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Natural and synthetic genetic regulation in stimulated CD4+ T cells 

Rachel Elena Gate 

Abstract 

Over 90% of genetic variants associated with complex human traits map to non-coding regions, 

but little is understood about how they modulate gene regulation in health and disease. One 

possible mechanism is that genetic variants affect the activity of one or more cis-regulatory 

elements leading to gene expression variation in specific cell types. To identify such cases, we 

analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 

healthy donors. We found regions of accessible chromatin (ATAC-peaks) are co-accessible at 

kilobase and megabase resolution, consistent with the 3D chromatin organization measured by in 

situ Hi-C in T cells. 15% of genetic variants located within ATAC-peaks affected the accessibility 

of the corresponding peak (ATAC-QTLs). ATAC-QTLs have the largest effects on co-accessible 

peaks, are associated with gene expression, and are enriched for autoimmune disease variants. 

Our results provide insights into how natural genetic variants modulate cis-regulatory elements, 

in isolation or in concert, to influence gene expression. 

 

To elucidate the trans regulatory network governing activation and polarization of CD4+ T cells 

we sequenced the transcriptomes of ~160k CD4+ T cells from 9 donors following pooled CRISPR 

perturbation targeting 140 regulators. We identified 134 regulators that affect T cell 

functionalization, including IRF2 as a positive regulator of Th2 polarization. Leveraging 

correlation patterns between cells, we mapped 194 pairs of interacting regulators, including 

known (e.g. BATF and JUN) and novel interactions (e.g. ETS1 and STAT6). Finally, we identified 

80 natural genetic variants with effects on gene expression, 48 of which are modified by a 
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perturbation. In CD4+ T cells, CRISPR perturbations can influence in vitro polarization and 

modify the effects of trans and cis regulatory elements on gene expression. 
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Chapter 1: Introduction 
 

The adaptive immune system is the defense system against infections, which is often slower to 

respond than the innate immune system yet has the ability to unleash targeted defenses and get 

stronger with each infection. At the center of the adaptive immune system are CD4+ T cells, which 

develop in the thymus as CD45RA+/CD45RO– /CCR7+/CD62L+/CD27+ naive CD4+ T cells that 

then migrate to the peripheral blood. Then, moving in between the periphery and tissue they are 

poised to activate and localize to the affected tissue1. Once activated, CD4+ T cells can differentiate 

into a myriad of lineages, including cytotoxic and helper cells2,3. Although cytotoxic responses 

have historically been attributed to CD8+ cells, more recently they have been shown to have MHC 

class II receptor activity, giving rise to cytotoxic CD4+ T cells4–7. In contrast to direct killing, helper 

CD4+ T cells support the immune system by guiding it in a targeted response8,9. Initially in 1986 

there were two helper CD4+ cells subtypes identified, IFNG+ Th1 guiding bacterial infections and 

IFNG- Th2 that direct allergy responses, but further subtyping has since identified, but not limited 

to, RORɣ+ Th17, induced FOXP3+ Treg, and CXCR13+ Tfh subtypes9–11. 

 

As geneticist, phenotypes include molecular and biochemical readouts from functional genomics. 

Recent advances in next generation sequencing have improved cell phenotypic annotations in 

eukaryotic cells, including assaying the chromatin state through chromatin accessible regions, 

DNase I hypersensitive sites, histone modifications, and transcription factor  binding sites 

(TFBS)12–15. Variation in chromatin state has been implicated in disease, such as Sjorgen’s, where 

regions of hypomethylations in patients are related to T cell activation16,17,18. To that end, only 1% 

of our genome encodes for protein and over 90% of genome wide association study (GWAS) 



2 

variants reside in non-coding regions19,20. Unlike coding regions, which have an obvious impact 

on a gene by potentially changing the amino acid code, it is unclear how genetic variants in non-

coding regions influence gene expression. This is primarily due to the fact that gene expression is 

a complex trait, governed by an intricate network of cis-regulatory elements and trans factors. 

More pointedly, the cis and trans regulatory networks governing activated CD4+ T cells has yet to 

be elucidated.  

 

Cis means proximal to in Latin, and correspondingly cis regulation encompasses regulatory 

regions that are nearby the respective gene that consists of enhancers and promoters 21,22,23–25. 

Unlike promoters, enhancers are much more context specific and can influence genes up to 1 Mb 

away, with multiple enhancers governing one gene26. Genetic analysis of single nucleotide 

polymorphisms (SNPs) in chromatin regions that vary in their accessibility has proven to be a 

powerful way to assign functional interpretation of genetic variations27–29. Previous work in 

lymphoblastoid cell lines (LCLs) studying DNase I hypersensitivity sites27 and histone 

modifications30–32 have laid the groundwork for chromatin state profiling. However, we have yet 

to elucidate CD4+ T cell context specific cis regulatory regions. Additionally, the contribution of 

interindividual variation to cis regulatory variation has yet to be elucidated, largely due to 

inhibitory labor time, cost, and sample requirement.  

 

With the advent of ATAC-seq in 2015, we profiled chromatin accessible regions in CD4+ T cells 

in 105 donors. Here, we present work that identifies the chromatin state of stimulated and 

unstimulated CD4+ T cells, and their associated genetic variants. We also identified regions of co-
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accessibility, which are regions whose variability are correlated, corresponding to mostly 

enhancer-enhancer associations, as well as identified their genetic determinants. 

 

Trans regulation on the other hand corresponds to regulation that occurs far away from the 

respective gene. Trans regulation, governed by trans factors, includes transcription factors (TFs), 

chromatin remodelers, and RNA binding proteins. However, trans associations are notoriously 

difficult to detect due to a high multiple testing burden and potential for false positives, leading to 

unreproducible results33. With the advent of CRISPR editing in primary T cells34, followed by 

genome wide CRISPR screens, we began to dissect trans associations genome wide. For example, 

previous work mapping trans factors in Th2 identified Trappc12, Mpv17l2, and Pou6f1 as trans 

regulators in a bulk, negative selection screen35. However, these bulk sequencing techniques are 

limited to specific phenotype screening, do not capture the heterogeneity of cell states, and are 

often limited to a few donors due to labor and batch effects. Therefore, the extent of the variability 

of the trans networks is incomplete, this is compounded by the lack of interindividual variation 

associations. 

 

Droplet-based single cell sequencing (dscRNA-seq) has enabled transcriptomic profiling at 

unparalleled resolution, capturing a high resolution snapshot of the immune system36. DscRNA-

seq data allows for unbiased annotation of CD4+ T cells and a continuous phenotype, which 

captures the true heterogeneity of CD4+ T cells. Additionally, dscRNA-seq allows us to move 

beyond just capturing average gene expression, to understanding the variance.  
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In 2016, Dixit et al 2016, Adamson et al. 2016, and Jaitin et al. 2016 coupled dscRNA-seq and 

CRISPR screening to perturbatively profile thousands of cells by barcoding each perturbation37–

39. More recently, Datlinger et al. 2017 developed CROP-seq, which is a dscRNA-seq CRISPR 

screening method that removes the need for a barcode to reduce barcoding mismatching40. 

 

Out of necessity to bring down the cost of dscRNA-seq to perform large scale studies, our lab 

developed an experimental framework, mux-seq, and a corresponding computational algorithm, 

demuxlet, to reduce the overall cost of dscRNA-seq by 10-fold41. In short, experimentally we pool 

all genetically distinct donors into one well of dscRNA-seq and then computationally using the 

unique combination of SNPs belonging to each donor we can identify which cell came from which 

donor in the pool. In general, we need 20 SNPs per cell to uniquely identify the donor of origin. 

 

Therefore, by combing CROP-seq and mux-seq, we were able to profile hundreds of trans factors 

at an unprecedented resolution in multiple donors, while minimizing batch effects. We identified 

CD4+ T cell subsets, as well as sgRNA knockout (KO) conditions that were enriched in each of 

these subsets, where each sgRNA KO corresponds to a trans factor. Specifically, we found novel 

IRF2 regulation of Th2 cells and tested for regulator interactions, both regulator - regulator and 

regulator - SNP to for the first time systematically identify cis-trans epistatic interactions.  
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Introduction 

The vast majority of disease-associated loci identified through genome-wide association studies 

(GWAS)1-3 are located in non-coding regions of the genome, often distant from the nearest gene4. 

Quantitative trait loci (QTL) studies that associate genetic variants with molecular traits provide a 

framework for assessing the gene regulatory potential of disease-associated variants. For example, 

a statistically significant number of GWAS loci are associated with gene expression (expression 

QTLs – eQTLs) across diverse cell types and states5-10, implicating gene regulation in determining 

disease risk11,12. 

  

Genetic analysis of variation in chromatin state13-17 is a powerful approach for identifying single 

nucleotide polymorphisms (SNPs) that directly affect cis-regulatory activity18. In lymphoblastoid 

cell lines, thousands of SNPs have been associated with DNase I hypersensitivity (measured by 

DNase-seq)19 and histone tail modifications (measured by ChIP-seq)20-22. Similarly, SNPs have 

been associated with variation in DNA methylation and histone tail modifications in resting 

primary immune cell types (neutrophils, monocytes and CD4+/CD45RA+ effector memory T 

cells)12. Most of the associated SNPs in these studies were also associated with nearby transcript 

abundance, suggesting the genetic perturbation of cis-regulatory activity as a determinant of gene 

expression variability11,12,19,21,23. 

  

These studies have provided foundational resources for understanding the genetic basis of gene 

regulation in resting cells, but many disease states are associated with immune cell activation24,25. 

In particular, dysregulation of T cell homeostasis and activation are known to play a role in 

autoimmunity26,27, cancer28,29 and infectious diseases30, and hundreds of SNPs have been 

associated with gene expression during T cell activation and polarization10,31. Moreover, because 
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both DNase-seq and ChIP-seq are laborious and require large cell numbers, it remains challenging 

to apply them to primary human cells at the scale required for genetic association. 

  

Here, we optimized and performed Assay for Transposase Accessible Chromatin sequencing 

(ATAC-seq) on stimulated CD4+ T cells from 105 healthy individuals to characterize the extent of 

natural variability in chromatin state, identify its genetic basis, and assess its influence on gene 

expression. We further leveraged the variability between individuals to identify co-accessible 

chromatin regions and to relate those to genetic variation and 3D genome organization. Our work 

helps lay the foundation for the critical tasks of annotating cis-regulatory elements in primary 

human T cells and characterizing how genetic variation contribute to variability in gene regulation 

between individuals. 

Results 

Changes in T cell chromatin state in response to activation 

We used ATAC-seq32 to assay CD4+ T cells in two different conditions: either unstimulated (Th) 

or stimulated in vitro using tetrameric antibodies against CD3 and CD28 for 48 hours (Thstim) (Fig. 

2.1a). Aligned reads from six samples (five donors, one pair of donors were replicates) were pooled 

for each condition, yielding a total of 209 million reads for Thstim and 58 million for Th cells 

(Methods). Of these five donors, two are of East Asian, two are of African American and one is 

of European decent (Supplementary Fig. 2.1). There was a global increase in chromatin 

accessibility in response to stimulation, with 52,154 chromatin accessible peaks detected in Thstim 

(average width: 483 bp +/- 344 bp) and 36,487 in Th cells (average width of 520 bp +/- 319 bp) 

(MACS2, FDR < 0.05, Fig. 2.1a, b). Down sampling each Thstim sample to the same number of 

reads as the matching Th sample yielded a similar trend (24,665 Thstim vs. 17,313 Th peaks) 
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suggesting the increased accessibility is not due to differences in sequencing depth. Of the 63,763 

peaks identified in at least one condition, 27,446 are similarly accessible between the conditions 

(shared peaks), 28,017 are more accessible in Thstim cells (Thstim-specific peaks) (FDR < 0.05), and 

8,298 are more accessible in Th cells (Th-specific peaks) (FDR < 0.05) (Fig. 2.1a, b, and 

Supplementary Table 2.1). 

  

Peaks of accessible chromatin are associated with distinctive genomic features and enriched for 

SNPs associated with autoimmune diseases. Compared to Th-specific peaks, Thstim-specific peaks 

overlap a higher percentage of enhancers defined using H3K27Ac marks18 in aCD3/aCD28- (Th0, 

6.9% vs. 2.6%) and phorbol myristate acetate (PMA)-stimulated CD4+ T cells (Thstim, 7.2% vs. 

3.6%); and a lower percentage of enhancers in regulatory (Treg, 1.4% vs. 4.0%), naïve (Tnaive, 1.2% 

vs. 4.9%) and IL17 producing CD4+ T cells (Th17, 3.2% vs. 4.6%) (Fig. 2.1c)18. Thstim-specific and 

shared peaks also overlap a higher percentage of SNPs associated with autoimmune diseases, 

including inflammatory bowel disease (IBD) (32% and 41% vs. 20%) and rheumatoid arthritis 

(21% and 27% vs. 13%) (Fig. 2.1d), highlighting the importance of profiling cells under 

stimulation to identify disease-relevant cis-regulatory elements. 

  

Analyzing peaks of accessible chromatin in aggregate provides estimates of the frequencies and 

single-nucleotide resolution footprints of transcription factor (TF) binding32. Thstim-specific peaks 

are enriched for genomic locations bound by TFs important for CD4+ T cell activation or 

differentiation, including members of the AP-1 super family (e.g., 36% contain a BATF binding 

site) and interferon regulatory factors (e.g., 15% contain a IRF4 binding site)33-35 (Fig. 2.2a, b). 

Thstim-specific peaks overlapping regions bound by both BATF and IRF4 (17.4% of peaks)34 reveal 
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a different footprint compared to those overlapping regions bound by only one of the TFs (Fig. 

2.2b, left). Conversely, shared peaks are enriched for regions bound by CTCF and BORIS 

(encoded by CTCFL), two transcriptional repressors known to maintain chromatin state 

independent of cell type and state33-35 (Fig. 2.2a), and their binding footprints are invariant of 

condition (Fig. 2.2b, right). ETS1 binding sites overlapping shared, Thstim-, and Th-specific peaks 

have distinct footprints and binding motifs: we observed the canonical ETS1 motif (5’-

CACTTCCTGT-3’) in shared peaks, a 3’ extended motif (5’-CACTTCCTGTCA-3’) in Th-

specific peaks, and a T/G to T (5’-CACTTCCTGT-3’) substitution at the eighth position in Thstim-

specific peaks, consistent with sequence motifs found at distal ETS1 binding sites (Fig. 2.2c)36. 

Th-specific peaks are more likely to overlap ETS/RUNX binding sites than shared or Thstim-

specific peaks (OR = 2.7 and 3.9; Fisher’s exact test, P-value < 2.2x10-16 and P-value < 2.2x10-16, 

respectively) (Fig. 2.2d), which could be due to an enrichment of Th-specific peaks for Treg 

enhancers known to be bound by the ETS/RUNX complex37,38. An additional 6,102 Thstim-specific 

(6.6% of intergenic regions) and 4,118 shared peaks (4.5% of intergenic regions) were located in 

non-coding regions, previously not annotated by H3K27Ac18,39, of which 53.5% and 35.6% 

overlap known binding sites for TFs in the AP-1 super family and IRF family, respectively. Thus, 

regions of accessible chromatin overlap both known enhancers and TF binding sites important for 

polarization-independent activation of T cells, consistent with our stimulation protocol, and in 

aggregate reveal high-resolution footprints distinguishing condition specific and combinatorial 

transcription factor binding. 

  

Chromatin co-accessibility at multiple genomic scales 

Because Thstim-peaks, including shared and Thstim-specific peaks, better overlap known T cell cis-
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regulatory elements and autoimmune disease loci, we next characterized the inter-individual 

variability of chromatin accessibility only in stimulated T cells. We optimized the ATAC-seq 

protocol to profile stimulated CD4+ T cells (Supplementary Fig. 2.2; Methods) from 105 healthy 

donors in the ImmVar Consortium10, all of European descent (Fig. 2.3a and Supplementary Fig. 

2.1). We obtained a median of 37 million (MAD +/-13 million) reads per sample, from highly 

complex libraries with low mitochondrial DNA (mtDNA) contamination (average contamination 

< 3%, Supplementary Fig. 2.3). Using a pool of 4.2 billion merged reads from all 105 individuals, 

we jointly called 167,140 peaks of accessible chromatin (hereto after, ATAC-peaks) (MACS2, 

FDR < 0.05, Fig. 2.3a, b). These included 85.1% of the 52,154 Thstim peaks identified in the initial 

set of six samples from five individuals with similar enrichment for GWAS loci (Pearson R = 0.65) 

and enhancer elements (Pearson R = 0.88) (Supplementary Fig. 2.4). 

  

Leveraging the variability in ATAC-peaks across 105 individuals, we found patterns of co-

accessibility (defined as correlation between individual or sets of ATAC-peaks) at multiple 

genomic scales, recapitulating the 3D chromatin organization, as determined by domain-resolution 

in situ Hi-C40 of stimulated CD4+ T cells pooled from another five donors (Supplementary Table 

2.2, and Supplementary Fig. 2.5). At the resolution of 1 Mb bins, we observed significant intra-

chromosomal co-accessibility, as measured by correlation of total counts of ATAC-peaks within 

each bin (Chr1: Fig. 2.3c, other chromosomes: Supplementary Fig. 2.6). These pairwise 

correlations are qualitatively similar to and quantitatively consistent with (Pearson R = 0.66) Hi-

C interaction frequencies at the same resolution (Fig. 2.3d and Supplementary Fig. 2.6), likely 

reflecting variability in the signal (regions of accessible chromatin) to noise (regions of 

inaccessible chromatin) ratio across samples similar to observations in single cells32. At 100 kb 
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resolution, pairwise correlations are also consistent with Hi-C interaction frequencies (Pearson R 

= 0.52, Supplementary Fig. 2.7). 

  

We next characterized the co-accessibility between pairs of ATAC-peaks within each 1.5 Mb bin 

across the genome by linear regression (Fig. 2.3b, dashed black line, left). After accounting for 

sources of variation (Supplementary Tables 2.3 and 2.4), we found 2,158 pairs of co-accessible 

peaks enriched for those in close proximity (on average 514 kb apart), encompassing 2% 

(3,204/167,140) of ATAC-peaks (permutation FDR < 0.05, Fig. 2.3e, Supplementary Table 2.5, 

and Supplementary Fig. 2.8). The sequencing coverage of co-accessible peaks is similar to that 

of all ATAC-peaks (Supplementary Fig. 2.9a), but they are individually more likely to overlap 

Tnaïve, Thstim, and Th17 enhancers (Supplementary Fig. 2.10) and binding sites for three pioneering 

factors: NRF, NFY, and STAF (FDR < 0.05, Supplementary Fig. 2.11). Pairs of co-accessible 

peaks were more correlated when both peaks reside in the same contact domain (estimated from 

Hi-C interactions, Fig. 2.3f) and 80% consisted of peaks overlapping pairs of cis-regulatory 

annotations (e.g. enhancer/enhancer, enhancer/promoter, super enhancer/promoter; Fig. 2.3g). 

Finally, co-accessible peaks were enriched in annotated Thstim super-enhancer regions41 (Fig. 2.3h, 

Methods)41,42. These results suggest that chromatin co-accessibility may be determined by the 3D 

conformation of the genome and may correspond to coordinated regulation of multiple cis-

regulatory elements, including known T cell enhancers and regions bound by pioneering factors. 

  

Genetic variants associated with chromatin accessibility 

We next defined the genetic basis of chromatin accessibility by associating ATAC-peaks with 

common SNPs (minor allele frequency > 0.05) across the 105 individuals. To maximize statistical 
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power, we analyzed only the 64,188 SNP-containing ATAC-peaks (Fig. 2.3b) and found 3,318 

that were significantly associated with at least one SNP (RASQUAL43, P-value < 2.91×10-3, 

permutation FDR < 0.05) (Fig. 2.4a, Supplementary Fig. 2.12 and Supplementary Table 2.6). 

Each best-associated SNP we term a local ATAC quantitative trait locus (local-ATAC-QTL) and 

the corresponding peak a local-ATAC-peak (Fig. 2.3b, middle). We estimate that 15% of the 

64,188 peaks are associated with at least one local-ATAC-QTL using a method to estimate the 

proportion of null hypotheses while accounting for incomplete power44. Sequencing coverage of 

local-ATAC-peaks was similar to all ATAC-peaks (Supplementary Fig. 2.9b) and the estimated 

effects of local-ATAC-QTLs are correlated with their effects on H3K27AC ChIP-seq peaks in 

similar cell types12 (Supplementary Fig. 2.13). 

  

Several lines of evidence support a model where local-ATAC-QTLs affect accessibility by 

perturbing cis-regulatory elements active in stimulated T cells. First, for the 1,428/3,318 heritable 

local-ATAC-peaks determined by fitting a linear mixed model over SNPs +/- 500 kb of each 

peak45 (mean h2 = 44%, GCTA FDR < 0.05), 81% of the heritability is explained by the 

corresponding local-ATAC-QTLs (Fig. 2.4b and Supplementary Tables 2.6 and 2.7; Methods). 

This suggests a genetic architecture where a single SNP is responsible for the majority of heritable 

variation. Second, compared to SNP-containing ATAC-peaks, local-ATAC-peaks are 

preferentially located near transcription start and termination sites (Fig. 2.4c), are more enriched 

for T cell enhancers (P-value < 9.23×10-63, hypergeometric test; Supplementary Figure 2.14), 

and are more enriched for genomic regions bound by TFs involved in T cell development and 

activation (e.g. BATF, AP-1 and IRF) (Supplementary Figure 2.15). Applying deltaSVM46,47 to 

predict the effects of SNPs on TF binding for 903 ATAC-QTLs located within 300 bp of the middle 
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of the corresponding peaks, we found that almost half (45%) are predicted to strongly disrupt 

bindings for one of six (BATF, ETS1, IRF, RUNX1, SP1 and CTCF) TF binding sites (Fig. 2.4d). 

The effect sizes of local-ATAC-QTLs are correlated with SNP motif disruption scores obtained 

by deltaSVM48 (Pearson R = 0.627, P-value < 2.33x10-98, Fig. 2.4e; Methods). For local-ATAC-

peaks that overlap BATF, ETS1 and CTCF binding sites, differential accessibility between 

genotypes in the core motifs were observed at single nucleotide resolution, even though only 5% 

of the corresponding local-ATAC-QTLs directly alter the core motif sequences. This suggests that 

the genetic perturbation of TF binding – either directly by disrupting their sites, or more likely 

indirectly by first disrupting binding by other factors in the same cis-regulatory element – may be 

a major driver for the observed variation in chromatin accessibility across individuals (Fig. 2.4f 

and Supplementary Fig. 2.16). Note that the relation between the accessibility of local-ATAC-

peaks and 3D chromatin organization is similar to that observed for SNP-containing ATAC-peaks 

in general (Fig. 2.4g). Both local-ATAC-peaks and SNP-containing ATAC-peaks overlapping 

BATF and ETS motifs are enriched within Hi-C contact domains, whereas those overlapping 

CTCF motifs are enriched at the contact domain boundaries (Fig. 2.4g). These results are 

consistent with previous reports of CTCF enrichment at contact domain boundaries40,49-51. 

  

Local-ATAC-peaks are more likely to overlap GWAS SNPs from autoimmune diseases than other 

SNP-containing ATAC-peaks (Supplementary Figure 2.17), providing a functional context for 

interpreting disease associations. Even though local-ATAC-peaks consist of only ~5% of the SNP-

containing ATAC-peaks, they overlap a much larger percentage of the loci associated with 

autoimmune diseases including Celiac’s disease (28%), Crohn’s disease (22%), and rheumatoid 

arthritis (12%), an 8-fold (hypergeometric P-value < 4.34×10-7), 6-fold (hypergeometric P-value 
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< 8.58×10-17), and 5-fold (hypergeometric P-value < 6.18×10-8) enrichment, respectively. To 

corroborate this, we performed partitioned heritability analysis to test for enrichment of local-

ATAC-QTLs in explaining the heritability of 28 common diseases where summary statistics are 

available. While local-ATAC-QTLs are highly enriched for disease associated variants (i.e. 

Celiac’s disease: 6%, enrichment = 51x and Crohn’s disease: 7%, enrichment = 63x), the results 

are not statistically significant after multiple testing correction. However, by relaxing the FDR 

thresholding for defining local-ATAC-QTLs, we found a general trend of increased proportion of 

heritability explained and statistical significance, and a decrease in enrichment, especially in 

autoimmune diseases (Fig. 2.4h; Methods). In fact, all SNP-containing ATAC-peaks 

(corresponding to FDR < 1) account for a statistically significant proportion of the heritability for 

all autoimmune diseases (> 22%, Bonferroni-corrected P-value < 1.3×10-2, Fig. 2.4h; Methods). 

For example, rs17293632 (NC_000015.10:g.67442596C>T) has been associated with Crohn’s 

disease and IBD52 and is located in the first intron of SMAD3, a gene that encodes for a 

transcription factor involved in the TGF-β signaling pathway that regulates T cell activation and 

metabolism53. This SNP disrupts a consensus BATF binding site at a conserved position 

(deltaSVM=-12.72), and results in decreased chromatin accessibility in individuals that carry the 

alternate allele (Fig. 2.4i). 

  

Together, these results suggest that when the accessibility of ATAC-peaks is affected by local-

ATAC-QTLs residing within peaks, this often involves the disruption of TF binding, even though 

the SNPs almost always reside outside of the core TF binding site. Moreover, local-ATAC-QTLs 

in stimulated CD4+ cells are enriched for autoimmune disease loci, both in the number of overlaps 

and proportion of heritability explained. 
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Genetic determinants of chromatin co-accessibility 

We next tested if the effect of each local-ATAC-QTL could be propagated to co-accessible peaks, 

for example through 3D chromatin organization, and thus have effects on multiple cis-regulatory 

elements simultaneously. We first estimated the heritability of ATAC-peaks using SNPs +/- 500 

kb of each peak. As expected, local-ATAC-peaks (2,444/3,318 that converged) were more 

heritable (mean h2 = 0.22) than all ATAC-peaks (Fig. 2.5a). Co-accessible peaks were also more 

heritable than all ATAC-peaks, both those containing SNPs (mean h2 = 0.44 vs. mean h2 = 0.04) 

and those that do not (mean h2 = 0.10 vs. mean h2 = 0.04). Excluding the 3,318 local-ATAC-peaks, 

we identified 382 ATAC-peaks that were associated with a local-ATAC-QTL (RASQUAL, P-

value < 1.27×10-4, permutation FDR < 0.05) located +/- 500 kb from the peak. We term each 

associated SNP a distal-ATAC-QTL and each associated peak a distal-ATAC-peak (Fig. 2.2b). 

Consistent with the heritability analysis, distal-ATAC-QTLs imparted the strongest effects on co-

accessible peak (Fig. 2.5b and Supplementary Tables 2.2, 3). 

  

Co-accessible peaks and co-accessible distal--ATAC-peaks are both more likely to overlap Thstim 

super enhancers than randomly shuffled super enhancers41. The effect is stronger in co-accessible 

distal-ATAC-peaks (6-fold vs. 4-fold) (Fig. 2.5c). In an example, rs10882660 

(NC_000010.10:g.97517949A>G) is simultaneously a local- and distal-ATAC-QTL for a pair of 

co-accessible peaks residing in the 1st and 2nd introns of ectonucleoside triphosphate 

diphosphohydrolase I (ENTPD1) and a Hi-C contact domain (Fig. 2.5d). ENTPD1 encodes a 

protein that is one of the dominant drivers of hydrolysis of ATP and ADP in Tregs cells, whose 

expression can lead to tumor growth in mouse models54-57. These results and example suggest a 
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model where local-ATAC-QTLs residing within peaks could also distally affect co-accessible 

peaks likely reflecting shared genetic effects on pairs of cis--regulatory elements. 

  

Linking variation in chromatin state and gene expression 

We hypothesized that variants affecting chromatin accessibility (local-ATAC-QTLs) would – in 

some cases – also impact the transcription of the genes controlled through these regulatory regions, 

and thus provide an important link between variant and target. 

  

To test this hypothesis, we assessed if local-ATAC-QTLs are also associated with gene expression 

in stimulated CD4+ T cells, measured by RNA-seq from 95 donors (92 from an aliquot of the same 

cells with matching ATAC-seq data). After accounting for covariates and principal components 

for expression heterogeneity (Supplementary Tables 2.3, 4), we identified 424 genes 

significantly associated with at least one of 6,903 local-ATAC-QTLs located +/- 500 kb from the 

center of each gene (RASQUAL, P-value < 1.65×10-3, permutation FDR < 0.05, Fig. 2.6a, and 

Supplementary Table 2.8). The 383 best-associated SNPs are eQTLs, and we term the 

corresponding 424 genes eGenes (Fig. 2.2b, right). We estimate that 30% of local-ATAC-QTLs 

are also eQTLs (with a procedure to estimate the proportion of null hypotheses; Methods), 

consistent with previous reports in lymphoblastoid cell lines19,21. Considering all genetic variants 

located +/- 500 kb from the center of each eGene, we found 191/424 genes to be significantly 

heritable (GCTA FDR < 0.05), with the eQTL explaining on average 68% of the heritability (Fig. 

2.6b and Supplementary Table 2.9). The lower estimates of explained heritability than local-

ATAC-peaks suggests that the genetic control of gene expression may involve more than one SNP 

and cis-regulatory element in some cases. 
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We next examined the sharing of genetic effects between local-ATAC-peaks and eGenes using a 

bivariate linear mixed model45 and mediation analysis58. Among the 383 SNPs that are 

simultaneously associated with chromatin accessibility (as local-ATAC-QTLs) and gene 

expression (as eQTLs), 286 have effect sizes in the same direction (Spearman r = 0.73) indicative 

of activating effects, while 138 have effect sizes in the opposite direction indicative of repressive 

effects (Spearman r = -0.69) (Fig. 2.6c). Because of limited sample size, measuring the genetic 

correlation for individual pairs of local-ATAC-peaks and eGenes is likely under powered. 

However, the distribution of genetic correlations for 161 pairs of local-ATAC-peaks and eGenes 

that converged (inverse variance weighted average of 0.66) was significantly higher than both 

randomly sampled (inverse variance weighted average of 0.23, Kolmogorov-Smirnov P-value < 

4.32x10-10) and permuted ATAC-peaks (inverse variance weighted average of 0.07, Kolmogorov-

Smirnov P-value < 1.68x10-10) (Supplementary Fig. 2.18 and Supplementary Table 2.10). This 

is corroborated by mediation analysis where the genetic effects on 21/424 eGenes were 

significantly mediated by the corresponding local-ATAC-peaks (FDR < 0.1, Fig. 2.6d) and the 

high correlation of the mediation effects and the inverse variance weighted genetic correlation 

(Pearson R = 0.52, P-value < 1.2x10-12, Supplementary Fig. 2.19). For example, consider the 

locus spanning FADS1 and FADS2, genes that encode two fatty acid desaturases (FADS) that 

regulate inflammation, promote cancer development, and impact dermal and intestinal ulcerations 

(in FADS2 knockout mice)59-62. Before conditioning on rs174575 

(NC_000011.10:g.61602003C>G), an eQTL for FADS2 and a local-ATAC-QTL for 

chr11:61,601,708-61,602,451, FADS2 expression and accessibility of ATAC-peak 

chr11:61,601,708-61,602,451 are correlated (R2 = 0.31, P-value < 8.25×10-9) and after 
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conditioning there is no longer a correlation (R2 = 0.08, P-value < 6.1×10-3) (Fig. 2.6e). Similarly, 

after conditioning on rs174561 (NC_000011.10:g.61582708T>C), FADS1 expression is no longer 

correlated with accessibility of ATAC-peak chr11:61,582,207-61,584,717 (before conditioning: 

R2 = 0.2, P-value < 8.74×10-6; after conditioning: R2 = 0.01, P-value < 0.3) (Fig. 2.6f). Notably, 

rs174561 is an eQTL for FADS1, a local-ATAC-QTL associated with a pair of co-accessible peaks 

and has been previously associated with Crohn’s disease. It is also in LD with rs174537 

(NC_000011.10:g.61552680T>G, r2 = 0.82, D’ = 0.99), a SNP previously identified as an eQTL 

in blood63,64. The associated co-accessible peaks span the promoters of FADS1 and FADS2 (Fig. 

2.6g, h). These results suggest that 30% of the time, genetic variants associated with chromatin 

accessibility are also associated with gene expression, and in some cases, such as the FADS1 and 

FADS2 loci previously associated with Crohn’s disease, can be directionally linked through 

mediation analysis. 

Discussion 

Although variability in gene expression has been extensively characterized, variability in 

chromatin state has been challenging to study in primary cells. To this end, we analyzed ATAC-

seq profiles in primary CD4+ T cells from five individuals at rest and in response to stimulation. 

We found global remodeling of accessible chromatin after stimulation, with a significantly higher 

number of accessible regions overlapping a large proportion (12 - 28%) of SNPs associated with 

autoimmune diseases and different T cell enhancer subsets (e.g. Tregs, Th17, etc). 

  

Due to these initial observations, we dissected the relationship between genetic variation and 

variability in chromatin accessibility in a physiologically-relevant system, stimulated CD4+ cells. 

Variation across 105 individuals highlights four inter-related phenomena. First, accessible regions 
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co-vary across the genome of an individual (co-accessibility), reflective of the 3D structure of the 

genome. At individual peak resolution, ~2% of ATAC-peaks are co-accessible, especially if they 

are within the same Hi-C contact domain, and these are more likely to overlap T cell enhancers, 

pioneering factors, and “pairs” of regulatory regions, including super-enhancers. These results 

suggest that co-accessibility between pairs of peaks may be determined by the 3D conformation 

of the genome and may correspond to coordinated regulation of multiple cis-regulatory elements. 

Second, combining genetic variation with variation in individual peak accessibility, we identified 

local-ATAC-QTLs. Even though only a minority (5%) of local-ATAC-QTLs directly reside 

within the core binding sites of TFs, nearly half (45%) are predicted to dramatically disrupt binding 

at TF binding sites. Moreover, even though local-ATAC-peaks are only 5% of SNP-containing 

ATAC-peaks, they overlap ~10-30% of the previously reported loci for several common 

autoimmune diseases and explain 1-7% of the disease heritability. The overwhelming enrichment 

for autoimmune disease loci among local-ATAC-peaks could be the result of both the increased 

number of features tracking cell state and the propensity for disease-causing variants to perturb 

cis-regulatory elements containing key TFs active in specific cell types or states. Third, we found 

that local-ATAC-QTLs can further act distally on additional peaks in a 1 Mb window, with the 

strongest effects on ATAC-peaks that are co-accessible, which substantially increase their 

mechanistic and functional impact. Fourth, considering local-ATAC-QTLs in the context of 

variation in gene expression (by RNA-seq; 92 overlapping individuals), we estimated that 30% of 

local-ATAC-QTLs are also eQTLs, with bivariate and mediation analyses suggesting there may 

be mechanistic directionality between these functional phenotypes. 

  

In a manner consistent with known modes of transcriptional regulation, our approach for a staged 
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analysis, testing the effects of local-ATAC-QTLs on distal-ATAC-peaks and gene expression, 

allowed us to overcome power limitations from the sample size and the technical and biological 

variability in the assays to detect hundreds of genes associated with local-ATAC-QTLs. Despite 

this, there was limited power for bivariate analysis to quantify the shared genetic effects and 

establish causality for the observed association to both chromatin state and gene expression. These 

limitations will likely be overcome in future studies with larger sample sizes and higher sequencing 

depth. 

  

Our findings, derived from large scale genetic association of quantitative chromatin and gene 

expression traits in primary human cells implicated in many diseases, provide a molecular 

framework for how disease-causing variants could alter local chromatin structure to modulate gene 

expression. With the recent advancement of single cell epigenomic65 and transcriptomic66,67,68 

profiling, it should be possible to more directly detect context-specific genetic effects in a 

heterogeneous cell population. Future studies that use other disease-relevant primary cells and 

tissues will help pinpoint causal disease variants and understand the regulatory mechanism 

underlying common disease. 
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Figures 

 

Figure 2.1. Changes in chromatin state in human T cell activation.  
(a) Experimental overview (left) and schematic of nomenclature (right). (b) Differential chromatin 
accessibility. Regions of open chromatin (columns) in six samples (rows) before (top, Th-specific) 
and 48hr after (bottom, Thstim-specific) activation of primary T cells with anti-CD3/CD28 
antibodies. (c) Overlap with previously annotated T cell enhancers. For each annotation, expected 
(x-axis) vs. observed (y-axis) percentages of annotated features overlapping Th-specific (left), 
Thstim-specific (center) and shared peaks (right). (d) Overlap with GWAS variants. For each 
phenotype or disease, expected (x-axis) vs. observed (y-axis) percentages of GWAS loci 
overlapping Th-specific (left), Thstim-specific (center), or shared (right) peaks. 
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Figure 2.2. Changes in transcription factor enrichment in response to T cell activation.  
(a) Transcription factor motif enrichment. Expected (x-axis) vs. observed (y-axis) percentages of 
Th-specific (left), Thstim-specific (center), or shared (right) peaks overlapping each TF binding site 
annotation. (b-d) TF footprinting. For each TF motif (as defined in ENCODE63), nucleotide 
resolution average chromatin accessibility (y-axis) in Th (purple) or Thstim (red) cells along the TF 
binding site (x-axis; log(bp from center of each TF motif)). Aggregated locations are defined as 
(b) Thstim-specific peaks overlapping BATF, ISRE, and BATF/IRF motifs (three left panels) and 
shared peaks overlapping CTCF binding sites (right panel), (c) Th-specific (left) and Thstim-
specific (right) peaks overlapping ETS1 binding sites, and (d) Th-specific peaks overlapping 
ETS1/RUNX combinatorial binding sites.  
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Figure 2.3. Inter-individual chromatin co-accessibility.   
(a) Overview of T cell activation for 105 ATAC-seq and 95 RNA-seq samples. (b) Schematic of 
nomenclature for co-accessible peaks, SNP-containing peaks, local-ATAC-QTLs, distal-ATAC-
QTLs, and eQTLs. Dashed lines denote a correlation between co-accessible peaks and solid lines 
denote a genetic association. (c) Megabase scale correlation of chromatin accessibility across 105 
individuals. Heat map shows the pairwise Pearson correlation of chromatin accessibility between 
1 Mb bins (row, column) for Chr 1. (d) Pearson correlation of Hi-C interactions at 1 Mb resolution 
for Chr 1. (e) Histogram of distances between significantly co-accessible peaks (pink) and random 
permuted peaks (grey). (f) Co-accessible peaks overlap with Hi-C domains. Q-Q plot of linear 
regression P-values for pairs of peaks residing in (blue) or out (red) of the same Hi-C domain. (g) 
Pairs of co-accessible peaks overlapping with multiple cis-regulatory regions. A cartoon depiction 
(top) of co-accessible peaks in promoters (green), enhancers (blue), and super enhancers (orange). 
Proportion (y-axis) of pairs of co-accessible peaks and non-co-accessible peaks overlapping pairs 
of annotated cis-regulatory elements (right). (h) Proportion of co-accessible peaks overlapping 
super-enhancers or randomly shuffled background. 
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Figure 2.4. Genetic variants that affect chromatin states in human T cell activation. 
(a) Q-Q plot of linear regression P-values for all local-ATAC-QTLs (black) and local-ATAC-
QTLs binned by minor allele frequency: 0.1 > MAF > 0.05 (red), 0.2 > MAF > 0.1 (orange), 0.3 
> MAF 0.2 (yellow), 0.4 > MAF > 0.3 (green), 0.5 > MAF 0.4 (blue), and MAF > 0.05 (black). 
(b) Heritability of chromatin accessibility. For each of 1,428 local-ATAC-peaks, coefficient of 
determination (R2) of the best associated local-ATAC-QTL (y-axis) vs. cis heritability (h2) 
estimated based on all genotypes +/- 500 kb of each peak (x-axis). Black points: significantly 
heritable peaks (FDR < 0.05). (c) Enrichment of local-ATAC-peaks in TSS and TTS. 3,318 local-
ATAC-peaks (dark pink and purple) vs. 3,318 randomly sampled SNP-containing ATAC-peaks 
(light pink and purple). (d-f) Disruption of TF binding sites by local-ATAC-QTLs. (d) 
Unsupervised TF binding site analysis of local-ATAC-peaks. Motifs for six TFs associated with 
most of the large gkmSVM weights, and the percentage of the overall disruption (%, bottom) 
explained by local-ATAC-QTLs. (e) Correlation of effect sizes of local-ATAC-QTLs (x-axis) vs. 
deltaSVM scores (y-axis). (f) Allele specificity of local-ATAC-QTLs. For BATF, ETS1 and 
CTCF motifs (as identified in ENCODE63), aggregated plots of mean chromatin accessibility (y-
axis) of local-ATAC-peaks along the TF binding site (x-axis; log(bp from center of the TF motif)) 
for samples heterozygous (pink), homozygous for the high (blue) or low (green) local-ATAC-QTL 
alleles (g) Relation between contact domains and SNP-containing ATAC-peaks or local-ATAC-
peaks. For ATAC-peaks or local-ATAC-peaks overlapping ETS1, CTCF, or BATF binding sites, 
enrichment density (y-axis) vs. distance (number of domains) of peak to nearest domain (x-axis). 
Hi-C contact domain boundaries are indicated (dotted red lines). (h) Partitioned heritability 
estimates. The proportion of the heritability for 28 diseases explained (proportion: left, y-axis; 
enrichment: right, y-axis) captured by local-ATAC-QTLs called at different FDR thresholds (x-
axis). (i) Effects of local-ATAC-QTL rs17293632 on the accessibility of the corresponding BATF 
containing local-ATAC-peak on chromosome 15. ATAC-seq profiles were aggregated per 
rs17293632 genotypes (black: homozygous major allele, light blue: heterozygous, red: 
homozygous minor allele). 
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Figure 2.5. Genetic determinants of co-accessible peaks.  
(a) Distribution of the heritability explained by SNPs +/- 500 kb of ATAC-peaks. Local-ATAC-
peaks (olive). SNP-containing co-accessible peaks (blue). Co-accessible peaks without a SNP 
(purple). SNP-containing ATAC-peaks (green). ATAC-peaks without a SNP (red). (b) Q-Q plots 
of the linear regression P-values of distal-ATAC-peaks that are single peaks (red: co-accessibility 
FDR > 0.5), or co-accessible peaks called at various significance cutoffs (light blue: 0.2 < FDR < 
0.5, medium blue: 0.05 < FDR < 0.2, dark blue: FDR < 0.05). The cartoons (upper left corner) 
depict the distal-ATAC-QTL association for single peaks (left cartoon; red line is the association 
plotted) and distal-ATAC-QTL association for co-accessible peaks (right cartoon; blue line is the 
association plotted; upper dashed line is the co-accessible peak at various significance cutoffs). (c) 
Proportion of co-accessible distal-ATAC-peaks overlapping super-enhancers or randomly 
shuffled background. (d) An example of a genetic variant (rs10882660) residing in the first intron 
in ENTPD1, associated locally (in purple) and distally (in yellow) to ATAC-peaks. The local and 
distal-ATAC-peaks are co-accessible (dotted line) and reside in a Hi-C contact domain (grey). 
ATAC-seq profiles were aggregated for individuals of different rs10882660 genotypes (black: 
homozygous major allele, light blue: heterozygous, red: homozygous minor allele). 
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Figure 2.6. Association of chromatin accessibility and gene expression.  
(a) eQTLs. Q-Q plot of associations between local-ATAC-QTLs (black) or all SNPs (red) and 
expression of genes +/- 500kb. (b) Heritability of gene expression. For each of 191 eGenes, 
coefficient of determination (R2) of the best associated eQTL (y-axis) vs. heritability (h2) of all 
variants +/- 500 kb of each gene (x-axis). Black points: significantly heritable peaks (FDR < 0.05). 
(c) Correlation of effect sizes between local-ATAC-QTLs (x-axis) and eQTLs (y-axis). (d) 
Mediation of eGenes. Average causal mediation effect estimates (y-axis) and average direct effect 
estimates (x-axis) for local-ATAC-peaks (mediator) and eGenes (outcome variable) sharing a SNP 
(instrument variable). FDR < 0.1 local-ATAC-peaks are colored in black. (e,f) Examples of gene 
expression conditioned on chromatin accessibility. (e) FADS2 expression (y-axis) vs. chromatin 
accessibility at chr11:61,601,708-61,602,451 (x-axis) before (left) and after (right) conditioning 
on rs174575. (f) FADS1 expression (y-axis) vs. chromatin accessibility at chr11:61,582,207-
61,584,717 (x-axis) before (left) and after (right) conditioning, colored by rs174561 genotypes. 
(g,h) ATAC-seq (top) and RNA-seq (bottom) profiles were aggregated for individuals of different 
(g) rs174561 and (h) rs174575 genotypes (black: homozygous major allele, light blue: 
heterozygous, red: homozygous minor allele). 
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Materials and Methods 

  

Study subjects and genotyping 

Healthy subjects between the ages of 18 to 56 (avg. 29.9) enrolled in the PhenoGenetic study8 

were recruited from the Greater Boston Area and gave written informed consent for the studies. 

Individuals were excluded if they had a history of inflammatory disease, autoimmune disease, 

chronic metabolic disorders or chronic infectious disorders. Genotyping using the Illumina 

Infinium Human OmniExpress Exome BeadChips (704,808 SNPs are common variants [MAF > 

0.01] and 246,229 are part of the exomes; Illumina Inc., San Diego, CA) has been previously 

described18. The genotyping success rate was at least 97%. We applied rigorous subject and SNP 

quality control (QC) that includes: (1) gender misidentification; (2) subject relatedness; (3) Hardy-

Weinberg Equilibrium testing; (4) use concordance to infer SNP quality; (5) genotype call rate; 

(6) heterozygosity outlier; and (7) mismatch detection using SNP overlapping reads from ATAC-

seq and RNA-seq. We excluded 1,987 SNPs with a call rate < 95%, 459 SNPs with Hardy-

Weinberg equilibrium P-value < 10-6, and 63,781 SNPs with MAF < 1% from the 704,808 

common SNPs (a total of 66,461 SNPs excluded). Principal component analysis of genotypes from 

all individuals used in the study are shown in Supplementary Figure S2.6. 

  

We used the IMPUTE2 software (version: 2.3.2) to impute the post-QC genotyped markers from 

the entire ImmVar cohort (N = 688) using reference haplotype panels from the 1000 Genomes 

Project (The 1000 Genomes Project Consortium Phase III) that contain a total of 37.9 Million 

SNPs in 2,504 individuals with ancestries from West Africa, East Asia, and Europe. After 
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genotype imputation, we extracted the genotypes for 105 individuals assayed for chromatin 

accessibility and gene expression. Additional removal of SNPs with MAF < 0.05 in our cohort 

resulted in 4,558,693 and 4,421,936 common variants tested for chromatin accessibility and gene 

expression assays, respectively. 

  

Preparation and activation of primary human CD4+ T cells 

CD4+ T cells were isolated and stimulated as previously described10. Briefly, CD4+ T cells were 

isolated from whole blood by negative selection using RosetteSep human CD4+ T cell enrichment 

cocktail (STEMCELL Technologies Inc., Vancouver, BC) and RosetteSep density medium 

gradient centrifugation. Isolated CD4+ T cells were placed in freezing container at -80°C for 

overnight, and then moved into a liquid nitrogen tank for long-term storage. On the day of 

activation, CD4+ T cells were thawed in a 37°C water bath, counted and resuspended in RPMI-

1640 supplemented with 10% FCS, and plated at 50,000 cells per well in a 96 well round-bottom 

plate. Cells were either left untreated or stimulated with beads conjugated with anti-CD3 and anti-

CD28 antibodies (Dynabeads, Invitrogen #11131D, Life Technologies) at a cell:bead ratio of 1:1 

for 48 hours, a time point we previously found to maximize the gene expression response in CD4+ 

T cells. At each time point, cells were further purified by a second step positive selection with 

CD4+ Dynabeads (Invitrogen #11145D, Life Technologies). 

  

ATAC-seq profiling 

ATAC-seq profiles were collected for 139 individuals (Supplementary Table 2.4). We performed 

ATAC-seq as previously described32, with a modification in the lysis buffer to reduce 

mitochondrial DNA contamination. 200,000 purified CD4+ T cells were lysed with cold lysis 
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buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.03% tween20). Immediately 

after lysis, nuclei were spun at 500g for 8 minutes at 4°C. After pelleting the nuclei, we carefully 

removed the supernatant and resuspended the nuclei with Tn5 transposase reaction mix (25 ul 2X 

TD buffer, 2.5 ul Tn5 transposase, and 22.5 ul nuclease-free water) (Illumina Inc). The 

transposition reaction was performed at 37°C for 30 minutes. Immediately after the transposition 

reaction, DNA was purified using a Qiagen MinElute kit. Libraries were sequenced on an Illumina 

HiSeq 2500 sequencer to an average read depth of 42 million (+/- 38 million) per sample 

(Supplementary Fig. 2.S2), with low mtDNA contamination (0.30 – 5.39%, 1.96% on average), 

low rates of multiply mapped reads (6.7 – 56%, 19% on average) and a relatively high percentage 

of usable nuclear reads (60 – 92%, 79% on average). 

  

RNA-seq profiling 

RNA-seq profiles were collected for 95 individuals, of which 92 have matching ATAC-seq 

profiles (Supplementary Table 2.4). RNA was isolated using Qiagen RNeasy Plus Mini Kit and 

RNA integrity was quantified by Agilent RNA 6000 Nano Kit using the Agilent Bioanalyzer. 

Purified RNA were converted to RNA-seq libraries using a previously published protocol69, where 

reverse transcription was carried out based on the SMART template switching method and the 

resulting cDNA was further tagmented and PCR amplified using Nextera XT DNA Sample kit 

(Illumina) to add the Illumina sequencing adaptors. Samples were sequenced on Illumina HiSeq 

2500 to an average depth of 16.9 million reads per sample (+/- 8.7 million). 

  

In situ Hi-C 

CD4+ T cells were isolated from commercially available fresh blood of healthy individuals 
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(Research Blood Components). CD4+ T cells were stimulated for 48 hours with beads conjugated 

with anti-CD3 and anti-CD28 antibodies. In situ Hi-C was performed on the pool of donors as 

previously described40. Cells were crosslinked with 1% formaldehyde for 10 min at room 

temperature. After nuclei permeabilization, DNA was digested with MboI and digested fragments 

were labeled using biotinylated d-ATP and ligated. After reverse crosslinking, ligated DNA was 

purified and sheared to ~400 bp. Biotin labeled DNA fragments were then pulled down with 

streptavidin beads and prepped for Illumina sequencing40. The final libraries were sequenced using 

Illumina HiSeq and NextSeq to produce ~3.5 billion 100bp paired-end reads. 

  

Alignment of ATAC-seq reads 

25bp ATAC-seq reads were aligned to the human genome assembly (hg19) with the Burrows-

Wheeler Aligner-MEM (version: 0.7.12)70. For each sample, multiply-mapped reads were filtered 

using Samtools “view”71 with option “-F 4” and mitochondrial reads were filtered out using 

BEDtools (function intersectBed)72. After filtering, we had a median of 37 million (MAD +/- 13 

million) reads per sample. 

  

ATAC-seq peak identification 

Filtered ATAC-seq reads from six matched samples (five individuals, of which one individual was 

repeated) for Th and Thstim cells were merged (separately for Th and Thstim cells) using the 

Samtools function “merge” 71. Peaks were called on the respective Th and Thstim merged bam files 

using MACS2 –callpeak (with parameters: --nomodel, --extsize 200, and --shift 100), resulting in 

36,486 Th peaks with an average width of 520 bp (+/- 319 bp) and 52,154 Thstim peaks with an 

average width of 483 bp (+/- 344 bp) (Benjamini-Hochberg FDR < 0.05)73. The Th and Thstim 
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peaks were further merged (using the BEDtools “merge” function), to a total of 63,763 jointly 

called peaks. BEDtools “coverage”72 was used to create a 63,763 (peaks) x 12 (6 samples by 2 

conditions) input matrix used for detecting differentially accessible peaks. Differentially accessible 

peaks between Th and Thstim cells were identified using the DESeq2 R package (version 3.2)74, 

with 8,298 Th-specific peaks (FDR < 0.05, more accessibility in Th cells), 28,017 Thstim-specific 

peaks (FDR < 0.05, more accessibility in Thstim), and 27,446 shared peaks (FDR > 0.05). 

  

For the co-accessibility and genetic analyses, 4.2 billion filtered ATAC-seq reads from 105 Thstim 

samples were merged to call 167,140 peaks (FDR < 0.05) using the same parameters as previously 

described, at an average peak size of 642 bp (+/- 512 bp). Coverage for each peak over all 105 

samples was computed. 

  

Percentage of peaks overlapping transcription factor binding motifs 

Percentages of MACS2 called peaks overlapping TF binding motifs were computed using the 

default setting in the Homer suite75 function findMotifsGenome.pl (with genome reference hg19, 

option –size given). For co-accessible peaks and local-ATAC-peaks, background overlap 

percentages were computed using randomly sampled genomic regions preserving the width of each 

peak to assess the expected TF motif enrichment. 

  

Transcription factor footprinting 

Using the Homer suite tool annotatePeaks75, and options –m and –mbed, we found all instances of 

BATF, ISRE, BATF/IRF, ETS1, and CTCF motifs in shared, Th-specific and Thstim-specific 

peaks. Next, we determined the per-base coverage +/- 1 kb around the center of the motif using 
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BEDtools “coverage”, only counting reads that begin at a given location in order to prevent 

smoothing of the chromatin accessibility signal, and splitting the reads into those that map to the 

same or opposite strand as the motif to account for biases in ATAC-seq requiring two transposases 

(i.e. one at a TF binding site and another at a nucleosome accessible region). For each TF footprint, 

we generated a matrix with the number of rows equal to the number of instances of the motif by 

4,000 columns quantifying coverage: +/- 1kb from the same and opposite strand and as the motif. 

Final TF footprints were derived from median normalized reads. 

  

Outlier analysis and sample mix-up analysis 

ATAC-seq samples were further filter if the samples contained a minimum of 8 million QC-passed 

reads (median of 37 million, MAD +/-13 million) and were highly correlated with other samples 

(mean Pearson R > 0.68). ATAC-seq and RNA-seq profiles from the 105 individuals were further 

filtered to identify sample mix-ups. We used the software VerifyBamID76 to match each ATAC-

seq and RNA-seq sample with the genotyping profile with the highest fIBD score. Samples with 

designated labels not matching the VerifyBamID predicted genotyping labels were flagged as 

sample mix-ups. We switched the designated label to the predicted label for cases where the fIBD 

> 90%. 15 out of the 139 total ATAC-seq samples were re-labeled and four out of the 110 total 

RNA-seq samples were re-labeled. For the ATAC-seq samples: 18 do not have genotypes, three 

are outliers, one did not match anyone. For the 110 RNA-seq samples: eight samples do not have 

genotypes, five are outliers, one did not match anyone. 111 ATAC-seq samples and 96 RNA-seq 

samples were used in the final analysis after filtering. In the response to activation study, there 

were five people total, 1 person was repeated for a total of six samples, none were genotyped. 
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Genetic association analysis of ATAC-peaks 

Genetic association analysis was performed on 105 samples of European descent (Supplementary 

Fig. 2.S6) by running RASQUAL43 on the 167,140 peaks identified in Thstim cells and 4,558,693 

imputed genetic variants, testing variants within a 1 Mb window of each ATAC-peak, and filtering 

for a minor allele frequency of greater than 5% using uniquely mapped nuclear reads per 

individual. Sex and ten principal components (Supplementary Table 2.4) were included as 

covariates to minimize the effects of confounding factors. Using the RASQUAL “-r” option, 10 

permutations were generated for each ATAC-peak. For local-ATAC-peak analysis, association 

statistics for 158,613 peak-SNP pairs where the SNP resides within the peak are compared. For 

distal-ATAC-peak analysis, association statistics for peak-SNP pairs where the SNP does not 

reside within the peak are compared. In each case, empirical P-values and the corresponding false 

discovery rates were computed using the R qvalue44 package to detect a total of 3,318 local -

ATAC-peaks (FDR < 0.05) and 382 distal-ATAC-peaks (FDR < 0.05). 

  

Hi-C data analysis 

The sequenced reads were analyzed using the Juicer pipeline77. We sequenced 2,940,433,604 Hi-

C read pairs in stimulated T cells. Loci were assigned to A and B compartments at 500 kB 

resolution. Contact domains were annotated using the Arrowhead algorithm with default Juicer 

parameters at 5kB for stimulated T cells. This yielded a list of 4,008 domains in stimulated T cells 

at MAPQ > 30. We also ran Arrowhead with these same respective parameters on MAPQ > 0 Hi-

C maps, which yielded a list of 4,419 domains in stimulated T cells. The Hi-C maps and feature 

annotations were visualized using the Juicebox software77. 
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Determination of distance from ATAC-peak to contact domains 

We determined the distance from each SNP-containing ATAC-peak to the middle of the closest 

contact domain. We analyzed the following features: (1) all SNP-containing ATAC-peaks; (2) 

local-ATAC-peaks; and all SNP-containing ATAC-peaks and local-ATAC-peaks containing (3) 

BATF, (4) ETS1, or (5) CTCF motifs. Homer annotatePeaks ‘–mbed’75 option was used to 

identify SNP-containing ATAC-peaks and local-ATAC-peaks that contain BATF, ETS1, and 

CTCF motifs, as previously described. We normalized the distances from each peak to the closest 

domain by the length of the domain. In order to determine that the distribution of the distance 

between a given peak and a contact domain is different than the null distribution, we kept the 

length of each contact domain constant and shuffled the positions of the contact domain. The 

distances from each peak to the contact domain were binned into 30 bins and divided by the 

binned distances between a given peak and the shuffled contact domains to determine enrichment 

at each position. 

  

Co-accessible peak analysis 

To identify co-accessible peaks, we computed the correlation between every pair of 167,140 

ATAC-peaks within 1.5 Mb of each other using a linear regression model implemented by Matrix 

eQTL78. We first normalized the ATAC-peaks by (1) removing sequencing depth bias using 

median normalization, (2) standardizing the matrix by subtracting out the mean and dividing by 

the standard deviation for each peak; and (3) quantile normalizing the matrix79. Adjusting for sex 

and 15 principal components, we used Matrix eQTL to identify 2,158 pairs of co-accessible peaks 

(1,809 unique ATAC-peaks, FDR < 0.05-). We reran the analysis using 10 permuted datasets 

generated by shuffling the peak counts for an individual to obtain a distribution of permuted P-
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values. The qvalue package was used to obtain empirical P-values and false discovery rates44. 

  

RNA-seq analysis 

25bp paired end RNA-seq reads were aligned to the hg19 using UCSC transcriptome annotations. 

Expression levels (expected counts) were determined using RSEM79. We applied trimmed mean 

of M-values normalization method (TMM) to the expected counts using the edgeR package and 

kept genes that had TMM count > 1 in at least 75% of the samples. For the mapping of eQTLs, we 

inputted expected counts for filtered genes into RASQUAL43. For the heritability analyses, we 

used log-transformed TMM counts of filtered genes in order to fit linear mixed models. 

  

Percentage of GWAS loci overlapping 

The GREGOR suite63 was used for calculating the percentage of GWAS loci in features of interest: 

(1) peaks differentially accessible in Th and Thstim cells, (2) co-accessible peaks, (3) SNP-

containing peaks, and (4) local-ATAC-peaks. GWAS loci in the National Human Genome 

Research Institute GWAS catalogue as of November 2016 were overlapped. For local-ATAC-

peaks, peaks were randomly permuted, while retaining the width of each peak to assess the 

expected GWAS enrichment. 

  

Partitioned heritability analysis 

Partitioned heritability analysis was performed using LD Score80. Summary statics for all SNPs 

for 28 GWAS (Alzheimer, anorexia, autism, bipolar disorder, BMI, celiac, coronary artery disease, 

Crohn’s disease, DS, ever smoked fasting glucose, HDL, IBD, LDL, lupus, multiple sclerosis, 

neuroticism, primary biliary cirrhosis, rheumatoid arthritis, schizophrenia, SWB, triglycerides, 
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type 1 diabetes, type 2 diabetes, ulcerative colitis, years of education 1, and years of education 2) 

phenotypes were downloaded from the Broad Institute (see URLs). Local-ATAC-QTLs were 

thresholded at FDR < 0.05, FDR < 0.1, FDR < 0.2, FDR < 0.5, and all tested SNPs. Using SNPs 

at each FDR threshold, annotation files and LD Scores were estimated for all 28 GWAS 

phenotypes using ‘ldsc.py –l2’. Finally, to calculate the partitioned heritability across each 

phenotype, including our local-ATAC-QTLs at each FDR threshold, respectively, ‘ldsc.py –h2’ 

was run. 

  

Percentage overlapping T cell annotations 

Using the Homer suite annotatePeaks.pl with the –genomeOntology option75, we calculated how 

many of the Thstim-specific peaks, co-accessible peaks, SNP-containing peaks, and local-ATAC-

peaks fall T cell enhancers18. For co-accessible peaks, SNP-containing peaks, and local-ATAC-

peaks peak subsets, background overlap was calculated using randomly sampled genomic regions 

preserving the width of each peak to assess the expected T cell enrichment. 

  

Proportion in super-enhancer regions 

Using the BEDtools “intersect” function, we calculated how many of the co-accessible peaks and 

co-accessible local-ATAC-peaks are also in stimulated Th super-enhancers (as reported in Hinsz 

et al.41). Background proportions were computed using randomly sampled genomic regions 

preserving the length of each super enhancer. 

  

Proportion co-accessible peaks in known regulatory elements 

Using the BEDtools “intersect” function72, we annotated each peak in our unique pairs of co-
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accessible peaks as residing in a known Thstim super enhancer (as reported in Hinsz et al.41), 

promoter (as reported in Fahr et al.18), and T cell promoter (as reported in Fahr et al.18). We 

determined if each peak in a pair of peaks resided in a promoter and a promoter, promoter and a 

super enhancer, a promoter and an enhancer, an enhancer and an enhancer, an enhancer and a super 

enhancer, and a super enhancer and a super enhancer. As background (‘non co-accessible peak’), 

we used pairs of ATAC-peaks with P-value > 0.9, sampled to the same number as co-accessible 

peaks, and performed the same analysis. 

  

Gkm-SVM and deltaSVM 

We ran gkm-SVM46,47 on 24,745 300bp ATAC-peaks centered on MACS summits using default 

parameters and an equal size GC matched negative set, excluding from training any region 

containing a SNP to be scored by deltaSVM, and repeated with 5 independent negative sets, and 

averaged the deltaSVM predictions, as previously described48. We then calculated deltaSVM for 

each SNP in a local-ATAC-peak, scoring 903 SNPs in 888 loci. We find a Pearson correlation of 

R=0.627 between ATAC-QTL beta and the largest deltaSVM SNP. 777 of the peak P-value SNPs 

had the largest deltaSVM, but 111 flanking SNPs scored more highly than the peak P-value SNP 

and disrupt immune associated TF binding sites. While the gkm-SVM weights fully specify the 

deltaSVM score, for interpretation we associated the large gkm-SVM weights with the most 

similar TF PWM from a catalog of JASPAR, Transfac, Uniprobe, and Homer motifs. 

  

Heritability of gene expression and ATAC-peaks 

For the univariate analyses, restricted maximum likelihood heritability (h2) estimates were 

calculated using GCTA software45 with algorithm 1 and no constraints on heritability (i.e., h2 can 
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be less than 0), while the bivariate analysis was run constrained. For the gene expression 

heritability analysis, where gene expression was residualized for 12 principal components and sex, 

and ATAC-peak heritability analysis, where ATAC-peaks were residualized for 10 principal 

components and sex, we used genotypes +/- 500 kb from the transcription start site of the gene and 

center of each ATAC-peak, respectively. Of the 64,188 SNP-containing ATAC-peaks and 3,318 

local-ATAC-peaks, 32,317 and 2,444 converged respectively. The bivariate GCTA analysis used 

genotypes +/- 500kb from the transcription start site of the gene. Randomly sampled ATAC-peaks 

(non local-ATAC-peaks) and permuted ATAC-peaks were plotted as background at the same 

number of the tested local-ATAC-peaks (N=161, standard errors < 1). 

  

Mediation of eGenes by local-ATAC-peaks 

Pairs of local-ATAC-peak and eGenes were matched through their shared eQTL. Our normalized 

ATAC-peak matrix, as previously described (Methods), was further adjusted for gender and 10 

principal components was used as input local-ATAC-peaks. Normalized gene expression matrix, 

as previously described (Methods), was further adjusted for gender and 12 principal components 

used as input as input for our eGenes. For each eQTL a 92 x three matrix was formatted. Each row 

in the matrix corresponded to an individual and each column corresponded to (1) eQTL genotype, 

(2) normalized local-ATAC-peak, and (3) normalized eGene. First, we regressed local-ATAC-

peak ~ eQTL. Second, we regressed eGene ~ eQTL + local-ATAC-peak. To test for statistically 

significant mediation effects, the mediator package58 ‘mediate’ function was called using both 

regression models as input. 
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Conditioning on eQTL 

For each eQTL, the 92 x three matrix that was previously described (Methods) was used as input. 

To capture the effects of the eQTL, we regressed the eGene ~ local-ATAC-peak. To capture the 

effects after conditioning on the eQTL, we regressed the residuals of eGene ~ eQTL to the local-

ATAC-peak. 
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Supplementary Figures 

 

 
 
 
Supplementary Figure 2.1. PCA of the genetic relationships between individuals in the 
ImmVar cohort. Shown are the scores for each of 688 individuals in the ImmVar Consortium 
along the first two principal components (PCs, x and y axes) in a PCA of the genetic relationship 
matrix. Individuals used in this study are highlighted in blue (activation response analysis) and 
green (QTL and co-accessibility analyses). 
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Supplementary Figure 2.2. ATAC-seq reproducibility. (a, b) Technical reproducibility. 
Scatter plots of chromatin accessibility (ATAC-seq signal, x and y axes) for two replicate 
experiments of either unstimulated (a; 36,486 Th peaks) or activated (b; 52,154 Thstim peaks) T 
cells. (c, d) Reproducibility between individuals. (c) Chromatin accessibility for activated T cells 
from individuals IGTB1191 (y axis) and IGTB1190 (x axis) (d) and histogram of correlations 
between every pairs of individuals for the 52,154 Thstim peaks. 
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Supplementary Figure 2.3. ATAC-seq alignment rates. Each sample’s (x axis) percentage of 
reads (y axis) that are non-uniquely mapped (blue), uniquely mitochondrial DNA (red), uniquely 
nuclear genomic duplicates (green), and uniquely nuclear genomic non-duplicates (purple). 
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Supplementary Figure 2.4. Comparison of peak annotations in activated CD4+ T cells. For each set 
of GWAS loci (a) or enhancer (H3k27Ac marks, b) features, shown is their observed over expected 
enrichment of proportions in 52,154 Thstim peaks called from pooling five individuals (y axis; as in Fig. 
2.1) or in 167,140 ATAC-peaks called from 105 individuals (x axis, as in Fig. 2.2).  Point size is scaled to 
associated significance (hypergeometric P value). 
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Supplementary Figure 2.5. Cartoon of co-accessible regions of accessible chromatin. Cartoon of the 
multiscale relationship between co-accessible regions across individuals and 3D genome structure. 
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Supplementary Figure 2.6. Megabase scale inter-individual co-accessibility (by ATAC-
peak) or physical interactions (by Hi-C). For each chromosome matching heat maps show the 
pairwise Pearson correlation in chromatin accessibility across 105 ATAC-seq profiles in ATAC-
peaks binned into 1 Mb windows (top panel) and correlation of Hi-C interactions at 1 Mb 
resolution (bottom panel). 
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Supplementary Figure 2.7. Comparison of co-accessibility and Hi-C interactions. 
For each pair of 100 kb windows (shown are 500 randomly sampled pairs) along chromosome 22 are the 
Hi-C interaction score (x axis) and the correlation between ATAC-peaks (y axis) (Pearson R = 0.52). 
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Supplementary Figure 2.8. Co-accessible peaks. Q-Q plot for all tests of correlation between co-
accessible peaks within 1.5 Mb region around a target ATAC-peak. 
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Supplementary Figure 2.9. Relation of ATAC-peak height and statistical significance of local-
ATAC-peaks and co-accessible peaks. Relationship between ATAC-peak height (y axis) and statistical 
significance (x axis) of co-accessible peaks (a) and local-ATAC-peaks (b). Pearson R is marked on top, 
showing little relationship between the significance of local-association or co-accessibility and the 
strength of the peak. 
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Supplementary Figure 2.10. Co-accessible peak overlap with Th cell enhancers. Percentages of 
enhancer annotations overlapping all ATAC-peaks (x axis) versus co-accessible peaks (y axis). Real peaks 
(black) and permuted peaks (gray). 
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Supplementary Figure 2.11. Co-accessible peak TF motif enrichment. Percentage of ATAC-peaks (x 
axis) versus percentage of co-accessible peaks (y axis) overlapping TF binding sites. Real peaks (black) 
and permuted peaks (gray). 
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Supplementary Figure 2.12. Local-ATAC-QTL P values. Distribution of the empirical P values for the 
minimum statistical association per ATAC-peak containing a SNP.  
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Supplementary Figure 2.13. Correlation to H3K27ac QTLs identified in immune cells in the 
BLUEPRINT epigenome project. Correlation of effect sizes for each of 2,015 loci identified as both T 
cell H3K27ac histone mark QTLs in the BLUEPRINT epigenome project (y axis) (1) and as local-ATAC-
peaks (x axis) in our analysis. 
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Supplementary Figure 2.14. Overlap of local-ATAC-peaks with T cell enhancers. Percentage of 
annotations overlapping SNP-containing ATAC-peaks (x axis) versus local-ATAC-peaks (y axis).  Real 
peaks (black) and permuted peaks (gray).  
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Supplementary Figure 2.15. TF motif enrichment of local-ATAC-peaks. Percentage of SNP-
containing ATAC-peaks (x axis) versus percentage of local-ATAC-peaks (y axis) overlapping each TF 
motif. Real peaks (black) and permuted peaks (gray). 
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Supplementary Figure 2.16. Control for TF allele specific footprinting with local-ATAC-
peaks. Aggregated chromatin accessibility (mean ATAC-seq signal, y axis) in local-ATAC-
peaks around BATF, ETS1, and CTCF binding sites (x axis, log[bp from center of each TF 
motif]) previously identified by ChIP-seq (2) for the heterozygote (pink), homozygous with high 
ATAC-seq signal (blue) and homozygous with low ATAC-seq signal (green). Strand with the 
motif in dotted lines and the complementary strand with the motif in solid lines. 
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Supplementary Figure 2.17. Overlap of local-ATAC-peaks with GWAS loci. Percentages of GWAS 
loci overlapping with SNP-containing ATAC-peaks (x axis) versus local-ATAC-peaks (y axis). Real 
peaks (black) and permuted peaks (gray). 
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Supplementary Figure 2.18. Cumulative Distribution Function of genetic correlation. 
Colored by significant (red), randomly sampled (green) or permuted (blue) pairs of local-ATAC-
peaks. 
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Supplementary Figure 2.19. Genetic correlation versus Mediation Effect Estimate. Genetic 
correlation (weighted by the standard error) (x axis) versus the mediation effect estimate (y axis) 
for 161 pairs of local-ATAC-peaks and eGenes that converged. 
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Introduction 

CD4+ T cells display an incredible degree of functional diversity during adaptive immune 

responses classically characterized by the expression of canonical cytokines that create systemic 

inflammatory responses (e.g. Th17) 42–4542–45, signal and recruit B cells (e.g. Th1 and Th2) 46–5246–52, 

and induce tolerance in the tissue microenvironment (e.g. Treg) 53,5453,54. Recently, the ability of 

CD4+ T cells to directly kill infected and tumor cells have also received renewed attention 

5,55,565,55,56. While the functionalization of CD4+ T cells is predominantly determined by the 

polarization of naive T cells (Tnaive), recent results have suggested a high degree of variation within 

and plasticity between canonical subtypes 5757. Indeed, we 58,5958,59 and others 60–6260–62 have shown 

that human circulating CD4+ T cells are composed of a mixture of canonical and non-canonical 

populations with significant interindividual variability in both the proportion and gene expression 

of each population 5858. 

 

Key regulators of CD4+ T cell differentiation and polarization have been mapped in mice utilizing 

pooled and arrayed genetic screens. For example, pooled knockdown screens with RNA 

interference have identified Ppp2r2d as a key regulator of T cell proliferation 6363 and mapped two 

self-reinforcing, mutually antagonistic modules of regulators that drive Th17 differentiation 6464. 

More recently, a pooled genome wide CRISPR screen paired with bulk RNA sequencing identified 

Trappc12, Mpv17l2, and Pou6f1 as regulators of both Th2 activation and differentiation 3535. 

Despite these insights, mapping gene regulatory programs that underlie human CD4+ T cell state 

transitions is incomplete and the intra- and inter-individual variability in these programs remain 

largely unknown. 
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Recent advances in the integration of droplet-based single cell RNA-sequencing (dscRNA-seq) 

and CRISPR/Cas9-mediated genome engineering has created new opportunities to assess the 

functional consequences of genetic perturbations in primary human T cells at an unprecedented 

molecular and cellular resolution 37,38,4037,38,40. Here, we integrate single guide RNA (sgRNA) 

lentiviral infection with Cas9 protein electroporation (SLICE) and multiplexed dscRNA-seq (mux-

seq) to screen the effects of 140 regulators in primary CD4+ T cells across nine donors. By linking 

each sgRNA with the transcriptomes of hundreds of heterogeneous CD4+ cells, we map regulators 

that affect the activation and polarization of specific T cell subsets. By further leveraging the 

coexpression patterns across single cells, we define novel gene regulatory relationships between 

pairs of regulators and their downstream targets. Finally, by incorporating donor genetics, we 

identify instances where genetic effect on gene expression is modified by CRISPR perturbations. 

Our work demonstrates that systematic analyses using multiplexed single-cell genomics and 

genome engineering is a powerful approach to map the gene regulatory networks that govern the 

functionalization of primary human T cells and characterize the intra- and inter-individual 

variability in these networks. 

 

Results 

CRISPR perturbation screen in activated CD4+ T cells across donors 

To map gene regulatory programs that underlie the polarization and activation of human CD4+ T 

cells, we performed sgRNA lentiviral infection with Cas9 protein electroporation (SLICE) 4040 

followed by multiplexed single-cell RNA-sequencing (mux-seq). Primary CD4+ T cells were 

isolated from peripheral blood mononuclear cells (PBMCs) and activated in vitro as previously 

described 41,6541,65 (Fig. 3.1A; Methods). Activated cells were transfected with 280 sgRNAs 
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targeting 140 regulators that were either highly expressed (top quartile from bulk RNA-seq) or 

have binding sites that were differentially accessible (from bulk ATAC-seq) in activated CD4+ T 

cells 5858 (Fig. 3.1B; Table 3.1; Methods). Following Cas9 electroporation and multiple rounds of 

selection and proliferation, activated CD4+ T cells 3434 were pooled across 9 donors and profiled 

using the 10X Chromium platform in 16 wells resulting in 320,708 cell-containing droplets and 

16,750 reads/droplet (Fig. 3.S1-3; Methods). To maximize the probability of detecting sgRNAs 

in cells, we further amplified and sequenced the sgRNA transcripts from the resulting 10X cDNA 

library to near saturation as previously described 6666 (98% compared to 63% in the 3’ tagged 

library; Fig. 3.1C; Methods). 

 

After filtering for doublets using exonic SNPs (77,046 - 24%) and cells with ambiguous sgRNA 

assignments (79,037 cells - 25%; Methods), 164,623 cells were kept for subsequent analyses 

corresponding to 18,291±4,571 cells per donor and 882±522 cells per sgRNA (Fig. 3.1C, D; Table 

3.2; Methods). Of these, 105,664, 40,960, 12,675, and 5,324 cells contained one, two, three, or 

four sgRNAs, resulting in an estimated multiplicity of infection (MOI) of 1 (Fig. 3.1E, S3.4). 

 

To assess the cutting efficiency of each sgRNA, we sequenced the sgRNA pool and DNA of the 

edited cells from each donor by targeted amplification of 268/280 loci (Methods). The insertion 

and deletion (indel) frequencies at each targeted locus and coverage of the corresponding sgRNA 

in the pool are expected correlated (R = 0.36, P < 1.68x10-8, Fig. 3.1F) and the average ratio 

between these two quantities - defined as the cutting efficiency - is 21%±15% (Fig. 3.1F inset). 

We defined 14 sgRNAs as uncut negative controls (WT) where the ratios between the cutting 

efficiencies and proportion of cells containing each sgRNA are 1.645 standard deviations below 
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the mean (z-score < -1.645, P < 0.05) (Fig. 3.1G, S3.5; Methods). In all, the integration of SLICE 

and mux-seq is an efficient and cost-effective strategy for pooled screening and profiling of 

primary human T cells across many donors. 

 

Heterogeneity of activated CD4+ T cells 

Because CD4+ T cells dynamically migrate to and egress from tissues through circulation, cells 

isolated from PBMCs likely represent a functionally diverse population of cells reflective of the 

specific immunological state of an individual. This is supported by previous functional genomic 

analyses of activated primary CD4+ cells demonstrating marked heterogeneity within and 

variability between individuals in the chromatin and expression profiles that overlap signatures 

from multiple sorted populations including Th1s, Th2s, and Th17s 26,58,6226,58,62. 

 

To assess the heterogeneity of activated CD4+ T cells using dscRNA-seq, we clustered 164,623 

cells into 10 Leiden clusters 6767 with each cluster containing on average 16,462 cells (maximum: 

65,720; minimum: 127; Fig. 3.2A, B). We identified 2,189 differentially expressed genes in at 

least one cluster (624±691 per cluster) and annotated each cluster based on the most highly 

expressed markers. We found a CD27+/CCR7+ naive T cell population (Tnaive) 68,6968,69 (65,720 

cells, 40%), and three effector populations including IL5+/IL17RB+/GATA3+ Th2s 70–7870–78 (1,969, 

1.1%), IFNG+ Th1s 75,79,8075,79,80 (8,022 cells, 4.8%), and PRF1+/GNLY+/NKG7+ cytotoxic cells 

(Tcyto) 5656 (37,960, 23%) (Fig. 3.2C, D). We also identified three activated populations (Thstim) 

defined by the expression of HMGB2 and STMN1 81,8281,82 and distinguished from each other by 

the expression of histone markers (Thstim,histone, 19,920 cells, 12%), cell cycling markers PTTG1 

83,8483,84 and KIAA0101 85–8785–87 (Thstim,cycling, 16,905 cells, 10%), and naive markers CCNB1 8888 
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(Tstim,naive, 12,345 cells, 7.4%). We also found a proliferating population (Tprolif) that expressed 

genes associated with tumor progression, including FXYD5 89–9189–91, LIMD2 92,9392,93, and PFDN5 

9494 (903 cells, 0.05%). Finally, we identified two small clusters likely to be transitional, as they 

are intermediates in lineage trajectory 9595 space either between naive and cytotoxic cells 

(Tnaive→cyto 752 cells, 0.04%) or between naive and stimulated cells (Tnaive→stim: 172 cells, 0.01%; 

Fig. 3.S6). To validate these annotations, for each cluster, we correlated the average log fold 

change in expression of upregulated genes (with respect to all other clusters) to the bulk RNA-seq 

expression profiles across 45 reference circulating immune populations 6262 (Methods). This 

approach assigned 8/10 clusters to their expected reference population (Fig. 3.2E, Methods). The 

frequency of each cluster was generally consistent across donors (average pairwise R = 0.94±0.04; 

Fig. 3.2F, S3.7). These results demonstrate that multiplexed single-cell RNA-sequencing of 

activated CD4+ T cells recapitulate the expected T cell subpopulations obtained from sorted 

PBMCs and enables estimates of donor variability in T cell composition.  

 

Regulator perturbations drive T cell polarization 

Regulators that control the activation and polarization of specific CD4+ T cell subsets have been 

mapped in mice and humans using either pooled CRISPR/Cas9 screens sorting for specific cell 

surface markers or RNA-interference (RNAi) followed by bulk transcriptomic profiling 64,9664,96. 

These assays trade off perturbation throughput (low in RNAi, high in CRISPR/Cas9) and 

phenotypic resolution (low by cell sorting, high in bulk transcriptomic profiling). Here, we 

leverage the ability to link CRISPR perturbations to the transcriptomes of single cells using SLICE 

followed by mux-seq to enable high throughput (hundreds of loci) and high phenotypic resolution 

(transcriptome wide) mapping of regulators during human CD4+ activation and polarization. We 
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first demonstrate the robustness and performance of our strategy by the following two quality 

control assessments. One, comparing cells expressing each knockout sgRNA (KO cells) to cells 

expressing the wild type sgRNAs (WT cells), the expression fold change for the targeted regulator 

was lower than random genes (FCtargeted = 0.56 vs FCrandom = 0; KS test; P < 2.26x10-16, Fig. 3.3A). 

Second, the transcriptomes of cells expressing sgRNAs targeting the same regulator or WT 

sgRNAs are more correlated on average (RKO=0.44, RWT=0.50) than cells expressing two random 

sgRNAs (Rrandom= 0; KS test P<2.2x10-16) (Fig. 3.3B). These two results suggest that sgRNAs 

targeting the same gene have similar downstream transcriptomic effects despite a modest (albeit 

statistically significant) change in overall fold change of the targeted genes. 

 

We next assessed the effects of KO sgRNAs on T cell states. Compared to WT cells, the proportion 

of KO cells is statistically enriched in activated or polarized subsets (e.g. Thstim,naive and Th1) and 

depleted in the inactivated subsets (e.g. Tnaive cells and transitional Tnaive→cyto; hypergeometric test, 

FDR < 0.05; Fig. 3.3C). In order to quantify the effect of each sgRNA on cell state, we computed 

the proportion of cells in each cluster that contained a particular sgRNA and identified those 

sgRNAs significantly enriched or depleted using a Z test (Fig. 3.3D; Table 3.4; Methods). Each 

cluster had on average 13 sgRNAs depleted (z-score < -1.5, P < 0.1) and 25 sgRNAs enriched (z-

score > 1.5,  P < 0.1; Fig. 3.S8). For example, the sgRNA (cutsite: chr2:96551631, cutting 

efficiency: 0.47) targeting the RNA-binding protein AT-Rich Interactive Domain-Containing 

Protein 5A (ARID5A) was enriched in the Th2 cluster (z-score > 1.5, P = 9.0x10-3; Fig. 3.3E,F, top 

panels) and slightly depleted, although not statistically significantly, in the Tnaive cluster (z-score 

<-0.4, P = 0.33). The second ARID5A-targeting sgRNA (cutsite: chr2:96550280, cutting 

efficiency: 0.097) showed consistent patterns of enrichment in Tnaive and Th2 cells (Tnaive: z-score 
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< -1.5, P < 0.1; Th2: z-score > 0.2, P = 0.35) (Fig. 3.S9). In contrast, the sgRNA targeting interferon 

response factor 2 (IRF2; cutsite: chr4:184418577, cutting efficiency: 0.25) was depleted in Th2 

cells (z-score < -1.5, P < 0.1; Fig. 3.3E, F, right panels). The second IRF2-targeting sgRNA 

(cutsite: chr4:184418667) had a cutting efficiency of 0.04 and was thus considered a WT sgRNA 

and is not enriched or depleted in any cluster (Fig. 3.S5). 

 

We next estimated the trajectory of polarization from Tnaive to Th2 cells using diffusion pseudotime 

(DPT) and quantified the distribution of ARID5A-targeting (cutsite: chr2:96551631) and IRF2-

targeting (cutsite: chr4:184418577) sgRNAs along the trajectory (Methods). The shape of the 

cumulative distribution function along the DPT is informative of enrichment or depletion of cells 

along the polarization trajectory. The steeper the initial rise in the cumulative percentage, the more 

likely a group of cells are to be naive, residing at an earlier “time-point”. Compared to all cells, 

cells containing the IRF2-targeting (cutsite: chr4:184418577) sgRNA are less likely to be Th2-like 

as shown by the 98.1% cumulative percentage at ~0.1 DPT (Fig. 3.3G), suggesting that IRF2 could 

be important for the polarization of Tnaive cells to Th2 cells or the maintenance of already polarized 

Th2 cells. In contrast, cells containing ARID5A-targeting (cutsite: chr2:96551631) sgRNA had a 

90.6% cumulative percentage at ~0.1 DPT, exemplifying a greater enrichment at a later 

pseudotime (more Th2-like). This suggests that ARID5A may play a role in maintaining the Tnaive 

cell phenotype, which is consistent with previous reports 9797 (Fig. 3.3G). 

 

To validate the IRF2- and ARID5A-targeting phenotypes, we used the Cas9 ribonucleoprotein 

(RNP) system to knockout GATA3, ARID5A and IRF2 each with two sgRNAs and two non-

targeting negative controls under general activation (anti-CD3/CD28) and Th2 (IL-4, anti-IFNG, 
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anti-IL-12) polarization conditions (Methods). After two weeks of culturing, we used 

fluorescence-activated cell sorting (FACS) to sort for Th2 (CD62L+) and Th1 (T-bet+) cells and 

extracted DNA to assess cutting efficiency for each sample. In activated cells containing IRF2-

targeting sgRNAs, the proportion of Th2s (CD62L+) was lower (3.81% and 2.02%) compared to 

non-targeting controls (3.46% and 7.71%) but higher compared to GATA3-targeting cells (1.26% 

and 0.892%; Fig. 3.3H, S3.10), consistent with the pooled screen results. Further, the proportion 

of Th1s (T-bet+) was higher in IRF2-targeting cells (10.5% and 8.02%) compared to non-targeting 

controls (0.87% and 1.93%) and GATA3-targeting cells (6.42% and 7.42%; Fig. 3.3H, S3.10). 

Interestingly, in Th2-polarized cells, there was not a change in the proportion of Th2 cells (Fig. 

3.S11). In contrast, in activated and Th2 polarized cells containing ARID5A-targeting sgRNAs, the 

proportion of Th2 cells are slightly higher (10.2% and 6.61%) and the proportion of Th1 cells 

remain unchanged (1.83% and 1.27%) (Fig. 3.3H, S3.11). These results recapitulate the pooled 

screen with IRF2 acting as a positive regulator and ARID5A as a negative regulator of Th2s. Using 

a multiplexed pooled screening framework, we were able to harness the high-resolution 

transcriptomic data to help elucidate and validate novel cell state regulators.  

 

Regulators interact to alter gene expression  

Activation and polarization of T cells is known to involve the genetic interaction of regulators 

through direct physical cooperation, competition, and feedback and feedforward regulation of gene 

expression 98–10198–101. For example, BATF and JUN physically interact to regulate transcription in 

dendritic cells (DCs), T cells, and B cells by jointly interacting with IRFs to bind compound-

binding AP-1–IRF consensus elements (AICEs) 102102. However, a map of genetic interactions 
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between regulators that specify T cell function remain uncharted, primarily due to insufficient 

scalable methods to test for genetic interactions in primary T cells.  

 

RNA interference or CRISPR perturbations followed by bulk RNA-seq allows us to study how 

genetic perturbations change gene expression on average across a population of cells. Detecting 

genetic interactions between regulators in this setting would require perturbing multiple regulators 

and observing non-additive changes in average expression, which is both experimentally and 

statistically intractable beyond a few regulators. By leveraging the ability to link genetic 

perturbations with their effects in many cells, we used SLICE followed by mux-seq to estimate the 

effects of CRISPR perturbations on the correlation between genes across cells to detect genetic 

interactions between regulators.  

 

Specifically, we sought to map genetic interactions by identifying mutually mediating pairs of 

regulators, defined as one regulator modifying the correlation between another regulator with a 

downstream gene. As an example, if knocking out R1 modifies the correlation between R2 and G, 

then directionality is established as R1 mediates the effect of R2  on G (Fig. 3.4A) and vice versa. 

If R1 and R2 mutually mediate each other’s effects on G, we call R1 and R2 a genetic interaction 

and R1, R2, and G as a regulator (R) pair - gene triplet. To statistically detect mediation, we 

performed a likelihood ratio test between two linear mixed effect models, testing for the interaction 

term of R1 (presence of sgRNA targeting R1) and R2,exp (R2 expression) (Methods). A significant 

change in correlation between expression of R2,exp and a downstream gene suggests R1 mediates 

the effect of R2 on the downstream gene.  
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We identify four different types of regulator interactions: 1) cooperative activation, where 

regulators and the target gene are positively correlated in WT cells and uncorrelated in KO cells; 

2) cooperative repression, where regulators and the target gene are negatively correlated in WT 

cells and uncorrelated in KO cells; 3) competitive activation, where regulators and the target gene 

are uncorrelated in WT cells and are positively correlated in KO cells; and 4) competitive 

repression, where regulators and target gene are uncorrelated in WT cells and are negatively 

correlated in KO cells (Fig. 3.4A). 

 

We tested 37/140 of the most variably expressed regulators corresponding to total of 666 possible 

regulator pairs and 1,456,542 possible R pair - gene triplets (Methods). For each regulator, we 

first identified a set of downstream genes whose correlations with the regulator were affected when 

the regulator was perturbed using the same linear mixed effect model (Fig. 3.4A; Methods). For 

33 of the 37 regulators (4 regulators each had a WT sgRNA), sgRNAs targeting the same regulator 

were more likely to identify the same downstream targets (P < 0.005, Mann-Whitney U test, Fig. 

S3.12) with similar changes in correlation (R = 0.31, P = 3.2x10-78; Fig. S3.13) compared to 

random (R = -0.004, P=0.56). 

 

To identify R pair - gene triplets, we intersected downstream genes for each regulator pair (FDR 

< 0.1) and tested for mutual mediation. We identified 310 R pair - gene triplets (FDR < 0.05) where 

the regulators mutually mediated each other’s effect on the downstream gene, comprised of 194 

unique regulator pairs (Fig. 3.4B; Table 3.5). 24 of the regulator pairs identified were among the 

48 regulator pairs previously known to interact (hypergeometric test, P < 0.005) 103103. Combining 

all candidate genetic interactions reveals a core gene regulatory network in the functionalization 
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of primary T cell (Fig. 3.4C) that suggests JUN, MYC, XBP1, and STAT3/6 forming a central hub 

with many overlapping interacting partners. To validate the predicted regulator interactions and 

their downstream targets, we searched for transcription factor binding sites (TFBSs) of the 31 

transcription factor (TF) pairs upstream and downstream of each predicted downstream gene’s 

transcription start site (TSS) that exist the Homer database 104104 (Methods). We found a greater 

proportion of downstream gene TSSs containing TFBSs for both TFs compared to random 

sampling of TF pair  - gene triplets (P < 0.05, Kolmogorov-Smirnov test across all windows, Fig. 

3.4D).  

 

We detected both known and novel interactions between key regulators for T cell 

functionalization. We identified two possible targets of the previously mentioned BATF-JUN 

interaction, ATG14 and TMEM204. In addition, we identified an ETS1-STAT6 interaction, which 

is known to modulate cytokine responses in keratinocytes 102,105102,105. While ETS1 has been shown 

to interact with numerous genes, in particular those in the STAT family, involved in the 

development and function of T cells 106106,  our result specifically suggests STAT6 as an interacting 

partner.  

 

Amongst the candidate regulator interactions, we identified 23 pairs of cooperative activators, 29 

pairs of competitive activators, 109 pairs of competitive repressors, and 149 pairs of competitive 

activators (Fig. 3.4E). In one example of competitive interaction, compared to WT cells, GTF3A 

is more correlated with genes in cells expressing the CREM-targeting (cutsite: chr10:35179264) 

sgRNA and CREM is more correlated with genes in cells expressing the GTF3A-targeting (cutsite: 

chr13:27424803) sgRNA (Fig. 3.4F). CREM and GTF3A is an example of a competitive repressor 
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pair that regulates the expression of CLUAP1, where CLUAP1 is negatively correlated with each 

regulator in KO cells but uncorrelated in WT cells (Fig. 3.4G). In another example, MYC and 

NFATC3 cooperatively interact to activate XRN1 (Fig. 3.4H) where XRN1 is positively correlated 

with each regulator in WT cells but not correlated in KO cells (FDR < 0.05). These results suggest 

that when a regulator is perturbed, downstream effects of other regulators become more prominent 

and this change can be harnessed to detect subtle interactions, often competitively activating 

interactions, between regulators. 

 

CRISPR perturbation modifies genetic effects on gene expression 

While the contribution of interindividual variability to the composition, expression and activation 

of CD4+ T cells ex vivo has been described by us 58,5958,59 and others 27,60,107–11127,60,107–111, little is 

known about the interindividual variability in CRISPR perturbed cells. Using a linear mixed 

model, we analyzed cells expressing each sgRNA to identify 125 genes whose expression were 

variable between individuals (interindividual genes, FDR < 0.2) across 79 sgRNAs 

(interindividual sgRNAs; Fig. 3.5A, B; Table 3.7; Methods).  

 

Interindividual variability can be attributed to genetic, environmental and technical confounding 

effects. To identify the genetic contribution, we performed an expression quantitative trait loci 

(eQTL) analysis using a linear mixed model that includes a genetic covariate term (Fig. 3.5A; 

Methods). Because of the limited number of samples, we significantly reduced the multiple testing 

burden by only testing for SNPs +/- 100 kb around a TSS with a minor allele frequency > 0.4 and 

only highly expressed genes per sgRNA (on average 1,891 genes). We found a total of 88 cis-

eQTLs across cells expressing all sgRNAs (permutation FDR < 0.2) corresponding to 84 genes 
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(eGene) (Fig. 3.5B). To assess the robustness of these results, we performed two quality check 

analyses. First, genes previously reported to have an eQTL in activated CD4+ T cells 5858 and with 

significant interindividual variability were more statistically significant than those that were not 

(Fig. 3.5B). Second, the variance explained by genetics was correlated with and expectedly less 

than the variance due to interindividual variation amongst eGenes (R = 0.19, P = 0.03, Fig. 3.5C).  

 

We next assessed  eQTLs detected in KO versus WT cells. Overall, eQTL effect sizes were more 

correlated between cells expressing sgRNAs targeting the same regulator (R=0.24, P=0.003) than 

between cells expressing a random pair of sgRNAs (R=0.09, P=0.2), suggesting genetic effects 

specific to each knockout (Fig. 3.5D). For the regulators that exist in the Homer database 104104, 

we found that genes harboring binding sites for 10 regulators are more likely to be eQTLs (as 

indicated by more significant P) (Fig. 3.5E). On average, genetics explained 64% and 56% of the 

variability in KO and WT cells respectively (Fig. 3.5F). To ensure that this observation is not 

confounded by the limited number of WT sgRNAs, we bootstrapped the KO cells and found that 

in 92% of the bootstraps, genetic variants on average  explained more variance in KO cells 

compared to WT cells (binomial P< 2.2e-16; Fig. S3.14). Finally, we found eQTLs were more 

likely to be detected in KO cells (22% of KO vs. 14% of WT sgRNAs; hypergeometric P = 0) 

(Fig. S3.15). These results support that in vitro genetic perturbations by CRISPR/Cas9 can uncover 

effects of natural genetic variation undetectable in unperturbed cells.  

 

The increased power to detect genetic effects on gene expression only in KO cells could be due to 

a change in the trans environment or regulator-genetic interactions (cis x trans epistatic 

interaction) (Fig. 3.5G). If the activity of a regulator has an additive effect on gene expression, 
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then ablating the regulator will decrease the overall variance of gene expression thereby increasing 

the genetic contribution to gene expression (Fig. 3.5F, S3.16-18). Supporting this model, 80 out 

of the 88 eQTLs had lower standard errors in KO cells compared to WT cells (Fig. S3.17). If the 

activity of a regulator multiplicatively interacts with genetic variants (epistasis), then ablating the 

regulator should change the genetic effect on gene expression. To identify instances of epistasis, 

we fit a linear mixed model testing for cis (SNP) x trans (sgRNA presence or absence) interactions 

(Fig. 3.5G). We found statistical evidence for epistasis for 48 out of 88 eQTLs (FDR < 0.05), 

where the sgRNA is more likely to interact with the eQTL than a random SNP (Fig. 3.5H). These 

results suggest that CRISPR/Cas9 ablation of a regulator can uncover both additive and epistatic 

effects from standing genetic variation on gene expression. 

 

As an illustrative example, we found evidence for an epistatic interaction between IRF1-targeting 

(cutsite: chr5:132487047) sgRNA  and genetic variant (rs1885125) to regulate MCM9 expression 

(Fig. 3.5H). IRF1 (also known as interferon regulatory factor 1) has previously been shown to 

regulate T cell activation 112–114112–114, particularly driving Th1 polarization 115115. Two independent 

epigenetic analyses suggest IRF1 binding at the MCM9 promoter (Fig. S3.19). First, in K562 cells, 

there is an IRF1 ChIP-seq peak 142 bp upstream from rs1885125, containing four SNPs in LD (D’ 

> 0.97). Second, the Homer database 104104 predicted an IRF1 binding site 595 bp upstream from 

rs1885125 using an IRF1 ChIP-seq in peripheral blood mononuclear cells, which is flanked by 

rs4946371 (D’ > 0.98). These results support  the interaction between a genetic variant in a cis 

regulatory element of MCM9 and the trans factor, IRF1, to account for 47% of MCM9 expression 

variability. All together, these results suggest that CRISPR perturbations can uncover 
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interindividual variation in gene expression and in some cases, epistatically interact with natural 

standing variation to modulate the variability of gene expression. 

 

Discussions 

CD4+ T cells serve diverse roles in the adaptive immune system by dynamically responding to 

extracellular signals in their microenvironment. While the gene regulatory networks governing 

these responses have been extensively studied in mice, the topology and parameters of these 

networks, including how they vary across individuals, have not been mapped in humans. To 

address these gaps, we present the first large scale, multiplexed single cell RNA-seq study of 

activated primary CD4+ T cells isolated from 9 donors across CRISPR perturbations targeting 

hundreds of candidate regulators.  

 

Activated CD4+ T cells are heterogeneous, capturing cell states reminiscent of canonical helper 

subtypes (e.g. Th1, Th2, etc), cytotoxic phenotypes, and broad activation or cell cycle. We find that 

cells expressing WT sgRNAs are more likely to be Tnaive cells while those expressing KO sgRNAs 

are more likely to promote polarization into a differentiated state (e.g. Th1/2 cells), exemplified by 

the identification ARID5A as a negative regulator of Th2 polarization. We expect that the 

application of our approach to cells differentiated or polarized under specific conditions (e.g. 

toward a Th2 phenotype) rather than broad activation (e.g. anti-CD3/CD28 activation) can further 

refine the mapping of gene regulatory programs that control T cell differentiation, polarization and 

maintenance.  
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The identification of gene gene interactions is experimentally and combinatorically challenging in 

primary cells. By exploiting coexpression patterns between single cells, we devised a new 

approach based on differential correlation analysis to detect interactions between pairs of regulator 

during T cell activation and polarization. Using this approach, we reconstructed a gene regulatory 

network for T cell activation that includes known interactions (e.g. JUN, MYC, XBP1, STAT) and 

previously unreported interactions such as between ETS1 and STAT6, which may be involved in 

the propagation of T cell cytokine signaling. By increasing the number of cells profiled using 

multiplexed workflows 41,11641,116 and the number of genetic perturbations through higher 

multiplicity of infection 117117, future integration of genome engineering and single cell 

transcriptomics would allow for refined mapping and causal reconstruction 118118 of gene 

regulatory networks in specific low frequency T cell subsets (e.g., Th1/2, Tnaive).118118 

 

Although epistatic interactions involving naturally segregating variants have been identified in 

model organisms, there has been limited success in identifying these interactions using 

observational studies in humans due to limited power 119–121119–121. Our genetic-multiplexed 

approach allowed us to identify genes that are interindividual variable in CRISPR perturbed 

primary human cells and in some cases, pinpoint the genetic variants that likely mediate the 

variability. Akin to reducing the trans contribution of gene expression through in vitro 

perturbations58–60,12258–60,122 or computational adjustments 123123, we provide evidence of decreased 

gene expression variance in CRISPR perturbed cells thus increasing the ability to detect cis genetic 

effects. Surprisingly, we also found that some CRISPR perturbations can modify the effects of 

genetic variants on gene expression epistatically reminiscent of gene by environment effects 

detected by in vitro perturbation of cells 58–60,12258–60,122. Thus, a comprehensive perturbative-QTL 
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analysis using CRISPR/Cas9 is a compelling alternative strategy to large observational studies for 

mapping genetic interactions that involve standing genetic variants in primary human cells. 

 

Our work provides the first view into the heterogeneity of activated CD4+ T cells at the single cell 

resolution across pooled CRISPR perturbations and individuals. We identify  candidate regulators 

of T cell polarization and two classes of genetic interactions. By harnessing natural and CRISPR 

genome engineering, we can begin to efficiently dissect gene regulatory networks and identify 

genetic interactions in primary human cells.   
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Figures 

 

Figure 3.1: CRISPR perturbation screen in activated CD4+ T cells across donors 
(A) Experiment overview. (B) Unbiased identification of candidate regulators from transcript 
abundance (top) and accessibility of binding sites (bottom) in activated CD4+ T cells 5858. Targeted 
regulators are in red and all other regulators in the human genome are in black. (C) Data processing 
overview of 10X single-cell RNA-sequencing, sgRNA amplicon sequencing, and target loci DNA 
sequencing. (D) Total number of cells expressing each sgRNA per donor. (E) Observed 
distribution of cells with 1-4 sgRNA (black bars) and expected Poisson distributions at a MOI of 
0.5 (pink), 1 (green), 1.25 (blue), and 2 (purple). (F) For each sgRNA, cutting efficiency (inset) is 
estimated as the ratio of indel frequency at the targeted locus (y-axis) and sgRNA frequency in the 
pool (x-axis).(G) For each wildtype (WT: blue) and knockout (KO: black) sgRNA, ratio (inset) of 
cutting efficiency (y-axis) and the proportion of cells expressing the sgRNA (x-axis). 
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Figure 3.2: Heterogeneity of activated CD4+ T cells 
(A) UMAP of activated CD4+ T cells. Each color represents an identified Leiden cluster. (B) 
Number of cells per cluster, colors correspond to the populations in (A). (C) Feature plots of 
normalized expression in UMAP coordinates of CD27 (naive T; top left), GNLY (Tcyto; top right), 
IFNG (Th1; bottom left), and IL5 (Th2; bottom right). (D) Log fold-change (with respect to all 
other clusters) of top 10 positively differentially expressed (DE) genes (row) per cluster (column). 
(E) For each cluster, correlation of  average log fold-change of DE genes to sorted bulk RNA 
sequencing transcriptomes 6262 (x-axis) versus -log10(FDR) (y-axis). (F) Cluster proportions (y-
axis) across nine donors (x-axis). Each color corresponds to the population in (A).  
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Figure 3.3. Regulator perturbations drive T cell polarization and maintenance 
(A) Boxplot of fold change in expression of regulator targeted by sgRNA (left) and random gene 
(right) in cells expressing each sgRNA. (B) Distribution of transcriptomic correlations between 
cells expressing KO sgRNAs targeting the same gene (dark grey), WT sgRNAs (blue) and random 
sgRNA (light grey). (C) Proportion of KO (black) and WT (blue) cells per cluster. * indicates FDR 
< 0.05 and ** indicates FDR < 1e-6. (D) Clustered heatmap of sgRNA enrichment or depletion (z-
score) across clusters. Red indicates a positive z-score and blue indicates a negative z-score. (E) 
Density of KO cells expressing sgRNA targeting ARID5A ARID5A-targeting (cutsite: 
chr2:96551631); top),  IRF2 (IRF2-targeting (cutsite: chr4:184418577); middle), and WT (top) 
sgRNAs in UMAP space. (F) Proportion of cells expressing ARID5A.96551631 (top) or 
IRF2.184418577 (bottom) in Tnaive and Th2 clusters. (G) Empirical cumulative distribution 
function (ECDF) of the estimated diffusion pseudotime of cells expressing sgRNA 
IRF2.184418577 (orange), cells expressing sgRNA ARID5A.96551631 (blue), and all cells 
(green). The shape of the ECDF reflects the enrichment of the guide along the pseudotime axis. 
(H) FACS validation. Distribution of cells expressing Th2 marker CD62L+  (top 3 panels) and Th1 
marker T-bet+ (bottom 3 panels) electroporated with non-targeting control sgRNAs (grey), 
GATA3-targeting sgRNAs (red and orange), IRF2-targeting sgRNAs (light and dark green), or 
ARID5A-targeting sgRNAs (light and dark purple). 
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Figure 3.4. Perturbations and single cell analysis reveal transcription factor interactions 
(A) Cartoon of detecting genetic interactions between regulators by comparing magnitude of 
correlation between KO and WT cells. In cooperative activation, magnitude of positive correlation 
decreases; in cooperative repression, magnitude of negative correlation decreases; in competitive 
activation, magnitude of positive correlation increases; in competitive repression, magnitude of 
negative correlation increases. (B) Number of genes downstream of each interacting regulator pair. 
(C) Network of interaction regulators known to affect T cell function. Solid line indicates known 
interactions; dashed indicates predicted interactions; dotted indicates known but undetected 
interactions. The colored edges indicate the number of downstream genes. (D) Ratio of identified 
target genes with both predicted binding sites to those without (y-axis) within a window size 
around the TSS (x-axis).  (E) Distribution of regulator interactions found by subtype. (F) On top, 
distribution of magnitude of correlations between GTF3A and downstream genes for WT cells 
(blue) and CREM KO cells (orange). On the bottom, distribution of magnitude of correlations 
between CREM and downstream genes for WT cells (blue) and GTF3A KO cells (green). (G) 
CLUAP1 expression versus CREM (top) and GTF3A (bottom) expression, illustrating an example 
of competitive repression. (H) XRN1 expression versus MYC (top) and NFATC3 expression 
(bottom), illustrating an example of cooperative activation. For (G) and (H), trend lines reflects 
the coefficients fitted by the linear mixed effects model.  
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Figure 3.5: CRISPR perturbation modifies genetic effects on gene expression 
(A) Cartoon of interindividual variation of gene expression (left) and possible genetic causes due 
to a SNP located in the cis regulatory region (right). Size of the arrow corresponding to the amount 
of gene expression for each donor. (B) eQTL QQ-plot. Each point represents an eGene empirical 
P value across sgRNAs (black), and those that are also interindividual genes (orange) and 
previously identified CD4+ eGenes (teal). X-axis: expected P values. Y-axis: observed P values. 
Red dashed line is null. (C) Scatter plot of variance explained by interindividual (x-axis) and 
genetic (y-axis) variation, per eGene. (D) Scatter plot of eQTL effect sizes between pairs of 
sgRNAs targeting the same gene (black) or not (gray). (E) -log10 Mann-Whitney P (y-axis) of 
observing the ranked order of genes harboring binding sites for each regulator. Black is observed 
and tan is for permuted binding sites, and regulators in red have an eQTLs. (F) Genetic variance 
explained of significant eQTLs (y-axis) in KO and WT cells (x-axis). (G) Cartoon depicting 
genetic ablation impact on the effects of a donor with a C and another with a T allele on gene 
expression. If the regulator has an additive effect on gene expression in WT (first cartoon), then 
regulator absence changes the trans environment (second cartoon). If regulator interacts with a cis 
regulatory element to have a multiplicative effect (third cartoon), then regulator absence changes 
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the effect of the SNP (fourth cartoon). (H) Variance explained by cis x trans interaction for our 
eQTLs (y-axis) and a random SNP interaction (x-axis). In black are significant interactions. (I) 
Normalized MCM9 expression (y-axis) is subsetted by donor genotype (x-axis) at rs1885125 in 
IRF1-targeting (chr5:132487047, red), IRF1-targeting (chr5:132487119, orange), and WT (grey) 
cells. 
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Materials and Methods 

Study subjects and genotyping 

Our samples were enrolled in PhenoGenetic study (age 18 to 56, average 29.9), as part of the Immvar 

cohort6060, which were recruited in the Greater Boston Area. Each donor gave written consent to participate 

and were healthy, without any history of inflammatory disease, autoimmune disease, chronic metabolic 

disorders or chronic infectious disorders. We genotyped 56 Caucasian samples on the 

OmniExpressExome54 chip, and excluded 2080 SNPs with a call rate <90% (0.22% of total), 1521 SNPs 

with Hardy Weinberg P < 0.0001 (0.16%) and 259,860 SNPs with MAF < 0.01 (27.04%) out of the total 

960,919 SNPs profiled. The Michigan Imputation Server was used to impute these genotypes with the 

Haplotype Reference Consortium Panel Version r1.1. After genotype imputation had 5,324,560 SNPs, 

which were then subsetted for our nine donors.  

 
Regulator target identification 

Our library contained targeted 140 regulators (transcription factors and RNA-binding proteins) 

with 2 sgRNAs each. Each regulator was unbiasedly chosen using gene expression and 

accessibility data from activated CD4+ T cells in 95 and 105 healthy donors5858. To get the highly 

expressed regulators using RNA-seq data, we performed a TMM normalization and took the upper 

quartile of highly expressed genes and subsetted those that were regulators. To get the regulators 

with highly accessible binding sites using ATAC-seq data, we enriched for all binding sites on the 

HOMER database104104 in activated accessible chromatin regions. We took the union of the highly 

expressed regulators and accessible binding sites, for a total of 140 regulators (Fig. 3.1B). 

 
 
CROP-seq library generation 

The backbone plasmid used to clone the CROP-Seq library was CROPseq-Guide-Puro4040, purchased from 

Addgene (Addgene. Plasmid #86708). We used two sgRNAs oligo sequences from the Brunello library124124 
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for each of our chosen 140 regulators. Oligos for the sgRNA library were purchased from Integrated DNA 

Technologies (IDT) and cloned into the CROPseq plasmid backbone using the methods described by 

Datlinger et al. (2017)4040. Lentivirus was produced using the UCSF ViraCore. 

 

SLICE experiment and sequencing 

Primary human CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) by magnetic 

negative selection using the EasySep Human CD4+ T Cell Isolation Kit (STEMCELL, Cat #17952). Cells 

were cultured in X-Vivo media, consisting of X-Vivo15 medium (Lonza, Cat #04- 418Q) with 5% Fetal 

Calf Serum, 50mM 2-mercaptoethanol, and 10mM N-Acetyl L-Cysteine. On the day of isolation (Day 1), 

cells were rested in media without stimulation for 24 hours. The day after isolation (Day 2), cells were 

stimulated with ImmunoCult Human CD3/CD28 T Cell Activator (STEMCELL, Cat #10971) and IL-2 at 

50U/mL. 24 hours post stimulation (Day 3), 1 uL of lentivirus was added directly to cultured T cells and 

gently mixed. Following 24 hours (Day 4), cells were collected, pelleted, and washed in PBS twice. Then, 

cells were resuspended in Lonza electroporation buffer P3 (Lonza, Cat #V4XP-3032). Cas9 protein 

(MacroLab, Berkeley, 40mM stock) was added to the cell suspension at a 1:10 v/v ratio. Cells were 

transferred to a 96 well electroporation cuvette plate (Lonza, cat #VVPA-1002) for nucleofection using the 

Lonza Nucleofector 96-well Shuttle System and pulse code EH115 (Lonza, cat #VVPA-1002). Immediately 

after electroporation, pre-warmed media was added to each electroporation well, and 96-well plate was 

placed at 37 degrees for 20 minutes. Cells were then transferred to culture vessels in X-Vivo media 

containing 50U/mL IL-2 at 1e6 cells /mL in appropriate tissue culture vessels. Two days later, 1.5ug/mL 

Puromycin was added in culture media for selection. Cells were expanded every two days, adding fresh 

media with IL-2 at 50U/mL. Cells were maintained at a cell density of 1e6 cells /mL. On the final day (Day 

13) of the experiment, cells from each of the nine donors were counted using Vi-CELL XR and pooled at 

equal numbers to obtain a final 180,000 cells in 60 uL of PBS (Fig. 2.1A). The pooled cells were then 

processed by UCSF Institute for Human Genetics (IHG) Genomics Core using 16 wells of 10X Chromium 
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Single Cell v2 (PN-120237), as per manufacturer’s protocol, with each well being separately index. The 

final library was sequenced on two lanes on the Nova-seq for a total of 6.7B reads.  

 

10x transcriptome alignment 

Each 10x well was separately aligned to our personalized reference, which contained the hg19 

transcriptome and our 280 sgRNA sequences using cellranger “count” function. Our reference sgRNA 

sequences contained the U6 plasmid promoter on the 5’ and sgRNA scaffold on the 3’, such that our sgRNA 

reference sequences were as follows: 

TATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACG

AAACACCG - 20 bp gRNA - 

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGG

CACCGAGT. Using the cellranger “aggr” function, we aggregated all 16 wells into one combined dataset. 

 

Demuxlet 

Per well, demuxlet4141 was run on all 737,280 raw error corrected barcodes with 10x cellranger bam file, 

using a 1% genotype error rate, 0.5 alpha, 255 minimum mapping quality, 0 minimum distance to tail. We 

combined all 16 demuxlet runs, then we used the “BEST” column to identify droplet multiplet and the 

“SNG.1ST” column to identify the donor of origin. 

 

sgRNA amplicon sequencing and analysis 

For the sgRNA amplicon sequencing, donors were separately amplified and barcoded using a two-step PCR 

protocol. First, each donor was divided into 8 PCR reactions with 0.1ng template of cDNA. Each 25mL 

reaction consisted of 1.25mL P5 forward primer, 1.25mL Nextera Read 2 reverse primer, priming to the 

U6 promoter to enrich for guides, 12.5mL NEBNext Ultra II Q5 Master Mix (NEB, cat #M0544L), 0.1ng 

template, and water to 25mL. The PCR cycling conditions were: 3 minutes at 98C, followed by 10 s at 98C, 

10 s at 62C, 25 s at 72C, for 10 cycles, and a final 2 minute extension at 72C. After the PCR, all reactions 
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were pooled for each donor and purified using Agencourt AMPure XP SPRI beads (cat #A63881) per the 

manufacturer’s protocol. Next, 1mL was taken from each purified PCR product to go into a second PCR 

for sequencing index. Each reaction included 1mL of PCR product, 12.5 mL NEBNext Ultra II Q5 Master 

Mix (NEB, cat #M0544L), 1.25mL P5 forward primer, 1.25mL Illumina i7 primer, and water to 25mL. The 

PCR cycling conditions were: 3 minutes at 98C, followed by 10 s at 98C, 10 s at 62C, 25 s at 72C, for 10 

cycles, and a final 2 minute extension at 72C. After the PCR, all reactions were SPRI purified and quantified 

using the Qubit dsDNA high sensitivity assay kit (Thermo Fisher Scientific, cat# Q32854) and run on a gel 

to confirm 500bp size. 

 

The sgRNA amplicon sequencing library was sequenced paired-end on one lane HiSeq 4000, resulting in 

171 million mapped paired-end reads. This library was similarly aligned to our personalized reference 

containing our 280 sgRNA sequences using 10x “count” function. We generated a read count matrix of 

320,708 barcodes x 280 sgRNA matrix. 

 

sgRNA identification 

In order to identify the sgRNAs present in each cell, we performed a series of binomial test of enrichment 

for the top 4 sgRNAs present each of our 320,708 cells. Let n be the total number of reads mapping to any 

sgRNA in a given cell. Let c1, c2, c3, c4 be the number of reads of the top four sgRNA in a given cell, with 

c1 representing the sgRNA with the most reads. We performed a binomial test with c1 successes from trails 

= n - c2 - c3 - c4, with 1/280 probability of success. This test for the enrichment of the sgRNA with c1 

counts, disregarding the other three of the top four sgRNAs. We performed a similar test with the guide 

with c2 read count, performing a binomial test of c2 successes from trails = n - c1 - c3 - c4 trials, with 1/280 

probability of success. The binomial tests statistics were Bonferroni corrected P < 0.05(Table S3.2).  
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Cell identification 

To identify our cell barcodes, we used our combined transcriptomic dataset and our combined demuxlet 

output, as previously mentioned. We filtered out cell-containing droplets that contained less than 10 SNPs 

from our demuxlet results, totaling 320,708 cells. 10 SNPs was the threshold at which the number of cell-

containing barcodes and then number of cell-containing barcodes with at least 1000 UMIs no longer 

increased (Fig. S3.1-3). Cells were filtered for demuxlet identified singlets, which resulted in a 24% doublet 

rate, and cells where we could not identify the sgRNA (25%), resulting in 164,624 cells (Fig. 3.1C, Table 

3.2). 

 

sgRNA cutting efficiencies 

Genomic DNA was isolated from cell pellets using the Promega Wizard Genomic DNA Purification Kit 

(cat #A1120). Amplification was performed as described by Paragon User Guide (CleanPlex Custom NGS 

Panel). Briefly, gDNA template was added to a multiplex PCR reaction with 2 uL of 5X Paragon PCR Mix, 

2 uL of 5X Primer Pool, gDNA and Nuclease-Free Water. Each sgRNA amplicon was designed to be 

~200bp, centering around the cutsite(Table S3.1). The PCR cycling conditions were: 10 minutes at 95C, 

followed by 15 cycles of 15 seconds at 98C and 5 minutes at 60C. Following the PCR, amplified DNA was 

purified using Magnetic Beads from Paragon and subjected to a digestion reaction (CP Reagent Buffer, CP 

Digestion Reagent) to remove nonspecific PCR products. A post-digestion purification was performed, 

followed by a second PCR reaction to amplify and index libraries. Second PCR reaction contained 5X 

Second PCR Reaction Master Mix, purified DNA from previous step, and i5/i7 Indexed PCR Primers for 

Illumina. The PCR cycling conditions were: 10 minutes at 95C, followed by 10 cycles of 15 seconds at 98C 

and 75 seconds at 60C. Finally, DNA was purified using magnetic beads from Paragon and subjected to 

next-generation sequencing. 
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Paragon sgRNA amplicon DNA sequencing analysis 

Per donor, our sgRNA DNA sequencing was aligned to hg19 using bwa -mem125125. Using the “mpileup” 

function from the samtools suite of tools126,127126,127 we estimated the number of indels and reads per basepair 

+/-200bp around each sgRNA cutsite(Table S3). Per sgRNA and per donor, we estimated indel frequency 

as the maximal number reads with indels +/- 5 target cutsite divided by total reads covering a cutsite. Cutting 

efficiencs for each sgRNA were then estimated as the indel frequency x the proportion in the original 

sgRNA library.  

 

sgRNA WTs 

Using our sgRNA amplicon DNA sequencing we identified WT sgRNAs by calculating a z-score for each 

sgRNA. Let i be a sgRNA, and c is the cutting efficiency of sgRNAi, and p is the proportion of cells with 

sgRNAi, then WT sgRNAs were identified as z-scores of p / c with P < 0.05. In total we identified 14 WT 

sgRNAs, which have the maximum cutting efficiencies was < 5% with at least 484 cells. To estimate WT 

proportions (Fig. 2.2E), we calculated a hypergeometric P comparing the number of WT cells and KO cells 

per cluster as a function of all total WT and KO cells.  

 

Single cell normalization 

We normalized our 164,623 cells using the scanpy128128 suite of tools. Working with our 32,739 genes x 

164,1623 cell matrix, we calculated the percentage of mitochondrial contamination, filtered out genes using 

“filter_genes” with options “min_counts=1” and then normalized using “normalize_per_cell”, which 

normalizes each gene cell by the total counts for that cell. We further filtered our gene list for variable 

genes, which we identified by subsetting the cells from one well, then calling “filter_genes_dispersion” 

with options “min_mean=0.0125, max_mean=3, min_disp=0.5”. Using only one well safe guarded us from 

variable genes due to well to well batch effects. Subsetting our gene x cell matrix for our 2,189 variables 

genes, we re-normalized our cells for total sequencing, log transformed, and then regressed out 

mitochondrial contamination (as previously calculated), the 10x well, and total UMIs. Finally, we scaled 
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the data to have mean = 0 and variance = 1. To reduce the data down two dimensions for visualization, we 

ran UMAP129129 through scanpy128128 using our 2,189 variable genes across our 164,623 cells(Fig. 3.3A).  

 

Leiden clustering 

We performed unbiased cluster detection on our 164,623 cells using our 2,189 variable genes, using the 

scanpy128128 suite of tools. First, we calculated a neighborhood graph129129, second, performed leiden 

clustering6767 at 0.68 resolution. We compared our leiden clusters at 0.5, 0.6, 0.68, 0.75, and 1 resolutions 

and found that our clusters called at a 0.68 resolution were qualitatively the most similar to the gene 

expression patterns of T cell subtype markers (Th2: IL5, Th1:IFNG, naive T: CD27).  

 

Differential analysis 

For cluster differential expression, we used our 2,189 variable gene x 164,1623 cell normalized matrix (as 

previously described), which was subsetted by donor. Using the “FindAllMarkers” function from the Seurat 

package130130 using options “min.pct=0, logfc.threshold=0, min.cells.gene=0, min.diff.pct=0, 

return.thresh=1” we calculated the log fold-change for all 2,189 genes per donor. We then performed a 

meta-analysis to estimate a meta P per gene across all nine donors using the metap package in 131131 and we 

averaged the log fold-changes across all nine donors to get an average log fold-change. 

 

For sgRNA differential expression, we again started with our 2,189 variable gene x 164,1623 cell 

normalized matrix, which was subsetted by donor and by sgRNA. Using the “FindMarkers” function from 

the Seurat package130130 using options “min.pct=0, logfc.threshold=0, min.cells.gene=0, min.diff.pct=0, 

return.thresh=1” we compared cells containing each KO sgRNA to our WT cells, per donor. Again, we 

calculated a meta P per gene and log fold-changes were averaged across the nine donors per gene per 

sgRNA.  
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Comparison to sorted, bulk T cell subtypes 

Using the RNA-seq dataset from Calderon et al. 201862132, we averaged the gene expressions across all 

donors for each cell type and to normalize it, we log transformed the expression counts, subtracted out the 

median count per sample, and then standardized by the gene (mean = 0, variance = 1). For each cell type 

we took the top 300 most highly expressed genes, and then correlated those 300 genes to their respective 

log average fold-changes from the cluster differential expression analysis. We calculated a P, which was 

then FDR adjusted.  

 

Th2 validation experiment 

PBMCs were sourced from anonymized female Caucasian donors and were purified from whole blood by 

Ficoll gradient. Cells were frozen in 10% DMSO in FBS in a cryostorage vessel for one day at -80°C before 

being moved into a liquid nitrogen tank. Frozen PBMCs were quickly thawed in a 37°C water bath and 

slowly diluted with RPMI1640(Sigma, R0883) supplemented with 10% FBS(HI-FBS; Invitrogen, catalog 

10438026), 1 mM GlutaMAX(Invitrogen; catalog 35050061), 100 U/ml penicillin and 100 mg/ml 

streptomycin(Invitrogen; catalog 15140122). Cells were pelleted at 300 xg for 5 minutes before being 

washed with SepMate Buffer(Stem Cell; catalog 20144) for naïve CD4+ isolation. 

 

Naïve CD4+ T cells were isolated using an EasySep™ Human Naïve CD4+ T Cell Isolation Kit II(catalog 

17555) according to the manufacturer’s protocol. Harvested naïve CD4 cells(1-3x106) were plated on a 24 

well plate with 1 ml of supplemented RPMI1640 with 50 ng/ml IL-2(R&D; catalog 202-IL-010) and 25 

ul/ml of ImmunoCult™ Human CD3/CD28 T Cell Activator(StemCell Technologies, catalog 10971) for 

24 hours. For differentiation modulation, activated T cells were split into 16 groups(5x104-2x105) per donor 

(n=7) for 8 guides and two polarizing conditions(Th2, activated CD4+). For RNP electroporation, 4 ul of 

160 uM of tracr RNA (Dharmacon, catalog U-002005-50) was incubated with 4 ul of 160uM sgRNA 

(Dharmacon) for 30 minutes at 37°C. Following the annealing of sgRNAs, 8 ul of 40 uM Cas9-

NLS(MacroLab, Berkeley, 40 uM stock) was added to each sgRNA mixture for 15 minutes at 37°C. 3 ul 
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of each complete RNP was added to a 96 U-bottom plate(Genesee Scientific; catalog 25-221) alongside 1 

ul of ssODN Alt-R Cas9 Electroporation Enhancer(IDT: catalog 1075916; 100 uM). Cells were then 

pelleted at 90 x g for 5 minutes at room temperature. Cells were resuspended in 20 ul of P3 buffer(Lonza; 

catalog V4SP-3096) and transferred to the aliquoted RNP mixtures. 20 ul of the cell-RNP mixture was 

added to a 96-well electroporation plate(Lonza, V4SP-3096) and electroporated on a 4D nucleofector 

system(Lonza) with program EH-115. Cells were quickly rescued by adding 100 ul of supplemented RPMI 

with 50 ng/ml IL-2 dropwise to electroporated cells. Cells were incubated for 10 minutes in a 37°C 

incubator with 5% CO2 before being transferred into a 96 well U-bottom plate and brought up to a total 

volume of 200 ul with 50 ng/ml IL-2 for activated CD4+ groups and 10 ng/ml IL-4(R&D, catalog 204-IL-

010), 2 ug/ml anti-IL-12 antibody(R&D, catalog MAB219-500), and 2 ug/ml anti-IFN-G antibody(R&D, 

catalog MAB285-500) for Th2 and incubated for 24 hours. Media with appropriate cytokines were refreshed 

every 2-3 days and cell density was adjusted to 1x106 cells/well with every media change. After a total of 

14 days, cells were harvested for flow cytometry.  

  

For maintenance modulation, naïve T cells were isolated as described. Cells were incubated with 

supplemented RPMI1640 with 50 ng/ml IL-2 and 25 ul/ml Immunocult for 72 hours in a 96 well U-bottom 

plate in 200 ul. Cells were then split into a Th2 and activated CD4+ conditions as described and cultured for 

1 week, with cytokine supplemented media every 2-3 days. Cells were then split into 16 groups and 

electroporated as previously described for each guide. Cells were harvested 7 days after electroporation for 

flow cytometry. 

  

For flow cytometry, cells were stimulated with PMA and ionomycin with Brefeldin A (Leukocyte activation 

cocktail with BD Golgiplug; BD Bioscience; catalog 550583) for five hours before staining. Cells were 

then washed twice with 1% BSA in PBS by pelleting cells at 300 x g for 5 minutes at 4°C and resuspended 

in staining buffer (Biolegend cell staining buffer; Biolegend; catalog 420201) with 5 ul of Trustain 

FCX(Biolegend; 422302) and incubated for 5 minutes on ice. Cells were then stained with 5 ul of each 



128 

extracellular antibody(CD4-FITC, BV785-CD62L, AF700-CD127, BV711-CRTH2, BV510-CCR5; 

Biolegend) for 30 minutes on ice in the dark in a total reaction volume of 100 ul. After staining, cells were 

washed twice with 1% BSA in PBS. Cells were fixed and permeabilized using an eBioscience 

FOXP3/Transcriptional factor staining kit(eBioscience, 00-5523-00) per manufacturer’s protocol. 

Permeabilized cells were stained with 5 ul of each intracellular marker(BV421-GATA-3, APC-T-bet, 

BV605-IL-4, PE-IFN-G; Biolegend) and incubated for 30 minutes on ice in the dark for a total reaction 

volume of 100 ul. Cells were washed twice with 1% BSA in PBS and resuspended in 200 ul of PBS before 

flow analysis. BD LSRII(Parnassus Flow Core, Grover) was used for flow acquisition and FlowJo 9 was 

used for analysis. 

  

For TIDE validation, 104 cells were placed into 50 ul of Quickextract(Lucigen, catalog QE09050) and 

vortexed for 15 seconds. The cell solution was then incubated at 65C for 6 minutes and vortexed for another 

15 seconds. The cell solution was then placed into a heat block at 98C for 2 minutes. The extracted gDNA 

was then stored at -20°C until amplification. Primers for targeted genes were designed to create a 700 bp 

amplicon, starting from 350 bp upstream of the cut site for the guide. Primers were designed using Primer-

Blast(NCBI). Sequencing primers designed to be 200 bp upstream of the cut site were designed using the 

same tool. For amplification, 1 ul of gDNA solution was amplified using KAPA Hotstart HIFI Readymix 

(Kapa Biosystems, catalog KK2602). Generated amplicons were sent for sequencing with designed 

sequencing primers. Analysis of provided chromatograms were done using a TIDE web 

tool(https://tide.deskgen.com) and cutting efficiency was determined. 

 

Target gene expression 

We created a pseudobulked matrix, per sgRNA, per donor, and per cluster for a 32,739 genes x 17,845 

samples, which was then filtered for our targeted regulators genes. Per sample, let i be each of our 140 

targeted regulators, n is the total counts per sample, and r is counts for regulatori. Now, let w counts for 

regulatori WT sample and m is total counts for the WT sample, then the fold-changei = (ri / c ) / (wi / m ). 
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As background, we randomly sampled a regulator for each sample and performed the same calculations 

(Fig. 2.3A).  

 

Correlation of sgRNAs 

We pseudobulked by sgRNA, by donor, and by cluster, for a total of 2,189 variables gene 17,845 samples 

x matrix. We normalized our matrix using a log2 transformed median normalization and then standardized 

across a gene(mean=0, variance=1). For every sample, we averaged the gene expression across our 9 donors 

and clusters, and then correlated the normalized, averaged transcriptome for every pair of sgRNAs targeting 

the same regulator. As background, we correlated 280 unpaired sgRNA (Fig. 3.3B). 

 

sgRNA cluster enrichment/depletion 

We subsetted our cells by those that contained KO sgRNAs and calculated the sgRNA proportion per 

cluster. Then, we calculated a z-score per cluster across all KO sgRNAs. KO sgRNAs that had a z-score > 

1.5 were considered enriched in that cluster and those that had z-scores < -1.5 were considered depleted in 

that cluster (Fig. 2.3C). To visualize sgRNA enrichment and depletion, the UMAP space (as previously 

described) was partitioned into a grid of 50x50 rectangular pixels, and the density of cells with a specific 

guide was computed in each rectangle. Gaussian blurring with sigma 3 was applied to the UMAP density 

image (Fig. 2.3D). 

 

Lineage trajectory  

First, we estimated diffusion pseudotime from the naive T cells to the Th2 cluster using the scanpy128128 

implementation of Haghverdi et al. 2016132133. Using our normalized 2,189 gene x 164,623 cell matrix (as 

previously described), we filtered out cells that were not in either the naive T cell or the Th2 cluster. PCA, 

neighborhood construction (500 neighbors, 40 PCs), and UMAP were re-run prior to applying the diffusion 

pseudotime (DPT) algorithm, all with default parameters. DPT is a random-walk-based distance that is 

computed based on simple Euclidian distances in the 'diffusion map space'. The diffusion map is a nonlinear 
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method for recovering the low-dimensional structure underlying high-dimensional observations132133. This 

algorithm assigns a single number to each cell, corresponding to the “time” that each cell has passed from 

a root cell. An empirical cumulative density plot was created using these estimated pseudotimes to detect 

and visualize distinct DPT profiles of cells containing different sgRNA. 

 

Second, we used the scanpy implementation of the partition-based graph abstraction (PAGA) algorithm to 

quantify the connectivity of all of our cell clusters, approximating the overall cellular trajectory manifold. 

The default parameters for the PAGA algorithm was used, and connectivity > 0.3 was used for visualization. 

 

Regulator - Regulator interaction model 

We created ten technical replicates of pseudobulks by sgRNA and by donors, for a 2,189 variable gene x 

5,040 sample matrix, which was normalized by estimating the proportion of total reads per gene for each 

sample, which was then multiplied by the median total reads across samples. Then, the data was log 

transformed and standardized(mean=0, variance=1). Out of the 140 regulators considered in our study, 37 

were included when we selected for genes with highly variable expression using scanpy128128. To identify 

potential downstream genes for each regulator, we used a linear mixed model exp(G) ~ exp(regulator) + 

regulator_KO + exp(regulator):regulator_KO + intercept and donor as a random effect, testing for the 

addition of the interaction term exp(regulator):regulator_KO via a likelihood ratio test. Once potential 

downstream genes were identified for each regulator, pairs of regulators were formed and candidate 

regulator-pair, gene triplets were formed based on the intersection of potential downstream genes of those 

two regulators (regulator1 and regulator2). For every candidate regulator1, regulator2, G triplet, we test the 

interaction term in the following linear mixed models: exp(G) ~ exp(regulator1) + regulator2_KO + 

exp(regulator1):regulator2_KO + intercept, and exp(G) ~ exp(regulator2) + regulator1_KO + 

exp(regulator2):regulator1_KO + intercept, both using donor as a random effect. If the interaction terms 

are significant in both of the linear mixed models via likelihood ratio test, we call this regulator1, regulator2, 

G triplet an interaction. 
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Regulator - Regulator interaction binding site validation 

Of the 37 regulators considered for the regulator interaction analysis, 18 had bindings sites in the HOMER 

database. 31 interactions of regulator-pair gene triplets were identified for this validation, where both 

regulators are in the HOMER database. For each regulator-pair gene triplet in this set, we searched for 

binding sites of regulator1 and regulator2 upstream and downstream of gene G’s TSS at various window 

length by using HOMER’s annotatePeaks.pl program104104. Window lengths were ranged from +/- 1 to 5 

kbps in intervals of 250 bps. For each window, the ratio of number of interactions with both binding sites 

in the window to the number of interactions without both binding sites in the window was calculated. The 

background was generated by taking all variable genes and randomly assigning pairs of those 18 regulators 

and applying the same procedure of looking for both binding sites in within the window around the TSS of 

each gene. 

 

Interindividual variation analysis 

We created two technical replicates of pseudobulks by sgRNA and by donors, for a 32,739 gene x 5,040 

sample matrix. We filtered for genes with at least 10 counts and then further filtered for genes with a SNP 

+/- 100kb from the TSS with a minor allele frequency > 0.4, for a final 2,095 tested genes. We normalized 

each sgRNA separately, such that we subsetted our matrix 2,095 genes x 18 samples, where we calculated 

the percentage of total reads per gene and multiplied by the median total counts for all samples. Then, we 

log transformed the data and standardized it (mean=0, variance=1). For each sgRNA we also created a 

covariate file, containing donor and cutting efficiency, which was also standardized (mean=0, variance=1).  

 

To test for interindividual variation, we used a linear mixed model, using the “Lme4” package133134. Per 

sgRNA we tested two models, our alternative model: expr ~ cutting efficiency + (1|donor), and our null 

model: expr ~ cutting efficiency. As Storey, et al. 2007107107 noted, including donor as a random effect 

properly accounts for donor variation, rather than a fixed effect. We calculated a likelihood ratio P to 
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determine if donor was significant. Using the package “r.squaredGLMM” function from the MuMIn R 

package we calculated the R2 for each model, where the variance explained due to interindividual variation 

was calculated as the difference between the alternative and the null (R2 interindividual variation = R2 

alternative - R2 null). 

 

We calculated empirical P-values per gene per sgRNA. We permuted the donors, while maintaining donor 

pairs, 1000 times per gene, for a total of 527,282,000 permutations. To calculate empirical P-values first, 

we filtered interindividual variation associations by those that converged, and then filtered our permuted P-

values for duplicate P-values. The former filtering step was performed because we wanted to reduce our 

multiple testing burden and therefore did not want to include tests that did not converge. The latter filtering 

step was performed because if permuting the donors caused that specific model to not converge, and if that 

occurred multiple times, then that could inflate out statistics. Using the remaining, unique list of P-values 

we calculated empirical P-values using “empPvals” function from the q value package134135 with the option 

“pool=T”. Finally, we FDR adjusted our empirical P-values to determine significant interindividual 

associations.  

 

eQTL analysis 

Using the normalized expression matrices and covariate files for each sgRNA from our interindividual 

variation analysis we associated each gene to a genetic variation. As previously mentioned, we only tested 

variants that had a minor allele frequency > 0.4 and were +/-100kb around a TSS of a tested gene. 

 

To detect eQTLs, we fit a linear mixed model, per sgRNA, where we fit two models, alternative: expr ~ 

SNP + cutting efficiency + (1|donor), and our null: expr ~ cutting efficiency + (1|donor). We performed a 

likelihood ratio and determine if the genetic statistical significance. Similarly, to our interindividual 

association analysis, we used the function “r.squaredGLMM” function from the MuMIn R package to 

calculate R2 for each model. The variance explained due to genetics SNP R2 = R2 alternative - R2 null. 
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To calculate empirical P-values, per sgRNA, we permuted our genotypes 1000 times per gene - SNP test. 

We performed 1000 permutations tests per sgRNA per gene, in total we performed 301,020,000 

permutations. To calculate well calibrated empirical P-values, per sgRNA we pooled all P-values and 

calculated empirical P-values using the “empPvals” function from the q value package134135 with the 

“pool=T” option, and then FDR adjusted. To test for sgRNA specific eQTLs, we recalculated FDRs per 

gene across all 268 sgRNAs, filtering for sgRNAs that did not test that gene.  

 

Binding site enrichment in eGenes 

27 out of our 140 regulators are in the Homer database104104, therefore we parsed each gene for our 27 

regulator binding site +/-100 kb around it’s TSS. Per tested regulator, we ranked our eQTL associations by 

R2 and compared our ranked list of genes that did and did not contain a binding site using a Mann-Whitney 

test. For each gene - regulator pair, we permuted the labels of genes that did and did and not have the 

binding site 100 times, calculating a Mann-Whitney P per test, taking the average of the permuted P (Fig. 

3.5I).  

 

Bootstrapping variance explained 

To overcome our unbalanced sample sizes between KO and WT sgRNAs, we performed sampled each KO 

eQTL (with replacement) to the depth of our WT eQTLs (three eQTLs), 100 times. Per bootstrap, we 

estimated the mean and standard deviation of the variance explained across the 3 sampled KO eQTLs (Fig. 

3.5K).  

 

Epistasis analysis 

Using the normalized expression matrices and covariate files for each sgRNA from our interindividual 

variation and eQTL analysis we performed an interaction test for the 88 eQTLs. For each eQTL we 
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compared the KO sgRNA to a randomly sampled WT sgRNA condition. We fit two models, alternative: 

expr ~ SNP*sgRNA + cutting efficiency + (1|donor), and our null: expr ~ SNP + sgRNA + cutting efficiency 

+ (1|donor). We performed a likelihood ratio and determine interaction statistical significance. We used the 

function “r.squaredGLMM” function from the MuMIn R package to calculate R2 for each model. The 

variance explained due to the interaction is R2 = R2 alternative - R2 null. 

 

eQTL standard error simulations 

Using an effect size of 0.5 and minor allele frequency of 0.5, we first simulated WT expression as the sum 

of the genetic effect, regulator effect, and an independent noise term (WT=g*beta + tf_expr + noise) and 

KO expression as the genetic effect and an independent noise term (KO=g*beta + noise). Next, we 

performed a linear regression on the WT and KO conditions and calculated the effect sizes, standard errors, 

and p-values for 1000 iterations. 
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Supplementary Figures 

 

Figure S3.1. Number of cell-containing barcodes per number of SNPs.  
We estimated the number of cell-containing droplets (x-axis) by the number of SNPs used by 
demuxlet to identify the donor of origin (y-axis). 
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Figure S3.2. Number of cell-containing barcodes per number of UMIs.  
We estimated the number of cell-containing droplets (x-axis) by the number of UMIs filtered for 
one (red), five (green), 10 (blue), and 50 (purple) SNPs used by demuxlet to identify the donor of 
origin (y-axis). 
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Figure S3.3. Correlation of number of SNP and nUMIs. 
The number of SNPs (x-axis) and the number of UMIs (y-axis) estimated from demuxlet 
(Pearson R=0.97). Each point represented a cell-containing droplets, sampled to 20,000 cell-
containing droplets.  
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Figure S3.4. MOI probability. 
Given a capture rate, we estimated the likelihood (y-axis) of seeing the transcript at a given MOI 
(x-axis). 
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Figure S3.5. sgRNA KO efficiency 
We estimated the average sgRNA KO efficiency (x-axis) per sgRNA (y-axis). Each point 
represents the average KO efficiency and error bars are the standard deviations across donors.  
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Figure S3.6. Cell state trajectory. 
Cell state lineage trajectory using PAGA 95, where every node is a cell population and the size of 
the node corresponds to the size of the population. The width of each edge is the strength of 
connection between the nodes. The color of the point corresponds to the population in Fig. 3.2A.  
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Figure S3.7. Cell proportion across donors. 
Correlation matrix (Pearson R) of cell type proportions across donors. Each point represents a 
cell type. 
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Figure S3.8. sgRNA enrichment and depletion in a cluster. 
For each cluster, we calculated if the proportion of cells belonging to sgRNA is enriched (z-score 
> 1.5) or depleted (z-score < -1.5) in each cluster as compared to the proportion of all cells 
belonging to that cell state. 
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Figure S3.9. ARID5A cell state enrichment and depletion 
For each cluster, we calculated if the proportion of cells belonging to both ARID5A-targeting 
sgRNAs (ARID5A, cutsite: chr2:96551631 in pink and chr2:96550280 in blue) and calculated a 
z-score (y-axis) for each cell state (x-axis). 
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Figure S3.10. Th1 vs. Th2 validation 
Using FACS, we sorted for CD62L+ (Th2 marker, y-axis) and T-bet+ (Th1 marker, x-axis) cells in 
our activated CD4+ stimulation across 2 non-targeting controls (top left), GATA3-targeting (top 
right), ARID5A-targeting (bottom left), IRF2-targeting (bottom right) sgRNAs. 
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Figure S3.11. Th2 polarization 
Under Th2 stimulation condition, we sorted for proportion of CD62L+ (Th2 marker, x-axis) across 
our eight sgRNA conditions. Green and blue are non-targeting controls compared to our red and 
orange knockout sgRNAs (GATA3-targeting sgRNAs left panel, ARID5A-targeting sgRNAs in 
middle panel, IRF2-targeting sgRNAs right panel)  
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Figure S3.12. Number of TF interaction downstream genes per TF. 
Difference between average -log10(P) for agreement of downstream genes for randomly paired 
sgRNAs (right) and sgRNAs targeting the same regulator. Agreement of downstream genes for a 
pair of sgRNAs was tested using a Chi-squared test, and the difference in the -log10(P) 
distribution was tested using Mann-Whitney U-test. 
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Figure S3.13. Interaction effect size correlation. 
The correlation of interaction effect sizes for both sgRNAs targeting the same gene, sampled to 
500 points. Each point is a sgRNA pair, with sgRNA 1 on the y-axis and sgRNA 2 on the x-axis. 
The dashed line is the trend line. 
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Figure S3.14. Bootstrapped KO R2. 
Mean and standard deviation of variance explained due to genetics of sampled eQTLs from KO 
(x-axis, black) and WT (blue) cells after 100 bootstraps. 
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Figure S3.15. Percentage of sgRNAs that have an eQTL. 
Percentage (y-axis) of total WT (14) and KO (244) sgRNAs (x-axis) that have an eQTL. 
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Figure S3.16. Standard error simulation. 
The standard errors on 1,000 simulations with an effect size = 0.5, including a regulator variable 
(WT) and excluding the regulator variable (KO). 
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Figure S3.17. Standard error of eQTLs. 
Standard error of eQTL (y-axis) compared to the standard error of the association in a WT 
sgRNA (x-axis). The red dashed line is an abline(slope=1, intercept=0) 
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Figure S3.18. eGene expression. 
Normalized expression (y-axis) of eGenes (x-axis) in the KO sgRNA (pink) and 14 WT sgRNAs 
(blue). 
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Figure S3.19. Track of MCM9 locus. 
Shown is a 1.3 kb window around the first MCM9 exon, with three epigenetic annotations 
surrounding the region. There are two IRF1 ChIP-Seq peaks in K562 (IRF1(IRF1)/K562-ChIP-
Seq Peak (wgEncodeEH001866)) and one from IRF1 position weight matrix calculated from a 
peripheral blood mononuclear cell ChIP-Seq (IRF1(IRF1)/PBMC-IRF1-ChIP-Seq (GSE43036) 
PWM). Below are SNPs in LD (D’ >= 0.97) with our eQTL (in red).  
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