
Lawrence Berkeley National Laboratory
Recent Work

Title
HIGHER ORDER VORTEX METHODS WITH REZONING

Permalink
https://escholarship.org/uc/item/2n15t1bc

Author
Nordmark, H.O.

Publication Date
1988-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n15t1bc
https://escholarship.org
http://www.cdlib.org/

• •

LBL-25259 c. d.._

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

Higher Order Vortex Methods with Rezoning

H.O. Nordmark
(Ph.D. Thesis)

RECEIVt:~
LAWRENCE

f:?:'O'T! :-:v l .t-80RAT0'1Y

JUN 2 2 1988

UBRAKY AND
!"::JCUMENTS SECTIO~!

May 1988

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks .

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

I
OJ
I
I
5V
()1

w
(I Cfl
. --0 y

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-25259

HIGHER ORDER VORTEX METHODS WITH REZONING 1

Henrik Olov Nordmark

Department of Mathematics
and

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720, USA

Ph.D. Thesis

May 1988

1Supported in pa.rt by the Applied Ma.thema.tica.l Sciences Subprogra.m or the Office or Energy Resea.rch, U.S.
Depa.rtment or Energy under contra.ct DE-AC03-76SF00098.

;..·

1

Higher Order Vortex Methods with Rezoning

Henrik Olov Nordmark

Abstract

The vortex method is a numerical method for approximating the flow of an incompressible, invis­

cid fluid. We consider the two-dimensional case. The accuracy depends on the choice of the cutoff func­

tion which approximates the delta function, on the cutoff parameter a and on the smoothness of the initial

data. We derive a class of infinite-order cutoff functions with arbitrarily high rates of decay at infinity.

We also derive an eighth order cutoff function with compact support. We test two versions of rezoning.

Version 1 has been suggested and tested by Beale and Majda, while version 2 is new. Using rezoning,

we test the eighth order cutoff function and one infinite-order cutoff function on three test problems for

which the solution of Euler's equation is known analytically. The accuracies of the two methods are com­

parable. We also compute the evolution of two circular vorticity patches and the evolution of one square

vorticity patch over long time intervals. Finally, we make a comparison between the direct method of

velocity evaluation and the Rokhlin-Greengard algorithm. The numerical experiments indicate that for

smooth flows, high-order cutoffs combined with rezoning give high accuracy for long time integrations.

,, ..

Acknowledgements

The author wishes to thank Ole Hald for suggesting the topic for this thesis, for interesting discus­

sions and helpful ideas, and for his patience throughout the period of research and writing of this thesis.

Many thanks to James Sethian for having served on my committee and for reading and commenting on my

thesis under great pressure of time. Many thanks also to Stanley Berger for serving on my committee and

for reading my thesis with short notice.

A special word of thanks goes to my wife Teresa Dfaz-Gonzatez de Nordmark for her great moral

support, help and patience throughout my years at Berkeley. I also thank Paul Concus, Scott Baden and

Gerry Puckett for their advice on computer related matters.

The calculations presented in this thesis were carried out at the Lawrence Berkeley Laboratory.

1

Introduction

The vortex method is a numerical method for approximating the flow of an incompressible fluid

without viscosity. Thus we assume that the flow is governed by the Euler equation rather than the full

Navier-Stokes equation. The idea is to approximate a vorticity distribution by a finite set of "vortex

blobs" which are multiples and translates of a certain function known as the cutoff function. The cutoff

function is scaled by a parameter a and approximates the delta function as a approaches 0. The vortex

blobs induce a velocity field, which in tum moves the vortex blobs. The evolution of the vortex blobs is

computed by solving a system of ordinary differential equations by standard numerical methods. In this

form, the vortex method was introduced by Chorin [10] in 1973, but its predecessor, the point vortex

method, was introduced about 40 years earlier by Rosenhead [24] for calculating the behavior of vortex

sheets. The point vortex method gives unreliable results however, see e.g. Beale and Majda [8]. There

have been many applications of vortex methods, including the simulation of turbulent combustion in open

and closed vessels, Sethian [25], the computation of unstable boundary layers, Chorin [11], aerodynamic

computations, Cheer [9], Spalart [27], Leonard and Spalart [20], and flow of variable density, Anderson

[2].

The vortex method can be extended to simulate viscous flow by letting each vortex take a. step of a

specified length in a random direction after each timestep. Recently, Sethian and Ghoniem [26] tested this

procedure on viscous flow through a channel over a backwards-facing step. A variety of different Rey­

nolds numbers were used, corresponding to flows ranging from laminar flow to completely turbulent flow

and including the transition region between laminar and turbulent flow. Sethian and Ghoniem [26] tested

many different combinations of numerical parameters and found that for laminar flow. the only parameter

that significantly affected the numerical solution was the number of vortices. For non-laminar flow, they

found that the size of the timestep was also critical. A larger number of vortices requires a smaller

timestep. In both cases, the numerical results demonstrated the convergence of the method as the number

of vortices goes to infinity. However, in sharp contrast to the inviscid case, the size of the cutoff parame­

ter a turned out to be of secondary importance. To avoid confusion we point out that for the remainder of

this thesis, we consider the vortex method for in viscid flow.

l

In the late nineteen-seventies, del Prete and Hald [17] gave a convergence proof for the 2-D vortex

method, for a short time interval, but under the mild assumption that the initial vorticity distribution is

Holder continuous. By requiring more smoothness of the vorticity, i.e. three continuous derivatives, Hald

[15] subsequently proved convergence for arbitrarily long time intervals. Beale and Majda [6,7] gave

convergence proofs for the three dimensional case as well as the two dimensional case. Cottet [14] pro-

vided a simpler proof of Beale and Majda's convergence theorem, which was simplified further by

Anderson and Greengard [3]. Anderson and Greengard [3] also established the convergence of the time

discretization for a large class of multistep methods and for second order Runge-Kutta methods. Hald

[16] then proved fourth order convergence of the time discretization for the classical fourth order

Runge-Kutta method, provided the flow is smooth enough.

The accuracy of the vortex method depends on how the delta function is approximated, which in

turn depends both on the choice of cutoff function and on the choice of the parameter a. Beale and

Majda [8] introduced a family of smooth cutoff functions, with unbounded support, but decaying very

rapidly at infinity. From this family, we can pick an n -th order cutoff function, where n is any desired

'
positive integer, and by Beale and Majda's [7] convergence theorem, obtain a vortex method of order

very close to n , if the flow is infinitely differentiable and if we pick a close to h , where h is the original

distance between adjacent vortices. However, numerical experiments by Perlman [22] have shown that

for reasonable values of h. this is only true for short time intervals. In practice, we have to take a propor­

tional to hq, with q less than 1 by a fair amount, and get a method of order nq if the flow is sufficiently

smooth. Hald [16] presented several infinite-order cutoff functions. The rates of convergence for these

cutoffs are only limited by the degree of smoothness of the flow. In this thesis, we test the practical accu-

racy of one of these cutoff functions for flows of different degrees of smoothness. Following Hald's

recipe [16, p.567], we derive a large class of explicit infinite-order cutoff functions and velocity kernels

with higher rates of decay at infinity. Our numerical results show that we do get orders of accuracy

slightly exceeding the ones predicted by Hald's theory, but only for short time integrations. The

deterioration in accuracy at later times observed by Perlman [22] is even more pronounced for infinite-

order cutoff functions. A natural way to overcome this difficulty, is to use the rezoning technique. It was

suggested and tested by Beale and Majda [8]. In this thesis, we present two versions of rezoning. The first

...

3

version is that of Beale and Majda [8], but with the added feature of a "built-in" criterion for detennining

at which times we introduce a new grid. The second version also has this feature. It is more accurate

because it uses more vortices, but it costs more. A different method of improving the accuracy for large

time integrations was recently introduced by Beale [5]. We made a small number of numerical tests on

this method and found that it is significantly more accurate than the standard method but not as accurate

as the method of rezoning. We do not present these tests here because we feel they are not sufficiently

complete.

It follows from Hald's theory [16], that we should take a proportional to fh when using infinite

order methods. However, it is not clear what the optimal proportionality constant is. That depends on a

number of factors. First of all, in vortex methods without rezoning we always need to use a larger pro­

portionality constant, for large integration times. Secondly, the choice depends somewhat on the fonn of

the initial vorticity distribution. Perlman [22] observed that the choice of a is essentially independent of

the smoothness of the flow. The numerical results in this thesis show that although this seems to be true

for radially symmetric vorticity distributions, it is not necessarily the case in general. Finally, the choice

of proportionality constant depends strongly on the cutoff function and especially on the value of the cut­

off function at the origin. For example, for the eighth order cutoff function derived in this thesis, we have

to take a proportionality constant that is about 5.5· times larger than for Hald's infinite order cutoff func­

tion. This is due to the fact that the value of the first cutoff at the origin is about 30 times larger than for

the second cutoff. A partial list of numerical experiments that teSt the accuracy of vortex methods

includes del Prete and Hald [17], Beale and Majda [8], Beale [5], Perlman [22] and Nakamura, Leonard

and Spalart [21].

Besides the accuracy of vortex methods, the computational speed is also important The standard

direct method of computation requires 0 (N2) flops, where N is the number of vortices. Anderson [1] has

introduced a faster method, known as the method of local corrections. It requires 0 (NlogN) flops pro­

vided o is proportional to h. and uses a "fast Poisson solver" and interpolations. The practical speed of

this method on a Cray computer has recently been tested by Baden [4]. This method may however intro­

duce a significant amount of additional errors when the order of the cutoff function is high enough and

the flow is sufficiently smooth. Another fast algorithm known as the method of multipole expansions, has

4

recently been introduced by Rokhlin and Greengard [23]. This method requires 0 (N) flops for 5 propor­

tional to h , and when it is applicable, it is essentially as accurate as the direct method. Both of these fast

methods are only strictly applicable when using cutoff functions with compact support. For this reason,

we derive an eighth order cutoff function with compact support in this thesis. We test the Rokhlin­

Greengard algorithm [23] using this cutoff function.

This thesis is divided into 6 chapters. In chapter 1 we present the derivation of the vortex method in

two dimensions. In chapter 2 we derive a large class of infinite-order cutoff functions, present Hald's [16]

convergence theorem for infinite-order methods, and give 3 examples of infinite-order cutoff functions

from the large class. Chapter 3 deals with the economical numerical evaluation of infinite-order cutoff

functions and velocity kernels. In chapter 4 we derive an eighth order cutoff function with compact sup­

port and compare it with Hald's infinite-order cutoff. In chapter 5, two versions of the method of rezon­

ing are described, and finally, in chapter 6 we present our test problems and numerical results.

"·

5

1. The Basic Equations

The vorticity-stream function form of Euler's equations in two dimensions is

ro, + (u ·V)ro = 0,

l1"' = -c.o,

U = 'l'y, V = -'ljfz,

(1.1)

(1.2)

(1.3)

where u = (u ,v) is the velocity vector, x = (x ,y) is the position vector, ro is the vorticity, and 'I' is the

stream function.

The solution of the Poisson equation (1.2) is given by

'ljl(x) = J G (x-x') ro(x', t) dx'.
0(1)

(1.4)

where G (x) =- (21tt1 lnl x I , with I x I 2 = x2 + y2 is the fundamental solution of the 2-D Laplace equa­

tion, see [19, p.75], dx' = dx'dy', and O(t) denotes the support of ro in R 2 at timet. Using (1.3) and

differentiating under the integral sign in (1.4) we get the velocity as

where

u(x, t) = J K(x-x') ro(x', t) dx',
C(t)

1 [-y l
K (x) = 21tl x I 2 x ·

(1.5)

In the Lagrangian description of the flow, we follow the motion of fluid particles. Let a= (a1oa:z)

be the Lagrangian coordinates of a particle starting at x =a at time t=O. Then the path of that particle is

determined by

dx(a t)
dt' = u(x(a, t), t), x(a,O) =a. (1.6)

Equation (1.1) implies that the vorticity is preserved along particle paths, i.e. ro(x(a, t), t) = ro(a,O) for

all t, see Chorin and Marsden [12, p.34]. Since the flow is incompressible, the Jacobian of the change of

variables from X to (l is 1, SO We can rewrite (1.5) as

u(x(a, t), t) = J K(x(a, t)-x(~. t)) ro(~.O) d~.
0(0)

(1.7)

6

To discretize the system (1.6), (1.7) we cover the a plane by a square grid, with mesh length h .The

coordinates of the grid points are then jh = U 1, j i)h. Let J be the set of all double indices j = U 1, j i)

such that jh e 0(0) , let "J(t) be the position of a particle starting at the point jh at time t =0, and let uJ(t)

be the velocity at xJ(t) at time t.

One way to discretize the system (1.6), (1.7) is to replace the continuous indices a and~ by the integer

indices i and j, and to replace the integral by a sum. This gives us the following system of ordinary dif-

ferential equations

{1.8)

where

UJ(t) = L K(i.{l)- Xj(t))Cj.
JeJ,J,..

(1.9)

Here the "vorticity coefficients" c J can be defined either by

or by

where S J denotes a square of length and width h centered at jh. If we use the latter definition, the

definition of J has to be changed. Cottet [14] has shown that the latter definition of cJ leads to an addi­

tional error of order 0 (h 2). This has also been demonstrated numerically by Perlman [22]. Therefore we

will always let c J = ro(jh)h2•

The numerical solution of (1.8), (1.9) is known as the point vortex method, and was introduced in

1932 by Rosenhead [24] for the study of vortex sheets. It turns out that this method gives unreliable

results, especially for calculating velocities off vortex paths. See for example Beale and Majda [8]. The

reason for this is that K (x)--+oo as x--+0. Chorin [10] avoided this problem by replacing the kernel K by a

kernel K 11 which is bounded at x=O. K 11 is the convolution of K and a smooth cutoff function '1'5• i.e.

Here '1'5 is defined by 'P5(x) = o-2'P{x!O) where 'I' is a smooth radially symmetric function satisfying

•.

•

'•

7

j.'P(x)dx = 1

Hence, '¥3 approximates the Dirac delta function as 8--M>. Now the system (1.8), (1.9) is replaced by

where

ii1{t)= I: Ka(i1(t)-iJ(t))cJ.
jeJ.J,..

{1.10)

(1.11)

The numerical solution of this new system is known as the vortex blob method, or just vortex method. By

imposing additional conditions on the cutoff function 'J.1 one can obtain high rates of convergence for this

method. In this paper we derive a class of infinite order cutoff functions and an eighth order cutoff func-

lion with compact support.

8

2. Derivation or a Large Class or Infinite Order Cutoff Functions

Following Beale, Majda [6] and Hald [16], we define a general infinite order cutoff function'¥ via

its Fourier transform 'i'. Here

'P(x) = J eix·k 'i'(k) dk

'i'(k) = _1_Je-ix·k 'P(x) dx
(21t)2

(2.1)

(2.2)

where x·k=x 1k 1+x2k2, dx=dx 1dx2 and dk=dk 1dk 2• We assume that 'i' satisfies the following assump-

tion,

(i) 'i'(t) = (21tr2 for ~ts1

(ii) 'i'(t) = 0 for t~.

(iii) 'i' is real-valued and continuous for all t, continuously differentiable for }g~ and 'i'' is

piecewise differentiable in the same interval.

Hald [16] has shown that the previous assumption implies the following conditions:

(i) I w<">(r)l s Lcl'-<"+1> , O<rSl, n=0,1

(ii) I 'l'<">(r)l SLcf'-z.s, 1<r<oo, n=O,l

r

(iii) I 21t J s 'P(s) ds -11 S Lcf'-1.5 O<r<oo.
0

Now, in order to simplify (2.1), we switch to polar coordinates. Let (ktJcz) = t(cosq>,sinq>),

(x 1,xz) = r(cosa,sina). Then dk 1dk~tdtdq>, and since 'i'(t) = 0 for t~, we get

.. :zn
'P(r .a)= I I ei(rrcos(9)cos(.)+rr•in(9)sin(.)) 'i'(t)t dq> dt

2n

= J 'fl(t)t (J ei(rrcos(t-e>> d q>) dt
0 0

b 2lt

= J 'i'(t)t (J e; (rrcos(t-6)) d q,) dt
0 0

The last integral is independent of a because cos(~a) is periodic with period 21t, so let a= ~. Then by

using the integral representation of Bessel functions we get

...

Combining our results yields

9

211: 211:

J e;<,.tcos(!HI)) dcjl = J eirfsin(" dcjl = 21tl o(rt).
0 0

b

'P(r) = 21t J J 0(rt)t 'i'(t) dt.
0

(2.3)

The trick is to pick 'i'(t) , so that (2.3) can be evaluated explicitly. Here we need some properties of

Bessel functions. The most fundamental one is

d(z-J,.(z)) __ _ ,.
1

()
dz - z 11+1 z (2.4)

Replacing n by -n in (2.4), and using that J _ (z) = (-1)" J,. (z) we get

d(z" J,.(z))
dz =z"J,._1(z). (2.5)

It follows from (2.5) and the chain rule that

(2.6)

We will use this result to integrate by parts in (2.3). First we need a change of variables.

,.,. ,.,.
'P(r) = ~ I J o(..fi)'i'(..fi lr)ds = r12 I J 0(..fi)g (s)ds, (2.7)

where g (s) = 1t'i'(..fi lr).

Let g be a spline of order n+l. We can then integrate by parts in (2.7) repeatedly, and the final result

will decay rapidly at infinity. More precisely, g should satisfy

(i) g(s) is n times continuously differentiable for O<s <oo,

(ii) The (n+l)-st derivative of g is piecewise constant,

(iii) g<"l(s)l • = g<"l(s)l .. = 0 fork= 1, ... ,n
s=r s=b r

Since g:(41t)-1 for 0<s<r2, we find after integrating by parts in (2.7)

10

Note that the boundary tenns vanish because of conditions (i)-(iii) above. The integral can be evaluated

explicitly, since g (II+ I) is piecewise constant To define g more precisely, we let b > l and pick n distinct

points x 1, ••• ,X11 in the open interval (r2, b2r2). Then

1
g(s)=-

41t

g (s) = 0 for s>b2r2

where C 0, ••• , C11 are constants which we have to detennine. We note that except for the point s=b 2r 2,

g has n continuous derivatives regardless of the values of the constants C0, ••• , C,.. At s=b 2r 2 we must

however satisfy the following n + 1 conditions:

Co(b 2-1)"+ · · · +C,.(b 2-x,.lr~" =0

C0(b
2-1)"+1 + · · · + C (b 2-x lr'J:.."+1 = ..=.!..

" " J 41t

For clarity, we set .1o=b2-1, ~=b2-xitr2 for i=l, ... ,n. Then, we can write the above continuity con-

ditions in matrix fonn as follows:

6o dt d,. Co 0
66 df d2

"

= (2.9)

tJ.&+l dr+l ... d:+l c,. -1
41t

11

This is a Vandermonde system, except for scaling of the columns. The matrix is non-singular, since the

.1's are distinct The solution of the system is the last column of the inverse divided by -41t . In order to

find this solution explicitly we need the following two lemmas.

LEMMA 1 lfB isthematrixdefinedbyB;i =.1{:1 for iJ = 1,2, ... ,n+1 ,then

II

• B (;1+1)(k+1) = TI {.1t-~ r 1 fork = 0,1, ... , n.
i=O,i,ok

Proof Consider the system Bii = et+1 , where ii = (a 0, ••• ,a,.f and et+1 is the (k+1)-th column of

the (n + 1)x(n + 1) identity matrix. This is equivalent to

p(.1t)=1 and p{.1;)=0fori=O, ... ,k-1,k+1, ... ,n where p(x)=a0 +a 1x + · · · +a,.x". By using

II

Lagrange's interpolation formula we find p(x) = TI (x-.1;)/(.1t-.1;). Equating the coefficients of x"
i=O,j,ok

II

in these two expressions we get a,. = TI {.1t-~ r 1. But a,. = B (;~1)(t+1)·
i=O,i,ok

This completes the proof of lemma 1.

LEMMA 2 The solution of equation (2 .9) is

Proof Let b = (B (;~ 1 > 1 , ... ,B (;~1 ><11+1))T where B is defined as in lemma 1. Since B T B-T =I and b

is the last column of B -T we have B T b = e,.+h or componentwise

Hence,

which can be written in matrix form as (2.9) with

for i=O, ... ,n-1

for i=n

for i=O, ... ,n-1

for i=n

12

This completes the proof.

We have now found the function g. To evaluate 'l'(r) explicitly, we set x 0 = r 2, x,.+1 = blr-2 and

rewrite (2.8) in the following form

Here,

g<"+l>(s) =

(n+l)!C0

r211+2

(n+l)! ~C-
211+2 ,{..., ' r i=O

(n+l)! ,:.C-
211+2 ,{..., ' r i=O

Using these known values of g <"+1>(s) and equation (2.6) we get

Then,

= 2(n:+~! [Nx,.+1)11+2J,.+2Nx,.+l>i:.c"- i:,c;(-rx;)"+2J,.+2c1X)
r t=O i=O J

And finally,

(2.10)
,.

13

(2.11)

In order to get a convenient cutoff function, we choose Xi =klr2 for i=1, ... ,n where k 1, ••• ,k11 are

positive integers. Set k 0 = 1 and k11+1 = b. Then,

(2.12)

T r

Ks(x,y)= (-y~) fs'I's(s)ds
r o

T rl8

= (-y~) f u'l'(u)du.
r o

(2.13)

Fortunately (2.13) can be evaluated explicitly when 'I' has the form (2.11). The only sticky part is to

rl8

evaluate integrals of the form f u-<"+1>J,.+2(k; u) du. Using (2.4) and the chain rule we get
0

d(u-<"+l)J,.+1(k;u)) -k;J,.+2(k;u)
= du

(2.14)

Letting r tend to infinity in condition (iii) we see that f u 'l'(u) du = (21t)-1
• We can therefore write

0

rl8

f u 'l'(u) du = (21t)-1 - f u 'l'(u) du. Thus it follows from (2.14) that
0 rl8

f- -{n+1) 1 [. J,.+t(k;t) J,.+1(k;r/5)] ln+1(k;rl5)
u '1n+ik; u) du = --k- lun M 1 - (1~,.+1 = -k-(-1~-)"_+_1 •

rffl I I-- / r VJ i r U

since the limit as t goes to infinity is 0. Combining (2.13) and (2.11) we now get after some calculations

To simplify the notation let

14

for i=O, ... ,n

and

n n 1
'Yn+l = 21t(-2)n+~n+1)!bn+ll:Ct = (-2b)n+l(n+1)!1:----n----

k=O i=O <bz-~c;'J rr <k/- kl>
j=OJ""

We can then rewrite (2.15) in a more compact form:

(2.16)

We will now present Hald's convergence theorem for infinite order cutoffs. First, we need to intro-

duce the norms and seminorms

1ft

II roll c-~co> = l:Dv max II ()Yroll +D"'+A.maxHA.(d1ro)
v=0 lrl=v lrl=m

m+l
I xI c-· co> = l:Dv max II ()Yxll +D"'+l+A. max HA.(()Yx)

v=0 I rl =v I rl =m+t

Here ar = a;"aira and H A. if)= sup I f (x)- f (y) I II X- y I A..
'll."f

THEOREM (Hald [16]). Let D be larger than the diameter of the support ofro and assume that

1
II roll c• ... (D)$.C and I a,vx(t) I c-··-co>S2C for 0<1..<1, V=O,l. ...• m+1, m~ and O$.t$.T. Let our

assumptions on 'it hold and set li= constant·hq with q=~(m+A)/(m+A.-1) and CJ = c.o(jh)h 2• Solve the

differential equation (1.10).(1.11) by the classical Runge-Kutta method with ~t $.h<1-+11'4 ;pO. Let 1$.p <oo.

Then there exist two constants C 0 and h0 such that

II x(t) - x(t) II p s c o(h <m+A.)/2 + <~t)4
)

for all h $.h 0 and t $.T.

We shall conclude this chapter by presenting three examples of cutoff functions out of the general class

given by (2.12) and (2.16).

15

Example 1 Let n=1, k 1=2 and b=4. Then

~15, L1t=12,

4·2 8 16·2 32 [1 1] 32
Yo=- (16-1)(4-1) =-45· Yt=- (16-4)(1-4) = 36' Y2 = 64·2 45-36 =- 45'

-1 -1 -1 1
C0 = =--andC1= =--

41tL\o(.6o-L1t) 1801t 41tdt(L1t-L1o> 1447t.

Plugging in these constants into (2.12) and (2.16) we get

and

This cutoff function was introduced by Hald [16], and has been tried out on all the test problems in this

paper. The optimal value of o for this cutoff function seems to vary somewhat with the initial vorticity

distribution, but typically it lies between 0.3-fh and 0.4-!h. However, in a case with long time integra-

tions we needed to take a larger value of o to retain the high rate of convergence.

Example 2 Let n =2, k 1=2, k z=3 and b =4. Then

~15, L1t=12, .!1z=7,

(-8)·3! 48 (-64)·3! 384
Yo=- 15·3·8 = 360' 'Yt =- 12·(-3)·5 =- 180'

(-216)· 3! 1296 I [1 1 1] 256
12 =- 7·(-8)'(-5) = 280 • 'YJ = (-512)"3· 360 - 180 + 280 =- 105.

-1 1 -1 1
c 0 = 41tL\o(L1o-L1t)(.6o-L1~ =- 14401t • c 1 = 41tdl (L1t-L1o>(L11-L1~ = 7201t •

-1 1
C2= ----

41td2(.!12-L1o)(L1rL1t) - 11201t ·

Plugging in these constants into (2.12) and (2.16) we get

'l'(r) =
1

4
[51214(4r)- 729/ 4(3r) + 224/ 4(2r) -7/ 4(r)l

105nr ~
and

16

K a(x ,y) = (-y .X ([1 - 2
3 [128./ 3(4r 15)- 2431 3(3r /8) + 11213(2r /8) -11 3(r /8)1]

27tr 105(r /8) ~

Exam.ple3 Letn=3, k1=2, kz=3, kr4 and b=5. Then

£\o=24, .1t=21, .1z=16, .13=9,

16·4! 42 256·4! 1536
Yo=- 24·15·8·3 =- 945' Yt =- 21-12·5·(-3) = 945 '

1296·4! 6561 4096·4! 8192
·f2=- 16·7·(-5)·(-8) =-- 945 'y3=- 9·(-7)·(-12)-(-15) = 945'

[
1 1 1 1] 3125

y4 = 10000·4! 8640 - 3780 + 4480 - 11340 =- 945 '

-1 1 -1 1
Co= =- ,Ct= =-~-

41t6.o(.1o-.11)(L1o-.1~(.1o-.13) 3456071: 4na1(.11-~{.11-.1~(.11-.13) 151201t •

Again, plugging in these constants into (2.12) and (2.16) we get

'¥(r) =
1

s [156251 s(5r) - 32768./ s(4r) + 196831 s(3r) - 30721 s(2r) + 421 s(r)l
18901tr ~

A limited number of numerical tests, were carried out using this cutoff function, and the results

indicated the same rate of convergence as that obtained with Hald's infinite order cutoff function.

Figures (2.1)-(2.3) show the graphs of the cutoff functions in these three examples.

17

·Example 1

1.0

0.8

0.6

'P(r) 0.4

0.2

0.0

..0.2

0 2 4 6 8 10
r

Fig. 2.1. 'l'(r) = ~ [16.! 3(4r)- IOJ 3(2r) + h(r)l
45w ~

18

Example2

1.0

0.8

0.6

\f'(r) 0.4

0.2

0.0

-o.2
0 2 4 6 8 10

r

Fig. 2.2. 'l'(r) = 1
4 [51214(4r)- 729J 4(3r) + 224J 4(2r)- 1J 4(r)l

1051tT J
'i

19

Example3

1.0

0.8

0.6

\}l(r) 0.4

0.2

0.0

-o.2
0 2 4 6 8 10

r

Fig. 2.3. 'P(r) = 1
5 [156251 5(5r)- 32768.1 5(4r) + 19683.! 5(3r)- 307215(2r) + 4215(r)l

18907tr)

20·

3. Numerical Evaluation of Infinite Order Cutoff Functions.

Since the cutoff functions derived in the previous chapter contain several tenns involving Bessel

functions, it is computationally expensive to evaluate these tenns "individually", using subroutines for

Bessel functions. Instead, we approximate the whole cutoff function by local polynomials. These poly­

nomials can be computed at the beginning of the program using for example the IMSL subroutine

"IRATCU" [18]. The computational labor involved in finding the appropriate polynomials is usually

negligible compared to the overall computations in a typical vortex computation, even when the integra­

tion time is short. Nevertheless, if many runs are to be made, it is better to store the coefficents of the

polynomials in a data file. In the numerical experiments of this paper we used polynomials of degree ::;; 9

to evaluate K 5(x ,y) with a maximum error of 10-10 and polynomials of degree::;; 12 to evaluate '¥(r) with

a maximum error of 10-12• The details of the procedure are as follows.

SI'EP 1 The infinite-order K ,;s derived in the previous chapter have the general fonn

K 5(x ,y) = (-y ,x)r F (r2152)tfl.

Estimate the maximum value M of r 15 that is likely to be encountered during the course of computa­

tions. In the numerical experiments presented in this paper we have used M=120.

SI'EP 2 For each positive integer j ::;;M find the best polynomial approximation Pi (r2to2 - j 2) of the

function F(r 2to2) in the interval j-Q.5 s r/5 Sj+0.5.

SI'EP 3 Every time K 5(x ,y) has to be evaluated, we fust compute r 2!52• We then compute the

square-root of this value, rounded to the nearest integer k. Finally, we evaluate

K 5(x,y)::: (-y .xl P~~:.(r2to2 - k2)to2• If k>M, we can use a short asymptotic expansion to approximate F

rather than a polynomial, and when k=O, i.e. r 2t()l<.0.25 we use a truncated MacLaurin expansion ofF.

In lhe same manner, we find the collection of polynomials Qi (r) to approximate '¥(r). Then '¥5(r)

is approximated by Q~~:. (r 2!52 - k2)to2 where k is the integer closest tor !5.

·~

,.

'0

21

The error bounds in the polynomial approximations are provided by the subroutine "IRATCU". In

this case it turns out that if we use polynomials of constant degree, the error gets smaller as r /8 gets

larger, and conversely, if we specify an error bound of say 10-10, we may use polynomials of lower

degree for larger arguments. Finally we should point out that if we make the intervals shorter we may be

able to use polynomials of lower degree, but it has been our experience that in order to reduce the degree

of the polynomials significantly, say by a factor of two, without increasing the error we must make the

intervals much shorter which does not seem practical.

To give some indication of typical cases, we will list the coefficients of the polynomials which

approximate F and 'I' in three different intervals in the case when 'I' is Hald's infinite order cutoff, i.e.

example 1 of the previous chapter. We should point out that Po and Q 0 are the truncated MacLaurin

series of 'I' and F, not the best polynomial approximations of these functions for r 18 s 0.5. However,

for k ~ 1, P" and Q" are the best polynomial approximations of 'I' and F.

For r 18 S 0.5 we use

9 11

P o(x) = 1: c (O,.t+1) x", Qo(x)= 1:d<o.t+1)x.t,
/(.=() /(.::()

c (0,1) = 0.278521150410817 d(O,l) = 0.557042300821634

c (0,2) = -o.I47964361155746 d(O,l) = -o.591857444622986

c (0,3) = 0.400443231381822 ·10""'1
d(0,3) = 0.240265938829093

c (0,4) = -o.669859081907091 ·10""2
d(0,4) = -o.535887265525673 ·10""'1

C(0,5) = 0.766254806513328 ·10""3
d(O,$) = 0.766254806513328 ·10""'2

c (0,6) = -o.638691859290432 ·1Q"""4 d(0,6) =-Q.766430231148519 ·10""'3

c (0,7) = 0.405541846198420 ·10-s d(0,1) = 0.567758584677788 ·10-4

C(O,S) = -o.202773823804794 ·1~ dco.s> = -o.324438118087670 ·10-s

c (0.9) = 0.819291107003087 ·lo-B dco.9> = 0.147472399260556 ·10-6

cco,10) = -o.273097279835706 ·I<J9 d(O,lO) = -o.546194559671411 ·10-8

d(O,ll) = 0.168059902078596 ·10-9

dco.12) = -Q.436519250570586 ·10-11

For 49.5 ~ r /8 ~ 50.5 we use

4

P5o(x) = 1:cc5o,l+1)x1
,

k::()

C(50,1) = 0.636614909788761 ·l<J'

c (50,2) = -o.254567912072669 ·10-7

C(50,3) = 0.104739981041642 ·10-10

C(50,4) =-Q.l03221399644189 ·10-13

c (50,5) = -o.l81116361842747 ·10-16

For 99.5 ~ r /8 S 100.5 we use

2

PtOo(x) = 1:c(100.k+1)x1
,

j;::()

c0 oo.1> = 0.159154820701304 ·l<J'

C(100,2) = -Q.l59211079192825 ·lo-a

C(100,3) = 0.163998371754908 ·10-12

22

9

Q5o(x) = 1:dc50.k+1)x1
,

k::()

dc5o,1) = 0.460700238644189 ·10-7

d(50,2) = 0.294187407199615 ·10-8

dc50.3> = -o.l27067586043915 ·1~

dc5o,4> = -o.503513664434355 ·10-12

dc5o.S> = 0.204816631431159 ·10-13

d(50,6) = 0.229931884309735 ·10-16

dc5o,1) = -o.113942361053185 ·10-17

dc5o,8> = -o.220120185455031 ·10-21

d(50,9) = 0.296391416039998 ·1(122

d(50,10) = -Q.886890490271324 ·10-26

7

Q 100(X) = 1:d(100.k+1)Xk,
k::()

dooo.1) = -o.894075393611259 ·lo-a

d(100,2) = 0.308592662541504 ·1~

d(100,3) = -o.l85399763454803 ·10-12

d(100.4) = -o.226344722920123 ·10-13

duoo.s> = 0.278116058868214 ·10-16

d(100,6)= 0.452272542132804 ·10-18

dc1oo,1)= -o.424452772521097 ·10-21

. 23
d (100.8) = -Q.374858233204224 ·H1

In the appendix we give a fortran program which generates the coefficients of the polynomials

which approximate F and 'Pin every interval up to 119.5 ~ r /8 S 120.5.

·•

4. Derivation of an eighth order cutoff' function with compact support.

Although the infinite order cutoff functions derived in chapter 2 give the best accuracy for smooth

flows, they suffer from the disadvantage of not being compatible with any of the known "fast", i.e. 0 (N),

vortex methods such as the Rokhlin-Greengard algorithm [23] or Anderson's method of local corrections

[1]. The infinite order cutoff functions may still be preferable in such cases where a small enough error

can be achieved with a relatively small number of vortices. This is the case in the test problems presented

at the end of this paper.

For the cases in which a large number of vortices is necessary, but in which the flow is still quite

smooth, e.g. the suppon of the vonicity may be very large, we propose an eighth order cutoff function

which is derived in this chapter. Since it has compact support, it can be implemented in combination with

"fast" vortex methods. We must however bear in mind that the speedup in using a fast algorithm is lim­

ited by the size of the cutoff parameter S , which for high order cutoff functions must be proportional to

..fh in order to maintain high accuracy for long time integmtions. In this case, the amount of computa­

tional labor due to "local" interactions is 0 (N1.s).

We shall look for a cutoff function 'l'(r) , where r=..Jx2+y2 , satisfying the following conditions:

(i) J'l'(r) dxdy = 1
R"

(ii) J x" y"' 'l'(r) dxdy = 0, for 1 ~ +m S 7, where n and m are non-negative integers.

(iii) 'l'(r)=O for r 0!: 1 and 'JA.t>(l)=O for k=1, ... ,8.

Switching to polar coordinates, (ii) becomes: .

211:

= I cos" a sin"' a de I r"-•1'1'(r) dr.

But,

24

~ ~ ~

J cos" 9 sin"' a d9 = J cos" a sin"' a d9 + J cos" a sin"' a d9
0 0 K

~

= (1 + (-1)"+m) J cos" a sin"' a d9
0

= 0, when n +m is odd. "'·

Therefore, condition (ii) reduces to I rk'P(r) dr = 0 for k=3,5 and 7.

for 0~ r ~ 1

for r ~ 1

and solve the following linear system for a ,b ,c and d :

1

1

J r 3(1 - r~9(1 + br2 + cr4 + dr~ dr = 0
0

1 I r 5(1- r 2
)
9(1 + br2 + cr4 + dr~ dr = 0

1

J r7(1-r~9(1 +br2 +cr4 +dr~dr =0
0

J ar(l- r~9(1 + br2 + cr4 + dr~ dr = (27tr1

0

The solution is a = 5217t, b = -21, c = 105 and d = -140.

Hence,

{
-52(1 - r~9(140r6 - 105r4 + 21r2 - 1)/7t

'P(r) = 0

The corresponding K 5 is:

for 0~ r ~ 1
for r ~ 1

<-}:,t [1 + [1- ~] 'l2s6- 1~n[1- ~] + 1365[1- ~:]
2

- 560[1- ~]
3

] J
(-y,xf

2w2

for r S S

for r > S

25

This cutoff function was tried out on test problems 1-3, and the results are compared to those

obtained using Hald's infinite order cutoff function, at the end of this paper. We found that the optimal

value of a for this cutoff function is about 1.7...fh for test problems 1-3.

The Fourier transform of'¥ is given by

A _ -6656·11! [J 1o(t) _ 84111 (t) 2520.1 12(t) _ 26880.1 13(t)]
'¥(t)- il 10 11 + 12 13

t t t t

'i'(t) is bounded for all t and 'i'(t) is of order 0 (r105) as t -+co. Hence 'i' satisfies the following condi-

tion with L=10.5.

(iv) For some L >0, and for any double index a

We shall now present a special case of a convergence theorem for vortex methods due to Beale and

Majda [7], which is applicable to the eighth order cutoff function derived here.

THEOREM (Beale and Majda [7]). Assume that the cutoff function'¥ satisfies '¥e C2(R 2) and

conditions (i),(ii)and(iv)for some 2SL <oo. Choose B=constant·hq. with q <(L-1)1(L+8)./fthe

velocity field u(x,t) is sufficrently smooth for x e R 2 and 0 S t S T and the initial vorticity distribution

has compact support, then for any 1 < J.1 < oo and T>O there exists a constant ho>O such that for all h<ho

Since L=10.5 for our cutoff function, we can take q=0.5 < 9.5/18.5, which would give us fourth

order convergence if the flow is smooth enough. Fig. (4.1) shows the graph of the eighth order cutoff

function '¥. We note that the shape of the graph is similar to the shape of the graph of Hald's infinite

order cutoff function 'ii (Fig. 2.1), but the scaling is entirely different. In particular, '¥(0)=52/1t while

'i'(0)=1.75/1t. Therefore, rather than comparing '¥ and 'i', we compare '¥a and 'i', where

a;=.../52/1.75 and 'Pa(r) = a-2'¥(r/a). Then, 'Pa(O)='ii(O), and interestingly enough we see by plotting

'¥ a(r) and 'ii(r) on the same graph, that '¥ a(r)='ii(r) for any r. See fig. 4.2. It is also interesting to

compare the Fourier transforms of these two cutoff functions. Since 'fla(t)='fl(at), we plot 'fl(at) and

<)

'l'(t) on the same graph. See fig. 4.3. Once again, we get close agreement We conclude that if we use

5=Chq with the eighth order cutoff function 'I', and a'=C'hq with Hald's infinite order cutoff, we should

have C /C'='I/(52/1.75)=5.45. Indeed, in test problems 1-3 we found by experiments that a'=0.3"h was

the best choice for Hald's infinite order cutoff function while the best value of a for the eighth order cut­

off function was about 1.7..Jh. Note that 1.7/0.3=5.67! This analysis suggests that if we have found the

best value of a as a function of h experimentally for a particular cutoff function 'l'~o then we can deter-

mine the best value of a as a function of h for any other cutoff function 'I', provided both cutoff functions

are bounded and positive at 0. Take

30

25

20

15

'P(r)

10

5

0

-5

0.0 0.5

27

8-tb Order Cutoff Function

1.0

r
1.5

for 0 ~r ~ 1
for r ~ 1

2.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-o.1
0

28

Infinite Order Cutoff vs. Scaled 8-th Order Cutoff

2 4 6 8

r

Fig. 4.2. Solid curve='¥ a(r), dotted curve= qi(r), a=~(52/1.75).

q,(r)= ~(16J3(4r)-1QJ3(2r)+l3{r)l
45ttr ~

10

0.030 ..

0.025

0.020

0.015

0.010

0.005

0.0

-o.oo5
0

29

Fourier Transforms ofHald's Infinite Order Cutoff

···

2

and the Scaled 8-th Order Cutoff

·····

4

t

6

Fig. 4.3. Solid curve= 'i'(at), dotted curve= ~(t), a=..J(52/1.75).

(21tt2 for ~~~
~ . (21tt2(44+2t 2-t4)145 for ~~~

'l'(t) =
(21tt2(256-32t2+t4)/180 for ~~

0 for ~~

8

30

5. Rezoning

Numerical experiments with infinite order cutoff functions showed that for smooth flows these cut-

offs give extremely accurate values of velocity and vorticity for short integration times. Unfortunately,

this high accuracy is lost as time increases, so that for long integration times, these cutoffs are not

significantly more accurate than lower order cutoffs. Unfortunately, there has been no satisfactory expla-

nation of this phenomenon. We shall show that one way to overcome this problem is the rezoning stra-

tegy suggested by Beale and Majda [8]. We will present a version of rezoning similar to theirs, which we

call version 1, and a new method, which we call version 2.

First we note that since 'I' 3 approximates the delta function as 8--+0 we have at time t =0 that

ID(z,O) = 1: '1'3(z-x1(0))c J
jeJ

This holds for all z. Here J is the set of all double indices j = U 1, j v such that jh e 0(0), the support of

the initial vorticity distribution. Since vorticity is preserved along particle paths, we also expect that at

later times t

ID(z, t) = 1: '1'5(z-x1(t))c 1
JeJ

In particular, letting z=x1{t) in (5.1), gives

ro(x1{t), t) = :I: 'I' 3(x1(t)-x1(t))c 1
jeJ

Multiplying both sides of (5.2) by h2, and recalling that c1=h2ID(x.(t), t) for any t gives

Therefore we define

and

c1 = h2l:'l'a(x1{t)-xJ(t))cJ
jeJ

c~{t) = h 21:'1'a(x1(t)-x1(t))c1
jeJ

Em(t)= [h2
l:(cf(t)-cil

112

jeJ

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Here E cn(t) stands for "the average vorticity error along vortex paths". With these preliminaries out of the

way, we can now present the first version of rezoning.

•

31

Version 1

STEP 1 First compute E 00(0). Then, as in the standard vortex method, solve the following system of

ordinary differential equations

where

ii1(t) = l:K 8(i1(t)- iJ(t))c J·
JeJ

After each time-step llJ, calculate E 00(t) and E 00(t)/E00(0). Continue to solve (5.6), (5.7) until

(5.6)

(5.7)

where 11 is a parameter we have to specify. In our numerical experiments we have used 11=1.1, 11=1.25, or

Tt=l.5. When E00(t)/E00(0) > T1 we no longer solve (5.6), (5.7) but go on to the next step.

STEP 2 Suppose t=T1 when we quit step 1. Now we set iJ(T1)=iJ(T1) for every jeJ. Then we

introduce a new square grid, occupying a region A cR 2, which is somewhat larger than what is needed

to cover all point vortices at time t=T 1• Let J,. denote the set of double indices j such that jh eA. For

every jeJ,. introduce a new vortex at every grid-pointjh. We use the old vortices one last time to com-

pute a new "initial" vorticity distribution. To be more precise, we let

(c.)_ = h 2l: 'Pa(ih - iJ(T1))(c J)olclt
JeJ

for every ie J,. (5.8)

Now we "throw away" all the old vortices iJ and denote the new vortices as iJ with iJ(T 1) = jh. We then

delete all the new vortices it for which I (c.)_ I < £, where e is a certain tolerance. Let J 1 be the subset

of J,. such that I (c 1)_ I ~ £ for every ie J 1• Now for t ~ T 1 we solve the following larger system of

ordinary differential equations.

32

u(x, t) = l: K a(x - iJ(t))(c J),_,
jeJ.

(5.9)

for every ie J h

(5.10)

Remark: Here the it's denote the original vortices. If we are not interested in the paths of the original

vortices, but the paths of some other particles, we should let the z1' s denote these particles. In that case,

we do not set zJ(T 1) = iJ(T 1) at the begining of step 2.

Now again we compute Em(t) and Em(t)1Em(T1) after every time-step !:JJ, but now using the new vorti-

city coefficients in (5.4) and (5.5). Cootinue solving (5.9), (5.10) until E m(t)IE m(T 1) > 1'1·

STEP 3 Suppose t =T 2 when we quit step 2. Now repeat step 2 but replacing T 1 by T 2 in all the equa-

tions. Also in this step, do not set ZJ(T ~ = iJ(T ~.for jeJ1• Continue this process until we reach t=T max·

Numerical experiments using this technique have indicated a great reduction in velocity errors for

long integration times compared to the corresponding errors without rezoning, but with the same grid-

spacing h. In vortex methods without rezoning, we are forced to pick a considerably larger value of a for

long integration times. With rezoning however, we can usually use values of a close to the optimal value

of a at time t=O. Nevertheless, we have also noted that when we use this form of rezoning, the velocity

error takes a jump every time a new vorticity distribution is computed using (5.8). These jumps are small

compared to the sharp increase in error experienced when no rezoning is applied, but still significant

compared to the marginal increase in velocity error at intermediate times. To reduce this effect, and the

effect of "numerical viscosity" we propose the following scheme.

Version 2

In version 2 we introduce a finer grid than in version 1, for the purpose of calculating the new vor-

ticity distributions on the new grids. The velocity evaluations are however done on the coarser grid. This

method has some similarities with multi-grid methods, but it does not fall into the framework of such

methods. The details of version 2 are as follows.

33

STEP 1 Let Q0 be the set of double indices q=(qlt q2) such that qhe.Q(O), where q 1 and q 2 are

integers or half -integers. For every qeQ 0 introduce a vortex Xq with strength cq=ro(qh)h2• Let J be

the integer-pair subset of Q o- Then solve the following system of ordinary differential equations, for

every qeQo-

where

iq(O) =qh,

iiq(t) = l:K 5(iq(t) - iJ(t))c J·
JeJ

(5.11)

(5.12)

After each time-step 61, calculate E rJ..t) and E m(t)IE rJ..O) using (5.4),(5.5). Note that in calculating

E m(t) and E m(t)IE m(O) we use only the vortices and vorticity coefficients with integer indices. Continue

to solve (5.11), (5.12) until

STEP 2 Suppose t=T 1 when we quit step 1. Set zJ(T 1) = iJ(T 1) for every je J. As in version 1, we

introduce a new square grid, occupying a region A cR 2• Let QA be the set of double indices q=(q lt qv

such that qheA, with q 1 and q 2 assuming both integer and half-integer values. Let JA be the integer-

pair subset of QA . For every qe Q..t intoduce a new vortex at every grid-point qh. Define the new vorti-

city distribution by

(cq)_ sh214l: 'l'&·(qh -ir(T1))(cr)o/d•
reQo

for every qe QA (5.13)

Note that the effective grid-spacing in (5.13) is h /2 rather than h. That is why we have a factor of h214 in

front of the summation sign instead of h2• We must also replace '1'5 by '1'5·, where 5' is the cutoff parame-

ter corresponding to a grid-spacing of h/2. If for any value of h we pick 5=constant·h 9 , then 5'=2-q 5.

The purpose of using (5.13) instead of (5.8) is to make the error in the computed new vorticity distribu-

Lion small compared to the error in the velocity evaluations, thereby reducing "numerical viscosity". As

in version 1, we now "throw away" the old vortices iq and use this notation for the new vortices such that

iq(T 1) = qh. Then let Q 1 be the subset of QA such that I (c J- I ~ e for every qe Q 1, where e is a cer­

tain tolerance. Let J 1 be the integer-pair subset of Q 1. For t ~ T 1 solve the following system of ordinary

34

differential equations.

ii(x, t) = :!: K 11(x- iJ(t))(c J),_,
jeJ,

(5.14)

d- (t)
Xq - -(- t) -U Xq,
dt

iq{TI) = qh, for every qe Q 1,

(5.15)

After every timestep tlJ compute E(J)(t) and Ecr/..t)IE(J)(T1) using the new vorticity coefficients with

integer indices, and continue solving (5.14), (5.15) until E(J)(t)IE(J)(T1) >'fl.

SI'EP 3 Suppose t =T 2 when we quit step 2. Repeat step 2 replacing T 1 by T 2 where applicable. As in

version 1, do not set ZJ{T ~ = iJ{T ~.for jeJ1 at this point Continue in the same manner until t=T max·

35

6. Numerical Results

We present five test problems. In the first three test problems, the solution is known analytically

since the vorticity distribution is radially symmetric: The flow is circular, and the velocity at any point

and at any time is given by

u(x,y)= (u,v) = J.L(r)(-y .xf
,

where J.L(r) = ~ J s ro(s) ds is the angular velocity of the flow.
r o

(6.1)

The other two test problems do not have a known analytical solution. Here we show the numerical

solutions graphically, and the rate of convergence is estimated by using Richardsons's extrapolation. In

the first three test problems, two different cutoff functions are used, namely Hald's infinite order cutoff

and our 8-th order cutoff. Unless specified otherwise, we have used version 2 rezoning. In all cases we

used the classical fourth order Runge-Kutta method for time iittegration.

We now look at the first three test problems in detail In each of these, the vorticity distribution has

the form

{

(1- r~" for rS1

ro(r)=

0 for r>1

(6.2)

where k=3 in test problem #1, k=1 in test problem #2 and k=14 in test problem #3. The case k=3 has

been tested numerically by Beale and Majda [8] and Beale [5], and the case k=1 by Perlman [22].

It can be shown that the Fourier transform of a vorticity distribution of this form is C~tlk+l (t)lt"+1

where C" is a constanL Thus, cO<t) is of order 0 (t-<k+l.S>) as t -+oo, although ro(r) has only k bounded

derivatives. In general, a vorticity distribution ro with compact support and k bounded derivatives only

guarantees that Oi(t) is of order 0 (t-.t) as t-+oo. This means that for test problems #1-3, Hald's estimate,

[16, p. 568], of the moment error for infinite-order cutoffs can be improved to order 0 (5"-HJ5) rather than

The solutions of the Euler equation for mese vorticity distributions are given by (6.1) with

IJ.(r) =

36

1 - (1 - r 2).t+1

2(k+l)r2

1
2(k+1)r2

We measure the velocity error in the discrete L 2 norm.

for rS1

for r>1

The rate of convergence is estimated by using two successive values of h.

ln(E, (h 1)/E, (hz))
rate of convergence= ln(h

1
/hz)

(6.3)

(6.4)

(6.5)

Tables 6.1a and 6.1 b give the velocity errors in test problem #1 at different times up to time t=50, for dif­

ferent values of h, and for the two different cutoff functions. We choose &=constant·..fh so that the

moment error and the discretization error will be of approximately the same order in h . The proportional-

ity constant has been chosen so as to minimize the velocity error at time t=O when h=O.lOO. Comparing

these two tables, we see that the errors are only between 5% and 29% larger when the eighth order cutoff

is used. The rates of convergence for the two cutoffs are also approximately the same for corresponding

times t, as seen in tables (6.4a) and (6.4b). Since we take & proportional to ..fh, we can expect the

moment error to be of order 0 (h 1•75) and the discretization of order 0 (h~. with the infinite-order cutoff

function. We could therefore only expect a rate of convergence of 1.75. However, the observed rate of

convergence is greater than 2. In particular, at time t=O, the computed rate of convergence is 2.3, both

using infinite-order and eighth order cutoff. Since Perlman [22] has shown numerically that at time t=O

the moment error is much larger than the discretization error, this seems to indicate that the moment error

is actually of order 0 (B4
·, rather than the best theoretical estimate of 0 (B3.s). Beale and Majda [8]

observed a rate of convergence of 3.6 at time t=O for this problem, using an eighth order Gaussian cutoff

function, but with a proportional to ho.75, which would correspond to a moment error of order 0 (B4
·8)

which is quite close to what we observed. Beale and Majda [8] also applied rezoning to this problem,

with h=0.125 and a=0.25. In comparing our results with theirs, we have to take into account that they

reported a relative velocity error, obtained by dividing the absolute error by an average velocity U, where

37

For test problem #1. U = 0.1505. so if we divide our values of E" in tables 6.1a and 6.1b by 0.1505. we

obtain relative velocity errors ranging from 0.011% at time t=O to 0.16% at time t=35. using infinite­

order cutoff with h=0.125 and &={).3..fh =0.1061. With the eighth order cutoff. the corresponding relative

errors are 0.012% at time t=O and 0.23% at time t=35. Beale and Majda [8] reported relative errors of

0.055% at time t=O and 0.30% at time t=36.

The results of test problem #2 are summarized in tables 6.2a-c. As in test problem # 1. we pick

&=1.7..fh. for the eighth order cutoff. and &={).3..fh for the infinite order cutoff. Numerical tests have

shown that these values of a are close to the optimal ones at time t=O. with h=0.100. even for this vorti­

city distribution. We also repeated the tests using the infinite-order cutoff but with &={).355..fh. Compar-

ing table 6.2a to table 6.2b we see that the errors using the infinite-order cutoff are smaller than the

corresponding errors for the eighth order cutoff by a factor ranging from about 3 to 6. Nevertheless. the

rate of convergence is around 4 for both methods at all times. Theoretically. the moment error for

infinite-order cutoffs is of order 0 (a75) for this vorticity distribution. so since a is proportional to ..fh we

would expect a rate of convergence of 3. 75 in this case. Hence. the observed rate of convergence is

slightly higher than the theoretical rate as in test problem #1. Now comparing table 6.2a to table 6.2c we

notice that by choosing a larger proportionality factor between a and ..fh we get larger velocity errors at

time t=O as expected since the moment error increases. At later times however. the errors seem to

become almost equal for the two a·s but always with the smaller error for the smaller a. This is very dif-

ferent from what we get in vortex methods without rezoning. where the errors at later times are smaller

for larger values of a. Perlman [22] tested Gaussian cutoff functions of different orders on this vorticity

distribution. but without rezoning. Using an eighth order Gaussian cutoff. she had to take &=h 0·7 to

minimize the velocity error at time t=lO and &=ho.6 to minimize the error at time t=20. With these

parameters and h =0.05. she obtained a minimum error of 7.42 ·10"'5 at time t=10 and 5.77 ·1()"" at time

t=20. Our smallest errors at time t=10 and t=20. with h=0.05 are 3.59 ·10""7 and 7.36 ·10"'7 respectively.

so the rezoning procedure seems to pay off. at least when the flow is this smooth.

38

TABLE 6.la

t h=0.125 h=0.100

0.0 0.1665 ·10-4 0.9000 ·10-s

5.0 0.2962 ·1Q-4

10.0 0.5340 ·1Q-4 0.2562 ·10-4

15.0 0.8373 ·1Q-4

20.0 0.1201 ·10-3 0.5473 ·1Q-4

25.0 0.1590 ·10-3

30.0 0.2011·10-3 0.9110 ·1Q-4

35.0 0.2479 ·10-3

40.0 0.2982 ·10-3 0.1358 ·10-3

45.0 0.3539 ·10-3

50.0 0.4141 ·10-3 0.1880 ·10-3

co(r)=(max(O.l-r~)3

Cutoff function: Halt! s infimte -order

11 = 1.1

a= o.3.fh

flt = 4.0h

T max= 50.0

E,.

h=0.0625

0.3142 ·10-s

0.4347 ·10-s

0.6775 ·10-s

0.1006 ·1Q-4

0.1377 ·1Q-4

0.1810 ·1Q-4

0.2268 ·1Q-4

0.2776 ·1Q-4

0.3321 ·1Q-4

0.3890 ·1 Q-4

0.4559 ·1Q-4

h=0.05

0.1886 ·10-s

0.2552 ·10-s

0.3829 ·10-s

0.5443 ·10-S

0.7372 ·10-s

0.9633 ·10-S

0.1200 ·1Q-4

0.1456 ·1Q-4

0.1727 ·1Q-4

0.2021 ·1Q-4

0.2327 ·1Q-4

..

39

TABLE 6.1b

t h=0.125 h=0.100 h=0.0625

0.0 0.1751·1~ 0.9473 ·10-s 0.3329 ·10-s

5.0 0.3398 ·1~ 0.4969 ·10-s

10.0 0.6t:i2 ·1~ 0.2945 ·1~ 0.7661 ·10-s

15.0 0.9967 ·1~ 0.1103 ·1~

20.0 0.1519 ·10-3 0.6172·1~ 0.1497·1~

25.0 0.2114 ·10'"3 0.1956·1~

30.0 0.2757 ·10-3 0.1062 ·10-3 0.2429·1~

35.0 0.3467 ·10-3 0.2999 ·1~

40.0 0.4207 ·10-3 0.1594 ·10-3 0.3609·1~

45.0 0.4972 ·10-3 0.4284 ·1~

50.0 0.5799 ·10-3 0.2225 ·10-3 0.5000·1~

co(r)=(max(0,1-r~)3

Cutoff function: 8-th order with compact support

Tl = 1.1

5= 1.7..fh

dt =4.0h

T max= 50.0

h=0.05

0.1998 ·10-S

0.2689 ·10-s

0.4233 ·10-s

0.6031 ·10-S

0.8168 ·10-S

0.1060 ·1~

0.1339 ·1~

0.1642·1~

0.1974·1~

0.2311 ·1~

0.2681·1~

40

TABLE 6.2a

E,.

t h=0.125 h=0.100 h=0.0625 h=0.05

0.0 0.3242 ·10-s 0.1293 ·10-s 0.1587 ·10""6 0.6384 ·10-7

5.0 0.9354 ·10""5 0.4465 ·10-6 0.1859 ·1~

10.0 0.1634 ·10-4 0.5244 ·10-s 0.8657·1~ 0.3588 ·10-6

15.0 0.2375 ·1~ 0.1316 ·10-S 0.5432 ·10-6

20.0 0.3291·1~ 0.1108·1~ 0.1791 ·10-s 0.7356 ·10-6

25.0 0.4298 ·1~ 0.2287 ·10-s 0.9409 ·10-6

30.0 0.5286·1~ 0.1815 ·1~ 0.2810 ·10-s 0.1143 ·10-s

35.0 0.6505 ·1~ 0.3347 ·10-s 0.1358 ·10-s

40.0 0.7567·1~ 0.2639 ·1~ 0.3910 ·10""5 0.1580 ·10-S

45.0 0.8856·1~ 0.4494 ·10""5 0.1809 ·10-s

50.0 0.1027 ·10-3 0.3600·1~ 0.5098 ·10-s 0.2046 ·10-s

55.0 0.5724 ·10-s

60.0 0.6373 ·10-s

65.0 0.7045 ·10-s

70.0 0.7742 ·10-s

75.0 0.8460 ·10-s

80.0 0.9203 ·10""5

85.0 0.9967 ·10-s

90.0 0.1076·1~

95.0 0.1157 ·1~

100.0 0.1240·1~

ro(r)=(max(O,l-r'lJ)7

Cutoff function: Hald' s infinite -order

T1 = 1.25
5=0.3Vh
tit= 4.0h

41

TABLE 6.2b

E,.

t h=0.125 h=0.100 h=0.0625 h=0.05

.. 0.0 0.1352 ·1<r4 0.4651 ·10-s 0.8460 ·10-6 0.3576 ·1<J6

5.0 0.3361 ·10-4 0.1989 ·10-5 0.7915 ·10~

10.0 0.6466 ·10-4 0.2441 ·1<r4 0.3822 ·10-5 0.1518 ·10-5

15.0 0.1103 ·10-3 0.6061 ·10-s 0.2336 ·10-5

20.0 0.1521 ·10-3 0.5617 ·1<r4 0.8522 ·10-5 0.3209 ·10-5

25.0 0.2077 ·10-3 0.1117 ·1<r4 0.4182 ·10-5

30.0 0.2642 ·10-3 0.9726·1<r4 0.1414 ·1<r4 0.5246 ·10-5

35.0 0.3282 ·10-3 0.1723 ·1<r4 0.6370 ·10-5

40.0 0.3964 ·10-3 0.1460 ·10-3 0.2057 ·1<r4 0.7588 ·10-s

45.0 0.4676 ·10-3 0.2415 ·1<r4 0.8886 ·10-5

50.0 0.5477 ·10-3 0.2034 ·10-3 0.2794 ·1<r4 0.1023 ·1<r4

55.0 0.3186 ·1<r4

60.0 0.3600·1<r4

65.0 0.4030·1<r4

70.0 0.4481 ·1<r4

75.0 0.4947 ·1<r4

80.0 0.5440·1<r4

85.0 0.5948 ·10-4

90.0 0.6476·1<r4

95.0 0.7012 ·t<r
100.0 0.7578 ·t<r

ro(r)=(max(O,l-r~)7

Cutoff function: 8-th order with compact support

Tl = 1.25
cS = 1.7-.fh
lit= 4.0h

42

TABLE 6.2c

h=0.125 h=0.100 h=0.0625 h=0.05

0.0 0.1740 ·1~ 0.5371 ·10-s 0.7276·1~ 0.2645 ·1~

5.0 0.3007 ·10-4 0.9202 ·1~ 0.3368 ·10-6

10.0 0.5173 ·1~ 0.1276 ·1<r 0.1397 ·10-S 0.4897 ·10-6

15.0 0.7608 ·1<r 0.1820 ·10-S 0.6774 ·1~

20.0 0.9869 ·1<r 0.2411 ·1<r 0.234 7 ·10-s 0.8770 ·10-6

25.0 0.1225 ·10-3 0.2890 ·1 o-s 0.1087 ·10-S

30.0 0.1486 ·10-3 0.3916 ·l<r 0.3456 ·10-s 0.1305 ·10-s

35.0 0.1727 ·10-3 0.4035 ·10-S 0.1532 ·10-5

40.0 0.2002 ·10-3 0.5612 ·l<r 0.4633 ·10-s 0.1763 ·10-5

45.0 0.2290 ·10-3 0.5259 ·10-s 0.2002 ·1 o-5

50.0 0.2565 ·1(}3 0.7570·1~ 0.5899 ·lo-s 0.2248 ·10-5

55.0 0.6553 ·lo-s

60.0 0.7226 ·lo-s

65.0 0.7912 ·1(}5

70.0 0.8620 ·lo-s

75.0 0.9344 ·lo-s

80.0 0.1009 ·l<r

85.0 0.1084·1~

90.0 0.1162 ·l<r

95.0 0.1242 ·l<r

100.0 0.1323 ·1~

ro(r)=(max(O,l-r~)7

Cutoff function: H altl s infinite -order
, = 1.25
a= 0.355..fh
til= 4.0h

"

43

TABLE 6.3a

E~~.

l h=0.125 h=0.100

0.0 0.4859 ·1~ 0.1782 ·10-4

5.0 0.1002 ·10-3

10.0 0.2033 ·10-3 0.8081·1~

15.0 0.3154 ·10-3

20.0 0.4347 ·10-3 0.1502 ·10-3

25.0 0.5720 ·10-3

30.0 0.7052 ·10-3 0.2375 ·10-3

35.0 0.8539 ·10-3

40.0 0.1000 ·10-2 0.3369 ·10-3

45.0 0.1160 ·10-2

50.0 0.1339 ·10-2 0.4475 ·10-3

co(r)=(max(0,1-r~)14

Cutoff function: Haltfs infinite-order

, = 1.1

8= 0.3-lii

Ill = 4.0h

Tmu.=50.0

h=0.0625

0.1304 ·10-s

0.2428 ·10-S

0.4243 ·10-s

0.6225 ·10-s

0.8455 ·10-s

0.1081 ·1~

0.1321·1~

0.1561·1~

0.1804 ·1~

0.2070 ·1~

0.2357·1~

h=0.05

0.2337 ·10-6

0.4164 ·10-6

0.7356 ·10-6

0.1085 -w-s

0.1445 ·10-s

0.1813 ·10-5

0.2184 ·10-S

0.2559 ·10-S

0.2940 ·10-S

0._3325 ·10-s

0.3711 ·10-S

44

TABLE 6.3b

t h=0.125 h=0.100 h=0.0625

0.0 0.5584 ·1o-"' 0.2759 ·10-3 0.5139 ·10""5

5.0 0.1416 ·10-3 0.1146 ·1o-"'

10.0 0.2795 ·10-3 0.1289 ·10""3 0.2214 ·1o-"'

15.0 0.4881 ·10-3 0.3403 ·1o-"'

20.0 0.7324 ·10""3 0.2955 ·10""3 0.4790 ·1o-"'

25.0 0.9890 ·10-3 0.6326 ·1o-"'

30.0 0.1238 ·10""2 0.7755 ·10-3 0.7981 ·1o-"'

35.0 0.1554 ·10-2 0.9687 ·1o-"'

40.0 0.1807 ·10-2 0.1819 ·10-2 0.1149 ·10""3

45.0 0.2160 ·10-2 0.1340 ·10""3

50.0 0.2522 ·10-2 0.3071 ·10-2 0.1554 ·10-3

ro(r)=(max(O,l-r~)14

Cutoff function: 8-th order with compact support

1l = 1.1

a= 1.1-fh

~t =4.0h

T max=50.0

h=0.05

0.2264 ·10""5

0.9267 ·10-5

0.9603 ·10-5

0.1485 ·10-4

0.2050 ·1o-"'

0.2662 ·1o-"'

0.3306 ·1o-"'

0.3997 ·lo-"'

0.4732 ·lo-"'

0.5512 ·1o-"'

0.6337 ·1o-"'

·""

0.0

10.0

20.0

30.0

40.0

50.0

45

TABLE6.4a

Rate or convergence or the velocity approximations in test problems 1-3,

using Hald's infinite order cutofF. 0=0.3-Jh except as indicated otherwise.

Rate of Convergence

ro(r)=(l.Q-r2)3 ro(r)=(l.Q-r2)7 ro(r)=(l.Q-r2f, ro(r)=(l.Q-r~I4

0=0.355-Jh

2.3 4.1 4.5 7.7

2.6 4.0 4.7 7.8

2.8 4.0 4.4 7.9

2.8 4.0 4.4 8.1

2.9 4.1 4.3 8.1

3.0 4.1 4.3 8.3

TABLE6.4b

Rate or convergence or the velocity approximations in test problems 1-3,

using the 8-th order cutofF. &=1.7-Jh.

Rate of Convergence

I ro(r)=(l.Q-r~3 ro(r)=(l.Q-r2f ro(r)=(l.Q-r2)14

0.0 2.3 3.9 3.7

10.0 2.7 4.1 3.7

20.0 2.7 4.4 3.8

30.0 2.7 4.4 4.0

40.0 2.7 4.5 4.0

50.0 2.8 4.5 4.0

0.00020

0.00015

0.00010

0.00005

0.0

0

46

Rezoning, version 2 vs. version 1

:"..··············
.... ··· .··

... ··· ..
.... ···

........ ·······•····
....... "'A--

10 20

..

, / /

.·· ... ··
..... ··

30

t

.. ····· ..

...
.. ···•·· .·

.·
... ·· .·· .. ··

40

Fig. 6.1 ro(r)=(max(O,l-r~)3 , solid curve= version 2, dotted curve= version 1,

h=0.0625, 0=0.3-Jh .11=1.25, .1.t=4.0h.

50

0.00005

0.00004

0.00003

0.00002

0.00001

0.0

0

47

Rezoning, version 2 vs. version 1

.... ···
.. .. ··

... ······

:\···················

...... ····
.... ····•··

············· ·

10 20

t

. ·· ... ·
.. ··

................

.. ·····

30

...

... / /./
.........

.. ·· ... ·
.........

40

Fig. 6.2 ro(r)=(max(O,l-r~)'. solid curve= version 2, dotted curve= version 1,

h=0.0625, 5=0.355.fii. 11=1.25, .11=4.0h.

50

0.00035

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.0

0

48

Rezoning, version 2 vs. version 1

...... ······
..

...
,:\···············

•' .·

.·
.. ······

.. ··
.. ·· .··

! //
!\ ./
j ~-/

/

.... ~ ····C···./\.·····_-~.-·········----------
10 20 30 40 50

t

Fig. 6.3 ro(r)=(max(O,l-r~)14, solid curve= version 2, dotted curve= version 1,

h=0.0625, 0=0.3../h .11=1.25, ~t=4.0h.

49

No rezoning

0.10

0.08

0.06

0.04

0.02

0.0

0 10 20 30 40 50

t

Fig. 6.4 ro(r)=(max(O,l-r~)'.h=0.0625, l>=O.S.fii, ~t=4.0h.

50

In test problem #3, the difference in velocity errors between the two cutoff functions is small for h =0.125

, but it increases as h gets smaller. For h=0.05 the error is 9.7 times smaller at time t=O and 17.1 times

smaller at time t=50 for the infinite-order cutoff compared to the eight order cutoff. The rate of conver-

gence is close to 8 for the infinite-order cutoff, but as expected around 4 for the eighth order cutoff. The

theoretical rate of convergence for the infinite-order cutoff is 7.25 in this case, since the moment error is

of order 0 (5145
), so once again the observed rate of convergence is higher than the theoretical rate. We

also made a comparison of rezoning version 1 vs. rezoning version 2 using test problems #1-3 with the

infinite order cutoff. The results are shown graphically in figures 6.1-6.3. We see that version 2 gives a

significantly lower error, and that the gap between the two versions increases with increasing smoothness

of the ftow. The sharp peaks in the graphs are due to the fact that sometimes the velocity error increases

faster than the vorticity error. Then, after rezoning, the velocity error decreases again. In practice, these

peaks do not matter, since the error at any time is much smaller than what is obtained without rezoning as

we see in Fig. 6.4.

In the fourth test problem, we distribute the vorticity on two circles according to

(6.6)

Thus, we have two vorticity patches with the vorticity distributed as in test problem #2. Note that this

test problem differs from the famous test problems considered by Christiansen [13]. Christiansen [13]

used uniform vorticity distribution within the two circles. However, in our test problem the vorticity is

concentrated at the centers of the circles and decays to 0 in a smooth fashion as we approach the boon-

dary. The numerical solution using Hald's infinite-order cutoff with rezoning is shown in figures 6.5-

6.15. The graphs represent vorticity level sets at different times from time t=O to time t=100. To esti-

mate the rate of convergence, we have used Richardson's extrapolation with three different gridsizes

h , 213 h and h 12. Assuming the rate of convergence is q, we can write U. = ut + h q e (x .y ,t) + (higher

order terms). Then

II -II - 2'11311 u1 -u1 hq- (2hl3)q

(2hl3)q - (h/2)9
= 1- (213)q

(2/3)9 - (l/2)q
(6.7)

The norm is taken to be the discrete L 2 norm of the differences in the computed velocities for vortices

with the same initial positions.

51

TABLE6.5

Rate or convergence or the velocity approximations in test problem 4

using Bald's infinite order cutofF.

t Rate of Convergence

0.0 3.7

10.0 4.1

20.0 4.3

30.0 4.1

40.0 4.4

50.0 4.4

60.0 4.2

70.0 4.6

80.0 4.5

90.0 4.5

100.0 4.9

CJ>(x,y) = (max(0, (0.25-(I x 1-o.5)2-y'J))7,

h=0.0625, f>=0.28.fh .T\=1.25, £=0.00004h 2, ft.t=5.0h.

Once we have computed the first quotient in (6.7), we set the third quotient equal to this value, and I

solve for q numerically. Using the three grid-sizes h=l/10, h=l/15 and h=1120 we obtain the rates of

convergence in Table 6.5. We see that the rates of convergence for this problem are similar to the rates

observed in problem 2.

1.5

1.0

0.5

y
0.0

-o.5

-1.0

-1.5
-1.5 -1.0

52

Vorticity level sets. Time=O.O

-o.5 0.0
X

0.5

Fig. 6.5. w(x ,y ,0) = (max(0, (0.25-(I x j-0.5)2-y2)))7,

h=0.0625, &=0.28..Jh. Tt=l.25, e=0.00004h2,lit=5.0h.

1.0 1.5

1.5

1.0

0.5

y
0.0

-o.5

·1.0

-1.5

·1.5 -1.0

53

Vorticity level sets. Time=lO.O

-o.5 0.0
X

0.5

Fig. 6.6. ro(x ,y ,0) = (max(0, (0.25-(I x l-0.5)2-y2)))7,

h=0.0625, &=o.28..fh, 11=1.25, £=0.00004h2, ~t=5.0h.

1.0 1.5

1.5

1.0

0.5

y
0.0

-o.5

-1.0

-1.5

-1.5 -1.0

54

Vorticity level sets. Time=20.0

-o.s 0.0
X

0.5

Fig. 6.7. ro(x ,y ,0) = (max(0, (0.25-(I x 1-<>.5)2-y 2))f,

h=0.0625, 0=0.28../h, 11=1.25, e=0.00004h2, ~t=5.0h.

1.0 1.5

1.5

1.0

0.5

y
0.0

~.5

-1.0

-1.5

-1.5 -1.0

ss

Vorticity level sets. Time=30.0

~.5 0.0
X

0.5

Fig. 6.8. ro(x ,y ,0) = (max(0, (0.25-(I x l-0.5)2-y2)))7,

h=0.0625, 0=0.28.../h, Tt=l.25, e=0.00004h2, t1t=5.0h.

1.0 1.5

1.5

1.0

0.5

y
0.0

-o.5

-1.0

-1.5
-1.5 -1.0

56

Vorticity level sets. Time=40.0

-o.5 0.0
X

0.5

Fig. 6.9. ro(x ,y ,0) = (max(0, (0.25-(1 x j-o.S)2-y2)))7,

h=0.0625, &=o.28..fh, 1'1=1.25, e=0.00004h2, lit=5.0h.

1.0 1.5

1.5

1.0

0.5

y
o.o

-o.5

-1.0

-1.5

-1.5 -1.0

57-

Vorticity level sets. Time=SO.O

-o.5 0.0
X

0.5

Fig. 6.10. ro(x ,y ,0) = (max(0 , (0.25-(I x I -o.5)2-y 2))) 7,

h=0.0625, 0=0.28-.fh, 11=1.25, £=0.00004h 2, ~t=5.0h.

1.0 1.5

1.5

1.0

0.5

y
0.0

-o.5

-1.0

-1.5
-1.5 -1.0

58

Vorticity level sets. Time=60.0

-o.5

.....

0.0
X

It

0.5

Fig. 6.11. ro(x ,y ,0) = (max(0, (0.25-(I x 1-o.s)2-y2)))7,

h=0.0625, 0=0.28..fii, Tl=l.25, e=0.00004h2, Jit=S.Oh.

1.0 1.5

1.5

1.0

0.5

y o.o

-o.5

-1.0

-1.5

-1.5

59

Vorticity level sets. Time=70.0

-1.0 -o.s 0.0 0.5

X

Fig. 6.12. ro(x ,y ,0) = (max(0, (0.25-(I x l-0.5)2-y2)))
7

,

h=0.0625, 0=0.28...Jh. T\=1.25, e=0.00004h2, Llt=5.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5
-1.5 -1.0

60

Vorticity level sets. Time=80.0

-o.s 0.0

X

0.5

Fig. 6.13. ro(x ,y ,0) = (max(0, (0.25-(I x l-0.5)2-y2)))
7

,

h=0.0625, &=o.28"h .11=1.25, e=0.00004h2, Llt=5.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5

-1.5

61

Vorticity level sets. Time=90.0

...... ··~
... -:::::.:::::-

-1.0 -o.5 0.0 0.5
X

Fig. 6.14. ro(x ,y ,0) = (max(0, (0.25-(I x 1-0.S)2-y2)))
7

,

h=0.0625, &=o.28"h .Tt=l.25, e=0.00004h2, .1t=5.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5
-1.5

62

Vorticity level sets. Time=lOO.O

/;P
.. ····.:~.--~-·~

.· .··
..... :::

-1.0 -o.s 0.0 0.5

X

Fig. 6.15. co(x ,y ,0) = (max(0, (0.25-(I x 1-0.S)2-y2)))7, ·

h=0.0625, 0=0.28-.fii .11=1.25, e=0.00004h 2, t.t=5.0h.

1.0 1.5

..

..

63

TABLE6.6

Rate of convergence of the velocity approximations in test problem 5

using Bald's infinite order cutotT.

t

0.0

10.0

20.0

30.0

40.0

50.0

Rate of Convergence

3.2

3.2

3.2

3.3

3.3

3.3

ro(x,y) = [(max(0 ,l-x2)) (max(0 ,l-y2 »] 7
,

h=0.0625, &=o.6.Jh' Tt=l.5, &=4.0h.

In the fifth test problem, the initial vorticity is distributed on a square according to

ro(x ,y) = [(max(0 ,l-x2)) (max(0 ,l-y2 »] 7
(6.8)

The rates of convergence at different times up to time t=SO are estimated in the same way as in test prob­

lem #4, using the same three grid-sizes. Here, we had to take a larger value of 5 in order to maintain a

high rate of convergence up to time t=50. The observed rates of convergence are lower than in problems

2 and 4, although the initial vorticity distribution has the same smoothness in this case. It is possible that

the Fourier transform of the vorticity distribution has a lower rate of decay in this case, causing a lower

rate of convergence. Figures 6.16-6.22 show the computed vorticity level sets at times

t=O,l0,20,30,40,50 and 100.

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5

-1.5 -1.0

64

Vorticity level sets. Time=O.O

-o.5 0.0
X

0.5

Fig. 6.16. <O(x ;y ,0) = ((max(0 ,l-x2)) (max(0 ,l-y2 »] 7

h=0.0625, &=o.3SS.fii, 11=1.5, L\t=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

.-1.0

-1.5

-1.5 -1.0

65

Vorticity level sets. Time=lO.O

-o.5 0.0

X

0.5

Fig. 6.17. ro(x ,y ,0) = [(max(0 ,l-x2)) (max(0 ,l-y2 »] 7

h=0.0625, 0=0.355-lh' 11=1.5, t11=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5

-1.5 -1.0

66

Vorticity level sets. Time=20.0

-o.s 0.0

X

0.5

Fig., 6.18. ro(x ,y ,0) = ((max(0 ,1-x2)) (max(0 ,l-y2))]
7

h=0.062S, 0=0.3SS.fii, 11=1.5, at=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5

-1.5 -1.0

67

Vorticity level sets. Time=30.0

-o.5 0.0
X

0.5

Fig. 6.19. ro(x .y ,0) = [(max(0 ,l-x2)) (max(0 ,1-y2 »] 7

h=0.062S, 0=0.3ss..[Ji, tt=l.S, at=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5
-1.5 -1.0

68

Vorticity level sets. Time=40.0

-o.5 0.0

X

0.5

Fig. 6.20. ro(x.;; ,0) = ((max(0 ,1-x2)) (max(0 ,l-y2))]
7

h=0.0625, 0=0.355../h .11=1.5, LY=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.0

-1.5
-1.5 -1.0

69

Vorticity level sets. Time=SO.O

-o.5 o.o
X

0.5

Fig. 6.21. ro(x ;y ,0) = ((max(0 ,l-x2)) (max(0 ,l-y2 »] 7

h=0.0625, &=o.355.Jii' Tt=l.5, t1t=4.0h.

1.0 1.5

1.5

1.0

0.5

y 0.0

-o.5

-1.5

-1.5 -1.0

70

Vorticity level sets. Time=lOO.O

-o.5 0.0

X

0.5

Fig. 6.22. O>(x .y ,0) = ((max(0 ,l-x2)) (max(0 ,1-y2))]
7

h=0.0625, &=o.355-fh. fl=l.5, L\t=4.0h.

1.0 1.5

.

71

TABLE6.7

A comparison between the direct method and the Rokhlin-Greengard method.

Direct method Rokhlin -Greengard method

h N E,. CPU time E,. CPU time

1/20 1257 0.3576 ·lo--s 3.7 0.3576 ·10-6 4.3

1140 5025 0.2507 ·10-7 63.5 0.2507 ·10-7 45.8

1/64 12853 0.4021 ·lo-B 394.6 0.4021 ·10-s 106.9

Finally, we made a comparison between the direct method of evaluating the sum in (1.11) and the

Rokhlin-Greengard algorithm [23]. For this, we used the vorticity distribution of test problem #2, the

eighth order cutoff function, and a= 1.1-fh. The number of terms in the multipole expansion, see [23],

was set to 20. The results are summarized in table 6. 7. Here, N stands for the number of vortices, Eu for

the velocity error at time t=O, and the CPU time is given in minutes for one velocity evaluation at time

t=O on a VAX computer. We have to emphasize that the speed of the Rokhlin-Greengard algorithm

applied to vortex methods is limited by the size of the cutoff parameter a. In fact, the maximum number

of levels of refinement, see [23], must not exceed l-log2 (atl), where l is the length of one side of the

computational box. Here we have used l =2, since this is exactly what we need to cover the support of the

initial vorticity distribution in test problem #2, but we have to admit that the speed of this algorithm will

increase somewhat if we pick l so that l-log2(at/) is exactly an integer, and set the maximum number of

levels of refinement equal to this value. The Rokhlin-Greengard algorithm would also run faster if we

choose a smaller, but that would force us to use a lower order cutoff function, which we do not believe is

such a good idea for smooth flows. However, if the flow is not very smooth, we may very well use a

lower order cutoff function, a smaller a , and use the Rokhlin-Greengard algorithm with maximum

efficiency.

72

Appendix

To make it easier for the reader who wishes to use infinite-order vortex methods, we supply two

subroutines. The first subroutine finds the coefficients of the polynomials which approximate Hald's

infinite-order cutoff function and velocity kernel as described in chapter 3. The second subroutine evalu­

ates the sum in equation (1.11) or equation (5.9) using these polynomials. If the second subroutine is used

on a Cray computer, we recommend not changing the structure of the subroutine since that would prob­

ably make it more expensive. For example, if we express Homer's rule as a loop, the CPU time require­

ment increases by a factor of about 4 on a Cray computer and most of the overall computational work of

the vortex method is done in this subroutine. We tested many different versions of this subroutine on a

Cray computer and found that this version was by far the fastest one. This is the main reason for present­

ing it here. However, if a VAX computer is used, the code may be simplified without decreasing the

computational speed. We do not present our rezoning subroutine here, but it has the same structure as the

second subroutine.

..

c
c
c

2

73

Program for finding polynomials approximating
Hald's infinite order cutoff function and
velocity kernel. (Example 1, chap.2)

parameter(m=l20)
common/prmtr/k
double precision c(O:m,l:lO)
double precision d(O:m,l:l3)

do 2 k=l,m
call coeffs(c,d,m)
continue
end

subroutine coeffs(c,d,m)

c 1---
c I
c I
c I
c I
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This subroutine finds the best polynomial approximations
in different intervals
to Hald's infinite-order cutoff
and to the corresponding scaling
the velocity kernel.

function (example 1)
function F that is related to

List of variables:

Input:

m

k

Output:

c (0 : m, 1 : 1 0)

d (0 : m, 1 : 1 0)

the number of intervals in which we wish to
approximate F and PSI.

the center of the interval under consideration

array of coefficients of the polynomials
approximating F in all intervals.

array of coefficients of the polynomials
approximating the cutoff function PSI
in all intervals.

Library functions:

mmbsjO Bessel function of order 0

mmbsjl -Bessel function of order 1

Local functions:

f2 =- Bessel function of order 2

f3 Bessel function of order 3

74

c ---1
c I
c Input to library subroutine iratcu: I
c I
c 1 degree of the polynomial in the numerator of I
c the approximating rational function. I
c I
c m1 = degree of the polynomial in the denominator of I
c the approximating rational function. I
c Here we always let m1=0. I
c I
c a,b endpoints of the interval under consideration. I
c I
c f = F I
c I
c psi PSI I
c I
c g weight function, which is identically 1 here. I
c I
c phi (x) x*.*2-k**2 I
c I
c We express the best polynomial approximation as a polynomial I
c in phi (x) . I
c I
c I
c Output from library subroutine iratcu: I
c I
c p(13) vector of coefficients of the polynomial in the 1

c numerator of the approximating rational function. 1

c I
c q(1) vector of coefficients of the polynomial in the I
c denominator of the approximating rational 1
c function. In this case q(1) is identically 1. . I
c I
c wk(315) "work vector" needed by the library subroutine I
c iratcu. wk(1) gives the maximum error in the I
c approximation in the interval [a,b] 1
c I
c ier error parameter required by subroutine I
c iratcu. See IMSL manual vol.2 1

c I
c ---1

cormnon/prmtr/k
integer l,m1,ier
double prec~s~on p(13),q(l),wk(315),a,b
double precision f3,psi,f,f2,phi,g,mmbsjl,mmbsj0
double precision pi,c(O:m,l:10),d(O:m,1:13)
external f,phi,g,f2,f3,psi

pi=dacos (-1 . OdO)
a=dble(k)-0.5
b=dble(k)+O.S
1=9

...

...

32
4

33
41

if(k.eq.1) 1=7
if(k.gt.10) 1=7
if(k.gt.20) 1=6
if(k.gt.30) 1=5
if(k.gt.40) 1=4
if(k.gt.80) 1=2

75

call iratcu(f,phi,g,a,b,l,m1,p,q,wk,ier)
print *, wk (1)

do 4 i=1,1+1
c(k,i)=p(i)
write(15,32)
format(1H ,'
continue

1=12

k,i,c(k,i)
c(',I3,',',I2,')=',D22.15)

if(k.eq.1) 1=9
if(k.eq.2) 1=10
if(k.gt.10) 1=11
if(k.gt.20) 1=10
if(k.gt.30) 1=9
if(k.gt.SO) 1-8
if(k.gt.90) 1=7
call iratcu(psi,phi,g,a,b,l,m1,p,q,wk,ier)
print *,wk(1)

do 41 i=1,1+1
d(k,i)=p(i)
write(15,33)
format(1H
continue
end

k,i,d(k,i)
d(',I3,',',I2,')=',D22.15)

double precision function f2(x)
double precision x,mmbsj1,mmbsj0
integer ier2

c The Bessel function of order 2 is expressed in terms of the
c Bessel functions of orders 0 and 1

f2=2.0*mmbsj1(x,ier2)/x-mmbsj0(x,ier2)
return
end

double precision function f3(x)
double precision x,mmbsj1,mmbsj0
integer i

c The Bessel function of order 3 is expressed in terms of the
c Bessel functions of orders 0 and 1

f3~(8.0/x**2-1.0)*mmbsj1(x,i)-4.0*mmbsj0(x,i)/x
return
end

76

double precision function f(x)
double precision x,pi,f2

pi=dacos(-l.OdO)
f=(.S-4.*(4.*f2(4.*x)-5.*f2(2.*x)+f2(x))/(45.*x**2))/(pi*x**2)
return
end

double precision function psi(x)
double precision x,pi,f3

pi=dacos(-l.OdO)
psi=(6.4*f3(4.0*x)-4.0*f3(2.0*x)+0.4*f3(x))/(4.5*pi*x**3)
return
end

double precision function phi(x)
double prec1s1on x
common/prmtr/k

c the approximating polynomial is given as a polynomial in (x**2-k**2)

phi=x**2-dble(k**2)
return
end

double precision function g(x)
double precision x

c "g" is a weight function which must be specified.

g-l.OdO
return
end

77

c ---1
c I
c This subroutine evaluates the velocity at a point (xi,yi) 1

c according to equation (1.11) or equation (5.9) 1
c using infinite order velocity kernel approximated by 1

c a collection of polynomials, as described in chapter 3. 1

c I
c List of variables: 1

c I
c Input: 1
c I
c xi,yi point at which we wish to compute velocity 1

c I
c nn max. number of linear sub-divisions between 0 and 1 I
c
c x(1:4*nn**2), y(1:4*nn**2) =
c array of vortices inducing the velocity field
c
c
c

tot total number of vortices

c cc(1:4*nn**2) =
c vorticity coefficients
c
c
c

x4 the cutoff parameter delta

c c(O:m,l:lO) ~

c I the set of coefficients of the polynomials
c approximating an infinite order velocity kernel
c
c
c
c
c

Output:

u,v

c Local:
c
c
c
c
c
c
c
c
c
c

m

NMAX

x5

r2

~ the sum in (1.11) or (5.9)

number of approximating polynomials -1

= same as nn, b~t for local use

=·delta squared

the square of the distance from the point (xi,yi)
to a particular vortex

c arg(1:4*NMAX**2) ~

c the set of distances from (xi,yi) to all vortices
c divided by delta squared
c
c i1(1:4*NMAX**2)
c the set of indices for the polynomials
c used to approximate the velocity kernel
c
c c2(0:4*NMAX**2,1:10) •
c a renaming of the polynomial coefficients
c
c
c

x3,k3,terml,term2 • temporary variables

c ---

I

78

subroutine sum(c,xi,yi,x,y,tot,cc,nn,u,v,x4)

integer m,NMAX
parameter (m=120)
parameter (NMAX = 40)
double precision u,v,term1,term2,xi,yi,r2,x3,x4,x5
double precision x(1:4*nn**2),y(1:4*nn**2),cc(1:4*nn**2)
double precision arg(1:4*NMAX**2),c(O:m,1:10)
double prec~s~on c2(0:4*NMAX**2,1:10)
integer i1(1:4*NMAX**2), k3, k, tot

x5=x4**2
u=O. OdO
v=O. OdO

do 1 k= 1,tot
c Find the distances from (xi,yi) to all vortices

r2=(xi-x(k))**2+(yi-y(k))**2
arg(k)=r2/x5
i1(k)=nint(sqrt(r2/x5))
arg(k)=arg(k)-dble(i1(k)**2)

1 continue
do 110 k=1, tot

k3 = i1(k)
c Rename the polynomial coefficients

c2(k,10)=c(k3,10)
c2(k,9)=-c(k3,9)
c2(k,8)-c(k3,8)
c2(k,7)::ac(k3,7)
c2(k,6)-c(k3,6)
c2(k,S)•c(k3,5)
c2(k,4)=-c(k3,4)
c2(k,3)-c(k3,3)
c2(k,2)=c(k3,2)
c2(k,1)-c(k3,1)

110 continue
do 4 k-1,tot

c Horner's rule:
x3=c2(k,10)
x3=c2(k,9)+x3*arg(k)
x3-c2(k,8)+x3*arg(k)
x3=c2(k,7)+x3*arg(k)
x3=c2(k,6)+x3*arg(k)
x3=c2(k,5)+x3*arg(k)
x3=c2(k,4)+x3*arg(k)
x3=c2(k,3)+x3*arg(k)
x3=c2(k,2)+x3*arg(k)
x3=c2(k,1)+x3*arg(k)

term1=-x3*cc(k)/x5
term2=term1*(xi-x(k))
term1=term1*(y(k)-yi)
u=u+term1
v=v+term2

4 continue
return
end

•

79

References

[1] C.R. Anderson, "A Method of Local Corrections for Computing the Velocity Field Due to a Distri­

bution of Vortex B1obs",J. Comp. Phys., 62 (1986), pp. 111-123.

[2] C.R. Anderson, "A Vortex Method for Flows with Slight Density Variations", J. Comp. Phys., 61

(1985), pp. 417-432.

[3] C.R. Anderson and C. Greengard, "On Vortex Methods", SIAM J. Numer. Anal., 22 (1985), pp.

413-440.

[4] S.B. Baden, "Run-Time Partitioning of Scientific Continuum Calculations Running on Multiproces­

sors", Ph.D. Thesis, Univ. of California, Berkeley, 1987.

[5] J.T. Beale, "On the Accuracy of Vortex Methods at Large Times", Proceedings of the Workshop

on Computational Fluid Dynamics and Reacting Gas Flows, I.M.A., Univ. of Minnesota, 1986.

[6] J.T. Beale and A. Majda, "Vortex Methods. I: Convergence in Three Dimensions", Math. Comp.

39 (1982), pp. 1-27.

[7] J.T. Beale and A .. Majda, "Vortex Methods. ll: Higher Order Accuracy in Two and Three Dimen­

sions", Math. Comp. 39 (1982), pp. 29-52.

[8] J.T. Beale and A. Majda, "Higher Order Accurate Vortex Methods with Explicit Velocity Kernels",

J. Comp. Phys. 58 (1985), pp. 188-208.

[9] A.Y. Cheer, "Numerical Study of Incompressible Slightly Viscous Flow Past Blunt Bodies and

Airfoils", SIAM J. Sci. Stat. Comp. 4 (1983), pp. 685-705.

[10] AJ. Chorin, "Numerical Study of Slightly Viscous Flow", J. Fluid. Mech., 57 (1973), pp. 785-796.

80

[11] AJ. Chorin, Vortex Models and Boundary Layer Instability, SIAM J. Sci. Stat. Comp. 1 (1980),

pp. 1-21.

[12] AJ. Chorin and J. Marsden, "A Mathematical Introduction to Fluid Mechanics", Springer-Verlag,

New York, 1979.

[13] J.P. Christiansen, "Numerical Simulation of Hydrodynamics by the Method of Point Vortices", J.

Comp. Phys., 13 (1973), pp. 363-379.

[14] G.H. Cottet, M~thodes Particulaires pour l'~uation d'Euler dans le plan, These de 3eme cycle,

l'Universit.e Pierre et Marie Curie, Paris, p.6, 1982.

[15] O.H. Hald, "Convergence of Vortex Methods for Euler's Equations, ll", SIAM J. Numer. Anal., 16

(1979), pp. 726-755.

[16] O.H. Hald, "Convergence of Vortex Methods for Euler's Equations, ill", SIAM J. Numer. Anal.,

24 (1987), pp. 538-582.

[17] O.H. Hald and V.M. Del Prete, "Convergence of Vortex Methods for Euler's Equations", Math.

Comp., 32. (1978), pp. 791-809.

[18] IMSL Library, 2.,4, Houston, Texas, 1982.

[19] F. John, "Partial Differential Equations", Springer-Vertag, New York.

[20] A. Leonard and P.R. Spalart, "Computation of Separated Flows by a Vortex Tracing Algorithm", in

AIAA 14th Fluid and Plasma Dynamics Conference, AIAA-81-1246, 1981.

[21] Y. Nakamura, A. Leonard and P.R. Spalart, "Vortex Simulation of an Inviscid Shear Layer", in

AIANASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, AIAA-82-

0948, 1982.

..

81

[22] M. Perlman, "On the Accuracy of Vortex Methods", J. Comp. Phys., 59 (1985), pp. 200-223.

[23] V. Rokhlin and L. Greengard, "A Fast Algorithm for Particle Simulations", Research Report

Y ALEU/DCS/RR-459, 1986.

[24] L. Rosenhead, "The Point Vortex Approximation of a Vortex Sheet", Proc. R. Soc. London Ser. A

134 (1932), pp. 170-192.

[25] J.A. Sethian, "Turbulent Combustion in Open and Closed Vessels", J. Comp. Phys., 54 (1984), pp.

425-456.

[26] J.A. Sethian and A.F. Ghoniem, "Validation Study of Vortex Methods", J. Comp. Phys., 74 (1988),

pp. 283-316.

[27] P.R. Spalart, "Numerical Simulation of Separated Flows," Ph.D. thesis, Department of Aeronautics

and Asttonautics, Stanford University, 1982.

·.;

:•

LAWRENCE BERKELEY LAB ORA TORY

TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.,~

