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Summary '

Once it is recognized that irreversible thermodynamics is essen-

tiallby a field theory in its definition of flux and force variables, the way

“is clear to construct’ d1screte, or network representatlons of a wide

class of 1rrever31b1e phenomena. In this constructlon, . many of the .

powerful techmques and results of graph theory and network analysis’

: may be applied intact to derivésthermody'namic relations heretofore

. arrived at by a more circuitous and less illuminating route., The net'_’wor'_k-"

approach reveals the essential physical and mathematical assumptio.ns,

- permitting a more intuitive and éystematié analysis of quite complicated

systen_l_s;
One of-the most powe_rfﬁl of the network théorems is Tellegen"_s

Theorem. Most, if not all, of the energy distribution theorems and ,‘

- extremum principles can be derived from it.

To illustrate the vérsatility and power of this approach, we derive

several well-known inequalities in irreversible thermodynamics from

* Tellegen's Theorem.
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1. Introduction

Ne:cwo_ifk analogs of dynamical sirst_erhs can be convstr_ucte-d vf_o'r.-‘ab
 wide variety of physical systems. The success of sﬁch dynamical modeling
is surprisihé considering the apparent basic dissimilarity béfween the net- = 4
work and the process whose dynamic behavior it imitafes (Krot}, _ 1943,
1944, 1945 1946 1948; Olson, 1958).

Recently Roth (1955) and Branin (1962, 1966) have pointed out that
the topological foundations of network theory are identical to those of
the vector calculus. Thus most of the squations of classical 'ﬁéid theory
may be modeled to arbitrary accuracy by nstworks. |

This structtirai isomorphism between discrete and continuous _
descriptions gives new insight into the structure of dynamical'syste.ms
and allows many of the results of network analysis to be apphed in other
areas. Meixner (1963, 1966) has also noted the strong’ formal simi-.
larity between eleétrical network theory and irreversible thev'rmod)'rnamics.
- and has shbwn how the entropy concept in nonequilibrium stafes may Be |
dispénsed with in fa\}or of free energy loss. In this paper we Wish to
emphasize the generality of the network approach and illustrs‘te'_the"ad-
vantages it offers in analyzing irreversible processes by der‘fiving'sex./eral

well-known inequalities in a new and unified way.

2. The Steady-State Criterion N : ' .

Pi‘igogine (1968) and Prigogine and Glansdorff (1954) have demon-
strated that, for a wide class of dynamical systems, the quantity
d P= Z J X < 0 in the ﬁatural evolution of a nonequilibrium sy'stem

toward a steady state; the equality holds only at the statlonary state.
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-For .simplicity, the proof of the inequality is given for the case of

one-dirherisional diffusion of a single specie.s (Degroot and Mazur, 1962).

Consider a volume, V, 'in contact thrdugh semipermeable membranes,

with _twé large reservoirs maintained at constant chemical pdtential's.b
Prigogine's theorem says that for time-independent boundary

conditions, the quantity dXPE &;I }-ES 0, equality holding only at steady

state. Here J is the flux across a cross section of V and X = grad p

T~

. is the driving force for diffusion, being the gradient of the chemical

“potential of the diffusing species.

Then , dxp—s;g:.gt (V) —S‘~ 5t

7
= Sv. (J ) S\ ap‘v . S‘
. N . a

By the assumption‘ of constant boundary conditions the first 'integral

__H__Sau‘
fa 5tv g
VvV Vv

vanlshes. Slnce, by conservatlon,
» Ve J —5—

y 2
dP:_‘g?ﬁ 3_n'=__§<2&(3_n_',
x ot ot on \ot
_ v v

‘Th‘e condition that the constitutive relation i = p(n) be monotonically in-

.creasing is a thermostatic stability condition, and is assumed to

hold throughout the dynamical process., We then have l
. : > v
on on
d.P= - S < 0.
X o Jdv on <5T>
The above inequality may be demonstrated in similar fashion for
any process whose energy rate may be expressed as a product of a

solenoidal' and an irrotational vector field (Branin, 1966; Penfield, in

press)., That is, the potential, p, and the ﬂo:w, J, may be replaced by



-4- . UCRL-19421 |

any quantities obeying Kirchhoff's Laws: X is the gradient of a scalé.r_

function and J satisfies a conservation condition V * J'= q..

The role of Kirchhoff's Laws is not accidental in this ‘context, - It .

<3

turns out that KCL (Kirchhoff' s Current Law) and KVL (Kirchhoff' s
Voltage Law) are physical restatements of the topological 'hotiohs of
homology and cohomology sequences (Hocking and Young, 1961).
Topology deals with the fundamental connectivity properties _o'_f the space
i.n which dynamical events occur.. The very same topologica.l consid-
erations arise in the derivation of the vector calculus ana.networ_k
vtheory, the former being the limifing case of the latter (Branin, 196_2.; .
Branin, 196_6). From a practical vie‘wpoint,’ KCL and KVL var.iables _
represent physical quantities measured in cornplefely different Ways
(Trent, 1955; Koenig-, 1969),

The engineering terminology of '"through' and "across;' varié.bies
arose from the recognition that two types of measurements mayv be -

performed on dynamic systems: a conserved quantity "through'-" a flow

meter, and a force quantity measured as a potential drop "ac'ross"ﬁ:
tvs}o term:inal locations (Koenig, 1960; Shea.rer et al., 1967; Martens - %
and Allen, 1969). The flow variable is always contravariant.and the : |
pot:ential covariant (Maclane, 1968;A LeCorbeiller, 1950), correspondiing
physically to their extensive and intensive characters, respectively .
(Paynter, 1961), and topologiycally to their identification with.zthé h_orx;ology
and coho_rnology sequences, respectively, of Ithe linear graphv represent-
ing the system connections.

The structural diagram in Fig. 1 illustrates clearly thevrelation'—

ship of the variables (Branin 1962; Brarnin, 1966; Desoer and Kuh, 1969).
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The identities IL/ITA=9 and iATI:/l:g ai'e'thve-dis’cre.te c.ounterp‘ai'ts
of the continuum identities curl o gra'd=‘0,‘ di\f bc;.c.ur1='0' which, in turn,
are the topological equivalenfs of 8«9 = 0 and:d o d = 0, where 9 is the
boundary operator of a domain D and d the -coboundafy operé’cor, or
exterior derivative.v o
‘Now, éonsider how measufemen’c# are perfo.l;med oﬁ'V to determine

its state., A di'scre'.c.,e number of readings musf be mac"_le:' aloﬁg its length,
which may be considerved as port.' variables.. That is, tb any ;pe.zciﬁ.ed
degree of acéuracy, ‘the dynamics 'may be mocieled by an R-C chain as
shown iﬁ Fig. 2. |

| Since the network represents the actual topolo‘gy,b any statement
concerning the network thaf invokes only the network tr;)pology, KCL and
KVL, should imply an equivalent statevrnentvabout the continuum case,
‘or at least its behavior as .measured from a finife number of ‘términals.
Such a st‘a’cementris v'.I‘elleg.en' s Theorem (Tellegen, 1952; Desoer and
Kuh, 1968; Penfield,in press), which says that the "through" .and

Yacross" branch variables lie in orthogonal subspaces S'pecified by the

topology of the network oniy. ‘Consequently', vTj =0= = vbjb‘ where n =
number of branches. : v b :
The proof is straightforward. If B is the loop matrix (containing
all the network topology), KCL may be written: j=BTi. . Therefore
Tj T _T. T, - ’

1<
1
1<
o
zi-'
1l
oy
=
s

Since, for each t, v and j are in fixed orthogdnal subspaces, their

. N dj L :
time derivatives v and L must also remain in the same orthogonal

~ at
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subspaces. | Therefore, ;rTj = Q.

For'ény network ofifesistors- and cé,pacitors (say, as in Flg 2),
| Ejk.vk +  %jk;,k, ¥ %jk;’k, -0
resis. cap. ‘ports |
The tlﬁrd sum vanishes by assumption of constant boundary,conditioris.'
The constitutive relation for the storage e_lem.ents, Ck’ are |
as sumed to be thermodynamically stable (Callen, 1960): | |

£1 (q) > 0.

Theh,v since

Vie = fiota) & = (9 e
2k = - Fe (g2 <o,

' Aside from the restriction of monotonicity on the capacitor =
consvtitutive relations, nc.>‘t\hing but the network topology and Klrchhoff' s
LaWs (which are eéuivalen‘g to conservatioﬁ of charge aﬁd"uniquénés:s of
potential) has been employed. In pérticular, no stafeinent c;dhce"rhirig
the nature of the other elements need be made. - | |

Note tha',t-vthe dual stafement kag—t-—jk <0is not true for;vfché; alSove
network, (sihce 3—t—jk = .q.k, whose sign ié indetérminate in ge'nerav,l.vz.
Prigogine'! s Theorem therefore emerges as a dire»ct'cjolhs'e‘qﬁe.n‘ce
of Tellegen"‘s Theorem and thermodynamic stability.
| 3. _Generalization
Since the derivation employs only the topological charaéter of fhe

flow and force variables in the form of Kirchhoff' s Laws, we may

i3
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: genevralize vfhe above inequality fo arbitrary vector spacés. Any
dynamical sysfem with m de.grees of. freedom ﬁay be m_ocieled by a
network with m iﬁdependent méshes. 3 The miesh currgnts, i, cofr-e-
spond to.génvevra;lized velocities, and the rne.sh charges q= g ivdt .are.
generalized 'coordinates_.

The purpose here is not primarily to construct eqﬁivalent 'hetworks,.
although oncé this can be done algorithmically the way is clear to §imu—
late arbitrary nonlinear dynamical prOceéses quif;e eé.sily (Oste__l_' and

| Auslander). More important, in our view, is the insight »obt'ayined f}om
‘graphical representations. In addition to the intuitive advanta"ges,. much

of the symbolic manipulation and mathematical simplificatio_n may be

performed béfore the differential equations are written (Karnopp and
.Rosenberg, 1968). Once the differential equ‘atéions have been written, °
all topological information is generally obscured. In addition, the large
body of existing knowledge concerning networks may be employed to

/

simplify analysis and obtain new results.

4. Chemical Reactions
By this approach we can deal with 1‘the phenomenologic_al.as.pectis
of chemica.l reéction dynamics.” It is evident that the flux and force
variables employed té describe chemical reactions may be cilosen to be
"through'' (conserved) and "across'' (potential) quantities (Katchalsky
and Curran, 1965; Haase, 1969). Therefore, the loose notion of
reaction "'network'' can be made precise by the appropriate interpretation

of the thermodynamic quantities.
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Each i'eaction'.cofnprises a single degree of freedom in the_

dynamicél sense (Duinker, 1968; Crandall g:_a_ll, 1968), so that a reaction

corresponds to a mesh, where the reaction flux J. = 1 i
S : : Y . dt -
is the:mesh current i, the mesh charge qrE‘S\ ,irdt‘. is the degree of
0 '

advancement of the reaction, €;and Vok is the stoichiometric coéffi‘ci_ent

of species k in reaction r (Katchalsky and Curran, 1965; Haase, 1969),

Sincle. a chemical reaction is a di.s‘sipative procéss, a dissipa’cifre
element must be. included in each mesh. It is this branch that therm‘o -
dynal_‘nically chara;cterizes the reaction in the sense that the free energy
lbss accor‘npva‘nying the progress of the reaction is equivalent to th.e |
energy diséipated in the resistive branch.v |

Now the topology of a reaction network is complétely c'on‘taivned in.
the stoichiometric matrix, v, which is obtained by writing the Kinetics -
in matrix form, as illﬁsti'ated in the following example. NOfe ‘that the'
usual sign convention in chemicai kinetics (reactants -, products +) is
identical fo T;he usual sign convention for the loop matrix (Desoer and
Kuh, "1969). The substances may represent irreducible subu_nits- of the
reaction, | |

A+ B—=C

6
C—=D or X
D+E—F + B b

-4 -1 14 0 0 0]] Three

where v= 0 0 -1 14 0 Ofjreac-
10 1 0 -1 -1 1f|tions.
e e’

6 species

The topological graph of this scheme is shown in Fig. 3, which may be

constructed algorithmically in the following way.




9. | UCRL-19421

The definition o‘f. the affinity is aFvp vwhere.gb is the chemical
potential of substanée {(branch) b, | Siﬁce the affinity is a KVL variable,
a v is the expression for KVL for the’ asso:cia'ted circuit., Therefore,
the resistor branch current :l and branch voltage v completely characterize
the dynamic behavior of the reaction mesh. In analyzing the system,
the loop matrix ]3 has a nétural decomposition obtained by taking the
' Ri as links and the remaining branches as the t_ree= (Desoer and Kuh,
_ 1969).' In this manner the link (or cotree) variables represent the
thermodynamics of the reaction. . Sinée’ with this unique partit-ion thére

is only one link in each mesh, the loop matrix may be written immedi-

ately as : I~3 - [I ; 7/ :, r loops

. (reactions)
r links b species
Therefore, the graph may be drawn directly from-the stoichiometric
matrix. |

The proof of the stéady—state criterion follows exactly as before.
Let R = 1link (résistor) index and c = tree (capacitor) index. From -
Tellegen! s theorem we have |

RoTR T Aot T IPL@E = - iDL <0

~ o~ ~ ~ A~

where. Df (q) is the Jacobian matrix of f(g).

Agaln, once the topological structure is recogn1zed the proof pro-
ceeds independently of the physical nature of the var1ab1es, so long as.

they are "Kirchhoff Law variables. '

This structural representation of chemical reactions offef_s several
advantages over conventional representations. The topological relation-

ships and dependencies are immediately apparent. It is clear, for
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example, _’c'hvat to fnaint_ain‘a ‘steadfy state, ‘t’)r.a‘.vn.ches A, E, and F lmqu.;‘
' .bé source 'bré,nch.es, ."i. e.; substances ma'intaihed conété.nf ,by.' é_xfei‘n_al T
reservoirs. KCL avppl'ied to each node yieldé immediately the vintegr.alvs' _
of mqtior# 1. é.., liheé;r éombinations of‘substanc‘:es rema.i‘ning consta:nt : B
dillring the revz;ction.v " A basic result of graph theory 1s that the node--
iﬂcidence matrix, | Anl;’ ié of rank n-1 (S_‘eshu and ,»Reedv, 1968; 'Dgsoer. |
and Kuh, 196,9); Theréfore the node-incidence matrixv automatically }
‘generates a corhplete and nénredundant set of integrals. Real.c.fi'.ongléops, |
or feedback, appear as dependent meshes, as in the cla.ssica'lvO.ns'age'r
friangle scheme shown in Fig. 4 (Katchaisky and Curran, 1965).. _

It can be easily verified that i A =0 rhéfely ekpre_sses':the- '

i :
fact that mesh abc is the sum of meshes (reactions) 1, 2, and 3, which
is evident from the graph. | .

If any substance 'participates' in more than two reac‘tio_n's, the .graph
must be nohplanar. This has no effect on anvy of the above sté.tem'ents.

5. Minimum Entropzy'P.roduction |

In 1891 Maxwell formulated the "minimum heat theorem" (Maxwell,
1892), which states that,. for linear resistive 'circuits-'_with conSt_anf :
sources, _jthe flows distribute themselves in such a way that the p.owe'r
dissipated .(i\. e., heat generated), P, is a minimum. Since tlﬁe circuit
is assumed isothermal, dividing the héat, Q, dissipated in the re--

sistors by>the ambient temperature, T, we find that .-I.9-= gf_

s th_e entropy
production, is also minimum (Prigogine, 1947). -

- An examination of this theorem reveéls once again tha’c‘ the ohly
requiremehts are the Kirchhoff Law préperties of the variables. Thus

the conclusions generalize to arbitrary thermodynamic systems whose

variables are similiarly defined.

il
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We first drop the reQuirement that the resistors be linear., We
then define two new quantities (Millar, 1951; Duffin, 1946, 1947, 1948)
for each bra;n'ch,‘ the "content, ' G, and ité Legendre '._Ifransform, the

""cocontent, "' G:

. . » 'Gk - ‘S\dejk. . . - k .

0 k _

B ‘ and o

v : '
E B k - . * b
C'k_S"j dv ‘ G “ZGk.'.
o k k : : : :
0 k

Note that G + G* = P, the total dissipation. For linear constitutive
relations, G = G*v:(i/z)f-’. | | | |
| Frdm Telleg‘en' s Theorem, iT\i= 0. Consider now a virtu-al change
in‘ the j! s _ji{-____-'*jk+ 6jk,' subject g)‘nly to the constraint thét the
variatioﬁs' also obey KCL., Therefore

G+ Tv=o.
By subtraction 6ij = 0, i.e,, the variations are also perpendicular-to
the voltage subspace. And so, G = VT6J = 0, Therefore, at stéédy state,
~'the content is stationary. If, in addition, all the resistor characteristics
are strictly monotonically increasing, then G can be shown to be strictly

convex (Duffin, 1946, 1947, 1948); hence the stationary point is an ab-

. solute minimum.

Alternatively, we could have considered variations in the Vfdrces_,

v + 6v, subject to KVL, and arrived at"

5G° = jlsv = o. P
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' For the special case of linear resistors, the 'éxtremum is exactly

the minimum power theorem of Maxwell, 6P = ﬁ(l. %bl,) = 0.

- A resistive ne’twoi’k w1th constant sour‘ceé 1s always in the steady
state, since i’cl has no dynamic élements_. A network with ‘dyna.mic (energy -~ f
storage) elements and w1th constant 301‘.1rcves will be purély re.sistivev :
in the sfeady state only. Hence,- again, thevsteavc'_ivy. state is charact.ei‘i.zed
by- th‘e Stationaritjr (or the i'ni.nirhum) of the content. As far as station-
arity is concerned, no assumption as to the na’curé of the branch relations
has been assumed, so the thedrem holds for.arbitrary nonlinéal;, coupled
systems., E |
| 6, Stability of Steady States
Prigogine has also proposed the "excess entropy produ;cfion'_"' -
6 P= Z (SjiéSXi as a stability criterion for thermodynamic s'y.s-temvsv
(Prigogine and Glansdotff, to be published). Iﬁtuitiveiy, it would ’s'eé‘m
‘that variations about a stable steady state that effect a net el.atrop‘y re-
~duction of the system are not favored in a thermodynamically "s‘table |
system., Conversely, 6XP < 0 should be some indicator of system’ih-
stability, We can make this notion clearer and more precisé by ex:‘—,
amining the nonequilibrium system par excellence, the electrical h_et-
work, Foi‘ example, consider the chemical reactién hetwc;rk ope_li'a‘ting \
at a steady state. |
In order to study the stability of the steady state, we ﬁéy iihearize
about the steady state and obtain the small—signal dynamic equations,
Ra+Sg=0,

-1
4 = (-R7"S)q,
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where R, S are real, symmetric, nonsingular matrices, If the resistor

~ e

and capacitor characteristics are strictly monotonically increasing, it

. can be shown that there is a unique steady state which occurs at the

uhique m1n1mum of the. total éonten‘t of the ﬁetwork» (Duffin, | 1946, 1947,
1948; Desoer and Kétzenelson, 1965), Fﬁrthermore, a sirhple Liapunov-
éype‘ reagoning (see pp. 816,-320 of Des.c;er' and Kuh, 1969)v shows that
given any initial state, the circuit will asy’rﬁptotically reach the unique
steady state. It follows, therefore, fhat whenevervthe sfeady sfate is
unstable, ét least oné resistor (dissipative process) mu‘st.have a
characteristic with a negative slope at vt/he steady-state operafing"poinf.
Now, éohsider the following facts: |
(i) \ is an eigenvalue of ‘13- 1§ if and only if
1/\ is an eigenvalue of (5—1§)_1 = E_il’}.
| (ii) © S > 0 by thermodynamic stability. 'Theréforé S‘i/2 is a
well defined, real symmetric, positi\vre—definitevrnatrix‘.
(iii) . Then §—1§ is equivalent to 31/25.2—1/2 by the si;;nilarity

1

transformation S ¥ 25 1R)s"Y/2. so s 'R ana s~/ 2rs"1/2

have the same eigenvalues. A
(iv) §—1/2'13§-1/2 is congruent to R, and therefore has the éame
index, ive., the same number of negative eigenvalues
(Martin and Mizel, 1966). |
(v) The steady state is unstable if and only if the matrix = I~{_1§
has at least one positive eigenvalue (Lefschetz, 1963).

From these facts it follows that the steady state is locally unstable

if and only if R has at least one negative eigenvalue.
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The rate of free enefgy loss in the resistors is
P = jﬂ&{bj s R, = resistor branch matrix.
Usiri_g KCL in the form,j=MTi', we have .

~

where .R:—:: -M'VRbM ' is the resistor mesh matrix (Desoer and Kuh,

1969) and i = mesh currents.

~ o~ e

Consider any perturbation of branch curfents and voltages_ébout
the steady sfate, conforming to KCL, KVL,_' and the local (linea:.riz.ed)'
constitutive relations. If for some such perturbation |

55y = 6f Rysj - 6LRsL <O
.‘then R has a negative eigenvalue; hence the stea.dy state is .unstable-.
We have proveﬁ the following Theorem; | -
(i) The steady state is locally stable if and only if for any perturbétién
‘of branch voltages ahd»branch currents about the steady stafe con- -
forming kto KV1, KCL, and the constit.utive relations, |
6jT<SX>O. |
(kii) The sfeady state is locally unstable if and only if for s_gie“ such ‘
perturbation,
5j sv<0. - L .
- This result may be obtained more quickly (but less precisely)

by starting from Tellegen's Theorem, v j = 0.
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Therefore Zaj 6Vk + z6jk6vk+zsjk8vk .: 0.

- resis. - cap. ports

By assumption of constant boundary conditions, the last su.tntvanishes.. '

Ins'erting the (linearized) constitutive relations, we obtain the small-

‘ 51gna1 equat1ons of motion:

6] RéJ + 6J 86q = 0,

~ o~ o~

d =
69 TR 5(1 M- [(1/2 6qT86q}: 0,
M . — d 'J. .
6qR Sq -7 .a._ 5 Cy- )
where g C[q(t)} (1/2)6q S6q is the ''small-signal energy'b'“ about

the steady state.
If the system is unstable, the trajectory initially moves away from
the origin, 6q'= 0. Therefore 5(: [Sq(t)]is increasin'g, at least initially.
o

Thgrefore 6q R6q< O

~ o~ A~

orz évk 6Jk <0,
' resis, '
This reasomng, however, does not indicate what kinds of perturbatlons,

5vy and Sjk, are allowed in the search for a negative sum.
The question naturally arises: What sorts of physical phéndmena

can generate dissipative instabilities, i.e., locally active constitutive

relations? Roughly speaking, it corresponds to the existence of ''state-

controlled resistors.! Since the network represents a conceptual

' separation of processes actually occurring within the same volu'me

_»element, the state variables (g, v) will enter into the re51stor characterlstlcs

~ o~

in a parametr1c fashion. For example, the phenomenolog1ca1 dlffusmn-
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_lcp
D ~ RT’

state variable of the capacitance feeds back to modulat'e the resistor

resistance in-part 2 is concentration dependent {L i.e., Jthe

characteristic (Katchalsky and Curran,. 1965; Othmer and Sci-iven,. 1969).

Th1s is a farnilia_r effect in many nonlinear circuit devi‘c':es svuch as

thermistors (Chua, 1969), whei'e the thermal state of'the.resistor

(heat capacitance) alters the operating point of the electrical resistance.
| The idehtical phenomenon arises in membrane oscillators (Mauro,

1961; Teorell, 1962), stirred t.ank réactors (Arié, 1969), én& auto-; and

cross-catalytic chemical reactions (Prigogine and Nicholis, 1967; |

Lefever and Prigogine, 1968; Lefever, 1968). This genera.liz,ati‘c;n: )

will be dealt with in a further publication.
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Footnotes

1B is the mesh matrix M above, partition in a special way to be dis_

cussed later.

ZBy duality, ZVR g_t_ jK.s 0 is true for RL nétwo'rké, ’ i._e.i, systems with

inertial elements and dissipation, but not capacitive energy storage.

3With certain geometrical and dimensional restrictions to be dealt with

elsewh,ere“(Oster and Auslander, to be published).

4Remarks: (1) One negative resistor does notimply R has ovne_: negative
eigenvalue. For thé chemical reaction Inetwork, ho&evef, B i§ alWays
E diagonai; hencve one negaf/ive resistor does vvifnply a négétive eigenkf"_alue.
.(2) The above argument shows that if R has negative _eigem_falue(s_);: the
steady state cannot be stabiliz_ed by adjustment of the energy storage |
'elem‘ents. (3) The critical case (A = 0) is ruled out by'thev fact :that, for
our networks, B is .nonsingular. (4) Since R and S are real and

symmetric, \ is necessarily real.
55 i e ! r 3 ’ 1 ' | vt
. is not the 'perturbation energy'’ about the steady state v :

(T +60)T (L+65) = vlj+oviejtovit s,

soéyC includes the '""correlation'' terms, since power is a nonlinear

function.
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List of Symbols*
defined on fig. 2 |
affinity = - Vo
= .partiti'oned mesh matrix
b_rancl'.xv capacitance matrix
cobouridary operator
diffusion céefficient
Jacobién rﬁatrix of {()i)
@ﬁmmonﬁg'z

small signal energy .

" content

cocontent

'.definecbi on fig., 2

identity matrix |
defined on fig. 2
thérmddynarnic flux

reaction flux of reaction r

Onsager phenomenologiéal diffusion conductance

defined on fig, 2

particlé vector

diss ipétion

branch charge vector
mesh charge vectbr’
= hé-at

gas constant’

resistor mesh matrix

UCRL-19421.
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Moo 14

t

U <

<+ n mg;u

o

Branch resistance rznatr.ix.
éntropy

= (3"1

time

= absolute temperature

defined on fig. 2

volume of system

" thermodynamic force

boundary operator

chemical potential vector

stoichiometrix matrix (reactions x species)

degree of advancement of reaction r
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A = node incidence matrix

T o i .

KVL I o — M v A o M = mesh current matrix
R ' o i ='mesh current-vector
T , i = branch current v‘ectbr'v
. M A , ' N .
KCL ' i ) v = branch voltage vector

e = node to datum4_
voltage vector-

‘Topological relationship between dynamical variables

- Fig. 1
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2

Network realization of 1-dimensional diffusion

- Fig. 2
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(b) TOPOLOGICAL GRAPH

(a) CIRCUIT

Graphical representation of reaction network

DBL 6911 5128

Fig. 3
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Onsager scheme

. Fig. 4
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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