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Method for Estimating Parameters of 
bxponentially DampedKJndamped 

Sinusoids in Noise 

Absfracf-We present a study of a matrix pencil method for esti- 
mating parameters (frequencies and damping factors) of exponentially 
damped and/or undamped sinusoids in noise. Comparison of this 
method to a polynomial method (SVD-Prony method) shows that the 
matrix pencil method and the polynomial method are two special cases 
of a matrix prediction approach but the pencil method i s  more efficient 
in computation and less restrictive about signal poles. I t  is  found 
through perturbation analysis and simulation that, for signals with un- 
known damping factors, the pencil method i s  less sensitive to noise than 
the polynomial method. I n  Appendix A, a new expression of the Cra- 
mer-Ran bound for the exponential signals i s  presented. 

I. INTRODUCTION 

E study a matrix pencil method for estimating sig- w nal parameters from a noisy exponential data se- 
quence which can be described by 

yk = xk + riL 

- 
- ~ , = l . ~ l b , I  exp ( ( a ,  + . j w , ) k  + & I  + (1.1) 

k = 0 , 1 ,  * * .  , N - 1 .  nL’s  are the noise. 1 h, 1’s and 4,’s 
are the amplitudes and the phases, respectively. a,’s and 
w,’s are the damping factors and the frequencies. respec- 
tively. M is the number of sinusoids. We also write 

h, = Jb,l exp (&) 

z, = exp ( a ,  + jw,). 
(1.2) 

(1.3) 

The estimation of b,’s can easily be formulated into a lin- 
ear least square problem if all other parameters are known. 
M can be estimated by singular value decomposition 
(SVD) as proposed in [11 and [2]. We, in this paper, ad- 
dress the estimation of the poles z , ’ ~ .  

Besides the iterative maximum likelihood (ML) or least 
squares method as in [6] and [7], another well-known ap- 
proach to the above estimation problem is the polynomial 
or linear prediction method as in [ 1]-[5]. The matrix pen- 
cil method (or the pencil method) to be presented here 
represents an alternative approach which exploits the 
structure of a matrix pencil of the (noiseless) underlying 
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signal x k ,  instead of the structure of prediction equations 
satisfied by xL.  

The idea of using the property of pencil for system 
identification and spectrum estimation has been exploited 
since at least as early as the pencil-of-function approach 
was proposed in  [SI-[ 101. Recently, the idea has been ex- 
plored from different directions and resulted in the ES- 
PRIT algorithms as in [ 111-1 13) and other versions as in 
[14]. [15], and [29]. The matrix pencil method that we 
first presented in [ 161, [32], and [33] and shall present 
here was developed independently from a closely related 
work [14], [ 151, 129) by Ouibrahim et al. Our matrix pen- 
cil method was initially suggested by Hua’s insight into 
the pencil-of-function method; 181, [9] by Jain et al.; the 
ESPRIT [ 1 11, [ 121 by Roy et al.;  and the SVD-Prony 
method [ I ] ,  [2] by Kumaresan and Tufts. It just turns out 
that a moving window approach is inherent in both Oui- 
brahim’s work [14], [15], [29] and Hua-Sarkar’s work 
1161, [32], [33]. But in contrast to the work by Ouibrahim 
et a l . ,  our matrix pencil method exploits to a greater ex- 
tend the free-moving window length, which shall be re- 
ferred to as the pencil parameter. As we shall show, a 
proper choice of the pencil parameter results in significant 
improvement in noise sensitivity over Ouibrahim’s tech- 
nique. 

In the polynomial method, there is also a free parameter 
often called polynomial degree (or prediction order). The 
free polynomial degree and the free pencil parameter bear 
interesting similarities as will be seen. The role played by 
the free polynomial degree has been studied before in [ 11, 
121, 141, [5], and [I71 as well as in [26] and 1281 where 
the free polynomial degree represents the size of subar- 
rays in the context of wave direction finding. 

As one will see, the significance of the pencil parameter 
is just like the polynomial degree. 

We should note that during the review period of two 
years of this manuscript, several other versions of the ma- 
trix pencil method have been found (or recovered), which 
include the state-space method [ 2 5 ] ,  TLS-ESPRIT [30], 
and Pro-ESPRIT [31]. Our study of these versions is 
available in [34]. A fundamental result from [34] is that 
all those matrix pencil based methods are equivalent to 
the first-order approximation, and therefore the perturba- 
tion analysis presented in this paper holds for all the 
above-mentioned methods. 
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The objective of this paper is to compare the matrix 
pencil method originally presented in [ 161, [32], and (331 
to the polynomial method presented in [ I ]  and 121. Our 
comparison will show that the pencil method and the 
polynomial method are two special cases of a matrix pre- 
diction approach, but the pencil method is more efficient 
in computation and less restrictive about the signal poles. 
It will also be shown by perturbation analysis and simu- 
lation that the pencil method is less sensitive to noise than 
the polynomial method. 

In Section 11, the pencil method is described. A rela- 
tionship between the pencil method and the polynomial 
method is discussed in Section 111. A first-order pertur- 
bation analysis is provided in Section IV. Some simula- 
tion results are given in Section V.  In Appendix A, a new 
expression of the Cramer-Rao bound for exponentially 
damped sinusoids is presented, which reveals clearly sev- 
eral Cramer-Rao bound properties similar to the corre- 
sponding properties of both the polynomial method and 
the matrix pencil method. 

11. MATRIX PENCIL METHOD 
Like the polynomial method, the matrix pencil method 

is based on the property of the underlying signal. One 
property of the exponential signals can be described by 
Theorem 2.1. 

Define 

(The superscript “T” denotes the transpose. ) 

XI = [ X L ,  XL-1, * * * 3 X I ]  (2 .3)  
( N -  L )  X L 

where L is called the pencil parameter, then for part a): 

Xo = Z, BZ, (2 .4)  

XI = Zl-BZZ, (2.5) 

where 

1 

z, = [ z l  

2;“ 

B = diag 

1 . . .  

N - L -  I  

. . .  

. . .  
L-1  . . .  

l I  
. . .  

N - L -  I  

. . .  

. . .  
L-1  . . .  

Z = diag { z l ,  22, . . . , Z M } .  (2 .9)  

b) Each of { z , ;  f = I ,  . . , M } is a rank reducing 
number of the matrix pencil XI - zX,, if M I L 5 N - 
M .  None of { z , :  r = I ,  . . , M }  is a rank reducing 
number of the pencil if L < M or L > N - M .  

c) If M I L I N - M ,  the solutions to the singular 
generalized eigenvalue problem (the “singular” is due to 
the fact that X, and XI do not have full rank for M < L 
< N - M ) :  

(XI - zX,,)q = 0 

p”(X1 - 2x0) = 0 

(2.  I O )  

(2.11) 

subject to q E R(X:), which denotes the column space of 
Xx, and p E R ( X , , ) ,  are 

z = 2, 

q = qr = (rth column of Z l  = Z:(Z,Z:)-’) 

pH = py = ( t th  row of Z L  = ( Z r Z L ) - ’ Z r )  (2.12) 

t = l , 2 ; . *  , M. qr and p, are called, respectively, the 
right and the left generalized eigenvectors associated with 
the generalized eigenvalue z I .  The superscript “ + ” de- 
notes the Moore-Penrose inverse or pseudoinverse. “ H  ” 
denotes the conjugate transpose. “ - I ”  denotes the in- 
verse. 

Proof: Part a) is easy to verify by substituting (2.6)- 
(2.9) into (2.4) and (2.5). To show part b), we notice 

XI - zX(~ = Z,B(Z - zIM)Z, 
where ZM is the M x M identity matrix, and B and Z are 
full rank M X M diagonal matrices. If z = z I ,  then ( Z  - 
Z I ~ ) ~ , ,  = 0 and the tth column of ZL and the rth row of 
Z R  are annihilated in the above expression. If M I L 5 
N - M ,  each of ZL and ZR has rank M and, therefore, 
Rank ( X I  - z,X,,) + 1 = M = Rank ( X I  - zX,) for z 
not belonging to { z I ;  t = I ,  . . , M } .  If L < M ,  then 
Rank (Z , )  = L and Rank ( ( Z  - z I  I M ) Z R )  = Rank ( (  Z 
- z I M ) Z R )  = L,  which implies that Rank ( X I  - zX,) 
does not decrease at z = z I .  If L > N - M ,  then Rank 
(Z , )  = N - L and Rank ( Z L B ( Z  - z , I M ) )  = Rank 
( Z L B ( Z  - zl,,,,)) = N - L ,  which implies that Rank 
( X I  - zXo) does not decrease at z = zr .  Part c) can easily 
be shown by noticing 

z,z; = I M  

z:z, = I M .  

Since the rank of XI - zX, decreases only at z = z ,  and 
only by one at z = z r ,  the solutions to (2. IO)  and (2.1 I )  
are unique. (The eigenvectors are unique within a scalar 

This theorem provides the foundation for the matrix 
pencil method. In the sequel, we shall assume M 5 L I 
N - M unless otherwise indicated. Based on (2.10) and 
(2.1 I ) ,  we have the following discussion for computing 
{ z I ;  t = I ,  . . . , M } from X,, and XI .  Left multiplying 
(2.10) by X :  yields 

factor.) 

X,:XIqr = ~,x:xoq,  
= 2141. (2 .13 )  
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(X:Xo is the orthogonal projection onto R(X,").) This 
implies that { z r ;  r = 1, . . . , M } are M eigenvalues of 
Xof XI.  Since Xof Xi has rank M I L, there are also L - 
M zero eigenvalues for the matrix product. Similarly, we 
can show that XIX: has M eigenvalues equal to z r ' s  and 
N - L - M zero eigenvalues, and X:Xo (or  XoX:) has 
M eigenvalues equal to z,"s and L - M (or  N - L - 
M ) zero eigenvalues. For the noisy data y k ,  we define y r ,  
Yo, and Y, the same way as for x,, Xo, and XI ,  respec- 
tively, and replace (approximate) the pseudoinverse X l  
or X:, by the rank-M truncated pseudoinverse Y,' or Y T ,  
respectively. Y: is defined as 

yof = ~ / = I . M ( 1 / ~ O , ) ~ O / 4  

= VoA-'U," (2.14) 

where { oO,; t = 1 ,  . . . , M } are the M largest singular 
values of Yo; uOr's and uor's are the corresponding singular 

> %MI; 
and A = diag { go,, , oOM } . Y 7 is defined similarly. 
Note that we use the superscript "+" to denote the 
(rank-M ) pseudoinverse of a rank-M noiseless matrix and 
the (rank-M ) truncated pseudoinverse of a noisy matrix 
( i .e . ,  a rank-M matrix perturbed by noise). With respect 
to the noise components in Yo, the continuity of each ele- 
ment of the truncated pseudoinverse Yof is preserved at 
the point where the noise is zero, and so does the conti- 
nuity of the estimates of z r ' s .  That is opposed to the fact 
that the (true) pseudoinverse of Yo is discontinuous at the 
point where the noise is zero, and hence computing the 
(true) pseudoinverse would face severe numerical prob- 
lem when the noise level is low. Also note that Y l  is 
equal to Xof if and only if the noise is zero. Since Yof YI 
has L - M zero eigenvalues which contain no information 
about z , ' s ,  its size can be reduced before the eigenvalues 
are evaluated. Replacing Xo and XI in (2.13) by Yo and 
Y , ,  respectively, and substituting (2.14) into (2.13) for 
Y l  yield 

V o A - ' U [ Y i q ,  = z r q r .  (2. IS) 

Since V,"Vo = I,,,, and qr = Vo V t q , ,  left multiplying (2.15) 
by V," yields 

A - l ~ t Y , ~ o ( v , " q / )  = zr(V,"q,). (2.16) 

Now it can be seen that the estimates of z r ' s  can be found 
by computing the eigenvalues of the M x M nonsym- 
metrical matrix: 

z, = A -  U [ Y ,  v,. (2.17) 

Note that the M eigenvalues of Z ,  are the same as the M 
nonzero eigenvalues of Yof Y, . 

Compared to the polynomial method in [ I ]  and [2] 
which requires SVD of an ( N  - L )  x L data matrix (for 
the polynomial method, L represents the degree of poly- 
nomial) and finding L roots of an L-degree polynomial, 
the matrix pencil algorithm, which requires SVD of an ( N  
- L )  x L data matrix and computing M eigenvalues of 
an M X M matrix, is certainly more efficient in compu- 

vectors; Vo = [ uol ,  * * . , uoM]; U. = [uoI ,  * 

tation. Like the degree of polynomial, the pencil param- 
eter also plays an important role in reducing noise sensi- 
tivity as will be shown later. Unlike the polynomial 
method which requires all poles to be inside (or outside) 
the unit circle so that the extraneous L - M poles can be 
separated from the desired poles, the pencil method is free 
from such restriction (that is, the pencil method is less 
restrictive about the signal poles). It is noted that the mod- 
ification in [4] has removed this restriction by solving for 
L roots of each of two (forward and backward) L-degree 
polynomials. 

For undamped signals, i .e.,  1 z r  1 = 1 for all r ,  it can be 
shown similarly that { z r ;  r = I ,  . . . , M } are the rank 
reducing numbers of the forward-and-backward (FB ) ma- 
trix pencil: 

XL x/--I . . . /.c x f  . . . XIFB - ~XOFB = 

where "*" denotes the conjugate. It can be seen that the 
whole discussions in this section are also applicable to the 
FB matrix pencil. But it should be noted that in addition 
to the condition M I L I N - M which is for the pencil 
to yield the desired eigenvalues, for M/2  I L < M, the 
FB matrix pencil also yields the desired eigenvalues at z r ' s  
for "almost" all sinusoidal signals. This is because when 
M/2 I L < M, the two matrices XIFB and XoFB have rank 
M for "almost" all sinusoidal signals, which can be 
shown by the approach in [17]. The FB matrix pencil 
method is in fact the counterpart of the FB polynomial 
method [ l ] ,  [28]. Hence, it can be expected that the FB 
matrix pencil is more robust to noise than the F-only (or 
B-only) matrix pencil if the signal poles are known to be 
on the unit circle. 

The FB matrix pencil first appeared in [33] and [29]. 
But in [29], L was fixed to be M. 

111. MATRIX PREDICTION EQUATION 

Let us consider the matrix pencil Xo - zXl. We have 
known that the generalized eigenvalues ( i . e . ,  z,' for r = 
l ; . .  , M ) of the pencil are the same as the eigenvalues 
of the matrix: 

c, = x:xo 

It is clear from (3.1) that the rth column of CI is simply 
the minimum norm solution to the equation: 

X,a, = X/*- , .  (3 .2)  

However, the vector with its rth element equal to one and 
all other elements equal to zero is also a solution to (3.2). 
Replacing the rth column of C, by this vector for r = 1, 
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* * , L - 1 yields a new matrix: 

0 0 . * .  0 

1 

I I ... 1 

c, = ( 3 . 3 )  

where the last column is the same as that of C,,  i.e.,  

a/- = - [ U L  U,.-, . * * U , ] '  

= x : x o .  ( 3 . 4 )  

As one can see, aL is the minimum norm coefficient vector 
of an L-order backward linear prediction filter (x, = 

-Er = I . L  a,x, + f o r j  = 0, * , N - L - 1 ). It is known 
that the eigenvalues of the new matrix (companion ma- 
trix) C2 are the same as the roots of the L-degree poly- 
nomial: 

- r  1 + Er= I , ~ , Q ~ z  

which has M roots at ( z : ' ;  t = I ,  * , M } and L - M 
extraneous nonzero roots with magnitudes less than one 
[2]. Therefore, the difference between the two methods 
simply lies in the choice of the solution to (3 .2) .  In other 
words, C, and C2 are two special solutions to what we 
call the matrix prediction equation: 

x,c = x, ( 3 . 5 )  

where C = [ a l  
Theorem 3.1:  As long as C is a solution to (3 .5) ,  

{ z , ' ; t  = 1 ,  * * -  , M } are M eigenvalues of the L x L 
matrix C .  

P r o 0 8  Since Rank ( Xo - z X ,  ) decreases by one at 
zrP1 and X I (  C - zZL) = Xo - z X , ,  Rank ( C  - z I L )  de- 

Similarly, if C is a solution to the "forward" matrix 
prediction equation X ,  C = X I ,  then z r ' s  are M eigenvalues 
of C. Note that C, is a minimum rank ( M  ) and minimum 
(Frobenius) norm solution to (3.5) while C2 has the max- 
imum rank L.  If L = M ,  the solution to (3 .5)  is unique so 
that C, = C2, which implies that the pencil method and 
the polynomial method are equivalent when L = A4 (note 
that the above discussion can similarly be carried out for 
noisy data). 

* a L ] .  Now we show Theorem 3.1.  

creases by one at z ; ' .  

IV. ANALYSIS OF NOISE SENSITIVITY 

We now present a first-order perturbation analysis of 
the matrix pencil method with comparison to the poly- 
nomial method. 

Since the perturbation variance is bounded by the Cra- 
mer-Rao bound, a brief discussion of the C-R bound is 
provided in Appendix A, where a new expression of the 
C-R bound is presented to reveal several C-R bound prop- 
erties similar to the corresponding properties of both the 
polynomial method and the pencil method. 

From Section 11, we know that the estimated poles ob- 
tained by the matrix pencil method are the nonzero eigen- 
values of Y,' Y , .  (It can easily be shown that Y ,  Y x ,  Y,' YO, 
and Y , Y :  yield the same estimated poles.) It is known 
from perturbation theory that the perturbation in the ei- 
genvalues (z,'s) due to perturbation in the Y,'Yl can be 
written as 

(4 .1 ) 

where "6" denotes the first-order differential operator; 
and p ;  and 4,' are the left and right eigenvectors of X , ' X , ,  
i.e., 

p;Hx:xl = z r p ; H  ( 4 . 2 )  

x,'x,q; = z ,q; .  ( 4 . 3 )  
Using (2 .4)  and (2 .5) ,  we have X : X ,  = Z , f Z Z R .  There- 
fore, p;H is the ith row of Z R ,  4,' is the ith column of Z i ,  
andp,"q,' = 1 .  Because of (2.12),  4,' = qr .  Following the 
approach used in [I71 (see equation (13) in [17]) for dif- 
ferentiating the truncated pseudoinverse, we obtain from 
(4 .1)  

6zr = P ~ " ( ~ ( Y ; ) x ,  + xO6Yl)qr 

= -p;HX,'6Y"X,'Xlq, + p;HX,'6Ylq,  

= -p;HX:6Y"zrqr + p ; H x , ' 6 Y l q r .  ( 4 . 4 )  

Here we directly use the perturbation in the truncated 
pseudoinverse Y J  in terms of the perturbation in the data 
matrix Yo,  without finding the perturbations in singular 
values and singular vectors. In the above sense, our ap- 
proach is neater than the approach in [ 191 which is based 
on the perturbation analysis of the intermediate quan- 
tities: singular values and singular vectors, and on the 
condition that the singular values of Yo are distinct. Using 
(2.4) and (2.12),  we can show [17], [18] 

p,"X,' = p,"Z,fB-IZL = I /brpF.  ( 4 . 5 )  

Combining (4 .4)  and (4 .5)  yields 

6zr = 1 / b rpF(GYl  - zr6Y")qr. ( 4 . 6 )  
Note that 6 Y ,  and 6Yo consist of noise components only, 
I.e.. 

n2 
6 Y ,  = nL ] ( 4 . 7 )  _I1 nN-l. * N - L + l  nN-  I  

6Y" = . ( 4 . 8 )  

nN-L- l  nNPL * * 

Some algebraic manipulation of (4 .6)  yields 

( 4 . 9 )  
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where R,,,, is the covariance matrix of n .  To evaluate the 
perturbation variance, we will let (4. I O )  

E ( n }  = 0 

E ( n n 7 }  = 0 

E ( n n H }  = R,,,, = 20 ' l ,~  

where E {  } denotes the expectation, and 2a' the noise 
variance. 

- 
PI. I 

PI. I 

: Pl..L'-I 

PI, N - 1. 

. . .  0 0 - 

A. Simple Cusr Study 

Simplified expression of the perturbation variance for 

One Complex Sinusoid: Assume that x,! = b l  exp 
one undamped sinusoid can be obtained as follows. 

( j w ,  k ) .  Then we can show [ 181 that 
( 4 ' 1 1 )  

Var (6Wl )pc"cll = 1 / 2  Var (621 )pe"c,l 
where pI, , is the jth element of p , .  If the FB matrix pencil 
is used for undamped signal, then we can show [ 181 that 
the perturbation in the estimated i ,  is 

' k i . F B  = l/(hiI[qJprF'n + qTp?Bpn*] (4 .12 )  

where the subscript "FB" indicates that the estimate is 
obtained by an FB version; and are defined the 
same way as for PI with pI./ replaced by pI .FB . ,  and 
P ~ , F B . N  - L + /  respectively; p , ,  ( j = 1 ,  2 ,  . . . , 2 ( N  - 
L ) )  is the j t h  element of P ~ , ~ - ~ ' B ;  P F F B  is the rth row of 

1 
for L 5 N / 2  

for L 2 N / 2  

- 

SNRl 1 
- 

( N  - - L ) 2 L  L)L' 

( 4 . 1 6 )  

and P is the ( N  X N ) order reversing permutation matrix, 
I.e.. 

Now we have obtained 62, and 62,. F B  explicitly in terms 
ofthe noise vector n .  If the covariance matrix of the noise 
vector is known, the first-order perturbation variances in 
the estimated z l ,  w,, and a,  can straightforward be found 
from (4 .9)  or (4.12) (at least by numerical computation) 
for any given signal. For example, we can write, from 
(4.9) 

Var (6z , )  = ( l/ii,l(')q:P,HRJ,JJP,q;* ( 4 ' 1 5 )  

. .  

. . .  

. . .  

. .  

. . .  
) . . .  

(4 .13)  

for the matrix pencil method, and 

Var ( 6WI  1 p"l) 

= 1 / 2  Var (621 )p"l!, 

2 ( 2 L  + 1 )  

3 ( N  - L) 'L(L  + I )  
for L I N / 2  

- L)' + 3L' + 3L + 1)  

- L)L ' (L  + i f  
for L 2 N / 2  

( 4 . 1 7 )  

- - 
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for the (either forward or backward) polynomial method. 
SNR, = I b,  1'/2a2. Since the analytical results (includ- 
ing those presented later) are obtained through the first- 
order approximation, they are valid only when SNR, is 
very large. However, based on our simulations, those re- 
sults are good approximations if SNR, 2 30 dB, or more 
precisely, if SNR, is above threshold. Note that L in (4.17) 
represents the polynomial degree for the polynomial 
method. 

It is easy to observe from (4.16) that the pencil method 
is the most sensitive to noise when the free pencil param- 
eter is equal to M o r  N - M. N / 3  and 2N/3 are the best 
choices for L. In fact, all values satisfying N / 3  I L I 
2N/3 appear to be good choices in general. This phenom- 
enon can be seen in all other cases. 

We should mention that a first-order perturbation anal- 
ysis of the polynomial method has also been presented in 
[20] where the result only for single sinusoid is obtained. 
Unfortunately, we found that their result (equation (3 I )  
in [20]) is not consistent with (4.17) for L I N/2 ( i n  
fact, equation (31) in [20] is not consistent by itself when 
M = L - M, i.e., L = N/2 in our notation). 

With (4.16) and (4.17), it can be shown that 

with equality only when L = 1 ( i .e . ,  L = M ). 
It is interesting, however, that if the FB versions of the 

pencil and polynomial methods are used, then we can 
show [ 181 that 

r 1  
L ( N  - L)' 

SNR I 1 LL'(N - L) 

and 

1 
SNR, 

-~ - 

1 

L ( N  - L)' 
1 

L?(N - L )  

for L I N/2 

forL I N/2 

(4.19)  

for L I N/2 

forL 2 N/2. 

(4 .20)  

The first equality in (4.20) holds only when L = 1 ( i .e . ,  
L = M [17]). The above two equations indicate that the 
FB versions of the two methods have very close noise sen- 
sitivity with respect to the estimated frequencies. 

The Cramer-Rao bound for Var ( w, ) or Var ( w ~ , ~ ~ )  is 
known [24] to be 

CRB = ( l /SNR,)6 /N(N'  - 1 ) .  (4.21) 

From (4.16), (4.19), and (4.20), we know 

= Min, Var ( 6 W I . F B ) p e n c l l  

= Min, Var (%FB)p(,lv 

= Var ( C ~ W , . ~ ~ )  when L = N/3 or 2N/3 

= ( 1/SNRl)27/4N7.  (4.22 ) 

Note that although this expression is valid only for the 
case where N / 3  is an integer. the approximation to be 
given in (4.24) is true for all N I 3. Based on (4.21) and 
(4.22), the efficiency is 

eff. = Var/CRB = 27N(N2 - 1)/24N' 2 1 (4.23) 

where N I 3, and the last equality holds only when N = 
3 .  Since N ?  - 1 = N', we have 

eff. = 27/24 = 1.125. (4.24) 

This result supports the observation that the polynomial 
method [ l ] ,  [2], [21] and the matrix pencil [17], [I81 
method (with optimum choice of L)  generally have a good 
and constant (with respect to N ) efficiency. 

Two Complex Sinusoids: If we let xL = biz: + b?z;, 
then simplifying the theoretical perturbation variances of 
6z ,  or 6w, has not been successful. But we always can 
evaluate the theoretical variances numerically with use of 
the general result given by (4.9) and (4.12). With the pa- 
rameters defined as: M = 2, N = 25, CY, = -0.01, CY' = 
-0.02, f ,  - f i  = -0.02, and any 4,  and +?, we plotted 
the theoretical perturbation variances in Fig. 1.  This plot 
("*") shows 

10 log,,, (CRB/Var (6fl)) versus L 

for both the polynomial method and the pencil method. 
Note thatf, = w , / ~ T ,  and the CRB in the above expres- 
sion denotes the C-R bound for the two sinuosids, which 
should not be confused with the CRB in (4.21). Again, it 
is observed that Var (6f, ) I Var ( 6fl ) p(,ly with equal- 
ity only when L = M = 2. (The variances for the two 
methods can differ by more than 2 dB.) In fact, this phe- 
nomenon has been observed for all choices of signal pa- 
rameters and especially for weakly damped signals. 

As predicted by (4.19) and (4.20), the FB versions (only 
for undamped signals) do not show noticeable differences 
of frequency perturbation variances. In other words, the 
FB matrix pencil method and the TK method [ 11 have al- 
most the same performance with respect to the accuracy 
of the frequency estimation. (We also found that the fre- 
quency perturbation variances for the two FB versions are 
not exactly the same in general [ 181 .) But the FB matrix 
pencil method still has the computational advantage over 
the FB polynomial method (i.e., the Tufts-Kumaresan 
method [ l ] ) .  
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B.  General Case Study 
In this subsection, we present some fundamental prop- 

erties for the pencil method. All these properties are ob- 
served from (4.9) and (4.12) which are for any sinusoidal 
signal. 

Properties Similar for  the Polynomial Method: 
1)  If the signal is undamped sinusoids and L I ( N  - 

1 ) /2, the perturbations in z ,  or z,, F B  due to the noise com- 
ponents, nk for L I k I N - L - 1, are zero. 

2) Var (6z,) or Var ( 6 ~ , , ~ ~ )  is inversely proportional to 
SNR, = I b, 1'/2a2, and is independent of SNR, f o r j  not 
equal to t .  

3) Var (6z,) is invariant to the phases and the group 
shift of frequencies. 

or 

M = l  

where t is not equal to j ,  and m is an integer. Equation 
(4.25) has not been proved completely. But for the de- 
tailed discussions, see [ 181. 

Properties Different from the Polynomial Method: 
7) Since Y ,  - zYo and Y :  - z Y i  have the same rank 

reducing numbers, 6z, is symmetrical about L = N/2. 
This symmetry can be seen from (4.14) and Fig. 1. 

8) A unique property of the FB matrix pencil method 
is that the perturbation 6 ( ~ , , ~ ~  is zero, which implies 

4) Var ( 6 ~ , , ~ ~ )  is invariant to the group shift of phases 

Note that the properties 2)-4) are shared by the C-R 

This is in contrast to 
and the group shift of frequencies. 

Var ( 6 w ~ . F B ) p , , l l  = Var (6&.FB)poll (4.28) 

with equality only when L = M [ 171. bound. See Appendix A. 

9) Due to properties 5 )  and 8) ,  (4.25) can be replaced 5 )  Var (6z,) = 2 Var (6w,) = 2 Var (6a,) .  
6) For the case where 1 z ,  I = 1 for all t ,  we have 

by 
Var ( I I /2 Var (&,) (4.25) 

Var (~",.FB)pe"cl, = Var (6w)pcnc,l. 
with equality if 

A proof of (4.27) is provided in Appendix B. Equation 
(4.27) implies that the estimated poles are perturbed by 
(small) noise along the unit circle only. 

( W ,  - w,)(N - l )  + 2(d3 - = 2mT (4.26) 

or 

w, - w, = 2 m ~ / ( N  - L )  

or 

N - L > > l  

V. SIMULATION RESULTS 

To justify our perturbation analysis in Section IV, we 
did computer simulation. In this simulation, the IMSL 
software (with VAX/VMS 785 at Syracuse University) 
was used to generate the white Gaussian noise, to solve 



H U A  A N D  SARKAR. MATRIX PENCIL METHOD 

60 ~ 

1 
50 - 

40 - 

Y '  

30 - 

20 - 

+ 

0 

t 
0 

10 
1 ' ~ ' " ~ ~ " " ~ ~ ~ ~ ' ~ ' " ' ~ " ' ~ " ' " ' ~ ~ ' ~ ' " " ' ~ ~ ~ I '  

0 5 10 15 20 25 30 

SNR 1 

Fig. 2 .  This plot shows - I O  log,,, ( V a r  (Sf', ) ) versus S N R , .  The "pluses" 
arc simulation results for the pencil method. and the "diamonds" are 
for the polynomial method. The straight lines were computed from the 
perturbation analysis. L = 10 (an optimum choice) was chosen. The 
signal parameters (except q5, = q5? = 30" ) are the same as for Fig. 1. 

"1 
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Fig. 3 .  This plot shows -10 log,,, ( V a r  ( S f , , f , , )  versus S N R , .  The frc- 
quency was estimated by the FB versions of the pencil and polynomial 
methods with L = 17 (an optimum choice).  The straight lines. "pluses." 
and "diamonds" have the same meaning as in Fig. 2 .  The signal parani- 
eters are M = 2.  N = 25.  a ,  = c y 2  = O . f ,  = 0.2.,f2 = 0.22.  q51 = 0. 
and 6, = -3.6". 

the eigenvalue problem as required by the pencil method, 
and to find the roots of polynomial as required by the 
polynomial method. Each sample variance was computed 
based on 200 estimates which were perturbed by 200 in- 
dependent noise sequences added on x k ,  k = 0, 1 ,  * * * , 
N - 1. For each case or figure, the same (noisy) data were 

used for both the pencil method and the polynomial 
method. We first present the case where the signal con- 
sists of two sinusoids as given in the previous section. 
Fig. 2 shows - 10 log,o (Var ( 6 f ,  ) )  versus SNR,.  L = 
10 ( = N / 3 )  was used for both of the methods because it 
is the optimum choice for both of the methods with the 
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Fig. 4. Sec Fig. 3 .  The only difference here is that @ ,  = 86.4" instead of 
-3 .6" 

given signal data (see Fig. I ) .  The straight lines were 
computed from (4.9) (assuming the noise is white). The 
"pluses" are simulation results for the pencil method 
while the "diamonds" are for the polynomial method. As 
can be seen, the simulation results are consistent with the 
perturbation analysis for high SNR (i.e., when SNR is 
above threshold). Note that the advantage in noise sensi- 
tivity of the pencil method over the polynomial method is 
preserved in the threshold region. 

To compare the FB versions of the two methods for 
undamped signals, we chose M = 2,  N = 2 5 ,  fl = 0.2,  

f 2  = 0 . 2 2 ,  a I  = CY? = 0, c$? = 0, and 4,  = -3.6" and 
86.4", respectively. Figs. 3 and 4 show - 10 log,, (Var 
( 6 f { , F B ) )  versus SNR, for 4, = -3.6" and 4,  = 86.4", 
respectively. For the two figures, L = 17 ( = 2 N / 3 )  was 
used for both of the methods because it is the optimum 
choice for both of the FB versions with the given signal 
data [17], [18]. As can be seen, the two methods have 
very close Var ( 8Jfr.FB). In Figs. 3 and 4, we plotted two 
straight lines (first-order perturbation variances) for the 
two methods, but they are overlayed in the plot. An im- 
portant thing that one should observe from the two plots 
is that both the threshold and the perturbation variance are 
significantly affected by the phase difference. It can be 
shown (see I171 and [IS]) that - 42 = -3.6" makes 
X, and X, the best conditioned, while - 42 = 86.4" 
makes XI and X ,  the worst conditioned. Note that $I - 
& = 86.4" satisfies (4.24). 

VI. CONCLUSION 

We have presented a study of a matrix pencil method 
with comparison to the polynomial method proposed in 
[ I ]  and 121. We have shown that the two methods are two 
special cases of a matrix prediction approach, but the pen- 
cil method is more efficient in computation, less restric- 

tive about signal poles, and less sensitive to noise for sig- 
nals with unknown damping factors than the polynomial 
method. The C-R bound has also been discussed in Ap- 
pendix A in a unique way. 

APPENDIX A 
In this appendix, we shall derive a Fisher information 

matrix which is in such a form that some relations be- 
tween the Cramer-Rao bound and the signal parameters 
are easily seen. From (1.  l ) ,  we can write 

y = x + n  (A.  1 )  

wherey = [ y o , y , ,  , y , ~ l ] T a n d x  = [xo,xI, - * , 
x N -  I ] '. If the probability density function (pdf) of n is 
normal, i.e., N ( 0 ,  2 a 2 Z N ) ,  then the pdf of y is N ( x ,  
2 a 2 Z N ) .  It is clear that the mean vector x depends on the 
parameter vector 8 defined as 

8 = [e;. - * * ,e;]' ('4.2) 

(A.3) 
Let 8, denote the tth element of 8. Then the (1, j )th ele- 
ment of the Fisher information matrix J can be shown to 
be 

(A.4) 

where d (  ) /de ,  is partial derivative. But J can be parti- 
tioned as 

J = { J , , , ;  t , j  = l , 2 ,  * * e  , M }  (A.5)  
where Jr , ,  is a 4 X 4 ( t ,  j )th block matrix of J ,  which can 
be shown from (A.4) to be 
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(A.13) 

(A. 14) 

Note that O r , J O / , L  = O r . r ,  e,-/' = e:, = e/.,, and O r , ,  = 4. 
After substituting (A.12) into (A.6), the 4 x 4 ( I ,  j ) t h  
block matrix of J - I  can be shown to be 

J r . 1  = a*B,lX'./O,~JB/-' (A.16) 

where X r . l  is the 4 X 4 ( I ,  j )th block matrix of X-' = 
{ X,,,}-' (which is independent of I b, I and 4,). Then the 
rth diagonal block matrix of J - '  is 

Since the 4 diagonal elements of .Ir.' are the C-R bounds 
for Ib,l, 4r3 CY,, and w,, respectively, the following 
theorem can easily be shown from (A. 17). 

Theorem A .  I :  If the parameters ( I b, 1 ,  4,, a,, w,) for 
all r are unknown, then the Cramer-Rao bounds for ( +,, 
CY,, w,) are independent of I b, I for j not equal to f but 
proportional to 1 / I 6, I ? ,  the bound for I b, I is independent 
of 1 b, 1 for all j ,  and the bounds for all parameters are 
independent of phases for all j and the group shift of 
frequencies. 

If 01,'s are known (e .g . ,  CY, = 0 for all r ) ,  the above 
results are still true except that the C-R bounds depend 
upon the phases (but not the group shift of phases). This 
is because a symmetry in (A.8) is destroyed when a,'s are 

known. The C-R bound has been studied for sinusoidal 
signals in [22]-[24], and all the properties. except the 
phase independency when CY,'s  are unknown, in Theorem 
A. 1 have been known. However, we think that the above 
formulation of the C-R bound is unique. 

APPENDIX B 

Here we prove (4.27) with the assumption I z ,  I = I for 
all t.  Since 6w, f B  = Im { 6 z ,  F B / z r }  and &a, FB = Re 
{ 6z, F B / z r } ,  we need to show that 6z ,  f B / : r  is purely 
imaginary. Similar to 6z ,  in (4.6), 67, f B  can be shown 
[I81 to be 

6zr F B I : ,  = l / ( z r l h r I ) P f F B ( 6 Y l  FB - Z r 6 & l f B ) q r .  ( D . l )  
We can write 

P Y F B  = [ P , H f ,  P f B l  (D.2)  

we have 
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