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Higher Order Vortex Methods with Rezoning

Henrik Olov Nordmark

Abstract

The vortex method is a numerical method for approximating the flow of an incompressible, invis-
cid fluid. We consider the two-dimensional case. The accuracy depends on the choice of the cutoff func-
tion which approximates the delta function, on the cutoff parameter § and on the smoothness of the initial
data. We derive a class of infinite-order cutoff functions with arbitrarily high rates of decay at infinity.
We also derive an eighth order cutoff function with compact support. We test two versions of rezoning.
Version 1 has been suggested and tested by Beale and Majda, while version 2 is new. Using rezoning,
we test the eighth order cutoff function and one infinite-order cutoff function on three test problems for
which the solution of Euler’s equation is known analytically. The accuracies of the two methods are com-

parable. We also compute the evolution of two circular vorticity patches and the evolution of one square

“vorticity patch over long time intervals. Finally, we make a comparison between the direct method of

velocity evaluation and the Rokhlin-Greengard algorithm. The numerical experiments indicate that for

smooth flows, high-order cutoffs combined with rezoning give high accuracy for long time integrations.



v

Y

Acknowledgements

The author wishes to thank Ole Hald for suggesting the topic for this thesis, for interesting discus-
sions and helpful ideas, and for his patience throughout the period of research and writing of this thesis.
Many thanks to Jarhes Sethian for having served on my committee and for reading and commenting on my
theéis under great pressure of time. Many thanks also to Stanley Berger for serving on my committee and

for reading my thesis with short notice.

A special word of thanks goes to my wife Teresa Diaz-Gonzdlez de Nordmark for her great moral
support, help and patience throughout my years at Berkeley. I also thank Paul Concus, Scott Baden and

Gerry Puckett for their advice on computer related matters.

The calculations presented in this thesis were carried out at the Lawrence Berkeley Laboratory.



Introduction

The vortex method is a numerical method for approximating the flow of an incompressible fluid
without viscosity. Thus we assume that the flow is governed by the Euler equation rather than the full
Navier-Stokes equation. The idea is to approximate a vorticity distribution by a finite set of "vortex
blobs" which are multiples and translates of a certain function known as the cutoff function. The cutoff
function is scaled by a parameter § and approximates the delta function as 8 approaches 0. The vortex
blobs induce a velocity field, which in turn moves the vortex blobs. The evolution of the vortex .blobs is
computed by solving a system of ordinary differential equations by standard numerical methods. In this
form, the vortex method was introduced by Chorin [10] in 1973, but its predecessor, the point vortex
method, was introduced about 40 years earlier by Rosenhead [24] for calculating the behavior of vortex
sheets. The point vortex method gives unreliable results however, see e.g. Beale and Majda [8]. There
have been many applications of vortex methods, including the simulation of turbulent combustion in open
and closed vessels, Sethian [25], the computation of unstable boundary layers, Chorin [11], aerodynamic
computations, Cheer [9], Spalart [27], Leonard and Spalart [20], and flow of variable density, Anderson
2.

The vortex method can be extended to simulate viscous flow by letting each vortex take a step of a
specified length in a random direction after each timestep. Recently, Sethian and Ghoniem [26] tested this
procedure on viscous flow through a channel over a backwards-facing step. A variety of different Rey-
nolds numbers were used, corresponding to flows raﬁging from laminar flow to completely turbulent flow
and including the transition region betwe.en laminar and turbulent flow. Sethian and Ghoniem [26] tested
many different combinations of numerical parameters and found that for laminaf flow, the only parameter
that significantly affected the numerical solution was the number of vortices. For non-laminar flow, they
found that the size of the timestep was also critical. A larger number of vortices requires a smaller
timestep. In both cases, the numerical results demonstrated the convergence of the method as the number
of vortices goes to infinity. However, in sharp contrast to the inviscid case, the size of the cutoff parame-
ter & turned out to be of secondary importance. To avoid confusion we point out that for the remainder of

this thesis, we consider the vortex method for inviscid flow.



In the late nineteen-seventies, del Prete and Hald [17] gave a convergence proof for the 2-D vortex
method, for a short time interval, but under the mild assumption that the initial vorticity distribution is
Holder continuous. By requiring more smoothness of the vorticity, i.e. three continuous derivatives, Hald
[15] subsequently proved convergence for arbitrarily long time intervals. Beale and Majda [6,7] gave
convergence proofs for the three dimensional case as well as the two dimensional case. Cottet [14] pro-
vided a simpler proof of Beale and Majda’s convergence theorem, which was simplified further by
Anderson and Greengard [3]. Anderson and Greengard [3] also established the convergence of the time
discretization for a large class of multistep methods and for second order Runge-Kutta methods. Hald
(16] then proved fourth order convergence of the time discretization for the classical fourth order

Runge-Kutta method, provided the flow is smooth enough.

The accuracy of the vortex method depends on how the delta function is approximated, which in
turn depends both on the choice of cutoff function and on the choice of the parameter 8. Beale and
Majda (8] introduced a family of srx;ooth cutoff functions, with unbounded support, but decaying very
rapidly at infinity. From this family, we can piék an n -th order cutoff function, where n is any desired
positive integer, and by Beaie and Majda’s [7] convergence theorem, obtain a vortex method of order
very close to n, if the flow is infinitely differentiable and if we pick 8 close to i, where A is the original
distance between adjacent vortices. However, numerical experiments by Perlman [22] have shown that
for reasonable values of A, this is only true for short time intervals. In practice, we have to take § propor-
tional to A9, with g less than 1 by a fair amount, and get a method of order nq if the flow is sufficiently
smooth. Hald [16] presented several infinite-order cutoff functions. The rates of convergence for these
cutoffs are only limited by the degree of smobthness of the flow. In this thesis, we test the practical accu-
racy of one of these cutoff functions for flows of different degrees of smoothness. Following Hald’s
recipe [16; p.567 ], we derive a large class of explicit infinite-order cutoff functions and velocity kernels
with higher rates of decay at infinity. Our numerical results show that we do get orders of accuracy
slightly exceeding the ones predicted by Hald’s theory, but only for short time integrations. The
deterioration in accuracy at later times observed by Periman [22] is even more pronounced for infinite-
order cutoff functions. A natural way to overcome this difficulty, is to use the rezoning technique. It was

suggested and tested by Beale and Majda [8]. In this thesis, we present two versions of rezoning. The first



version is that of Beale and Majda [8], but with the added feature of a "built-in" criterion for dete‘rmining
at which times we introduce a new grid. The second version also has this feature. It is more accurate
because it uses more vortices, but it costs more. A different method of improving the accuracy for large
time integrations was recently introduced by Beale [5]. We made a small number of numerical tests on
this method and found that it is significantly more accurate than the standard method but not as accurate
as the method of rezoning. We do not present these tests here because we feel they are not sufficiently

complete.

It follows from Hald’s theory [16], that we should take & proportional to vh when using infinite

order methods. However, it is not clear what the optimal proportionality constant is. That depends on a
number of factors. First of all, in vortex methods without rezoning we always need to use a larger pro- -
portionality constant, for large integration times. Secondly, the choice depends somewhat on the form of
the initial vorticity distribution. Perlman [22] observed that the choiée of & is essentially independent of
the smoothness of the flow. The numerical results in this thesis show that although this seems to be true
for radially symmetric vorticity distributions, it is not necessarily the case in general. Finally, the choice
of proportionality constant depends strongly on the cutoff function and especially on the value of the cut-
off function at the origin. For example, for the eighth order cutoff function derived in this thesis, we have
to take a proportionality constant that is about 5.5 times larger than for Hald’s infinite order cutoff func-
tion. This is due to the fact that the value of the first cutoff at the origin is about 30 times larger than for
the second cutoff. A partial list of numerical expeﬁmems that test the accuracy of vortex methods
includes del Prete and Hald [17], Beale and Majda [8], Beale (5], Perlman [22] and Nakamura, Leonard

and Spalart [21].

Besides the accuracy of vortex methods, the computational speed is also important. The standard
direct methqd of computation requires O (V?) flops, where N is the number of vortices. Anderson [1] has
introduced a faster method, known as the method of local corrections. It requires O (NlogN ) flops pro-
vided & is proportional to h, and uses a "fast Poisson solver" and interpolations. The practical speed of
this method on a Cray computer has recently been tested by Baden [4]. This method may however intro-
duce a significant amount of additional errors when the order of the cutoff function is high enough and

the flow is sufficiently smooth. Another fast algorithm known as the method of multipole expansions, has



recently been introduced by Rokhlin and Greengard [23]. This method requires O (N) flops for & propor-
tional to &, and when it is applicable, it is essentially as accurate as the direct method. Both of these fast
methods are only strictly applicable when using cutoff functions with compact support. For this reason,
we derive an eighth order cutoff function with compact support in this thesis. We test the Rokhlin-

Greengard algorithm [23] using this cutoff function.

This thesis is divided into 6 chapters. In chapter 1 we present the derivation of the vortex method in
two dimensions. In chapter 2 we derive a large class of infinite-order cutoff functions, present Hald’s [16]
convergence theorem for inﬁnite-_order methods, and give 3 examples of infinite-order cutoff functions
from the large class. Chapter 3 deals with the economical numerical evaluation of infinite-order cutoff
functions and velocity kemels. In chapter 4 we derive an eighth order cutoff function with compact sup-
port and compare it with Hald’s infinite-order cutoff. In chapter 5, two versions of the method of rezon-

ing are described, and finally, in chapter 6 we present our test problems and numerical resuits.



1. The Basic Equations

The vorticity-stream function form of Euler’s equations in two dimensions is

W, + W Vo=0, (1.1
Ay = -0, (1.2)
U=vy, v=-VY,, (1.3)

where u =(u,v) is the velocity vector, x=(x,y) is the position vector, ® is the vorticity, and y is the

stream function.

The solution of the Poisson equation (1.2) is given by '

y(x) = n{‘ )G (x-x") (x’, 1) dX.. (14)

where G (x) =—(2r) In| x |, with | x | 2=x2+ y2 is the fundamental solution of the 2-D Laplace equa-
tion , see [19, p.75 ], dx’ = dx’dy’, and Q(t) denotes the support of ® in R? at time ¢. Using (1.3) and

differentiating under the integral sign in (1.4) we get the velocity as

u(x, t) = I K (x—x") o(x’, t) dx, 1.5)
_ o)

where

Kxy=—L1—|"
®= 2x 1%« )

In the Lagrangian description of the flow, we follow the motion of fluid particles. Let o = (o;,01)
be the Lagrangian coordinates of a particle starting at x = o at time ¢=0. Then the path of that particle is

determined by

ﬂ‘%‘%’l —u(x(e 1), 1), x(@0)=o (1.6)

Equation (1.1) implies that the vorticity is preserved along particle paths, i.e. w(x(ct, ¢), t) = w(c,0) for
all ¢, see Chorin and Marsden [12, p.34 ]. Since the flow is incompressible, the Jacobian of the change of

variables from x to a is 1, so we can rewrite (1.5) as

u(x(e, 1), 0) = | K(x(a, 1)-x(B, 1)) &(B.0) dB. .

Q)



To discretize the system (1.6), (1.7) we cover the o plane by a square grid, with mesh length 42 .The
coordinates of the grid points are then jh =(j;, j2h. Let J be the set of all double indices j= (j1, j2)
such that ja€ Q(0) , let x(¢) be the position of a particle starting at the point jh at time +=0, and let u(r)
be the velocity at x;(¢) at time ¢.

One way to discretize the system (1.6), (1.7) is to replace the continuous indices o and B by the integer
indices i and j, and to replace the integral by a sum. This gives us the following system of ordinary dif-

ferential equations

dx .
2 a0, 2=, (18
where
()= Y K&t)-x0)c; (1.9
jel,ju

Here the "vorﬁcity coefficients” ¢y can be defined either by

c‘|=a)(jh)h2
or by

cy= !m(x)d X,

where §; denotes a square of length and width & centered at jh. If we use the latter definition, the
definition of J has to be changed. Cottet {14] has shown that the latter definition of ¢ j leads to an addi-
tional error of order O (h%). This has also been demonstrated numerically by Perlman [22]. Therefore we

will always let c; = (jh )h2.

The numerical solution of (1.8), (1.9) is known as the point vortex method, and was introduced in
1932 by Rosenhead [24] for the study of vortex sheets. It turns out that this method gives unreliable
results, especially for calculating velocities off vortex paths. See for example Beale and Majda [8]. The
reason for this is that K (x)-—>oo as x—0. Chorin {10] avoided this problem by replacing the kernel X by a

kemel K5 which is bounded at x=0. K is the convolution of X and a smooth cutoff function ¥;,. i.e.
K5(x) = [ K (x=x") ¥5(x") dx'.

Here W¥; is defined by ‘Ps(x) = 829 (x/8) where ¥ is a smooth radially symmetric function satisfying



J ¥(x)dx =1
Hence, W3 approximates the Dirac delta function as §—0. Now the system (1.8), (1.9) is replaced by
dxt
d‘f oaw,  sO@=ik, (1.10)
where
()= 3 Ks&(t)— %)) (1.11)
jel.ju

The numerical solution of this new system is known as the vortex blob method, or just vortex method. By
imposing additional conditions on the cutoff function ¥ one can obtain high rates of convergence for this
method. In this paper we derive a class of infinite order cutoff functions and an eighth order cutoff func-

tion with compact support.



2. Derivation of a Large Class of Infinite Order Cutoff Functions

Following Beale, Majda [6] and Hald [16], we define a general infinite order cutoff function ¥ via

its Fourier transform V. Here

¥(x) = [ e** P(k) dk _ @.1)
7 — 1 -ixk
¥(k) = o f e % W(x) dx (22)

where x-k = x 1k +x ok, dx=dxdx, and dk=dk dk,. We assume that ¥ satisfies the following assump-
tion,
@) $(t)=(2m)2  for Ot<1
(ii) ¥()=0 for ¢2b.
(i) W is real-valued and continuous for all t, continuously differentiable for 1<t<b and ¥’ is
piecewise differentiable in the same interval.

Hald [16] has shown that the previous assumption implies the following conditions:

@ ) sLeTY, O<r<l, n=0,1
) [y®() <Ly, l<r<es, n=0,1
i) |2m[sW(s)ds -1 Ly O<r<oo,

0

Now, in order to simplify (2.1), we switch to polar coordinates. Let (k;.k5) =t(cosd,sing),
(x1,x2) =r(cos8,sinf). Then dkdk,=tdtd ¢, and since ‘I"(t)=0 for t2b, we get

= 2
¥(r0) = ! ¢ (r1oos(@)cos(@hresin(Osin()) \fr(1 )s ¢ gt

[ 2%
= [ W) ( [ e' e dg) dr
0 0

p- 1
(o) ( [ i 44) gt
0

S &

The last integral is independent of 8 because cos(¢—8) is periodic with period 21, so let 6 = % Then by

using the integral representation of Bessel functions we get



2 I 2%
J‘ o (rcos(e-8) do= j gresin(®) d =21J o(rt).
° 0

Combining our results yields

b
W(r)=2m [Jo(rt)e () dt.
0

23)

The trick is to pick ¥(¢) , so that (2.3) can be evaluated explicitly. Here we need some properties of

Bessel functions. The most fundamental one is

dE"I,(2)
LLED

-z r+l (Z )

Replacing n by —n in (2.4), and using that J_,(z) = (-1)"J,(z) we get

d(z"J,
LRy

It follows from (2.5) and the chain rule that

d(OZ)L0Z)  Z)a0z) a1
dz - 2Vz T2

(Vz)" U, (z)

We will use this result to integrate by parts in (2.3). First we need a change of variables.

Let s=t?r2, Then, 2tdt=r=2%ds and (2.3) becomes

b b
¥ =T [ RS inds = 35 [ 160z 02ds,

r r

where g(s) = n‘f‘(‘/; ir).

(24)

(2.5

(2.6

27

Let g be a spline of order n+1. We can then integrate by parts in (2.7) repeatedly, and the final result

will decay rapidly at infinity. More precisely, g should satisfy

() g(s)isntimes cohtinuously differentiable for 0<s <o,
(ii) The (n+1)-st derivative of g is piecewise constant,

Gii) g®s) |, =g®s)l e =0 fork=1,....n
s=r S=or

Since g=(4m)™! for O<s<r2, we find after integrating by parts in (2.7)
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¥(r)=

(_2)n+1
2

re -

b ) P b’
[ sy nls >g<"+‘>(s>ds=‘"2r#21 [ Oy, (ls)g™*0(s) ds. (28)
0 r

Note that the boundary terms vanish because of conditions (i }—(iii ) above. The integral can be evaluated
explicitly, since g®*! is piecewise constant. To define g more precisely, we let b>1 and pick n distinct

points x, . . . ,X, in the open interval (r2, b%r2). Then

l 2

A

g(s)= # + Co(sir2 -1 for r’<s<x,

g(s)= —4-1; +Co(sir? =1+ -+« + Cu(sir® = x,/r**!  for x,<s<b’r?
g(s)=0 ' for s>b%r?

where C, . . . ,C, are constants which we have to determine. We note that except for the point s=b2r2,
g has n continuous derivatives regardless of the values of the constants Cy, . . . ,C,. At s=b?r? we must

however satisfy the following n+1 conditions:

C Cob=1)+ -+ +Co(b%x,/rH=0

Cod%-1)" + -+ +Co(b%*x,/r)* =0

Co(bZ_l)u+l 4o+ C,.(bz—x,../rz)"‘ = 7;_;_

For clarity, we set Aq=b?-1, A;=b?—x;/r?fori=1,...,n. Then, we can write the above continuity con-

- ditions in matrix form as follows:

a0 & - ATed [ o
% 8
=l - 29
A(I)I-H A;‘*‘l ... A:'H Cn -1
: I &
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This is a Vandermonde system, except for scaling of the columns. The matrix is non-singular, since the
A’s are distinct. The solution of the system is the last column of the inverse divided by 4= . In order to

find this solution explicitly we need the following two lemmas.
LEMMA 1  IfB is the matrix defined by B;; = A/7} for i j=12,...,n+1 then

n
B(;l...l)(k..,l) = H (Ak"A,' )_l fork = 0,_1, Y (S
i=0,imk :
Proof Consider the system B = e, , where @ = (dq, . . . ,a,)T and e, is the (k+1)-th column of

the (n+1Dx(n+1) identity matrix. This is equivalent to

p(A)=1 and p(A;)=Ofori=0,... ,k-1k+1,...,n where p(x)=ag+ax+ --- +a,x"*. By using

Lagrange’s interpolation formula we find p(x) = J] (x-A;)/(Ay—4;). Equating the coefficients of x”
i=0,i wk

R
in these two expressions we geta, = [T (Av—A:)™". Buta, =BGlyes.
i=0,iwk

This completes the proof of lemma 1.

LEMMA 2 The solution of equation (2.9) is

-1
C,' = [—4RA, n (A'_AI)] . fori=70. P X

J=0 ni

Proof Leth =By, ... Biahiyasn)" Where B is defined as in lemma 1. Since BB =7 and b

is the last column of B~T we have BTb = e, ., or componentwise

" A,‘f 0 fori=0,...,n-1

g.o—:_—: 1 fori=n

=TT Aj-Ar)

k=0 kuj
Hence,
i‘. A;'” _ O1 fori=0,...,n-1
j=0-4’mi IT ;- i for i=n
k=0 uj

which can be written in matrix form as (2.9) with



n -1
Ci =[—47IA,' H (A‘—A,)] for i=0,...,n

j=0jwi
This completes the proof.
We have now found the function g. To evaluate W(r) explicitly, we set xo=r2, x,,; = b%r? and

rewrite (2.8) in the following form

X1

( 2)u+1 R

¥r)=5—3 [ (5,5 )g**Vs) ds. (2.10)
i=0 x
Here,

(n+1)!Co for xo<s<x

ria+2
(n+1) _ (Il+1 1 .
8" s) =1 242 EOC‘ for x;<s<x;.

gn+12

F2n+2 EC for x,<s<x,41

Using these known values of g®**!)(s) and equation (2.6) we get

2842
X

[ 5 Y1, (5 )g**0(s) ds = f”—ﬂ—[zck] [ O Y (7 ds =

- 2 [ZQJ (G +2(~fx.~—+1)—(«lx_.-)"21,+z<4?.->], for i =0,1,....n
Then, |

i3

Oy

(Y15 g 0(s) ds = 250 z{(«f? Y42 2N . = (V) asV) T Ci
k=0 k=0

- A [(El?)"*m(&.:»":q - 2R Ul )}
k=0 i=0

And finally,



_N\r+2 n n
)= L0 [—(«lx.ﬂ)"”fmwxm)zck + 36 ARV )] @.11)
k=0 i=0

In order to get a convenient cutoff function, we choose x; =k;*r? for i=1,...,n where k,, ...k, are

positive integers. Set ko= 1 and k,,; = b. Then,

_9 n+2 1 n n n n
¥(r) = Ll—i—r,ﬁ* L [—b 2, obr)ECi + SOk, *ZJ.+2(k.-r>] @2.12)
k=0 i=0

To find Ks(x,y) we let Ws(s) = —812-\}'(%) and get

. rr
Kay)= L5 [s%ss)ds

T ri3

=20 [ uw) du (2.13)
0

Fortunately (2.13) can be evaluated explicitly when ¥ has the form (2.11). The only sticky part is to

ri/8
evaluate integrals of the form J u Dy (k;u) du. Using (2.4) and the chain rule we get
0

d(u_(uﬂ)-l,nl(kiu)) _ —k;1.+2(kiu)
T = uu+l :

Letting r tend to infinity in condition (iii) we see that f uW(u)du = (2n)"'. We can therefore write
) 0

(2.14)

ri8 on

[ w¥(u)du = (2m)™ - [ u¥(u)du. Thus it follows from (2.14) that
0 r/8 )

R

: . Janitkit)  JpuairB) | Jani(kir/8)
40y (kou)d =___l_ 1 +1 _ -
,.‘/'.5“ +2( u)du ki [‘ﬂ (4l (r/8)"“ ki (r/8)"”

since the limit as ¢ goes to infinity is 0. Combining (2.13) and (2.11) we now get after some calculations

I 253 8 O WY o) 3 VL P STk
KS(x »)’) = rz [ M - (r/8)"” [b Jn+l(br/8)k§ock Eocx kl Jn-o-l(kt’/s)}} (2.15)

To simplify the notation let
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=2k )" (n+1)!

¥Y; = 272" 2(n+IC; kP = - - for i=0,...,n
(b2-k? T kP -kD
j=0jni
and
R+ n+l < n+l - 1
Yost = 206(=2)"2(n+1)16"*1 3 C, = (=2b)**1(n+1)! .
k=0 : i=0 (b2__k‘2) H (kj2 _ kiz)
Jj=0j=i
We can then rewrite (2.15) in a more compact form:
(_ ,X)T r ~(a+1) n+l :
Ksx.y)= —2“% I+ [—S—] : {E 'YJJ,H.](k,"/S)} (2.16)
j=0

We will now present Hald’s convergence theorem for infinite order cutoffs. First, we need to intro-

duce the norms and seminorms
ol $D¥ max || || + D™ 2
w oy = Y DV max || + D™* max H,(d"®
o) E’o max || ol P Hae)

m+l
X | c=apy= S DY max || a'|] + D™+ max H,(d"x
|| ¢y = 0¥ max || 3] max, Hy@)

Here 3Y=09,"3," and Hy(f)=sup| f ()~ f ) | /| x-y |
xwy
THEOREM ( Hald [16] ). Let D be larger than the diameter of the support of w and assume that
|| @|| c*2py<C and | 9,"x(t) | c""""(D)S'%C for O0<A<1,v=0,1,...,m+1,m>6 and 0<t<T. Let our

assumptions on ¥ hold and set &= constant-h? with q=%(m+\)/(m+A-1) and c;=w(jh Y2, Solve the
differential equation (1.10),(1.11) by the classical Runge-Kutta method with At<h®*W* y>0. Let 1<p <oo.
Then there exist two constants Cy and hg such that

Hx@) =x@)]] , S Coh™H2 4+ (Ar)*)
forall h<hyand t<T.

We shall conclude this chapter by presenting three examples of cutoff functions out of the general class

given by (2.12) and (2.16).
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Examplel Letn=1, k=2 and b=4. Then

A0=15, A1=12,
- 42 _ 8 162 32 | 4o L _1|__32
0= He@-1  45° 177 Me4)1—4) ~ 36° 72"642[ 45 36] T 45
-1 -1 -1 1
Co and C1= g AAy ~ 1aar

" 4rBg(Ag-A) | 180

Plugging in these constants into (2.12) and (2.16) we get

Y(r)=

o (16756r) - 107320 +00)

and

— T '
Ks(x.y)= (¢ 2y n,: 2) [l - 45(3/ 52 [4.1 24ri8) = 5J,2r18) +J 2(r/8)]]

This cutoff function was introduced by Hald [16], and has been tried out on all the test problems in this
paper. The optimal value of & for this cutoff function seems to vary somewhat with the initial vorticity
distribution, but typically it lies between 0.3Vh and 0.4V . However, in a case with long time integra-

tions we needed to take a larger value of 3 to retain the high rate of convergence.

Example2 Letn=2, k,=2, k,=3 and b=4. Then
Ag=15, A=12, A=,

o B3 _ 48 643t 384

0 1538 360° " 12-(=3)'5 180°

__ 203 1296 oo b 11 1| __ 256
R=" 2 s - 280 B¢ 512)3’{360 180 © 280] 105
Coe -1 IS N -1 __1

07 4ndg(A-A)(Ad) | 1440m T amA(A-AQ(A-Ay)  T20m

-1 1
T 4mAy(A-Ag(ArAy) | 1120

C,
Plugging in these constants into (2.12) and (2.16) we get

Y(r)=

105nr* [51214(4r) = 7297 4(3r) + 224) 4(2r) = 1 o(r )]

and



16

ey 2 _ _
Ka(x.y) =22 [1 TR [12813(4r/8) 2437 4(3r 15) + 1127 421 /5) 713(r/8)]]

Example3 Letn=3, k=2, k,=3, k=4 and b=5. Then
AF24, A=21, A=16, As=9,

__ 164 __ 42 _ 25641 _ 1536
0=~ 21583~ 945’ T T 21125(3) 945 °
__ 129641 6561 . ___ 409641 _ 8192
25T 167(=5)(-8) 945 ' BT 971215 | 945"
1 1 1 1 3125
= 10000-4! —_ - —
Ta= 1000041 25 ~ 3780 T 4480 ~ 11340 945 ’
-1 1 -1 1
CO = = - . Cl
4mAG(Ag—A)(A—A2)(Ag—-As) 34560n

T 4nA (A -2 -B)(A-bs)  15120m

-1 1 -1 1
Cyr= =- , Cy= ’ = .

Again, plugging in these constants into (2.12) and (2.16) we get

¥(r)= 189(1)nr5 [15625]5(5r) — 327687 s(4r) + 19683/ 5(3r) — 3072J s(2r) + 42J 5(r )]

(=yx) 1
Ks(xy)= 2’1"2 [1— YT [312514(5r/8)—819214(4r/8)+65611‘(3r/8)—153614(2/8) + 4214(r/8)]]

A limited number of numerical tests, were carried out using this cutoff function, and the results

indicated the same rate of convergence as that obtained with Hald’s infinite order cutoff function.

Figures (2.1)-(2.3) show the graphs of the cutoff functions in these three examples.
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‘Example 1

Fig.2.1. Y¥(r)= [1613(4r)-— 10J3(2r)+13(r)]

45w’

10
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Example 2

Fig.22. ¥(r)=

1
105nr

4

[ S127 4(4r) ~ 7297 4(3r) + 2247 (2r) — T 4(r )]

10
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Example 3

1.0

08 |

06

Y(r)

0.2 -

- 00 |-

02 | L i l ] |

Fig.23. W¥(r)=

T (1562575(57) - 327687(dr) + 196837 53r) = 30727 5(2r) + 427 ()
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3. Numerical Evaluation of Infinite Order Cutoff Functions.

Since the cutoff functions derived in the previous chapter contain several teﬁns involving Bessel
functions, it is computationally expensive to evaluate these terms "individually”, using subroutines for
Bessel functions. Instead, we approximate the whole cutoff function by local polynomials. These poly-
nomials can be computed at the beginning of the program using for example the IMSL subroutine
"IRATCU" [18]. The computational labor involved in finding the appropriate polynomials is usually
negligible compared to the overall computations in a typical vortex computation, even when the integra-
tion time is short. Nevertheless, if many runs are to be made, it is better to store the coefficents of the
polynomials in a data file. In the numerical experiments of this paper we used polynomials of degree <9
to evaluate X 5(x,y ) with a maximum error of 107! and polynomials of degree < 12 to evaluate ¥(r) with

a maximum error of 1072, The details of the procedure are as follows.

STEP 1 The infinite-order Kg's derived in the previous chapter have the general form
Ks(x.y) = (-y %) F (r*18%)/5".
Estimate the maximum value M of r/§ that is likely to be encountered during the course of computa-

tions. In the numerical experiments presented in this paper we have used M =120,

STEP 2 For each positive integer j<M find the best polynomial approximation P; (r%/8% — j2) of the

function F (r%/8%) in the interval j—0.5 < r/8 <j+0.5.

STEP 3 Every time K(x.y) has to be evaluated, we first compute r%8% We then compute the
square-root of this value, rounded to the nearest integer k. Finally, we evaluate
Ks(x.y) = (=y x)T P, (r%8% - k282 If k>M , we can use a short asymptotic expansion to approximate F

rather than a polynomial, and when k=0, i.e. r%/8?<0.25 we use a truncated MacLaurin expansion of F .

In the same manner, we find the collection of polynomials Q;(r) t approximate ¥(r). Then ¥5(r)

is approximated by Q, (r%8* — k?)/5 where k is the integer closest to /3.
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The error bounds in the polynomial approximations are provided by the subroutine "IRATCU". In
this case it turns out that if we use polynomials of constant degree, the error gets smaller as 7/3 gets
larger, and conversely, if we specify an error bound of say 10~!°, we may use polynomials of lower
degree for larger arguments. Finally we should point out that if we make the intervals shorter we may be
able to use polynomials of lower degree, but it has been our experience that in order to reduce the degree
of the polynomials significantly, say by a factor of two, without increasing the error we must make the

intervals much shorter which does not seem practical.

To give some indication of typical cases, we will list the coefficients of the polynomials which
approximate F and ¥ in three different intervals in the case when W is Hald’s infinite order cutoff, i.e.
example 1 of the previous chapter. We should point out that Py and Q, are the truncated MacLaurin
series of ¥ and F, not the best polynomial approximations of these functions for r/3 <0.5. However,

fork 21, P, and Q, are the best polynomial approximations of ¥ and F.

For /8 < 0.5 we use

Py(x) = ic(o,ul)xk, , Qolx) = !Zld(o.hl)xk,
k=0 k=0

Cop = 0278521150410817 iy = 0.557042300821634
coz =-0.147964361155746 dpa =-0.591857444622986
con = 0.400443231381822-107! dps = 0.240265938829093
Coa =-0.669859081907091 1072 dpgy =-0.535887265525673 -107!
cos = 0.766254806513328 -107° dosy = 0.766254806513328 -1072
Cog =—0.638691859290432-107* dps =-0.766430231148519 -107
con = 0405541846198420-10°° don = 0.567758584677788 -107*
Cog =-0.202773823804794 -10°¢ deg =-0.324438118087670 -107°
co9 = 0.819291107003087 -1078 dgg = 0.147472399260556 -107
Coa0 =—0.273097279835706 -10~? doiey =-0.546194559671411 -107

doiy = 0.168059902078596 -107
d12 =-0.436519250570586 -107!
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For 49.5 <r/8 < 50.5 we use
s k 4 k
Pso(x) = X csopsn X" s Qso(x) = Y dsox+1)X"»
k=0 k=0

cony = 0.636614909788761 -10~* dsoyy = 0.460700238644189 1077

Cs02 =—0.254567912072669 1077 dsozy = 0.294187407199615 -10°¢

ciso = 0.104739981041642 -1071° desos =-0.127067586043915 -107°

Cs04) =—0.103221399644189 -10712 dsoqy =-0.503513664434355 10712

— . 13

Coos) =—0.181116361842747 1076 dsos = 0.204816631431159 107
desog = 0.229931884309735 10716
deson =-0.113942361053185 -1077
disosy =-0.220120185455031 -10°%
dsogy = 0.296391416039998 -10°2
d 5010y = —0.886890490271324 -10°%

For 99.5 < r/8 < 100.5 we use

2 ) 7
P1oo(x) = 3¢ qooxeny X*s Q100(x) = X doox+nyx*,
k=0 k=0 .

caoon= 0.159154820701304 -10~* d 100,41y = ~0.894075393611259 -10°°

¢ 100 = —0.159211079192825 -10°% dgozn= 0.308592662541504 107

caooz= 0.163998371754908 -10712 d 1003 = —0.185399763454803 -10°12

d .4y = —0.226344722920123 1071
dgosy= 0.278116058868214 -107'6
daoe= 0.452272542132804 -10713
d 007y = —0.424452772521097 - 1072
d o8 = —0.374858233204224 -1072

In the appendix we give a fortran program which generates the coefficients of the polynomials

which approximate F and ¥ in every interval up to 119.5 < /8 < 120.5.



4. Derivation of an eighth order cutoff function with compact support.

Although the infinite order cutoff functions derived in chapter 2 give the best accuracy for smooth
flows, they suffer from the disadvantage of not being compatible with any of the known "fast", i.e. O (N),
vortex methods such as the Rokhlin-Greengard algorithm {23} or Anderson’s method of local corrections
[1]. The infinite order cutoff functions may still be preferable in such cases where a small enough error
can be achieved with a relatively small number of vortices. This is the case in the test problems presented
at the end of this paper.

For the cases in which a large number of vortices is necessary, but in which the flow is still quite
smooth, e.g. the support of the vorticity may be very large, we propose an eighth order cutoff function
which is derived in this chapter. Since it has compact support, it can be implemented in combination with
"fast" vortex methods. .We must however bear in mind that the speedup in using a fast algorithm is lim-
ited by the size of the cutoff parameter & , which for high order cutoff fuﬁctions must be proportibnal io
V& in order to maintain high accuracy for long time integrations. In this case, the amount of computa-

tional labor due to "local” interactions is O (V').

We shall look for a cutoff function W(r) , where r=Vx2+y?, satisfying the following conditions:
@) [¥(r) dudy =1
RI
@ii) J'x“ y"W(r)dxdy =0, for 1<n+m <7, where n and m are non-negative integers.
(i) W(r)=0 for r21 and ¥®(1)=0 for k=1,...,8.
Switching to polar coordinates, (ii) becomes:

-4 -
cos™ 0 sin™0 r**™W(r)r drd = j cos"0 sin"'e[ j sl (DT dr] de
0 0

[

Oty

u ) .
= { c0s"0 sin™0 d 0 g rrmwr) dr,



But,

2z ® 2=
[ cos"8sin"0d0= [cos*@sin"0d0+ [ cos"8sin™0d6
0 0 x

=(1+(-1)*") [ cos*6 sin"0 dO
0

=0, when n+m is odd.

Therefore, condition (i ) reduces to £ r*¥(r)dr =0 for k=3,5and 7.

a(l-r»’(+bri+crt+dr®  for 0<sr<1
Now we let W(r) = 0 for r>1

and solve the following linear system for ¢ ,b,c and d :
1
jr3(l -’ +bri+crt+dr%dr =0
0

1
z[r5(1 -’ +bri+cr*+dr8dr =0

—

fria-ry’Q+br2+crt+drdr=0
0

1
[ar(=r®°(1 + br%+ cr® + drS) dr = (2m)™
0

The solution is @ = 52/r, b =-21,¢ =105 and d =-140.

Hence,
—-52(1 = r3°(140r® - 105r* + 2172 - 1)yx  for 0sr<1
¥(r)= 0 for rz1
The corresponding K g is:
10 2 3
(__ ,X)T r2 r2 ’.2 ’.2
—mLz[u[l-gz—] [286—1092[1—-5—2 +1365| 1- 55| 560l 1- for r <8
K&(X-)’) = (
—y X 21

2rr? for r >3



This cutoff function was tried out on test problems 1-3, and the results are compared to those
obtained using Hald’s infinite order cutoff function, at the end of this paper. We found that the optimal

value of § for this cutoff function is about 1.7¥k for test problems 1-3.

The Fourier transform of ¥ is given by

§(p) = 665611 Jio(t)  84Jy(r)  25200(r)  26880J,3(¢)
)= 2 Q0 T + 12 - 13

¥(¢) is bounded for all ¢ and ¥(¢) is of order O (1~1%5) as t —s00. Hence W satisfies the following condi-

tion with L=10.5.

@iv) For some L>0, and for any double index o

sup,| DE¥()| < Coll+] k| yE-1e!
ke

We shall now present a special case of a convergence theorem for vortex methods due to Beale and

Majda [7], which is applicable to the eighth order cutoff function derived here.

THEOREM ( Beale and Majda [7]). Assume that the cutoff function ¥ satisfies We C2(R?) and
conditions (i),(ii) and (iv) for some 2 <L < oo, Choose &= constant-h?, with q < (L-1)/(L+8). If the
velocity field u(x,t) is sufficiently smooth for x€ R>and 0<t ST and the initial vorticity distribution

has compact support, then for any 1 < | < e and T>0 there exists a constant ho>0 such that for all h<h,
- % ,. 8
&gl | xi(2) = %) || 2 < CA™,

max || uy(t) - ()| r < Ch™.

Since L=10.5 for our cutoff function, we can take ¢=0.5 <9.5/18.5, which would give us fourth
order convergence if the flow is smooth enough. Fig. (4.1) shows the graph of the eighth order cutoff
function . We note that the shape of the graph is similar to the shape of the graph of Hald’s infinite
order cutoff function ¥ (Fig. 2.1), but the scaling is entirely different. In particular, ¥(0)=52/% while
W(0)=1.75/n. Therefore, rather than comparing ¥ and ¥, we compare ¥, and ¥, where
a=Y52/1.75 and W, (r)=a 2¥(r/a). Then, ¥, (0)=P(0), and interestingly enough we see by plotting

Wo(r) and ¥(r) on the same graph, that Wo(r)=\¥(r) for any r. See fig. 4.2. It is also interesting to



compare the Fourier transforms of these two cutoff functions. Since ‘f‘a(t )=‘I"(w ), we plot ‘f’(w) and
‘f’(t) on the same graph. See fig. 4.3. Once again, we get close agreement. We conclude that if we use
8=Ch? with the eighth order cutoff function ¥, and §'=C’a? with Hald’s infinite order cutoff, we should
have C/C’=V(52/1.75)=5.45. Indeed, in test problems 1-3 we found by experiments that §=0.3Vh was
the best choice for Hald’s infinite order cutoff function while the best value of § for the eighth order cut-
off function was about 1.7V . Note that 1,7/0.3=5.67! This analysis suggests that if we have found the
best value of & as a function of h experimentally for a particular cutoff function ‘¥, then we can deter-
mine the best value of 3 as a function of & for any other cutoff function ¥, provided both cutoff functions

are bounded and positive at 0. Take

1”2
W
Soptimat = (1) optimat [ ¥, (0))]
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15
¥(r)

10

27

8—th Order Cutoff Function

+ | | 1 1
0.0 0.5 . 1.0 1.5 2.0
r

) -52(1-r%)°(140r¢ - 105r* + 21r2- )i for 0<r <1
Flg. 4.1, \P(I‘) = 0 for rz21i
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0.1

Infinite Order Cutoff vs. Scaled 8-th Order Cutoff

Fig. 4.2. Solid curve = W4(r), dotted curve = ¥(r), a=V(52/1.75).

Y(ry= [ 167 5(4r) = 10J,2r) + J (r )]

45nr3

10
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Fourier Transforms of Hald’s Infinite Order Cutoff

and the Scaled 8—th Order Cutoff
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Fig. 4.3. Solid curve = W(ar), dotted curve = ¥(¢), a=V(52/1.75).

@2r)2 for O<<1
. " (2r) 244426214145 for 1t<2
¥ =1 (2mr2256-32e241%/180 for 2<1<4

0 for 24
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5. Rezoning

Numerical experiments with infinite order cutoff functions showed that for smooth flows these cut-
offs give extremely accurate values of velocity and vorticity for short integraﬁon times. Unfortunately,
this high accuracy is lost as time increases, so that for long integration times, these cutoffs are not
significantly more accurate than lower order cutoffs. Unfortunately, there has been no satisfactory expla-
nation of this phenomenon. We shall show that one way to overcome this problem is the rezoning stra-
tegy suggested by Beale and Méjda [8]. We will present a version of rezoning similar to theirs, which we
call version 1, and a new method, which we call version 2.

First we note that since V5 approximates the delta function as -0 we have at time =0 that

o(z0) = T ¥s(z-x,0))c,
Jed

This holds for all z. Here J is the set of all double indices j = (j;, j2) such that jhe Q(0), the support of
the initial vorticity distribution. Since vorticity is preserved along particle paths, we also expect that at

later times ¢

wx(z, 1) = jz‘j‘lﬁs(z—x,(t ))cy 5.1

In particular, letting z=x,(¢) in (5.1), gives

ox(xy(t), t) = 3 Ws(xi(t)x(t))c; (5.2)
Jel

Multiplying both sides of (5.2) by A2, and recalling that ¢ ;=h2w(x,(t), ¢) for any ¢ gives

¢ = h23 Ws(xi(1)-x,())c; (5.3)
Therefore we define -
HOE ;,E;st(x.(: x(0)ey (54)
and
Eft)= [ hzj:z,’(c," - c,)’] ” (5.5)

Here E () stands for "the average vorticity error along vortex paths”, With these preliminaries out of the

way, we can now present the first version of rezoning.
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Version 1

STEP 1 First compute E ,(0). Then, as in the standard vortex method, solve the following system of

ordinary differential equations
WO s m@=in, 5.6)
dt
where
U(t) = 3 Ks(Xi(t) — %y(1))c;. (5.7)
jed ’

After each time-step At, calculate E 4(¢) and E ,,(¢ )/E ,(0). Continue to solve (5.6), (5.7) until

Eq(1)
E40)

>n

where M is a parameter we have to specify. In our numerical experiments we have used n=1.1, n=1.25, or

N=1.5. When E ,(t)/E ,(0) > n we no longer solve (5.6), (5.7) but go on to the next step.

STEP 2 Suppose =T, when we quit step 1. Now we set Zj(T;) = X(T;) for every jeJ. Then we
introduce a new square grid, occupying a region A c R2, which is somewhat larger than what is needed
to cover all point vortices at time ¢=T,. Let J, denote the set of double indices j such that jheA . For
every je J, introduce a new vortex at every grid-point jh. We use the old vortices one last time to com-

pute a new "initial"” vorticity distribution. To be more precise, we let

(CDnew = hzlzj‘l’s(ih =X (TXc Yo for every ieJ, (5.8)

Now we "throw away" all the old vortices X; and denote the new vortices as X; with X;(T',) = ja. We then
delete all the new vortices X, for which | (¢ ). | <€, Where € is a certain tolerance. Let J, be the subset
of J4 such that | (¢)nm | 2 € for every i€ J;. Now for ¢ 2T, we solve the following larger system of

ordinary differential equations.
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Jeh
di(t)
= d
a "m0 (5.10)

Remark : Here the %’s denote the original vortices. If we are not interested in the paths of the original
vortices, but the paths of some other particles, we should let the Z;'s denote these particles. In that case,
we do not set z(T;) = xy(T,) at the begining of step 2. |

Now again we compute E 4(t) and E (¢t )/E (T,) after every ﬁme-s@ At, but now using the new vorti-

city coefficients in (5.4) and (5.5). Continue solving (5.9), (5.10) until E ,(t )E (T;) > 1.

STEP 3  Suppose t=T, when we quit step 2. Now repeat step 2 but replacing T, by T in all the equa-

tions. Also in this step, do not set Zy(T) = X(T2), for je J,. Continue this process until we reach £=T .

Numerical experiments using this technique have indicated a great reduction in velocity errors for
long integration times compared to the corresponding errors without rezoning, but with the same grid-
spacing h. In vortex methods without rezoning, we are forced to pick a considerably larger value of & for
long integration times. With rezoning however, we can usually use values of & close to the optimal value
of § at time ¢=0. Nevertheless, we have also noted that when we use this form of rezoning, the velocity
error takes a jump every time a new vorticity distribution is wﬁpuwd using (5.8). These jumps are small
compared to the sharp increase in error experienced when no rezoning is applied, but still significant
compared to the marginal increase in velocity error at intermediate ﬁmes. To reduce this effect, and the

effect of "numerical viscosity” we propdse the following scheme.

Version 2

In version 2 we introduce a finer grid than in version 1, for the purpose of calculating the new vor-
ticity distributions on the new grids. The velocity evaluations are however done on the coarser grid. This
method has some similarities with multi-grid methods, but it does not fall into the framework of such

methods. The details of version 2 are as follows.



STEP 1 Let Qg be the set of double indices q=(q;, 42) such that qheQ(0), where g, and g, are
integers or half —integers. For every qe Q, introduce a vortex xq with strength ¢ =w(qh Ya2. Let J be

the integer-pair subset of Qo Then solve the following system of ordinary differential equations, for

| every qe Q.

di;‘(t) = ﬁq(t)’ . iq(O) = qh , (5.1 1)
where
iig(t) =12‘}K 8(Xq(t) = X(t))c). (5.12)

After each time-step Ar, calculate E(t) and E,(t)/E o(0) using (5.4),(5.5). Note that in calculating
E ,(t) and E (¢t )/E ,(0) we use only the vortices and vorticity coefficients with integer indices. Continue

to solve (5.11), (5.12) until

E )
E0)

>1

STEP 2 Suppose =T when we quit step 1. Set Z(T,) = %(T) for every jeJ. As in version 1, we
introduce a new square grid, occupying a region AcR2. Let Q, be the set of double indices q=(¢1, ¢2)
such that ghe A, with ¢; and ¢, assuming both integer and half-integer values. Let J, be the integer-
pair subset of @, . For every qe Q, intoduce a new vortex at every grid-point qi. Define the new vorti-

city distribution by

(€ Jnew =h%14 T, W5 (qh — (T )XC Potas for every qeQ, C(5.13)

reQe

Note that the effective grid-spacing in (5.13) is 4/2 rather than k. That is why we have a factor of #%/4 in
front of the summation sign instead of 42. We must also replace W by Wy, where &’ is the cutoff parame-
ter corresponding to a grid-spacing of h/2. If for any value of A we pick d=constant-h?, then §'=2773.
The purpose of using (5.13) instead of (5.8) is to make the error in the computed new vorticity distribu-
u'oﬁ small compared to the error in the velocity evaluations, thereby reducing "numerical viscosity”. As
in version 1, we now "throw away" the old vortices X, and use this notation for the new vortices such that
Xq(T1) = qh. Then let @, be the subset of Q4 such that | (¢ Jams | > € for every qe Q,, where € is a cer-

tain tolerance. Let J, be the integer-pair subset of Q. For ¢ 2 T solve the following system of ordinary



differential equations.
ialx, t) = jz] Ks(x - ij(‘ ))(Cj)m ’ (5.14)
ds
x;t(t) — iRy 1) %(T\) = qh, for every qeQ;,
i .
za;ft) =0z, 1) (5.15)

After every timestep At compute E4(t) and E ,(tYE (T,) using the new vorticity coefficients with

integer indices, and continue solving (5.14), (5.15) until E ,(t )/E o(T;) > 1.

STEP 3  Suppose t=T, when we quit step 2. Repeat step 2 replacing T, by T, where applicable. As in

version 1, do not set Z(T2) = X{(T 2), for je J, at this point. Continue in the same manner until £=T 5.
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6. Numerical Results

We present five test problems. In the first three test problems, the solution is known analytically
since the vorticity distribution is radially symmetric: The flow is circular, and the velocity at any point

and at any time is given by

u(x.y)=(uy)=pr)-yx) (6.1)

r

where i(r) = = [ s(s) ds is the angular velocity of the flow.
r’o

The other two test problems do not have a known analytical solution. Here we show the numerical
solutions graphically, and the rate of convergence is estimated by using Richardsons’s extrapolation. In
the first three test problems, two different cutoff functions are used, namely Hald’s infinite order cutoff
and our 8-th order cutoff. Unless specified otherwise, we have used version 2 rezoning. In all cases we

used the classical fourth order Runge-Kutta method for time integration.

We now look at the first three test problems in detail. In each of these, the vorticity distribution has
the form
(1-r3t for r<1
)= 62)
0 for r>1
where k=3 in test problem #1, k=7 in test problem #2 and k=14 in test problem #3. The case k=3 has
been tested numerically by Beale and Majda [8] and Beale [5], and the case k=7 by Perlman [22].

It can be shown that the Fourier transform of a vorticity distribution of this form is CyJp. (¢ )/¢¥*!

where C, is a constant. Thus, (1) is of order O (¢~**!-9) as —o0, although (r) has only &£ bounded
derivatives. In general, a vorticity distribution ® with compact support and ¥ bounded deﬁvaﬁves only
guarantees that 6)(1) is of order O (¢™*) as ¢ —co. This means that for test problems #1-3, Hald’s estimate,
(16, p. 568 ], of the moment error for infinite-order cutoffs can be improved to order O (8**%%) rather than

o™

The solutions of the Euler equation for these vorticity distributions are given by (6.1) with



1- (l - r2)k+l ] <
2k+)r: FTE
W)= 1 (6.3)
2(k+1)7'2 for r>1
We measure the velocity error in the discrete L?norm.
ARL
E.=| h¥X ] uy(t) - ig(0) | (6.4)
The rate of convergence is estimated by using two successive values of 4.
In(E,, (h,)/E, (h2))
rate of convergence = inh Thy) 6.5)

Tables 6.1a and 6.1b give the velocity errors in test problem #1 at different times up to time ¢=50, for dif-
ferent values of ., and for the two different cutoff functions. We choose S=constant-Vh so that the
moment error and the discretization error will be of approximately the same order in /. The proportional-
ity constant has been chosen so as to minimize the velocity error at time ¢=0 when 4=0.100. Comparing
these two tables, we see that the errors are only between 5% and 29% larger when the eighth order cutoff
is used. The rates of convergence for the two cutoffs are also approximately the séme for corresponding
times ¢, as seen in tables (6.4a) and (6.4b). Since we take &pmponional o Vi, we can expect the
moment error to be of order O (h!7%) and the discretization of order O (h?), with the infinite-order cutoff
function. We could therefore only expect a rate of convergence of 1.75. However, the observed rate of
convergence is greater than 2, In particular, at time ¢=0, the computed rate of convergence is 2.3, both
using infinite-order and eighth order cutoff. Since Perlman [22] has shown numerically that at time ¢=0
the moment error is much larger than the discretization error, this seems to indicate that the moment error
is actually of order O (5*€) rather than the best theoretical estimate of O (5>°). Beale and Majda [8]
observed a rate of convergence of 3.6 at time ¢=0 for this problem, using an eighth order Gaussian cutoff
function, but with § proportional to 4%7%, which would correspond to a moment error of order O (5*%)
which is quite close to what we observed. Beale and Majda [8] also applied rezoning to this problem,
with £=0.125 and 8=0.25. In comparing our results with theirs, we have to take into account that they

reported a relative velocity error, obtained by dividing the absolute error by an average velocity U, where
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1
U2=%f | Iulzdxdy=2£|u|2rdr.

rsl

For test problem #1, U = 0.1505, so if we divide our values of E, in tables 6.1a and 6.1b by 0.1505, we
obtain relative velocity errors ranging from 0.011% at time =0 to 0.16% at time ¢=35, using infinite-
order cutoff with £=0.125 and 8=0.3Vk =0.1061. With the eighth order cutoff, the corresponding relative
errors are 0.012% at time ¢=0 and 0.23% at time ¢=35. Beale and Majda [8] reported relative errors of

0.055% at time ¢=0 and 0.30% at time t=36.

The results of test problem #2 are summarized in tables 6.2a-c. As in test j)mblem #1, we pick
8=1.7Vh , for the eighth order cutoff, and 8=0.3Vk for the infinite order cutoff. Numerical tests have
shown that these values of 3 are close to the optimal ones at time ¢=0, with #=0.100, even for this vorti-
city distribution. We also repeated the tests using the infinite-order cutoff but with 8=0.355Vh . Compar-
ing table 6.2a to table 6.2b we see that the errors using the infinite-order cutoff are smaller than the
corresponding errors for the eighth order cutoff by a factor ranging from about 3 to 6. Nevertheless, the
rate of convergence is around 4 for both methods at all times. Theoretically, the moment error for
infinite-order cutoffs is of order O (87-) for this vorticity distribution, so since §is proportional to Vi we
would expect a rate of convergence of 3.75 in this case. Hence, the observed rate of convergence is
slightly higher than the theoretical rate as in test problem #1. Now comparing table 6.2a to table 6.2c we
notice that by choosing a larger proportionality factor between 8 and Vh we get larger velocity errors at
time t=0 as expected since the moment error increases. At later times however, the errors seem to
become almost equal for the two 8'§ but always with the smaller error for the smaller 8. This is very dif-
ferent from what we get in vortex methods without rezoning, where the errors at later times are smaller
for larger values of 8. Periman (22] tested Gaussian cutoff functions of different orders on this vorticity
distribution, but without rezoning. Using an eighth order Gaussian cutoff, she had to take 8=h%7 to
minimize the velocity error at time ¢=10 and 8=4%¢ to minimize the error at time ¢=20. With these
parameters and h=0.05, she obtained a minimum error of 7.42 -10~° at time ¢=10 and 5.77 -107~* at time
t=20. Our smallest errors at time t=10 and ¢=20, with £=0.05 are 3.59 -10~7 and 7.36 - 10”7 respectively,

so the rezoning procedure seems to pay off, at least when the flow is this smooth.
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TABLE 6.1a
E,
t h=0.125 h=0.100 h=0.0625 h=0.05

0.0 0.1665 -107* 0.9000 -10°5 0.3142-10°° 0.1886-10°°
50 0.2962-107* 0.4347 1075 0.2552 107
100 0.5340-10™ 0.2562 -10™ 0.6775 -1075 0.3829 1075
15.0 0.8373 -10°* 0.1006 -10~* 0.5443 -107°
20.0 0.1201 -1073 0.5473 -107* 0.1377-107* 0.7372-1075
25.0 0.1590 1073 0.1810-107* 0.9633 -1075
30.0 0.2011 1072 09110107 0.2268 -10™ 0.1200-10™*
- 350 0.2479 -1072 0.2776 107 0.1456 -10™
40.0 0.2982 -1073 0.1358 -1073 0.3321-107* 0.1727-10*
45.0 0.3539-1073 0.3890 -10™* 0.2021 -107*
50.0 0.4141-1073 0.1880-1073 0.4559 -107* 0.2327-107*

(r)=(max(0,1-r?)*
Cutoff function: Hald’s infinite —order

n=1.1
5=03Va
At =4.0h

T max = 50.0
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TABLE 6.1b
E,

t h=0.125 h=0.100 h=0.0625 h=0.05
0.0 0.1751-10°* 0.9473 1075 0.3329 -10°° 0.1998 -10°5
50 0.3398 -10~* 0.4969 107 0.2689 -1075

10.0 0.6122 -107* 0.2945 -10™ 0.7661 -1075 0.4233-10°°
15.0 0.9967 -107* 0.1103 -107* 0.6031 -10°°
20.0 0.1519-1073 0.6172:10%  0.1497 -104_ 0.8168 -107
250 0.2114 1073 0.1956 -107* 0.1060 -107*
30.0 0.2757-1073 0.1062 -10°* 0.2429 107 0.1339 107
35.0 0.3467 1073 0.2999 -107* 0.1642 -10™*
400 - 0.4207-1073 0.1594 -1073 0.3609 -107* 0.1974 -107*
45.0 0.4972-1072 0.4284 -107* 0.2311 107
50.0 0.5799 -1073 0.2225-1073 0.5000 -10™* 0.2681 -107*

(r)=(max(0,1-r)*
Cutoff function: 8—th order with compact support

n=11
5=17Vn
At =4.0h

T nax = 50.0



TABLE 6.2a

E,
t h=0.125 h=0.100 h=0.0625 h=0.05
0.0 0.3242 1073 0.1293 -10°° 0.1587-107¢ 0.6384 -1077
50 0.9354 -10°5 0.4465 -107¢ 0.1859 -107¢
100 0.1634 -10™ 0.5244 -10°° 0.8657 -107% 0.3588 -10°¢
150 0.2375-107* 0.1316 -10°° 0.5432 -107%
200  03291-10*  0.1108-10*  0.1791-10°  0.7356-10°°
25.0 0.4298 -107* , 0.2287 -10°° 0.9409 -107¢
30.0 0.5286-10™ 0.1815-107* 0.2810-10°° 0.1143 -1075
35.0 0.6505 -10~ 0.3347 -10° 0.1358 -10°°
40.0 0.7567 -107* 0.2639 107 0.3910-10°° 0.1580-107°
450 0.8856 -10™ 0.4494 -10°5 0.1809 -10°°
50.0 0.1027 1073 0.3600-10*  0.5098 -10°° 0.2046 -10°5
55.0 0.5724 -10°°
60.0 0.6373 -107°
65.0 0.7045 -10°5
70.0 0.7742 1075
75.0 0.8460 1075
80.0 0.9203 -10°°
85.0 0.9967 -10°5
90.0 0.1076 -10~*
95.0 0.1157-107*
100.0 0.1240 107

o(r )=(max(0,1-r?)’
Cutoff function: Hald’s infinite—order

n=1.25
§=03Vh
At =4.0h
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TABLE 6.2b
E,
t h=0.125 h=0.100 h=0.0625 h=0.05
00  0.1352-10°* 0.4651-10°5 0.8460 -1078 0.3576 1107
50 0.3361-107 0.1989 107 0.7915 -107%
10.0 0.6466 -1074 0.2441 -107 0.3822 1073 0.1518 107
150  0.1103-10° 0.6061-10° 0233610~
20.0 0.1521 1073 0.5617-10*  0.8522°10°° 0.3209 -107°
250 0.2077-1073 0.1117-107* 0.4182-107°
30.0 0.2642 -107 0.9726 -107* 0.1414 -.107* 0.5246 -10°75
350  0.3282-107 01723 -107* 0.6370 -10°*
40.0 0.3964 -107° 0.1460 ‘1072 0.2057 -107* 0.7588 -107°
45.0 0.4676 -1073 0.2415 -107* 0.8886 1075
50.0 0.5477 -1073 0.2034 -1073 0.2794 -10~* 0.1023 107
55.0 0.3186 107
60.0 0.3600 -107*
65.0 0.4030-107*
70.0 0.4481 -107*
75.0 0.4947 -107*
80.0 0.5440 -107
85.0 0.5948 -107*
90.0 0.6476 -10™
95.0 0.7012 -107*
100.0 0.7578 -107*

o(r y=(max(0,1-r )’
Cutoff function: 8—th order with compact support

n=125
8=17Vh
At =4.0h
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TABLE 6.2¢
E,
t h=0.125 h=0.100 h=0.0625  h=0.05
0.0 0.1740-107* 0.5371-10°5 0.7276 -107¢ 0.2645 -107¢
5.0 0.3007 -107* 0.9202 -107¢ 0.3368 -10°°
10.0 0.5173 -107* 0.1276 -107* 0.1397-10°° 0.4897 -107¢
150  0.7608-10% 0.1820-10°  0.6774-10°8
200  09869-10*  02411-10*  02347-10°  0.8770-10°°
25.0 0.1225-107 0.2890 -107° 0.1087 -107°
30.0 0.1486 -1072 0.3916-107* 0.3456 -10°° 0.1305 -107
350  0.1727-10° A 0403510 0.1532-10°
40.0 0.2002 -1073 0.5612 -107* 0.4633 -10°° 0.1763 -107°
45.0 0.2290 -107 0.5259 -10°5 0.2002 -10°5
50.0 0.2565 -1073 0.7570-107* 0.5899 -107° 0.2248 -10°°
55.0 0.6553 -107°
60.0 0.7226 1075
65.0 0.7912-10°°
70.0 0.8620-107°
75.0 0.9344 1073
80.0 0.1009 -107*
85.0 0.1084 -107*
90.0 0.1162-10
95.0 0.1242-10°*
100.0 1074

0.1323

o(r )=(max(0,1-r%)"
Cutoff function: Hald’s infinite—order

n=125

5=0.355Vh

At =4.0h
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TABLE 63a
E,

t h=0.125 h=0.100 h=0.0625 h=0.05
0.0 0.4859 -107* 0.1782-107* 0.1304 1075 02337 -10°¢
5.0 0.1002 -1073 0.2428 -1075 0.4164 -107°

10.0 0.2033 -1073 0.8081 -107* 0.4243 -1075 0.7356 -107%
15.0 0.3154-1073 0.6225 -1075 0.1085 -107°
20.0 0.4347-1072 0.1502 -1073 0.8455 -1075 0.1445 -1075
25.0 0.5720-1073 0.1081 -107* 0.1813 -1075
30.0 0.7052 -1073 0.2375 -1072 0.1321-107* 02184 -1075
35.0 0.8539 -1073 0.1561 .10~ 0.2559 -10°°
400  0.1000-1072  03369-10°  0.1804-10*  0.2940-107°
45.0 0.1160-1072 0.2070 -107* 0.3325 -1075
50.0 0.1339-10°2 0.4475 -1072 02357 107 0.3711 -1075

@(r )=(max(0,1-r%)"*
Cutoff function: Hald's infinite —order

n=11
5=03Vh
At =4.0h

T max = 50.0



TABLE 6.3b
E,

t h=0.125 h=0.100 h=0.0625 h=0.05
0.0 0.5584 -107* 0.2759 -10° 0.5139-10°° 0.2264 -107°
5.0 0.1416 -1073 0.1146 -107* 0.9267 -1075

10.0 0.2795 -1072 0.1289 -1073 02214 -107* 0.9603 -10°°
15.0 0.4881 1073 0.3403 -107* 0.1485 -10™*
20.0 0.7324 -1073 0.2955 -10°2 0.4790 -10™* 0.2050 107
25.0 0.9890-1073 0.6326 -10~* 0.2662 -107*
30.0 0.1238 -1072 0.7755 1073 0.7981 -107* 0.3306 -107*
35.0 0.1554 -1072 0.9687 -107* 0.3997 -107*
40.0 0.1807 -1072 0.1819-1072 0.1149 1073 0.4732-107*
45.0 0.2160 -1072 0.1340 1073 0.5512-107*
50.0 0.2522-10°2 0.3071 1072 0.1554-10° 0633710~

o(r )=(max(0,1-r))"*
Cutoff function: 8-th order with compact support

n=11
5=17h
At = 4.0h

T max = 50.0
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TABLE 6.4a
Rate of convergence of the velocity approximations in test problems 1-3,

using Hald’s infinite order cutoff. 5=0.3Vh except as indicated otherwise,

Rate of Convergence

o(r)=(1.0-r2)* o(r }=(1.0-r2y’ or)=(1.0-r2,  o@F)=1.0-r3*

8=0.355Vh
0.0 2.3 4.1 45 1.7
10.0 2.6 4.0 4.7 78
20.0 2.8 4.0 44 79
30.0 2.8 4.0 44 8.1
40.0 2.9 4.1 43 8.1
50.0 30 4.1 43 8.3
TABLE 6.4b

Rate of convergence of the velocity approximations in test problems 1-3,
" using the 8-th order cutoff. 5=1.7Vk.

Rate of Convergence

t o(r)=(1.0-r?? o(r)=(1.0-r?’ o(r)=(1.0-r3)*

0.0 2.3 39 .37
10.0 2.7 4.1 3.7
20.0 2.7 44 38
30.0 27 4.4 40
40.0 2.7 45 40

50.0 28 45 - 40
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In test problem #3, the difference in velocity errors between the two cutoff functions is small for 1=0.125
, but it increases as 2 gets smaller. For #=0.05 the error is 9.7 times smaller at time =0 and 17.1 times
smaller at time ¢=50 for the infinite-order cutoff compared to the eight order cutoff. The rate of conver-
gence is close to 8 for the infinite-order cutoff, but as expected around 4 for the eighth order cutoff. The
theoretical rate of convergence for the infinite-order cutoff is 7.25 in this case, since the moment error is
of order O (§'*%), so once again the observed rate of convergence is higher than the theoretical rate. We
also made a comparison of rezoning version 1 vs. rezoning version 2 using test problems #1-3 with the
infinite order cutoff. The results are shown graphically in figures 6.1-6.3. We see that version 2 gives a
significantly lower error, and that the gap between the two versions increases with increasing smoothness
of the flow. The sharp peaks in the graphs are due to the fact that sometimes the velocity error increases
faster than the vorticity error. Then, after rezoning, the velocity error decreases again. In practice, these
peaks do not matter, since the error at any time is much smaller than what is obtained without rezoﬁing as

we see in Fig. 6.4.

In the fourth test problem, we distribute the vorticity on two circles according to

@(x,y) = (max(0, (0.25-( | x | -0.5 2-y?))’ 6.6)

Thus, we have two vorticity patches with the vorticity distributed as in test problem #2. Note that this
test problem differs from the famous test problems considered by Christiansen [13]). Christiansen [13]
used uniform vorticity distribution within the two circles. However, in our test problem the vorticity is
concentrated at the centers of the circles and decays to 0 in a smooth fashion as we approach the boun-
dary. The numerical solution using Hald’s infinite-order cutoff with rezoning is shown in figures 6.5-
6.15. The graphs represent vorticity level sets at different times from time ¢=0 to time t=100. To esti-
mate the rate of convergence, we have used Richardson’s extrapolation with three different gridsizes
h,2/3 h and h/2. Assuming the rate of convergence is q, we can write iy = w+ h%¢e (x,y,t) + (higher
order terms). Then ,

Ha'-a®  a-@esy _ 1-@aY

PP -af?||  QhBY -(hr2)  (3)7 - (112

6.7)

The norm is taken to be the discrete L, norm of the differences in the computed velocities for vortices |

with the same initial positions.
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TABLE 6.5
Rate of convergence of the velocity approximations in test problem 4

using Hald’s infinite order cutoff.

t Rate of Convergence
0.0 3.7
10.0 4.1
200 4.3
30.0 4 4.1
40.0 44
50.0 S 44
60.0 4.2
70.0 4.6
80.0 | 4.5
90.0 45
100.0 49

o(x,y) = (max(0, (0.25-( | x | -0.5)>~y?))’,
h=0.0625, 5=0.28Vk , 1=1.25, £=0.00004h2, At=5.0h.

Once we have computed the first quotient in (6.7), we set the third quotient equal to this value, and /
solve for ¢ numerically. Using the three grid-sizes A=1/10, h=1/15 and A=1/20 we obtain the rates of
convergence in Table 6.5. We see that the rates of convergence for this problem are similar to the rates

observed in problem 2.
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Vorticity level sets. Time=0.0
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Fig. 6.5. a(x,y,0)=(max(0, (0.25-(| x | -0.5 )z-yf)))7,

h=0.0625, 8=0.28Vh , n=1.25, £=0.0000442, At=5.0h.
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Vorticity level sets. Time=10.0
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Fig. 6.6. o(x,y,0) = (max(0, (0.25-( | x | -0.5 )*-y?)))’,

h=0.0625, 5=0.28Vk , 1=1.25, £=0.00004h2, At=5.0h.
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Vorticity level sets. Time=20.0

Fig. 6.7. w(x.y,0)=(max(0,(0.25( | x | —0.5)%-y?))’,

h=0.0625, 5=0.28Vh , n=1.25, £=0.00004h2, At=5.0h.
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Vorticity level sets. Time=30.0

Fig. 6.8. o(x,y,0)=(max(0, (0.25-( | x | 0.5 )>~y2))),

h=0.0625, 8=0.28Vh , n=1.25, £=0.0000442, At=5.0h.
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Vorticity level sets. Time=40.0
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Fig. 6.9. o(x,y,0)=(max(0, (0.25-( | x | -0.5 Y>~y2))’,

h=0.0625, 5=0.28Vh , n=1.25, £=0.00004A2, A¢=5.0h.
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Vorticity level sets. Time=50.0

Fig. 6.10. o(x,y,0)=(max(0, (0.25-( | x | -0.5 )*-y2)y’,

h=0.0625, 5=0.28Vk , n=1.25, £=0.00004h2, At=5.0h.
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Vorticity level sets. Time=60.0
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Fig. 6.11. o(x.y,0)=(max(0, (0.25-( | x | 0.5 )*~y?))",

h=0.0625, 5=0.28VA , 1=1.25, £=0.0000442, At=5.0h.
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g Vorticity level sets. Time=70.0
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Fig. 6.12. o(x.y.0)=(max(0, (0.25~( | x | -0.5)%-y?)),

h=0.0625, 8=0.28Vh , n=1.25, £=0.0000442, At=5.0h.
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Vorticity level sets. Time=80.0

Fig. 6.13. @(x,y,0)=(max(0, (0:25—( | x | -0.5)2~y?))’,

h=0.0625, 5=0.28Vh , n=1.25, £=0.00004h2, At=5.0h.
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Vorticity level sets. Time=90.0
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Fig. 6.14. w(x.y,0)=(max(0, (0.25-( | x | -0.5 Y>-y?»))’,

h=0.0625, 5=0.28Vh , n=1.25, £=0.0000442, At=5.0h.



15

1.0

0.5

0.0

0.5

-1.0

62

Vorticity level sets. Time=100.0
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Fig. 6.15. w(x.y 0)=(max(0, (0.25-( | x | -0.5)2-y?))","

h=0.0625, 5=0.28Vh , n=1.25, £=0.0000442, At=5.0h.
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TABLE 6.6
Rate of convergence of the velocity approximations in test problem 5

using Hald’s infinite order cutoff.

ot Rate of Convergence
0.0 32
10.0 32
20.0 3.2
30.0 33
40.0 33
50.0 33

7
ox.y) = [(max(0,1-42) (max(0 ,1-y?))

h=0.0625, 5=0.6Vh , N=1.5, Ar=4.0h.

In the fifth test problem, the initial vorticity is distributed on a square according to
7
o(cy)=(max(0 1-+?) (max(0,15%)] ©8)

The rates of convergence at different times up to time ¢=50 are estimated in the same way as in test prob-
lem #4, using the same three grid-sizes. Here, we had to take a larger value of § in order to maintain a
high rate of convergenée up to time ¢=50. The obsex;ved rates of convergence are lower than in problems
2 and 4, althoﬁgh the initial vorticity distribution has the same smoothness in this case. It is possible that
the Fourier transform of the vorticity distribution has a lower rate of decay in this case, causing a lower
rate of convergence. Figures 6.16-6.22 show the computed vorticity level sets at times

¢=0,10,20,30,40,50 and 100.
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Vorticity level sets. Time=0.0

Fig. 6.16. o(x y,0)= [( max( 0 ,1-x2)) (max( 0,1~y ))] ’

h=0.0625, 8=0.355Vh , N=1.5, Ar=4.0h.
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Vorticity level sets. Time=10.0

-1.0 0.5 0.0 0.5 1.0

Fig. 6.17. w(x.y,0)= [( max( 0 ,1-x2)) ( max( 0,1~y ))] ’

h=0.0625, 5=0.355Vk , n=1.5, Ar=4.0h.

15
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Vorticity level sets. Time=20.0

15

Fig.6.18. w(x,y,0)= [( max( 0 ,1-x2)) (max( 0,1-y2 ))] ’

1h=0.0625, 5=0.355Vk , n=1.5, Ar=4.0h,
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Vorticity level sets. Time=30.0

15

Fig.6.19. o(x.y.0)= [( max( 0 ,1-x?)) (max( 0,1~y ))] ’

h=0.0625, 5=0.355Vh , 1=1.5, At=4.0h.
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Vorticity level sets. Time=40.0
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Fig.6.20. 0(c.y0)= [ (max(0.1-x2)) (max(0.152))]

h=0.0625, 5=0.355Vh , n=1.5, Ar=4.0h.
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Vorticity level sets. Time=50.0

15
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1.0 L

7
Fig.621. 0(xy.0)= (max(0,1-+?)) (max(0,1-y*))

h=0.0625, 5=0.355Vh , n=1.5, At=4.0h.
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Vorticity level sets. Time=100.0
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Fig. 6.22. w(x.y.0)= [( max( 0 ,1-x2)) ( max( 0 ,1-y? ))] ’

h=0.0625, 5=0.355Vh , n=1.5, At=4.0h.
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TABLE 6.7

A comparison between the direct method and the Rokhlin-Greengard method.

Direct method Rokhlin—Greengard method
h N E, CPU time E, CPU time
1720 1257 0.3576 -107% 3.7 0.3576 -107¢ 43
1/40 5025 0.2507 -1077 63.5 0.2507 1077 45.8
1/64 12853 0.4021 -10°% 394.6 0.4021 -10°% 106.9

Finally, we made a comparison between the direct method of evaluating the sum in (1.11) and the
Rokhlin-Greengard algorithm [23]. For this, we used the vorticity distribution of test problem #2, the
eighth order cutoff function, and 6= 1.7Vh. The number of terms in the multipole expansion, see [23],
was set to 20. The results are summarized in téble 6.7. Here, N stands for the number of vortices, E,, for
the velocity error at time ¢=0, and the CPU time is given in minutes for one velocity evaluation at time
t=0 on a VAX computer. We have to emphasize that the speed of the Rokhlin-Greengard algorithm
applied to vortex methods is limited by the size of the cutoff parameter 8. In fact, the maximum number
of levels of refinement, see [23], must not exceed 1-1log,(8/1), where [ is the length of one side of the
computational box. Here we have used /=2, since this is exactly what we need to cover the support of the
initial vorticity distribution in test problem #2, but we have to admit that the speed of this algorithm will
increase somewhat if we pick l so that 1 —1log,(8/1) is exactly an integer, and set the maximum number of
levels of refinement equal to this value. The Rokhlin-Gﬁengard algorithm would also run faster if we
choose & smaller, but that would force us to use a iower order cutoff function, which we do not believe is
such a good idea for smooth flows. However, if the flow is not very smooth, we may very well use a
lower order cutoff function, a smaller § , and use the Rokhlin-Greengard algorithm with maximum

efficiency.
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.Appendix

To make it easier for the reader who wishes to use infinite-order vortex methods, we supply two
subroutines. The first subroutine finds the coefficients of the polynomials which approximate Hald’s
infinite-order cutoff function and velocity kernel as described in chapter 3. The second subroutine evalu-
ates the sum in equation (1.11) or equation (5.9) using these polynomials. If the second subroutine is used
on a Cray computer, we recommend not changing the structure of the subroutine since that would prob-
ably make it more expensive. For example, if we express Horner’s rule as a loop, the CPU time require-
ment inpreases by a factor of about 4 on a Cray computer and most of the overall computational work of
the vortex method is done in this subroutine. We tested many different versions of this subroutine on a
Cray computer and found that this version was by far the fastest one. This is the main reason for present-
ing it here. However, if a VAX computer is used, the code may be simplified without decreasing the
computational speed. Wé do not present our rezoning subroutine here, but it has the same structure as the

second subroutine.
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Program for finding polynomials approximating
Hald’s infinite order cutoff function and
velocity kernel. (Example 1, chap.2 )

parameter (rn=120)
common/prmtr/k

double precision c(0:m,1:10)
double precision d(0:m,1:13)

do 2 k=1,m
call coeffs(c,d,m)

continue

end

subroutine coeffs(c,d,m)

- . —— - - — - — —— - — - ia A - e e iy —— — —— T T . . — ————————— . - -

This subroutine finds the best polynomial approximations

in different intervals

to Hald’s infinite-order cutoff function (example 1)

and to the corresponding scaling function F that is related to
the velocity kernel.

List of variables:

Input:

m

Qutput:

c(0:m,1:10)

d(0:m,1:10)

the number of intervals in which we wish to
approximate F and PSI.

the center of the interval under consideration

array of coefficients of the polynomials
approximating F in all intervals.

array of coefficients of the polynomials
approximating the cutoff function PSI
in all intervals.

Library functions:

mmbs j0

mmbsjl

Bessel function of order 0

Bessel function of order 1

Local functions:

£2

£3

Bessel function of order 2

= Bessel function of orxder 3
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Input to library subroutine iratcu:

1 =

ml

a,b =

psi =
g =
phi (x) =

We express the
in phi(x).

degree of the polynomial in the numerator of
the approximating rational function.

degree of the polynomial in the denominator of
the approximating rational function.

Here we always let ml=0.

endpoints of the interval under consideration.
F

PSI

weight function, which is identically 1 here.
x*'*z.-k**z

best polynomial approximation as a polynomial

Output from library subroutine iratcu:

p(13) =

q(l) =

wk (315). =

ier =

vector of coefficients of the polynomial in the

numerator of the approximating rational function.

vector of coefficients of the polynomial in the
denominator of the approximating rational
function. In this case g(l) is identically 1.

"work vector" needed by the library subroutine
iratcu. wk(l) gives the maximum error in the
approximation in the interval [a,b]

error parameter required by subroutine
iratcu. See IMSL manual vol.2

common/prmtr/k

integer 1,ml,ier

double precision p(13),q(l),wk(315),a,b

double precision £3,psi,f,£f2,phi,g,mmbsjl, mbsjo0
double precision pi,c(0:m,1:10),d(0:m,1:13)
external f£,phi,qg,£f2,£3,psi

pi=dacos(-1.
a=dble (k) -0.
b=dble (k) +0.

1=9

0d0)
5
5
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if(k.eq.1)
if(k.gt.10)
if(k.gt.20)
if(k.gt.30)
if (k.gt.40)
if(k.gt.80)
call iratcu(f,phi,qg,a,b,1,ml,p,q,wk,ier)
print *,wk(1l)

[ N ™
R
[ S IV . (EN SN |

do 4 i=1,1+1
c(k, 1) =P(i)
write(15,32) k,i,c(k,i)

32 format (1H ,’ c(’,13,’,7,12,’)=',D22.15)
4 continue
1=12

if(k.eq.1l) 1=9

if(k.eq.2) 1=10

if(k.gt.10) 1=11

if(k.gt.20) 1=10

if(k.gt.30) 1=9

if(k.gt.50) 1=8

if(k.gt.90) 1=7

call iratcu(psi,phi,g,a,b,1,ml,p,q,wk,ier)
print *,wk(1l)

do 41 i=1,1+1

d(k,i)=p(i)

write(15,33) k,i,d(k,1)
33 format (1H ,’ - d(',13,’,’,12,")=',D22.15)
41 continue

end

double precision function £2(x)
double precision x,mmbsjl,mmbsj0
integer ier2

¢ The Bessel function of order 2 is expressed in terms of the
c Bessel functions of orders 0 and 1

£2=2.0*mmbsjl (x, ier2) /x-mmbsj0 (x, ier2)
return
end

double precision function £3(x)
double precision x,mmbsjl,mmbsj0
integer i

¢ The Bessel function of order 3 is expressed in terms of the
c. Bessel functions of orders 0 and 1

£3=(8.0/x**2-1.0) *mmbsjl(x,i)-4.0*mmbsj0(x, i) /x
return
end
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double precision function f(x)
double precision x,pi,f2

pi=dacos(-1.0d0)
f=(.5-4.*%(4.*£2(4.*x)~5.%£2(2.*x)+£2(xX) )/ (45.*x**2)) / (pi*x**2)
return

end

double precision function psi(x)
double precision x,pi,£3

pi=dacos (-1.04d0)
pPSi=(6.4*£3(4.0*x)=4.0*£3(2.0*x)+0.4*£3(x))/ (4.5*pi*x**3)
return

end

double precision function phi (x)
double precision x
common/prmtr/k

c the approximating polynomial is given as a polynomial in (X**2-k**2)
phi=x**2-dble (k**2)

return
end

double precision function g(x)
double precision x

c "g" is a weight function which must be specified.
g=1.0d0

return
end
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This subroutine evaluates the velocity at a point (xi,yi)
according to equation (1.11) or equation (5.9)

using infinite order velocity kernel approximated by

a collection of polynomials, as described in chapter 3.

‘ List of variables:

Input:
xi,yi = point at which we wish to compute velocity
nn = max. number of linear sub-~divisions between 0 and 1

x(l:4*nn**2), y(l:4*nn**2) =
array of vortices inducing the velocity field

tot = total number of vortices

cc(l:4*nn**2) =
vorticity coefficients

x4 = the cutoff parameter delta
c(0O:m,1:10) =

the set of coefficients of the polynomials
approximating an infinite order velocity kernel

Output:

u,v = the sum in {(1.11) or (5.9)

Local:

m = number of approximating polynomials -1

NMAX = same as nn, but for local use

x5 =-delta squared

r2 = the square of the distance from the point (xi,yi)

to a particular vortex

arg(l:4*NMAX**2) =
the set of distances from (xi,yi) to all vortices
divided by delta squared

11(1:4*NMAX**2) =
the set of indices for the polynomials
used to approximate the velocity kernel

c2(0:4*NMAX**2,1:10) =
a renaming of the polynomial coefficients

x3,k3,terml, term2 = temporary variables
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subroutine sum(c,xi,yi,x,y,tot,cc,nn,u,v,x4)

integer m,NMAX

parameter (m=120)

parameter (NMAX = 40)

double precision u,v,terml,term2,xi,yi,r2,x3,x4,x5
double precision x(l:4*nn**2),y(l:4*nn**2) ,cc(l:4*nn**2)
double precision arg(l:4*NMAX**2),c(0:m,1:10)

double precision c2(0:4*NMAX**2,1:10)

integer il (1:4*NMAX**2), k3, k, tot

X5=x4**2
u=0.0d0
v=0.0d0

do 1 k= 1,tot

Find the distances from (xi,yi) to all vortices

r2=(xi-x(k)) **2+(yi-y(k)) **2
arg(k)=r2/x5 )
il (k)=nint (sqrt (r2/x5))
arg(k)=arg(k)-dble (il (k) **2)
continue
do 110 k=1, tot
k3 = il (k)

Rename the polynomial coefficients

c2(k,10)=c(k3,10)
c2(k,9)=c(k3,9)
c2(k,8)=c(k3,8)
c2(k,7)=c(k3,7)
c2(k,6)=c(k3,6)
c2(k,5)=c(k3,5)
c2(k,4)=c(k3,4)
c2(k,3)=c(k3,3)
c2(k,2)=c(k3,2)
c2(k,1l)=c(k3,1)

continue

do 4 k=1,tot

Horner’s rule:

x3=c2(k,10)

x3=c2(k, 9) +x3*arg (k)
x3=c2 (k, 8) +x3*arg(k)
x3=c2(k, 7)+x3*arg (k)
x3=c2 (k, 6) +x3*arg (k)
x3=c2 (k,5) +x3*arg (k)
x3=c2(k,4)+x3*arg (k)
x3=c2 (k, 3) +x3*arg (k)
x3=c2(k,2) +x3*arg(k)
x3=c2 (k, 1) +x3*arg (k)

termli=x3*cc (k) /x5
term2=terml* (xi-x(k))
terml=terml* (y (k) -yi)
u=u+terml
v=v+term?
continue
return
end
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