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L A U R A  W A L L E R  &  L E I  T I A N

How can researchers see inside an 
object without using invasive tech-
niques, or recover 3D information 

by capturing only 2D images? This question 
was answered decades ago with the invention 
of tomography — a technique that computa-
tionally reconstructs 3D objects from a set of 
2D images, usually captured from a range of 

projection angles. Tomography, which is used 
in magnetic resonance imaging and comput-
erized tomography scanners for medical and 
other applications, conventionally provides 
an analytical solution to the 3D reconstruc-
tion problem. However, as the use of tomog-
raphy expands to applications that involve 
complex scenarios, it is not always possible, 
or desirable, to devise analytical solutions. 
Now, machine-learning methods are turning 

optical tomography on its head with the use 
of algorithms borrowed from data science, 
which reconstruct the 3D refractive index 
of an object by solving a large-scale optimi-
zation problem. Writing in Optica, Kamilov 
et al.1 demonstrate this experimentally using a 
holographic optical-phase microscope.

Tomography is the quintessential example 
of computational imaging, a discipline that 
transcends conventional imaging techniques 
by simultaneously designing both the optical 
system and the image-processing algorithms. 
Together, the optics and the algorithms can 
achieve things that neither could do alone. For 
example, Kamilov et al. recover the 3D ‘phase’ 
of a biological cell — the nanometre-scale dis-
tortions of a wavefront as it passes through 
an object — thus rendering transparent  
objects visible.

Kamilov et al. use machine-learning algo-
rithms — computer programs that can learn 
from and make predictions based on input 
data — to give a boost to 3D phase imaging. 
By doing so, the authors bridge the fields of 

differ by around 2.3-fold5, and these rates are 
slightly higher than those of outbred flies17. 
Self-fertilizing organisms with exceptionally 
low heterozygosity do not have unusually low  
mutation rates compared with outcrossing 
species with similar genome sizes1. Further-
more, humans and chimpanzees, which are 
highly homozygous, have extremely high 
mutation rates1,18. Of course, there are many 
biological differences between these species, 
so caution must be taken not to overinterpret 
these observations.

Overall, this study raises several intriguing 
questions. Even if the results are eventually 
found to reflect outbreeding depression or 
simply natural variation in replication fidelity, 
Yang and colleagues have done us a service, 

encouraging a focus on variation in the process 
that itself generates variation. ■
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C O M P U TAT I O N A L  I M A G I N G 

Machine learning for 
3D microscopy
Artificial neural networks have been combined with microscopy to visualize the 
3D structure of biological cells. This could lead to solutions for difficult imaging 
problems, such as the multiple scattering of light. 
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Figure 1 | 3D image reconstruction with artificial neural networks. Kamilov 
et al.1 use an artificial neural network (ANN) algorithm to describe how the 
phase of optical light is modified as it propagates through a 3D biological sample 
(here, a cell). The sample is modelled as a series of layers. Each pixel (circles) 
of the 3D model corresponds to a node of the ANN. These are connected to 

nodes in the subsequent layer (arrows) to represent the scattering of the input 
wavefront in the direction of propagation. The algorithm incorporates error 
correction by comparing a detector’s measurements with the model’s output — a 
3D reconstruction of a cell’s refractive index — and minimizing the difference 
between the two.  (Figure adapted from Fig. 2 of the paper1.)
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F E D O R  R O M A N O V - M I C H A I L I D I S  &  
T O M I S L A V  R O V I S

The action of biologically active molecules 
depends on the precise spatial arrange-
ment of atoms that interact with biologi-

cal targets. More than 95% of drug molecules1 
contain nitrogen atoms because they improve 
the cell permeability and water solubility of the 
compounds, and strengthen their interactions 
with biological targets. Methods for the spatially 

selective assembly of nitrogen-containing mol-
ecules are therefore of considerable interest for 
drug discovery. Moreover, biological targets 
have a particular chirality (handedness). The 
ability to synthesize just one chiral form — one 
enantiomer — of biologically active compounds 
is thus also of great importance, because only 
molecules of the correct handedness will fit into 
their targets, in the same way that right-handed 
gloves best accommodate right hands. On  
page 445 of this issue, Deng and colleagues2 
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Figure 1 | Umpolung for ketones and imines. a, The natural polarization of ketones (in which X = O) 
and imines (X = NR3) places partial positive charge (δ+) on the carbon atom (and partial negative charge, 
δ−, on X). These compounds are therefore electrophilic — attracted to areas of negative charge, such as 
those in nucleophilic molecules (Y−). Ketones and imines are thus prone to attack by nucleophiles. R1 to 
R3 represent hydrocarbon groups; curly arrow represents electron movement. b, Umpolung describes 
the inversion of natural polarization in molecules. The application of umpolung to ketones and imines 
would make them nucleophilic, and prone to attacking electrophiles. c, Deng and colleagues2 report that 
2-azaallyl anions act as umpolung forms of imines. Ar represents a 4-nitrophenyl group.

O R G A N I C  C H E M I S T R Y

Natural polarity 
inverted
The concept of umpolung describes the reversal of the naturally occurring 
electrostatic polarization of chemical groups. It has now been used to make single 
mirror-image isomers of nitrogen-containing molecules. See Letter p.445

computational imaging and artificial neural 
networks (ANNs). The latter underlie a popu-
lar machine-learning framework that has 
found many applications2, from e-commerce 
and e-mail spam filtering to finding cat videos 
on YouTube. ANNs have been used to solve 
problems that involve big data (for example, 
image classification) and so they are a natural 
fit for computational microscopy. 

Microscopists are swimming in data — they 
can easily collect terabytes of images in a few 
minutes. Easy access to large data sets cre-
ates the perfect opportunity for data-science 
approaches to image reconstruction. First, 
use all available knowledge about the sample 
(for example, an estimate of the number of 
bright spots within it) and about the imaging 
system (from optical physics) to constrain the 
problem, and then upload all the data to the 
computer and let the algorithm find the answer.  
Although there may not be an explicit ana-
lytical solution to the reconstruction problem 
using this approach, important information 
can still be teased out.

The authors use ANNs to attack the 3D 
phase-imaging problem, which is com-
pounded by the complication of multiple 
scattering of light as it passes through a 3D 
biological sample. Multiple scattering is one 
of the most challenging problems in optics 
— if we solved it completely, we could see 
through fog, murky water or even human tis-
sue. Physicists have tried for decades to undo 
scattering analytically, but it is difficult, if not 
impossible, to tackle large-scale problems that 
involve many scattering events. The authors’ 
machine-learning approach is indirect (non-
analytical), but gives a good solution that they 
verify experimentally. 

Kamilov and co-workers adapt ANNs to 
work with the multi-slice method3, which 
has previously been used to describe multiple 
(dynamical) scattering of electrons in 3D crys-
tal lattices. The authors model the target object 
as a set of slices: each slice is represented by a 
layer of the network and each pixel of the 3D 
object is represented by a network node (Fig. 1).  
The ANN’s training data consist of a set of 
2D holograms of the 3D object that are cap-
tured from different angles. The authors use 
a modified ‘back-propagation’ algorithm that 
predicts the 3D refractive index of the object 
by minimizing the differences between the 
training data and model solutions, with an 
added ‘sparsity’ constraint that enforces the 
smoothness of the solution. Multiple scatter-
ing is treated only in the general direction of 
the propagation — that is, backwards-reflected 
light is not included in the computations. Simi-
lar methods, applied to different hardware set-
ups, have provided spatial resolution beyond 
the diffraction limit of an optical microscope4 
or at the atomic scale in studies using electron 
microscopy5.

This work is part of a larger movement 
to revolutionize imaging techniques by 

rethinking both the optical design and the 
post-processing of the images. Fully lev-
eraging the power of machine learning for 
microscopy could lead to methods that can 
see inside the human body and resolve indi-
vidual cells by overcoming multiple scattering. 
However, we are a long way off, and for this 
to be achieved, physicists and engineers need 
to account properly for complications arising 
from back-scattered light and for the direc-
tional dependence (anisotropy) of the objects’ 
optical properties. In this quest, extremely 
large imaging data sets will surely be required 
and researchers may need to follow promising 
frontiers in data science (such as deep learn-
ing2), or invent new ones. 

Kamilov and co-workers’ shift away from 
analytical solutions allows them to find an 
answer to the 3D imaging reconstruction 
problem, but such an approach does not always 
have a provably correct solution. This is not a 

problem in many of the applications of data 
science — no one dies if your cat-video search 
accidentally returns a dog video. But for sci-
entific imaging applications, for example in 
medical settings, provability may be critical. 
As such, computational imaging brings a rich 
set of challenges for theorists and statisticians, 
as well as practitioners. ■
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