue of σ2. ∆ is also a special limit of the

recently proposed generalized variational principle (GVP59) for excited state OO. The GVP

however contains explicit energy targeting terms (among other things) for ‘locking’ onto

desired states. SGM is thus simpler but more guess sensitive, as it only employs ∆.

∆ minimization however has two apparent shortcomings. It is less well conditioned than

E minimization, as it effectively squares the condition number. The preconditioner assists

in partially mitigating this problem, but the convergence can still require perceptibly more

iterations than MOM/IMOM (even without accounting for the higher cost per iteration).

F diagonalization based methods could thus be optimal for initial explorations, with SGM

serving as a robust alternative in the face of challenging behavior. SGM could also get ‘stuck’

in local minima of ∆ that are not stationary points in E (i.e. ∆ 6= 0). The analogous behavior

for potential energy surfaces (vs nuclear coordinates) is well-known,60 but we have found it

to be extremely rare for orbital optimization. These unphysical minima can be furthermore
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averted in practice by converging onto the right state with a different (ideally, cheaper and

simpler) functional, and using the resulting orbitals as a better guess for ∆ minimization

with the chosen method. Overall, we note that neither of these issues have prevented us from

optimizing any desired state, and seem unlikely to pose significant obstacles for practical use.

In addition to the methods discussed above, several other recent works have proposed

various routes to avoid variational collapse.61–66 It would be difficult to elaborate upon all of

these methods in the present work, but we encourage the interested reader to investigate the

literature in this area. In particular, Ref 61 provides a detailed mathematical analysis of the

variation of KS energy due to unitary rotations between orbitals, demonstrating connections

between TDDFT and ∆SCF methods. It also presents a constricted variational (CV) DFT

scheme for averting variational collapse, which represents an important (if somewhat more

complex) family of approaches for excited state OO62,67–70.

Having examined several potential solutions to the variational collapse problem, we next

consider the problem of obtaining intrinsically multireference excited states with KS-DFT.

It must be noted that not all excited states necessarily require multiple determinants for

a proper representation. States in which all unpaired electrons have the same spin can in

fact be represented by single determinants, with well known examples being low lying triplet

states of closed shell species (like the 1s12p1
z triplet state of He), certain double excitations71

(such as n2 → (π∗)2 in HCHO) and single excitations to/from singly occupied levels in

open-shell systems.72 DFT optimization of a single Slater determinant is thus sufficient for

such states, and the resulting protocol is termed as ∆SCF. ∆SCF is also used to describe

ionization from orbitals other than the HOMO, as they lead to formation of excited states

of the cation.44,49

Singlet single excitations out of closed-shell molecules are however not representable by

a single determinant. Mathematically, singly excited singlet (|ΨS〉) and triplet (|ΨT 〉) states

corresponding to an excitation from orbital i to a from a closed-shell determinant |Φ〉 are
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given by:

|ΨS〉 =
1√
2

(
a†aai + a†āaī

)
|Φ〉 =

1√
2

(|Φa
i 〉+ |Φā

ī 〉) (1)

|ΨT 〉 =
1√
2

(
a†aai − a

†
āaī

)
|Φ〉 =

1√
2

(|Φa
i 〉 − |Φā

ī 〉) (2)

within theMs = 0 manifold (a†/a are second quantization creation/annihilation operators28).

Equal contributions from both |Φa
i 〉 and

∣∣Φā
ī

〉
is a consequence of both the up and down spins

being equally likely to be excited. The broken symmetry |Φa
i 〉 determinant (when formed

from spin-restricted orbitals) is thus an equal mixture of |ΨS〉 and |ΨT 〉, indicating that

∆SCF is incapable of directly yielding spin-pure results. However, the triplet energy ET can

be accessed from the Ms = ±1 manifold, as the resulting configuration is well represented

by a single determinant (a†aaī |Φ〉 =
∣∣Φa

ī

〉
for the Ms = 1 case). The singlet energy ES can

then be obtained from approximate spin-projection73 (AP):

|Φa
i 〉 = c1 |ΨS〉+ c2 |ΨT 〉 , |c1|2 + |c2|2 = 1 (3)

∴ 〈S2〉mixed = 〈Φa
i |S2 |Φa

i 〉 = 2 |c2|2 (4)

Emixed = |c1|2ES + |c2|2ET (5)

=⇒ ES =
Emixed − |c2

2|ET
|c2

1|
=

2Emixed − 〈S2〉mixedET
2− 〈S2〉mixed

(6)

〈S2〉mixed = 1 if restricted open-shell (RO) orbitals are used, yielding:

ES = 2Emixed − ET (7)

This corresponds to |Φa
i 〉 being precisely halfway between |ΨS〉 and |ΨT 〉 in energy. In

practice, use of spin-unrestricted (U) orbitals leads to additional spin contamination in |Φa
i 〉,

causing 〈S2〉mixed to be slightly larger than 1. However, there are also some species where a

low-lying, closed-shell configuration can potentially mix with the singly excited state when U
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orbitals are used, leading to 〈S2〉mixed < 1. Emixed and ET are typically separately optimized,

followed by AP using either Eqn 6 or 7. Eqn 7 in particular has been long been used in the

literature,36,37,74–77 as most low lying singlet excited state of closed-shell species are of pure

open-shell character. For such cases, ES > Emixed > ET is the usual ordering due to lack of

an exchange stabilization term in the mixed configuration (vs the triplet).

It is however worth noting that some authors elect against carrying out the AP protocol,

effectively arguing that Emixed ≈ ES.45,48,78,79 This is fairly reasonable when the unpaired

electrons in orbitals i and a interact very weakly (very long range CT being an obvious

example), but could lead to systematic underestimation of ES in general. However, this

is at times compensated by errors in the xc functional, permitting fortuitously reasonable

results. We feel that the AP protocol should be carried out for ∆SCF calculations for singlet

excitations with two unpaired electrons, in order to have a reasonably spin-pure result.

The AP scheme described above however results in two separate orbital optimizations for

Emixed and ET . For purely open-shell singlet states, it is instead possible to directly optimize

Eqn. 7 for a single set of RO orbitals.80–82 This has been described as restricted open-shell

Kohn-Sham (ROKS) in the literature,80,82 although it is distinct from normal RO KS-DFT

calculations of high spin states of open-shell systems (where all unpaired spins point the

same way83) or a related method proposed in Ref 84. The HF variant of ROKS has a long

history of use33–35 (often being described as ”Open-Shell SCF” in older literature), as it

represents a minimal, single configuration state function (CSF) approximation to open-shell

singlets within multiconfigurational SCF (MCSCF) theory. This single CSF property renders

ROKS incapable of accounting for any closed-shell character in the target states, but this

in turn prevents complete variational collapse down to the lowest energy, closed-shell (S0)

configuration. Variational collapse in ROKS is thus normally to the lowest excited singlet

(S1) state. Analytic nuclear gradients for ROKS are also known,82 permitting excited state

geometry optimizations and (finite-difference) frequency computations.

Both AP-∆SCF and ROKS are however only applicable to singlet states with one broken
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electron pair. The utility of AP is limited for cases with a larger number of unpaired electrons,

as each mixed determinant is subsequently a combination of more than two states,37 with

several having the same 〈S2〉. Recoupling of mixed determinants to yield spin-pure energies

can instead be done in a manner described in Ref 72 (which is rigorous for restricted open-

shell HF orbitals). We present the case with four unpaired electrons as a representative

example. Let these unpaired electrons be in orbitals labeled 1-4. There are 16 possible RO

determinants, but only 8 unique HF energies:

1. |HS〉 = |↑↑↑↑〉 with energy EHS.

2. |M1〉 = |↓↑↑↑〉 EM1 = EHS +K12 +K13 +K14

3. |M2〉 = |↑↓↑↑〉, EM2 = EHS +K12 +K23 +K24.

4. |M3〉 = |↑↑↓↑〉, EM3 = EHS +K13 +K23 +K34.

5. |M4〉 = |↑↑↑↓〉, EM4 = EHS +K14 +K24 +K34.

6. |M5〉 = |↓↓↑↑〉, EM5 = EHS +K13 +K23 +K14 +K24.

7. |M6〉 = |↓↑↓↑〉, EM6 = EHS +K12 +K23 +K14 +K34.

8. |M7〉 = |↓↑↑↓〉, EM7 = EHS +K12 +K13 +K24 +K34.

where Kpq is the exchange interaction between electrons in orbitals p and q. The Ms = 1

subspace consists of |M1,2,3,4〉, which combine to yield the HS quintet state, and three triplet

states. The Ms = 0 space is similarly composed of |M5,6,7〉 and the determinants that

arise from inverting their spins, which combine to yield two singlet states in addition to the

aforementioned quintet and three triplets.

The expressions for EMi
show that it is possible to solve for Kij from the single deter-

minant energies EHS and EMi
(albeit via an overdetermined linear system with 7 equations

and 6 unknowns). Furthermore, trivially non-zero off-diagonal H elements within this sub-

space of states are various −Kij (from Slater-Condon rules28). In other words, we have
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〈M1|H |M2〉 = −K12, 〈M5|H |M6〉 = −K23 etc. It is thus possible to obtain spin-pure ener-

gies by diagonalizing H within the Ms = 1 and Ms = 0 subspaces, with no more information

than the single-determinant energies EHS and EMi
. We note that Davidson had made a

similar observation earlier.85

This CI based recoupling protocol using HF energies can be ‘extended’ to DFT via use

of KS energies instead of HF. The Kij cease to be interpretable as exchange interactions

but become effective spin-spin coupling constants instead. Furthermore, the overdetermined

linear system no longer has an exact solution but can be ‘solved’ via least-squares. This

approach yields Eqn 7 when applied to the case of two unpaired electrons and thus serves

as a generalization of Eqn 7 to more complex cases. However, simple analytic expressions

for spin-pure energies are no longer possible, and ROKS style optimization of a single set of

orbitals is thus much more challenging. It is therefore much easier to individually optimize

|HS〉 and |Mi〉 directly for carrying out the entire protocol (analogous to AP-∆SCF), despite

the derivation utilizing a single set of RO orbitals. It is thus reasonable to view AP-∆SCF and

this general recoupling as functionally ‘projection after variation’ (while ROKS is ‘variation

after projection’).

The four electron case is of special importance as it is relevant for states resulting from

transient absorption spectroscopic experiments (i.e. single excitations from singly excited

states). However, the general case of N unpaired electrons would have 2N possible deter-

minants (but only 2N−1 energies due to spin-inversion symmetry) and
N(N − 1)

2
pairwise

spin-spin coupling constants, indicating a greatly overdetermined system of equations. For

simplicity, it would be sufficient to only consider the Ms =
N

2
(1 determinant), Ms =

N

2
− 1

(N determinants) and Ms =
N

2
− 2 (

N(N − 1)

2
determinants) subspaces for finding the

coupling constants (via solving an overdetermined system of equations) in the large N (> 4)

limit, followed by diagonalization in the relevant subspace of interest. The least squares error

for the overdetermined linear system would serve as an internal metric for reliability.

There have been some other alternative schemes proposed in literature for recoupling
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mixed determinants, such as the DFT generalization of excited state mean-field (ESMF)86

and the Becke exciton model.87 These approaches have been however only utilized for the

case of singlet excited states with two unpaired spins, with more challenging cases being

unexplored to the best of our knowledge. More routes are possible from a wave function per-

spective, including exact spin-projection,88 half-projection58,89 and eXtended CIS (XCIS),38

which are nonetheless not readily generalizable to DFT.

We have considered a number of theoretical/computational issues about OO-DFT ap-

proaches to excited states, and it is natural to wonder how well these models fare in practice.

We will consider a number of problems that have been recently been studied by OO-DFT

(both by us and other groups) to highlight the efficacy of these methods.

HNO
 n2→(π * )2

HCHO
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Figure 2: Errors predicted by ∆SCF/aug-cc-pVTZ for a few doubly excited states, relative
to reference values from Ref 71. CC3 results from Ref 71 are also supplied for context.

Double excitations are entirely inaccessible in TDDFT, and are also poorly described

by more computationally demanding CC approximations like EOM-CCSD. This has been

viewed mostly as a consequence of significant multireference character of such states. How-

ever, Ref 48 had proposed that the so-called multireference character of many doubly excited

states is a spurious consequence of using ground state orbitals. Ref 71 subsequently pre-

sented a high level wave function theory benchmark for some doubly excited states, enabling
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assessment of performance by OO-DFT. We examined the performance of ∆SCF for closed-

shell, single-determinant doubly excited states,31 which revealed that OO-DFT was readily

capable of achieving fairly accurate results (as shown by some examples in Fig 2). The

best accuracy is provided by the modern meta-GGAs (mGGAs) SCAN90 and B97M-V91

and the PBE092 hybrid functional. Even the elementary LSDA25,26 functional was able to

surpass the accuracy of the O(N7) scaling CC3 method. Ref 49 subsequently reached similar

conclusions as well.

(a) Simplified Jablonski diagram from TADF
(taken from Ref 93). Small ∆EST permits re-
verse intersystem crossing from T1 → S1, fol-
lowed by fluorescence back to S0.
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(Eem) and the log of the singlet-triplet gap
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Figure 3: Thermally Activated Delayed Fluorescence (TADF).

We had previously considered an example of long ranged CT in Fig 1. Less extreme

examples include molecules that exhibit thermally activated delayed fluorescence (TADF94).

Species exhibiting TADF have very small singlet-triplet gaps (∆EST ), permitting reverse

intersystem crossing from triplet to singlet, followed by fluorescence back to the ground

state (as shown in Fig. 3a). TADF molecules are of interest for lighting applications as it

is a route to harvest energy that would otherwise be wasted in nonradiative channels by

triplet excitons.95 Small ∆EST indicate weak electron-hole interaction, which is a charac-

teristic of CT excitations, making that an important design principle. Ref 93 investigated
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the S1 states of TADF molecules with ROKS. The results indicated that ROKS yielded low

error (vs experimental values) for S1 emission energies and especially for the small adiabatic

∆EST with the classic B3LYP96 and PBE0 global hybrid functionals (as shown in Fig 3b).

In constrast, TDDFT with these functionals fared much worse, due to systematic under-

estimation of CT excited state energies. Furthermore, Ref 48 showed that ∆SCF obtains

the correct asymptotic behavior (O(r−1)) of CT excitation energies with distance, unlike

TDDFT. ROKS should also show the correct asymptotic behavior, as it is asymptotically

identical to ∆SCF for long range CT. OO-DFT approaches thus appear to be quite well

suited for CT problems that are difficult for TDDFT.

How about low lying singly excited states of small molecules? Ref 97 reported the

performance of ROKS for a large dataset of 104 such excitations (selected from the datasets

of Ref 98 and 99), which are mostly valence or Rydberg in character. ROKS with ωB97X-

V100 has an RMS error (RMSE) of 0.24 eV, vs 0.13 eV from EOM-CCSD, which is very

promising. ROKS with LSDA, PBE101 and B3LYP fares worse, with RMSE ∼0.40-0.55

eV, which nonetheless are pretty comparable to TDDFT errors for such systems. It is

worth noting that ROKS with HF is much worse (0.81 eV RMSE), indicating that the xc

contribution is crucial for such excited states. Of course, use of ROKS is inefficient (vs

TDDFT) for valence excitations but the overall accuracy of the approach indicates that it

is not just a niche method useful only when TDDFT fails. Ref 97 furthermore clearly shows

a significant reduction in error on using ROKS vs ∆SCF without AP, demonstrating the

utility of approximate enforcement of spin-purity in practice.

A very promising area of application for OO-DFT methods is spectroscopy of core elec-

trons. Excitations out of inner shells lead to substantial reorganization of the total electron

density (the remaining core electron can have a more compact orbital due to reduced repul-

sion, not to mention the relaxation of the valence density in response), making them chal-

lenging for LR methods. TDDFT errors can readily span from underestimation by ∼10 eV21

to overestimation by ∼10 eV (in the pure HF limit104), necessitating empirical translation of
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aug-cc-pVDZ elsewhere).
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(b) SRC1-R1/TDDFT, using aug-cc-pCVTZ on
C atoms and aug-cc-pVDZ on other atoms.

Figure 4: Comparison of computed C K-edge spectrum of thymine with experiment,103

without any empirical translation of spectra. The computed peaks were broadened by a
Voigt profile with a Gaussian standard deviation of 0.2 eV and Lorentzian γ = 0.121 eV. It
is worth noting that the maximum deviation between ROKS peaks and experiment is quite
small (0.25 eV, 289.40 eV vs 289.15 eV for the highest energy peak).

spectra for agreement with experiment (and motivating the development of specialized func-

tionals optimized solely for core-level excitations105). Even EOM-CCSD spectra often need

to be shifted by a smaller amount (∼ 1-2 eV) to align experimental peaks with computed

ones.106 OO methods thus appear to be well suited here, as was noted via early applications

of ∆SCF using HF.107 Ref 78 reported good results from ∆SCF for core-excitations (with-

out AP) with B3LYP. Ref 102 subsequently reported even better results via use of ROKS,

especially with the modern SCAN mGGA. In particular, SCAN obtains an RMSE of 0.2 eV

vs experiment for 40 core excitations out of 1s orbitals (K-edge) of C,N,O and F in small

molecules, which is quite low relative to experimental uncertainties of ∼ 0.1 eV. Similar

accuracy is also attained for 20 excitations out of 2p orbitals (L-edge) of Si, P, S and Cl.

Transition dipole moments computed from treating the KS determinants as pseudo wave

functions are also quite reasonable, as shown by the good agreement between experimental

and computed spectra.102 A representative case (C K-edge of thymine) is depicted in Fig

4a. It is worth nothing that TDDFT with the SRC1-R1 functional78 (which was specifically
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developed for prediction of K-edge spectra) yields a spectrum that agrees much less well with

experiment (as can be seen from Fig 4a). This highlights the utility of OO-DFT vs state of

the art LR-TDDFT approaches.

The origin of the very good behavior of ROKS for core excitations is however closely

connected to orbital optimization, as opposed to any specific choice of density functional.

HF alone predicts an RMSE of 0.6 eV vs experiment (see supporting information) for the 40

K-edges considered in Ref 102 (much better than mGGA functionals like B97M-V, that have

RMSE > 1 eV). Modern semi-empirical functional development mostly entails training and

selection based on chemically relevant ground state energy differences, and there is thus little

reason to believe that functionals with highly flexible forms would necessarily be successful

so far from their training regime. As a corollary, the simpler semi-empirical hybrid GGA

ωB97X-V outperforms vastly more complex forms like the ωB97M-V108 semiempirical hybrid

mGGA (RMSE 0.2 eV vs 1 eV, see supporting information). Within the mGGA space, SCAN

is a mostly non-empirical functional employing a large number of exact constraints, which

perhaps allows it to improve over HF (via inclusion of dynamical correlation) instead of

causing harm. Ultimately, the low computational cost of the SCAN mGGA permits ready

applicability to large systems like porphyrin,102 with fairly high accuracy.

Core spectra of open-shell systems also offer a chance to examine the efficacy of the

presented recoupling scheme for > 2 unpaired electrons. However, there are very few ex-

perimental spectra of unambiguously open-shell species, making it difficult to carry out

comparisons. Ref 72 examines a few such cases for radicals (doublets with 3 unpaired elec-

trons), determining that recoupling appears to do no harm and in fact often leads to better

agreement with experiment (over using mixed determinant energies). This makes recou-

pled OO-DFT very attractive for computing core-level spectra of open-shell systems, as LR

methods like TDDFT/EOM-CCSD yield spin impure states when there is a net breaking of

electron pairs, leading to rather suboptimal results at times. Comparison between OO-DFT

and EOM-CCSD for the allyl radical and the CO+ cation is supplied in Fig 5, which indicates
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(a) C K-edge of allyl radical.
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Figure 5: Comparison of computed (recoupled OO-DFT with SCAN and fc-CVS-EOM-
CCSD,109 with the aug-cc-pCVTZ basis) spectra with experiment, without any empirical
translation of spectra. The computed peaks were broadened by a Voigt profile with a Gaus-
sian standard deviation of 0.2 eV and Lorentzian γ = 0.121 eV. These results were first
reported in Ref 72.

quite good performance by the former (albeit with perceptible room for improvement).

In light of the aforementioned successes, it is reasonable to wonder what are the short-

comings of the OO-DFT methods. The most obvious one is the lack of a Hohenberg-Kohn

theorem for excited states,110 which indicates that there is no one-to-one mapping between

the excited state density and the external potential (i.e. multiple external potentials can

lead to the same excited state density). However, Ref 111 shows that there exists a one-

to-one mapping between the kth excited state density and the external potential, as long

as the external potential is purely Coulombic in character. It is therefore possible to define

subuniversal functionals Fk that can predict the energy of the kth excited state for applied

Coulombic potentials. More generally, it has also been shown112 that every extremal density

ρ(~r) of the exact ground state energy functional Ev[ρ(~r)] corresponds to an exact energy

eigenstate (although the converse is not true, and not all excited states have densities that

are stationary points of Ev[ρ(~r)]). In fact, if ρi(~r) is an extremum of Ev, Ev[ρi(~r)] corresponds

to the energy of the lowest energy state with density ρi(~r). This does indicate that use of

OO-DFT approaches to extremize approximate ground state functionals could be effective
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in targeting excited states, as long as there is no state with the same density that is of lower

energy. For instance, the lowest energy core-excited state should be well suited for OO-DFT,

as there should not be any lower energy state that has similar density (due to the presence

of the core-hole). In addition, Ref 111 shows that no two stationary states can have the

same density if the applied external potential is Coulombic, which is the case for chemical

systems not subjected to additional fields.

In practice therefore, states with a well-defined, unique electronic configuration (which

could aid in having an unique density even when subjected to a non-Coulombic potential),

that are “low energy” (likely characterizable by features such as a core-hole or subsystem

charge) would be best approximated by OO-DFT. An alternative perspective would be to

view the xc functional as merely a tool for adding dynamic correlation to a truncated wave

function. Therefore, any state which can be reasonably approximated by one/few deter-

minants that can be extremized via wave function theory, should be fairly well suited to

OO-DFT as a qualitatively similar extremum is likely to be present and the xc functional

only contributes a minor (but often chemically useful) correction to the energy. In fact, this

can be viewed as a reason why ground state KS-DFT has been immensely successful for

single-reference species (where a single determinant from HF is a good approximation). As

a corollary, excited states for which a reasonable truncated wave function model cannot be

developed (or optimized) are likely to be challenging for OO-DFT approaches based upon

KS functionals.

A related limitation is that approximate energy functionals are typically developed specif-

ically for the ground state, and therefore need not be successful in modeling excited state

extrema (especially ones that are very different from the ground state minima). This be-

comes quite apparent with more flexible functional forms like B97M-V and ωB97M-V, that

are very effective for ground state energies5,113 but are greatly challenged by core excitations.

It would therefore be interesting to see if effective density functionals explicitly designed for

excited state extrema can be developed, and if they would lead to significant improvement
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in accuracy over existing ground state functionals like SCAN that appear to perform fairly

well for excited state OO-DFT.

The multiconfigurational nature of certain excited states leads to an additional challenge

for ROKS. ROKS requires that the singly occupied orbitals of the excited state be distinct

from the doubly excited orbitals, and would not be able to handle states that are superposi-

tions between different excitations. In other words, a state of the form
c1√

2

(
|Φa

i 〉+
∣∣Φā

ī

〉)
+

c2√
2

(∣∣Φb
j

〉
+
∣∣∣Φb̄

j̄

〉)
would not be representable with ROKS if both a 6= b and i 6= j (however,

OO would ensure that things are fine114 if either a = b or i = j). The TDDFT solutions

corresponding to these states have significant contributions from multiple natural transition

orbitals (NTOs115), indicating “essential configuration interaction”. The presented recou-

pling scheme shares the same restriction in that it requires a specific set of singly occupied

orbitals, and cannot be applied to excitations that involve distinct sets of singly occupied

levels. More general ways to recouple multiple KS determinants therefore need to be ex-

plored in order to model such states. In the interim, the best option for modeling such

states is to use the dominant transition (or NTO pair), in the hope that the effect of the

other contributors would be folded in via the xc functional (much like ground state KS-DFT

applied to multireference species).

The OO problem with approximate functionals leads to an additional challenge in that

there are often more roots than the total number of states in Hilbert space64 (analogous

to the existence of multiple local extrema for multiconfigurational SCF116). This effect

can be observed quite clearly for core electrons for symmetric molecules like CO2. The

canonical molecular orbitals involving the O 1s orbitals are the gerade and ungerade com-

binations of these atomic orbitals. O K-edge excited states thus should have either of these

molecular orbitals as the core-hole. Unfortunately, delocalization error of approximate xc

functionals leads to a systematic underestimation of the energy of states with delocalized

core-holes.102,117 Use of HF instead leads to systematic overestimation on account of over-

localization error from lack of correlation, as has been long known.107,118 However, the O
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1s orbitals are essentially noninteracting and it is possible to converge orbital-optimized

solutions where the core-hole is entirely localized on one O atom. The resulting solutions

are symmetry broken, but yield very reasonable answers on account of being delocalization

free.102,117,119 Many OO approaches involving core-excitations consequently attempt to lo-

calize the core-hole, even if alternate solutions exist. Similar delocalization driven effects can

also be seen in the valence regime,120 such as the lowest energy triplet state for a H2O—Li+

supersystem with large interfragment separation. This state is of CT character from H2O to

Li+, and it is tempting to believe that routine UKS within the Ms = ±1 subspaces would

be adequate, as it is the ground state within the triplet manifold. Unfortunately, the lowest

energy triplet state predicted by most functionals (including range separated hybrids like

ωB97X-V or high HF exchange containing global hybrids like PBE50) contains fractional

charges on the H2O and Li fragments, and is thereby unphysical. The desired CT state of

H2O+—Li character can only be reliably obtained via explicitly providing the calculation

with a initial guess with correct fragment charges, and use of a robust solver like SGM

(or enforcement of constraints against charge leakage) to prevent variational collapse to the

unphysical, charge-delocalized state. However, clear solutions like core-hole localization or

fragment charge specification might not exist for many other applications, where it is not

immediately apparent which of the multiple possible OO solutions represent the best choice.

Construction of optimal guesses for initiating OO calculations is thus an important task,

as it would determine the nature of the final solution. Effective partitioning of the virtual

space into antibonding/Rydberg spaces (as well as proper localization of antibonding levels)

could be useful in this regard, as it would permit optimization of very specific diabatic states

that can be intuitively interpreted. Further work is however needed to fully characterize the

dependence of the final OO solution on the nature of the initial guess.

One often discussed ‘limitation’ of OO-DFT protocols like ∆SCF and ROKS is that they

do not guarantee that the excited state determinant/CSF is orthogonal to the ground state.

Ref 45 however argued that while the exact ground and excited state wave functions have zero
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overlap, there is no strict requirement that OO truncated wave function approximations to

these states be orthogonal to each other. In addition, the KS determinant is formally only

required to reproduce the electron density accurately,4 and need not actually be a good

approximation to the true wave function. That being said, a very large squared overlap

(∼ 50%) between ground and excited states could be a sign of partial variational collapse,

and can lead to systematic underestimation of excitation energies.82 However, initializing

the OO protocol with a configuration (nearly) orthogonal to the ground state (which is

guaranteed if a non-Aufbau configuration of ground state orbitals are utilized) along with a

solver (like SGM) that converges to the closest stationary point to this initial guess, should

help minimize the possibility of such issues. Indeed, the practical successes of these OO-

DFT methods (as described earlier) indicate that lack of orthogonality between ground

and excited state approximations is not a major drawback for predicting energies. Lack

of orthogonality however can also affect computation of oscillator strengths. The electronic

component of the transition dipole moment is dependent on the choice of origin if the ground

and excited states are not orthogonal,121 and thus naively computed oscillator strengths

would not be translationally invariant. However, translational invariance can be restored

via inclusion of the nuclear contribution to the dipole moment operator (which is our usual

route for generating spectra,72,102 such as Figs 4 and 5) or via symmetric orthogonalization,121

with both approaching yielding similar results for ∆SCF.121 Accurate OO-DFT spectra can

therefore be computed in spite of the overlap between ground and excited configurations.

It is also worth noting that very little work has been done with excited state specific

OO-DFT with double hybrid functionals, despite such functionals representing the most

accurate ground state functionals.122,123 This is likely a consequence of two factors: the

greater computational cost of double hybrid functionals and the remarkably slow convergence

of perturbation theory for spin-contaminated references.124 However, encouraging results

have been recently obtained with MP2 on top of excited state configurations optimized with

HF.49,97,125 This suggests that better results can potentially be obtained from double hybrid
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functionals (when computationally affordable), especially as OO-DFT orbitals are likely to

be superior to OO-HF.126

In summary, the purpose of this article has been to demonstrate that state-specific orbital

optimized DFT (OO-DFT) methods are remarkably accurate for a range of excited states

that include low-lying valence excitations, high-lying core excitations, some doubly excited

states, and low-lying charge-transfer excited states. Orbital optimization makes a very sim-

ple functional form appropriate for these applications in a way that is also physically inter-

pretable (for instance collective expansion or contraction of orbitals when charge is moved

from core to valence or donor to acceptor). OO-DFT with a single determinant (∆SCF)

is appropriate for triplet excitations, some doubly excited states of closed shell molecules,

and some states of open shell systems. Similarly, OO-DFT with a fixed superposition of two

determinants (which is the so-called ROKS method) is appropriate for singlet excitations

from closed shell ground states. We also discussed the generalization of ROKS to recouple

multiple determinants for low-spin excitations in open shell systems. It is important to em-

phasize that new developments in state-targeted orbital optimization,31,48,49,55–57,59,61–66 such

as our recent SGM method,31 were essential in enabling this recent flourishing of OO-DFT.

Indeed, with such algorithms to complement the seminal MOM method,45 the compute re-

quirements of OO-DFT are not much worse than for ground state DFT. This should allow

reliable ab-initio molecular dynamics calculations80,127,128 on arbitrary excited state surfaces,

without the risk of sudden state switching induced by variational collapse (as these mod-

ern algorithms should enable location of the closest stationary point from the results of

the preceding timestep). OO-DFT is thus emerging as a usable computational tool whose

utility (and limitations) can now be fully revealed through large-scale applications with its

availability in widely distributed software such as the latest version of Q-Chem.129
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