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Abstract

This report represents the conclusions of |15 experts in nephrology and endocrinology, based on their knowledge of key
studies and evidence in the field, on the role of continuous glucose monitors (CGMs) in patients with diabetes and chronic
kidney disease (CKD), including those receiving dialysis. The experts discussed issues related to CGM accuracy, indications,
education, clinical outcomes, quality of life, research gaps, and barriers to dissemination. Three main goals of management for
patients with CKD and diabetes were identified: (1) greater use of CGMs for better glycemic monitoring and management,
(2) further research evaluating the accuracy, feasibility, outcomes, and potential value of CGMs in patients with end-stage
kidney disease (ESKD) on hemodialysis, and (3) equitable access to CGM technology for patients with CKD. The experts also
developed 15 conclusions regarding the use of CGMs in this population related to CGMs’ unique delivery of both real-time
information that can guide monitoring and management of glycemia and continuous and predictive data in this population,
which is at higher risk for hypoglycemia and hyperglycemia. The group noted three major clinical gaps: (1) CGMs are not
routinely prescribed for patients with diabetes and CKD; (2) CGMs are not approved by the United States Food and Drug
Administration (FDA) for patients with diabetes who are on dialysis; and (3) CGMs are not routinely available to all of
those who need them because of structural barriers in the health care system. These gaps can be improved with greater
stakeholder collaboration, education, and awareness brought to the use of CGM technology in CKD.

Keywords
chronic kidney disease, continuous glucose monitor, diabetes, diabetic kidney disease, dialysis, end-stage kidney disease

'VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
2Cedars-Sinai Health Systems, Los Angeles, CA, USA

3Center for Health Systems Research, Sutter Health, Santa Barbara, CA, USA

“Scripps Whittier Diabetes Institute, San Diego, CA, USA

5The University of Tennessee Health Science Center, Memphis, TN, USA

6Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
’University of Nebraska Medical Center, Omaha, NE, USA

8Miller School of Medicine, University of Miami, Miami, FL, USA

Harbor-UCLA Medical Center, the Lundquist Institute, Torrance, CA, USA

'Washington State University, Spokane, WA, USA

""University of Washington, Seattle, WA, USA

Z|nstitute of Medicine, University of Gothenburg, Gothenburg, Sweden

13Stanford University School of Medicine, Stanford, CA, USA

"“Diabetes Technology Society, Burlingame, CA, USA

I5Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA

Corresponding Author:

David C. Klonoff, MD, FACP, FRCP (Edin), Fellow AIMBE, Diabetes Research Institute, Mills-Peninsula Medical Center, 100 South San Mateo Drive,
Room 1165, San Mateo, CA 94401, USA.

Email: dklonoff@diabetestechnology.org


https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/dst
mailto:dklonoff@diabetestechnology.org

Journal of Diabetes Science and Technology 00(0)

Introduction

Chronic kidney disease (CKD) is defined as decreased kid-
ney function with an estimated glomerular filtration rate
(eGFR) of <60 mL/min/1.73 m? and/or the presence of
kidney damage (ie, pathologic abnormalities ascertained
by biopsy or imaging, urinary sediment abnormalities, or
increased albuminuria) for =3 months.'> Regarding the nat-
ural history of CKD, the stages of this disease are presented
in Table 1. Advanced CKD requiring dialysis or kidney
transplantation is referred to as end-stage kidney disease
(ESKD), although more recently the term kidney failure
(defined as an eGFR <15 mL/min/1.73 m? or treatment with
dialysis) has been recommended as a more patient-centered
description.* The various manifestations of kidney diseases
include acute kidney injury (AKI), which is defined as (1) an
abrupt decline in kidney function manifested by an increase
in serum creatinine, urea, and other nitrogenous waste
products; (2) dysregulation of extracellular volume and elec-
trolytes; and (3) development of oliguria. Patients with
underlying CKD are at heightened risk of developing AKI*>
and vice-versa.’

Diabetes mellitus (DM) is the leading cause of CKD
worldwide,'? and it dominantly contributes to the high mor-
bidity and mortality (ie, third fastest-growing cause of death
globally) of kidney diseases. The term diabetic kidney dis-
ease (DKD) is used to describe a clinical diagnosis that is
based on presence of albuminuria and/or impaired kidney
function in patients with diabetes, but does not per se indi-
cate the specific underlying pathologic phenotype of kidney
damage ensuing from diabetes.'*'® In contrast, the term dia-
betic nephropathy has traditionally been used to describe the
presence of albuminuria in a setting of retinopathy (typically
in patients with type 1 diabetes [T1D]), as a sign of diabetic
glomerulopathy characterized by glomerular basement mem-
brane thickening, endothelial damage, mesangial expansion
and nodules, and loss of podocytes. Given that various forms
of CKD occur because of diabetes (ie, tubulointerstitial dis-
ease, nonclassical glomerular lesions, etc), the term DKD
aids in clarifying that the underlying pathologic phenotype is
often unknown.

Compared to those with other causes of CKD, patients
with DKD have a more rapid decline in kidney function and
substantially higher death risk.'” Hence, addressing the high
morbidity and mortality of DKD requires a multifaceted and
multidisciplinary approach, as shown in Figure 1, in which
adequate glycemic monitoring and control are key corner-
stones of management.'® It is well known that traditional
glycemic metrics have limitations in patients affected by
advanced CKD with respect to accuracy, convenience, and
provision of a complete representation of glycemic status. '
Hence, there has been growing recognition of the critical role
of continuous glucose monitors (CGMs) in addressing clini-
cal and research gaps, although the widespread use of this
tool remains nascent in the DKD population.?!

To further inform the use of CGMs in patients with diabe-
tes and CKD, including those receiving dialysis, Diabetes
Technology Society (DTS) convened a group of experts in
nephrology and endocrinology which met on January 30,
2024, May 31, 2024, and August 21, 2024 to discuss existing
data, based on their knowledge of key studies and evidence
in the field, about using CGM in diabetes patients with CKD
with respect to accuracy, indications, clinical endpoints,
patient-reported outcomes, barriers to widespread use, cur-
rent knowledge gaps, and future research directions. The
group formulated 15 key conclusions on the use of CGMs in
patients with diabetes and CKD, and also highlighted several
major and high-priority clinical gaps necessitating further
collaboration among key stakeholders in order to advance
the clinical implementation and further research of CGM
technology toward the goal of improved outcomes in the
DKD population. These gaps and conclusions are described
in this report.

Epidemiology of Chronic Kidney
Disease and End-Stage Kidney Disease
and Diabetes in the United States and
Globally

e The number of patients affected by DKD has been ris-
ing worldwide, in parallel with the increase in the
number of patients with DM.

e In different countries, and in populations with differ-
ent socioeconomic characteristics, the epidemiology
of DKD has been affected by some trends that are
increasing and other trends that are decreasing the
incidence and prevalence of DKD.

e The overall incidence of ESKD attributable to DM
increased almost three-fold between 2000 and 2015.

Regarding the epidemiology of CKD approximately 37
million adults in the United States (14% of the US adult pop-
ulation) have CKD, among whom 90% are unaware of their
condition.?? In Europe, approximately 10% of the population
has CKD.?* As many as 850 million people worldwide are
estimated to have kidney disease, including non-dialysis
dependent CKD, ESKD, and AKI.**

Moreover, type 2 diabetes mellitus (T2D) has developed
into a pandemic, currently affecting 537 million adults
worldwide, with numbers projected to rise to 643 million by
2030 and to 783 million by 2045.%5 T2D has spread to all
parts of the world, with (1) 75% of affected adults being resi-
dents of low-to-middle income countries, (2) approximately
one trillion US dollars being spent for annual worldwide
health care expenditures, and (3) 6.7 million deaths world-
wide being attributed to this disease in 2021.%

One of the most common complications of T2D is CKD,
and T2D is the single most important risk factor for CKD.?
In parallel with the increasing numbers of individuals with
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Table I. Stages of Chronic Kidney Disease (CKD).

Stage Description GFR Kidney damage CGMs approved for use?
Stage | Kidney damage with normal or T GFR =90 mL/min/1.73 m? Present Yes
Stage 2 Kidney damage with mild 4 GFR 60-89 mL/minl.73 m? Present Yes
Stage 3a Moderate  GFR 45-59 mL/min/1.73 m? Not required Yes
Stage 3b Moderate | GFR 30-44 mL/min/1.73 m*>  Not required Yes
Stage 4 Severe  GFR 15-29 mL/min/1.73 m?  Not required Yes
Stage 5 Kidney failure <15 mL/min/1.73 m? Not required Yes
Stage 5D—with Dialysis Kidney failure <15 mL/min/1.73 m? Not required No

CKD is defined as decreased kidney function with an estimated glomerular filtration rate (eGFR) of <60 mL/min/|.73 m? and/or the presence of kidney

damage (ie, pathologic abnormalities ascertained by biopsy or imaging, urinary sediment abnormalities, or increased albuminuria) for =3 months.

1,78

Abbreviations: CGMs, continuous glucose monitors; GFR, glomerular filtration rate; m, meters; mL, milliliters, min, minutes.

Based on the instructions for use of the four flagship US Food and Drug Administration-approved CGMs in the US (adult/pediatric), including Abbott
FreeStyle Libre3,” Dexcom G7,'° Medtronic 780G,'' and Senseonics Eversense E3.'? The Abbott, Dexcom, and Medtronic systems are not approved for
people on any type of dialysis. The Senseonics system is not approved for people on peritoneal dialysis.

Pharmacologic
Interventions

Dietary
Interventions

Reduce CV-Kidney-
Metabolic
Complications

Glycemic
Monitoring &
Control

Psychosocial
Issues

Physical Activity \7“Self-Management
Education

& Support

Figure |. A multifaceted and multidisciplinary approach to DKD management that includes adequate glycemic control and monitoring,

which are a key cornerstone.
Abbreviation: CV, cardiovascular.

T2D, the total number of those developing CKD attributable
to DM has also been increasing worldwide: new CKD cases
have shown a 74% rise, increasing from 1.4 million in 1990
to 2.4 million in 2017.2” Although it is clear that the rising
number of people with diabetes and the increase in the
world’s population have fueled an increase in the overall
number of patients with DKD, the population dynamics of
DKD are also affected by other phenomena, which often
exert competing effects on the incidence and prevalence of
DKD. For example, changes in diagnostic practices (e.g.,
increasing efforts to detect albuminuria) could lead to more
people being diagnosed with DKD and hence increase its
overall incidence, whereas changes in preventative efforts
(e.g., better glucose and blood pressure control in patients
with diabetes without CKD) could lead to fewer people being
diagnosed with DKD. Changes in treatment practices (e.g.,
the introduction of new medications) could lead to better
clinical outcomes in patients with DKD, resulting in a higher
overall disease prevalence. To further complicate matters,
these various changes may occur at different times and to
varying extents across different countries and may even

differ within the same country for people with heterogeneous
characteristics (e.g., unfavorably affecting those with lower
socioeconomic status), which explains why the temporal and
geographic population dynamics of DKD have shown sig-
nificant heterogeneity.

The reported prevalence of CKD among patients with
T2D varies from 24% in Denmark? to 28% in Spain® and
the Netherlands,*® 38% in the United States,®' 42% in the
United Kingdom,*? and 46% in Japan.’* Notwithstanding
such geographic heterogeneity, the proportion of individuals
with DM affected by DKD?! and the country-specific pre-
valence of DKD appears to have been stable over time, but
important nuances color the picture. A study examining tem-
poral changes in DKD in the US National Health and
Nutrition Examination Survey (NHANES) reported a com-
plex picture, with an overall flat prevalence over time, but
with discrepant temporal trends for the prevalences of albu-
minuria (declining over time in younger non-Hispanic White
adults) and decreased eGFR (increasing over time in all stud-
ied groups).* The declining trend over time in albuminuria
in select subgroups may have been a result of enhanced use
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of medications known to reduce albuminuria (e.g., renin-
angiotensin-aldosterone system inhibitors [RAASi]) or
improved control of hyperglycemia.3* Recent evidence has
demonstrated that other drug classes can decrease albumin-
uria in CKD, including sodium—glucose cotransporter-2
inhibitors, glucagon-like peptide 1 receptor agonists, miner-
alocorticoid receptor antagonists, endothelin receptor antag-
onists, and Janus kinase inhibitors.?®

The worldwide age-standardized incidence rate (ASIR) of
DKD was 29.15 per 100,000 in 2017,%7 but higher incidence
rates were seen in countries with lower socio-demographic
indices. There has been an overall decrease of —0.40%/year
in the ASIR of DKD worldwide from 1990 to 2017, but
important regional differences have been present, as shown
in Figure 2. The largest decrease in the ASIR for DKD was
observed in China, whereas the largest increase was in the
United States.?’

Once kidney disease develops, patients with DKD, com-
pared to patients with CKD from other etiologies, display
more rapid loss of kidney function,*® which may explain the
overall higher prevalence of T2D observed in patients with
more advanced stages of CKD.!” Data from NHANES exam-
ining temporal trends in the prevalence of T2D among
patients with different stages of CKD shows a complex pic-
ture, with a decline over time in the prevalence of DM in
patients with stages 4 to 5 CKD along with a concomitant
increase in the prevalence of DM in patients with earlier
stages of CKD.!” It is possible that these complex trends may
have been the results of secular changes in diagnostic and
therapeutic practices resulting in earlier disease detection
and slower disease progression.

T2D is also the most important cause of ESKD. Between
2000 and 2015, the proportion of ESKD patients with diabe-
tes has increased among all patients with ESKD worldwide
from 19 to 30%.%” During the same time span, the worldwide
incidence of ESKD attributed to DM increased almost three-
fold (from 375.8 to 1016.0/million).>” Most of this rise was
attributable to T2D, with the incidence of ESKD attributable
to T1D remaining stable over time.’® There are important
regional differences in the incidence of ESKD attributable to
DM, with the highest incidences observed in the Western
Pacific, Asia, and the United States.’’

DKD exerts a considerable burden on health care systems
in the form of high health care resource utilization and con-
siderable costs. A population-based analysis of US adminis-
trative claims data indicated that patients with incident DKD
incurred a total cost of $24029 per person in the first year
after DKD identification. Costs were accentuated in patients
with more advanced stages of CKD. Patients who have stage
5 CKD, compared to patients with stage 1 CKD, incur a five-
fold higher annual cost and a seven-fold higher inpatient
hospitalization rate.** The costs of care for DKD in other
countries are difficult to compare because of differences in
health care systems.?
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Figure 2. Estimated annual percentage change in age-
standardized incidence rates of diabetic kidney disease between
1990 and 2017. Figure reproduced from Li et al?’ under the CC
BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/
License).

Abbreviations: ASIR, age-standardized incidence rate; EAPC, estimated
annual percent change.

Pathophysiology for Dysglycemia in
Chronic Kidney Disease, End-Stage Kidney
Disease, and Acute Kidney Injury

e The kidney is a major locus of glucose regulation
under normal conditions, serving as a site for glucose
reabsorption, glucose utilization, and gluconeogene-
sis. These functions are impaired in CKD.

e The two main reasons for hyperglycemia in patients
with AKI, CKD, and ESKD (with and without DM)
are insulin resistance and decreased insulin secretion.

e Hypoglycemia is a major risk for individuals with AKI,
CKD, and ESKD because of diabetes. Risk factors
include impaired kidney gluconeogenesis, a decreased
response of hormones that normally raise blood glucose
levels (primarily catecholamines), reduced food intake,
and a prolonged half-life of medications in patients
with DM.

Normal Physiology

Glucose is freely filtered by the kidney glomerulus, and
about 90% of it is reabsorbed in the proximal convoluted
tubule via the sodium-glucose cotransporter-2 (SGLT2). In
the presence of normal glucose levels, the remaining 10% is
reabsorbed later in the nephron by the sodium-glucose
cotransporter-1 (SGLT1).** The glucose transporter protein
type 2 (GLUT2) is primarily responsible for glucose exit
from proximal tubular cells. In addition, significant glucose
uptake occurs via facilitative glucose transporters on the
basolateral side of the distal tubular cells, which is mediated
by the glucose transporter protein type 1 (GLUTI1). The
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Figure 3. Risk factors for hypoglycemia and hyperglycemia in chronic kidney disease. Figure modified from Rhee et al.'®
Abbreviations: DM, diabetes mellitus; HD, hemodialysis; PD, peritoneal dialysis; PEW, protein-energy wasting; PTH, parathyroid hormone.

kidney is an important site of glucose utilization (ranging
from 5% to 15% of total body glucose utilization)*! because
of its high metabolic demands. In addition, the kidneys may
account for as much as 40% of total body gluconeogenesis,
occurring in the proximal tubular cells.*?

Hypoglycemia Mechanisms

In patients with diabetes, hypoglycemia is defined as a blood
glucose <70 mg/dL (3.9 mmol/L). In patients with kidney
disease, an interplay of events may lead to hypoglycemia,*
as shown in Figure 3. These factors include decreased food
intake, reduced kidney gluconeogenesis from loss of func-
tioning proximal tubular cells,* and a response of hormones,
primarily catecholamines, that normally raise blood glucose
levels. Inadequate increases in cortisol, growth hormone, and
thyroid hormone in response to hypoglycemia may also play
a role. Furthermore, in patients with diabetes, higher circu-
lating concentrations of medications that lower blood glu-
cose (eg, insulin, other hypoglycemic agents) may be present
with standard doses because of decreased breakdown of

these agents by the kidneys. Finally, dialysis predisposes to
hypoglycemia because of decreased glucose concentrations
in dialysate, intradialytic shifts, increased uptake by erythro-
cytes, and prolonged half-life of drugs that lower blood
glycemia.*

Hyperglycemia Mechanisms

Hyperglycemia is defined as blood glucose >125 mg/dL (6.9
mmol/L) if fasting and >180 mg/dL (10 mmol/L) at 2 hours
post prandial.** Insulin resistance occurs in patients with
kidney disease with and without DM.*® Reasons include
increased inflammation, metabolic acidosis, oxidative stress,
uremic toxins, physical inactivity, obesity, and other factors
which have been shown to lead to impairment or degradation
of specific proteins in the insulin signaling pathway (eg, by
the ubiquitin proteasome system, which maintains the glo-
merular filtration barrier).*’ In addition to insulin resistance,
decreased insulin secretion has also been observed (which
may be mediated at least in part by modest elevations in cir-
culating urea levels).*®
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Effects of Chronic Kidney Disease and
End-Stage Kidney Disease in Diabetes on
Mean Glycemia, Glycated Hemoglobin,
Short-Term Mean Glycemic Markers,
Glycemic Variability, and Target
Continuous Glucose Monitoring

Glucose Profiles

e Glycated hemoglobin (HbA, ), although considered
to be a gold-standard metric of diabetes control in
patients with CKD, has major limitations in its accu-
racy and may underestimate plasma glucose levels in
this patient population.

e Although glycated albumin (GA) and fructosamine
offer particular benefits in assessing blood glucose
control in patients with diabetes and advanced CKD
and may be superior to HbA, , neither GA nor fruc-
tosamine, are recommended by major guidelines
(American Diabetes Association [ADA], European
Association for the Study of Diabetes [EASD],
American Association of Clinical Endocrinologists
[AACE], Kidney Disease Improving Global Outcomes
[KDIGO], Kidney Disease Outcomes Quality
Initiative [KDOQI]) because of lack of standardiza-
tion of both assays and lack of robust outcomes data.

e Glucose control as assessed by CGM overcomes
many disadvantages of traditional metrics; however,
data showing correlation between CGM metrics and
progression of CKD, morbidity, or mortality are not
yet available.

Glycated hemoglobin is the product of a non-enzymatic
reaction between glucose and the hemoglobin beta-chain, and
in the general population, it is the gold-standard test for assess-
ing long-term glycemic control. The main factors affecting
HbA,  values include changes in red blood cell lifespan, glyca-
tion rate, and analytical assay interference, all of which are
commonly observed in kidney disease. It is noteworthy that
even in individuals without CKD essential discordances
between HbA, and mean glucose exist for a subgroup of
patients.*>>" These are likely explained by genetic and biologic
factors related to glycation rate and glucose transport into
erythrocytes, especially in populations where red blood cell
lifespan or hemoglobin glycation rates are altered even if ana-
lytical accuracy is preserved. Consequently, HbA, levels may
not be accurate in patients with advanced CKD, including those
receiving dialysis. HbA,  levels may be falsely low in a setting
of anemia,”? receipt of blood transfusions that can dilute
patient blood with donor blood containing a lower concentra-
tion of HbA ¢, or any condition that shortens the erythrocyte
lifespan, such as hemodialysis.**> Eryptosis, or shortened red
blood cell lifespan due to suicidal erythrocyte death, causing
accelerated erythrocyte loss*® can occur with receipt of erythro-
poietin-stimulating agents in patients with CKD.%’

Conversely, HbA, levels may be falsely elevated in a
setting of elevated blood urea nitrogen concentration (ie,
exposure to high urea concentrations promotes formation of
carbamylated hemoglobin, which cannot be distinguished
from HbA, in certain assays).” It should be noted that
although metabolic acidosis does not directly affect the rate
of hemoglobin glycation, conditions leading to metabolic
acidosis, such as CKD and poorly controlled diabetes, can
affect glycation rates.” On average, HbA,_ underestimates
plasma glucose levels in the advanced CKD population,
when compared with plasma glucose assessed by CGM, GA,
or fructosamine.!® Furthermore, this metric provides no
information on glucose variability or hypoglycemia.!®6%61
Yet, the clinical utility of HbA | is related to its well-known
association with diabetes-related complications including
mortality, and target HbA, concentrations are well outlined
by national organizations including ADA and KDIGO.

The GA, formed by the non-enzymatic glycation of albu-
min, reflects the glycemic status within the preceding two to
three weeks, given the three-week half-life of albumin. It is
not influenced by factors that affect HbA, through changes
in red blood cell lifespan (associated with iron, vitamin B,
and folate deficiency and/or therapy, hemolytic anemia,
altered erythropoietin levels), altered hemoglobin glycation
rates, or analytical assay interference (present with elevated
blood urea nitrogen concentrations). However, conditions of
increased protein catabolism such as chronic inflammation,
nephrotic range proteinuria, and protein-energy wasting/
malnutrition leading to hypoalbuminemia will affect accu-
racy of GA levels. Additional clinical value of GA is con-
veyed by the well-documented association of elevated GA
levels with progression of microvascular complications and
all-cause and cardiovascular mortality for those receiving
dialysis.®? In addition, a meta-analysis of 24 studies with
3928 patients evaluating the correlation between GA or
HbA, against average glucose concentrations reported GA
to be superior to HbA, _ in assessing average blood glucose
concentrations in people with CKD.%

Fructosamine, a measure of non-enzymatic glycation of
all circulating proteins, including albumin, globulins, and
lipoproteins, is considered to be an alternative to HbA, mea-
surement in situations where HbA,_ is not reliable. Similarly
to GA, fructosamine is influenced by alterations in protein
turnover as well as changes in blood concentrations of urea.
Neither blood testing of fructosamine nor GA are yet recom-
mended by ADA, EASD, AACE, KDIGO, or KDOQI guide-
lines for the general population or for CKD patients because
of lack of standardization of assays of these substances and
robust outcomes.

1,5-anhydroglucitol (1,5-AG) is a metabolically inert
polyol that competes with glucose for reabsorption in the
kidneys. The 1,5-AG levels in blood change within
24 hours because of glucose’s competitive inhibition of
1,5-AG reabsorption in the kidney tubules and is a marker
of short-term glycemic control. When glucose levels rise,
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Table 2. Glycemic Targets for High-Risk Patients Who Are Using Continuous Glucose Monitoring as Recommended in the 2019
International Consensus on Time in Range Report.®®

<70 mg/dL 70-180 mg/dL >180 mg/dL >250 mg/dL
Glycemic range (3.9 mmol/L) (3.9 — 10 mmol/L) (> 10 mmol/L) (13.9 mmol/L)

Less than 1%
<5 min/d

Percentage of time spent in each BG range
Target amount of time per day

More than 50%
> 12 hours/d

Less than 50%
<12 hours/d

Less than 10%
< 2.4 hours/d

Abbreviations: BG, blood glucose; d, day; dL, deciliter; L, liter; mg, milligrams; min, minutes; mmol,millimoles.

urinary loss of 1,5-AG occurs, and circulating levels fall
but the converse is not true (ie, when glucose levels fall,
circulating levels of 1,5-AG do not rise). The concentration
of this substance in blood is not affected by turnover of
erythrocytes or proteins.®

A CGM provides a detailed analysis of patients’ glucose
profiles, including metrics on mean sensor glucose, glucose
variability, as well as time in range, above range, and below
range. It is recognized that a clear link has not yet been estab-
lished between CGM metrics and progression of CKD, mor-
bidity, or mortality.?!

Specific CGM-determined targets for the amount of
time per day spent in various levels of glycemia for patients
with CKD, including those receiving dialysis, have not been
formulated by ADA, KDIGO, or KDOQI because of a lack
of data in the kidney disease population. Target percentages
of time can be extrapolated from the 2019 International
Consensus on Time in Range Report® for high-risk patients
(defined as older patients as well as others at high risk of
severe hypoglycemia, including those with kidney disease).®®
These targets are presented in Table 2. These goals need to be
further evaluated specifically in populations with CKD plus
or minus ESKD.

Results From Continuous Glucose
Monitor Studies in Chronic Kidney
Disease/End-Stage Kidney Disease
With Diabetes in Free Living
Populations Including Clinical
Outcomes and Risk Factors Due to
Hypoglycemia and Hyperglycemia

e When assessed by CGMs, patients with ESKD are
frequently observed to have hyperglycemia, with
large excursions occurring most frequently on the day
after dialysis.

e Hypoglycemic episodes are not the most frequent
excursions, however, when they occur, these events
are usually severe, prolonged, and associated with
high concern/fear by dialysis staff, clinicians, and
patients.

e When assessed by CGM, patients with ESKD and
“burnt-out diabetes,” as defined by previously estab-
lished T2D and normal HbA Ic, are observed to have

frequent and prolonged hyperglycemia, with ~4 hours
per day of glycemia levels >180 mg/dL (10 mmol/L).
This illustrates the limitations of HbA,_ to assess gly-
cemic control in patients with ESKD.

As described in the section “Effects of Chronic Kidney
Disease and End-Stage Kidney Disease in Diabetes on Mean
Glycemia, Glycated Hemoglobin, Short-Term Mean
Glycemic Markers, Glycemic Variability, and Target
Continuous Glucose Monitoring Glucose Profiles,” there is
well-established evidence that HbA | lacks accuracy in those
with ESKD.® Newer factory-calibrated CGM devices pro-
vide real-time glucose patterns and predictive hypoglycemic
glucose alerts. Hence, these sensors have the potential to
overcome these limitations.

Most studies of CGMs in the ESKD population have
been focused on accuracy, with study durations of less than
five days, and most have tested older sensors that are no
longer available, as presented in Table 3. Overall, CGM
studies in this population have demonstrated a tendency for
lower glucose concentrations during hemodialysis, with
nadirs toward the end of the dialysis sessions.®” These stud-
ies also lack reports on newer CGM metrics, such as time in
different glucose ranges, or glycemic variability metrics.
The amount of available published data, however, from
newer factory-calibrated sensors is more limited. Overall,
studies using factory-calibrated sensors, with seven to 14
days of assessment, and three to five dialysis sessions,
compared to studies using older sensors, provide a better
assessment of glycemia in ESKD patients. These more
recent studies have demonstrated poor glycemic control
overall, with time-in-range of 30% to 50% only, and per-
sistently higher time above glucose ranges of >180 (10
mmol/L) and >250 mg/dL (6.9 mmol/L). Surprisingly,
time below range in hypoglycemia with glucose levels of
<70 mg/dL (3.9 mmol/L) or <54 mg/dL (3 mmol/L) has
been less commonly noticed, compared to hyperglycemia.

The combination of normoglycemia without antidiabetic
treatment in ESKD, as defined by HbA | levels below 6.5%
despite having previously established T2DM, a decline in
insulin requirements, and spontaneous hypoglycemia in
CKD/ESKD, has sometimes been referred to as “burnt-out
diabetes.” The term “burnt-out diabetes” does not correspond
to any resolution of underlying pathology and may reflect a
decline in kidney insulin clearance, kidney gluconeogenesis,
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catecholamine release, and food intake due to anorexia.’?

The prognosis is poor when these features of CKD are pres-
ent.”* A recent study compared CGM patterns of patients
with ESKD on hemodialysis without diabetes versus those
with “burnt-out diabetes,” which remains a widely debated
term, and patients in both groups had HbA,_ concentrations
of less than 6.5%. The latter group was observed to have
CGM levels time above range of >180 mg/dL (10 mmol/L)
for 4.1 hours per day, whereas the former group had time
above range levels for 1.1 hours per day.” This study demon-
strated that the “burnt-out™ status is a reflection of the inad-
equacy of HbA | in reflecting glycemic status among patients
with ESKD on hemodialysis, rather than a true normalization
of glycemia.

Moreover, a recent study in patients with T2D demon-
strated that CGM metrics, such as mean glucose, glucose
management indicator (GMI), or time-in-range 70 to 180
mg/dL (3.9-10 mmol/L), may be considered more appropri-
ate indicators of glycemic control than the traditional HbA,
test in this population. In this study, GMI had a strong cor-
relation with time-in-range (TIR), whereas HbA | underesti-
mated average glucose, by a mean difference of 0.74%.
Furthermore, the authors noticed that 49%, 22%, and 29% of
people had a discordance between HbA, and GMI of >1%,
0.5% to 1%, and <0.5%, respectively.”

Hypoglycemia is a risk factor for acute cardiac events.
This may be of particular importance in patients with
ESKD, where many have cardiovascular comorbidities.

In conclusion, emerging data using newer CGM devices
has demonstrated that although patients with diabetes or
ESKD receiving hemodialysis are at increased risk of
severe hypoglycemia events, they are also at heightened
risk of hyperglycemia. When assessed by CGMs, large glu-
cose excursions into hyperglycemic ranges are frequently
observed, even among those with HbA, levels in the refer-
ence range. Although CGM sensors are an emergent tech-
nology in this cohort, there is need for more studies to
inform regulatory approval of CGMs in this population.

Role of Continuous Glucose Monitoring
in the Nutritional Management of
Chronic Kidney Disease/End-Stage
Kidney Disease and Diabetes

e Dysglycemia is commonly observed in persons with
diabetes and advanced CKD or ESKD, in whom alter-
ations in dietary intake may be contributory factors
(ie, hypoglycemia and/or hyperglycemia ensuing
from appetite changes, protein-energy wasting, mal-
nutrition, dietary restrictions, and/or time-restricted
eating patterns related to hemodialysis treatment
schedules).

e Emerging CGM technologies may be potentially use-
ful tools in informing lifestyle medicine approaches in

the treatment of CKD/ESKD patients, including vari-
ous nutritional management strategies utilized in this
population.

e Various diets have been proposed and/or studied as
tools for CKD management, including the Plant-
Dominant Low-Protein Diet (PLADO) and Plant-
Focused Nutrition in Patients with Diabetes and CKD
(PLAFOND) diets.

Patients with advanced CKD and ESKD including those
with diabetes are at-risk for nutrition disorders, including
protein-energy wasting, decreased appetite, and anorexia,
which may potentially contribute to glycemic derangements
in this population.”” Protein-energy wasting in CKD/ESKD
is characterized by excessive losses of protein/energy
reserves. These nutritional disorders may be caused by
multiple factors including decreased appetite (due to anorex-
igenic hormones, proinflammatory cytokines, and/or accu-
mulation of uremic toxins), inadequate nutrient intake,
catabolic effects of various metabolic abnormalities (eg,
inflammation, increased catabolic and decreased anabolic
hormones/activity, metabolic acidosis, and/or altered glu-
cose/insulin homeostasis), nutrient losses via dialysis, and
oxidant/carbonyl stress and are associated with major mor-
bidity and mortality in this population.””®® Patients with
ESKD treated with dialysis may also be at heightened risk
of undernutrition/malnutrition because of various dietary
restrictions (ie, restricted dietary potassium, phosphorus,
and fluid intake) and time-restricted eating patterns (ie, lim-
ited access to food during in-center hemodialysis treatments
and/or during transit to and from the dialysis clinics on
hemodialysis treatment days).!®12 Hence, CGM tech-
nology may be a promising tool in both the glycemic and
dietary management of advanced CKD/ESKD patients,
given their predisposition to nutrition disorders and a height-
ened risk of hypoglycemia. Macronutrient intake (including
protein, carbohydrates, and fat) dietary composition (includ-
ing micronutrients, minerals, and vitamins), dietary fiber
content, animal versus plant sources of protein, and the bal-
ance between processed versus organic foods with respect to
cardio-kidney-metabolic health can all affect glycemia.

An ongoing multicenter NIH RO1 trial is examining the
effects of a PLADO!'® adapted for DKD (NIH “PLAFOND
Trial,”'% in which patients with diabetes and NDD-CKD are
being randomized to plant-dominant versus non-plant-domi-
nant low-protein diets to determine the impact on various
outcomes including glycemic control assessed by CGMs).!%
PLADO, PLAFOND, and other dietary regimens that have
been proposed or tested for CKD management are presented
in Table 4. There has also been growing interest in the role of
CGM technology in guiding the dietary management of
DKD by clinicians (including physicians and dietitians), thus
facilitating a more personalized dietary approach consistent
with precision medicine and precision nutrition strategies.
Further research is needed to determine the role of CGM in
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Table 4. Overview of Diets Prescribed for the Management of Chronic Kidney Disease With or Without Diabetes.

Dietary regimen Target population

Dietary components

Anticipated impact on glycemic
control (further research needed)

Low potassium, low phosphorus
traditional “Kidney Diet”

Hyperkalemic CKD (eg,
diabetes associated RTA [V)

Low-Protein Diet with High NDD-CKD
Biological Value Proteins
Plant-Dominant Low-Protein NDD-CKD

Diet (PLADO)

Plant-Focused Low-Protein
Nutrition in Diabetes and
CKD (PLAFOND)

Supplemented Very Low-Protein
Diet

NDD-CKD and diabetes

Advanced CKD to delay
dialysis start

Ketogenic Diets and Ketogenic
Metabolic Therapy

High Protein Diet (including
during the hemodialysis
session)

PKD, obesity

Dialysis-dependent ESKD,
recovering AKI

Potassium <2 g/d

phosphorus < 800 mg/d

Usually >2/3 rds from animal-
based protein

DPI 0.65-0.7 g/kg/d

Usually >2/3 rds from animal-
based proteins

DPI 0.6-0.8 g/kg/d

Plant protein >50%

DPI 0.6-0.8 g/kg/d low glycemic
index

Plant protein >2/3 rds

DPI <0.4 g/kg/d, supplemented
with amino acids of their
keto-analogues

High fat diet, can be animal or
plant-dominant

DPI 1.2-1.5 g/kg/d

Unknown

Unknown, although salutary
effects are possible

Anticipated improved insulin
resistance

Anticipated improved insulin
resistance

Data suggest improved insulin
resistance

Improved glycemic control from
weight loss
Intradialytic nutrition can be

used to prevent dialysis
associated hypoglycemia

Abbreviations: AKI, acute kidney injury; d, day; DPI, dietary protein intake; ESKD, end stage kidney disease; g, grams; kg, kilograms; mg, milligrams; NDD-
CKD, non-dialysis dependent CKD; PKD, polycystic kidney disease; PLADO, Plant-Dominant Low-Protein Diet; PLAFOND, Plant-Focused Low-Protein

Nutrition in Diabetes and CKD; RTA IV, renal tubular acidosis type 4.

informing both research and clinical practice in the nutri-
tional management of DKD patients.

Use of Continuous Glucose Monitoring in
End-Stage Kidney Disease and Diabetes
Patients (Hemodialysis and Peritoneal
Dialysis, and Kidney Transplantation) to
Prevent Hypoglycemia, Hyperglycemia,
and Glycemic Variability

e The CGM has emerged as a convenient, patient-cen-
tered tool for glycemic assessment providing a more
comprehensive assessment of glycemic status than is
possible with isolated biomarker tests such as HbA, ,
fructosamine, GA, and self-monitored blood glucose
(SMBG).

e Further research is needed to determine the feasibility,
efficacy, and safety of CGM in advanced DKD
patients, including those receiving dialysis.

e Given the high prevalence of hyperglycemia in the
early post-transplant period and post-transplant dia-
betes mellitus among kidney transplant recipients,
further research is needed to determine the efficacy
and safety of CGM in this population.

A disproportionate burden of diabetes is present among
patients with ESKD, in whom dysglycemia is associated

with morbidity and mortality risk.!*!%197 Compared to
patients without kidney disease, ESKD patients are at height-
ened risk of hypoglycemia'® because of impaired kidney
gluconeogenesis, decreased metabolism and clearance of
insulin and other anti-glycemic medications, co-existing
medical comorbidities (eg, diabetic gastroparesis and malnu-
trition), and accumulation of uremic toxins with glucose-
lowering effects.!$!%196:19%8 Conversely, ESKD patients are
also predisposed to hyperglycemia'% because of increased
insulin resistance, impaired insulin secretion, and exposure
to high dialysate glucose concentrations in those receiving
peritoneal dialysis. Intradialytic and post-dialytic dysglyce-
mia are also frequent and under-recognized. For example,
intradialytic hypoglycemia may ensue because of intradia-
lytic glucose shifts into erythrocytes during hemodialysis
treatment, secular changes in the use of lower dialysate glu-
cose concentrations over time, and limited access to food
during in-center hemodialysis.* Subsequently, post-dialysis
rebound hyperglycemia may occur because of insulin
removal during hemodialysis (vis-a-vis diffusion, convec-
tion, or adsorption) and a counter-regulatory hormone
response in response to the hypoglycemia during the hemo-
dialysis session.**

One of the major clinical gaps in the management of
patients with ESKD and diabetes is lack of access to a practi-
cal and reliable method for frequent glycemic assessment.
Strengths and limitations of existing glycemic metrics in
advanced CKD and ESKD patients are shown in Figure 4.!%2
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Although isolated biomarker tests, such as HbA, , fruc-
tosamine, and GA are utilized for assessing long-term and
intermediate glycemic status, respectively, as discussed in
section “Effects of Chronic Kidney Disease and End-Stage
Kidney Disease in Diabetes on Mean Glycemia, Glycated
Hemoglobin, Short-Term Mean Glycemic Markers,
Glycemic Variability, and Target Continuous Glucose
Monitoring Glucose Profiles,” these glycemic metrics are
known to have diminished accuracy in ESKD.!*? Although
SMBG or point-of-care (POC) glucose levels are considered
to be standard of care for management of most patients with
diabetes, these methods may also be affected by sample sta-
bility and other factors (ie, anemia, acute illness, medica-
tions, etc). However, HbA,_ is not considered to be a gold
standard in advanced CKD and dialysis patients. This has
been concluded in the KDIGO guideline for kidney disease
and diabetes, which states that the accuracy and precision of
HbA |, measurements decline with advanced CKD (stages
4-5 CKD). This inaccuracy is particularly problematic for
patients treated by dialysis, in whom HbA, measurements
have low reliability. Furthermore, frequent capillary finger-
stick measurements may be inconvenient and painful for
patients and do not provide a comprehensive around-the-
clock assessment of glycemic status.

Hence, there is growing interest in the utilization of CGM
as a convenient, automated, and comprehensive glycemic
assessment method in ESKD patients. Although clinical tri-
als in non-ESKD patients have shown that CGM confers
improved glycemic control and clinical outcomes compared
with conventional blood glucose monitoring,'” CGM
remains underutilized in ESKD patients in part because of
unclear accuracy in this population.'!?

There has also been growing interest in evaluating the
effects of CGM versus conventional glycemic assessment
methods in ESKD patients, particularly in clinical trials. In
the “DIALYDIAB Pilot Trial,” which was a cross-over study
of SMBG versus CGM conducted in 15 dialysis patients over
a 12-week period, the CGM period resulted in more frequent
treatment changes and better glycemic control, without an
increase in hypoglycemia events.!!! The ongoing multicenter
NIH-funded “Continuous Glucose Monitoring in Dialysis
Patients to Overcome Dysglycemia Trial (CONDOR trial)”
is currently randomizing hemodialysis patients with diabetes
to real-time CGM versus usual care to determine the com-
parative effects of glycemic control, hypoglycemia indices,
and patient-reported outcomes.

Although dialysis has been the dominant kidney replace-
ment therapy for ESKD patients, kidney transplantation is
considered the “gold-standard” treatment for patients with
kidney failure, given its established improvement in quantity
and quality of life. However, hyperglycemia in the early
post-transplant period (due to surgical stress, infection, and
high-dose steroids) and post-transplant DM (diagnosed later
in the transplant course when patients have stable kidney

function and are on maintenance immunosuppression) is
prevalent complications among kidney transplant recipients.

These complications have been associated with worse
short-term''? and long-term''® outcomes in the transplanted
population. Among kidney transplant recipients, there
are traditional and transplant-specific risk factors for post-
transplant DM, the latter of which include immunosuppres-
sion regimens (glucocorticoids, calcineurin inhibitors, and
inhibitors of mammalian target of rapamycin), hypomagne-
semia, viral infections (cytomegalovirus, hepatitis C), and
human leukocyte matching and donor characteristics. These
and other risk factors for post-transplant diabetes among kid-
ney transplant patients are shown in Figure 5. Given the high
burden and ill effects of post-transplant DM in kidney trans-
plant recipients, there has been increasing interest in the role
of CGM in this population. There is limited data on the use
of CGM in the post-kidney transplant setting!!'*!'> including
1 study of 61 patients who underwent pancreatic surgery and
various types of solid organ transplantation (liver, pancreas,
islets of Langerhans, kidney).!'® Further research is needed
to determine the accuracy of CGM and implications on clini-
cal outcomes among kidney transplant recipients with or
at-risk for post-transplant diabetes.

Accuracy of Continuous Glucose
Monitoring in Populations With
Chronic Kidney Disease/End-Stage
Kidney Disease and Diabetes and
Interfering Substances

e Multiple studies have assessed CGM accuracy in
patients with advanced CKD, including patients
treated with hemodialysis and peritoneal dialysis, and
have concluded that CGM is a useful tool for monitor-
ing glucose in this population.

e Minimally invasive CGM sensors measure glucose
via enzymatic electrochemical reactions that are sub-
ject to interference by a variety of substances that can
falsely increase or decrease sensor glucose values.

e [t is important to educate patients and professionals
about interfering substances, how CGM readings may
be impacted, and the importance of using an alterna-
tive glucose monitoring approach when interference
is suspected and/or when symptoms do not match
CGM glucose values.

Multiple studies have investigated the accuracy of CGM
systems in patients with advanced CKD with and without
diabetes, including patients undergoing hemodialysis and
peritoneal dialysis.”%-71:73.76.77.80.83.858688 1n 3 study of 20 US
hemodialysis patients who underwent CGM with Dexcom
G6-Pro CGM devices versus blood glucose (conducted as
POC iSTAT measurements during hemodialysis and SMBG
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RISK FACTORS
SHARED WITH DIABETES IN
NON-TRANSPLANT PATIENTS

* OLDER AGE

*  AFRICAN-AMERICAN RACE
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RISK FACTORS
SPECIFIC TO KIDNEY
TRANSPLANTATION
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Figure 5. Risk factors for kidney transplant patients for developing post-transplant diabetes, including risk factors shared with diabetes
in non-transplant patients and risk factors specific to kidney transplantation.
Abbreviations: DDKT, deceased donor kidney transplantation; HLA, human leukocyte antigen; mTOR, mammalian target of rapamycin.

at home) by Villard et al,”’ the mean absolute relative differ-
ence (MARD) of CGM versus blood glucose was ~14%, and
the majority of CGM values were found to be in zones A/B
(zone A defined as no effect on clinical action, and zone B
defined as altered clinical action with little or no effect
on clinical outcome'!”) based on consensus grid analysis.”’
In another study by Ng et al**, 30 Hong Kong peritoneal
dialysis patients wore a Medtronic Guardian Sensor 3 with
Guardian Connect CGM. When CGM readings were com-
pared against venous glucose assessment during an 8-hour
in-clinic peritoneal dialysis session, the MARD of the
matched CGM-blood glucose pairs was 10%. In another
study of 30 US hemodialysis patients who underwent
Dexcom G6 versus POC and venous blood glucose testing in
the inpatient setting by Rhee et al,''® the MARD of CGM-
blood glucose pairs was ~20%, and consensus error grids
showed nearly all CGM values in clinically acceptable zones
A and B. In another study evaluating the accuracy of Dexcom
G6 and Abbott FreeStyle Libre 1 versus blood glucose in 40
hemodialysis patients in the United Kingdom by Avari et al®®
(“ALPHA study”), the MARDs were ~23% and ~11%,
respectively, and consensus error grid analysis showed the
majority of CGM values in zones A and B. Examples of the
correlations of two CGMs (Dexcom G5 and FreeStyle Libre)
with reference data points obtained by a HemoCue capillary
reference system are presented on two Bland-Altman scat-
terplots, where the differences between two measurements
are plotted against their averages, in Figure 6, in 40 adults
with diabetes and CKD.

As presented in Table 3, measures of CGM point and
trend accuracy in advanced CKD are generally improved
with newer generation CGM systems,’0:71:73.76.77.80.83.85.86

Although the reported MARD values in populations with
advanced CKD are generally higher than would be expected
in a general diabetes population, it is important to consider
that CGM accuracy is diminished when there is high glucose
variability and at glycemic extremes. Nevertheless, CGM is
still a useful tool for monitoring CKD/ESKD patients.
Notably, based on current best evidence, the 2022 KDIGO
Clinical Practice Guideline for Diabetes Management in
CKD concluded that CGM is not known to be biased by
CKD or its treatments (eg, dialysis or kidney transplant) and
therefore can be considered to (1) inform self-management
and treatment decisions when HbA | is discordant with mea-
sured glucose levels or clinical symptoms and (2) help pre-
vent hypoglycemia by predictive alarms, trend arrows, and
absolute values, even in the absence of an insulin delivery
system.%¢

Another consideration that may impact CGM accuracy in
a variety of practice settings is interfering substances.!!*1?!
The CGM sensors measure glucose via enzymatic electro-
chemical reactions that are subject to interference by a vari-
ety of substances as presented in Table 5.!2122125 Depending
on the CGM system and interfering substance, sensor
readings can be falsely high or low, potentially resulting in
missed hypoglycemia or hyperglycemia.!?® Sensor modifica-
tions in newer generation CGM systems have helped reduce
interference with commonly used substances, such as acet-
aminophen and ascorbic acid. For example, the addition
of a permselective membrane to the Dexcom G6 sensor
has reduced acetaminophen interference.'?” Similarly, per
Abbott Medical Affairs, FreeStyle Libre 2 Plus sensors
have been modified to minimize interference by ascorbic
acid.'”® Whereas icodextrin used in peritoneal dialysis'® can
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Figure 6. Bland-Altman Plot. A: All individual measurements FreeStyle Libre vs HemoCue; B: All individual measurements Dexcom G5
vs HemoCue. Thick dotted line represents the mean difference. Figure reproduced from Olafsdéttir et al.2% under the under the CC BY-

NC license (https://creativecommons.org/licenses/by-nc/4.0/).

Table 5. Interfering Substances Affecting CGM Systems: Potential Impacts on Sensor Readings and Potential Clinical

Consequences.'2!22125

CGM systems

Interfering substances Impact on sensor readings

FreeStyle Libre 14 day, FreeStyle Libre 2, FreeStyle Libre 3'22  Ascorbic acid >500 mg/d Falsely high
Dexcom Gé, Dexcom G7'% Acetaminophen >4 g/d Falsely high
Hydroxyurea Falsely high
Medtronic Guardian'?** Acetaminophen Falsely high
Hydroxyurea Falsely high
Senseonics Eversense'?!% Mannitol or sorbitol (IV or as peritoneal Falsely high
dialysis solution)
Tetracycline Falsely low

Abbreviations: CGM, continuous glucose monitor; IV, intravenous line.

interfere with some enzymes used in blood glucose moni-
tors,'3 this substance does not interfere with the enzymes
used in CGM sensors. Nevertheless, it is important that
patients are educated about substances that may interfere
with readings from their own CGM readings, and they must
be guided to use alternative glucose monitoring approaches
(e.g., fingerstick glucose monitoring) when interference is
suspected and/or when symptoms do not match CGM glu-
cose values. 31132

Impact of Continuous Glucose Monitoring

on Patient-Reported Outcomes in Chronic
Kidney Disease/End-Stage Kidney Disease

and Diabetes

e Studies in T1D and T2D populations without CKD
have demonstrated short-term benefits of CGM on a
number of patient-reported outcome metrics.

e CGM may empower patients with diabetes and
improve quality of life, with or even without salutary
changes in glycemia.

e Few studies have evaluated the impact of CGM on
patient-reported outcomes in CKD and further
research is needed.

Patients with CKD value quality of life, in addition to
preservation of kidney function.'** The CGM, particularly
when used in real-time mode, offers patients an opportunity
to better understand their glycemic control, such as blood
glucose responses to changes in lifestyle and pharmacologic
treatments. This knowledge and control may facilitate
empowerment, reduce uncertainty and diabetes-related dis-
tress, and improve quality of life, with or even without salu-
tary changes in glycemia. Over the long term, improved
glycemic control with the use of CGM may also prevent
complications, such as retinopathy and neuropathy, that
interfere with quality of life. A drawback of CGM for some



Journal of Diabetes Science and Technology 00(0)

G3b

G4 G5

r=0.68

r=0.52

r=0.22

HbA1C (%)

Figure 7. Continuous glucose monitoring metrics in the assessment of glycemia in moderate-to-advanced CKD (in stages 3b, 4, and 5)
in diabetes. Figure reproduced from Ling et al’® under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abbreviations: GMI, glucose management indicator; G3b, stage 3b chronic kidney disease; G4, stage 4 chronic kidney disease; G5, stage 5 chronic kidney

disease; HbA, , hemoglobin Alc.
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people who are not tech savvy or who have poor numeracy
is that they can become frustrated by data overload.'**

Studies in T1D and T2D populations without CKD have
demonstrated short-term benefits of CGM on several patient-
reported outcome metrics. For example, in the GOLD trial of
patients with T1D using multiple daily insulin injections,
significantly higher scores on the Diabetes Treatment
Satisfaction Questionnaire, World Health Organization-Five
(WHO-5) Well-Being Index, and Hypoglycemic Confidence
Questionnaire were achieved with real-time CGM, compared
with SMBG by fingerstick. The HbA, _ (the primary trial out-
come), mean CGM glucose, and glycemic variability were
also improved.'?® Observational studies and implementation
projects have also demonstrated patient satisfaction with
CGM. For example, in the setting of a comprehensive virtual
diabetes clinic implemented for patients with T2D that
included remote personalized lifestyle coaching and con-
nected blood glucose meters in addition to a real-time CGM
(Dexcom G5 or G6) mailed to their home, participants
reported high satisfaction with CGM. Over 95% of partici-
pants were comfortable with remote insertion and reported
improved understanding of eating and diabetes knowledge.
The intervention was also associated with decreased diabetes
distress and an improvement in HbA ."3

Few clinical trials of CGM have been conducted among
patients with CKD®74!11L.137to assess patient-reported out-
comes in this population. In one trial of 26 outpatient hemo-
dialysis patients with diabetes, there was no difference in
diabetes distress and an increased fear of hypoglycemia
comparing an automated insulin delivery system to multiple

daily insulin injections with blinded CGM, despite improved
time in range (primary trial outcome), less time below range,
and no difference in severe hypoglycemia.” No studies have
rigorously evaluated the effect of CGM on symptoms related
to diabetes complications in CKD. One cross-sectional
study reported that a higher percentage of time in target
range was associated with fewer symptoms of neuropathy,
which may plausibly be reduced with improved long-term
glycemic control, but this study was limited by observa-
tional design and cross-sectional analysis.!*8

In one study comparing the GMI (which serves as a sur-
rogate for HbA, in people without CKD) noted that the cor-
relation between GMI and HbA,  decreased with advancing
CKD stages and became nonsignificant in stage G5.7® These
correlations by stage are shown in Figure 7.

Gaps, Controversies, and
Recommendations for Research in
Chronic Kidney Disease/End-Stage Kidney
Disease, Including the Role of Continuous
Glucose Monitoring in Managing Chronic
Kidney Disease/End-Stage Kidney

Disease and Acute Kidney Injury

e Glucose control may have less kidney-related preven-
tive effects in advanced CKD, but, on the contrary, these
patients are generally at very high risk of other compli-
cations. They can benefit from sound glycemic manage-
ment of other hyperglycemia-related complications,
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Clinical Use of Randomized
CGM Clinical Trials of

Determine the CGM
relationship Evaluate the
between outcomes in patients
frequency of use,  with CKD/ESKD
outcomes, and using insulin and
safety of CGM those using non-
use for patients insulin glucose-
with CKD/ESKD lowering drugs

Figure 8. Future directions for research on CGM use in patients with CKD/ESKD, including clinical use, randomized clinical trials,

economic benefits, and patient benefits.

Abbreviations: CGM, continuous glucose monitor; CKD, chronic kidney disease; ESKD, end-stage kidney disease.

including retinopathy, diabetic neuropathy, diabetic foot
ulcers, and cardiovascular disease. In addition, CGM is
likely essential for preventing hypoglycemia in this
population.

e The CGM may be essential for patients with diabetes
and CKD, not only for improving glucose manage-
ment, but also (of particular importance) for assessing
glucose control because anemia, iron deficiency, and
other factors may influence the HbA,_ level in this
population.

e Multicenter randomized trials of the effects of CGM
in advanced kidney dysfunction are generally lacking
in persons with T1D and T2D.

Today, it is unclear to what extent good glucose manage-
ment prevents a decline in kidney function if established
advanced kidney dysfunction exists in patients with diabetes.
However, there are also many other reasons for obtaining
good glucose control in this population. Persons with diabe-
tes with significant kidney impairment have among the high-
est risk of diabetic foot ulcers, amputations, retinopathy,
neuropathy, cardiovascular disease, and have a clear excess
in mortality. These patients therefore will likely benefit from
optimized glycemic control, although hallmark studies gen-
erally have included only patients without kidney complica-
tions or less severe forms of kidney dysfunction when
determining the effects of poor glycemic control on compli-
cations. In addition, CGM is likely essential in preventing
hypoglycemia in patients with DKD.

The optimal minimal frequency of placing a CGM on a
person with diabetes is not known and the economic impact
of using CGMs for treatment of patients with CKD is also
not known.”® However, studies in patients without advanced
CKD show that continuous use of CGM is critical to obtain
beneficial effects on HbA,  and hypoglycemia.'?

CGM is likely beneficial in patients with diabetes who
have impaired kidney function from several perspectives.

CGM has been shown to improve glucose control used both
in conjunction with insulin pumps and insulin injections in
persons with T1D as well as during treatment in T2D."?! Two
trials of using an automated insulin delivery system in
T2D%:13% and observations of automated insulin delivery sys-
tems in patients with T1D'* have demonstrated successful
glycemic control. Therefore, as CGM seems to show reason-
able accuracy in persons with kidney dysfunction, it is likely
that the glucose management will improve also in this
population.

Moreover, HbA,  has shown to be inaccurate in depicting
the mean glucose level in a significant proportion of patients
with diabetes without kidney dysfunction. In a study of
patients with T1D, the GOLD,"** and SILVER trials,'*' 10%
of patients deviated consistently over time by more than 0.8
HbA,  percentage units (8 mmol/mol) from the general trend
between mean glucose and HbA, .* Similar results exist
from other studies.’® These results are likely due to genetic
factors influencing glucose transport into erythrocytes and
glycation of hemoglobin.

For persons with diabetes and kidney dysfunction, there
are additional factors that can disturb HbA  as a biomarker
for estimating the mean glucose level, including anemia and
iron deficiency. Hence, CGM may be essential not only for
optimizing glucose control but also for determining accurate
mean glucose level in persons with diabetes and severe kid-
ney dysfunction.

Although several studies exist indicating that CGM is
likely a viable treatment option in patients with diabetes
and kidney dysfunction with sufficient accuracy, random-
ized clinical trials of CGM use in patients with diabetes
with severe kidney dysfunction are overall lacking. Such
studies are urgently needed for this vulnerable patient group
at high risk of diabetes complications to confirm benefits to
glucose control as well as safety in this population. These
and other future directions for research on the use of CGM
in patients with CKD are shown in Figure 8.
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Figure 9. Barriers to widespread use of CGMs.

Abbreviations: CGM, continuous glucose monitor; CKD, chronic kidney disease; DME, durable medical equipment; EMR, electronic medical record.

Barriers to Continuous Glucose
Monitoring Access and Use in
Populations With Diabetes and With
Chronic Kidney Disease/End-Stage
Kidney Disease

e Barriers to widespread CGM use stem from four
broad categories including the health care system,
providers, patients, and CGM developers. The top
barrier to CGM initiation relates to cost and insurance
coverage.

e Beyond financial costs, disparities exist in access to
CGM, especially in older or minority populations,
which can relate to provider practices and bias or
patient factors.

e Factory-calibrated sensors contain labeling indicating
that their use in dialysis populations has not been vali-
dated, which may limit uptake in this population.

Rates of CGM use in populations with diabetes with
CKD or ESKD are unclear. A telephone survey of commu-
nity-dwelling adults in the United States reported that only
4% of individuals with diabetes who were eligible for CGM
used one in 2020.'*> The CGM was used less by people who
were older, were unemployed, had low income, and who
had more comorbidities, including kidney disease. Other
studies have also shown racial/ethnic disparities in CGM
use with lower adoption in individuals identified as being
of Black and/or Hispanic race/ethnicity compared with
non-Hispanic White race/ethnicity.'*>!* A study by the
ADA confirmed these findings and concluded that individ-
uals who are older, poorer, and from racial and ethnic
minority groups are the least likely to be prescribed CGM
devices.'® As CKD and ESKD disproportionally affect
people who are older, from minority backgrounds, and from
lower socioeconomic status,'*® CGM sensor use is likely
low in these populations.

Barriers to widespread use of CGM technology in patients
with diabetes and especially those with CKD or ESKD can
be grouped into four categories: (1) the health care system,
(2) providers, (3) patients, and (4) CGM developers as shown
in Figure 9. From surveys of patients with T1D, the most
common barriers to CGM initiation are the cost and lack of
insurance coverage.'4"!¥8 A requirement for preauthorization
also limits access and creates a burden for providers and
patients. In addition, defining CGM devices as durable medi-
cal equipment versus as a pharmacy benefit has been shown
to significantly delay CGM initiation.'*® Other factors
include provider practice bias'>® and comfort level with
CGM technology. Streamlining the interpretation of CGM
reports'>152 and integrating the data with electronic health
records'> could facilitate greater provider uptake of CGM
devices. Patients also have reservations about CGMs, which
may relate to their level of technology literacy and concerns
about data safety and privacy.! Contact dermatitis, both
irritant and allergic,'>>!%¢ as well as bruising'>’ can occur
with all CGM sensors attached to the skin. Resources are
available to limit skin irritation (https://www.pantherpro-
gram.org/skin-solutions),'® but some patients may need to
switch or discontinue CGM devices.'® Starting patients on
CGM can require time with educators and dedicated facili-
ties in health care organizations.'® For patients with
advanced CKD, factory-calibrated CGM devices are not
approved but such validation would help support use in this
population. !

Discussion

Diabetes and CKD are highly prevalent worldwide, and
both have synergistic effects in adversely impacting cardio-
vascular health, survival, patient-reported outcomes, and
health care costs in DKD.!”-?%:162 In the setting of advanced
CKD, glycemic derangements are magnified, and both
hypoglycemia and hyperglycemia have been associated
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with worse outcomes in CKD patients including those
receiving dialysis.!%163 It is well known that traditional gly-
cemic metrics in the setting of advanced CKD have limita-
tions in accuracy (HbA,)), are poorly standardized (GA,
fructosamine), are inconvenient and provoke/exacerbate
pain (fingerstick blood glucose), and fail to provide a com-
prehensive glycemic picture over an extended period.'®* In
contrast, CGM technology has emerged as a convenient and
patient-centered tool that can address these clinical gaps
while also informing glycemic control using a preemptive
strategy (via alerts) in lieu of a reactive approach.

The uptake of CGM in DKD has been slow, in part
because of challenges related to access (ensuing from high
costs and non-approval on ESKD patients on dialysis) and
limited knowledge and experience among providers and
patients. However, there is increasing appreciation that more
widespread use of CGM technology in DKD could positively
transform glycemic monitoring and control by augmenting
or replacing blood glucose testing in this population among
primary care and multispecialty providers.!7-?*1%2 In advanced
CKD, given the disproportionate burden of hypoglycemia
and hyperglycemia which are oftentimes severe and unde-
tected, CGM holds promise as a tool that can ameliorate dys-
glycemia, improve clinical outcomes, and empower patients
living with diabetes and CKD. In the non-CKD population,
multiple large-scale randomized controlled trials have dem-
onstrated the efficacy and safety of CGM in adults and chil-
dren with T1D and T2D.!0%164.165

Motivated by these observations, DTS convened a panel
of experts in nephrology and diabetes to review and discuss
the current state of evidence, challenges, and future research
directions centered on the use of CGM technology in patients
with diabetes and CKD. Conclusions were based on based on
their knowledge of key studies and evidence in the field,
rather than a formal systematic review of the literature.
Compared to patients with diabetes without underlying
CKD, there have been far fewer studies of the accuracy of
CGMs or clinical outcomes in those with diabetes and CKD.
However, limited existing data on the use of CGMs in
patients with DKD, including those on dialysis, are favor-
able, and there are multiple ongoing well-characterized pro-
spective cohort studies and clinical trials in progress that aim
to address these knowledge gaps. However, although further
investigations specific to DKD populations are needed, there
was consensus among the panelists that this intervention in
patients with diabetes who do not have DKD that high-
quality research studies and widespread experience have
demonstrated benefits of CGM!%-164165 The panel concluded
that it is now time to much more broadly introduce this moni-
toring and managing tool across the DKD population. The
group also agreed that, given the lack of other effective tools
to avoid the frequent hypoglycemia/hyperglycemia events
associated with morbidity and mortality in DKD, there is
an urgent need for CGM implementation in parallel with

ongoing research studies that will help inform and refine its
use in this vulnerable population.

In evaluating the path toward more widespread CGM
implementation in DKD, the panel discussed various barriers
to widespread use of this technology that were grouped into
four categories summarized in Figure 9, specifically (1) dif-
ficulties in navigating through the health care system to obtain
these devices among providers and patients, (2) lack of
knowledge and/or enthusiasm of some health care profession-
als in championing their use, (3) lack of health care technol-
ogy literacy or concerns about privacy among some patients,
and (4) restrictions in approval/clearance of CGM devices for
certain CKD populations (ie, ESKD patients receiving dialy-
sis).!% In addition, the panel developed 15 key conclusions
about clinical implementation and future research directions
regarding the use of CGM by diabetes patients with CKD.
These conclusions are presented in Table 6. The panel’s con-
clusions focused on seven areas related to the use of CGM for
diabetes patients with CKD including (1) conducting more
widespread monitoring of glycemic status using CGM tech-
nology worldwide, (2) defining the relationship between
CGM metrics/targets and clinical outcomes, (3) determining
the effects of CGM on reducing hypoglycemia/hyperglyce-
mia, CKD progression, cardio-kidney-metabolic risk, health-
related quality of life, as well as impact on health economic
outcomes, (4) using CGM to better understand the natural his-
tory of glycemic derangements in CKD/ESKD, AKI, and dur-
ing the dialytic procedure, (5) applying CGM to inform risk
factors for dysglycemia, kidney nutrition interventions, anti-
diabetic medication use, and the dialysis prescription, (6)
understanding the accuracy and potential biases/limitations of
CGM (ie, interfering substances) in CKD that will inform fur-
ther refinement, and (7) identifying the optimal CGM met-
rics/targets and frequency specific to DKD. It bears mention
that among these conclusions, the panel highlighted three
major clinical gaps warranting high-prioritization: (1) CGMs
are not routinely prescribed for patients with diabetes and
CKD, (2) CGMs are not yet approved by the US FDA for
patients with diabetes who are on dialysis, and (3) CGMs
are not routinely available to all those who need them because
of structural barriers in the health care system. There is a
compelling need for collectively addressing these gaps with
further collaboration among key stakeholders in academia,
industry, government agencies, health care systems, and
patient advocacy groups, as well as across the disciplines of
nephrology, endocrinology, primary care, cardiology, and
health care technology, among others.

In conclusion, CGM is a practical, convenient, and
patient-centered technology that has demonstrated substan-
tial benefits in patients with diabetes without CKD. The
CGM shows promise in patients with DKD as a transforma-
tive tool that can overcome the limitations of traditional
glycemic metrics, better inform glycemic management, and
lead to improved clinical outcomes.
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Table 6. Fifteen Conclusions for the Use of Continuous Glucose Monitoring in Patients With Diabetes and Kidney Disease Developed
by the Diabetes Technology Society Expert Panel on Continuous Glucose Monitoring in People With Chronic Kidney Disease.

FIFTEEN CONCLUSIONS FOR THE USE OF CGM IN PATIENTS WITH DIABETES AND CHRONIC KIDNEY DISEASE:
OPPORTUNITIES WHERE PRESENT-DAY IMPLEMENTATION IS NEEDED IN CKD/ESKD

|. To detect unrecognized hypoglycemia
2. To detect unrecognized hyperglycemia

3. To inform clinical and self-management decisions about lifestyle interventions, including nutritional management, physical activity,

and taking medications.

4. To advance equitable care of patients with diabetes and CKD/ESKD through equitable access to CGM technology.
5. To determine the mean glucose level for each individual with CKD/ESKD, since HbA_ does not represent mean glycemia in all

individuals.
AREAS WHERE IMPROVED EDUCATION IS NEEDED

6. To enhance education among health care professionals on how to interpret and use CGM data to optimize care in CKD/ESKD.
7. To educate about the use of fingerstick blood glucose monitoring if there are concerns about the accuracy of the CGM.
8. To enhance education of the health care team, patients, and care partners on the use of CGM.

HIGH PRIORITY FOR FUTURE RESEARCH

9. To determine the effects of CGM-based interventions on objective microvascular and macrovascular outcomes, including metrics
associated with frequency, duration, and severity of other complications associated with CKD/ESKD.

10. To determine optimal CGM glycemic metrics and targets in CKD/ESKD, including alarms, trend arrows, and numerical values.

I'1. To determine the effects of CGM on patient-reported outcomes, which are directly reported by the patients and care partners.

12. To determine the appropriate mode, timing, and frequency of CGM use for groups of patients with various stages of CKD/ESKD.

13. To utilize CGM as a tool to determine the effects of dialysis treatment on glucose profiles.

14. To determine the economic impact of CGM.

I15. To better define factors affecting the accuracy, precision, and potential biases of CGM measurements (such as interfering
substances, sensor compression, or sensor stability) in CKD/ESKD, including dialysis and kidney transplantation.
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