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A B S T R A C T

Conversion of renewable biomass to useful molecules in microbial cell factories can be approached in a rational
and systematic manner using constraint-based reconstruction and analysis. Filtering for high confidence in
silico designs is critical because in vivo construction and testing of strains is expensive and time consuming. As
such, a workflow was devised to analyze the robustness of growth-coupled production when considering the
biosynthetic costs of the proteome and variability in enzyme kinetic parameters using a genome-scale model of
metabolism and gene expression (ME-model). A collection of 2632 unfiltered knockout designs in Escherichia
coli was evaluated by the workflow. A ME-model was used in the workflow to test the designs’ growth-coupled
production in addition to a less complex genome-scale metabolic model (M-model). The workflow identified
634M-model growth-coupled designs which met the filtering criteria and 42 robust designs, which met growth-
coupled production criteria using both M and ME-models. Knockouts were found to follow a pattern of
controlling intermediate metabolite consumption such as pyruvate consumption and high flux subsystems such
as glycolysis. Kinetic parameter sampling using the ME-model revealed how enzyme efficiency and pathway
tradeoffs can affect growth-coupled production phenotypes.

1. Introduction

The chemical industry has relied on petroleum as raw material for
the last century (Sittig and Weil, 1954). Shifting to renewable biomass as
feedstocks has gained interest in both industry and academia as a long
term solution for feedstocks (Johnson, 2008; Lee and Kim, 2015).
Microbial cell factories can be used in efficient bioprocesses to convert
biomass to a wide array of useful products (Lee and Kim, 2015).
Microbial cell factories need to be designed to optimize for production
rate, yield, and titer as wild-type strains do not generally produce
desirable molecules. For example, in the model bacterium Escherichia
coli, CO2 is produced aerobically and a mixture of formate, ethanol,
acetate, D-lactate, and succinate are excreted anaerobically (Clark,
1989). Knocking out (i.e., removing through genetic manipulation) the
default fermentation pathways is a common strategy that redirects raw
material toward desirable products (King et al., 2017). Byproduct
excretion during optimal cell growth, called growth-coupled production,
is a desirable target for strain design as adaptive laboratory evolution
can be used to enhance growth-coupled production by selecting for cells
with higher fitness (Fong et al., 2005; Zhang et al., 2007).

Fueled by advances in systems biology, synthetic biology, and
evolutionary engineering, rational metabolic engineering has been
successfully applied to the design of microbial cell factory strains
(Davy et al., 2017; Lee and Kim, 2015; Park and Lee, 2008). A systems
biology approach with strain design evaluation in genome-scale models
(GEMs) takes into account multiple biological components and their
interactions that are necessary for predicting growth-coupled produc-
tion of target molecules. GEMs are collections of genetic and biochem-
ical information from databases and literature (Thiele and Palsson,
2010). Constraint-based reconstruction and analysis (COBRA) meth-
ods can be used with GEMs to calculate metabolic flux distributions
and predict genotype-phenotype relationships (Lewis et al., 2012).
Systematic approaches via optimization algorithms (Machado and
Herrgård, 2015; Maia et al., 2016) can be performed with GEMs to
identify strain designs to optimize cell factory strains. In the recent
years, models of metabolism and gene expression (ME-models) have
been reconstructed with additional biological constraints, allowing for
more accurate predictions of overflow metabolism (O’Brien et al.,
2013), membrane content (Liu et al., 2014), and by-product secretion
(King et al., 2017).
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Model-driven strain design and pathway prediction methods
(Campodonico et al., 2014; Feist et al., 2010) provide an ample
number of in silico strain designs, but it is currently infeasible to test
all of these designs in vivo. Therefore, methods to filter and refine in
silico strain design are needed. Growth-coupled strain designs are
susceptible to alternative production phenotypes in which undesired
byproducts are excreted in place of the target molecule without a
significant decrease in growth rate. Using an M-model (i.e., a metabolic
model), susceptibility to alternative production phenotypes can be
evaluated by minimizing production of the target molecule in silico at
the maximum growth rate. Additionally, changing ME-model kinetic
parameters has been shown to affect alternative production phenotypes
by changing the protein costs of competing fermentation pathways
(King et al., 2017). Thus, to add confidence for growth-coupled designs,
strain designs can be additionally tested with a ME-model kinetic
parameter sampling approach. By tweaking the kinetic parameters and
simulating cell growth in the ME-model, target growth-coupled pro-
duction can be tested under different scenarios of enzyme and pathway
efficiency.

This work presents an efficient, high-throughput workflow to filter a
collected pool of 2632 in silico E. coli strain designs from previous
studies to identify high-confidence, robust designs. Robust strain de-
signs are predicted to have growth-coupled production across a range of
turnover rate (keff) parameter values in the ME-model. The first stage of
the workflow utilized E. coli M-models to identify 634 significant
growth-coupled production designs that have > 10% carbon yield
(Table 1 and Section 2.4) and satisfy additional criteria on the effective-
ness of reaction knockouts. The second stage of the workflow tested
growth-coupling under kinetic parameter sampling using a ME-model to
identify 42 high-confidence designs. Enzyme efficiency was shown to be
a decisive factor for the presence of growth-coupled production in the
ME-model. Robust strain designs with predicted growth-coupled pro-
duction of target molecules in both M- andME-models are suggested for
experimental implementation and in vivo testing.

2. Methods

2.1. Knockout strain design pool

A total of 9 growth conditions were tested by combining 3 primary
carbon substrates (glucose, xylose, and glycerol) with 3 types of
oxygenation states (aerobic, ECOM, and anaerobic). These substrates

and environmental parameters were selected based on previously
established criteria (Campodonico et al., 2014; Feist et al., 2010).
The E. coli cytochrome oxidase mutant (ECOM) strain which has an
“aerobic fermentation” phenotype is simulated in an aerobic oxygena-
tion state with knockouts of the cytochrome oxidase reactions
CYTBDpp, CYTBD2pp, and CYTBO3_4pp (Portnoy et al., 2008).

To differentiate the design pools generated at different steps in the
workflow (Section 3.1), the three major design pools were hereby
labeled and mentioned throughout this work. The initial global pool of
growth-coupled designs, hereby called ‘unfiltered’ designs, was col-
lected from previous studies. After workflow steps 1 and 2 (Fig. 2), the
designs that had growth-coupled production with carbon yield > 10%
(Table 1 and Section 2.4) in the M-model and had redundant knock-
outs removed were called ‘significant growth-coupled production’ or
simply ‘significant production’ designs. After workflow steps 3 and 4
(Fig. 2), the designs which maintained their target growth-coupled
production under ME-model kinetic parameter sampling were called
‘robust’ growth-coupled designs. Robust designs were so labeled
because their growth-coupled production was present across simula-
tions, including M-model and ME-model with multiple kinetic para-
meters sets. The list of designs passing each filter steps were provided
in the Supplementary data.

2.2. Models

The unfiltered design pool was obtained from previous studies that
implemented strain design algorithms in the iAF1260b (1668 metabo-
lites, 2388 reactions, and 1261 genes) and iJO1366 (1805 metabolites,
2583 reactions, and 1367 genes) M-models of E. coli K-12 MG1655
(Feist et al., 2010, 2007; Orth et al., 2011) (See Table 1 for definitions
of terms used in this study). M-model simulations were performed to
evaluate the carbon yield of production (Section 2.4 and Fig. 2's step 1)
and remove redundant knockouts (Section 2.5 and Fig. 2's step 2) in
the corresponding model in which the strain design was found. The
latest E. coli ME-model iLE1678-ME (Lloyd et al., 2018) was used for
design robustness evaluation (Section 2.6 and Fig. 2's steps 3 and 4).
The ME-model iLE1678-ME (7031 metabolites, 12,654 reactions, and
1678 genes) has the capability to explicitly calculate the cost of gene
expression machinery supporting the metabolic flux state and thus
accounts for both metabolic flux distribution and gene expression
machinery cost in optimization.

Table 1
Table of terms and their definitions used in the work.

Term Definition

Nonphysiological pathways Pathways which were identified to not be active in vivo and thus cause unobserved phenotypes during in silico
simulation. Literature evidence was found to support their removal during simulations (Supplementary text, Section S1)

Carbon yield (yproduct) Yield calculated by fraction of carbon from substrate converted into target molecule (mmol carbon in product / mmol
carbon in substrate)

Significant growth-coupled production A design has significant growth-coupled production or so called a significant production design when its minimum
target molecule production's carbon yield is more than 10% at maximum growth rate

Maximum growth rate without target molecule
production (μmax ,RP)

Shutting down an exchange reaction for a target molecule secretion causes the in silico cell to find an alternative
phenotype with lower maximum growth rate μmax ,RP if possible. This growth-coupled trait was derived from “strength-
of-coupling” in Feist et al. (2010).

Substrate-specific productivity (SSP) Multiplying maximum growth rate with yproduct gives SSP. This growth-coupled trait was derived from “substrate-specific
productivity” in Feist et al. (2010).

Redundant knockouts Removal of redundant knockouts from the design does not decrease carbon yield by 1%, SSP by 1% of the original value,
and μRP by 1% of the original value.

Duplicates Designs with the exact same set of knockouts, substrate, oxygenation state, target molecule, and heterologous pathway
were duplicates. Only one among the duplicates went through the filter.

Turnover rate (keff) (in ME-model) Turnover rate (keff) is a parameter associated with each enzyme in the ME-model. A set of constant keffs are determined
prior to each ME-model simulation. Different sets of keffs can result in different phenotypes at optimal growth rate.

Robust and non-robust (in ME-model) Robust designs, first of all, were growth-coupled in M-model. Then, designs whose flux through biomass objective
function (BOF) was positive accompanied by target molecule production (growth-coupled production) or flux through
BOF was zero for all sampled sets of keffs were robust. Designs whose flux through BOF was positive without target
molecule produced for at least one sampled set of keffs were non-robust.
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2.3. Cell growth simulation

Flux balance analysis (FBA) was used to simulate feasible flux
distributions. Cell growth was simulated by maximizing the biomass
objective function in the M-model and biomass dilution in the ME-
model. For M-models, FBA was employed in COBRApy (Ebrahim et al.,
2013) and Python 2.7. In M-models, linear optimization problems were
solved by the Gurobi solver (Gurobi Optimization Inc., Houston, TX,
USA). For ME-model calculations, linear optimizations were solved by
the solveME (Yang et al., 2016) software package and the Quad MINOS
solver (Ma and Saunders, 2014). The COBRAme toolbox (Lloyd et al.,
2018) was used to execute FBA in the ME-model by running a binary
search for optimal growth across a range of linear optimizations (as
described previously in O’Brien et al., 2013).

Substrate uptake rate was set to 20mmol gDW-1 h-1 for M-model
simulations. Oxygen uptake rate was set to 20mmol gDW-1 h-1 for
aerobic conditions and 0 for anaerobic conditions for M-model
simulations. Unlimited uptake of substrate and oxygen in aerobic
condition were used in ME-model simulations. In an M-model, the
substrate uptake is usually constrained with experimental data because
the growth rate can increase proportionally and infinitely to the uptake
rate. In a ME-model, the substrate uptake rate constraint is unneces-
sary since proteome limitation will constrain available protein levels in
general. Substrate uptake rate is only constrained to a low value if the
goal is to simulate a nutrient-limited scenario (O’Brien et al., 2013).
Reaction knockouts were simulated by constraining the flux of the
corresponding reactions to be zero. During the analysis, we identified a
number of “nonphysiological” pathways that carry flux in silico despite
being unlikely to be activated in vivo; we provide detailed rationale and

in silico implementation for these reactions in Supplementary text
Section S1, Table S1.

2.4. Significant growth-coupled production

After implementing design conditions and knockouts in simula-
tions, cell growth was maximized. In the M-model, to account for
possible alternative molecule production, target growth-coupled pro-
duction was minimized at maximum growth rate. In a ME-model, the
flux distribution at the optimal growth rate is unique. When the
substrate uptake rate is unconstrained, a ME-model is simulated under
“batch growth mode” and the flux distribution at the maximal growth
rate for central carbon metabolism was shown to be unique (O’Brien
et al., 2013). Because of the additional constraints on gene expression,
non-unique solutions can only exist if there exists an alternative
pathway that had an equivalent protein as well as additional cell
machinery synthesis costs. This coincidence is unlikely due to the
difference in proteins construction cost (amino acid sequence differ-
ences) and turnover rates for each protein. Growth-coupled production
level was evaluated in carbon yield determined by the following
equation:

y
v numC

v numC
mmol carbon in product
mmol carbon in substrate

=
*
*product

product product

substrate substrate

⎛
⎝⎜

⎞
⎠⎟ (1)

where yproduct is target molecule carbon yield, vproduct and vsubstrate are
target molecule growth-coupled production rate and substrate uptake rate
in mmol gDW-1 h-1 respectively, numCproduct and numCsubstrate are number
of carbons in target molecule and substrate molecule respectively.

Fig. 1. Growth-coupled production strain design evaluation workflow. (A) Evaluation workflow using M- and ME-models. (B) Iterative workflow to remove redundant knockouts when
the removal did not drop the growth-coupled production qualities more than 1%. (C) A schematic example of the effect of enzyme and pathway selection for kinetic parameter sampling
in a ME-model. The parameters examined, in some cases, made the target molecule pathway more inefficient and/or a competitive molecule pathway more efficient, thus shifting the
optimal phenotypic profile at maximum growth rate.
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A design was considered to have significant growth-coupled produc-
tion if the flux through the biomass objective function was greater than
0.1 h-1 and yproduct was greater than 10%. The justification for using the
cutoff of 10% carbon yield is as follows. First, there were many non-zero
but extremely low yield (e.g. 0.1%) designs identified by the algorithm. It
was imperative to filter these designs. Second, even though some
compounds have higher theoretical yield than others, if a compound's
theoretical yield is low, it was assumed to be uneconomical to produce
given the target compounds. Third, both the optimal designs, as well as
the suboptimal ones were kept to enable alternative design options for in
vivo implementation (i.e., as long as the 10% cutoff criterion was met for
a design). Thus, a relatively low but “significant” level of 10% carbon
yield was selected as a cutoff to satisfy the three factors above. A list of
byproducts selected for analysis based on the previous work and their
growth-coupled production status was given in Supplementary text,
Section S4. The details of the designs with significant growth-coupled
production are provided in Supplementary data.

2.5. Removal of redundant knockouts

A procedure was implemented to scan through each strain design
and remove excessive reaction knockouts in order to minimize time for
in vitro strain construction. For every design, knockouts were itera-
tively removed, and if a removal of a knockout from the design did not
decrease any of three key performance criteria then the reaction was
removed from the design. The three performance criteria we consid-
ered were adapted from Feist et al. (2010): carbon yield (yproduct),
maximum growth-rate without target molecule production
(μmax ,Remove Production or μmax ,RP), and substrate-specific productivity
(SSP) (Supplementary Text, Section S2). As a cutoff for knockout
filtration, removal of a redundant knockout did not drop yproduct by 1%
carbon yield, μmax ,RP by 1% of original value, and SSP by 1% of original
value.

2.6. Robustness evaluation of growth-coupled production with kinetic
parameter sampling in the ME-model

Default enzyme turnover rates in the ME-model of E. coli have been
determined by an omics-data driven optimization procedure that was
described recently (Ebrahim et al., 2016). However, these turnover
values can change between conditions, and there are many sources of
uncertainty and error when determining kinetic parameters. Therefore,
in this study a parameter robustness approach was implemented.
Kinetic parameters were modified to decrease efficiency of the target
molecule production pathway and increase efficiency of the competitive
molecules production pathways which could render target molecule
growth-coupled production pathway suboptimal. First, growth-coupled
production was checked with the second optimal competitive com-
pound production. If the design was robust against kinetic parameter
change with respect to single competitive compound production, a
more elaborate procedure was used to find all competitive compounds
and then growth-coupled production was checked with all possible
competitive compounds. Thus, growth-coupled production was con-
sidered to be robust if the kinetic change in the target and competitive
pathways did not bring about an alternative production phenotype. The
second optimal competitive molecule was identified in ME-model by
re-simulation after removing the exchange reaction of the target
molecule from the model. Third optimal competitive compound
productions were found by removing target compound production
and second optimal competitive compound production, and so on.
Next, the sampled space was discretized into points at which pathway's
turnover rates magnitude was adjusted and ME-model was re-simu-
lated. Average magnitude of enzyme turnover rates of target and
competitive molecules production pathway were sampled (i.e. average
magnitude was increased or decreased) hence the sampled space was
two-dimensional. If we found a simulation in which the cell could grow
(represented by growth rate > 0.1 h-1) without target molecule produc-

Fig. 2. Filtration workflow results. A pool of 2632 unfiltered designs were collected from previous studies and among them 634 had significant growth-coupled production and 42 had
kinetically robust growth-coupled production. After Step 2, 42 redundant knockouts were removed. Designs were filtered for significant growth-coupled production (> 10% carbon
yield) and subsequently robustness, i.e., the ability to maintain growth-coupled production with various sets of sampled keffs.
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tion, the design was not robust (Supplementary text, Section S3). The
details of the designs with robust growth-coupled production are
provided in Supplementary data.

Possible enzyme turnover rates (keffs) were determined to range
from 10-2 to 106 s-1 based on a previous analysis of all enzyme turnover
rates in the BRENDA database (Bar-even et al., 2011). Enzyme
turnover rate magnitude was sampled between 10-2 s-1 and the default
value for target pathways and between the default value and 106 s-1 for
the competitive pathways. Target molecule production was the first
optimal production if the design was growth-coupled. Regarding the
number of keff combinations being used, all designs passing through
Step 2 of the workflow (634 designs) were tested with at least the
default set of keffs. Depending on whether the competitive compound
and target compound were precursors, three (precursor case) or nine
(branched case) sets of keffs were used to test the growth-coupled
production. More than nine sets of keffs were tested for some designs
which need finer grain discretization (Supplementary text, Fig. S4).
Specific cases were illustrated in the Supplementary text, Section S3,
Fig. S3, and Fig. S4. Regarding the individual values of keffs, because all
keffs of the enzymes in the pathway were scaled up or down by the same
number, the relative fold difference between the enzymes in the same
pathway is constant.

2.7. Data and reproducibility

Design specifications and relevant simulation results (e.g., growth
rate and compound production yield) were provided in the
Supplementary data. Corresponding to the spreadsheets were four
pools of design, including initial pool (before Step 0), M-model growth-
coupled pool (after Step 2), ME-model growth-coupled pool (after Step
3), and ME-model robust pool (after Step 4). The E. coli M-models
iAF1260b and iJO1366 can be downloaded from the BiGG database
(King et al., 2016). The E. coli ME-model can be reconstructed using
COBRAme package (Lloyd et al., 2018). M-model simulation was
performed with COBRApy package (Ebrahim et al., 2013). ME-model
simulation was performed with COBRApy, COBRAme, and solveME
packages (Ebrahim et al., 2013; Lloyd et al., 2018; Yang et al., 2016).

3. Results

3.1. Strain design evaluation workflow

Evaluation and filtration of in silico strain designs is a rational step
before undertaking expensive and time-consuming in vivo strain
building and testing. Thus, a workflow was developed to filter previous
strain designs and identify robust growth-coupled strains using both
M- and ME-models (Fig. 1A). The workflow was used to evaluate and
filter 2632 E. coli K-12 MG1655 knockout strain designs from previous
model-driven strain design search studies by Feist et al. (2010) and
Campodonico et al. (2014) that generated these designs using M-
models (Fig. 1A) and the algorithms (OptKnock (Burgard et al., 2003),
OptGene (Patil et al., 2005), RobustKnock (Tepper and Shlomi, 2009),
and GDLS (Lun et al., 2009)).

Strain designs were first evaluated with the E. coli M-model that
was used in the original study; thus strain designs identified in Feist
et al. (2010) were evaluated in iAF1260b (Feist et al., 2007) and strain
designs identified in Campodonico et al. (2014) were evaluated in
iJO1366 (Orth et al., 2011). Here, a design was defined as a unique set
of reaction knockouts, target molecule, substrate, oxygenation state,
and a heterologous pathway (if present). Utilizing the workflow, 2632
unfiltered designs from the previous studies were first filtered to 634
significant production designs in the M-model (Fig. 2, steps 1 and 2),
then further filtering led to a pool of 42 robust designs using the ME-
model (Fig. 2, steps 3 and 4). The specific criteria used to filter the
design pool is detailed below.

The reduction of the starting unfiltered strain design pool using the

workflow in Fig. 2 can be rationalized by considering the magnitude of
growth-coupled production, redundant knockouts, and robustness of
production under kinetic parameters sampling. For Step 1, 2632
unfiltered designs were filtered for significant production (> 10%
carbon yield). For Step 2, as the strain design algorithms OptKnock,
RobustKnock, and GDLS used in Feist et al. (2010) and Campodonico
et al. (2014) did not strictly include a penalty for knocking out extra
reactions, a penalty was included here to look at a more restricted set.
The impact of this filter can be understood in the example that a set of
three useful knockouts is an equally optimal solution to that set plus an
additional knockout of a reaction carrying no flux. A practical example
from Campodonico et al. (2014), was that the single knockout of
pyruvate-formate lyase (PFL) was sufficient for five designs with their
target compounds being 1-propanol, 2-propanol, and 1,3-propanediol
in the original design. Specifically for the design pool collected from
previous work, the algorithms were run without a knockout penalty for
OptKnock with three and five knockouts in Feist et al. (2010),
RobustKnock with three knockouts in Campodonico et al. (2014),
and GDLS with four knockouts in Campodonico et al. (2014). A notable
exception is that OptGene was run with a knockout penalty and a
maximum of ten knockouts in Feist et al. (2010). Additionally, after
implementing a model modification and removing nonphysiological
pathways (Supplementary text, Section S1), some knockouts might
become obsolete. To address this issue, the second step, knockout
filtration, was executed to remove knockouts that did not improve
growth-coupled qualities significantly, and this step removed 40
knockouts from the collected design pool. Three factors that caused
redundant knockouts to exist were the knockout and reaction direc-
tionality constraints from literature (Supplementary text, Section S1),
the decision of the algorithm decision on adding the redundant
knockouts to the design (no penalty for the redundant knockout),
and marginal increase in production yield after applying the knockout
(production yield improvement being non-zero but less than 1%).
Determination of which of the three aforementioned factors caused the
knockout to be redundant was performed for the designs that had their
redundant knockouts removed. For Feist et al. (2010) study's designs,
68 of them were modified by Step 2. Among the 68 designs, new
constraints implemented in the model made the knockout(s) redun-
dant in 8 designs. Lack of a penalty for redundant knockouts added the
redundant knockouts in 54 designs. Redundant knockouts which
improved design production yields marginally were present in 6
designs. For Campodonico et al. (2014) study's designs, 94 of them
were modified by Step 2. The number for the three factors were 86, 7,
and 1, respectively. After steps 1 and 2 (Fig. 2), 634 significant
production designs were obtained which had production of > 10%
molar carbon yield and had their knockout redundancy checked.
Redundant knockouts check was after significant production check
because it was unnecessary to remove redundant knockouts for designs
that were finally filtered out due to low production activity.

A final filtration step was performed on the growth-coupled design
pool using a ME-model and varying kinetic parameters. In this part of
the workflow, the ME-model was used as a tool to conservatively filter
for the designs that met the growth-coupled criteria in both M and ME-
models. As the ME-model's keffs are tunable, these parameters were
selected to hinder growth-coupled production and the designs that
were growth-coupled in the ME-model with multiple sets of keffs can be
implemented in vivo with higher levels of confidence. Steps 3 and 4 in
Fig. 2 (outlined in greater detail in Section 3.3 and Supplementary text
Section S3) were used to filter designs using a ME-model. As ME-
model simulations are more computationally expensive than M-model
simulations, Steps 3 and 4 were arranged after M-model simulations.
Ultimately, designs were meant to be filtered for their sustained
growth-coupled production under both M and ME-model simulation,
thus ME-model simulations were ordered last for economical compu-
tational resource usage. For step 3, designs’ growth-coupled produc-
tions were checked using the default keffs set (Ebrahim et al., 2016). For
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step 4, designs which passed step 3 production criteria under the
default keffs set were then checked with sampled keffs sets. Kinetic
parameter sampling was unnecessary for designs that failed under the
default keffs. After Step 4, 42 robust designs were obtained as the final
robust set of growth-coupled designs.

3.2. Molecules with robust growth-coupled production in E. coli

Growth-coupled production of 19 molecules was identified from the
set of 634 significant production designs from the M-model (Table 2).
The majority of designs were alcohols (69% of significant production
designs) that are fermented to recycle reduced cofactors generated by
glycolysis. D-lactate and L-alanine were also terminal electron accep-
tors. The production of the electron accepting molecules including
acrylate, acrylamide, 3-hydroxypropanoate, and 3-(R)-hydroxybutyrate
(with an exception of anaerobic design co-producing ethanol) required
oxygen as a co-acceptor. Some 1,4-butanediol designs also required
oxygen as a co-acceptor. TCA cycle molecules (fumarate, succinate, and
2-oxoglutarate) were co-produced with alcohols. Pyruvate is not a
terminal electron acceptor, and these designs required oxygen (Fig. 3).
Significant production designs were found for all substrates (49% of
designs were glucose, 33% xylose, and 18% glycerol) and oxygenation
states (40% of designs were aerobic, 24% in ECOM, and 35% in
anaerobic). Designs with glycerol as a substrate and anaerobic condi-
tions favored alcohol designs (89% of glycerol designs and 80% of
anaerobic designs produced alcohols). Most of the designs in the
ECOM strain, due to its “aerobic fermentation” phenotype, produced
molecules required oxygen as an electron co-acceptor (80% of ECOM
designs successfully utilized oxygen as electron co-acceptor) (Fig. 4).

Growth-coupled production pathways were discussed and com-
pared on a pathway level. The illustration of this discussion is shown in
Fig. 3. For glucose or xylose as the substrate, the first divergence was
the two glycolytic pathways Embden-Meyerhof-Parnas and Entner-
Doudoroff and the pentose phosphate pathway (PPP). Design algo-
rithms knocked out reaction(s) in glycolysis pathways or PPP in ~40%
of the growth-coupled designs (Fig. 5A). The next divergence was at
dihydroxyacetone phosphate (DHAP). DHAP is the precursor for three

carbon alcohol production. Glycerol was converted into dihydroxyace-
tone to enter the second half of glycolysis. Reaction(s) consuming
DHAP were targeted in ~20% of the designs. After glycolysis, the next
divergence at phosphoenolpyruvate (PEP) branches to pyruvate or
oxaloacetate and reaction(s) consuming PEP were targeted in ~15% of
the designs (Fig. 5A). Pyruvate was an intermediate to a wide range of
final products. If converted to acetyl-CoA, four possible final products
excluding acrylate were ethanol, 1-butanol, 1,4-butanediol, and 3-(R)-
hydroxybutyrate. Otherwise, the other four final products excluding
acrylate were L-alanine, D-lactate, 2,3-butanediol, and isobutanol.
Oxaloacetate, a compound in the TCA cycle, was another intermediate
to a wide range of final products. If converted to succinyl-CoA, four
possible final products were acrylamide, 3-hydroxypropanoate, acry-
late, and 1-propanol. Otherwise, the other four final products were
1,3-propanediol, fumarate, 2-oxoglutarate, and succinate.

3.3. Robust designs after kinetic parameter sampling in the ME-
model

Designs with significant growth-coupled production in the M-
model were subsequently tested in a ME-model in this study. First,
designs were simulated in the ME-model with default keffs which were
determined as described in Ebrahim et al. (2016). For Step 3, even
without computationally expensive kinetic parameter sampling, a
single ME-model simulation with default keffs was able to filter out
458 of 634 designs as they did not result in a production phenotype. In
Step 4, when performing kinetic parameters sampling taking into
account the alternative production of the growth-optimal competitive
compound(s), 134 out of 176 designs switched their phenotypes to
alternative production, leaving 42 designs. Thus, 42 out of 634 designs
were found to be robust (Fig. 2).

A kinetic parameter sampling method was sought to apply generally
to all knockout designs utilized in the developed workflow. Using the
turnover rate range reported in Bar-even et al. (2011), possible keffs
were discretized between its default value and the extremity of the
range. When simulating with the ME-model, so called ‘competitive
molecules’ were identified as suboptimal replacements to target

Table 2
Properties of strain designs. For each property, the left column referred to the pool of 634 significant production designs and the right column referred to the pool of 42 robust designs.

Target molecule Number of designs Max carbon yield (mmol C in product / mmol C in substrate) Number of knockouts range

Significant production Robust Significant production Robust Significant production Robust

1-Butanol 76 6 0.61 0.61 1–3 2–3
Isobutanol 17 0.63 1–3
1-Propanol 58 0.55 1–4
2-Propanol 10 0.41 2–4
Ethanol 55 0.62 1–10
1,4-Butanediol 191 17 0.61 0.54 1–4 2–4
2,3-Butanediol 2 0.44 3–3
1,3-Propanediol 28 0.20 2–4
Glycerol 1 0.34 3–3
3-Hydroxyvalerate 0
3-(R)-Hydroxybutyrate 9 0.60 2–4
D-Lactate 63 6 0.96 0.95 2–10 5–10
Acrylate 33 0.50 1–4
Acrylamide 14 0.50 2–4
2-Oxopentanoate 0
3-Methyl-2-oxobutanoate 0
2-Oxobutanoate 0
3-Hydroxypropanoate 29 0.80 2–4
Fumarate 1 0.17 3–3
Succinate 12 4 0.60 0.51 4–10 5–10
2-Oxoglutarate 1 1 0.12 0.14 5–5 5–5
Pyruvate 30 9 0.84 0.81 2–5 3–5
L-Alanine 4 0.95 3–5
L-Glutamate 0
L-Malate 0
L-Serine 0
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Fig. 3. Growth-coupled production pathway map. Target molecules, substrates, reduced cofactors (e.g., NADH, NADPH), ATP, important branching points (e.g., pyruvate, acetyl-CoA),
and molecules contribute to carbon lost (e.g., formate, CO2) were annotated. Growth-coupled compounds in M-model only were red-boxed and robust compounds in both M and ME-
model were green-boxed. Several pathways such as pentose phosphate pathway and Entner-Doudoroff were omitted to reduce figure complexity from network interconnectivity and
emphasize production pathways.

Fig. 4. Number of designs with significant production of target molecules in specific conditions. Oxygenation states included aerobic (A), ECOM (E), and anaerobic (N).
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molecules at default keff values, but shifted to being the optimally
produced molecule under a different set of kinetic parameters altering
the network enzyme efficiencies. Kinetic parameters were sampled in a
way to break the target growth-coupled phenotype by making target
molecule production pathways inefficient and/or competitive molecule
production pathways more efficient. However, the growth-coupled
production failure was more likely caused by the inefficient target
molecule production (i.e., higher competitive molecule production
pathway's keffs; 68% of ME-model failed designs) rather than efficient
competitive molecule production (i.e., lower target molecule produc-
tion pathway's keffs; 11% of ME-model failed designs). The majority of
the failure modes being inefficient target molecule production path-
ways suggested that most of the strains’ growth-coupled production
had metabolic advantages, which were listed in Section 3.2, contribut-
ing to growth optimality besides protein costs. In other words,
increasing enzyme efficiency or reducing the enzyme costs in the
competitive molecule production pathway was only enough to raise
the optimality of competitive molecule production sufficiently to
replace growth-coupled production in 11% of the strain designs.

3.4. Knockout strategy and comparison of robust strain designs to in
vitro production strains

Examining the in silico significant growth-coupled production
design set, there were 64 knockouts suggested by the optimization-
based strain design search algorithm that contribute to significant
growth-coupled production in 634 strains. In this set, reactions around
pyruvate are highly targeted (Fig. 5A), with pyruvate-formate lyase
(PFL) being targeted the most. Electron transport chain reactions were
the second most targeted group, and interestingly, ATP synthase was
the second most knocked out and appeared in strain designs regardless
of oxygenation conditions (ATPS4rpp, Fig. 5B). When comparing this
set (i.e., in silico designs) to strain designs from a study which mined
implemented designs from literature (i.e., in vivo designs) (King et al.,
2017), similar reaction knockouts appeared frequently in both sets.
Such shared reactions were in lactate dehydrogenase (LDH_D, ldhA),
pyruvate-formate lyase (PFL, pflB), ethanol production (ALCD2x or

ACALD, adhE), acetate production (ACKr or PTAr, ackA or pta), and
succinate production (FRD3 or FUM or MDH or PPC, frdA/B/C/D or
fumABC or mdh or ppc) (Fig. 5B). As an example for ME-model robust
designs matching with in vivo production strains, 1,4-butanediol
(14BDO) growth-coupled production strains were examined. Among
634M-model growth-coupled strains, there were two groups of path-
ways for 14BDO production: one using a succinyl-CoA precursor and
another using a butanoyl-CoA precursor (Fig. 6). However, after Steps
3 and 4, only the succinyl-CoA precursor group of pathways were
robust. In those designs, knockouts of ethanol dehydrogenase, lactate
dehydrogenase, and pyruvate-formate lyase were among the suggestion
for in silico strains that matched with in vivo production strains with
knockouts of adhE, ldhA, and pflB respectively (Yim et al., 2011).

In silico and in vivo implemented design sets were compared on a
larger scale to determine the overlap in the reaction knockouts they
contained. A design scenario was defined as a production objective for a
selected media condition (substrate and oxygenation) and was used to
select designs that matched the same scenario between the in silico and
in vivo designs pools. Overall, 65 in silico (24/65 scenarios contained
ME-model growth-coupled designs) and 32 in vivo design scenarios
were compared and there were 12 common knockout combination
scenarios overlapping (10/12 scenarios contained ME-model growth-
coupled designs) when looking at the production objective and media
conditions (Table S4). Non-overlapped in silico scenarios came from
new target compounds (e.g., acrylate) and varied media conditions
(e.g., xylose and glycerol, anaerobic and aerobic). Non-overlapped in
vivo scenarios came from target compounds being out-of-scope for
previous studies (e.g., xylitol) or no growth-coupled designs were found
for the scenarios (e.g., no in silico designs were found for D-lactate in
the glycerol and anaerobic condition). Between the in vivo and in silico
design pools, there were no designs with identical knockout sets.
However, there were common frequent knockouts which had the effect
of blocking fermentative compound production. A major difference was
that the in vivo designs commonly employed exhaustive fermentative
compound production knockouts (i.e., knockouts of all known fermen-
tative). On the other hand, in silico designs used combination of several
fermentative compound production knockouts and other non-intuitive

Fig. 5. Knockout strategy suggested by strain design search algorithm for significant production designs. (A) Fraction of growth-coupled design pool employed a specific knockout
strategy. (B) Number of designs having a specific knockout for a target molecule. Knockout-to-strategy was mapped with colored patches between Figs. A and B.
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knockouts such as knockouts in glycolysis (Table S4). Glycolysis
knockout mutants such as Δpgi and ΔtpiA were recently studied
(Charusanti et al., 2010; Long et al., 2018; McCloskey et al., 2018)
and glycolysis knockouts in strain designs were not widely considered
in the in vivo implementation design set (Table S4). When considering
how closely different strain design sets mapped to in vivo designs
without the strict criteria of exact matching, designs with growth-
coupled production confirmed by ME-model (after Step 3) were more
closely resembled in vivo designs in 10 out of 12 scenarios than designs
being filtered out (after Step 2 and filtered out by Step 3) (Fig. S5). In
the remaining 2 scenarios of L-alanine (glucose, anaerobic) and ethanol
(xylose, anaerobic) production, ME-model keffs restricted the in silico
designs’ growth-coupled production. Based on this comparison, ME-
model verification was able to generate a reduced set of designs found
to have more common knockouts to in vivo designs collected through
the reference literature mining study.

4. Discussion

Genome-scale models that incorporate protein costs and kinetic
parameters, such as the ME-model, are an advance in the scale and
scope of microbial cell factory designs and enable more detailed
studies. It was shown that next-generation models have better predic-
tion capabilities (King et al., 2017) that could translate to increased
confidence for prospective strain designs of growth-coupled produc-
tion. Furthermore, the ME-model provides a mathematical framework
to examine production states under a range of enzyme efficiencies
(which are not known precisely in vivo (Davidi et al., 2016; Link et al.,
2014)) by altering kinetic parameters. Thus, we deployed the use of the
ME-model to filter pools of growth-coupled designs generated with
previous approaches in order to find robust designs.

The workflow devised herein utilized both M- and ME-models to
suggest high confidence strain designs with robust production, and it
resulted in three pools of designs (with 634, 176, and 42 designs) with

an increasing level of confidence, respectively, in their growth-coupled
production based on the criteria laid out in this work. Knockout
suggestions (Fig. 5B) were found to be in agreement with in vitro
strains (King et al., 2017). A collection of 19 growth-coupled products
consisting of alcohols, organic acids, and fatty acids in nine examined
culturing conditions were found after evaluating strain designs from
two previous large scale model-driven studies (Campodonico et al.,
2014; Feist et al., 2010). The result from the two previous studies and
this study showcase E. coli's potential as a microbial cell factory for
various relevant industrial products and reveals promising strain
designs.

With the inclusion of kinetic parameters in the ME-model, there are
three factors to be considered when performing the kinetic parameter
sampling: performance metric, enzyme selection, and sampling range.
In this work, the performance metric was growth-coupled production
of the target molecule exceeding 10% carbon yield. The average
magnitudes of keffs in target and competitive pathways were selected
for sampling. To achieve the highest level of production confidence, the
keffs were sampled from their default values to the upper bound of 106

s-1 or lower bound of 10-2 s-1 of BRENDA enzyme collection (Bar-even
et al., 2011). Overall, the objective for ME-model simulations was
growth-coupled production robustness and the sampling procedure
was designed with strict criteria to raise the level of confidence for
robust strain designs that passed the filter. With kinetic parameter
sampling, the ME-model revealed how enzyme efficiency and pathway
tradeoffs can affect growth-coupled production phenotypes.

Growth-coupled production is a desirable trait for microbial cell
factories as production of the target molecule is necessary for cell
growth. Because cell growth in silico was driven to optimal growth-
coupled production among various possible phenotypes by maximizing
flux through the biomass objective function, an analogous in vivo drive
will be necessary to make in vivo implementation succeed. Adaptive
Laboratory Evolution (ALE) is an in vivo platform to drive cells toward
optimal growth and can thus be used to optimize production rate in

Fig. 6. Suggestion of succinyl-CoA precursor pathway by Metabolic-Expression model for robust 1,4-butanediol (14BDO) production pathway. ME-model simulation with kinetic
parameter sampling revealed D-lactate production failure mode (red arrow) in butanoyl-CoA precursor pathway on the right. Maintaining production through all kinetic parameter sets,
designs with succinyl-CoA precursor pathway were declared robust. ETC = electron transport chain.
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growth-coupled strains. Several studies have successfully used ALE to
increase growth-coupled production (Baek et al., 2017; Fong et al.,
2005; Zhang et al., 2007). ALE was also found to increase product
(Atsumi et al., 2010; Mundhada et al., 2017) and culture supplement
tolerance (Mohamed et al., 2017), favorable traits for production under
high concentrations of target molecules. Besides implementing knock-
outs, there exists other biological barriers that are beyond the scope of
M- and ME-models, such as regulation, transporter engineering, and
compound toxicity, that have been shown to affect molecule over-
production (Davy et al., 2017). Regulation and transporter availability
can influence growth rate and cell factory performance (Chubukov
et al., 2016; Hong and Nielsen, 2012). As a continuation of the
workflow (Fig. 1A), available modeling methods for regulation integra-
tion (Blazier and Papin, 2012) and transporter expression (Dunlop
et al., 2011) could be integrated, and further design improvements
could be suggested to increase the confidence in strain designs.
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