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Research paper 

A fractal model of granitic intrusion and variability based on 
cellular automata 

Yihui Xiong a,b, Renguang Zuo a,*, Keith C. Clarke b,** 

a State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China 
b Department of Geography, University of California, Santa Barbara, CA, USA   
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A B S T R A C T   

Among the various mechanisms for magma ascent and emplacement, rock fracturing is a highly significant 
factor. In this study, a cellular automaton based on the Olami-Feder-Christensen model was used to generate a 
self-organized network in which magma can ascend and be arrested to form granitic intrusions under the in
fluence of their buoyancy. The model embodies the ascent of discrete magma batches in a stepwise style by 
opening the fractures and then closing them after passage of the magma. In the model, magma ascends towards 
the subsurface via self-organized networks of rock fractures as long as the density of the surrounding rocks is 
greater than that of the magma. If magma rises to a zone with negative buoyancy, it stops and starts to solidify; 
thus forming granitic intrusions. Two fractal dimensional measures, perimeter-area (P-A) and number-area (N- 
A), were used to quantify the irregularity and spatial distribution of the modeled intrusions. The fractal 
dimension DAP of P-A, as well as the fractal dimension DP of the perimeter, show that the irregularity of the 
intrusions increases as the thickness of the negative buoyancy region increases. The N-A exponent D reflects the 
irregular size and spatial scale-invariance of the intrusions, and an abrupt inflection point occurs at an area of 
100 cells, owing to the coalescence of small batches of intrusions into a larger intrusion. The scale-invariance 
exhibited by this system indicates that magma ascent and the formation process of granitic intrusions is a self- 
organized critical process and we demonstrate that a cellular automaton and fractal model is suitable for 
capturing, quantifying and modeling the spatial and temporal evolution of complex granitic intrusions.   

1. Introduction 

Magma is the molten raw material from which all igneous rocks are 
derived (Bowen, 1947). Understanding the processes by which magma 
creates solid rock is important because it is a point of beginning of the 
rock cycle. It has been widely observed that the vast majority of earth’s 
magma never reaches the surface to cause an eruption (Dahm, 2000; 
Gudmundsson and Brenner, 2001; Pinel and Jaupart, 2004; Maccaferri 
et al., 2011, 2016; Rivalta et al., 2015); most of them are emplaced in the 
crust, and form either sills or dikes, or are assembled into plutons and 
laccoliths (Gudmundsson et al., 1999; Gudmundsson and Brenner, 2001; 
Burchardt, 2008; Gudmundsson, 2011; Menand, 2011). 

The formation of granitic intrusions involves four stages, from 
melting (M), segregation (S), and ascent (A), to emplacement (E), 
spanning a huge range of geographical scales ranging from 10� 5 m in the 
form of partial melting to 106 m in the form of plutons and batholiths 

(Petford et al., 2000). Many mechanisms perform magma transport be
tween their mid/lower crustal source region and the upper crustal 
emplacement levels. This process would separate the initial melt 
segregation into veins, followed by melt accumulation into larger vol
umes, and then by ascent of the magma, typically in dykes or hydro
fractures, which finally lead to emplacement. The mechanisms that 
cover the whole MSAE process mainly consist of diapirism (Paterson and 
Vernon, 1995), pervasive flow (Weinberg, 1999; Brown and Solar, 1999; 
Collins and Sawyer, 1996), conventional dykes (Petford et al., 1993, 
1994; Brown, 1994), and self-propagating hydrofractures (Weertman, 
1971; Clemens and Mawer, 1992; Lister and Kerr, 1991; Dahm, 2000; 
Bons and van Milligen, 2001; Bons and Arnold, 2003; Bons et al., 2004). 
However, several studies regard diapirism as an insufficient mechanism 
for granitic magma ascent and emplacement (Clemens and Mawer, 
1992; Vigneresse and Clemens, 2000; Petford et al., 2000). Pervasive 
flow typically occurs when the melt connectivity threshold is overcome, 
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and an interconnected fracture network (e.g. pores, veins and dykes) is 
formed (Vigneresse et al., 1996; Weinberg, 1999; Vigneresse and 
Clemens, 2000). This mechanism for intrusion is attractive because of its 
ability to explain the entire MSAE process from how the smallest frac
tures feed into the largest dykes and subsequently feed plutons (Wein
berg, 1999; Brown and Solar, 1999). However, whether a fully 
connected fracture network can form in reality is doubtful (Bons et al., 
2004, 2009). 

Research has also shown that local connectivity within a fracture 
network may also result in magma migration and accumulation through 
self-propagating hydrofractures (Weertman, 1971; Bons and van Milli
gen, 2001; Bons et al., 2004). Weertman (1971) presented the notion that 
magma could rapidly ascend within isolated hydrofractures. When the 
fractures filled with magma in the model exceed a critical crack length, 
the effective over-pressure leads to a widening of the upper tip of the 
fracture, which can then propagate upward owing to density differences 
within the magma and the surrounding rocks. Simultaneously, effective 
under-pressure closes the fracture at the lower tip at the same time 
(Weertman, 1971; Maaløe, 1987; Bons and van Milligen, 2001). After the 
instability leading to the propagation of the hydrofracture, magma 
transport in mobile hydrofractures would be stepwise and discontinuous 
interactions, and would aggregate with other mobile hydrofractures to 
promote accumulation of magma from migmatites to its final emplace
ment in plutons (Bons and van Milligen, 2001; Bons et al., 2004). Such 
stepwise transport and accumulation of magma has also been used to 
explain volcanic eruption activity (Scandone et al., 2007). 

A conceptual model for the magmatic system, inspired by Bons et al. 
(2001, 2004), was developed by Scandone et al. (2007), who suggested 
that the storage unit of the feeding system for eruptive volcanoes is 
shallow discrete magma batches, instead of a deep magma chamber 
linked to the surface through a fully connected conduit. Individual 
magma batches segregated from the magma reservoir are allowed to 
transport in a stepwise style through self-organized crack networks by 
opening and then closing them after their passage. 

Both analog models (Bons and van Milligen, 2001; Urtson and Soe
soo, 2007, 2009) and numerical simulations (Vigneresse and Burg, 
2000; Bons and van Milligen, 2001; Bon et al., 2004) have demonstrated 
that the distribution of melt batch volumes follows a power-law rela
tionship. In addition, a statistical model describing magma ascent by 
injection of discrete batches of magma into a preformed crack network 
suggests that the distribution of the erupted magma volumes also ex
hibits a power-law relationship (Piegari et al., 2008, 2013). Volumes of 
leucosomes, veins, or plutons cannot typically be directly measured in 
the geological record, where observation is normally confined to 
two-dimensional outcrops, one-dimensional scan lines or drill cores. The 
spatial distribution of the thickness of leucosomes in migmatites (Tan
ner, 1999; Bons and Arnold, 2003; Bons et al., 2004; Bonamici and 
Duebendorfer, 2010; Hall and Kisters, 2012; Yakymchuk et al., 2013); 
the thickness of granites veins or dikes (Johnston and McCaffrey, 1996; 
Brown, 2005); pluton area distribution (Soesoo and Bons, 2015); and the 
length and thickness of granitic intrusions (McCaffrey and Petford, 
1997; Cruden and McCaffrey, 2001; Koukouvelas et al., 2006) in the 
field have been documented as showing a power-law relationship. 
Soesoo and Bons (2015) revealed that the power law distribution 
exponent of leucosome widths in the migmatites and in intrusion areas 
in the map view are closely related to the volume-distribution exponent, 
which further indicates that power-law distributions of melt batches are 
indeed found in nature (Bons et al., 2004). As a signature of 
self-organized criticality (SOC, Bak et al., 1987), the widespread 
power-law relationships suggest that melt segregation, magma ascent 
and emplacement in plutons are of the SOC type from the bottom up 
(Brown, 2007, 2013; Soesoo and Bons, 2015). SOC is typically observed 
in slowly driven non-equilibrium systems with many degrees of freedom 
and nonlinear systematics feedbacks. SOC reflects complex system 
behavior, showing the property of spatial and temporal scale-invariance 
and is sensitive to critical thresholds where phases change, and the 

system seeks a new attractor (Bak et al., 1987). 
As the evolution of magmatic systems is long-lasting and occurs deep 

in the crust, it cannot be directly observed. Numerical simulation pro
vides an alternative research method to reproduce the process. Several 
numerical models based on differential equations have been constructed 
to further understand the ascent and emplacement of magma (Dahm, 
2000; Gerya and Burg, 2007; Maccaferri et al., 2010; Keller et al., 2013; 
Schubert et al., 2013; Barnett and Gudmundsson, 2014; Cao et al., 2016; 
Gorczyk and Vogt, 2018). However, in this type of modeling method it is 
difficult to quantify the wide behavioral variability of complex systems 
(Piegari et al., 2013). A non-conventional numerical approach, cellular 
automata (CA) models, have proven to be powerful tools in the study of 
complex systems, and have been used for the simulation of transport and 
accumulation of magma to explain their mechanisms (Vigneresse and 
Burg, 2000; Bons and van Milligen, 2001). This type of CA model can 
describe melt transport and accumulation in partial melt systems 
(Vigneresse and Burg, 2000; Bons and van Milligen, 2001). However, 
research has yet to reproduce how magma ascent and emplacement to 
form granitic intrusions intuitively. 

In the current study, the CA model of Piegari et al. (2013) was 
adopted to simulate magma ascent and the formation of granitic in
trusions. As a variation of the two-dimensional (2D) 
Olami-Feder-Christensen (OFC) model (Olami et al., 1992), this model 
in geology is expressed as an abstract representation of a fault plane 
governed by several fracturing mechanisms, such as tectonic stress, 
active deformation and earthquakes (Bons et al., 2004; Piegari et al., 
2013). Piegari et al. (2006, 2008) used a constant rate of stress, repre
senting the regional and local stresses related to volcanism, to control 
the formation of self-organized fractures in rock. The rules linked with 
the OFC model were extended to magma feeding fracture systems and 
magma ascent under buoyancy. 

However, buoyancy is closely related to the density of the sur
rounding rock, thus discrete magma batches move upward through self- 
organized crack networks only as long as the density of the surrounding 
rocks is greater than that of the magma fluid. If the magma rises to a 
zone with neutral–negative buoyancy, magma may stop and solidify, 
and, consequently, form intrusions in the subsurface (Piegari et al., 
2013). The spatial patterns of granitic intrusions were further studied 
using fractal models. However, given the irregular shapes of geological 
structures, the thickness and length of structures are difficult to deter
mine (McCaffrey and Petford, 1997; Wang et al., 2007). The power law 
relationship of the thickness and length of granitic plutons and laccoliths 
are typically based on the mean thickness and length. Thus, rather than 
discussing the power law relationship between the thickness and length 
of granitic intrusions, fractal measurements, i.e. the perimeter-area 
(P-A) (Mandelbrot, 1983; Cheng, 1995) and number-area (N-A) (Man
delbrot, 1983) fractal dimensions, were used to quantify the complexity 
and irregularity of intrusions. 

2. Models 

2.1. A cellular automaton model for magma ascent and arrest 

Cellular automata can generate complex aggregate forms from only a 
simple set of local rules governing interactions among nearest neighbors 
(Wolfram, 1984). CA can overcome some of the complexities associated 
with solutions to the differential equations of fluid mechanics and allow 
different types of features to be simulated (Vigneresse and Burg, 2000; 
Bons and van Milligen, 2001). We started the simulation of magma ascent 
and arrest on a grid of L � L (L ¼ 120) cells with open boundary condi
tions, which means that the cells of the borders of the transport region 
contain only three neighbors rather than four. The size of each cell was 
100 m � 100 m for the 120 cells in both the horizontal and vertical di
rections representing a depth of 12 km. The width of the magma reser
voir, which was considered filled with magma all the time, was set to L/2, 
namely 60 cells in the central part of the bottom line of the grid. We 

Y. Xiong et al.                                                                                                                                                                                                                                   



Computers and Geosciences 129 (2019) 40–48

42

computed statistics for over 108 simulations to capture data on the ir
regularity of the granitic intrusions after the model reached a stationary 
state. The state of each cell Sn (1 < n < L2) was determined using three 
properties: Sn ¼ he;m;Δρi, where e represents the constant rate of the 
stress factor controlling the formation of the fractures in the rocks; m, 
represents the local presence of magma in each cell; and Δρ, represents 
the density contrast between the cell’s magma fluid and its surrounding 
rocks, that control magma ascent and arrest under buoyancy. The magma 
is allowed to travel or rise along the connected fracture cells, and arrest 
occurs at the level of a neutral–negative buoyancy region in accordance 
with the transition rule as discussed in the following. 

2.1.1. Rock fracture mechanism 
The CA model for rock fracturing is based on the OFC earthquake 

model (Olami et al., 1992). In this model, when the stress on each 
spring-block exceeds the maximum static friction Fth, the block slips or a 
“fracture” occurs. In the model of Piegari et al. (2006, 2008), with a 
general stress field e, the ratio of the disturbing stress F to the maximum 
shear strength Fth, is defined to control the opening of a fracture. When 
the value of e is equal to or larger than the threshold 1, a fracture occurs. 
The stress field of each cell is initialized by allocating a uniformly 
distributed random value with 0 � ei < 1, aimed at representing the 
complex heterogeneity of the rocks. Then, the stress on each cell is 
increased at a uniform driving rate v at each time-step (Δt) 

ei→ei þ νΔt; (1)  

Where Δt denotes the elementary time-step, which is set to a 1-time unit 
increment. 

The process continues as long as the stress in all cells is less than 1. 
When the stress value of any of the cells reaches 1, it fractures, and 
passes its stress to the nearest neighboring cells (the von Neumann 4-cell 
neighborhood was adopted here), as follows: 

ei→0; ennðiÞ→ennðiÞ þ fei; (2)  

where nn(i) represents the von Neumann neighbor of site i, and f rep
resents the fraction of ei passed to its neighbors nn(i). 

The stress redistribution is instantaneous, and might cause the 
neighbors to reach a critical state, leading to further stress redistribution 
and fracture occurrence, until the stress value in all of the cells recovers 
to less than the threshold. Because several dissipative phenomena can 
influence the distribution of stress, a non-conservative case was 
considered. Thus, the isotropic and non-conservative case for stress 
distribution was considered with fup ¼ fdown ¼ fleft ¼ fright ¼ 0.2. 

2.1.2. Magma ascent and granitic intrusion formation 
The magma is allowed to rise when any cell of the transport zone is 

connected to the magma reservoir fractures. Similarly, the magma can 
intrude into the neighboring fractured sites with an upward bias caused 
by the buoyancy forces (Fig. 1). After the passage of individual magma 
batches, the fractured cells close up, and trap the magma they contain. 
The local presence of magma in each cell is characterized by the cell 
array mi. Here, mi ¼ 0 denotes the cells with no magma, while mi ¼ 1 
denotes the cells filled with magma. During the process of magma 
transportation, a fractured site i, with no magma, can be filled by magma 
derived from the reservoir or the neighboring fractured and filled cells, j. 
Thus, the magma field of cell i, and j can be updated as follows: 

mi ¼ 0→mi ¼ 1; mj ¼ 1→mj ¼ 0; (3) 

However, the volatiles in the magma, such as dissolved water, might 
be lost during ascent. The value of a fractured filled cell mi ranges from 1 
to 1-nloss. Here, nloss is the largest percentage of gas loss, approximately 
6%. The details regarding magma ascent degassing are included in 
Piegari et al. (2011). 

During ascent, magma arrest and emplacement forms intrusions. 
Several mechanisms are responsible for magma arrest, such as the huge 
aspect ratio of dikes, the level of neutral buoyancy, and heterogeneous 
stress compression around the upper tip (Maccaferri et al., 2016). 
Among these mechanisms, the level of neutral buoyancy is the most 
widely studied. Maccaferri et al. (2011) showed that the rising magma 
arrests when it intrudes into a rock that is less dense than the magma, 
with the assumption that the individual magma-filled dikes are of a fixed 
length (Maccaferri et al., 2011). Here, we divided the cellular space into 
two regions (Fig. 2); a deep area with a thickness of 10 km and density 
ρRdeep ¼ 2700 kg=m3, and a shallow area with a thickness of 2 km and a 
density ρRshallow ¼ 2200kg=m3. The density of the anhydrous magma was 
set to 2500 kg/m3 (ρmagma ¼ 2500kg=m3). The magma was permitted to 
rise through the self-organized crack network as long as the density of 
the surrounding rocks was greater than that of magma fluid (Δρ ¼ ρR �

ρm > 0). If the magma rises to a zone with Δρ � 0, the magmatic fluid 
may stop movement, start to solidify in place, and form granitic in
trusions, such as dikes and sills. Because the density of the solidified 
magma was assumed to be greater than that of magmatic fluid with 
volatiles, a new region with Δρ > 0 in the shallow zone was generated. 
Under this circumstance, magma can pass through the fractures in the 
high density region of intrusions, which eventually results in an eruption 
(Piegari et al., 2013). The focus of our study was to model the formation 
of granitic intrusions, and explore their irregularity and spatial distri
bution instead of describing the activity pattern of volcanoes. We 
restored the initial local density profiles once the granitic intrusion 
reached the surface; thus, a new evolution of a granitic intrusion for
mation process started during the next step. 

Fig. 1. Magma ascent through pre-existing fractures. Magma can only move from the reservoir to its adjacent fractured cell; or from magma filled fractured cells to 
an adjacent fractured cell. 
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2.2. Fractal model 

2.2.1. Perimeter-area- (P-A) fractal measure 
The P-A fractal dimension, proposed by Mandelbrot (1983), builds 

on the relationship between the perimeter (P) and area (A) within a set 
of irregular self-similar shaped fractals. The P-A model has been applied 
to describe the irregularity of the shape of rain and cloud areas (Lovejoy, 
1982). A general P-A fractal model was put forward by Cheng (1995) 
and can be expressed as follows: 

P∝A
1
2DAP ; (4)  

where P and A represent the perimeter and area of the intrusions, 
respectively. DAP is the P-A fractal dimension, which also can be 
expressed as DAP ¼ 2DP/DA, where DP and DA are the fractal dimensions 
of the perimeter and area of the intrusions, respectively. DP and DA can 
be estimated using the box-counting method (Liebovitch and Toth, 
1989) as follows: 

PðδÞ ¼ NðδÞ⋅δ∝δð1� DPÞ; (5)  

AðδÞ ¼ N 0

ðδÞ⋅δ2∝δð2� DAÞ; (6) 

Cells with a box size δ increasing from 1, 2, 4, 8, 16, to 32 pixels were 
adopted to cover the intrusions and count the number of boxes (NðδÞ or 
N0

ðδÞ) occupied by granitic intrusions. PðδÞ and AðδÞ are the perimeter 
and area of the intrusions with box size δ. The box size δ and its corre
sponding number N0

ðδÞ were plotted on log-log axes to estimate the 
fractal dimension DA of the granitic intrusions. The fractal dimension of 
the perimeter can be calculated as DP ¼

1
2 DAPDA. The larger the value of 

DP, the more irregular and branching are the granitic intrusions. The 
fractal dimension of DAP can be estimated from the slope of the best- 
fitting line in the log-log plot of P versus A as follows: 

logP ¼ C þ
1
2
DAPlogA; (7) 

The value of DAP generally ranges from 1 to 2. A value of DAP equal to 
1 indicates regularly shaped and non-fractal geometric sets, such as 
squares or circles. When the value of DAP increases, the shape of the 
granitic intrusions becomes more irregular. The perimeter varies at the 
same rate as the area when DAP ¼ 2. 

2.2.2. Number-area (N-A) fractal model 
The N-A fractal model can be adopted to describe the relationship 

between the number and area distribution of granitic intrusions using 
the following equation (Mandelbrot, 1983; Wang et al., 2007; Zuo et al., 
2009): 

Nð � AÞ∝A� D; (8)  

where A represents the area of the intrusion, and N denotes the cumu
lative number of the intrusions with an area larger than, or equal to A. 
The exponent of D can be estimated from the slope of the best-fitting 
regression line of the log-log plot of Nð� AÞ versus A as follows: 

logNð � AÞ ¼ C � D logA; (9) 

The value of D represents the changing rate of the cumulative 
number of intrusions and their areas. Larger values of D indicate more 
intrusions of smaller area or fewer intrusions of large area. 

3. Results 

3.1. Magma ascent and arrest 

Six images show magma ascent and arrest processes forming granitic 

Fig. 2. The rock density profile used for the numerical simulations shown 
in Fig. 3. 

Fig. 3. A temporal CA model sequence for the evolution and formation of the granitic intrusions.  
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intrusions in the shallow zone (Fig. 3). The magma, with red cells, first 
ascends through the fractures (not visible) in the region where Δρ > 0 
(gray cells). The volatiles in the magma might be lost during the ascent, 
and the colors of the cells ranging from red to magenta represent the 
degassing degree (Piegari et al., 2011). When magma rises to the region 
where Δρ � 0 (white cells), it stops and solidifies, and a higher density 
profile (Δρ > 0) in the shallow region is generated which changes the 
red region to blue as shown in the image. Thus, the uniform layer of rock 
density varies in a non-trivial manner. The newly rising magma can, in 
turn, ascend through the fracture cells in the formed intrusions (blue 
region). This type of positive and negative feedback of density profile 
promotes the growth and formation of granitic intrusions which emerge 
as complex irregular fractal-like shapes. We noticed that a CA model 
with only a set of local rules can simulate the complex process that 
generates self-organized fractures, magma ascent, dike formation, and 
volcanic eruptions. 

3.2. Irregularity analysis of granitic intrusions 

The fractal dimension DA of an area was estimated via box counting. 
Six squares with a box size δ ranging from 1, 2, 4, 8, 16, to 32 pixels were 
used to cover the intrusion region, and the number of the boxes (N0

ðδÞ) 
covered by the blue region in the image was counted. The box size δ and 
its corresponding number of boxes N0

ðδÞ were plotted on a log-log graph 
to estimate the fractal dimension DA (Fig. 4). The fractal dimension DA of 
the intrusion area can be calculated from the negative slope of the line of 
best fit. The value of DA (1.79 < 2) indicates that the intrusions are 
irregular and show a fractal area. 

The perimeters and areas of the intrusions were plotted on log-log 
graphs and the exponent DAP estimated from the slope of the linear 
regression (Fig. 5). The relatively high correlation coefficient R2 (0.99) 
indicates that the perimeter and area follow a power-law relationship, 
and it is also a strong indicator of scale invariance or a fractal nature. 
The slope coefficient is 0.64, and the corresponding DAP value is 1.28, 
implying the granitic intrusions have an irregular shape. The corre
sponding fractal dimensional of the perimeter (DP) is 1.15, according to 
the formula DP ¼

1
2 DAPDA, which reflects the winding nature of the 

intrusion boundary. 
The area of the granitic intrusions (A) and the cumulative number of 

the intrusions with an area larger than or equal to A plotted on the log- 
log graph shows a broadly concave downward curve (Fig. 6). The curve 
can be decomposed into two segments with an abrupt inflection point 
between them (Fig. 6). Areas less than 100 cells exhibit a rather flat 
power law distribution with a scaling exponent equal to 0.32, while 

areas larger than 100 exhibit a steeper power law distribution with a 
scaling exponent equal to 1.70. This kind of concave downward curve is 
widespread in power-law distributions of leucosome thickness and in
trusions areas (Bons and Arnold, 2003; Bons et al., 2004; Koukouvelas 
et al., 2006; Bonamici and Duebendorfer, 2010; Hall and Kisters, 2012; 
Yakymchuk et al., 2013; Soesoo and Bons, 2015). Reasons for the break 
of slope might be attributed to undersampling of the smaller thicknesses 
(either still fully buried or completely eroded away) or a natural char
acteristic of the pluton population (Bons et al., 2004; Koukouvelas et al., 
2006; Yakymchuk et al., 2013; Soesoo and Bons, 2015). The missing of 
small intrusions did not occur when counting cells for our simulation 
results. Thus, we attribute the abrupt inflection point to the small batch 
intrusions coalescing into larger intrusions as the granitic intrusions 
accumulate in a stepwise style. The evolution of the area of the granitic 
intrusions (Fig. 7) shows that the area drastically increases at a certain 
time, and the increase is instantaneous. This increase in intrusion area 
occurs when the magma ascends to a rock region that is less dense than 
that of the magma. The system spends most of its time on the formation 
of self-organized cracks, and during the magma ascent in the deep region 
with a density greater than that of the magma. 

The effects of the thickness of the neutral-negative buoyancy zone on 
the formation of intrusions was further studied by varying the thickness 
of the neutral-negative buoyancy zone (the shallowest zone) from 2 km 

Fig. 4. Log-log axes of Number-Size model for fractal dimensional of areas.  

Fig. 5. Log-log axes of Area-perimeter of the granitic intrusions.  

Fig. 6. Log-log axes of Cumulative Number-Area of the granitic intrusions.  
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to 5 km, with the thickness of the deep region simultaneously reduced 
from 10 km to 7 km. The simulated results displayed in Fig. 8 show that a 
power law relationship exists between the perimeter and area of the 
intrusions across the different thicknesses, as all of the correlation co
efficients R2 are significant and greater than 0.9 (Fig. 8). The slope 
varied from 0.64 to 0.67, and the corresponding DAP varied from 1.28 to 
1.34. The box size and the corresponding number of boxes shown in 
Fig. 9 produced perfectly fitting lines on the log-log graph, indicating 
complete scale-invariance in the area of the intrusions. The fractal 
dimension DA of the area, as the negative slope of the best-fitting straight 
line, varied from 1.79, 1.82, 1.83 to 1.85, indicating that the intrusions 
formed with different thicknesses show similar fractal areas. The cor
responding fractal dimensions DP of the perimeter were 1.15, 1.22, 1.23 
and 1.24. The fractal dimensions of DP show a trend of growth in gen
eral, which indicates that the irregularity or complexity of the intrusions 
gradually increases with an increase in the thickness of the shallow 
region. 

The results of the area and the cumulative number of intrusions in 
different thicknesses of the neutral-negative buoyancy zone show 
similar downward concavity curves compared to those of Fig. 6. The 
abrupt inflection points between them divide the curves into two seg
ments (Fig. 10). The transition occurs at or near an area of 100 cells with 
a different thickness of the neutral-negative buoyancy zone ranging 
from 2 km to 5 km. The relationships between the area and cumulative 
number also follow power law distributions for the different segments in 
these four different thicknesses. With the increase of the thicknesses of 
the shallow region, the fractal dimensions of D decrease from 0.32, 0.29, 
0.27 to 0.23 in areas less than 100, and decrease from 1.70, 1.23, 1.20 
and 1.09 in areas larger than 100. The fractal dimensions of D mono
tonically decrease at two segments, respectively, indicating that fewer 
small intrusions or more large intrusions formed with the increase in the 
thickness of the neutral-negative buoyancy zone. 

4. Discussion 

The magma ascent mechanism in this study is motivated from that of 
Bons et al. (2001, 2004). Both models favor stepwise ascent and accu
mulation of individual magma batches through pre-existing fractures 
rather than fully interconnected fracture networks (Bons et al., 2004, 
2009; Scandone et al., 2007). In the model of Bons et al. (2001, 2004), 
the magma-filled hydrofractures move upward when the effective 
normal stress gradient along the fractures exceeds a critical crack length. 
The stress gradient density difference between the magma and sur
rounding rock is determined by new magma intrusion into the reservoir, 

Fig. 7. Time line of the evolution of granitic intrusions area.  

Fig. 8. Log-log axes of Perimeter-Area of the granitic intrusions for the thick
ness of the negative region (a)2 km, (b)3 km, (c)4 km, and (d)5 km. 
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Fig. 9. Log-log axes of Number-Size model for fractal dimensional of areas for 
the thickness of the negative region (a) 2 km, (b) 3 km, (c) 4 km, and (d) 5 km. 

Fig. 10. Log-log axes of cumulative number-area of the granitic intrusions for 
the thickness of the negative region (a) 2 km, (b) 3 km, (c) 4 km, and (d) 5 km. 
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deformation or tectonic stress, earthquakes and their concurrent effects 
(Clemens and Mawer, 1992; Rubin, 1998; Bons et al., 2004; Butters 
et al., 2017). However, in this study, the dynamic stress was indepen
dent of the magma field (Piegari et al., 2008, 2013). The constant rate 
stress, which represents the regional and local stresses, controls the 
formation of self-organized fractures in the rocks. The buoyancy 
generated by the density difference between the magma and the sur
rounding rock controls magma migration in the open fractures. The aim 
of this assumption was to capture key features of the fracture field to 
reproduce how magma ascent and emplacement occur, rather than to 
identify the main causes of fracturing. Various studies have shown that 
stress induced fracture networks are a SOC process (Chen et al., 1991; 
Olami et al., 1992; Piegari et al., 2008, 2013). Six images in a temporal 
sequence show the processes by which the magma ascends and forms 
granitic intrusions using the CA model. A couple of rules and properties 
linked with the OFC model reproduce the discrete magma batches ascent 
in a stepwise style through self-organized crack networks by allowing 
the ascent of individual magma batches by opening and then closing 
cracks upon their passage, during which the closure mechanism is 
different from that of Bons et al. (2001, 2004). We noticed that the 
ascending magma stops and granitic intrusions start to form because of 
the effect of the negative buoyancy. The granitic intrusions change the 
density profiles, which have positive or negative feedbacks on magma 
ascent and granitic accumulation. The less dense region may prevent 
magma ascent (negative feedback), and result in forming granitic in
trusions (higher density region) to allow magma ascent again (positive 
feedback). The positive/negative feedbacks can overcome the density 
barrier effect of the buoyant ascent of the magmas, further explaining 
why multiple dikes or granitic intrusions can pass through rocks with a 
density lower than that of the anhydrous magma in field observations 
(Zollo et al., 1996; Di Maio et al., 1998). 

The instantaneous increase in intrusion area occurs when the magma 
intrudes into the fractured rock that is less dense than the magma, when 
an “avalanche” occurs. In addition, as the end products of the 
“avalanche”, the granitic intrusions can be modeled by the fractal 
models (P-A and N-A), which suggests that the distribution of the 
frequency-size and shape irregularity show a power law (scale- 
invariant) relationship. The previous experiments and numerical 
modeling results suggest that the distribution of magma batch volumes 
can be described by a power law relationship resulting from a stepwise 
transport and accumulation. However, volumes of leucosomes, veins, or 
plutons cannot typically be directly measured in the geological record, 
where observation is normally confined to two-dimensional outcrops, 
one-dimensional scan lines or drill cores. By adopting a vertical slice 
along a transect in the CA model, the power law distribution of granitic 
intrusions areas under the surface can further support the assertion that 
magma ascent and granitic intrusion formation processes are SOC 
(Brown, 2007, 2013; Soesoo and Bons, 2015). We present a few more 
points regarding the development and evolution of magma transport 
system before considering a specific case history. The model provides a 
near-perfect expression for the generation of a crack network and re
produces the processes of magma ascent and formation of granitic in
trusions; the fractal model can efficiently quantify this type of 
irregularity in the objects. 

However, the model is relatively idealized, because it only considers 
the effects of density on the magma ascent. The viscosity of the magma, 
rigidity discontinuity, fracture toughness heterogeneity, and external 
stress field play important roles in magma ascent and arrest (Brown, 
1994; Petford et al., 2000; Maccaferri et al., 2010, 2011; 2016; Rivalta 
et al., 2015). For example, the propagated dikes would stop without 
deviating when they propagate in the direction of a topographic load 
with a low overpressure at the upper tip or when they intrude into a 
layer where they become neutrally or negatively buoyant (Maccaferri 
et al., 2011). Both these factors are necessary for a cellular automaton 
model to accurately reproduce the real geological process of magma 
ascent and arrest. 

5. Conclusions 

Even if the distributions of the event sizes themselves are important, 
our view of nature is mostly based on our understanding of the processes 
that generate the patterns we observe in the field. In this study, we used 
a cellular automaton to reproduce magma ascent and the formation of 
granitic intrusions intuitively. In the model, magma is allowed to rise 
along the preformed fractures in a stepwise style by opening and then 
closing after their passage; magma stops rising at the neutral–negative 
buoyancy region, then forms granitic intrusions. The model does a good 
job of replicating the growth process of granitic intrusions under the 
positive and negative feedbacks of rock density profiles. Statistical data 
analysis of the distribution of perimeter and area, frequency and cu
mulative area of granitic intrusions towards the non-linear characteristic 
of scale-invariance indicating that the magma ascent and granitic 
intrusion formation processes are SOC processes, which further support 
the assertion that granitic ascent and emplacement are also self- 
organized critical phenomena. In conclusion, a cellular automaton is a 
helpful tool to link the fracturing mechanism and rock or magma density 
to magma ascent and emplacement processes that may both predict and 
explain the complex processes in nature and causes of self-organization. 
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