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Higher Order Vortex Methods with Rezoning 

Henrik Olov Nordmark 

Abstract 

The vortex method is a numerical method for approximating the flow of an incompressible, invis­

cid fluid. We consider the two-dimensional case. The accuracy depends on the choice of the cutoff func­

tion which approximates the delta function, on the cutoff parameter a and on the smoothness of the initial 

data. We derive a class of infinite-order cutoff functions with arbitrarily high rates of decay at infinity. 

We also derive an eighth order cutoff function with compact support. We test two versions of rezoning. 

Version 1 has been suggested and tested by Beale and Majda, while version 2 is new. Using rezoning, 

we test the eighth order cutoff function and one infinite-order cutoff function on three test problems for 

which the solution of Euler's equation is known analytically. The accuracies of the two methods are com­

parable. We also compute the evolution of two circular vorticity patches and the evolution of one square 

vorticity patch over long time intervals. Finally, we make a comparison between the direct method of 

velocity evaluation and the Rokhlin-Greengard algorithm. The numerical experiments indicate that for 

smooth flows, high-order cutoffs combined with rezoning give high accuracy for long time integrations. 
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Introduction 

The vortex method is a numerical method for approximating the flow of an incompressible fluid 

without viscosity. Thus we assume that the flow is governed by the Euler equation rather than the full 

Navier-Stokes equation. The idea is to approximate a vorticity distribution by a finite set of "vortex 

blobs" which are multiples and translates of a certain function known as the cutoff function. The cutoff 

function is scaled by a parameter a and approximates the delta function as a approaches 0. The vortex 

blobs induce a velocity field, which in tum moves the vortex blobs. The evolution of the vortex blobs is 

computed by solving a system of ordinary differential equations by standard numerical methods. In this 

form, the vortex method was introduced by Chorin [10] in 1973, but its predecessor, the point vortex 

method, was introduced about 40 years earlier by Rosenhead [24] for calculating the behavior of vortex 

sheets. The point vortex method gives unreliable results however, see e.g. Beale and Majda [8]. There 

have been many applications of vortex methods, including the simulation of turbulent combustion in open 

and closed vessels, Sethian [25], the computation of unstable boundary layers, Chorin [11], aerodynamic 

computations, Cheer [9], Spalart [27], Leonard and Spalart [20], and flow of variable density, Anderson 

[2]. 

The vortex method can be extended to simulate viscous flow by letting each vortex take a. step of a 

specified length in a random direction after each timestep. Recently, Sethian and Ghoniem [26] tested this 

procedure on viscous flow through a channel over a backwards-facing step. A variety of different Rey­

nolds numbers were used, corresponding to flows ranging from laminar flow to completely turbulent flow 

and including the transition region between laminar and turbulent flow. Sethian and Ghoniem [26] tested 

many different combinations of numerical parameters and found that for laminar flow. the only parameter 

that significantly affected the numerical solution was the number of vortices. For non-laminar flow, they 

found that the size of the timestep was also critical. A larger number of vortices requires a smaller 

timestep. In both cases, the numerical results demonstrated the convergence of the method as the number 

of vortices goes to infinity. However, in sharp contrast to the inviscid case, the size of the cutoff parame­

ter a turned out to be of secondary importance. To avoid confusion we point out that for the remainder of 

this thesis, we consider the vortex method for in viscid flow. 
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In the late nineteen-seventies, del Prete and Hald [17] gave a convergence proof for the 2-D vortex 

method, for a short time interval, but under the mild assumption that the initial vorticity distribution is 

Holder continuous. By requiring more smoothness of the vorticity, i.e. three continuous derivatives, Hald 

[15] subsequently proved convergence for arbitrarily long time intervals. Beale and Majda [6,7] gave 

convergence proofs for the three dimensional case as well as the two dimensional case. Cottet [14] pro-

vided a simpler proof of Beale and Majda's convergence theorem, which was simplified further by 

Anderson and Greengard [3]. Anderson and Greengard [3] also established the convergence of the time 

discretization for a large class of multistep methods and for second order Runge-Kutta methods. Hald 

[16] then proved fourth order convergence of the time discretization for the classical fourth order 

Runge-Kutta method, provided the flow is smooth enough. 

The accuracy of the vortex method depends on how the delta function is approximated, which in 

turn depends both on the choice of cutoff function and on the choice of the parameter a. Beale and 

Majda [8] introduced a family of smooth cutoff functions, with unbounded support, but decaying very 

rapidly at infinity. From this family, we can pick an n -th order cutoff function, where n is any desired 

' 
positive integer, and by Beale and Majda's [7] convergence theorem, obtain a vortex method of order 

very close to n , if the flow is infinitely differentiable and if we pick a close to h , where h is the original 

distance between adjacent vortices. However, numerical experiments by Perlman [22] have shown that 

for reasonable values of h. this is only true for short time intervals. In practice, we have to take a propor­

tional to hq, with q less than 1 by a fair amount, and get a method of order nq if the flow is sufficiently 

smooth. Hald [16] presented several infinite-order cutoff functions. The rates of convergence for these 

cutoffs are only limited by the degree of smoothness of the flow. In this thesis, we test the practical accu-

racy of one of these cutoff functions for flows of different degrees of smoothness. Following Hald's 

recipe [16, p.567 ], we derive a large class of explicit infinite-order cutoff functions and velocity kernels 

with higher rates of decay at infinity. Our numerical results show that we do get orders of accuracy 

slightly exceeding the ones predicted by Hald's theory, but only for short time integrations. The 

deterioration in accuracy at later times observed by Perlman [22] is even more pronounced for infinite-

order cutoff functions. A natural way to overcome this difficulty, is to use the rezoning technique. It was 

suggested and tested by Beale and Majda [8]. In this thesis, we present two versions of rezoning. The first 
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version is that of Beale and Majda [8], but with the added feature of a "built-in" criterion for detennining 

at which times we introduce a new grid. The second version also has this feature. It is more accurate 

because it uses more vortices, but it costs more. A different method of improving the accuracy for large 

time integrations was recently introduced by Beale [5]. We made a small number of numerical tests on 

this method and found that it is significantly more accurate than the standard method but not as accurate 

as the method of rezoning. We do not present these tests here because we feel they are not sufficiently 

complete. 

It follows from Hald's theory [16], that we should take a proportional to fh when using infinite 

order methods. However, it is not clear what the optimal proportionality constant is. That depends on a 

number of factors. First of all, in vortex methods without rezoning we always need to use a larger pro­

portionality constant, for large integration times. Secondly, the choice depends somewhat on the fonn of 

the initial vorticity distribution. Perlman [22] observed that the choice of a is essentially independent of 

the smoothness of the flow. The numerical results in this thesis show that although this seems to be true 

for radially symmetric vorticity distributions, it is not necessarily the case in general. Finally, the choice 

of proportionality constant depends strongly on the cutoff function and especially on the value of the cut­

off function at the origin. For example, for the eighth order cutoff function derived in this thesis, we have 

to take a proportionality constant that is about 5.5· times larger than for Hald's infinite order cutoff func­

tion. This is due to the fact that the value of the first cutoff at the origin is about 30 times larger than for 

the second cutoff. A partial list of numerical experiments that teSt the accuracy of vortex methods 

includes del Prete and Hald [17], Beale and Majda [8], Beale [5], Perlman [22] and Nakamura, Leonard 

and Spalart [21]. 

Besides the accuracy of vortex methods, the computational speed is also important The standard 

direct method of computation requires 0 (N2) flops, where N is the number of vortices. Anderson [1] has 

introduced a faster method, known as the method of local corrections. It requires 0 (NlogN) flops pro­

vided o is proportional to h. and uses a "fast Poisson solver" and interpolations. The practical speed of 

this method on a Cray computer has recently been tested by Baden [4]. This method may however intro­

duce a significant amount of additional errors when the order of the cutoff function is high enough and 

the flow is sufficiently smooth. Another fast algorithm known as the method of multipole expansions, has 
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recently been introduced by Rokhlin and Greengard [23]. This method requires 0 (N) flops for 5 propor­

tional to h , and when it is applicable, it is essentially as accurate as the direct method. Both of these fast 

methods are only strictly applicable when using cutoff functions with compact support. For this reason, 

we derive an eighth order cutoff function with compact support in this thesis. We test the Rokhlin­

Greengard algorithm [23] using this cutoff function. 

This thesis is divided into 6 chapters. In chapter 1 we present the derivation of the vortex method in 

two dimensions. In chapter 2 we derive a large class of infinite-order cutoff functions, present Hald's [16] 

convergence theorem for infinite-order methods, and give 3 examples of infinite-order cutoff functions 

from the large class. Chapter 3 deals with the economical numerical evaluation of infinite-order cutoff 

functions and velocity kernels. In chapter 4 we derive an eighth order cutoff function with compact sup­

port and compare it with Hald's infinite-order cutoff. In chapter 5, two versions of the method of rezon­

ing are described, and finally, in chapter 6 we present our test problems and numerical results. 

"· 
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1. The Basic Equations 

The vorticity-stream function form of Euler's equations in two dimensions is 

ro, + (u ·V)ro = 0, 

l1"' = -c.o, 

U = 'l'y, V = -'ljfz, 

(1.1) 

(1.2) 

(1.3) 

where u = (u ,v) is the velocity vector, x = (x ,y) is the position vector, ro is the vorticity, and 'I' is the 

stream function. 

The solution of the Poisson equation (1.2) is given by 

'ljl(x) = J G (x-x') ro(x', t) dx'. 
0(1) 

(1.4) 

where G (x) =- (21tt1 lnl x I , with I x I 2 = x2 + y2 is the fundamental solution of the 2-D Laplace equa­

tion, see [19, p.75 ], dx' = dx'dy', and O(t) denotes the support of ro in R 2 at timet. Using (1.3) and 

differentiating under the integral sign in (1.4) we get the velocity as 

where 

u(x, t) = J K(x-x') ro(x', t) dx', 
C(t) 

1 [-y l 
K (x) = 21tl x I 2 x · 

(1.5) 

In the Lagrangian description of the flow, we follow the motion of fluid particles. Let a= ( a1oa:z) 

be the Lagrangian coordinates of a particle starting at x =a at time t=O. Then the path of that particle is 

determined by 

dx(a t) 
dt' = u(x(a, t), t), x(a,O) =a. (1.6) 

Equation (1.1) implies that the vorticity is preserved along particle paths, i.e. ro(x(a, t ), t) = ro(a,O) for 

all t, see Chorin and Marsden [12, p.34 ]. Since the flow is incompressible, the Jacobian of the change of 

variables from X to (l is 1, SO We can rewrite (1.5) as 

u(x(a, t), t) = J K(x(a, t)-x(~. t)) ro(~.O) d~. 
0(0) 

(1.7) 
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To discretize the system (1.6), (1.7) we cover the a plane by a square grid, with mesh length h .The 

coordinates of the grid points are then jh = U 1, j i)h. Let J be the set of all double indices j = U 1, j i) 

such that jh e 0(0) , let "J(t) be the position of a particle starting at the point jh at time t =0, and let uJ(t) 

be the velocity at xJ(t) at time t. 

One way to discretize the system (1.6), (1.7) is to replace the continuous indices a and~ by the integer 

indices i and j, and to replace the integral by a sum. This gives us the following system of ordinary dif-

ferential equations 

{1.8) 

where 

UJ(t) = L K(i.{l)- Xj(t))Cj. 
JeJ,J,.. 

(1.9) 

Here the "vorticity coefficients" c J can be defined either by 

or by 

where S J denotes a square of length and width h centered at jh. If we use the latter definition, the 

definition of J has to be changed. Cottet [14] has shown that the latter definition of cJ leads to an addi­

tional error of order 0 (h 2). This has also been demonstrated numerically by Perlman [22]. Therefore we 

will always let c J = ro(jh )h2• 

The numerical solution of (1.8), (1.9) is known as the point vortex method, and was introduced in 

1932 by Rosenhead [24] for the study of vortex sheets. It turns out that this method gives unreliable 

results, especially for calculating velocities off vortex paths. See for example Beale and Majda [8]. The 

reason for this is that K (x)--+oo as x--+0. Chorin [10] avoided this problem by replacing the kernel K by a 

kernel K 11 which is bounded at x=O. K 11 is the convolution of K and a smooth cutoff function '1'5• i.e. 

Here '1'5 is defined by 'P5(x) = o-2'P{x!O) where 'I' is a smooth radially symmetric function satisfying 

•. 
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j.'P(x)dx = 1 

Hence, '¥3 approximates the Dirac delta function as 8--M>. Now the system (1.8), (1.9) is replaced by 

where 

ii1{t)= I: Ka(i1(t)-iJ(t))cJ. 
jeJ.J,.. 

{1.10) 

(1.11) 

The numerical solution of this new system is known as the vortex blob method, or just vortex method. By 

imposing additional conditions on the cutoff function 'J.1 one can obtain high rates of convergence for this 

method. In this paper we derive a class of infinite order cutoff functions and an eighth order cutoff func-

lion with compact support. 
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2. Derivation or a Large Class or Infinite Order Cutoff Functions 

Following Beale, Majda [6] and Hald [16], we define a general infinite order cutoff function'¥ via 

its Fourier transform 'i'. Here 

'P(x) = J eix·k 'i'(k) dk 

'i'(k) = _1_Je-ix·k 'P(x) dx 
(21t)2 

(2.1) 

(2.2) 

where x·k=x 1k 1+x2k2, dx=dx 1dx2 and dk=dk 1dk 2• We assume that 'i' satisfies the following assump-

tion, 

(i) 'i'(t) = (21tr2 for ~ts1 

(ii) 'i'(t) = 0 for t~. 

(iii) 'i' is real-valued and continuous for all t, continuously differentiable for }g~ and 'i'' is 

piecewise differentiable in the same interval. 

Hald [16] has shown that the previous assumption implies the following conditions: 

(i) I w<">(r)l s Lcl'-<"+1> , O<rSl, n=0,1 

(ii) I 'l'<">(r)l SLcf'-z.s, 1<r<oo, n=O,l 

r 

(iii) I 21t J s 'P(s) ds -11 S Lcf'-1.5 O<r<oo. 
0 

Now, in order to simplify (2.1), we switch to polar coordinates. Let (ktJcz) = t(cosq>,sinq>), 

(x 1,xz) = r(cosa,sina). Then dk 1dk~tdtdq>, and since 'i'(t) = 0 for t~, we get 

.. :zn 
'P(r .a)= I I ei(rrcos(9)cos(.)+rr•in(9)sin(.)) 'i'(t)t dq> dt 

2n 

= J 'fl(t )t ( J ei(rrcos(t-e>> d q>) dt 
0 0 

b 2lt 

= J 'i'(t )t ( J e; (rrcos(t-6)) d q,) dt 
0 0 

The last integral is independent of a because cos(~a) is periodic with period 21t, so let a= ~. Then by 

using the integral representation of Bessel functions we get 
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211: 211: 

J e;<,.tcos(!HI)) dcjl = J eirfsin(" dcjl = 21tl o(rt). 
0 0 

b 

'P(r) = 21t J J 0(rt )t 'i'(t) dt. 
0 

(2.3) 

The trick is to pick 'i'(t) , so that (2.3) can be evaluated explicitly. Here we need some properties of 

Bessel functions. The most fundamental one is 

d(z-J,.(z)) __ _ ,.
1 

() 
dz - z 11+1 z (2.4) 

Replacing n by -n in (2.4 ), and using that J _ (z) = ( -1 )" J,. (z) we get 

d(z" J,.(z)) 
dz =z"J,._1(z). (2.5) 

It follows from (2.5) and the chain rule that 

(2.6) 

We will use this result to integrate by parts in (2.3). First we need a change of variables. 

,.,. ,.,. 
'P(r) = ~ I J o(..fi )'i'(..fi lr )ds = r12 I J 0(..fi )g (s )ds, (2.7) 

where g (s) = 1t'i'(..fi lr ). 

Let g be a spline of order n+l. We can then integrate by parts in (2.7) repeatedly, and the final result 

will decay rapidly at infinity. More precisely, g should satisfy 

(i) g(s) is n times continuously differentiable for O<s <oo, 

(ii) The (n+l )-st derivative of g is piecewise constant, 

(iii) g<"l(s)l • = g<"l(s)l .. = 0 fork= 1, ... ,n 
s=r s=b r 

Since g:(41t)-1 for 0<s<r2, we find after integrating by parts in (2.7) 
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Note that the boundary tenns vanish because of conditions (i )-(iii) above. The integral can be evaluated 

explicitly, since g (II+ I) is piecewise constant To define g more precisely, we let b > l and pick n distinct 

points x 1, ••• ,X11 in the open interval (r2, b2r2). Then 

1 
g(s)=-

41t 

g (s) = 0 for s>b2r2 

where C 0, ••• , C11 are constants which we have to detennine. We note that except for the point s=b 2r 2, 

g has n continuous derivatives regardless of the values of the constants C0, ••• , C,.. At s=b 2r 2 we must 

however satisfy the following n + 1 conditions: 

Co(b 2-1)"+ · · · +C,.(b 2-x,.lr~" =0 

C0(b
2-1)"+1 + · · · + C (b 2-x lr'J:.."+1 = ..=.!.. 

" " J 41t 

For clarity, we set .1o=b2-1, ~=b2-xitr2 for i=l, ... ,n. Then, we can write the above continuity con-

ditions in matrix fonn as follows: 

6o dt d,. Co 0 
66 df d2 

" 

= (2.9) 

tJ.&+l dr+l ... d:+l c,. -1 
41t 
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This is a Vandermonde system, except for scaling of the columns. The matrix is non-singular, since the 

.1's are distinct The solution of the system is the last column of the inverse divided by -41t . In order to 

find this solution explicitly we need the following two lemmas. 

LEMMA 1 lfB isthematrixdefinedbyB;i =.1{:1 for iJ = 1,2, ... ,n+1 ,then 

II 

• B (;1+1)(k+1) = TI {.1t-~ r 1 fork = 0,1, ... , n. 
i=O,i,ok 

Proof Consider the system Bii = et+1 , where ii = (a 0, ••• ,a,.f and et+1 is the (k+1)-th column of 

the (n + 1)x(n + 1) identity matrix. This is equivalent to 

p(.1t)=1 and p{.1;)=0fori=O, ... ,k-1,k+1, ... ,n where p(x)=a0 +a 1x + · · · +a,.x". By using 

II 

Lagrange's interpolation formula we find p(x) = TI (x-.1;)/(.1t-.1;). Equating the coefficients of x" 
i=O,j,ok 

II 

in these two expressions we get a,. = TI {.1t-~ r 1. But a,. = B (;~1 )(t+1)· 
i=O,i,ok 

This completes the proof of lemma 1. 

LEMMA 2 The solution of equation (2 .9) is 

Proof Let b = (B (;~ 1 > 1 , ... ,B (;~1 ><11+1 ) )T where B is defined as in lemma 1. Since B T B-T =I and b 

is the last column of B -T we have B T b = e,.+h or componentwise 

Hence, 

which can be written in matrix form as (2.9) with 

for i=O, ... ,n-1 

for i=n 

for i=O, ... ,n-1 

for i=n 
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This completes the proof. 

We have now found the function g. To evaluate 'l'(r) explicitly, we set x 0 = r 2, x,.+1 = blr-2 and 

rewrite (2.8) in the following form 

Here, 

g<"+l>(s) = 

(n+l)!C0 

r211+2 

(n+l)! ~C-
211+2 ,{..., ' r i=O 

(n+l)! ,:.C-
211+2 ,{..., ' r i=O 

Using these known values of g <"+1>(s) and equation (2.6) we get 

Then, 

= 2(n:+~! [Nx,.+1)11+2J,.+2Nx,.+l>i:.c"- i:,c;(-rx;)"+2J,.+2c1X) 
r t=O i=O J 

And finally, 

(2.10) 
,. 
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(2.11) 

In order to get a convenient cutoff function, we choose Xi =klr2 for i=1, ... ,n where k 1, ••• ,k11 are 

positive integers. Set k 0 = 1 and k11+1 = b. Then, 

(2.12) 

T r 

Ks(x,y)= (-y~) fs'I's(s)ds 
r o 

T rl8 

= (-y~) f u'l'(u)du. 
r o 

(2.13) 

Fortunately (2.13) can be evaluated explicitly when 'I' has the form (2.11). The only sticky part is to 

rl8 

evaluate integrals of the form f u-<"+1>J,.+2(k; u) du. Using (2.4) and the chain rule we get 
0 

d(u-<"+l)J,.+1(k;u)) -k;J,.+2(k;u) 
= du 

(2.14) 

Letting r tend to infinity in condition (iii) we see that f u 'l'(u) du = (21t)-1
• We can therefore write 

0 

rl8 

f u 'l'(u) du = (21t)-1 - f u 'l'(u) du. Thus it follows from (2.14) that 
0 rl8 

f- -{n+1) 1 [ . J,.+t(k;t) J,.+1(k;r/5)] ln+1(k;rl5) 
u '1n+ik; u) du = --k- lun M 1 - ( 1~,.+1 = -k-(-1~-)"_+_1 • 

rffl I I-- / r VJ i r U 

since the limit as t goes to infinity is 0. Combining (2.13) and (2.11) we now get after some calculations 

To simplify the notation let 
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for i=O, ... ,n 

and 

n n 1 
'Yn+l = 21t(-2)n+~n+1)!bn+ll:Ct = (-2b)n+l(n+1)!1:----n----

k=O i=O <bz-~c;'J rr <k/- kl> 
j=OJ"" 

We can then rewrite (2.15) in a more compact form: 

(2.16) 

We will now present Hald's convergence theorem for infinite order cutoffs. First, we need to intro-

duce the norms and seminorms 

1ft 

II roll c-~co> = l:Dv max II ()Yroll +D"'+A.maxHA.(d1ro) 
v=0 lrl=v lrl=m 

m+l 
I xI c-· .... co> = l:Dv max II ()Yxll +D"'+l+A. max HA.(()Yx) 

v=0 I rl =v I rl =m+t 

Here ar = a;"aira and H A. if)= sup I f (x)- f (y) I II X- y I A.. 
'll."f 

THEOREM ( Hald [16] ). Let D be larger than the diameter of the support ofro and assume that 

1 
II roll c• ... (D)$.C and I a,vx(t) I c-··-co>S2C for 0<1..<1, V=O,l. ...• m+1, m~ and O$.t$.T. Let our 

assumptions on 'it hold and set li= constant·hq with q=~(m+A)/(m+A.-1) and CJ = c.o(jh)h 2• Solve the 

differential equation ( 1.10 ).( 1.11) by the classical Runge-Kutta method with ~t $.h<1-+11'4 ;pO. Let 1$.p <oo. 

Then there exist two constants C 0 and h0 such that 

II x(t) - x(t) II p s c o(h <m+A.)/2 + <~t )4 
) 

for all h $.h 0 and t $.T. 

We shall conclude this chapter by presenting three examples of cutoff functions out of the general class 

given by (2.12) and (2.16). 
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Example 1 Let n=1, k 1=2 and b=4. Then 

~15, L1t=12, 

4·2 8 16·2 32 [ 1 1 ] 32 
Yo=- (16-1)(4-1) =-45· Yt=- (16-4)(1-4) = 36' Y2 = 64·2 45-36 =- 45' 

-1 -1 -1 1 
C0 = =--andC1= =--

41tL\o(.6o-L1t) 1801t 41tdt(L1t-L1o> 1447t. 

Plugging in these constants into (2.12) and (2.16) we get 

and 

This cutoff function was introduced by Hald [16], and has been tried out on all the test problems in this 

paper. The optimal value of o for this cutoff function seems to vary somewhat with the initial vorticity 

distribution, but typically it lies between 0.3-fh and 0.4-!h. However, in a case with long time integra-

tions we needed to take a larger value of o to retain the high rate of convergence. 

Example 2 Let n =2, k 1=2, k z=3 and b =4. Then 

~15, L1t=12, .!1z=7, 

(-8)·3! 48 (-64)·3! 384 
Yo=- 15·3·8 = 360' 'Yt =- 12·(-3)·5 =- 180' 

(-216)· 3! 1296 I [ 1 1 1 ] 256 
12 =- 7·(-8)'(-5) = 280 • 'YJ = (-512)"3· 360 - 180 + 280 =- 105. 

-1 1 -1 1 
c 0 = 41tL\o(L1o-L1t)(.6o-L1~ =- 14401t • c 1 = 41tdl (L1t-L1o>(L11-L1~ = 7201t • 

-1 1 
C2= ----

41td2(.!12-L1o)(L1rL1t) - 11201t · 

Plugging in these constants into (2.12) and (2.16) we get 

'l'(r) = 
1 

4 
[51214(4r)- 729/ 4(3r) + 224/ 4(2r) -7/ 4(r )l 

105nr ~ 
and 
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K a(x ,y) = (-y .X ( [ 1 - 2 
3 [ 128./ 3(4r 15)- 2431 3(3r /8) + 11213(2r /8) -11 3(r /8)1] 

27tr 105(r /8) ~ 

Exam.ple3 Letn=3, k1=2, kz=3, kr4 and b=5. Then 

£\o=24, .1t=21, .1z=16, .13=9, 

16·4! 42 256·4! 1536 
Yo=- 24·15·8·3 =- 945' Yt =- 21-12·5·(-3) = 945 ' 

1296·4! 6561 4096·4! 8192 
·f2=- 16·7·(-5)·(-8) =-- 945 'y3=- 9·(-7)·(-12)-(-15) = 945' 

[ 
1 1 1 1 ] 3125 

y4 = 10000·4! 8640 - 3780 + 4480 - 11340 =- 945 ' 

-1 1 -1 1 
Co= =- ,Ct= =-~-

41t6.o(.1o-.11)(L1o-.1~(.1o-.13) 3456071: 4na1(.11-~{.11-.1~(.11-.13) 151201t • 

Again, plugging in these constants into (2.12) and (2.16) we get 

'¥(r) = 
1 

s [ 156251 s(5r) - 32768./ s( 4r) + 196831 s(3r) - 30721 s(2r) + 421 s(r )l 
18901tr ~ 

A limited number of numerical tests, were carried out using this cutoff function, and the results 

indicated the same rate of convergence as that obtained with Hald's infinite order cutoff function. 

Figures (2.1 )-(2.3) show the graphs of the cutoff functions in these three examples. 
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Example2 
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Example3 
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3. Numerical Evaluation of Infinite Order Cutoff Functions. 

Since the cutoff functions derived in the previous chapter contain several tenns involving Bessel 

functions, it is computationally expensive to evaluate these tenns "individually", using subroutines for 

Bessel functions. Instead, we approximate the whole cutoff function by local polynomials. These poly­

nomials can be computed at the beginning of the program using for example the IMSL subroutine 

"IRATCU" [18]. The computational labor involved in finding the appropriate polynomials is usually 

negligible compared to the overall computations in a typical vortex computation, even when the integra­

tion time is short. Nevertheless, if many runs are to be made, it is better to store the coefficents of the 

polynomials in a data file. In the numerical experiments of this paper we used polynomials of degree ::;; 9 

to evaluate K 5(x ,y) with a maximum error of 10-10 and polynomials of degree::;; 12 to evaluate '¥(r) with 

a maximum error of 10-12• The details of the procedure are as follows. 

SI'EP 1 The infinite-order K ,;s derived in the previous chapter have the general fonn 

K 5(x ,y) = ( -y ,x )r F (r2152)tfl. 

Estimate the maximum value M of r 15 that is likely to be encountered during the course of computa­

tions. In the numerical experiments presented in this paper we have used M=120. 

SI'EP 2 For each positive integer j ::;;M find the best polynomial approximation Pi (r2to2 - j 2) of the 

function F(r 2to2) in the interval j-Q.5 s r/5 Sj+0.5. 

SI'EP 3 Every time K 5(x ,y) has to be evaluated, we fust compute r 2!52• We then compute the 

square-root of this value, rounded to the nearest integer k. Finally, we evaluate 

K 5(x,y)::: (-y .xl P~~:.(r2to2 - k2)to2• If k>M, we can use a short asymptotic expansion to approximate F 

rather than a polynomial, and when k=O, i.e. r 2t()l<.0.25 we use a truncated MacLaurin expansion ofF. 

In lhe same manner, we find the collection of polynomials Qi (r) to approximate '¥(r ). Then '¥5(r) 

is approximated by Q~~:. (r 2!52 - k2)to2 where k is the integer closest tor !5. 

·~ 
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The error bounds in the polynomial approximations are provided by the subroutine "IRATCU". In 

this case it turns out that if we use polynomials of constant degree, the error gets smaller as r /8 gets 

larger, and conversely, if we specify an error bound of say 10-10, we may use polynomials of lower 

degree for larger arguments. Finally we should point out that if we make the intervals shorter we may be 

able to use polynomials of lower degree, but it has been our experience that in order to reduce the degree 

of the polynomials significantly, say by a factor of two, without increasing the error we must make the 

intervals much shorter which does not seem practical. 

To give some indication of typical cases, we will list the coefficients of the polynomials which 

approximate F and 'I' in three different intervals in the case when 'I' is Hald's infinite order cutoff, i.e. 

example 1 of the previous chapter. We should point out that Po and Q 0 are the truncated MacLaurin 

series of 'I' and F, not the best polynomial approximations of these functions for r 18 s 0.5. However, 

for k ~ 1, P" and Q" are the best polynomial approximations of 'I' and F. 

For r 18 S 0.5 we use 

9 11 

P o(x) = 1: c (O,.t+1) x", Qo(x)= 1:d<o.t+1)x.t, 
/(.=() /(.::() 

c (0,1) = 0.278521150410817 d(O,l) = 0.557042300821634 

c (0,2) = -o.I47964361155746 d(O,l) = -o.591857444622986 

c (0,3) = 0.400443231381822 ·10""'1 
d(0,3) = 0.240265938829093 

c (0,4) = -o.669859081907091 ·10""2 
d(0,4) = -o.535887265525673 ·10""'1 

C(0,5) = 0.766254806513328 ·10""3 
d(O,$) = 0.766254806513328 ·10""'2 

c (0,6) = -o.638691859290432 ·1Q"""4 d(0,6) =-Q.766430231148519 ·10""'3 

c (0,7) = 0.405541846198420 ·10-s d(0,1) = 0.567758584677788 ·10-4 

C(O,S) = -o.202773823804794 ·1~ dco.s> = -o.324438118087670 ·10-s 

c (0.9) = 0.819291107003087 ·lo-B dco.9> = 0.147472399260556 ·10-6 

cco,10) = -o.273097279835706 ·I<J9 d(O,lO) = -o.546194559671411 ·10-8 

d(O,ll) = 0.168059902078596 ·10-9 

dco.12) = -Q.436519250570586 ·10-11 



For 49.5 ~ r /8 ~ 50.5 we use 

4 

P5o(x) = 1:cc5o,l+1)x1
, 

k::() 

C(50,1) = 0.636614909788761 ·l<J' 

c (50,2) = -o.254567912072669 ·10-7 

C(50,3) = 0.104739981041642 ·10-10 

C(50,4) =-Q.l03221399644189 ·10-13 

c (50,5) = -o.l81116361842747 ·10-16 

For 99.5 ~ r /8 S 100.5 we use 

2 

PtOo(x) = 1:c(100.k+1)x1
, 

j;::() 

c0 oo.1> = 0.159154820701304 ·l<J' 

C(100,2) = -Q.l59211079192825 ·lo-a 

C(100,3) = 0.163998371754908 ·10-12 

22 

9 

Q5o(x) = 1:dc50.k+1)x1
, 

k::() 

dc5o,1) = 0.460700238644189 ·10-7 

d(50,2) = 0.294187407199615 ·10-8 

dc50.3> = -o.l27067586043915 ·1~ 

dc5o,4> = -o.503513664434355 ·10-12 

dc5o.S> = 0.204816631431159 ·10-13 

d(50,6) = 0.229931884309735 ·10-16 

dc5o,1) = -o.113942361053185 ·10-17 

dc5o,8> = -o.220120185455031 ·10-21 

d(50,9) = 0.296391416039998 ·1(122 

d(50,10) = -Q.886890490271324 ·10-26 

7 

Q 100(X) = 1:d(100.k+1)Xk, 
k::() 

dooo.1) = -o.894075393611259 ·lo-a 

d(100,2) = 0.308592662541504 ·1~ 

d(100,3) = -o.l85399763454803 ·10-12 

d(100.4) = -o.226344722920123 ·10-13 

duoo.s> = 0.278116058868214 ·10-16 

d(100,6)= 0.452272542132804 ·10-18 

dc1oo,1)= -o.424452772521097 ·10-21 

. 23 
d (100.8) = -Q.374858233204224 ·H1 

In the appendix we give a fortran program which generates the coefficients of the polynomials 

which approximate F and 'Pin every interval up to 119.5 ~ r /8 S 120.5. 

·• 



4. Derivation of an eighth order cutoff' function with compact support. 

Although the infinite order cutoff functions derived in chapter 2 give the best accuracy for smooth 

flows, they suffer from the disadvantage of not being compatible with any of the known "fast", i.e. 0 (N), 

vortex methods such as the Rokhlin-Greengard algorithm [23] or Anderson's method of local corrections 

[1]. The infinite order cutoff functions may still be preferable in such cases where a small enough error 

can be achieved with a relatively small number of vortices. This is the case in the test problems presented 

at the end of this paper. 

For the cases in which a large number of vortices is necessary, but in which the flow is still quite 

smooth, e.g. the suppon of the vonicity may be very large, we propose an eighth order cutoff function 

which is derived in this chapter. Since it has compact support, it can be implemented in combination with 

"fast" vortex methods. We must however bear in mind that the speedup in using a fast algorithm is lim­

ited by the size of the cutoff parameter S , which for high order cutoff functions must be proportional to 

..fh in order to maintain high accuracy for long time integmtions. In this case, the amount of computa­

tional labor due to "local" interactions is 0 (N1.s). 

We shall look for a cutoff function 'l'(r) , where r=..Jx2+y2 , satisfying the following conditions: 

(i) J'l'(r) dxdy = 1 
R" 

(ii) J x" y"' 'l'(r) dxdy = 0, for 1 ~ +m S 7, where n and m are non-negative integers. 

(iii) 'l'(r)=O for r 0!: 1 and 'JA.t>(l)=O for k=1, ... ,8. 

Switching to polar coordinates, (ii) becomes: . 

211: 

= I cos" a sin"' a de I r"-•1'1'(r) dr. 
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~ ~ ~ 

J cos" 9 sin"' a d9 = J cos" a sin"' a d9 + J cos" a sin"' a d9 
0 0 K 

~ 

= (1 + (-1)"+m) J cos" a sin"' a d9 
0 

= 0, when n +m is odd. "'· 

Therefore, condition (ii) reduces to I rk'P(r) dr = 0 for k=3,5 and 7. 

for 0~ r ~ 1 

for r ~ 1 

and solve the following linear system for a ,b ,c and d : 

1 

1 

J r 3(1 - r~9(1 + br2 + cr4 + dr~ dr = 0 
0 

1 I r 5(1- r 2
)
9(1 + br2 + cr4 + dr~ dr = 0 

1 

J r7(1-r~9(1 +br2 +cr4 +dr~dr =0 
0 

J ar(l- r~9(1 + br2 + cr4 + dr~ dr = (27tr1 

0 

The solution is a = 5217t, b = -21, c = 105 and d = -140. 

Hence, 

{
-52(1 - r~9(140r6 - 105r4 + 21r2 - 1)/7t 

'P(r) = 0 

The corresponding K 5 is: 

for 0~ r ~ 1 
for r ~ 1 

<-}:,t [ 1 + [ 1- ~] 'l2s6- 1~n[ 1- ~] + 1365[ 1- ~:] 
2

- 560[ 1- ~] 
3

] J 
(-y,xf 

2w2 

for r S S 

for r > S 
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This cutoff function was tried out on test problems 1-3, and the results are compared to those 

obtained using Hald's infinite order cutoff function, at the end of this paper. We found that the optimal 

value of a for this cutoff function is about 1.7...fh for test problems 1-3. 

The Fourier transform of'¥ is given by 

A _ -6656·11! [ J 1o(t) _ 84111 (t) 2520.1 12(t) _ 26880.1 13(t)] 
'¥(t)- il 10 11 + 12 13 

t t t t 

'i'(t) is bounded for all t and 'i'(t) is of order 0 (r105) as t -+co. Hence 'i' satisfies the following condi-

tion with L=10.5. 

(iv) For some L >0, and for any double index a 

We shall now present a special case of a convergence theorem for vortex methods due to Beale and 

Majda [7], which is applicable to the eighth order cutoff function derived here. 

THEOREM (Beale and Majda [7] ). Assume that the cutoff function'¥ satisfies '¥e C2(R 2) and 

conditions (i),(ii)and(iv)for some 2SL <oo. Choose B=constant·hq. with q <(L-1)1(L+8)./fthe 

velocity field u(x,t) is sufficrently smooth for x e R 2 and 0 S t S T and the initial vorticity distribution 

has compact support, then for any 1 < J.1 < oo and T>O there exists a constant ho>O such that for all h<ho 

Since L=10.5 for our cutoff function, we can take q=0.5 < 9.5/18.5, which would give us fourth 

order convergence if the flow is smooth enough. Fig. (4.1) shows the graph of the eighth order cutoff 

function '¥. We note that the shape of the graph is similar to the shape of the graph of Hald's infinite 

order cutoff function 'ii (Fig. 2.1), but the scaling is entirely different. In particular, '¥(0)=52/1t while 

'i'(0)=1.75/1t. Therefore, rather than comparing '¥ and 'i', we compare '¥a and 'i', where 

a;=.../52/1.75 and 'Pa(r) = a-2'¥(r/a). Then, 'Pa(O)='ii(O), and interestingly enough we see by plotting 

'¥ a(r) and 'ii(r) on the same graph, that '¥ a(r )='ii(r) for any r. See fig. 4.2. It is also interesting to 



compare the Fourier transforms of these two cutoff functions. Since 'fla(t)='fl(at), we plot 'fl(at) and 

<) 

'l'(t) on the same graph. See fig. 4.3. Once again, we get close agreement We conclude that if we use 

5=Chq with the eighth order cutoff function 'I', and a'=C'hq with Hald's infinite order cutoff, we should 

have C /C'='I/(52/1.75)=5.45. Indeed, in test problems 1-3 we found by experiments that a'=0.3"h was 

the best choice for Hald's infinite order cutoff function while the best value of a for the eighth order cut­

off function was about 1.7..Jh. Note that 1.7/0.3=5.67! This analysis suggests that if we have found the 

best value of a as a function of h experimentally for a particular cutoff function 'l'~o then we can deter-

mine the best value of a as a function of h for any other cutoff function 'I', provided both cutoff functions 

are bounded and positive at 0. Take 
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'l'(t) = 
(21tt2(256-32t2+t4)/180 for ~~ 
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5. Rezoning 

Numerical experiments with infinite order cutoff functions showed that for smooth flows these cut-

offs give extremely accurate values of velocity and vorticity for short integration times. Unfortunately, 

this high accuracy is lost as time increases, so that for long integration times, these cutoffs are not 

significantly more accurate than lower order cutoffs. Unfortunately, there has been no satisfactory expla-

nation of this phenomenon. We shall show that one way to overcome this problem is the rezoning stra-

tegy suggested by Beale and Majda [8]. We will present a version of rezoning similar to theirs, which we 

call version 1, and a new method, which we call version 2. 

First we note that since 'I' 3 approximates the delta function as 8--+0 we have at time t =0 that 

ID(z,O) = 1: '1'3(z-x1(0))c J 
jeJ 

This holds for all z. Here J is the set of all double indices j = U 1, j v such that jh e 0(0), the support of 

the initial vorticity distribution. Since vorticity is preserved along particle paths, we also expect that at 

later times t 

ID(z, t) = 1: '1'5(z-x1(t ))c 1 
JeJ 

In particular, letting z=x1{t) in (5.1), gives 

ro(x1{t ), t) = :I: 'I' 3(x1(t)-x1(t ))c 1 
jeJ 

Multiplying both sides of (5.2) by h2, and recalling that c1=h2ID(x.(t), t) for any t gives 

Therefore we define 

and 

c1 = h2l:'l'a(x1{t)-xJ(t))cJ 
jeJ 

c~{t) = h 21:'1'a(x1(t)-x1(t))c1 
jeJ 

Em(t)= [ h2
l:(cf(t)-cil

112 

jeJ 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Here E cn(t) stands for "the average vorticity error along vortex paths". With these preliminaries out of the 

way, we can now present the first version of rezoning. 
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Version 1 

STEP 1 First compute E 00(0). Then, as in the standard vortex method, solve the following system of 

ordinary differential equations 

where 

ii1(t) = l:K 8(i1(t)- iJ(t ))c J· 
JeJ 

After each time-step llJ, calculate E 00(t) and E 00(t)/E00(0). Continue to solve (5.6), (5.7) until 

(5.6) 

(5.7) 

where 11 is a parameter we have to specify. In our numerical experiments we have used 11=1.1, 11=1.25, or 

Tt=l.5. When E00(t )/E00(0) > T1 we no longer solve (5.6), (5.7) but go on to the next step. 

STEP 2 Suppose t=T1 when we quit step 1. Now we set iJ(T1)=iJ(T1) for every jeJ. Then we 

introduce a new square grid, occupying a region A cR 2, which is somewhat larger than what is needed 

to cover all point vortices at time t=T 1• Let J,. denote the set of double indices j such that jh eA. For 

every jeJ,. introduce a new vortex at every grid-pointjh. We use the old vortices one last time to com-

pute a new "initial" vorticity distribution. To be more precise, we let 

(c.)_ = h 2l: 'Pa(ih - iJ(T1))(c J)olclt 
JeJ 

for every ie J,. (5.8) 

Now we "throw away" all the old vortices iJ and denote the new vortices as iJ with iJ(T 1) = jh. We then 

delete all the new vortices it for which I (c.)_ I < £, where e is a certain tolerance. Let J 1 be the subset 

of J,. such that I (c 1)_ I ~ £ for every ie J 1• Now for t ~ T 1 we solve the following larger system of 

ordinary differential equations. 
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u(x, t) = l: K a(x - iJ(t ))(c J),_, 
jeJ. 

(5.9) 

for every ie J h 

(5.10) 

Remark: Here the it's denote the original vortices. If we are not interested in the paths of the original 

vortices, but the paths of some other particles, we should let the z1' s denote these particles. In that case, 

we do not set zJ(T 1) = iJ(T 1) at the begining of step 2. 

Now again we compute Em(t) and Em(t)1Em(T1) after every time-step !:JJ, but now using the new vorti-

city coefficients in (5.4) and (5.5). Cootinue solving (5.9), (5.10) until E m(t )IE m(T 1) > 1'1· 

STEP 3 Suppose t =T 2 when we quit step 2. Now repeat step 2 but replacing T 1 by T 2 in all the equa-

tions. Also in this step, do not set ZJ(T ~ = iJ(T ~.for jeJ1• Continue this process until we reach t=T max· 

Numerical experiments using this technique have indicated a great reduction in velocity errors for 

long integration times compared to the corresponding errors without rezoning, but with the same grid-

spacing h. In vortex methods without rezoning, we are forced to pick a considerably larger value of a for 

long integration times. With rezoning however, we can usually use values of a close to the optimal value 

of a at time t=O. Nevertheless, we have also noted that when we use this form of rezoning, the velocity 

error takes a jump every time a new vorticity distribution is computed using (5.8). These jumps are small 

compared to the sharp increase in error experienced when no rezoning is applied, but still significant 

compared to the marginal increase in velocity error at intermediate times. To reduce this effect, and the 

effect of "numerical viscosity" we propose the following scheme. 

Version 2 

In version 2 we introduce a finer grid than in version 1, for the purpose of calculating the new vor-

ticity distributions on the new grids. The velocity evaluations are however done on the coarser grid. This 

method has some similarities with multi-grid methods, but it does not fall into the framework of such 

methods. The details of version 2 are as follows. 
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STEP 1 Let Q0 be the set of double indices q=(qlt q2) such that qhe.Q(O), where q 1 and q 2 are 

integers or half -integers. For every qeQ 0 introduce a vortex Xq with strength cq=ro(qh)h2• Let J be 

the integer-pair subset of Q o- Then solve the following system of ordinary differential equations, for 

every qeQo-

where 

iq(O) =qh, 

iiq(t) = l:K 5(iq(t) - iJ(t ))c J· 
JeJ 

(5.11) 

(5.12) 

After each time-step 61, calculate E rJ..t) and E m(t )IE rJ..O) using (5.4),(5.5). Note that in calculating 

E m(t) and E m(t )IE m(O) we use only the vortices and vorticity coefficients with integer indices. Continue 

to solve (5.11), (5.12) until 

STEP 2 Suppose t=T 1 when we quit step 1. Set zJ(T 1) = iJ(T 1) for every je J. As in version 1, we 

introduce a new square grid, occupying a region A cR 2• Let QA be the set of double indices q=(q lt qv 

such that qheA, with q 1 and q 2 assuming both integer and half-integer values. Let JA be the integer-

pair subset of QA . For every qe Q..t intoduce a new vortex at every grid-point qh. Define the new vorti-

city distribution by 

(cq)_ sh214l: 'l'&·(qh -ir(T1))(cr)o/d• 
reQo 

for every qe QA (5.13) 

Note that the effective grid-spacing in (5.13) is h /2 rather than h. That is why we have a factor of h214 in 

front of the summation sign instead of h2• We must also replace '1'5 by '1'5·, where 5' is the cutoff parame-

ter corresponding to a grid-spacing of h/2. If for any value of h we pick 5=constant·h 9 , then 5'=2-q 5. 

The purpose of using (5.13) instead of (5.8) is to make the error in the computed new vorticity distribu-

Lion small compared to the error in the velocity evaluations, thereby reducing "numerical viscosity". As 

in version 1, we now "throw away" the old vortices iq and use this notation for the new vortices such that 

iq(T 1) = qh. Then let Q 1 be the subset of QA such that I (c J- I ~ e for every qe Q 1, where e is a cer­

tain tolerance. Let J 1 be the integer-pair subset of Q 1. For t ~ T 1 solve the following system of ordinary 
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differential equations. 

ii(x, t) = :!: K 11(x- iJ(t ))(c J),_, 
jeJ, 

(5.14) 

d- (t) 
Xq - -(- t) -U Xq, 
dt 

iq{TI) = qh, for every qe Q 1, 

(5.15) 

After every timestep tlJ compute E(J)(t) and Ecr/..t)IE(J)(T1) using the new vorticity coefficients with 

integer indices, and continue solving (5.14), (5.15) until E(J)(t)IE(J)(T1) >'fl. 

SI'EP 3 Suppose t =T 2 when we quit step 2. Repeat step 2 replacing T 1 by T 2 where applicable. As in 

version 1, do not set ZJ{T ~ = iJ{T ~.for jeJ1 at this point Continue in the same manner until t=T max· 



35 

6. Numerical Results 

We present five test problems. In the first three test problems, the solution is known analytically 

since the vorticity distribution is radially symmetric: The flow is circular, and the velocity at any point 

and at any time is given by 

u(x,y)= (u,v) = J.L(r)(-y .xf 
, 

where J.L(r) = ~ J s ro(s) ds is the angular velocity of the flow. 
r o 

(6.1) 

The other two test problems do not have a known analytical solution. Here we show the numerical 

solutions graphically, and the rate of convergence is estimated by using Richardsons's extrapolation. In 

the first three test problems, two different cutoff functions are used, namely Hald's infinite order cutoff 

and our 8-th order cutoff. Unless specified otherwise, we have used version 2 rezoning. In all cases we 

used the classical fourth order Runge-Kutta method for time iittegration. 

We now look at the first three test problems in detail In each of these, the vorticity distribution has 

the form 

{ 

(1- r~" for rS1 

ro(r)= 

0 for r>1 

(6.2) 

where k=3 in test problem #1, k=1 in test problem #2 and k=14 in test problem #3. The case k=3 has 

been tested numerically by Beale and Majda [8] and Beale [5], and the case k=1 by Perlman [22]. 

It can be shown that the Fourier transform of a vorticity distribution of this form is C~tlk+l (t )lt"+1 

where C" is a constanL Thus, cO<t) is of order 0 (t-<k+l.S>) as t -+oo, although ro(r) has only k bounded 

derivatives. In general, a vorticity distribution ro with compact support and k bounded derivatives only 

guarantees that Oi(t) is of order 0 (t-.t) as t-+oo. This means that for test problems #1-3, Hald's estimate, 

[16, p. 568 ], of the moment error for infinite-order cutoffs can be improved to order 0 (5"-HJ5 ) rather than 

The solutions of the Euler equation for mese vorticity distributions are given by ( 6.1) with 
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1 - (1 - r 2).t+1 

2(k+l)r2 

1 
2(k+1)r2 

We measure the velocity error in the discrete L 2 norm. 

for rS1 

for r>1 

The rate of convergence is estimated by using two successive values of h. 

ln(E, (h 1)/E, (hz)) 
rate of convergence= ln(h

1
/hz) 

(6.3) 

(6.4) 

(6.5) 

Tables 6.1a and 6.1 b give the velocity errors in test problem #1 at different times up to time t=50, for dif­

ferent values of h, and for the two different cutoff functions. We choose &=constant·..fh so that the 

moment error and the discretization error will be of approximately the same order in h . The proportional-

ity constant has been chosen so as to minimize the velocity error at time t=O when h=O.lOO. Comparing 

these two tables, we see that the errors are only between 5% and 29% larger when the eighth order cutoff 

is used. The rates of convergence for the two cutoffs are also approximately the same for corresponding 

times t, as seen in tables (6.4a) and (6.4b). Since we take & proportional to ..fh, we can expect the 

moment error to be of order 0 (h 1•75) and the discretization of order 0 (h~. with the infinite-order cutoff 

function. We could therefore only expect a rate of convergence of 1.75. However, the observed rate of 

convergence is greater than 2. In particular, at time t=O, the computed rate of convergence is 2.3, both 

using infinite-order and eighth order cutoff. Since Perlman [22] has shown numerically that at time t=O 

the moment error is much larger than the discretization error, this seems to indicate that the moment error 

is actually of order 0 (B4
·, rather than the best theoretical estimate of 0 (B3.s). Beale and Majda [8] 

observed a rate of convergence of 3.6 at time t=O for this problem, using an eighth order Gaussian cutoff 

function, but with a proportional to ho.75, which would correspond to a moment error of order 0 (B4
·8) 

which is quite close to what we observed. Beale and Majda [8] also applied rezoning to this problem, 

with h=0.125 and a=0.25. In comparing our results with theirs, we have to take into account that they 

reported a relative velocity error, obtained by dividing the absolute error by an average velocity U, where 
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For test problem #1. U = 0.1505. so if we divide our values of E" in tables 6.1a and 6.1b by 0.1505. we 

obtain relative velocity errors ranging from 0.011% at time t=O to 0.16% at time t=35. using infinite­

order cutoff with h=0.125 and &={).3..fh =0.1061. With the eighth order cutoff. the corresponding relative 

errors are 0.012% at time t=O and 0.23% at time t=35. Beale and Majda [8] reported relative errors of 

0.055% at time t=O and 0.30% at time t=36. 

The results of test problem #2 are summarized in tables 6.2a-c. As in test problem # 1. we pick 

&=1.7..fh. for the eighth order cutoff. and &={).3..fh for the infinite order cutoff. Numerical tests have 

shown that these values of a are close to the optimal ones at time t=O. with h=0.100. even for this vorti­

city distribution. We also repeated the tests using the infinite-order cutoff but with &={).355..fh. Compar-

ing table 6.2a to table 6.2b we see that the errors using the infinite-order cutoff are smaller than the 

corresponding errors for the eighth order cutoff by a factor ranging from about 3 to 6. Nevertheless. the 

rate of convergence is around 4 for both methods at all times. Theoretically. the moment error for 

infinite-order cutoffs is of order 0 (a75) for this vorticity distribution. so since a is proportional to ..fh we 

would expect a rate of convergence of 3. 75 in this case. Hence. the observed rate of convergence is 

slightly higher than the theoretical rate as in test problem #1. Now comparing table 6.2a to table 6.2c we 

notice that by choosing a larger proportionality factor between a and ..fh we get larger velocity errors at 

time t=O as expected since the moment error increases. At later times however. the errors seem to 

become almost equal for the two a·s but always with the smaller error for the smaller a. This is very dif-

ferent from what we get in vortex methods without rezoning. where the errors at later times are smaller 

for larger values of a. Perlman [22] tested Gaussian cutoff functions of different orders on this vorticity 

distribution. but without rezoning. Using an eighth order Gaussian cutoff. she had to take &=h 0·7 to 

minimize the velocity error at time t=lO and &=ho.6 to minimize the error at time t=20. With these 

parameters and h =0.05. she obtained a minimum error of 7.42 ·10"'5 at time t=10 and 5.77 ·1()"" at time 

t=20. Our smallest errors at time t=10 and t=20. with h=0.05 are 3.59 ·10""7 and 7.36 ·10"'7 respectively. 

so the rezoning procedure seems to pay off. at least when the flow is this smooth. 
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TABLE 6.la 

t h=0.125 h=0.100 

0.0 0.1665 ·10-4 0.9000 ·10-s 

5.0 0.2962 ·1Q-4 

10.0 0.5340 ·1Q-4 0.2562 ·10-4 

15.0 0.8373 ·1Q-4 

20.0 0.1201 ·10-3 0.5473 ·1Q-4 

25.0 0.1590 ·10-3 

30.0 0.2011·10-3 0.9110 ·1Q-4 

35.0 0.2479 ·10-3 

40.0 0.2982 ·10-3 0.1358 ·10-3 

45.0 0.3539 ·10-3 

50.0 0.4141 ·10-3 0.1880 ·10-3 

co(r )=(max(O.l-r~)3 

Cutoff function: Halt! s infimte -order 

11 = 1.1 

a= o.3.fh 

flt = 4.0h 

T max= 50.0 

E,. 

h=0.0625 

0.3142 ·10-s 

0.4347 ·10-s 

0.6775 ·10-s 

0.1006 ·1Q-4 

0.1377 ·1Q-4 

0.1810 ·1Q-4 

0.2268 ·1Q-4 

0.2776 ·1Q-4 

0.3321 ·1Q-4 

0.3890 ·1 Q-4 

0.4559 ·1Q-4 

h=0.05 

0.1886 ·10-s 

0.2552 ·10-s 

0.3829 ·10-s 

0.5443 ·10-S 

0.7372 ·10-s 

0.9633 ·10-S 

0.1200 ·1Q-4 

0.1456 ·1Q-4 

0.1727 ·1Q-4 

0.2021 ·1Q-4 

0.2327 ·1Q-4 
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TABLE 6.1b 

t h=0.125 h=0.100 h=0.0625 

0.0 0.1751·1~ 0.9473 ·10-s 0.3329 ·10-s 

5.0 0.3398 ·1~ 0.4969 ·10-s 

10.0 0.6t:i2 ·1~ 0.2945 ·1~ 0.7661 ·10-s 

15.0 0.9967 ·1~ 0.1103 ·1~ 

20.0 0.1519 ·10-3 0.6172·1~ 0.1497·1~ 

25.0 0.2114 ·10'"3 0.1956·1~ 

30.0 0.2757 ·10-3 0.1062 ·10-3 0.2429·1~ 

35.0 0.3467 ·10-3 0.2999 ·1~ 

40.0 0.4207 ·10-3 0.1594 ·10-3 0.3609·1~ 

45.0 0.4972 ·10-3 0.4284 ·1~ 

50.0 0.5799 ·10-3 0.2225 ·10-3 0.5000·1~ 

co(r )=(max(0,1-r~)3 

Cutoff function: 8-th order with compact support 

Tl = 1.1 

5= 1.7..fh 

dt =4.0h 

T max= 50.0 

h=0.05 

0.1998 ·10-S 

0.2689 ·10-s 

0.4233 ·10-s 

0.6031 ·10-S 

0.8168 ·10-S 

0.1060 ·1~ 

0.1339 ·1~ 

0.1642·1~ 

0.1974·1~ 

0.2311 ·1~ 

0.2681·1~ 
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TABLE 6.2a 

E,. 

t h=0.125 h=0.100 h=0.0625 h=0.05 

0.0 0.3242 ·10-s 0.1293 ·10-s 0.1587 ·10""6 0.6384 ·10-7 

5.0 0.9354 ·10""5 0.4465 ·10-6 0.1859 ·1~ 

10.0 0.1634 ·10-4 0.5244 ·10-s 0.8657·1~ 0.3588 ·10-6 

15.0 0.2375 ·1~ 0.1316 ·10-S 0.5432 ·10-6 

20.0 0.3291·1~ 0.1108·1~ 0.1791 ·10-s 0.7356 ·10-6 

25.0 0.4298 ·1~ 0.2287 ·10-s 0.9409 ·10-6 

30.0 0.5286·1~ 0.1815 ·1~ 0.2810 ·10-s 0.1143 ·10-s 

35.0 0.6505 ·1~ 0.3347 ·10-s 0.1358 ·10-s 

40.0 0.7567·1~ 0.2639 ·1~ 0.3910 ·10""5 0.1580 ·10-S 

45.0 0.8856·1~ 0.4494 ·10""5 0.1809 ·10-s 

50.0 0.1027 ·10-3 0.3600·1~ 0.5098 ·10-s 0.2046 ·10-s 

55.0 0.5724 ·10-s 

60.0 0.6373 ·10-s 

65.0 0.7045 ·10-s 

70.0 0.7742 ·10-s 

75.0 0.8460 ·10-s 

80.0 0.9203 ·10""5 

85.0 0.9967 ·10-s 

90.0 0.1076·1~ 

95.0 0.1157 ·1~ 

100.0 0.1240·1~ 

ro(r )=(max(O,l-r'lJ)7 

Cutoff function: Hald' s infinite -order 

T1 = 1.25 
5=0.3Vh 
tit= 4.0h 
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TABLE 6.2b 

E,. 

t h=0.125 h=0.100 h=0.0625 h=0.05 

.. 0.0 0.1352 ·1<r4 0.4651 ·10-s 0.8460 ·10-6 0.3576 ·1<J6 

5.0 0.3361 ·10-4 0.1989 ·10-5 0.7915 ·10~ 

10.0 0.6466 ·10-4 0.2441 ·1<r4 0.3822 ·10-5 0.1518 ·10-5 

15.0 0.1103 ·10-3 0.6061 ·10-s 0.2336 ·10-5 

20.0 0.1521 ·10-3 0.5617 ·1<r4 0.8522 ·10-5 0.3209 ·10-5 

25.0 0.2077 ·10-3 0.1117 ·1<r4 0.4182 ·10-5 

30.0 0.2642 ·10-3 0.9726·1<r4 0.1414 ·1<r4 0.5246 ·10-5 

35.0 0.3282 ·10-3 0.1723 ·1<r4 0.6370 ·10-5 

40.0 0.3964 ·10-3 0.1460 ·10-3 0.2057 ·1<r4 0.7588 ·10-s 

45.0 0.4676 ·10-3 0.2415 ·1<r4 0.8886 ·10-5 

50.0 0.5477 ·10-3 0.2034 ·10-3 0.2794 ·1<r4 0.1023 ·1<r4 

55.0 0.3186 ·1<r4 

60.0 0.3600·1<r4 

65.0 0.4030·1<r4 

70.0 0.4481 ·1<r4 

75.0 0.4947 ·1<r4 

80.0 0.5440·1<r4 

85.0 0.5948 ·10-4 

90.0 0.6476·1<r4 

95.0 0.7012 ·t<r 
100.0 0.7578 ·t<r 

ro(r)=(max(O,l-r~)7 

Cutoff function: 8-th order with compact support 

Tl = 1.25 
cS = 1.7-.fh 
lit= 4.0h 
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TABLE 6.2c 

h=0.125 h=0.100 h=0.0625 h=0.05 

0.0 0.1740 ·1~ 0.5371 ·10-s 0.7276·1~ 0.2645 ·1~ 

5.0 0.3007 ·10-4 0.9202 ·1~ 0.3368 ·10-6 

10.0 0.5173 ·1~ 0.1276 ·1<r 0.1397 ·10-S 0.4897 ·10-6 

15.0 0.7608 ·1<r 0.1820 ·10-S 0.6774 ·1~ 

20.0 0.9869 ·1<r 0.2411 ·1<r 0.234 7 ·10-s 0.8770 ·10-6 

25.0 0.1225 ·10-3 0.2890 ·1 o-s 0.1087 ·10-S 

30.0 0.1486 ·10-3 0.3916 ·l<r 0.3456 ·10-s 0.1305 ·10-s 

35.0 0.1727 ·10-3 0.4035 ·10-S 0.1532 ·10-5 

40.0 0.2002 ·10-3 0.5612 ·l<r 0.4633 ·10-s 0.1763 ·10-5 

45.0 0.2290 ·10-3 0.5259 ·10-s 0.2002 ·1 o-5 

50.0 0.2565 ·1(}3 0.7570·1~ 0.5899 ·lo-s 0.2248 ·10-5 

55.0 0.6553 ·lo-s 

60.0 0.7226 ·lo-s 

65.0 0.7912 ·1(}5 

70.0 0.8620 ·lo-s 

75.0 0.9344 ·lo-s 

80.0 0.1009 ·l<r 

85.0 0.1084·1~ 

90.0 0.1162 ·l<r 

95.0 0.1242 ·l<r 

100.0 0.1323 ·1~ 

ro(r)=(max(O,l-r~)7 

Cutoff function: H altl s infinite -order 
, = 1.25 
a= 0.355..fh 
til= 4.0h 
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TABLE 6.3a 

E~~. 

l h=0.125 h=0.100 

0.0 0.4859 ·1~ 0.1782 ·10-4 

5.0 0.1002 ·10-3 

10.0 0.2033 ·10-3 0.8081·1~ 

15.0 0.3154 ·10-3 

20.0 0.4347 ·10-3 0.1502 ·10-3 

25.0 0.5720 ·10-3 

30.0 0.7052 ·10-3 0.2375 ·10-3 

35.0 0.8539 ·10-3 

40.0 0.1000 ·10-2 0.3369 ·10-3 

45.0 0.1160 ·10-2 

50.0 0.1339 ·10-2 0.4475 ·10-3 

co(r )=(max(0,1-r~)14 

Cutoff function: Haltfs infinite-order 

, = 1.1 

8= 0.3-lii 

Ill = 4.0h 

Tmu.=50.0 

h=0.0625 

0.1304 ·10-s 

0.2428 ·10-S 

0.4243 ·10-s 

0.6225 ·10-s 

0.8455 ·10-s 

0.1081 ·1~ 

0.1321·1~ 

0.1561·1~ 

0.1804 ·1~ 

0.2070 ·1~ 

0.2357·1~ 

h=0.05 

0.2337 ·10-6 

0.4164 ·10-6 

0.7356 ·10-6 

0.1085 -w-s 

0.1445 ·10-s 

0.1813 ·10-5 

0.2184 ·10-S 

0.2559 ·10-S 

0.2940 ·10-S 

0._3325 ·10-s 

0.3711 ·10-S 
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TABLE 6.3b 

t h=0.125 h=0.100 h=0.0625 

0.0 0.5584 ·1o-"' 0.2759 ·10-3 0.5139 ·10""5 

5.0 0.1416 ·10-3 0.1146 ·1o-"' 

10.0 0.2795 ·10-3 0.1289 ·10""3 0.2214 ·1o-"' 

15.0 0.4881 ·10-3 0.3403 ·1o-"' 

20.0 0.7324 ·10""3 0.2955 ·10""3 0.4790 ·1o-"' 

25.0 0.9890 ·10-3 0.6326 ·1o-"' 

30.0 0.1238 ·10""2 0.7755 ·10-3 0.7981 ·1o-"' 

35.0 0.1554 ·10-2 0.9687 ·1o-"' 

40.0 0.1807 ·10-2 0.1819 ·10-2 0.1149 ·10""3 

45.0 0.2160 ·10-2 0.1340 ·10""3 

50.0 0.2522 ·10-2 0.3071 ·10-2 0.1554 ·10-3 

ro(r )=(max(O,l-r~)14 

Cutoff function: 8-th order with compact support 

1l = 1.1 

a= 1.1-fh 

~t =4.0h 

T max=50.0 

h=0.05 

0.2264 ·10""5 

0.9267 ·10-5 

0.9603 ·10-5 

0.1485 ·10-4 

0.2050 ·1o-"' 

0.2662 ·1o-"' 

0.3306 ·1o-"' 

0.3997 ·lo-"' 

0.4732 ·lo-"' 

0.5512 ·1o-"' 

0.6337 ·1o-"' 
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TABLE6.4a 

Rate or convergence or the velocity approximations in test problems 1-3, 

using Hald's infinite order cutofF. 0=0.3-Jh except as indicated otherwise. 

Rate of Convergence 

ro(r )=(l.Q-r2)3 ro(r )=(l.Q-r2)7 ro(r )=(l.Q-r2f, ro(r )=(l.Q-r~I4 

0=0.355-Jh 

2.3 4.1 4.5 7.7 

2.6 4.0 4.7 7.8 

2.8 4.0 4.4 7.9 

2.8 4.0 4.4 8.1 

2.9 4.1 4.3 8.1 

3.0 4.1 4.3 8.3 

TABLE6.4b 

Rate or convergence or the velocity approximations in test problems 1-3, 

using the 8-th order cutofF. &=1.7-Jh. 

Rate of Convergence 

I ro(r )=(l.Q-r~3 ro(r )=(l.Q-r2f ro(r )=(l.Q-r2)14 

0.0 2.3 3.9 3.7 

10.0 2.7 4.1 3.7 

20.0 2.7 4.4 3.8 

30.0 2.7 4.4 4.0 

40.0 2.7 4.5 4.0 

50.0 2.8 4.5 4.0 
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Rezoning, version 2 vs. version 1 
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Fig. 6.1 ro(r)=(max(O,l-r~)3 , solid curve= version 2, dotted curve= version 1, 

h=0.0625, 0=0.3-Jh .11=1.25, .1.t=4.0h. 
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Rezoning, version 2 vs. version 1 

.... ··· 
.. .. ·· 

... ······ 

:\··················· 

...... ···· 
.... ····•·· 

············· ............. · 

10 20 

t 

. ·· ... · 
.. ·· 

................ 

.. ····· 

30 

... 

... / .... /./ 
......... 

.. ·· ... · 
......... 

40 

Fig. 6.2 ro(r)=(max(O,l-r~)'. solid curve= version 2, dotted curve= version 1, 

h=0.0625, 5=0.355.fii. 11=1.25, .11=4.0h. 
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Rezoning, version 2 vs. version 1 
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Fig. 6.3 ro(r)=(max(O,l-r~)14, solid curve= version 2, dotted curve= version 1, 

h=0.0625, 0=0.3../h .11=1.25, ~t=4.0h. 
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Fig. 6.4 ro(r)=(max(O,l-r~)'.h=0.0625, l>=O.S.fii, ~t=4.0h. 
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In test problem #3, the difference in velocity errors between the two cutoff functions is small for h =0.125 

, but it increases as h gets smaller. For h=0.05 the error is 9.7 times smaller at time t=O and 17.1 times 

smaller at time t=50 for the infinite-order cutoff compared to the eight order cutoff. The rate of conver-

gence is close to 8 for the infinite-order cutoff, but as expected around 4 for the eighth order cutoff. The 

theoretical rate of convergence for the infinite-order cutoff is 7.25 in this case, since the moment error is 

of order 0 (5145
), so once again the observed rate of convergence is higher than the theoretical rate. We 

also made a comparison of rezoning version 1 vs. rezoning version 2 using test problems #1-3 with the 

infinite order cutoff. The results are shown graphically in figures 6.1-6.3. We see that version 2 gives a 

significantly lower error, and that the gap between the two versions increases with increasing smoothness 

of the ftow. The sharp peaks in the graphs are due to the fact that sometimes the velocity error increases 

faster than the vorticity error. Then, after rezoning, the velocity error decreases again. In practice, these 

peaks do not matter, since the error at any time is much smaller than what is obtained without rezoning as 

we see in Fig. 6.4. 

In the fourth test problem, we distribute the vorticity on two circles according to 

(6.6) 

Thus, we have two vorticity patches with the vorticity distributed as in test problem #2. Note that this 

test problem differs from the famous test problems considered by Christiansen [13]. Christiansen [13] 

used uniform vorticity distribution within the two circles. However, in our test problem the vorticity is 

concentrated at the centers of the circles and decays to 0 in a smooth fashion as we approach the boon-

dary. The numerical solution using Hald's infinite-order cutoff with rezoning is shown in figures 6.5-

6.15. The graphs represent vorticity level sets at different times from time t=O to time t=100. To esti-

mate the rate of convergence, we have used Richardson's extrapolation with three different gridsizes 

h , 213 h and h 12. Assuming the rate of convergence is q, we can write U. = ut + h q e (x .y ,t) + (higher 

order terms). Then 

II -II - 2'11311 u1 -u1 hq- (2hl3)q 

(2hl3)q - (h/2)9 
= 1- (213)q 

(2/3)9 - (l/2)q 
(6.7) 

The norm is taken to be the discrete L 2 norm of the differences in the computed velocities for vortices 

with the same initial positions. 
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TABLE6.5 

Rate or convergence or the velocity approximations in test problem 4 

using Bald's infinite order cutofF. 

t Rate of Convergence 

0.0 3.7 

10.0 4.1 

20.0 4.3 

30.0 4.1 

40.0 4.4 

50.0 4.4 

60.0 4.2 

70.0 4.6 

80.0 4.5 

90.0 4.5 

100.0 4.9 

CJ>(x,y) = (max( 0, (0.25-( I x 1-o.5 )2-y'J))7, 

h=0.0625, f>=0.28.fh .T\=1.25, £=0.00004h 2, ft.t=5.0h. 

Once we have computed the first quotient in (6.7), we set the third quotient equal to this value, and I 

solve for q numerically. Using the three grid-sizes h=l/10, h=l/15 and h=1120 we obtain the rates of 

convergence in Table 6.5. We see that the rates of convergence for this problem are similar to the rates 

observed in problem 2. 
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Vorticity level sets. Time=O.O 

-o.5 0.0 
X 

0.5 

Fig. 6.5. w(x ,y ,0) = (max( 0, (0.25-( I x j-0.5 )2-y2)))7, 

h=0.0625, &=0.28..Jh. Tt=l.25, e=0.00004h2,lit=5.0h. 

1.0 1.5 



1.5 

1.0 

0.5 

y 
0.0 

-o.5 

·1.0 

-1.5 

·1.5 -1.0 

53 

Vorticity level sets. Time=lO.O 

-o.5 0.0 
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Fig. 6.6. ro(x ,y ,0) = (max( 0, (0.25-( I x l-0.5 )2-y2)))7, 

h=0.0625, &=o.28..fh, 11=1.25, £=0.00004h2, ~t=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=20.0 

-o.s 0.0 
X 

0.5 

Fig. 6.7. ro(x ,y ,0) = (max( 0, (0.25-( I x 1-<>.5 )2-y 2))f, 

h=0.0625, 0=0.28../h, 11=1.25, e=0.00004h2, ~t=5.0h. 

1.0 1.5 



1.5 

1.0 

0.5 

y 
0.0 

~.5 

-1.0 

-1.5 

-1.5 -1.0 

ss 

Vorticity level sets. Time=30.0 
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Fig. 6.8. ro(x ,y ,0) = (max( 0, (0.25-( I x l-0.5 )2-y2)))7, 

h=0.0625, 0=0.28.../h, Tt=l.25, e=0.00004h2, t1t=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=40.0 
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Fig. 6.9. ro(x ,y ,0) = (max( 0, (0.25-( 1 x j-o.S )2-y2)))7, 

h=0.0625, &=o.28..fh, 1'1=1.25, e=0.00004h2, lit=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=SO.O 
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Fig. 6.10. ro(x ,y ,0) = ( max( 0 , (0.25-( I x I -o.5 )2-y 2))) 7, 

h=0.0625, 0=0.28-.fh, 11=1.25, £=0.00004h 2, ~t=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=60.0 
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Fig. 6.11. ro(x ,y ,0) = (max( 0, (0.25-( I x 1-o.s )2-y2)))7, 

h=0.0625, 0=0.28..fii, Tl=l.25, e=0.00004h2, Jit=S.Oh. 

1.0 1.5 
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Vorticity level sets. Time=70.0 
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Fig. 6.12. ro(x ,y ,0) = (max( 0, (0.25-( I x l-0.5 )2-y2)))
7

, 

h=0.0625, 0=0.28...Jh. T\=1.25, e=0.00004h2, Llt=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=80.0 
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Fig. 6.13. ro(x ,y ,0) = (max( 0, (0.25-( I x l-0.5 )2-y2)))
7

, 

h=0.0625, &=o.28"h .11=1.25, e=0.00004h2, Llt=5.0h. 

1.0 1.5 



1.5 

1.0 

0.5 

y 0.0 

-o.5 

-1.0 

-1.5 

-1.5 

61 

Vorticity level sets. Time=90.0 
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... -:::::.::::: ..... ...-
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Fig. 6.14. ro(x ,y ,0) = (max( 0, (0.25-( I x 1-0.S )2-y2)))
7

, 

h=0.0625, &=o.28"h .Tt=l.25, e=0.00004h2, .1t=5.0h. 

1.0 1.5 
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Vorticity level sets. Time=lOO.O 
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X 

Fig. 6.15. co(x ,y ,0) = (max( 0, (0.25-( I x 1-0.S )2-y2)))7, · 

h=0.0625, 0=0.28-.fii .11=1.25, e=0.00004h 2, t.t=5.0h. 

1.0 1.5 

.. 
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TABLE6.6 

Rate of convergence of the velocity approximations in test problem 5 

using Bald's infinite order cutotT. 

t 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

Rate of Convergence 

3.2 

3.2 

3.2 

3.3 

3.3 

3.3 

ro(x,y) = [ (max( 0 ,l-x2 )) (max( 0 ,l-y2 »] 7
, 

h=0.0625, &=o.6.Jh' Tt=l.5, &=4.0h. 

In the fifth test problem, the initial vorticity is distributed on a square according to 

ro(x ,y) = [ (max( 0 ,l-x2 )) ( max( 0 ,l-y2 »] 7 
(6.8) 

The rates of convergence at different times up to time t=SO are estimated in the same way as in test prob­

lem #4, using the same three grid-sizes. Here, we had to take a larger value of 5 in order to maintain a 

high rate of convergence up to time t=50. The observed rates of convergence are lower than in problems 

2 and 4, although the initial vorticity distribution has the same smoothness in this case. It is possible that 

the Fourier transform of the vorticity distribution has a lower rate of decay in this case, causing a lower 

rate of convergence. Figures 6.16-6.22 show the computed vorticity level sets at times 

t=O,l0,20,30,40,50 and 100. 
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Vorticity level sets. Time=O.O 

-o.5 0.0 
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0.5 

Fig. 6.16. <O(x ;y ,0) = ( (max( 0 ,l-x2 )) (max( 0 ,l-y2 »] 7 

h=0.0625, &=o.3SS.fii, 11=1.5, L\t=4.0h. 
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Vorticity level sets. Time=lO.O 
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Fig. 6.17. ro(x ,y ,0) = [ (max( 0 ,l-x2 )) (max( 0 ,l-y2 »] 7 

h=0.0625, 0=0.355-lh' 11=1.5, t11=4.0h. 
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Vorticity level sets. Time=20.0 

-o.s 0.0 
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Fig., 6.18. ro(x ,y ,0) = ( (max( 0 ,1-x2 )) (max( 0 ,l-y2 ))] 
7 

h=0.062S, 0=0.3SS.fii, 11=1.5, at=4.0h. 
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Vorticity level sets. Time=30.0 
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Fig. 6.19. ro(x .y ,0) = [ (max( 0 ,l-x2 )) (max( 0 ,1-y2 »] 7 

h=0.062S, 0=0.3ss..[Ji, tt=l.S, at=4.0h. 

1.0 1.5 
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Vorticity level sets. Time=40.0 
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Fig. 6.20. ro(x.;; ,0) = ( (max( 0 ,1-x2 )) (max( 0 ,l-y2 ))] 
7 

h=0.0625, 0=0.355../h .11=1.5, LY=4.0h. 
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Vorticity level sets. Time=SO.O 
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Fig. 6.21. ro(x ;y ,0) = ( (max( 0 ,l-x2 )) (max( 0 ,l-y2 »] 7 

h=0.0625, &=o.355.Jii' Tt=l.5, t1t=4.0h. 
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Vorticity level sets. Time=lOO.O 
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Fig. 6.22. O>(x .y ,0) = ( (max( 0 ,l-x2 )) (max( 0 ,1-y2 ))] 
7 

h=0.0625, &=o.355-fh. fl=l.5, L\t=4.0h. 

1.0 1.5 

. 
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TABLE6.7 

A comparison between the direct method and the Rokhlin-Greengard method. 

Direct method Rokhlin -Greengard method 

h N E,. CPU time E,. CPU time 

1/20 1257 0.3576 ·lo--s 3.7 0.3576 ·10-6 4.3 

1140 5025 0.2507 ·10-7 63.5 0.2507 ·10-7 45.8 

1/64 12853 0.4021 ·lo-B 394.6 0.4021 ·10-s 106.9 

Finally, we made a comparison between the direct method of evaluating the sum in (1.11) and the 

Rokhlin-Greengard algorithm [23]. For this, we used the vorticity distribution of test problem #2, the 

eighth order cutoff function, and a= 1.1-fh. The number of terms in the multipole expansion, see [23], 

was set to 20. The results are summarized in table 6. 7. Here, N stands for the number of vortices, Eu for 

the velocity error at time t=O, and the CPU time is given in minutes for one velocity evaluation at time 

t=O on a VAX computer. We have to emphasize that the speed of the Rokhlin-Greengard algorithm 

applied to vortex methods is limited by the size of the cutoff parameter a. In fact, the maximum number 

of levels of refinement, see [23], must not exceed l-log2 (atl), where l is the length of one side of the 

computational box. Here we have used l =2, since this is exactly what we need to cover the support of the 

initial vorticity distribution in test problem #2, but we have to admit that the speed of this algorithm will 

increase somewhat if we pick l so that l-log2(at/) is exactly an integer, and set the maximum number of 

levels of refinement equal to this value. The Rokhlin-Greengard algorithm would also run faster if we 

choose a smaller, but that would force us to use a lower order cutoff function, which we do not believe is 

such a good idea for smooth flows. However, if the flow is not very smooth, we may very well use a 

lower order cutoff function, a smaller a , and use the Rokhlin-Greengard algorithm with maximum 

efficiency. 
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Appendix 

To make it easier for the reader who wishes to use infinite-order vortex methods, we supply two 

subroutines. The first subroutine finds the coefficients of the polynomials which approximate Hald's 

infinite-order cutoff function and velocity kernel as described in chapter 3. The second subroutine evalu­

ates the sum in equation (1.11) or equation (5.9) using these polynomials. If the second subroutine is used 

on a Cray computer, we recommend not changing the structure of the subroutine since that would prob­

ably make it more expensive. For example, if we express Homer's rule as a loop, the CPU time require­

ment increases by a factor of about 4 on a Cray computer and most of the overall computational work of 

the vortex method is done in this subroutine. We tested many different versions of this subroutine on a 

Cray computer and found that this version was by far the fastest one. This is the main reason for present­

ing it here. However, if a VAX computer is used, the code may be simplified without decreasing the 

computational speed. We do not present our rezoning subroutine here, but it has the same structure as the 

second subroutine. 



.. 

c 
c 
c 

2 

73 

Program for finding polynomials approximating 
Hald's infinite order cutoff function and 
velocity kernel. (Example 1, chap.2 ) 

parameter(m=l20) 
common/prmtr/k 
double precision c(O:m,l:lO) 
double precision d(O:m,l:l3) 

do 2 k=l,m 
call coeffs(c,d,m) 
continue 
end 

subroutine coeffs(c,d,m) 

c 1-------------------------------------------------------------------
c I 
c I 
c I 
c I 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

This subroutine finds the best polynomial approximations 
in different intervals 
to Hald's infinite-order cutoff 
and to the corresponding scaling 
the velocity kernel. 

function (example 1) 
function F that is related to 

List of variables: 

Input: 

m 

k 

Output: 

c ( 0 : m, 1 : 1 0 ) 

d ( 0 : m, 1 : 1 0) 

the number of intervals in which we wish to 
approximate F and PSI. 

the center of the interval under consideration 

array of coefficients of the polynomials 
approximating F in all intervals. 

array of coefficients of the polynomials 
approximating the cutoff function PSI 
in all intervals. 

Library functions: 

mmbsjO Bessel function of order 0 

mmbsjl -Bessel function of order 1 

Local functions: 

f2 =- Bessel function of order 2 

f3 Bessel function of order 3 
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c -------------------------------------------------------------------1 
c I 
c Input to library subroutine iratcu: I 
c I 
c 1 degree of the polynomial in the numerator of I 
c the approximating rational function. I 
c I 
c m1 = degree of the polynomial in the denominator of I 
c the approximating rational function. I 
c Here we always let m1=0. I 
c I 
c a,b endpoints of the interval under consideration. I 
c I 
c f = F I 
c I 
c psi PSI I 
c I 
c g weight function, which is identically 1 here. I 
c I 
c phi (x) x*.*2-k**2 I 
c I 
c We express the best polynomial approximation as a polynomial I 
c in phi (x) . I 
c I 
c I 
c Output from library subroutine iratcu: I 
c I 
c p(13) vector of coefficients of the polynomial in the 1 

c numerator of the approximating rational function. 1 

c I 
c q(1) vector of coefficients of the polynomial in the I 
c denominator of the approximating rational 1 
c function. In this case q(1) is identically 1. . I 
c I 
c wk(315) "work vector" needed by the library subroutine I 
c iratcu. wk(1) gives the maximum error in the I 
c approximation in the interval [a,b] 1 
c I 
c ier error parameter required by subroutine I 
c iratcu. See IMSL manual vol.2 1 

c I 
c -------------------------------------------------------------------1 

cormnon/prmtr/k 
integer l,m1,ier 
double prec~s~on p(13),q(l),wk(315),a,b 
double precision f3,psi,f,f2,phi,g,mmbsjl,mmbsj0 
double precision pi,c(O:m,l:10),d(O:m,1:13) 
external f,phi,g,f2,f3,psi 

pi=dacos ( -1 . OdO) 
a=dble(k)-0.5 
b=dble(k)+O.S 
1=9 

... 



... 

32 
4 

33 
41 

if(k.eq.1) 1=7 
if(k.gt.10) 1=7 
if(k.gt.20) 1=6 
if(k.gt.30) 1=5 
if(k.gt.40) 1=4 
if(k.gt.80) 1=2 

75 

call iratcu(f,phi,g,a,b,l,m1,p,q,wk,ier) 
print *, wk (1) 

do 4 i=1,1+1 
c(k,i)=p(i) 
write(15,32) 
format(1H ,' 
continue 

1=12 

k,i,c(k,i) 
c(',I3,',',I2,')=',D22.15) 

if(k.eq.1) 1=9 
if(k.eq.2) 1=10 
if(k.gt.10) 1=11 
if(k.gt.20) 1=10 
if(k.gt.30) 1=9 
if(k.gt.SO) 1-8 
if(k.gt.90) 1=7 
call iratcu(psi,phi,g,a,b,l,m1,p,q,wk,ier) 
print *,wk(1) 

do 41 i=1,1+1 
d(k,i)=p(i) 
write(15,33) 
format(1H 
continue 
end 

k,i,d(k,i) 
d(',I3,',',I2,')=',D22.15) 

double precision function f2(x) 
double precision x,mmbsj1,mmbsj0 
integer ier2 

c The Bessel function of order 2 is expressed in terms of the 
c Bessel functions of orders 0 and 1 

f2=2.0*mmbsj1(x,ier2)/x-mmbsj0(x,ier2) 
return 
end 

double precision function f3(x) 
double precision x,mmbsj1,mmbsj0 
integer i 

c The Bessel function of order 3 is expressed in terms of the 
c Bessel functions of orders 0 and 1 

f3~(8.0/x**2-1.0)*mmbsj1(x,i)-4.0*mmbsj0(x,i)/x 
return 
end 
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double precision function f(x) 
double precision x,pi,f2 

pi=dacos(-l.OdO) 
f=(.S-4.*(4.*f2(4.*x)-5.*f2(2.*x)+f2(x))/(45.*x**2))/(pi*x**2) 
return 
end 

double precision function psi(x) 
double precision x,pi,f3 

pi=dacos(-l.OdO) 
psi=(6.4*f3(4.0*x)-4.0*f3(2.0*x)+0.4*f3(x))/(4.5*pi*x**3) 
return 
end 

double precision function phi(x) 
double prec1s1on x 
common/prmtr/k 

c the approximating polynomial is given as a polynomial in (x**2-k**2) 

phi=x**2-dble(k**2) 
return 
end 

double precision function g(x) 
double precision x 

c "g" is a weight function which must be specified. 

g-l.OdO 
return 
end 
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c -------------------------------------------------------------------1 
c I 
c This subroutine evaluates the velocity at a point (xi,yi) 1 

c according to equation (1.11) or equation (5.9) 1 
c using infinite order velocity kernel approximated by 1 

c a collection of polynomials, as described in chapter 3. 1 

c I 
c List of variables: 1 

c I 
c Input: 1 
c I 
c xi,yi point at which we wish to compute velocity 1 

c I 
c nn max. number of linear sub-divisions between 0 and 1 I 
c 
c x(1:4*nn**2), y(1:4*nn**2) = 
c array of vortices inducing the velocity field 
c 
c 
c 

tot total number of vortices 

c cc(1:4*nn**2) = 
c vorticity coefficients 
c 
c 
c 

x4 the cutoff parameter delta 

c c(O:m,l:lO) ~ 

c I the set of coefficients of the polynomials 
c approximating an infinite order velocity kernel 
c 
c 
c 
c 
c 

Output: 

u,v 

c Local: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

m 

NMAX 

x5 

r2 

~ the sum in (1.11) or (5.9) 

number of approximating polynomials -1 

= same as nn, b~t for local use 

=·delta squared 

the square of the distance from the point (xi,yi) 
to a particular vortex 

c arg(1:4*NMAX**2) ~ 

c the set of distances from (xi,yi) to all vortices 
c divided by delta squared 
c 
c i1(1:4*NMAX**2) 
c the set of indices for the polynomials 
c used to approximate the velocity kernel 
c 
c c2(0:4*NMAX**2,1:10) • 
c a renaming of the polynomial coefficients 
c 
c 
c 

x3,k3,terml,term2 • temporary variables 

c -------------------------------------------------------------------

I 
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subroutine sum(c,xi,yi,x,y,tot,cc,nn,u,v,x4) 

integer m,NMAX 
parameter (m=120) 
parameter (NMAX = 40) 
double precision u,v,term1,term2,xi,yi,r2,x3,x4,x5 
double precision x(1:4*nn**2),y(1:4*nn**2),cc(1:4*nn**2) 
double precision arg(1:4*NMAX**2),c(O:m,1:10) 
double prec~s~on c2(0:4*NMAX**2,1:10) 
integer i1(1:4*NMAX**2), k3, k, tot 

x5=x4**2 
u=O. OdO 
v=O. OdO 

do 1 k= 1,tot 
c Find the distances from (xi,yi) to all vortices 

r2=(xi-x(k))**2+(yi-y(k))**2 
arg(k)=r2/x5 
i1(k)=nint(sqrt(r2/x5)) 
arg(k)=arg(k)-dble(i1(k)**2) 

1 continue 
do 110 k=1, tot 

k3 = i1(k) 
c Rename the polynomial coefficients 

c2(k,10)=c(k3,10) 
c2(k,9)=-c(k3,9) 
c2(k,8)-c(k3,8) 
c2(k,7)::ac(k3,7) 
c2(k,6)-c(k3,6) 
c2(k,S)•c(k3,5) 
c2(k,4)=-c(k3,4) 
c2(k,3)-c(k3,3) 
c2(k,2)=c(k3,2) 
c2(k,1)-c(k3,1) 

110 continue 
do 4 k-1,tot 

c Horner's rule: 
x3=c2(k,10) 
x3=c2(k,9)+x3*arg(k) 
x3-c2(k,8)+x3*arg(k) 
x3=c2(k,7)+x3*arg(k) 
x3=c2(k,6)+x3*arg(k) 
x3=c2(k,5)+x3*arg(k) 
x3=c2(k,4)+x3*arg(k) 
x3=c2(k,3)+x3*arg(k) 
x3=c2(k,2)+x3*arg(k) 
x3=c2(k,1)+x3*arg(k) 

term1=-x3*cc(k)/x5 
term2=term1*(xi-x(k)) 
term1=term1*(y(k)-yi) 
u=u+term1 
v=v+term2 

4 continue 
return 
end 

• 
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