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simulations
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Abstract

Ab initio molecular dynamics is able to predict novel reaction mechanisms by di-

rectly observing the individual reaction events that occur in simulation trajectories. In

this article, we describe an approach for detecting reaction events from simulation tra-

jectories using a physically motivated model based on time series analysis of ab initio

bond orders. We found that applying a threshold to the bond order was insufficient

for accurate detection, whereas peak finding on the first time derivative resulted in

significantly improved accuracy. The model is trained on a reference set of reaction

events representing the ideal result given unlimited computing resources. Our study

includes two model systems: a heptanylium carbocation that undergoes hydride shifts,

and an unsaturated iron carbonyl cluster that features CO ligand migration and bridg-

ing behavior. The results indicate a high level of promise for this analysis approach to

be used in mechanistic analysis of reactive AIMD simulations more generally.
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1 Introduction

A central goal of theoretical chemistry is to provide sufficient insight into reactivity at the

molecular scale to inform the design of experiments including reaction routes, reaction con-

ditions, and catalysis.1–3 Computational studies of reaction mechanisms often start by hy-

pothesizing a reaction pathway from chemical intuition, followed by calculating the minimum

energy path and associated critical points (reactant, product, and transition state struc-

tures) with local optimization methods.4,5 The reaction rate associated with a pathway may

be estimated from the activation energy using kinetic models, enabling a semi-quantitative

comparison with experiment.6,7 The main drawback of this strategy is that only existing

hypotheses can be tested, and such hypotheses traditionally originate from chemical intu-

ition; in other words, the systematic generation of mechanistic hypotheses is an important

challenge for theoretical chemistry. Another aspect of this challenge is that many reaction

mechanisms proceed through multiple elementary steps and short-lived intermediates that

are difficult to experimentally characterize.

Recently, computational methods have been developed that automate the searching pro-

cedure by systematically applying basic rules to break and form chemical bonds in a combi-

natorial fashion.8–15 These methods, which are based on assuming general rules of reactivity

rather than specific mechanistic hypotheses, can greatly increase the automation in mechanis-

tic studies and have proven successful in applications.16–18 However, there are still limitations

to such approaches because they require assuming the basic rules of reactivity, which are

not fully understood; moreover, the relative positioning of reactants in multi-molecular or

roaming reaction pathways continues to be a challenge for rules-based approaches.

In the past few years, ab initio molecular dynamics (AIMD) has emerged as a useful

tool for the discovery of reaction mechanisms. In fact, classical molecular mechanics (MM)

simulations have long been used to discover pathways of protein folding and conformational

change;19–23 these involve changes in the protein backbone and side chain conformations as

well as intermolecular interactions, which do not require a quantum mechanical description.
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Consequently, the PES can be approximated using inexpensive force fields, allowing MM

simulations to routinely reach microsecond time scales and beyond. On the other hand, pre-

dictive sampling of a reactive system usually requires a quantum mechanical calculation of

the electronic wavefunction at every time step, which costs at least four orders of magnitude

more than evaluating a MM force field and usually scales less favorably with system size.

More recently, modern advances in electronic structure methods and accelerated hardware

implementations have resulted in speed-ups of 2-3 orders of magnitude for Hartree-Fock and

density functional theory (DFT) calculations,24–35 placing AIMD simulations on the thresh-

old of discovering reaction mechanisms that occur on nanosecond or longer timescales.36–41

Because reaction rates are exponentially decreasing functions of the activation barrier, it

is still highly challenging to map the chemically interesting reaction pathways in an unbiased

AIMD simulation. Recently, we and others have introduced specialized AIMD simulation

methods for accelerating the discovery of reaction pathways. The Pietrucci group introduced

topological-based permutation invariant “SPRINT” coordinates helped to address the iso-

mer degeneracy problem in metadynamics.42 The Pfaendtner group demonstrated how to

reduce computational cost and the need to manually specify reaction coordinates by using

parallel bias metadynamics using SPRINT coordinates as collective variables.43 The ab ini-

tio nanoreactor causes a large number of reactions to occur in a relatively short simulation

by periodically forcing the molecules in the simulation to undergo high-velocity collisions.36

Because the nanoreactor requires no specification of reaction coordinate, it is able to dis-

cover new pathways for interesting reactions such as the prebiotic synthesis of glycine and

sugars.36,44,45 As these simulations do not involve specifying reaction coordinates or desired

products, an automatic approach is needed to identify the potentially interesting reaction

events.

The recent emergence of AIMD simulations containing large numbers of reaction events

requires new theoretical tools for deriving useful knowledge from them. One of the principal

tasks is to identify the discrete transition between chemical structures from the continuous
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variables of the simulation trajectory. We recently introduced a procedure for detecting and

extracting reaction events based on analysis of interatomic distances, followed by a series of

optimization calculations to locate the minimum energy path associated with the observed

reaction.46 In a related work, Döntgen and coworkers developed an analysis approach for

reactive MD trajectories simulated using the ReaxFF force field, where the ReaxFF bond

order was used to detect reaction events and calculate reaction rates directly from the ob-

served events.47 Both studies noted that some ambiguity remains in reaction event detection,

as a number of empirical parameters (including covalent radii, ReaxFF parameters, and lag

times) were used to determine the threshold for what constituted a genuine reaction event in

the simulation. As these exploratory-type simulations are destined to become increasingly

important in simulation studies of reaction mechanisms, a greater amount of rigor and preci-

sion is clearly needed in the identification of the reaction events. Motivated by this need, we

would like to address the following questions: How can we properly define a reaction event

in an AIMD simulation? How can we systematically improve on reaction event detection

methods?

In this paper, we address these questions by introducing a new reaction event detection

method based on time series analysis of the AIMD trajectory. To develop this method,

a suitable set of reference reaction events is created by local energy minimization of each

structure on a reactive trajectory. The sequence of optimized structures is clustered into a

discrete number of chemical states, and the transitions in the sequence of states are used as

a reference dataset for the time series analysis. Our reaction detection approach is based

on the ab initio bond order index defined by Mayer.48 Our results show that the time series

analysis based on bond order indices is able to reproduce the reference data set accurately

using few parameters. An iron carbonyl cluster (Fe3(CO)9) previously studied theoretically

by Schaefer and coworkers49 and a heptanylium cation (C7H15
+) are used as a testing ground

for this method; our results indicate the AIMD simulation method is able to discover a

significant number of new local minima connected by low energy barriers at a far lower cost
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than optimizing entire trajectories. Our methods and results provide a foundation for more

chemically relevant understanding of reactive AIMD trajectories.

2 Theory and Methods

Here we briefly summarize the main considerations in the development of our reaction

detection model before describing individual aspects in more detail. This paper focuses

on reactions that involve rearrangements of bonding within a single molecule, though we

think making generalizations to reactivity involving several molecules should be conceptu-

ally straightforward. Because our reaction events involve making and/or breaking chemical

bonds, we intuitively expect the atom pair-wise bond orders (BO) will increase or decrease

when bonds are formed, broken, or undergo changes in electronic character. Thus, our model

will use the BO time series between all atom pairs as input data and detect reaction events

from changes in the time series. We use the ab initio bond order defined by Mayer as:

Mab[i] = 2
∑
µ∈a

∑
ν∈b

[
(PαS)µν(P

αS)νµ + (PβS)µν(P
βS)νµ

]
[i] (1)

where Pα,β is the one-particle density matrices for alpha and beta spin, S is the overlap

matrix, µ, ν are indices for atomic basis functions, the sums are restricted to functions

centered on atom indices a, b, and [i] indicates values at frame i in the simulation trajectory.

Thus, the bond order is defined as a discrete series spaced in time by the simulation time

step δ.

In the context of our work, “detection” refers to estimating or predicting the approximate

location of a reaction event. This definition requires introducing a set of reference reaction

events that represents the desired result given unlimited computing resources. A reference

reaction event is defined when the ab initio molecular dynamics trajectory crosses between

two catchments (energy basins) in configuration space that contain chemically different local

minima. Energy basins are separated by manifolds of local maxima (dividing surfaces), and
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we assume the minima are located in the interior of the catchment and away from dividing

surfaces, such that chemically different energy-minimized species will differ significantly in

their structures and BO matrices. Therefore, if we could carry out energy minimization of

every trajectory frame, the chemically distinct species and reaction events could be precisely

located by comparing the BO matrices of energy-minimized structures (Figure 1).
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Figure 1: Example MD trajectory (violet) with the optimization pathways for the discrete
time steps shown in red. Light blue boxes highlight where the trajectory crosses subdomains
in configuration space. These crossings are defined as reaction events.

The reference method is too computationally costly for routine applications because

energy minimization of every trajectory frame is significantly more expensive than the AIMD

simulation itself. Here, we have computed the reference reaction events to train the model

parameters for our two systems, the iron carbonyl cluster Fe3(CO)9 and heptanylium cation

C7H15
+; these systems have major differences in terms of their composition, bonding and
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coordination. By applying our method to both systems and comparing the results, we

characterize the parameter sensitivity of the reaction detection model and provide some

guidelines for when it is necessary to compute the reference reaction events for a system of

interest.

2.1 Computational Details

To generate a set of reference reaction events and bond order time series for both systems we

used unbiased, temperature-accelerated ab initio molecular dynamics simulations.50,51 For

both systems we used a Velocity Verlet integrator with a timestep of 1 fs and a Langevin

thermostat with an equilibrium temperature of 1000 K and a damping time of 1 ps−1. We

simulated the iron carbonyl cluster using the BP86 density functional approximation to-

gether with a double-ζ plus polarization (DZP) all-electron basis for all atoms including

iron, following Ref.49 The molecular dynamics simulation was propagated for a duration of

8,373 steps before terminating with a SCF convergence error. The heptanylium simulation

used the B3LYP density functional and a 6-31G* basis set, and the simulation was propa-

gated for 10,000 steps. To create the reference reaction sets, every AIMD frame was used

as the input coordinates for energy minimization at the same level of theory.52 All of the

simulations in this study were carried out using the TeraChem quantum chemistry software

package.24–26

2.2 Details of the model systems

Fe

Fe Fe

OC

OC CO

CO

OC COC
O

COOC

Figure 2: Starting structures of the two systems; heptanylium cation C7H15
+ (left) and iron

carbonyl cluster Fe3(CO)9(right).
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We chose two model systems to characterize the accuracy of our reaction detection model

in this study. The first system with simpler and more straightforward reactivity is the

heptanylium alkyl carbocation, C7H15
+. We expected the reaction events for the heptanylium

system to manifest as hydride and methyl shifts. This system was chosen so that generating a

tertiary carbocation was unlikely under our simulation conditions, as this would halt further

reactions because of their relative stability.

The iron carbonyl cluster we chose to study is Fe3(CO)9 which is the smallest in a

series of four clusters with increasing carbonyl count studied by Schaefer and coworkers.49

Because Fe3(CO)9 is unsaturated, this system presents interesting possibilities for CO ligand

migration and bridging multiple Fe atoms. These two systems were chosen to be chemically

distinct in order to illustrate the performance of the model when used in diverse applications.

2.3 Reference reaction events

We assume that the potential energy surface is divided into catchments or energy basins

denoted as Sk in the regions of the potential energy surface accessed by the AIMD sim-

ulation, where the index k represents all such basins that are sampled by one simulation.

These are bounded regions on the potential energy surface where each point in the re-

gion is mapped by energy minimization to a local minimum somewhere in the interior as

yk = Optimize (x ∈ Sk). Moreover, because we are interested in detecting reactivity, catch-

ments that correspond to chemically identical species and share any boundaries are grouped

together. Our task consists of finding the catchments that are visited by the AIMD tra-

jectory frames and identifying when the trajectory crosses over their dividing surfaces (i.e.

reaction events).

We expect that two local minima in different energy basins (yk,yl) with major differences

in chemical bonding should be distinguishable by comparing their BO matrices. Thus,

constructing the reference reaction events from an AIMD trajectory follows this procedure:

1. Calculate a series of optimized structures by local energy minimization of every frame
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in the simulation trajectory, i.e. y[i] = Optimize(x[i]).

2. Cluster the series of optimized structures using a chosen distance metric and clustering

algorithm. This produces a set of clusters {Ck, 1 ≤ k ≤ NC} where each trajectory

frame belongs to only one cluster and NC is the number of clusters. Each cluster k

corresponds to a distinct catchment Sk and a representative optimized structure yk.

The cardinality of the cluster is represented as |Ck|.

3. Assign each optimized structure to a cluster to produce a series of cluster numbers

{K[i], 1 ≤ i ≤ Nsteps}.

4. The time coordinates of reference reaction events are where the cluster number of the

optimized structure differs between two consecutive frames as:

Eref = {i | K[i] 6= K[i+ 1]} (2)

For two energy-minimized structures, we compute the bond-order distance metric (BODM)

as the L2 norm of the difference in bond order matrices:

d[i, j] =

√√√√Natom∑
a<b

(
M̃ab[i]− M̃ab[j]

)2
(3)

where the tilde over M̃ indicates that the BO matrix of the energy-minimized structure

is used. This idea is similar to, and indeed inspired by, the featurization of biomolecular

simulation trajectories such as contact maps, dihedral angles, and metrics such as RMSD

which are used in the construction of kinetic models.53,54 Our choice of using BO matrices

is an important distinguishing factor from earlier work, and justified because the BODM

directly measures changes in chemical bonding and should exclude other conformational

changes. (Remark: Two structures that differ only by the permutation of atomic indices

may also have significant BODMs. This does not significantly affect our main conclusions.)
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To cluster the optimized structures into discrete chemical species, we used a hierarchical

clustering algorithm with an average-linkage criterion as implemented in the SciPy pack-

age,55,56 where the input data is a matrix of the BODM values above. At the start of the

algorithm, each structure is assigned to a separate cluster. The pair of clusters with the

smallest distance is merged into a single cluster, and the new clusters are renumbered in

consecutive ascending order. The distance between the newly merged cluster Ck and all

other clusters Cl is defined as:

Dkl ≡
1

|Ck||Cl|
∑

i∈Ck, j∈Cl

d[i, j] (4)

The merging procedure is repeated until the smallest pairwise distance is larger than

a threshold parameter, resulting in the final set of clusters {Ck}. We chose a clustering

threshold parameter of 1.0 because it represents a difference of approximately one bond

between clusters, and because the number and contents of clusters was consistent with

our chemical intuition and visual examination of the optimized structures. A dendrogram

showing the successive merging of clusters as a function of the threshold parameter for each

system is given in Supporting Figures S1 and S2.

A sequence of cluster indices is obtained for the trajectory of optimized frames. For

each frame where the cluster number differs between the current and next frame, a reference

reaction event is defined. Each reference reaction event is a data structure containing the

current frame number, as well as the optimized structures and BO matrices of the current

and next frame. The BO matrices allow us to query which bonds were formed or broken in

the reaction event, which will become important in §2.5.

2.4 Reaction detection by time series analysis

Here we describe efficient and approximate models for estimating the reaction events via

direct analysis of the AIMD BO trajectory data. The purpose of these models is to reduce
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the number of computationally costly energy minimizations needed to find the reaction

events in the simulation. In our current context where the entire system consists of a single

molecule, the model predicts which time coordinates (i.e. frame numbers) are likely to be

near true reaction events, thereby restricting the energy minimizations to within small time

windows of these predicted frames. A high-quality model should be sensitive enough to

correctly detect most or all of the reaction events, while ruling out “unreactive” parts of the

simulation trajectory to reduce computational cost.

For a particular atom pair with indices a and b, the bond order time series {Mab} =

{Mab[i]; 1 ≤ i ≤ Nsteps} is a discrete sampling of the bond order as a function of time.

Because variations in the bond orders are slow compared to the time step, we assume alias-

ing effects from discrete sampling are negligible. {Mab} contains both long-lasting changes

that represent genuine reaction events and changes in chemical bonding, as well as higher-

frequency fluctuations that we are less interested in. Thus, we process {Mab} with a low-pass

filter to remove the fast fluctuations and retain the chemically important features of the time

series:

{Mab(σ)} = L
(
{Mab}, σ

)
(5)

Here, L is the function that performs the low-pass filtering (we used a sixth-order But-

terworth filter), the line over M indicates that the time series has been smoothed, and σ

represents the cutoff frequency parameter. σ can be optimized in order to produce the best

agreement between the detected reaction events and the reference set. One of our goals in

this paper is to show that the performance of this method is not highly sensitive to the choice

of σ for different applications.
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2.4.1 Thresholding on time series values

One intuitive approach to predicting reaction events is to detect when the smoothed time

series crosses over a threshold that separates bonded from non-bonded regimes. This ap-

proach is similar to our previous study46 where connectivity between atom pairs was defined

by comparing interatomic distances to a threshold derived from covalent radii. One advan-

tage of using bond orders is that the highly sensitive element-wise radius parameters are no

longer needed. Here we will show that applying a threshold to the bond order is insufficient

for detecting reactions, which motivates the time derivative approach in § 2.4.2.

Equation 6 is the set of predicted reaction events for atom pair (a, b) where Mab crosses

a threshold µ:

E0;ab(σ, µ) =
{
i
∣∣ Mab(σ)[i] > µ > Mab(σ)[i+ 1] ∨Mab(σ)[i] < µ < Mab(σ)[i+ 1]

}
(6)

The set of predicted reaction events for the entire system is found by taking the union over

all atom pairs:

E0 =
Natoms⋃
b>a=1

E0;ab (7)

However, we found that the reaction events identified in Equation 7 were incomplete, as

many reaction events could not be accurately predicted using a single threshold in the iron

carbonyl simulation.
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Figure 3: Top two panels: Raw (Mab, orange) and 40 cm−1 low-pass filtered (Mab, black)
time series of two selected bond orders. Bottom two panels: First time derivative of filtered
series (M

′
ab, green curve) with threshold µ = ±0.5σ (dashed lines). Intvl+;ab and Intvl−;ab

shown with light green shading. Detected reaction events E1;ab from the bottom two panels
are shown as blue dots across all panels. Molecule color scheme: iron: pink, carbon: gray,
and oxygen: red.

Figure 3 shows why applying a single threshold to the smoothed bond order time series

to detect reaction events can be challenging. In the upper panel showing the Fe-C bond

order there is a distinct increase from 0.0 to 0.9 near t = 1000 fs, indicating that a threshold

parameter of 0.1 − 0.8 would work well for this atom pair. However, the upper C-O panel

contains fluctuations in the bond order near t = 7000 fs that are indicative of changes in the

carbonyl ligand coordination to Fe, where the value of the bond order is consistently in the

1.9− 2.3 range. In order to detect any reaction events in the C-O time series, the threshold

would need to be much higher, around 2.0. If we were forced to use different thresholds
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for different kinds of bonds, then it would detract from the usefulness of the ab initio bond

order as a simple criterion for detecting reactivity.

Another drawback of applying a threshold directly to {Mab(σ)} is the risk of detecting

large numbers of false positives and false negatives. If the thresholds were chosen close

to the mean value of an oscillating BO time series, repeated crossings over the threshold

could cause many false positives. Although the number of oscillations may be reduced by

increasing the smoothing, it does not address the fundamental problem that the threshold

parameter is close to the mean value of the oscillation. In both upper panels of Figure 3,

there exist ranges of the threshold parameter that would contain many crossings due to

oscillations around an apparent mean. The risk of excessive false positives due to repeated

threshold crossings and false negatives due to missed crossings indicates that if we applied a

threshold to the bond order to detect reaction events, the results would be highly sensitive

to parameter choice, which negatively affects the utility of the method. In what follows, we

show that applying a similar thresholding approach to the bond order time derivative is a

simple way to address many of these issues.

2.4.2 Peak finding on first time derivative

Once the raw time series has been filtered to remove high-frequency components (Equation

5), the first time derivative of the smoothed time series is taken:

M
′
ab(σ)[i] ≡ d

dt

(
Mab(σ)[i]

)
≈ Mab(σ)[i+ 1]−Mab(σ)[i− 1]

2δ
(8)

The prime on M
′
ab indicates the first time derivative, approximated via central difference on

the discrete values of Mab. Next, a threshold (µ) is applied to M
′
ab(σ):
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Intvl+;ab ≡
{

(u, v)
∣∣∣ M ′

ab(σ)[t] > µ ∀ t ∈ (u, v) ∧M ′
ab(σ)[u] ≤ µ ∧M ′

ab(σ)[v] ≤ µ
}

(9)

Intvl−;ab ≡
{

(u, v)
∣∣∣ M ′

ab(σ)[t] < −µ ∀ t ∈ (u, v) ∧M ′
ab(σ)[u] ≥ −µ ∧M ′

ab(σ)[v] ≥ −µ
}

(10)

Here, Intvl+;ab and Intvl−;ab are sets of continuous time intervals for which {M ′
ab(σ)} is

above +µ and below −µ respectively. We then collect the time-coordinates of the positive

maxima of {M ′
ab(σ)} above +µ and the negative minima below −µ as:

E1;ab(σ, µ) ≡

{
t

∣∣∣∣∣ arg max
t∈(u,v)

M ′
ab(σ)[t] ∀ (u, v) ∈ Intvl+;ab

}
⋃{

t

∣∣∣∣∣ arg min
t∈(u,v)

M ′
ab(σ)[t] ∀ (u, v) ∈ Intvl−;ab

} (11)

As a result, we obtain E1;ab(σ, µ) as the final set of reaction events derived from the BO

time derivative for atom pair ab. The smoothing, derivative, and thresholding steps are

illustrated in Figure 3. The time-coordinate of every blue dot (identified in the bottom two

panels) represents the set of detected reaction events E1;ab(σ, µ) for the given atom pair ab.

Figure 3 shows the advantage of using BO time derivatives instead of applying a threshold

directly on the BO values, because the derivative approach can detect reaction events from

both the Fe-C and C-O time series whereas the same direct threshold cannot be used for

both atom pairs. The fundamental assumption of this approach is that there are no reaction

events that change the BO time series very slowly, as that would not be detected by the

threshold. We expect this assumption to be generally valid due to the relatively short

distance ranges over which chemical bonds are broken and formed, and the atomistic forces

along the reaction pathway would prevent bond orders from changing very slowly.

Comparisons to the reference set of reaction events can be made in two ways: either on

an “bond-wise” basis, or on an “unified” basis where we take the union over all atom pairs.

Thus, the unified set of reaction events is taken by collecting all reaction events for all atom
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pairs in the system as:

E1 =
Natoms⋃
b>a=1

E1;ab (12)

2.5 Receiver operating characteristic objective function

If our model were perfectly accurate, then for every reaction event predicted, the pair of

structures preceding and following the event will minimize to chemically different structures,

enabling us to carry out further studies such as reaction pathway optimizations. Because

the predictor has imperfect accuracy, the predicted event is generally not identical to the

actual event, and the pair of frames corresponding to the current and next trajectory frame

will minimize to chemically identical structures. Thus, we should quantify the accuracy of

our predictions using some measure of distance to the actual reaction events, or equivalently,

by the amount of computational cost it requires to find the actual reaction events starting

from the predicted ones. Because we have computed Eref in § 2.3, our goal is to optimize

the parameters and characterize the accuracy of E1, thus enabling its application with more

confidence in future applications where we do not have Eref .

In the ideal case, the set of detected reaction events and actual events are equal, and the

complete set of reactant and product structures could be found by two energy minimizations

for each detected reaction event, with a computational cost of 2 · |Eref | � Nsteps times the

cost of a single energy minimization. On the other hand, if the predicted reaction event is

located close in time to the actual event, then it could be found by energy minimizing more

structures in a time window of increasing size around the detected event. As the time window

around each element of E1 is increased (both forwards and backwards in time), an increasing

number of true reaction events will be found, and the computational cost is increased as

well. In the limiting case, the window size is equal to the entire trajectory length, and all

of the reaction events in Eref are found at a cost equal to computing Eref itself. Thus, the

detection method is deemed to be useful if it detects a greater fraction of reaction events in
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Eref than the fraction of the trajectory that is optimized with a chosen value of the window

size. By increasing the window size over a range (0, Nsteps), we can interpolate between these

two limits and construct a receiving operator characteristic (ROC) objective function.

The ROC is a commonly used statistical approach for evaluating the diagnostic ability of

a binary classifier, created by plotting the true positive rate (TPR) vs. the false positive rate

(FPR) as a sensitivity threshold is varied.57,58 In our definition of the ROC, we use a time

window of variable size n · δ representing the number of trajectory frames being optimized

in the neighborhood of each detected reaction event in E1. The smallest possible set of

optimized frames X (0) corresponds to a window size of zero:

X (0) = E1 (13)

where the superscript on X is the window size.

For any window size w, the set of frames being minimized X (w) may be defined as:

X (w) =
{
i+ n

∣∣ i ∈ X (0),−w ≤ n ≤ w
}
∩ T (14)

X (w) is then used to determine the true positive rate (TPR(w)) and false positive rate

(FPR(w)). TPR(w) is the amount of reference reaction events in Eref included in the opti-

mized frames X (w) divided by the total number of reference reaction events |Eref |. FPR(w)

is calculated as the fraction of trajectory frames not containing reaction events included in

X (w). These functions are defined as:

TPR(w) =

∣∣X (w)
⋂
Eref
∣∣

|Eref |
; FPR(w) =

∣∣X (w) − Eref
∣∣

|T − Eref |
(15)

The parametric curve (FPR(w),TPR(w)) is traced out as w increases, and the ROC objective

function φ(σ, µ) is calculated as the area under the parametric curve as shown in Figure 4.
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Figure 4: Left panels: Reference reaction event locations (red), BOTS reaction event loca-
tions (blue), broadening time windows (orange wedges) around BOTS reaction events. Top
panels: Magnification of a 100-frame sequence of the trajectory showing the expanding time
window. Bottom panels: Entire trajectory with sufficiently large window size for maximal
true positive rate. Right panels: Plot of TPR(w) vs. FPR(w) (Equation 15) where orange
region indicates the current value of w. The area under the whole curve is the ROC objective
function.

The ROC score has an upper bound of 1.0 corresponding to perfect accuracy, i.e. all of

the true reaction events are found using a window size of zero, whereas scores of 0.5 or lower

indicate the method has no predictive power beyond a random number generator.

2.6 Bond-wise criterion for reaction detection

The procedure defined above uses a unified set of detected reaction events across all atom

pairs (Equation 12) to predict the total set of reaction events in the entire system. This
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approach was found to be problematic because it ignores the local character of reaction

events, i.e. a single reaction event involves changes in bond order for a particular subset

of atom pairs. If the predicted reaction event could be mapped to an actual event where

different bonds are broken or formed, then it would not be possible to identify the reactive

sites within the system; this would become an important deficiency of the method for systems

that contain multiple molecules. To resolve this issue, we defined a “bond-wise” criterion

that ensures the detected and actual reaction events can only be matched if the changes in

the pairwise bond orders are similar, which is adopted in the work.

reference 
reaction 

event

BOTS 
reaction

event

11
11

1 3 1 3

reference 
reaction 

event

BOTS 
reaction

event

Figure 5: Left: Raw and smoothed bond order time series. Top: Optimized positions of
atoms. Reference reaction event near 1000 fs experienced a large change in its optimized
BO matrix from atom pair (1, 11). Bottom: BOTS method predicting a reaction event by
identifying extrema in the first time derivative of the BO time series beyond a threshold.
Right: The BOTS-predicted reaction event in (1, 11) is compared to the reference reaction
event for that atom pair.

In the bond-wise ROC, illustrated in Figure 5, predicted reaction events in E1;ab can

only be matched to reference events that involve significant changes in the BO of atom pair
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ab. This procedure involves defining the pairwise BO difference between clusters of energy-

minimized structures. We first define an averaged BO matrix over the energy-minimized

structures within the cluster as:

M̂ab[i] ≡
1

|CK[i]|
∑

j∈CK[i]

M̃ab[j] (16)

where K is a cluster index, i, j are frame indices and a, b are atom indices. This enables the

definition of absolute pairwise BO difference between clusters as:

∆ab[i] ≡ abs(M̂ab[i+ 1]− M̂ab[i]) (17)

The reference reaction events involving atom pair (a, b), given by Eref,ab, is defined as:

Eref,ab = {i |∆ab[i] ≥ 0.5 max(∆[i])} ∩ Eref (18)

where ∆[i] is the BO difference matrix between clusters K[i], K[i+ 1] and the maximum is

taken over all pairs of atoms. Thus, each individual event in Eref may be included in one or

more bond-wise sets Eref,ab.

The trajectory frames being optimized within a time window w of E1;ab is denoted using

X (w)
ab and defined in a similar manner to Eqs.13-14 with E1;ab replacing E1. The true pos-

itive rate with the added bond-wise criterion is then defined by taking the union over all

successfully found reaction events in the numerator:

TPR′(w) =

∣∣∣∣Natoms⋃
b>a=1

(
X (w)
ab

⋂
Eref;ab

)∣∣∣∣
|Eref |

(19)

The corresponding false positive rate represents the ratio of all energy-minimized frames

not corresponding to reaction events in the numerator, and the same denominator as in

Equation 15. Due to the extra condition imposed by the bond-wise criterion, the numerator
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may slightly exceed the denominator when
∣∣X (w)

∣∣ approaches the trajectory length; the

FPR is set equal to 1.0 when this occurs. Additionally, the predicted reaction events from a

random number generator no longer result in a ROC of 0.5 due to the additional conditions

imposed on matching a reference reaction event to a predicted one.

FPR′(w) = min


∣∣∣∣X (w) −

Natoms⋃
b>a=1

(
X (w)
ab

⋂
Eref;ab

)∣∣∣∣
|T − Eref |

, 1

 (20)

Similar to before, the bond-wise ROC φ′(σ, µ) is calculated as the area under the parametric

curve (FPR′(w),TPR′(w)). We will drop the primes in the next section, as our results will

use the bond-wise criterion exclusively.

3 Results and Discussion

In this section, we characterize the performance and parameter sensitivity of our reaction de-

tection models. The primary means of measuring performance is the ROC φ(σ, µ) discussed

above, and the parameter sensitivity is characterized by observing how the ROC varies with

respect to its two parameters: the cutoff frequency in the low pass filter σ (given in cm−1,

and the threshold on the time derivative µ given in units of multiples of σ. Because the

parameter space is two-dimensional, the global optimum and parameter sensitivity can be

obtained by plotting φ(σ, µ) as a heat map.

3.1 Heptanylium cation

The reaction events observed in the AIMD trajectory for heptanylium cation (C7H15
+)

mostly involve hydride shifts where H– is transferred from a non-terminal CH2 group to

the neighboring trivalent carbon with a formal positive charge. The energy-minimized local

minima, shown in the top row of Figure 7, include carbocation species with a formally pos-
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itive trivalent carbon (clusters 3-6) as well as carbonium species with a pentavalent carbon

(clusters 1-2). The heat map for heptanylium in Figure 6 shows that the ROC objective

function φ(σ, µ) has values above 0.95 in a broad region of parameter space, indicating a

high degree of accuracy in detecting reaction events that is not highly sensitive to param-

eter choice. The objective function value indicates that most or all of the predicted events

with only small time differences from the reference events. The global optimum is given as

φ(σ = 140 cm−1, µ = 1.0) = 0.97.
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Figure 6: Heat map of bond-wise objective function scores for C7H15
+ using different com-

binations of σ and µ. Black contour indicates scores above 0.95.

Figure 7 examines the level of agreement between predicted and reference reaction events

using the optimal parameter combination of σ = 140cm−1 and µ = 1.0σ identified from

the heat map. There are 17 predicted and 13 reference reaction events respectively, and

the maximum time difference between any reference event and the nearest predicted event

that satifies the bond-wise criterion was 42 frames. The set of energy-minimized trajectory

frames using a window size of 42 (X (42)) covers 7.9% of the whole trajectory, which is another

indicator of the accuracy of the reaction detection model. Figure 7 also shows the starting
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and ending cluster numbers for each reference reaction event. The colors of arrows indicate

the time difference between the reference and predicted reaction events. From this data, we

observed that reference reaction events have a tendency to occur in multiplets due to re-

crossing of dividing surfaces. Some reference reaction events occur in closely spaced opposite

pairs, such as cluster number 6 which is visited once from cluster number 5.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6

Figure 7: Summary of reaction events and detection model in heptanylium cation (C7H15
+)

simulation trajectory. Top: Chemically distinct clusters found after minimizing all trajectory
frames followed by clustering. Bottom: Comparison of reaction events for reference and
BOTS predictions. Horizontal coordinates of arrows indicate the time step (x axis not to
scale), vertical coordinates indicate starting and ending cluster, and color indicates temporal
proximity to nearest BOTS prediction. Parameter combination of σ = 140cm−1 and µ = 1.0σ
was chosen from the optimal parameter range shown in Figure 6.
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3.2 Iron carbonyl cluster

The AIMD trajectory for the iron carbonyl cluster begins with an optimized structure re-

ported by Schaefer and coworkers,49 denoted as “9a” in their publication. This system is

characterized by nearly constant, almost fluid migration of carbonyl ligands throughout the

duration of the simulations, whereas the Fe atoms move more slowly due to their increased

mass. The carbonyls migrate by breaking and forming coordinations with individual irons

and breaking and forming bridging relationships across multiple irons.

The reactivity in this system is more difficult to characterize compared to the heptanylium

system for several reasons. One reason is that the number of chemically distinct clusters

and reaction events was simply higher in this trajectory. Perhaps more importantly, the

chemical bonding in this system is less discrete compared to the previous case, because the

Fe-C and Fe-Fe bond orders of the energy minimized structures are more broadly distributed

between 0 and 1. This is also evident in the dendrogram of Figure S2, which shows that

the number of clusters and reference reaction events has a significant dependence on the

clustering threshold. Thus, this system approaches the limits of our basic assumptions that

the potential energy surface consists of discrete and well-separated chemical species.
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Figure 8: Heat map of ROC objective scores scores for Fe3(CO)9 as a function of σ and µ.

The heat map for the Fe3(CO)9 system is shown in Figure 8. Compared to the C7H15
+system,

the objective function scores are generally lower and there is no parameter combination that

gives a score above 0.9, but there still exists a region of parameter space that gives the

optimal result as indicated by the orange area. These ideal parameter combinations occur

lower σ values and lower µ values than in Figure 6, which we think are due to the slower

overall dynamics of the system, owing to the increased mass of Fe and perhaps the rela-

tively flat potential energy surface along reaction coordinates. The difference in optimal

parameters between the heptanylium and the iron carbonyl simulation trajectories indicates

that this method is not completely system independent. However, it does appear possible

to choose parameter sets based on the elemental composition of the system without needing

to determine parameters for each individual AIMD trajectory.
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cluster 1 cluster 2 cluster 7 cluster 8

Figure 9: Summary of reaction events and detection model in Fe3(CO)9 simulation tra-
jectory. Top: Selection of chemically distinct clusters found after minimizing all trajectory
frames followed by clustering. All clusters in Supporting Figure S8. Bottom: Comparison
of reaction events for reference and BOTS predictions. Horizontal coordinates of arrows
indicate the time step (x axis not to scale), vertical coordinates indicate starting and end-
ing cluster, and color indicates temporal proximity to nearest BOTS prediction. Parameter
combination of σ = 40cm−1 and µ = 0.7σ was chosen from the optimal parameter range
shown in Figure 8. Molecule color scheme: iron: pink, carbon: gray, and oxygen: red.

A representative parameter set obtained from the optimal range in Figure 8 for Fe3(CO)9

is given by σ = 40cm−1 and µ = 0.7σ. Using those parameters, Figure 9 shows the temporal

proximity of reference reaction events to the nearest BOTS predictions that satisfy the bond-

wise criterion. The data shows that reference reaction events have a strong tendency to be

grouped together as the dividing surface is crossed multiple times within a short simulation

time. There is also a large variation in the “difficulty” of detecting certain reaction events vs.

other ones, as indicated by the temporal distance between the reference reaction event and
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the closest detected event. If a window size of 150 frames is used, 87% of reference reaction

events can be found, which would require energy-minimizing 50% of the trajectory frames.

To find the remaining 13% of reference reaction events in this trajectory, the time window

needs to be 310 frames, which covers 68% of the trajectory. Closer inspection of the most

difficult reference reaction events reveals that they occur in closely spaced opposite pairs,

where the cluster index jumps to a new value for ∼10 frames then back again. Thus, we

think that for challenging systems such as these, it may not be necessary to find 100% of the

reaction events in order to get a comprehensive picture of the reactivity of the system. In

applications where computational cost is a critical concern, the reference reaction events may

be found more quickly (if not as thoroughly) using other methods such as skipping frames

when extending the window, that may be more relevant as post-processing approaches than

objective functions. In this context, the objective function score should not be seen as a

literal measure of computational cost savings, but rather as a measure of the accuracy of

reaction event detection.

4 Conclusion

This paper describes how the time series analysis of bond orders is able to produce accurate

predictions of the spatial and temporal locations of reaction events in reactive ab initio

molecular dynamics trajectories. Reaction events in simple systems like hydrocarbons can

be predicted with great accuracy; more complex and fluxional systems like iron carbonyl

clusters contain reaction events that may still be identified, though not as easily. The

accuracy of reaction event prediction can translate into more efficient computations, as it

reduces the portions of the simulation trajectory that need to be examined in greater detail

using methods such as geometry optimization. Our reaction detection method contains two

adjustable parameters that are not fully system independent, but the optimized parameters

of a system are expected to be broadly useful for simulations of chemically similar systems.
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A natural extension of this research would be to identify reaction events in multi-

molecular simulations in a more rigorous manner. The challenges to be addressed include

how to identify the subset of atoms in the overall system that are involved in a given reaction

event, which could also be informed by analysis of the bond order matrix. Because the bond

order matrix contains rich information about the chemical structure of the system, it might

also be a useful collective variable for future metadynamics or other enhanced-sampling sim-

ulations to rapidly explore the chemical space. We anticipate that the bond order matrix

will play an increasingly important role in reaction discovery as these methods continue to

be developed and applied to chemical problems.
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art, J.; Mart́ınez-Núñez, E. tsscds2018: A code for automated discovery of chemical

reaction mechanisms and solving the kinetics. J. Comput. Chem. 2018, 39, 1922–1930.

(42) Pietrucci, F.; Andreoni, W. Graph theory meets ab initio molecular dynamics: Atomic

structures and transformations at the nanoscale. Phys. Rev. Lett. 2011, 107 .

(43) Fu, C. D.; Pfaendtner, J. Lifting the Curse of Dimensionality on Enhanced Sampling of

Reaction Networks with Parallel Bias Metadynamics. J. Chem. Theory Comput. 2018,

14, 2516–2525.

(44) Das, T.; Ghule, S.; Vanka, K. Insights Into the Origin of Life: Did It Begin from HCN

and H2O? ACS Cent. Sci. 2019, 5, 1532–1540.

(45) Meisner, J.; Zhu, X.; Mart́ınez, T. J. Computational Discovery of the Origins of Life.

ACS Cent. Sci. 2019, 5, 1493–1495.

(46) Wang, L. P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J. Automated Discovery

and Refinement of Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput.

2016, 12, 638–649.

(47) Döntgen, M.; Przybylski-Freund, M.-D.; Kröger, L. C.; Kopp, W. A.; Ismail, A. E.;

Leonhard, K. Automated Discovery of Reaction Pathways, Rate Constants, and Transi-

33



tion States Using Reactive Molecular Dynamics Simulations. J. Chem. Theory Comput.

2015, 11, 2517–2524, PMID: 26575551.

(48) Mayer, I. Bond order and valence indices: A personal account. J. Comput. Chem. 2007,

28, 204–221.

(49) Wang, H.; Xie, Y.; King, R. B.; Schaefer, H. F. Remarkable Aspects of Unsaturation

in Trinuclear Metal Carbonyl Clusters: The Triiron Species Fe3(CO)n (n = 12, 11, 10,

9). J. Am. Chem. Soc. 2006, 128, 11376–11384, PMID: 16939260.

(50) Sorensen, M.; Voter, A. Temperature-accelerated dynamics for simulation of infrequent

events. J. Chem. Phys. 2000, 112, 9599–9606.

(51) Xie, L.; Zhao, Q.; Jensen, K. F.; Kulik, H. J. Direct Observation of Early-Stage Quan-

tum Dot Growth Mechanisms with High-Temperature Ab Initio Molecular Dynamics.

J. Phys. Chem. C 2016, 120, 2472–2483.

(52) Wang, L. P.; Song, C. Geometry optimization made simple with translation and rotation

coordinates. J. Chem. Phys. 2016, 144 .

(53) Harrigan, M. P.; Sultan, M. M.; Hernández, C. X.; Husic, B. E.; Eastman, P.;

Schwantes, C. R.; Beauchamp, K. A.; McGibbon, R. T.; Pande, V. S. MSMBuilder:

Statistical Models for Biomolecular Dynamics. Biophys. J. 2017, 112, 10 – 15.

(54) Husic, B. E.; Pande, V. S. Markov State Models: From an Art to a Science. J. Am.

Chem. Soc. 2018, 140, 2386–2396, PMID: 29323881.

(55) Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open source scientific tools for Python.

http://www.scipy.org/.

(56) Bar-Joseph, Z.; Gifford, D. K.; Jaakkola, T. S. Fast optimal leaf ordering for hierarchical

clustering. Bioinformatics 2001, 17, S22–S29.

34

http://www.scipy.org/


(57) Hanley, J. A.; McNeil, B. J. The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 1982, 143, 29–36.

(58) Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874.

35


	Introduction
	Theory and Methods
	Computational Details
	Details of the model systems
	Reference reaction events
	Reaction detection by time series analysis
	Thresholding on time series values
	Peak finding on first time derivative

	Receiver operating characteristic objective function
	Bond-wise criterion for reaction detection

	Results and Discussion
	Heptanylium cation
	Iron carbonyl cluster

	Conclusion
	Acknowledgements
	References



