
UCLA
UCLA Electronic Theses and Dissertations

Title
Evaluating and Understanding Adversarial Robustness in Deep Learning

Permalink
https://escholarship.org/uc/item/2n47s8gd

Author
Chen, Jinghui

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n47s8gd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Evaluating and Understanding Adversarial

Robustness in Deep Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Jinghui Chen

2021

© Copyright by

Jinghui Chen

2021

ABSTRACT OF THE DISSERTATION

Evaluating and Understanding Adversarial

Robustness in Deep Learning

by

Jinghui Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Quanquan Gu, Chair

Deep Neural Networks (DNNs) have made many breakthroughs in different areas of arti-

ficial intelligence. However, recent studies show that DNNs are vulnerable to adversarial

examples. A tiny perturbation on an image that is almost invisible to human eyes could

mislead a well-trained image classifier towards misclassification. This raises serious security

concerns and trustworthy issues towards the robustness of Deep Neural Networks in solving

real world challenges. Researchers have been working on this problem for a while and it has

further led to a vigorous arms race between heuristic defenses that propose ways to defend

against existing attacks and newly-devised attacks that are able to penetrate such defenses.

While the arm race continues, it becomes more and more crucial to accurately evaluate

model robustness effectively and efficiently under different threat models and identify those

“falsely” robust models that may give us a false sense of robustness. On the other hand,

despite the fast development of various kinds of heuristic defenses, their practical robustness

is still far from satisfactory, and there are actually little algorithmic improvements in terms

of defenses during recent years. This suggests that there still lacks further understandings

ii

toward the fundamentals of adversarial robustness in deep learning, which might prevent us

from designing more powerful defenses.

The overarching goal of this research is to enable accurate evaluations of model robustness

under different practical settings as well as to establish a deeper understanding towards other

factors in the machine learning training pipeline that might affect model robustness. Specif-

ically, we develop efficient and effective Frank-Wolfe attack algorithms under white-box and

black-box settings and a hard-label adversarial attack, RayS, which is capable of detecting

“falsely” robust models. In terms of understanding adversarial robustness, we propose to

theoretically study the relationship between model robustness and data distributions, the

relationship between model robustness and model architectures, as well as the relationship

between model robustness and loss smoothness. The techniques proposed in this dissertation

form a line of researches that deepens our understandings towards adversarial robustness and

could further guide us in designing better and faster robust training methods.

iii

The dissertation of Jinghui Chen is approved.

Cho-Jui Hsieh

Charu Aggarwal

Deanna Needell

Adnan Darwiche

Quanquan Gu, Committee Chair

University of California, Los Angeles

2021

iv

To my family

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview . 1

1.2 Challenges . 3

1.2.1 Evaluating Adversarial Robustness 3

1.2.2 Understanding Adversarial Robustness 4

1.3 Contributions . 6

1.4 Organization of the Dissertation . 7

2 A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks 9

2.1 Introduction . 9

2.2 Related Work . 11

2.3 Methodology . 13

2.3.1 Notation . 13

2.3.2 Problem Formulation . 14

2.3.3 Frank-Wolfe vs. PGD . 14

2.3.4 Frank-Wolfe White-box Attacks . 15

2.3.5 Frank-Wolfe Black-box Attacks . 17

2.4 Main Theory . 18

2.4.1 Convergence Criterion . 19

2.4.2 Convergence Guarantee for Frank-Wolfe White-box Attack 19

2.4.3 Convergence Guarantee for Frank-Wolfe Black-box Attack 20

2.5 Experiments . 22

vi

2.5.1 Evaluation Setup . 22

2.5.2 Baseline Methods . 23

2.5.3 White-box Attack Experiments . 23

2.5.4 Black-box Attack Experiments . 25

2.5.5 Experiments on Adversarially Trained Model 27

2.6 Conclusions and Future Work . 27

3 RayS: A Ray Searching Method for Hard-label Adversarial Attack . . . 29

3.1 Introduction . 29

3.2 Related Work . 32

3.3 The Proposed Method . 33

3.3.1 Overview of Previous Problem Formulations 34

3.3.2 Ray Search Directions . 35

3.3.3 Hierarchical Search . 37

3.4 Experiments . 39

3.4.1 Datasets and Target Models . 40

3.4.2 Baseline Methods . 41

3.4.3 Comparison with hard-label Attack Baselines on Naturally Trained

Models . 41

3.4.4 Evaluating the Robustness of State-of-the-art Robust Models 43

3.5 Discussions and Conclusions . 48

4 Understanding the Intrinsic Robustness of Image Distributions using Con-

ditional Generative Models . 53

4.1 Introduction . 53

vii

4.2 Related Work . 55

4.3 Preliminaries . 56

4.4 Main Theoretical Results . 58

4.5 Proof of Main Theorem . 61

4.5.1 Proof of Theorem 4.4.3 . 61

4.5.2 Proof of Theorem 4.4.4 . 62

4.6 Experimental Details . 64

4.6.1 Network Architectures and Hyper-parameter Settings 64

4.6.2 Strategies for Estimating In-distribution Adversarial Robustness . . . 65

4.7 Experiments . 66

4.7.1 Conditional GAN Models . 66

4.7.2 Local Lipschitz Constant Estimation 68

4.7.3 Comparisons with Robust Classifiers 70

4.7.4 In-distribution Adversarial Robustness 72

4.8 Conclusions . 75

5 Do Wider Neural Networks Really Help Adversarial Robustness? 76

5.1 Introduction . 76

5.2 Related Work . 79

5.3 Empirical Study on Network Width and Adversarial Robustness 81

5.3.1 Characterization of Robust Examples 81

5.3.2 Evaluation of Perturbation Stability 83

5.4 Why Larger Network Width Leads to Worse Perturbation Stability? 84

5.4.1 Perturbation Stability and Local Lipschitzness 85

viii

5.4.2 Local Lipschitzness and Network Width 86

5.5 Experiments . 88

5.5.1 Experimental Settings . 88

5.5.2 Model Robustness with Larger Robust Regularization Parameter . . . 89

5.5.3 Experiments on Different Datasets and Architectures 92

5.5.4 Width Adjusted Regularization . 93

5.5.5 Comparison of Robustness on Wide Models 94

5.6 Proof of Lemma 5.4.2 . 95

5.7 The Experimental Detail for Reproducibility 97

5.8 The Exponential Decay Learning Rate . 98

5.9 Boosting the Original Adversarial Training 99

5.10 Conclusions . 100

6 Backward Smoothing for Efficient Robust Training 101

6.1 Introduction . 101

6.2 Related Work . 103

6.3 Pros and Cons of Random Initialization . 105

6.3.1 What Caused the Failure of One-step AT Without Random Initializa-

tion? . 105

6.3.2 Why Random Initialization Helps? 106

6.3.3 Drawbacks of Random Initialization 108

6.4 Proposed Approaches . 109

6.4.1 A Naive Try: Randomized Smoothing for TRADES 109

6.4.2 Backward Smoothing . 110

ix

6.5 Experiments . 113

6.5.1 Experimental Setting . 113

6.5.2 Performance Comparison with Robust Training Baselines 114

6.5.3 Evaluation with State-of-the-art Attacks 116

6.5.4 Stability and Sensitivity . 117

6.5.5 Combining with Other Acceleration Techniques 118

6.6 Randomized Smoothing . 119

6.7 Additional Ablation Studies . 120

6.7.1 Does Backward Smoothing alone works? 121

6.7.2 More Experiments for Backward Smoothing using Multiple Random

Points . 121

6.7.3 Ablation Studies . 122

6.7.4 Experiments on different perturbation strength 123

6.7.5 PGD based Backward Smoothing . 123

6.7.6 Comparison of Backward Smoothing and the ODI attack 125

6.8 Conclusions . 125

7 Conclusions and Future work . 127

x

LIST OF FIGURES

1.1 A demonstration of adversarial example generated against GoogLeNet [SLJ+15]

on ImageNet . 2

1.2 An illustration of three different settings for adversarial attacks 3

2.1 Attack success rate against the number of queries plot for targeted black-box

attacks on MNIST and ImageNet datasets. 26

3.1 A two-dimensional sketch for the fast check step in Algorithm 5. 37

3.2 Attack success rate against the number of queries plots for different hard-label

attacks on MNIST, CIFAR-10 and ImageNet datasets. 45

3.3 Average Decision Boundary Distance (ADBD) and Robust accuracy against RayS

attack iterations plot for several robust models. 47

4.1 Illustration of the generated images using different conditional models. For Big-

GAN generated images, we select 10 specific classes from the 1000 ImageNet

classes (corresponding to the 10 image classes in CIFAR-10). 67

4.2 Comparisons between the theoretical intrinsic robustness bound and the empiri-

cally estimated unconstrained/in-distribution adversarial robustness, denoted as

“unc” and “in” in the legend, of models produced during robust training on

the generated data under `2. In each subfigure, the dotted curve line represents

the theoretical bound on intrinsic robustness with horizontal axis denoting the

different choice of α. 72

5.1 Plots of both natural risk and robust regularization in (5.1.1). Two 34-layer

WideResNet [ZK16] are trained by TRADES [ZYJ+19] on CIFAR10 [KH+09]

with widen factor being 1 and 10. 77

xi

5.2 An illustration of the robust samples, correctly classified samples, and stable

samples in (5.3.1). 81

5.3 Plots of (a) robust accuracy, (b) natural accuracy, and (c) perturbation stability

against training epochs for networks of different width. Results are acquired on

CIFAR10 with the adversarial training method TRADES and architectures of

WideResNet-34. Training schedule is the same as the original work [ZYJ+19].

We record all three metrics when robust accuracy reaches the highest point and

plot them against network width in (d). 82

5.4 Plot of approximated local Lipschitz constant along the adversarial training tra-

jectory. Models are trained by TRADES [ZYJ+19] on CIFAR10 dataset using

WideResNet model. Wider networks in general have larger local Lipschitz con-

stants. 86

5.5 The changing trend leanring rate against training epochs for different learning

rate schedule. 98

6.1 Loss increment after attack, i.e., L(fθ(x+δ∗), y)−L(fθ(x), y), along the training

trajectory for different methods on training ResNet-18 on CIFAR-10 dataset. . . 106

6.2 A sketch of our proposed method. 110

6.3 Hessian maximum eigenvalue comparison against training epochs. 112

6.4 Training stability of different fast robust training methods. 118

xii

LIST OF TABLES

2.1 Comparison of targeted L∞ norm based white-box attacks on MNIST dataset

with ε = 0.3. 24

2.2 Comparison of targeted L∞ norm based white-box attacks on ImageNet dataset

with ε = 0.05. 24

2.3 Comparison of targeted L∞ norm based black-box attacks on MNIST and Im-

ageNet datasets in terms of attack success rate, average time and the average

number of queries (QUERIES: for all images including both successfully and

unsuccessfully attacked ones; QUERIES(SUCC): for successfully attacked ones

only) needed per image. 25

2.4 Comparison of targeted L∞ norm based while-box attacks on adversarially trained

WideResNet on CIFAR10 with ε = 8/255. 28

2.5 Comparison of targeted L∞ norm based black-box attacks on adversarially trained

WideResNet on CIFAR10 with ε = 8/255 in terms of attack success rate and the

average number of queries (QUERIES: for all images including both successfully

and unsuccessfully attacked ones; QUERIES(SUCC): for successfully attacked

ones only) needed per image. 28

3.1 Comparison of L∞ norm based hard-label attack on MNIST dataset (ε = 0.3). . 43

3.2 Comparison of L∞ norm based hard-label attack on CIFAR-10 dataset (ε =

0.031). 43

3.3 Comparison of L∞ norm based hard-label attack on ImageNet dataset for ResNet-

50 model (ε = 0.05). 44

3.4 Comparison of L∞ norm based hard-label attack on ImageNet dataset for Incep-

tion V3 model (ε = 0.05). 44

xiii

3.5 Comparison of different adversarial attack methods on Adversarial Training [MMS+18]

for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 87.4%). 48

3.6 Comparison of different adversarial attack methods on TRADES [ZYJ+19] for

CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 85.4%). 49

3.7 Comparison of different adversarial attack methods on SENSE [KW20] for CIFAR-

10 dataset (WideResNet, ε = 0.031, natural accuracy: 91.9%). 50

3.8 Comparison of different adversarial attack methods on Feature-Scattering [ZW19]

for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 91.3%). 51

3.9 Comparison of different adversarial attack methods on Adversarial Interpolation

Training [ZX20] for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy:

91.0%). 51

4.1 Hyper-parameters used for training robust models. 65

4.2 Hyper-parameters used for evaluating the model robustness via PGD attack. . 65

4.3 Local Lipschitz constants of ACGAN model on MNIST classes with r = 0.5 and

δ = 0.001. 68

4.4 Local Lipschitz constants of BigGAN on 10 selected ImageNet classes with r = 0.5

and δ = 0.001. 68

4.5 Comparisons between the empirically measured robustness of adversarially trained

classifiers and the implied theoretical intrinsic robustness bound on the condi-

tional generated datasets. 71

xiv

5.1 The three metrics under PGD attack with different λ on CIFAR10 dataset using

WideResNet-34 model. We test TRADES as well as our (generalized) adversarial

training. Each experiment is repeated three times. The highest robustness value

for each column is annotated with bold number. From the table, we can tell that:

1) The best choice of λ increases as the network width increases; 2) For models

with the same width, the larger λ always leads to higher perturbation stability;

3) With the same λ, the larger width always hurts perturbation stability, which

backs up our claim in Section 5.4.2. 90

5.2 Robust accuracy (%) for different datasets, architectures and regularization pa-

rameters under various attacks. The highest results are evaluated for three times

of randomly started attack. Our approach of boosting regularization for wider

models apply to all cases. The value of w and k represents the network width. . 91

5.3 Comparison of TRADES with different tuning strategies. N/A denotes no fine-

tuning of the current model (tuning on small networks only). Manual represents

exhaustive fine-tuning. 95

5.4 Robust accuracy (%) comparison on CIFAR10 under AutoAttack. † indicates

training with extra unlabeled data. 96

6.1 Model robustness comparison among AT, Fast AT, TRADES and Fast TRADES,

using ResNet-18 model on CIFAR-10 dataset. 108

6.2 Performance comparison on CIFAR-10 using ResNet-18 model. 114

6.3 Performance comparison on CIFAR-100 using ResNet-18 model. 115

6.4 Performance comparison on Tiny ImageNet dataset using ResNet-50 model. . . 115

6.5 Performance comparison with state-of-the-art robust models on CIFAR-10 eval-

uated by AutoAttack and RayS. 117

xv

6.6 Sensitivity analysis of the attack step size on the CIFAR-10 and CIFAR-100

datasets using ResNet-18 model. 119

6.7 Performance comparison on CIFAR-10 using ResNet-18 model combined with

cyclic learning rate and mix-precision training. 120

6.8 Performance of using Backward Smoothing alone on CIFAR-10 dataset using

ResNet-18 model. 121

6.9 Performance of using Backward Smoothing alone on CIFAR-100 dataset using

ResNet-18 model. 121

6.10 Sensitivity analysis on the number of random points used in Backward Smoothing

on the CIFAR-10 dataset using ResNet-18 model. 122

6.11 Sensitivity analysis of γ on the CIFAR-10 and CIFAR-100 datasets using ResNet-

18 model. 122

6.12 Sensitivity analysis of β on CIFAR-10 and CIFAR-100 datasets using ResNet-18

model. 123

6.13 Performance comparison on CIFAR-10 using ResNet-18 model (ε = 4/255). . . . 124

6.14 Performance comparison on CIFAR-10 using ResNet-18 model (ε = 12/255). . . 124

6.15 Performance of single-step based robust training strategy on CIFAR-10 dataset

using ResNet-18 model. 126

xvi

ACKNOWLEDGMENTS

I am fortunate to have the support, guidance, and collaborations from a large group of

people, from my advisor, colleagues to friends and family, during my entire six-year Ph.D.

journey. I greatly appreciate all their help and support.

I want to sincerely thank my advisor, Prof. Quanquan Gu, who is modest and industrious

while being super smart. Prof. Quanquan Gu has led me through this journey and turn

me from a fresh undergraduate student to an experienced researcher. I am grateful for

all the training, mentoring and teaching from him, especially during the early years of my

Ph.D. journey. Without them, I might still be the young man who knows nothing about

machine learning research. I am also very grateful that Prof. Quanquan Gu offered me the

opportunity to transfer with him and came to UCLA to continue my Ph.D. journey and my

academic career.

I also want to thank all my mentors and supervisors during my several industrial intern-

ships. I gained tons of valuable experiences and knew many awesome people during my first

internship at IBM T.J. Watson Research Center. My mentors, Dr. Charu Aggarwal and Dr.

Saket Sathe, are nice, knowledgeable, excellent in outlier detection related research. Their

guidance helped me a lot and I really enjoyed the time at IBM. For my second internship

at JD AI Research, I want to thank Dr. Jinfeng Yi for providing me the remote internship

opportunity and get me on board with the adversarial machine learning research, which is

the major topic for this dissertation. As the only remote intern that year, I also want to

thank Dr. Jing Huang for hosting me in the JD Silicon Valley Research Center. My intern-

ship at Twitter is more engineering-oriented, and I am fortunate to have Dr. Yao Wu as

my mentor who helped me a lot during the internship and gave me so many useful tips in

working and living. My last internship was at Microsoft Research, though being fully remote

due to COVID-19. I am fortunate to get this opportunity and have Dr. Yu Cheng and Dr.

Zhe Gan as my mentors.

xvii

I am also grateful to all other wonderful collaborators during my Ph.D. research. Prof.

David Evans is meticulous about the research he is doing. His suggestions on our paper

and my research statements are very helpful and constructive. Prof. Jian Ma is easy-going,

humor and collaboration with him is always an enjoyable procedure. I would also like to

thank my other dissertation committee members, Prof. Adnan Darwiche, Prof. Cho-Jui

Hsieh, Prof, Deanna Needell, for all their helpful feedback and suggestions on my Ph.D.

research and dissertation work.

I am also fortunate to be part of our Statistical Machine Learning Lab and have so many

talented lab mates, Pan Xu, Lu Tian, Lingxiao Wang, Dongruo Zhou, Difan Zou, Yuan Cao,

Yue Wu, Jiafan He, Weitong Zhang, Zixiang Chen, who have built a great environment for

research. I have learned and benefited a lot from discussions with them. Special thanks to

Xiao Zhang and Yaodong Yu, who stayed with me back in UVa and spent together that

wonderful year.

Also many thanks to my friends at UCLA and UVa for the company. Thanks to Huazheng

Wang, Qingyun Wu, Zhanyu Yang, Tianlu Wang, Dezhi Hong, Zeya Chen, Jianfeng Chi,

Zhiqiu Jiang, Yinghan Wang, Renqing Cai, Fnu Suya, Weilin Xu, Bo Yang, Yue Hu, Xin

Wen, Frank Feng, Minbiao Han, Pingyu He, Jiekun Yang, Jinghe Zhang, Mengmeng Ye,

Feiyu Jin, Jian Kang, Zuo Li, Haoyi Liang, Haoran Liu, Jisi Liu, Fuwen Tan, Xiang Wan,

Jie Wang, Xintian Wang, Yiran Wang, Jizhao Zang in UVa, and Minhao Cheng, Xuanqing

Liu, Yuanhao Xiong, Xiangning Chen, Xu Xie, Zewen Yuan, Boyang Fu in UCLA. Thank

you all for your friendship and support. Also thanks to my old friends from high school as

well as new friends met during internships: Houping Xiao, Chunxi Yu, Yumeng Tao, Xinyu

Hu, Tian Jin, Zhijun Yin, Qinglong Li, Lifu Huang, Tianjie Wang, Yifan Tian, Yamin Li,

Nan Hu, Rui Xu, Wei Xia, Zhekang Peng and many others.

Thanks to those who helped a lot during my job search. Special thanks to Prof. Fenglong

Ma, and Prof. Xiaowei Jia and Prof. Jiebo Luo, who provided me with so many useful tips

and advice and helped me a lot, especially during this hard year.

xviii

Finally, I owe my deepest gratitude to my family, my parents, my grandma, and Lu. I

would like to thank Lu for the love, support, company and all the moments together during

the past years and I look forward to the many years to come. And I want to thank my

parents and my grandparents for the unconditioned love and support, which is my source of

power through this journey.

xix

VITA

2015 B.S. (Electronic Engineering and Information Science), University of Sci-

ence and Technology of China (USTC).

2016 Research Intern, IBM T.J Watson Research Center.

2015–2017 Teaching Assistant, Systems and Information Engineering Department,

University of Virginia.

2017–2018 Research Assistant, Computer Science Department, University of Virginia.

2018 Research Intern, JD.COM Silicon Valley Research Center.

2018–2019 Teaching Assistant, Computer Science Department, University of Virginia.

2019 Machine Learning Intern, Twitter.

2019–2020 Research Assistant, Computer Science Department, UCLA.

2020 Ph.D. Candidate in Computer Science, UCLA.

2020 Research Intern, Microsoft.

2020–present Teaching Assistant, Computer Science Department, UCLA.

PUBLICATIONS

Dongruo Zhou*, Jinghui Chen*, Yuan Cao*, Yiqi Tang, Ziyan Yang, Quanquan Gu, On

xx

the Convergence of Adaptive Gradient Methods for Nonconvex Optimization, NeurIPS 2020

Workshop on Optimization for Machine Learning.

Jinghui Chen, Quanquan Gu, RayS: A Ray Searching Method for Hard-label Adversarial

Attack, in Proc of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD), San Diego, CA, USA 2020.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao and Quanquan Gu,

Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural

Networks, in Proc. of 29th International Joint Conference on Artificial Intelligence (IJCAI),

Yokohama, Japan , 2020.

Xiao Zhang*, Jinghui Chen*, Quanquan Gu and David Evans, Understanding the Intrin-

sic Robustness of Image Distributions using Conditional Generative Models, In Proc of the

23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Palermo,

Sicily, Italy, 2020.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, Quanquan Gu, A Frank-Wolfe Framework for

Efficient and Effective Adversarial Attacks, in Proc. of the 34th Conference on Artificial

Intelligence (AAAI), New York, New York, USA, 2020.

Pan Xu*, Jinghui Chen*, Quanquan Gu, Global Convergence of Langevin Dynamics Based

Algorithms for Nonconvex Optimization, In Proc. of the 32nd Advances in Neural Informa-

tion Processing Systems (NeurIPS), Montréal, Canada, 2018.

Jinghui Chen, Pan Xu, Lingxiao Wang, Jian Ma, Quanquan Gu, Covariate Adjusted Pre-

cision Matrix Estimation via Nonconvex Optimization, in Proc. of the 35th International

Conference on Machine Learning (ICML), Stockholm, Sweden, 2018.

Jinghui Chen, Quanquan Gu, Fast Newton Hard Thresholding Pursuit for Sparsity Con-

strained Nonconvex Optimization, in Proc of the 23rd ACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining (KDD), Halifax, Nova Scotia, Canada, 2017.

Jinghui Chen, Saket Sathe, Charu Aggarwal, Deepak Turaga, Outlier Detection with

Autoencoder Ensembles, in Proc of 2017 SIAM International Conference on Data Mining

xxi

(SDM), Houston, Texas, USA, 2017.

Jinghui Chen, Quanquan Gu, Stochastic Block Coordinate Gradient Descent for Sparsity

Constrained Optimization, in Proc of the 32nd International Conference on Uncertainty in

Artificial Intelligence (UAI), New York / New Jersey, USA, 2016.

Florian Baumann, Jinghui Chen, Karsten Vogt, Bodo Rosenhahn, Improved threshold Se-

lection by using Calibrated Probabilities for Random Forest Classifiers, 12th Conference on

Computer and Robot Vision (CRV), Halifax, Nova Scotia, Canada, 2015.

xxii

CHAPTER 1

Introduction

1.1 Overview

Deep Neural Networks (DNNs) have made many breakthroughs in different areas of artifi-

cial intelligence such as image classification [KSH12, HZRS16a], object detection [RHGS15,

Gir15], and speech recognition [MDH+12, BCS+16]. However, recent studies show that deep

neural networks can be vulnerable to adversarial examples [SZS+13, GSS15] – a tiny pertur-

bation on an image that is almost invisible to human eyes could mislead a well-trained image

classifier towards misclassification. Figure 1.1 demonstrates an adversarial example gener-

ated against GoogLeNet [SLJ+15]. Soon later this is proved to be not a coincidence: similar

phenomena have been observed in other problems such as speech recognition [CMV+16],

visual QA [XCL+17], image captioning [CZC+17], machine translation [CYZ+18], reinforce-

ment learning [PTL+18], and even on systems that operate in the physical world [KGB16].

Depending on how much information an adversary can access to, attacks can be classified

into three classes: white-box attack [SZS+13, GSS15], black-box attack [PMG16, CZS+17],

and hard-label attack [CLC+19, CSC+20, CJW19]. In the white-box setting, the adversary

has full access to the target model, including the model architecture, the model weights and

all the network outputs including both logits output and prediction labels. Therefore, it

is possible to perform back-propagation on the neural network in this setting. Specifically,

suppose fθ denotes the neural network parameterized by θ, ` denotes the loss function, for

some specific data example (x, y), we can generate its adversarial example by solving the

1

Figure 1.1: A demonstration of adversarial example generated against GoogLeNet [SLJ+15]

on ImageNet. By adding an imperceptibly small noise we manage to change the classification

result significantly [GSS15].

following maximization problem

max
δ∈∆

`(x + δ, y;θ),

where the adversarial perturbation δ needs to satisfy some certain constraint such that the

perturbation is small and invisible to human eyes, e.g., Linf norm ε-ball constraint. The

black-box setting, on the other hand, treats the major part of the neural network as a black

box, i.e., the adversary can only access the logit output and prediction labels of the target

model of a given query but not its internal configurations. This prevents people from using

back-propagation under this setting as the neural network weights are no longer available

here. The most practical setting for adversarial attacks would be the hard-label setting,

where the adversary is only allowed to access the final prediction label of a given query but

nothing else. It treats the entire neural network as a black box. Figure 1.2 provides an

illustration of the above mentioned three different settings for adversarial attacks. It is easy

to observe that from white-box attack to black-box attack, to hard-label attack, the attack

problem becomes harder and harder to solve due to more and more limited information

access.

On the other hand, people have been trying to defend against adversarial examples since

this phenomenon has been discovered. During the process, many heuristic defenses have been

2

Logits Logits

Prediction
Label

Invisible

Logits

InvisiblePrediction
Label

Prediction
Label

white-box setting black-box setting hard-label setting

Figure 1.2: An illustration of three different settings for adversarial attacks.

proposed and many of them later were shown to be not effective or can be broken by newly-

devised attacks. Among those defenses, one typical and effective way is through adversarial

training, meaning one can train on adversarial examples for defenses. Specifically, standard

adversarial training proposes to solve the following min-max optimization problem.

min
θ

1

n

n∑
i=1

max
δ∈∆

`(xi + δ, yi;θ).

While adversarial training indeed largely improves model robustness compared to standard

training, its practical robustness is still far from satisfactory at the current stage, and there

are actually little algorithmic improvements in terms of defenses during the recent years

since adversarial training is invented [RWK20a].

1.2 Challenges

Current adversarial machine learning research still faces numerous challenges. Here we pick

several typical challenges in evaluating and understanding adversarial robustness and discuss

them in detail.

1.2.1 Evaluating Adversarial Robustness

Machine learning models can be attacked in various settings, depending on how much in-

formation is available to the adversary. The commonly imposed yet the simplest setting is

3

the white-box attack, where the attacker can access every detail about the target model.

However, such a level of information availability to the target model is usually unrealistic

in practice. In most scenarios, the attacker can only query the target model for the logits

outputs (black-box attack) or even prediction labels alone (hard-label attack), which makes

the attack problem more practical but challenging. Most attack algorithms targeting such

settings suffer from high query complexities, i.e., a large number of queries are needed for

one successful attack, thereby limiting their practical applicability.

Therefore, the natural question to ask here is:

Can we develop more query-efficient adversarial attacks for evaluating model robustness

under practical settings?

Another important problem in evaluating model robustness is that the attack effective-

ness. Recent studies [CW17, ACW18] have shown that many defenses can hide or distort

the gradient to fail those gradient-based attacks such as PGD but do not actual improve

model robustness. Those “obfuscated-gradient” defenses can still be vulnerable to specialized

attacks. In other words, PGD attack can be non-effective for those “obfuscated-gradient”

defenses and therefore, it is important to ask:

Can we develop methods that can accurately evaluate model robustness and identify those

possible “falsely robust” models?

Two of my works (introduce in Chapters 2 and 3) aim at solving the above important

questions.

1.2.2 Understanding Adversarial Robustness

So far, the emerging new attacks always take an early lead to defense strategies [ACW18],

and the root causes of adversarial vulnerability still remain unclear. To mitigate the situation

and develop truly robust machine learning models, I am actively working on understanding

the rationale behind model robustness and making fundamental improvements upon it.

4

There are actually many questions that remain unanswered in the field of adversarial

robustness. Here we typically focused on the following topics:

Have we reach the fundamental limit of (the maximum achievable) adversarial robustness

on real data distributions?

This is a natural question to ask since we have reached a bottleneck in improving model

robustness. Witnessing such difficulties in constructing robust classifiers, a line of recent

works [GMF+18, FFF18a, MDM19, SHS+19] show that no adversarially robust classifiers

exist for an assumed metric probability space, as long as the perturbation strength is sublin-

ear in the typical norm of the inputs, by imposing different assumptions on the underlying

data distributions. Although such impossibility results seem disheartening to the goal of

building robust classifiers, it remains unknown to what extent real image distributions sat-

isfy the assumptions needed to obtain these results. In particular, we are interested in that,

on well-behaved data distributions, have we reached the fundamental limit of adversarial

robustness?

How does network architecture (network width) affect adversarial robustness?

One common belief in the community is that wider models usually enjoy better adversarial

robustness as it has larger model capacity. However, this belief has never come under scrutiny,

and we are still not crystal clear on whether network width can really help adversarial

robustness or not, as well as the underlying reasons behind it. Is it possible that the increased

network width only helps natural generalization but may hurt robustness? This remains a

question that needs to be carefully addressed.

Will smoother loss actually help efficient adversarial training?

Adversarial training methods, despite being effective in improving model robustness, are

notoriously inefficient to train. Recently, efficient robust training methods such as Fast

Adversarial Training [WRK20] is proposed, however, its performance still lacks stability and

has a gap between the current state-of-the-art methods. Fast Adversarial Training [WRK20]

5

works as performing randomized smoothing on the loss objectives and therefore, this intrigues

us to study whether smoother loss actually helps efficient robust training.

1.3 Contributions

Two of my works aim at improving query efficiency by eliminating unnecessary computations

in the attack algorithms: I proposed a new projection-free black-box attack, motivated by

the observation that the projection step in traditional attack algorithms leads to inefficient

updates. I developed a novel search-based hard-label attack algorithm, which discretizes

the continuous perturbation space and eliminates all unnecessary search directions via a

specially designed check step. Furthermore, the proposed attack makes a significant advance

over traditional attack algorithms by defining a novel robustness metric to detect falsely

robust models. Such models could resist traditional white-box or black-box attacks but

fail on specially adapted attacks [ACW18]. My study on evaluating model robustness also

contributes to the community: I built a leaderboard on Github 1 based on the new metric

to evaluate the robustness of the state-of-the-art models.

I also studied the crucial factors influencing model robustness such as data distribution,

model architecture and loss smoothness: I investigated the property of real image distribu-

tions, based on which I further derived the robustness upper bound that a general class of

models (e.g. neural networks) can achieve. My findings demonstrate a large gap between

the theoretical upper bound and the empirical model robustness on real image distributions,

which implies a large room for further robustness improvements of current models. I stud-

ied the relationship between neural network width and adversarial robustness, based on a

novel metric called perturbation stability. The empirical results showed that larger network

width leads to better natural accuracy but worse perturbation stability, which contradicts

the common belief of wider networks always helping model robustness. I further theoreti-

1https://github.com/uclaml/RayS

6

https://github.com/uclaml/RayS

cally justified the claim by leveraging recent results on neural tangent kernels [JHG18]. I also

studied the role of loss smoothness in robust training methods. In particular, I proposed a

new perspective that views the random initialization in Fast Adversarial Training [WRK20]

as performing randomized smoothing on the loss objectives. Based on this perspective, I pro-

posed a novel smoothing strategy, called backward smoothing, which significantly improves

both model robustness and stability over single-step robust training methods. These works

uncover intrinsic properties of adversarial robustness and provide insights on understanding

and enhancing model robustness.

1.4 Organization of the Dissertation

The rest of the dissertation is organized and presented as follows.

1. In Chapter 2, we introduce our attempt for effective and efficient adversarial attacks

under white-box and black-box settings. The developed new Frank-Wolfe based ad-

versarial attack framework benefits from its projection-free nature and the use of the

momentum mechanism. And it also comes with theoretical convergence guarantees.

2. In Chapter 3, we introduce a hard-label attack, RayS, which only relies on the hard-

label output of the target model. RayS attack is much more effective and efficient

compared with previous hard-label attacks on L∞ norm threat models. Moreover, it

could also be used as a sanity check for possible “falsely” robust models.

3. In Chapter 4, we aim to understand the fundamental limit of robust training on real

image distributions2. We proved a fundamental bound on intrinsic robustness and ob-

served a large gap between the theoretical intrinsic robust limit and the best robustness

achieved by state-of-the-art robust classifiers.

2This is joint work with Xiao Zhang, who equally contributes to the work described in this Chapter.

7

4. In Chapter 5, we study whether wider networks always lead to better model robustness

by understanding the relationship between network width and adversarial robustness3.

We present both empirical and theoretical studies to show that larger network width

may not always help model robustness.

5. In Chapter 6, we develop a new understanding towards Fast Adversarial Training,

by viewing random initialization as performing randomized smoothing. We also pro-

pose a new initialization strategy, backward smoothing, to significantly improves both

stability and model robustness over single-step robust training methods.

6. Finally, we conclude the dissertation by summarizing the contributions and elaborate

the potential research directions in Chapter 7.

3This is joint work with Boxi Wu, who equally contributes to the work described in this Chapter.

8

CHAPTER 2

A Frank-Wolfe Framework for Efficient and Effective

Adversarial Attacks

2.1 Introduction

Deep Neural Networks (DNNs) have made many breakthroughs in different areas of artifi-

cial intelligence such as image classification [KSH12, HZRS16a], object detection [RHGS15,

Gir15], and speech recognition [MDH+12, BCS+16]. However, recent studies show that deep

neural networks are vulnerable to adversarial examples [SZS+13, GSS15] – a tiny perturba-

tion on an image that is almost invisible to human eyes could mislead a well-trained image

classifier towards misclassification. Soon later this is proved to be not a coincidence in im-

age classification: similar phenomena have been observed in other problems such as speech

recognition [CMV+16], visual QA [XCL+17], image captioning [CZC+17], machine transla-

tion [CYZ+18], reinforcement learning [PTL+18], and even on systems that operate in the

physical world [KGB16].

Depending on how much information an adversary can access, adversarial attacks can be

classified into two classes: white-box attack [SZS+13, GSS15] and black-box attack [PMG16,

CZS+17]. In the white-box setting, the adversary has full access to the target model, while

in the black-box setting, the adversary can only access the input and output of the target

model but not its internal configurations.

Several optimization-based methods have been proposed for the white-box attack. One

of the first successful attempts is the FGSM method [GSS15], which works by linearizing

9

the network loss function. CW method [CW17] further improves the attack effectiveness

by designing a regularized loss function based on the logit-layer output of the network and

optimizing the loss by Adam [KB15]. Even though CW largely improves the effectiveness,

it requires a large number of gradient iterations to optimize the distortion of the adversarial

examples. Iterative gradient (steepest) descent based methods such as PGD [MMS+18]

and I-FGSM [KGB16] can achieve relatively high attack success rates within a moderate

number of iterations. However, they tend to generate adversarial examples near or upon the

boundary of the perturbation set, due to the projection nature of the algorithm. This leads

to large distortion in the resulting adversarial examples.

In the black-box attack, since one needs to make gradient estimations in such a setting,

a large number of queries are required to perform a successful black-box attack, especially

when the data dimension is high. A naive way to estimate gradient direction is to perform

finite difference approximation on each dimension [CZS+17]. This would take O(d) queries

to perform one full gradient estimation where d is the data dimension and therefore result

in inefficient attacks. For example, attacking a 299 × 299 × 3 ImageNet [DDS+09] image

may take hundreds of thousands of queries. This significantly limits the practical usefulness

of such algorithms since they can be easily defeated by limiting the number of queries that

an adversary can make to the target model. Although recent studies [IEA+18, IEM19] have

improved the query complexity by using Gaussian sensing vectors or gradient priors, due to

the inefficiencies of PGD framework, there is still room for improvements.

In this paper, we propose efficient and effective optimization-based adversarial attack

algorithms based on a variant of Frank-Wolfe algorithm. We show in theory that the proposed

attack algorithms are efficient with a guaranteed convergence rate. The empirical results also

verify the efficiency and effectiveness of our proposed algorithms.

In summary, we make the following main contributions:

1. We develop a new Frank-Wolfe based projection-free attack framework with a mo-

10

mentum mechanism. The framework contains an iterative first-order white-box attack

algorithm which admits the fast gradient sign method (FGSM) as a one-step special

case, and also a corresponding black-box attack algorithm that adopts zeroth-order

optimization with two sensing vector options (either from the Euclidean unit sphere

or from the standard Gaussian distribution).

2. We prove that the proposed white-box and black-box attack algorithms with mo-

mentum mechanism enjoy an O(1/
√
T) convergence rate in the nonconvex setting.

Compared with existing analyses of Frank-Wolfe for nonconvex optimization [LJ16,

RSPS16, BG18], we use momentum in our algorithm for both white-box and black-box

attacks and therefore our analysis is more involved. To the best of our knowledge,

the convergence of Frank-Wolfe with momentum in the nonconvex setting has never

been established before, which is of independent interest. We also show that the query

complexity of the proposed black-box attack algorithm is linear in data dimension d.

3. Our experiments on MNIST and ImageNet datasets show that (i) the proposed white-

box attack algorithm has better distortion and is more efficient than all the state-of-

the-art white-box attack baseline algorithms, and (ii) the proposed black-box attack

algorithm is highly query efficient and achieves the highest attack success rate among

other baselines.

2.2 Related Work

There is a large body of work on adversarial attacks. In this section, we review the most

relevant work in both white-box and black-box attack settings, as well as the non-convex

Frank-Wolfe optimization.

White-box Attacks: [SZS+13] proposed to use a box-constrained L-BFGS algorithm for

conducting white-box attacks. [GSS15] proposed the Fast Gradient Sign Method (FGSM)

11

based on linearization of the network as a simple alternative to L-BFGS. [KGB16] proposed

to iteratively perform the one-step FGSM [GSS15] algorithm and clips the adversarial point

back to the distortion limit after every iteration. It is called Basic Iterative Method (BIM)

or I-FGM in the literature. [MMS+18] showed that for the L∞ norm case, BIM/I-FGM

is almost1 equivalent to Projected Gradient Descent (PGD), which is a standard tool for

constrained optimization. [PMJ+16] proposed JSMA to greedily attack the most significant

pixel based on the Jacobian-based saliency map. [MDFF16] proposed attack methods by

projecting the data to the closest separating hyperplane. [CW17] introduced the so-called

CW attack by proposing multiple new loss functions for generating adversarial examples.

[CSZ+17] followed CW’s framework and use an Elastic Net term as the distortion penalty.

[DLP+18] proposed MI-FGSM to boost the attack performances using momentum.

Black-box Attacks: One popular family of black-box attacks [HT17, PMG16, PMG+17]

is based on the transferability of adversarial examples [LCLS18, BHLS17], where an adver-

sarial example generated for one DNN may be reused to attack other neural networks. This

allows the adversary to construct a substitute model that mimics the targeted DNN, and

then attack the constructed substitute model using white-box attack methods. However,

this type of attack algorithm usually suffers from large distortions and relatively low success

rates [CZS+17]. To address this issue, [CZS+17] proposed the Zeroth-Order Optimization

(ZOO) algorithm that extends the CW attack to the black-box setting and uses a zeroth-

order optimization approach to conduct the attack. Although ZOO achieves much higher

attack success rates than the substitute model-based black-box attacks, it suffers from a poor

query complexity since its naive implementation requires estimating the gradients of all the

coordinates (pixels) of the image. To improve its query complexity, several approaches have

been proposed. For example, [TTC+18] introduces an adaptive random gradient estima-

tion algorithm and a well-trained Autoencoder to speed up the attack process. [IEA+18]

1Standard PGD in the optimization literature uses the exact gradient to perform the update step while
PGD [MMS+18] is actually the steepest descent [BV04] with respect to L∞ norm.

12

and [LCLS18] improved ZOO’s query complexity by using Natural Evolutionary Strategies

(NES) [WSG+14, SHC+17] and active learning, respectively. [IEM19] further improve the

performance by considering the gradient priors. [LLW+19] proposed to learn the distri-

butions of adversarial examples to achieve better black-box attack performance. [MAS19]

re-formulated the black-box attack problem as a discrete surrogate optimization problem

and used a combinatorial search algorithm to improve the query efficiency.

Non-convex Frank-Wolfe Algorithms: The Frank-Wolfe algorithm [FW56], also known

as the conditional gradient method, is an iterative optimization method for general con-

strained optimization problem. [Jag13] revisited the Frank-Wolfe algorithm in 2013 and

provided a stronger and more general convergence analysis in the convex setting. [YZS17]

proved the first convergence rate for the Frank-Wolfe type algorithm in the non-convex

setting. [LJ16] provided the convergence guarantee for the Frank-Wolfe algorithm in the

non-convex setting with adaptive step sizes. [RSPS16] further studied the convergence rate

of non-convex stochastic Frank-Wolfe algorithm in the finite-sum optimization setting. Very

recently, [SJ17] proposed to use Frank-Wolfe for distributionally robust training [SND18].

[BG18] proved the convergence rate for zeroth-order nonconvex Frank-Wolfe algorithm using

one-side finite difference gradient estimator with standard Gaussian sensing vectors.

2.3 Methodology

2.3.1 Notation

Throughout the paper, scalars are denoted by lower case letters, vectors by lower case bold

face letters and sets by calligraphy upper cae letters. For a vector x ∈ Rd, we denote

the Lp norm of x by ‖x‖p = (
∑d

i=1 x
p
i)

1/p. Specially, for p = ∞, the L∞ norm of x by

‖x‖∞ = maxdi=1 |θi|. We denote PX (x) as the projection operation of projecting vector x

into the set X .

13

2.3.2 Problem Formulation

According to the attack purposes, attacks can be divided into two categories: untargeted

attack and targeted attack.

In particular, the untargeted attack aims to turn the prediction into any incorrect label,

while the targeted attack, requires misleading the classifier to a specific target class. In this

work, we focus on the strictly harder targeted attack setting [CW17, IEA+18]. It is worth

noting that our proposed algorithm can be extended to untargeted attacks straightforwardly.

To be more specific, let us define `(x, y) as the classification loss function of the targeted DNN

with an input x ∈ Rd and a corresponding label y. For targeted attacks, we aim to minimize

`(x, ytar) to learn an adversarial example that will be misclassified to the target class ytar.

In the rest of this paper, let f(x) = `(x, ytar) be the attack loss function for simplicity, and

the corresponding targeted attack problem 2 can be formulated as the following optimization

problem:

min
x
f(x) subject to ‖x− xori‖p ≤ ε. (2.3.1)

Evidently, the constraint set X := {x | ‖x−xori‖p ≤ ε} is a bounded convex set when p ≥ 1.

Note that even though we mainly focus on the most popular L∞ attack case in this paper,

our proposed methods can easily extend to the general p ≥ 1 case.

2.3.3 Frank-Wolfe vs. PGD

Although PGD can achieve a relatively high attack success rate within moderate iterates,

the multi-step update formula requires an additional projection step at each iteration to keep

the iterates within the constraint set. This tends to cause the generated adversarial examples

near or upon the boundary of the constraint set, and leads to relatively large distortion. This

motivates us to use Frank-Wolfe based optimization algorithm [FW56]. Different from PGD,

2Note that there is usually an additional constraint on the input variable x, e.g., x ∈ [0, 1]n for normalized
image inputs.

14

Frank-Wolfe algorithm is projection-free as it calls a Linear Minimization Oracle (LMO) over

the constraint set X at each iteration, i.e.,

LMO ∈ argmin
x∈X

〈x,∇f(xt)〉.

The LMO can be seen as the minimization of the first-order Taylor expansion of f(·) at point

xt:

min
x∈X

f(xt) + 〈x− xt,∇f(xt)〉.

By calling LMO, Frank Wolfe solves the linear problem in X and then performs weighted

average with the previous iterate to obtain the final update formula.

Comparing the two methods, PGD is a more “aggressive” approach. It first takes a step

towards the negative gradient direction while ignoring the constraint to get a new point

(often outside the constraint set), and then correct the new point by projecting it back into

the constraint set. In sharp contrast, Frank-Wolfe is more “conservative” as it always keeps

the iterates within the constraint set. Therefore, it avoids projection and can lead to better

distortion.

2.3.4 Frank-Wolfe White-box Attacks

The proposed Frank-Wolfe based white-box attack algorithm is shown in Algorithm 1, which

is built upon the classic Frank-Wolfe algorithm. The key difference between Algorithm 1

and the classic Frank-Wolfe algorithm is in Line 4, where an additional momentum term mt

is introduced. The momentum term mt will help stabilize the LMO direction and leads to

empirically accelerated convergence of Algorithm 1.

The LMO solution itself can be expensive to obtain in general. Fortunately, for the

constraint set X defined in (2.3.1), the corresponding LMO has a closed-form solution. Here

15

Algorithm 1 Frank-Wolfe White-box Attack Algorithm

1: input: number of iterations T , step sizes {γt};

2: x0 = xori,m−1 = ∇f(x0)

3: for t = 0, . . . , T − 1 do

4: mt = β ·mt−1 + (1− β) · ∇f(xt)

5: vt = argminx∈X 〈x,mt〉 // LMO

6: dt = vt − xt

7: xt+1 = xt + γtdt

8: end for

9: output: xT

we provide the closed-form solution of LMO (Line 5 in Algorithm 1) for L∞ norm case 3:

vt = −ε · sign(mt) + xori.

Note that if we write down the full update formula at each iteration in Algorithm 1, it

becomes

xt+1 = xt − γtε · sign(mt)− γt(xt − xori). (2.3.2)

Intuitively speaking, the term −γt(xt − xori) enforces xt to be close to xori for all t =

1, . . . , T , which encourages the adversarial example to have a small distortion. This is the

key advantage of Algorithm 1.

Comparison with FGSM: When T = 1, substituting the above LMO solutions into

Algorithm 1 yields the final update of x1 = x0− γtε · sign(∇f(x0)), which reduces to FGSM

4 when γt = 1. Therefore, our proposed Frank-Wolfe white-box attack also includes FGSM

as a one-step special instance.

3The derivation can be found in the Appendix.

4The extra clipping operation in FGSM is to project to the additional box constraint for image classifi-
cation task. We will also need this clipping operation at the end of each iteration for specific tasks such as
image classification.

16

2.3.5 Frank-Wolfe Black-box Attacks

Next we consider the black-box setting, where we cannot perform back-propagation to calcu-

late the gradient of the loss function anymore. Instead, we can only query the DNN system’s

outputs with specific inputs. To clarify, here the output refers to the logit layer’s output

(confidence scores for classification), not the final prediction label.

We propose a zeroth-order Frank-Wolfe based algorithm to solve this problem in Algo-

rithm 2. The key difference between our proposed black-box attack and white-box attack is

one extra gradient estimation step, which is presented in Line 4 in Algorithm 2. Also, the

momentum term mt is now defined as the exponential average of previous gradient estima-

tions {qt}T−1
t=0 . This will help reduce the variance in zeroth-order gradient estimation and

empirically accelerate the convergence of Algorithm 2.

Algorithm 2 Frank-Wolfe Black-box Attack Algorithm

1: input: number of iterations T , step sizes {γt}, sample size for gradient estimation b,

sampling parameter δ;

2: x0 = xori, m−1 = GRAD EST(x0, b, δ)

3: for t = 0, . . . , T − 1 do

4: qt = GRAD EST(xt, b, δ) // Alg 3

5: mt = β ·mt−1 + (1− β) · qt

6: vt = argminv∈X 〈v,mt〉

7: dt = vt − xt

8: xt+1 = xt + γtdt

9: end for

10: output: xT

As in many other zeroth-order optimization algorithms [Sha17, FKM05], Algorithm 3 uses

symmetric finite differences to estimate the gradient and therefore, gets rid of the dependence

on back-propagation in white-box setting. Different from [CZS+17], here we do not utilize

17

natural basis as our sensing vectors, instead, we provide two options: one is to use vectors

uniformly sampled from Euclidean unit sphere and the other is to use vectors uniformly

sampled from standard multivariate Gaussian distribution. This will greatly improve the

gradient estimation efficiency comparing to sensing with natural bases as such option will

only be able to estimate one coordinate of the gradient vector per query. In practice, both

options here provide us competitive experimental results. It is worth noting that NES method

[WSG+14] with antithetic sampling [SHC+17] used in [IEA+18] yields similar formula as our

option II in Algorithm 3.

Algorithm 3 GRAD EST(x, b, δ)

1: q = 0

2: for i = 1, . . . , b do

3: option I: Sample ui uniformly from the Euclidean unit sphere with ‖ui‖2 = 1

q = q + d
2δb

(
f(x + δui)− f(x− δui)

)
ui

4: option II: Sample ui uniformly from the standard Gaussian distribution N(0, I)

q = q + 1
2δb

(
f(x + δui)− f(x− δui)

)
ui

5: end for

6: return q

2.4 Main Theory

In this section, we establish the convergence guarantees for our proposed Frank-Wolfe ad-

versarial attack algorithms described in Section 3.3. The omitted proofs can be found in

the Appendix. First, we introduce the convergence criterion for our Frank-Wolfe adversarial

attack framework.

18

2.4.1 Convergence Criterion

The loss function for common DNN models are generally nonconvex. In addition, (2.3.1)

is a constrained optimization. For such general nonconvex constrained optimization, we

typically adopt the Frank-Wolfe gap as the convergence criterion (since gradient norm of f

is no longer a proper criterion for constrained optimization problems):

g(xt) = max
x∈X
〈x− xt,−∇f(xt)〉.

Note that we always have g(xt) ≥ 0 and xt is a stationary point for the constrained opti-

mization problem if and only if g(xt) = 0, which makes g(xt) a perfect convergence criterion

for Frank-Wolfe based algorithms.

2.4.2 Convergence Guarantee for Frank-Wolfe White-box Attack

Before we are going to provide the convergence guarantee of the Frank-Wolfe white-box

attack (Algorithm 1), we introduce the following assumptions that are essential to the con-

vergence analysis.

Assumption 2.4.1. Function f(·) is L-smooth with respect to x, i.e., for any x,x′, it holds

that

f(x′) ≤ f(x) +∇f(x)>(x′ − x) +
L

2
‖x′ − x‖2

2.

Assumption 2.4.1 is a standard assumption in nonconvex optimization, and is also adopted

in other Frank-Wolfe literature such as [LJ16, RSPS16]. Note that even though the smooth-

ness assumption does not hold for general DNN models, a recent study [STIM18] shows that

batch normalization that is used in many modern DNNs such as the Inception V3 model, ac-

tually makes the optimization landscape significantly smoother 5. In addition, recent studies

5The original argument in [STIM18] refers to the smoothness with respect to each layer’s parameters.
Note that the first layer’s parameters are in the mirror position (in terms of backpropagation) as the network
inputs. Therefore, the argument in [STIM18] can also be applied here with respect to the network inputs.

19

[AZLS19, DLL+19, ZCZG19] also showed that the loss function of overparameterized deep

neural networks is semi-smooth. This justifies the validity of Assumption 2.4.1.

Assumption 2.4.2. Set X is bounded with diameter D, i.e., ‖x−x′‖2 ≤ D for all x,x′ ∈ X .

Assumption 2.4.2 implies that the input space is bounded. For common tasks such as

image classification, given the fact that images have bounded pixel range and ε is a small

constant, this assumption trivially holds. Given the above assumptions, the following lemma

shows that the momentum term mt will not deviate from the gradient direction significantly.

Lemma 2.4.3. Under Assumptions 2.4.1 and 2.4.2, for mt in Algorithm 1, it holds that

‖∇f(xt)−mt‖2 ≤
γβLD

1− β
.

Now we present the theorem, which characterizes the convergence rate of our proposed

Frank-Wolfe white-box adversarial attack algorithm presented in Algorithm 1.

Theorem 2.4.4. Under Assumptions 2.4.1 and 2.4.2, let

γt = γ =
√

2(f(x0)− f(x∗))/(CβLD2T), the output of Algorithm 1 satisfies

g̃T ≤
√

2CβLD2(f(x0)− f(x∗))

T
,

where g̃T = min1≤k≤T g(xk), x∗ is the optimal solution to (2.3.1) and Cβ = (1 + β)/(1− β).

Remark 2.4.5. Theorem 2.4.4 suggests that our proposed Frank-Wolfe white-box attack

algorithm achieves a O(1/
√
T) rate of convergence. Unlike previous work [LJ16] which

focuses on the convergence rate of the classic Frank-Wolfe method, our analysis shows the

convergence rate of the Frank-Wolfe method with momentum mechanism.

2.4.3 Convergence Guarantee for Frank-Wolfe Black-box Attack

Next we analyze the convergence of our proposed Frank-Wolfe black-box adversarial attack

algorithm presented in Algorithm 2.

20

In order to prove the convergence of our proposed Frank-Wolfe black-box attack algo-

rithm, we need the following additional assumption that ‖∇f(0)‖2 is bounded.

Assumption 2.4.6. Gradient of f(·) at zero point ∇f(0) satisfies maxy ‖∇f(0)‖2 ≤ G.

Following the analysis in [Sha17], let fδ(x) = Eu[f(x+δu)], which is the smoothed version

of f(x). This smoothed function value plays a central role in our theoretical analysis, since it

bridges the finite difference gradient approximation with the actual gradient. The following

lemma shows this relationship.

Lemma 2.4.7. For any x and the gradient estimator q of ∇f(x) in Algorithm 3, its expec-

tation and variance satisfy

E[q] = ∇fδ(x), E‖q− E[q]‖2
2 ≤

1

b

(
2d(G+ LD)2 +

1

2
δ2L2d2

)
.

And also we have

E‖∇f(x)− q‖2 ≤
δLd

2
+

2
√
d(G+ LD) + δLd√

2b
.

Now we are going to present the theorem, which characterizes the convergence rate of

Algorithm 2.

Theorem 2.4.8. Under Assumptions 2.4.1, 2.4.2 and 2.4.6, let

γt = γ =
√

(f(x0)− f(x∗))/(CβLD2T), b = Td and δ =
√

1/(Td2), the output of Algorithm

2 satisfies

E[g̃T] ≤ D√
T

(√
2CβL(f(x0)− f(x∗)) + Cβ(L+G+ LD)

)
,

where g̃T = min1≤k≤T g(xk), the expectation of g̃T is over the randomness of the gradient

estimator, x∗ is the optimal solution to (2.3.1) and Cβ = (1 + β)/(1− β).

Remark 2.4.9. Theorem 2.4.8 suggests that Algorithm 2 also enjoys a O(1/
√
T) rate of

convergence. Note that [BG18] proves the convergence rate for the classic zeroth-order Frank-

Wolfe algorithm. Our result is different in several aspects. First, we prove the convergence

21

rate of zeroth-order Frank-Wolfe with momentum. Second, we use the symmetric finite

difference gradient estimator with two types of sensing vectors while they [BG18] use one-

side finite difference gradient estimator with Gaussian sensing vectors. In terms of query

complexity, the total number of queries needed in Algorithm 2 is Tb = T 2d, which is linear

in the data dimension d. In fact, in the experiment part, we observe that this number can

be substantially smaller than d, e.g., b = 25.

2.5 Experiments

In this section, we present the experimental results for our proposed Frank-Wolfe attack

framework against other state-of-the-art adversarial attack algorithms in both white-box

and black-box settings. All of our experiments are conducted on Amazon AWS p3.2xlarge

servers which come with Intel Xeon E5 CPU and one NVIDIA Tesla V100 GPU (16G RAM).

All experiments are implemented in Tensorflow platform version 1.10.0 within Python 3.6.4.

2.5.1 Evaluation Setup

We compare the performance of all attack algorithms by evaluating on both MNIST [LeC98]

and ImageNet [DDS+09] datasets. For the MNIST dataset, we attack a pre-trained 6-layer

CNN: 4 convolutional layers followed by 2 dense layers with max-pooling and Relu activations

applied after each convolutional layer. The pre-trained model achieves 99.3% accuracy on

the MNIST test set. For ImageNet experiments, we attack a pre-trained Inception V3 model

[SVI+16]. The pre-trained Inception V3 model is reported to have a 78.0% top-1 accuracy

and a 93.9% top-5 accuracy. For the MNIST dataset, we randomly choose 1000 images

from its test set that are verified to be correctly classified by the pre-trained model and

also randomly choose a target class for each image. Similarly, for the ImageNet dataset, we

randomly choose 250 images from its validation set as our attack examples. For our proposed

black-box attack, we test both options in Algorithm 3. We performed a grid search to tune

22

the hyper-parameters for all algorithms to ensure a fair comparison. A detailed description

of hyperparameter tuning and parameter settings can be found in the Appendix.

2.5.2 Baseline Methods

We compare the proposed algorithms with several state-of-the-art baseline algorithms. Specif-

ically, we compare the proposed white-box attack algorithm with (i) FGSM [GSS15] (ii) PGD

[MMS+18] (normalized steepest descent6) (iii) MI-FGSM [DLP+18]. We compare the pro-

posed black-box attack algorithm with (i) NES-PGD attack [IEA+18] and (ii) Bandit attack

[IEM19]. We did not report the comparison with ZOO [CZS+17] here because it consis-

tently underperforms NES-PGD and Bandit attacks according to our experiments and prior

work. We also compare with [LLW+19] on attacking the robust model trained by adversarial

training.

2.5.3 White-box Attack Experiments

In this subsection, we present the white-box attack experiments on both MNIST and Ima-

geNet datasets. We choose ε = 0.3 for MNIST dataset and ε = 0.05 for ImageNet dataset.

For comparison, we report the attack success rate, the average number of iterations to com-

plete the attack, as well as average distortion for each method.

Tables 2.1 and 2.2 present our experimental results for the white-box attack experiments.

For experiments on both datasets, while FGSM only needs 1 gradient update per attack, it

only achieves 21.5% attack success rate on MNIST and 1.2% attack success rate on ImageNet

in the targeted attack setting. All the other methods achieve 100% attack success rate.

PGD needs on average 6.2 and 8.7 gradient iterations per attack on MNIST and ImageNet

respectively. MI-FGSM improves it to around 4.0 and 5.0 iterations per attack on MNIST

6standard PGD will need large step size to go anywhere since the gradient around the true example is
relatively small. On the other hand, the large step size will cause the algorithm go out of the constraint set
quickly and basically stop moving since then because of the projection step.

23

and ImageNet. However, the distortion of both PGD and MI-FGSM is very close to the

perturbation limit ε, which indicates that their generated adversarial examples are near or

upon the boundary of the constraint set. On the other hand, our proposed Frank-Wolfe

white-box attack algorithm achieves not only the smallest average number of iterations per

attack, but also the smallest distortion among the baselines. This suggests the advantage of

Frank-Wolfe based projection-free algorithms for the white-box attack.

Table 2.1: Comparison of targeted L∞ norm based white-box attacks on MNIST dataset

with ε = 0.3.

Methods ASR(%) # Iterations Distortion

FGSM 21.5 - 0.300

PGD 100.0 6.2 0.277

MI-FGSM 100.0 4.0 0.279

FW-white 100.0 3.3 0.256

Table 2.2: Comparison of targeted L∞ norm based white-box attacks on ImageNet dataset

with ε = 0.05.

Methods ASR(%) # Iterations Distortion

FGSM 1.2 - 0.050

PGD 100.0 8.7 0.049

MI-FGSM 100.0 5.0 0.049

FW-white 100.0 4.8 0.019

24

Table 2.3: Comparison of targeted L∞ norm based black-box attacks on MNIST and Im-

ageNet datasets in terms of attack success rate, average time and the average number of

queries (QUERIES: for all images including both successfully and unsuccessfully attacked

ones; QUERIES(SUCC): for successfully attacked ones only) needed per image.

Methods
MNIST (ε = 0.3) ImageNet (ε = 0.05)

ASR(%) Time(s) Queries Queries(succ) ASR(%) Time(s) Queries Queries(succ)

NES-PGD 96.8 0.2 5349.0 3871.3 88.0 85.1 26302.8 23064.5

Bandit 86.1 4.8 8688.9 2019.7 72.0 148.7 27172.5 18295.2

FW (Sphere) 99.9 0.1 1132.6 1083.6 97.2 62.1 15424.0 14430.8

FW (Gaussian) 99.9 0.1 1144.4 1095.4 98.4 50.6 15099.4 14532.3

2.5.4 Black-box Attack Experiments

In this subsection, we present the black-box attack experiments on both MNIST and Ima-

geNet datasets. The maximum query limit is set to be 50, 000 per attack. We choose ε = 0.3

for MNIST dataset and ε = 0.05 for ImageNet dataset. For comparison, we report the at-

tack success rate, average attack time, average number of queries needed, as well as average

number of queries needed on successfully attacked samples for each method.

Table 2.3 presents our experimental results for targeted black-box attacks on both Im-

ageNet and MNIST datasets. We can see that on MNIST, NES-PGD method achieves a

relatively high attack success rate, but still takes quite a lot of queries per (successful) at-

tack. Bandit method improves the query complexity for successfully attacked samples but

has a lower attack success rate in this setting and takes a longer time to complete the attack.

In sharp contrast, our proposed Frank-Wolfe black-box attack algorithms (both sphere and

Gaussian sensing vector options) achieve the highest success rate in the targeted black-box

attack setting while greatly improve the query complexity by around 50% over the best base-

line. On ImageNet, similar patterns can be observed: our proposed Frank-Wolfe black-box

attack algorithms achieve the highest attack success rate and further significantly improve

25

the query efficiency against the baselines. This suggests the advantage of Frank-Wolfe based

projection-free algorithms for the black-box attack.

To provide more intuitive demonstrations, we also plot the attack success rate against the

number of queries for our black-box experiments. Figure 2.1 shows the plots of the attack

success rate against the number of queries for different algorithms on MNIST and ImageNet

datasets respectively. As we can see from the plots, The bandit attack achieves better query

efficiency for easy-to-attack examples (require fewer queries to attack) compared with NES-

PGD or even FW at the early stages, but falls behind even to NES-PGD on hard-to-attack

examples (require more queries to attack). We conjecture that in the targeted attack setting,

the gradient/data priors are not as accurate as in the untargeted attack setting, which makes

the Bandit attack less effective especially on hard-to-attack examples. On the other hand,

our proposed Frank-Wolfe black-box attack algorithms achieve the highest attack success rate

and the best efficiency (least queries needed for achieving the same success rate). This again

confirms the advantage of Frank-Wolfe based projection-free algorithms for the black-box

attack.

0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

1.0

NES-PGD
Bandit
FW (Sphere)
FW (Gaussian)

(a) MNIST

0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

1.0

NES-PGD
Bandit
FW (Sphere)
FW (Gaussian)

(b) ImageNet

Figure 2.1: Attack success rate against the number of queries plot for targeted black-box

attacks on MNIST and ImageNet datasets.

26

2.5.5 Experiments on Adversarially Trained Model

In this subsection, we further present the white-box and black-box attack experiments on the

more challenging robust CIFAR10 model. Specifically, we apply the proposed Frank-Wolfe

white-box and black-box attack algorithms to adversarially trained WideResNet model using

adversarial training [MMS+18]. Following [MMS+18], we choose ε = 8/255. For the black-

box case, the maximum query limit is set to be 20, 000 per attack. Table 2.4 presents our

experimental results for targeted white-box attacks on robust CIFAR10 model. Specifically,

in the white-box case, the proposed Frank-Wolfe attack achieves 24.3% attack success rate

7 with the smallest L∞ distortion, while PGD and MI-FGSM can only achieve lower attack

success rates and also larger distortions. Table 2.5 presents our experimental results for

targeted black-box attacks on robust CIFAR10 model. In black-box setting, our algorithm

achieves 19.0% attack success rate with the smallest overall queries (also a relatively small

number of queries for successful attempts) while NES needs a larger number of queries

but achieves only 9.4% attack success rate. Bandit improves the number of average queries

needed for successful attempts, yet its attack success rate is only 9.6%. The Nattack achieves

an attack success rate slightly better than Frank-Wolfe but requires the largest number of

queries for successful attempts.

2.6 Conclusions and Future Work

In this work, we propose a Frank-Wolfe framework for efficient and effective adversarial

attacks. Our proposed white-box and black-box attack algorithms enjoy an O(1/
√
T) rate

of convergence, and the query complexity of the proposed black-box attack algorithm is

linear in data dimension d. Finally, our empirical study on attacking both the ImageNet

dataset and the MNIST dataset yields the best distortion in the white-box setting and the

highest attack success rate/query complexity in the black-box setting.

7note that it is the targeted attack, so the number is much lower than the original paper of [MMS+18]

27

Table 2.4: Comparison of targeted L∞ norm based while-box attacks on adversarially trained

WideResNet on CIFAR10 with ε = 8/255.

Methods ASR(%) # Iterations Distortion

FGSM 21.5 - 8.00

PGD 24.0 15.6 7.49

MI-FGSM 24.1 15.8 7.60

FW-white 24.3 15.8 7.48

Table 2.5: Comparison of targeted L∞ norm based black-box attacks on adversarially trained

WideResNet on CIFAR10 with ε = 8/255 in terms of attack success rate and the average

number of queries (QUERIES: for all images including both successfully and unsuccessfully

attacked ones; QUERIES(SUCC): for successfully attacked ones only) needed per image.

Methods ASR(%) # Queries Queries(SUCC)

NES-PGD 9.4 18541.1 4480.1

Bandit 9.6 18174.2 981.5

Nattack 20.0 17135.0 5675.0

FW (Opt I) 19.0 16735.2 2816.8

FW (Opt II) 16.8 16748.2 2703.2

It would also be interesting to see whether the performance of our Frank-Wolfe adver-

sarial framework can be further improved by incorporating the idea of gradient/data priors

[IEM19]. We leave it as future work.

28

CHAPTER 3

RayS: A Ray Searching Method for Hard-label

Adversarial Attack

3.1 Introduction

Deep neural networks (DNNs) have achieved remarkable success on many machine learning

tasks such as computer vision [HZRS16a, SHK12], and speech recognition [HDY+12] in the

last decade. Despite the great success, recent studies have shown that DNNs are vulnerable to

adversarial examples, i.e., even imperceptible (specially designed not random) perturbations

could cause the state-of-the-art classifiers to make wrong predictions [SZS+13, GSS15]. This

intriguing phenomenon has soon led to an arms race between adversarial attacks [CW17,

ACW18, CZYG20] that are trying to break the DNN models with such small perturbations

and adversarial defenses methods [PMW+16, MMS+18, WMB+19, ZYJ+19, WZY+20] that

tries to defend against existing attacks. During this arm race, many heuristic defenses

[PMW+16, GRCVDM18, XWZ+18, SKN+18, MLW+18, SKC18, DAL+18] are later proved

to be not effective under harder attacks. One exception is adversarial training [GSS15,

MMS+18], which was demonstrated as an effective defense approach.

A large body of adversarial attacks has been proposed during this arm race. According

to the different amounts of information the attacker could access, adversarial attacks can be

generally divided into three categories: white-box attacks, black-box attacks, and hard-label

attacks. White-box attacks [MMS+18, CW17] refer to the case where the attacker has access

to all information regarding the target model, including the model weights, structures, pa-

29

rameters, and possible defense mechanisms. Since white-box attackers could access all model

details, they can efficiently perform back-propagation on the target model and compute gra-

dients. In black-box attacks, the attacker only has access to the queried soft label output

(logits or probability distribution of different classes) of the target model, and the other parts

are treated as a black-box. The black-box setting is much more practical compared with the

white-box case, however, in such a setting, the attacker cannot perform back-propagation

and direct gradient computation. Therefore, many turn to transfer the gradient from a

known model [PMG16] or estimate the true gradient via zeroth-order optimization methods

[IEA+18, IEM19, CZYG20, ADO20].

Hard-label attacks, also known as decision-based attacks, on the other hand, only allow

the attacker to query the target model and get hard-label output (prediction label). Ob-

viously, the hard-label setting is the most challenging one, yet it is also the most practical

one, as in reality, there is little chance that the attacker could know all the information

about the target model in advance or get the probability prediction of all classes. The

hard-label-only access also means that the attacker cannot tell the subtle changes in the

target model’s output when feeding a slightly perturbed input sample (assuming this slight

perturbation will not change the model prediction). Therefore, the attacker can only find

informative clues around the decision boundary of the target model where tiny perturbations

could cause the model to have different prediction labels. Previous works [BRB18, CLC+19,

CSC+20, CJW19] mostly follow this idea to tackle the hard-label adversarial attack prob-

lem. However, [BRB18, CLC+19, CSC+20, CJW19] are all originally proposed for L2 norm

threat model while L∞ norm threat models [MMS+18, ZYJ+19, KW20, ZW19, ZX20] are

currently the most popular and widely used. Even though [CLC+19, CSC+20, CJW19] pro-

vide extensions to L∞ norm case, none of them has been optimized for the L∞ norm case

and consequently, their attack performance falls largely behind traditional L∞ norm based

white-box and black-box attacks, making them inapplicable in real world scenarios. This

leads to a natural question that,

30

Can we design a hard-label attack that could greatly improve upon previous hard-label

attacks and provide practical attacks for the most widely used L∞ norm threat model?

In this paper, we answer this question affirmatively. We summarize our main contribu-

tions as follows

• We propose the Ray Searching attack, which only relies on the hard-label output of

the target model. We show that the proposed hard-label attack is much more effective

and efficient than previous hard-label attacks in the L∞ norm threat model.

• Unlike previous works, most of which solve the hard-label attack problem via zeroth-

order optimization methods, we reformulate the continuous optimization problem of

finding the closest decision boundary into a discrete one and directly search for the

closest decision boundary along a discrete set of ray directions. A fast check step is also

utilized to skip unnecessary searches. This significantly saves the number of queries

needed for the hard-label attack. Our proposed attack is also free of hyperparameter

tuning such as step size or finite difference constant, making itself very stable and easy

to apply.

• Moreover, our proposed RayS attack can also be used as a strong attack to detect

possible “falsely robust” models. By evaluating several recently proposed defenses

that claim to achieve the state-of-the-art robust accuracy with RayS attack, we show

that the current white-box/black-box attacks can be deceived and give a false sense

of security. Specifically, the RayS attack significantly decreases the robust accuracy of

the most popular PGD attack on several robust models and the difference could be as

large as 28%. We believe that our proposed RayS attack could help identify falsely

robust models that deceive current white-box/black-box attacks.

Notation. For a d-dimensional vector x = [x1, ..., xd]
>, we use ‖x‖0 =

∑
i 1{xi 6= 0} to

denote its `0-norm, use ‖x‖2 = (
∑d

i=1 |xi|2)1/2 to denote its `2-norm and use ‖x‖∞ = maxi |xi|

31

to denote its `∞-norm, where 1(·) denotes the indicator function.

3.2 Related Work

There is a large body of works on evaluating model robustness and generating adversarial

examples. In this section, we review the most relevant works with ours.

White-box attacks: [SZS+13] first brought up the concept of adversarial examples and

adopt the L-BFGS algorithm for attacks. [GSS15] proposed the Fast Gradient Sign Method

(FGSM) method via linearizing the network loss function. [KGB16] proposed to iteratively

perform FGSM and conduct projection afterward, which is equivalent to Projected Gradi-

ent Descent (PGD) [MMS+18]. [PMJ+16] proposed JSMA method based on the Jacobian

saliency map and [MDFF16] proposed DeepFool attack by projecting the data to the closest

separating hyper-plane. [CW17] introduced the CW attack with a margin-based loss func-

tion and show that defensive distillation [PMW+16] is not truly robust. [CZYG20] proposed

a projection-free attack based on the Frank-Wolfe method with momentum. [ACW18] iden-

tified the effect of obfuscated gradients and proposed the BPDA attack for breaking those

obfuscated gradient defenses.

Black-box attacks: Other than the aforementioned white-box attack algorithms, there

also exists a large body of literature [HT17, PMG16, PMG+17, CZS+17, IEA+18, IEM19,

LLW+19, CZYG20] focusing on the black-box attack case where the information is limited

to the logits output of the model rather than every detail of the model. Transfer-based

black-box attacks [HT17, PMG16, PMG+17] try to transfer the gradient from a known

model to the black-box target model and then apply the same technique as in the white-box

case. However, their attack effectiveness is often not quite satisfactory. Optimization-based

black-box attacks aim to estimate the true gradient via zeroth-order optimization methods.

[CZS+17] proposed to estimate the gradient via finite-difference on each dimension. [IEA+18]

proposed to improve the query efficiency of [CZS+17] via Natural Evolutionary Strategies.

32

[IEM19] further improved upon [IEA+18] by exploiting gradient priors. [UOKO18] proposed

to use the SPSA method to build a gradient-free attack that can break vanishing gradient

defenses. [ADO20] proposed to directly estimate the sign of the gradient instead of the true

gradient itself. [MAS19] reformulated the continuous optimization problem into a discrete

one and proposed a combinatorial search based algorithm to make the attack more efficient.

[ACFH19] proposed a randomized search scheme to iteratively patch small squares onto the

test example.

Hard-label attacks: [BRB18] first studied the hard-label attack problem and proposed

to solve it via random walks near the decision boundary. [IEA+18] demonstrated a way to

transform the hard-label attack problem into a soft label attack problem. [CLC+19] turned

the adversarial optimization problem into the problem of finding the optimal direction that

leads to the shortest L2 distance to decision boundary and optimized the new problem via

zeroth-order optimization methods. [CSC+20] further improved the query complexity of

[CLC+19] by estimating the sign of gradient instead of the true gradient. [CJW19] also

applied zeroth-order sign oracle to improve [BRB18] by searching the step size and keeping

the iterates along the decision boundary.

3.3 The Proposed Method

In this section, we introduce our proposed Ray Searching attack (RayS). Before we go into

details about our proposed method, we first take an overview of the previous adversarial

attack problem formulations.

33

3.3.1 Overview of Previous Problem Formulations

We denote the DNN model by f and the test data example as {x, y}. The goal of adversarial

attack is to solve the following optimization problem

min
x′

1{f(x′) = y} s.t., ‖x′ − x‖∞ ≤ ε, (3.3.1)

where ε denotes the maximum allowed perturbation strength. The indicator function 1{f(x′) =

y} is hard to optimize, therefore, [MMS+18, ZYJ+19, CZYG20, IEA+18, IEM19, ADO20]

turn to relax (3.3.1) into

max
x′

`(f(x′), y) s.t., ‖x′ − x‖∞ ≤ ε, (3.3.2)

where ` denotes the surrogate loss function such as CrossEntropy loss. On the other hand,

traditional hard-label attacks [CLC+19, CSC+20] re-formulate (3.3.1) as

min
d
g(d) where g(d) = argmin

r
1{f(x + rd/‖d‖2) = y}. (3.3.3)

Here g(d) represents the decision boundary radius from original example x along ray direction

d and the goal is to find the minimum decision boundary radius regarding the original

example x. Let (r̂, d̂) denotes the minimum decision boundary radius and the corresponding

ray direction. If the minimum decision boundary radius satisfies ‖r̂d̂/‖d̂‖2‖∞ ≤ ε, it will be

counted as a successful attack.

While prior works [CLC+19, CSC+20] try to solve problem (3.3.3) in a continuous fashion

by estimating the gradient of g(d) via zeroth-order optimization methods, the hard-label-

only access restriction imposes great challenges in solving (3.3.3). Specifically, estimating

the the decision boundary radius g(d) typically takes a binary search procedure and esti-

mating an informative gradient of g(d) via finite difference requires multiple rounds of g(d)

computation. Furthermore, due to the large variance in zeroth-order gradient estimating

procedure, optimizing (3.3.3) typically takes a large number of gradient steps. These to-

gether, make solving (3.3.3) much less efficient and effective than black-box attacks, not to

mention white-box attacks.

34

Given all the problems mentioned above, we turn to directly search for the closest decision

boundary without estimating any gradients.

3.3.2 Ray Search Directions

With a finite number of queries, it is impossible to search through the whole continuous ray

direction space. As a consequence, we need to restrict the search space to a discrete set of

ray directions to make direct searches possible. Note that applying FGSM to (3.3.2) leads to

an optimal solution at the vertex of the L∞ norm ball [MAS19, CZYG20], suggesting that

those vertices might provide possible solutions to (3.3.2). Empirical findings in [MAS19] also

suggest that the solution to (3.3.2) obtained from the PGD attack is mostly found on the

vertices of L∞ norm ball. Inspired by this, [MAS19] restrict the feasible solution set as the

vertex of the L∞ norm ball. Following this idea, since our goal is to obtain the decision

boundary radius, we consider the ray directions that point to the L∞ norm ball vertices, i.e.,

d ∈ {−1, 1}d where d denotes the dimension of original data example x1. Therefore, instead

of solving (3.3.3), we turn to solve a discrete problem

min
d∈{−1,1}d

g(d) where g(d) = argmin
r

1{f(x + rd/‖d‖2) = y}. (3.3.4)

In problem (3.3.4), we reduce the search space from Rd to {−1, 1}d, which contains 2d possible

search directions.

Now we begin to introduce our proposed Ray Searching attack. We first present the naive

version of the Ray Searching attack, which is summarized in Algorithm 4. Specifically, given

a model f and a test example {x, y}, we first initialize the best search direction as an all-one

vector and set the initial best radius as infinity. Then we iteratively change the sign of each

dimension of the current best ray direction and test whether this modified ray direction leads

to a better decision boundary radius by Algorithm 5 (will be described later). If it does,

we update the best search direction and the best radius, otherwise, they remain unchanged.

1Without loss of generality, here we view x simply as a d-dimensional vector.

35

Algorithm 4 is a greedy search algorithm that finds the local optima of the decision boundary

radius, where the local optima of the decision boundary radius are defined as follows.

Definition 3.3.1 (Local Optima of Decision Boundary Radius). A ray direction d ∈ {−1, 1}d

is the local optima of the decision boundary radius regarding (3.3.4), if for all d′ ∈ {−1, 1}d

satisfy ‖d′ − d‖0 ≤ 1, we have g(d) ≤ g(d′).

Theorem 3.3.2. Given enough query budgets, let (r̂, d̂) be the output of Algorithm 4, then

d̂ is the local optima of decision boundary radius problem (3.3.4).

Proof. We prove this by contradiction. Suppose d̂ is not the local optima, there must exist

some d′ satisfying ‖d′ − d̂‖0 ≤ 1, i.e., d′ differs from d̂ by at most 1 dimension, that

g(d̂) > g(d′). This means Algorithm 4 can still find better solution than g(d̂) by going

through all dimensions and thus d̂ will not be the output of Algorithm 4. This leads to a

contradiction.

Next we introduce Algorithm 5, which performs decision boundary radius search. The

main body of Algorithm 5 (from Line 7 to Line 12) is a binary search algorithm to locate

the decision boundary radius with high precision. The steps before Line 7, on the other

hand, focus on deciding the search range and whether we need to search it (this is the key

to achieve efficient attacks). Specifically, we first normalize the search direction by its L2

norm. And then in Line 3, we do a fast check at x+rbest ·dn2 and decide whether we need to

further perform a binary search for this direction. To help better understand the underlying

mechanism, Figure 3.1 provides a two-dimensional sketch for the fast check step in Line 3 in

Algorithm 5. Suppose we first change the sign of the current dbest at dimension 1, resulting

a modified direction dtmp1. The fast check shows that it is a valid attack and it has the

potential to further reduce the decision boundary radius. On the other hand, if we change

the sign of dbest at dimension 2, resulting a modified direction dtmp2. The fast check shows

2For applications such as image classification, there is an additional clipping to [0, 1] operation to keep
the image valid. We assume this is included in model f and do not write it explicitly in Algorithm 5.

36

that it is no longer a valid attack and the decision boundary radius of direction dtmp2 can

only be worse than the current rbest. Therefore, we skip all unnecessary queries that aim

to estimate a worse decision boundary radius. Note that in [CSC+20], a similar check was

also presented for slightly perturbed directions. However, they use it as the sign for gradient

estimation while we simply drop all unsatisfied radius based on the check result and obtain

better efficiency. Finally, we explain Line 6 in Algorithm 5. The choice of min(rbest, ‖d‖2) is

because initial rbest is ∞, in the case where the fast check passes, we should make sure the

binary search range is finite.

✓
Class y

Other Class

x1

x2

binary search

✘

dbest

dtmp1

dtmp2

rbest

Figure 3.1: A two-dimensional sketch for the fast check step in Algorithm 5.

3.3.3 Hierarchical Search

Recent works on black-box attacks [IEM19, MAS19] found that there exists some spatial

correlation between different dimensions of the gradients, and exploiting this prior could help

improve the efficiency of black-box attacks. Therefore, they added the same perturbation for

small tiles or image blocks on the original data example to achieve better efficiency. Inspired

by this finding, we also exploit these spatial correlations by designing a hierarchical search

version of the Ray Searching attack, displayed in Algorithm 6. Specifically, we add a new

stage variable s. At each stage, we cut the current search direction into 2s small blocks, and

37

Algorithm 4 Ray Searching Attack (Naive)

1: input: Model f , Original data example {x, y};

2: Initialize current best search direction dbest = (1, . . . , 1)

3: Initialize current best radius rbest =∞

4: Initialize ray searching index k = 1

5: while remaining query budget > 0 do

6: dtmp = dbest.copy()

7: dtmp[k] = −dtmp[k]

8: rtmp = DBR-Search(f,x, y,dtmp, rbest)

9: if rtmp < rbest then

10: rbest,dbest = rtmp,dtmp

11: end if

12: k = k + 1

13: if k == d then

14: k = 1

15: end if

16: end while

17: return rbest,dbest

for each iteration, change the sign of the entire block simultaneously as the modified ray

search direction for decision boundary radius search. After iterating through all blocks we

move to the next stage and repeat the search process. Empirically speaking, Algorithm 6

largely improves the search efficiency by exploiting the spatial correlation mentioned above.

All our experiments in Section 6.5 are conducted using Algorithm 6. Note that if the query

budget is large enough, Algorithm 6 will, in the end, get to the case where the block size3

equals to 1 and reduce to Algorithm 4 eventually.

3For completeness, when 2s is larger than data dimension d, Algorithm 6 will only partition the search
direction vector dtmp into d blocks to ensure each block contain at least one dimension.

38

Algorithm 5 Decision Boundary Radius Search (DBR-Search)

1: input: Model f , Original data example {x, y}, Search direction d, Current best radius

rbest, Binary search tolerance ε;

2: Normalized search direction dn = d/‖d‖2

3: if f(x + rbest · dn) == y then

4: return ∞

5: end if

6: Set start = 0, end = min(rbest, ‖d‖2)

7: while end− start > ε do

8: mid = (start+ end)/2

9: if f(x+ rbest · dn) == y then

9: end = mid

10: else

10: start = mid

11: end if

12: end while

13: return end

Note that all three algorithms (Algorithms 4, 5 and 6) do not involve any hyperparameters

aside from the maximum number of queries, which is usually a predefined problem-related

parameter. In sharp contrast, typical white-box attacks and zeroth-order optimization-based

black-box attacks, need to tune quite a few hyperparameters in order to achieve good attack

performance.

3.4 Experiments

In this section, we present the experimental results of our proposed Ray Searching attack

(RayS). We first test RayS attack with other hard-label attack baselines on naturally trained

39

models and then apply RayS attack on recently proposed state-of-the-art robust training

models to test their performances. All of our experiments are conducted with NVIDIA 2080

Ti GPUs using Pytorch 1.3.1 on Python 3.6.9 platform.

3.4.1 Datasets and Target Models

We compare the performance of all attack algorithms on MNIST [LCB10], CIFAR-10 [KH+09]

and ImageNet [DDS+09] datasets. Following adversarial examples literature [IEA+18, MAS19,

ADO20], we set ε = 0.3 for MNIST dataset, ε = 0.031 for CIFAR-10 dataset and ε = 0.05

for ImageNet dataset. For naturally trained models, on the MNIST dataset, we attack two

pre-trained 7-layer CNN: 4 convolutional layers followed by 3 fully connected layers with

Max-pooling and RelU activation applied after each convolutional layer. The MNIST pre-

trained model achieves 99.5% accuracy on the test set. On the CIFAR-10 dataset, we also use

a 7-layer CNN structure with 4 convolutional layers and an additional 3 fully connected lay-

ers accompanied by Batchnorm and Max-pooling layers. The CIFAR-10 pre-trained model

achieves 82.5% accuracy on the test set. For ImageNet experiments, we attack pre-trained

ResNet-50 model [HZRS16b] and Inception V3 model [SVI+16]. The pre-trained ResNet-50

model is reported to have a 76.2% top-1 accuracy. The pre-trained Inception V3 model is

reported to have a 78.0% top-1 accuracy. For robust training models, we evaluate two well-

recognized defenses: Adversarial Training (AdvTraining) [MMS+18] and TRADES [ZYJ+19].

In addition, we also test three other recently proposed defenses which claim to achieve the

state-of-the-art robust accuracy: Sensible Adversarial Training (SENSE) [KW20], Feature

Scattering-based Adversarial Training (FeatureScattering) [ZW19], Adversarial Interpolation

Training (AdvInterpTraining) [ZX20]. Specifically, adversarial training [MMS+18] solves a

min-max optimization problem to minimize the adversarial loss. [ZYJ+19] studied the trade-

off between robustness and accuracy in adversarial training and proposed an empirically more

robust model. [KW20] proposed to stop the attack generation when a valid attack has been

found. [ZW19] proposed an unsupervised feature-scattering scheme for attack generation.

40

[ZX20] proposed an adversarial interpolation scheme for generating adversarial examples as

well as adversarial labels and trained on those example-label pairs.

3.4.2 Baseline Methods

We compare the proposed algorithm with several state-of-the-art attack algorithms. Specif-

ically, for attacking naturally trained models, we compare the proposed RayS attack with

other hard-label attack baselines (i) OPT attack [CLC+19], (ii) SignOPT attack [CSC+20],

and (iii) HSJA attack [CJW19]. We adopt the same hyperparameter settings in the original

papers of OPT, SignOPT, and HSJA attack.

For attacking robust training models, we additionally compare with other state-of-the-art

black-box attacks and even white-box attacks: (i) PGD attack [MMS+18] (white-box), (ii)

CW attack [CW17] 4 (white-box), (iii) SignHunter [ADO20] (black-box), and (iv) Square

attack [ACFH19] (black-box). For PGD attack and CW attack, we set step size as 0.007 and

provide attack results for 20 steps and also 100 steps. For SignHunter and Square attack,

we adopt the same hyperparameter settings used in their original papers.

3.4.3 Comparison with hard-label Attack Baselines on Naturally Trained Mod-

els

In this subsection, we compare our Ray Searching attack with other hard-label attack base-

lines on naturally trained models. For each dataset (MNIST, CIFAR-10, and ImageNet), we

randomly choose 1000 images from its test set that are verified to be correctly classified by

the pre-trained model and test how many of them can be successfully attacked by the hard-

label attacks. For each method, we restrict the maximum number of queries to 10000. For

the sake of query efficiency, we stop the attack for a certain test sample once it is successfully

attacked, i.e., the L∞ norm distance between adversarial examples and original examples is

4To be precise, here CW attack refers to PGD updates with CW loss [CW17]

41

less than the pre-defined perturbation limit ε. Tables 3.1, 3.2, 3.3 and 3.4 present the perfor-

mance comparison of all hard-label attacks on MNIST model, CIFAR-10 model, ResNet-50

Model and Inception V3 model respectively. For each experiment, we report the average

and median of the number of queries needed for successful attacks for each attack, as well

as the final attack success rate, i.e., the ratio of successful attacks against the total number

of attack attempts. Specifically, on the MNIST dataset, we observe that our proposed RayS

attack enjoys much better query efficiency in terms of average and median of the number of

queries, and a much higher attack success rate than OPT and SignOPT methods. Note that

the average (median) number of queries of SignOPT is larger than that of OPT. However,

this does not mean that SignOPT performs worse than OPT. This result is due to the fact

that the attack success rate of OPT is very low and its average (median) queries number

is calculated based on the successfully attacked examples, which in this case, are the most

vulnerable examples. HSJA attack, though improving over SignOPT5, still falls behind our

RayS attack. For the CIFAR model, the RayS attack still achieves the highest attack success

rate. Though the HSJA attack comes close to the RayS attack in terms of attack success

rate, its query efficiency still falls behind. On ResNet-50 and Inception V3 models, only RayS

attack maintains the high attack success rate while the other baselines largely fall behind.

Note that HSJA attack achieves similar or even slightly better average (median) queries on

ImageNet models, suggesting that HSJA is efficient for the most vulnerable examples but

not very effective when dealing with hard-to-attack examples. Figure 3.2 shows the attack

success rate against the number of queries plot for all baseline methods on different models.

Again we can see that the RayS attack overall achieves the highest attack success rate and

best query efficiency compared with other hard-label attack baselines.

5Note that the relatively weak performance of SignOPT is due to the fact that SignOPT is designed for
L2 norm attack while this experiment is under the L∞ norm setting. So the result does not conflict with
the result reported in the original paper of SignOPT [CSC+20].

42

Table 3.1: Comparison of L∞ norm based hard-label attack on MNIST dataset (ε = 0.3).

Methods Avg. Queries Med. Queries ASR (%)

OPT 3260.9 2617.0 20.9

SignOPT 3784.3 3187.5 62.8

HSJA 161.6 154.0 91.2

RayS 107.0 47.0 100.0

PGD (white-box) - - 100.0

Table 3.2: Comparison of L∞ norm based hard-label attack on CIFAR-10 dataset (ε = 0.031).

Methods Avg. Queries Med. Queries ASR (%)

OPT 2253.3 1531.0 31.0

SignOPT 2601.3 1649.0 60.1

HSJA 1021.6 714.0 99.7

RayS 792.8 343.5 99.8

PGD (white-box) - - 100.0

3.4.4 Evaluating the Robustness of State-of-the-art Robust Models

In this subsection, we further test our proposed Ray Searching attack by applying it to

the state-of-the-art robust training models. Specifically, we selected five recently proposed

open-sourced defenses on the CIFAR-10 dataset and WideResNet [ZK16] architecture. For

the test examples, we randomly choose 1000 images from the CIFAR-10 test set. We set the

maximum number of queries as 40000.

In terms of evaluation metrics, following the literature of robust training [MMS+18,

ZYJ+19], we report the natural accuracy and robust accuracy (classification accuracy under

adversarial attacks) of the defense model. In addition, we report a new metric called Average

Decision Boundary Distance (ADBD), which is defined as the average L∞ norm distance

43

Table 3.3: Comparison of L∞ norm based hard-label attack on ImageNet dataset for

ResNet-50 model (ε = 0.05).

Methods Avg. Queries Med. Queries ASR (%)

OPT 1344.5 655.5 14.2

SignOPT 3103.5 2434.0 36.0

HSJA 749.6 183.0 19.9

RayS 574.0 296.0 99.8

PGD (white-box) - - 100.0

Table 3.4: Comparison of L∞ norm based hard-label attack on ImageNet dataset for Incep-

tion V3 model (ε = 0.05).

Methods Avg. Queries Med. Queries ASR (%)

OPT 2375.6 1674.0 21.9

SignOPT 2624.8 1625.0 39.9

HSJA 652.3 362.0 23.7

RayS 748.2 370.0 98.9

PGD (white-box) - - 100.0

between all test examples to their nearest decision boundaries. Note that ADBD is not valid

for white-box and black-box attacks that follow formulation (3.3.1), since they cannot find

the nearest decision boundaries for all test examples.

Here we want to emphasize the difference between ADBD and the average L∞ distortion

in the adversarial learning literature. Note that L∞ distortion6 usually refers to the L∞ norm

distance between successful adversarial attack examples and their corresponding original

clean examples and therefore, is affected by the choice of the maximum perturbation limit ε.

6For all white-box and black-box attacks tested in this experiment, their L∞ distortions are very close to
0.031, which is the perturbation limit ε. Therefore, we do not report the L∞ distortion in the tables as it
does not provide much additional information.

44

(a) MNIST (b) CIFAR

(c) ResNet-50 (d) Inception V3

Figure 3.2: Attack success rate against the number of queries plots for different hard-label

attacks on MNIST, CIFAR-10 and ImageNet datasets.

For hard-label attacks, only considering the attacks with a radius less than ε loses too much

information and cannot capture the whole picture of model robustness7. On the other hand,

the ADBD metric, though only valid for hard-label attacks, provides a meaningful estimation

on the average distance from the original clean examples to their decision boundaries.

Tables 3.5, 3.6, 3.7, 3.8 and 3.9 show the comparison of different adversarial attack

methods on five selected robust models. Specifically, for two well recognized robust training

models, Adversarial Training (in Table 3.5) and TRADES (in Table 3.6), we observe that

white-box attacks are still the strongest attacks, where PGD attack and CW attack achieve

very similar attack performances. For black-box attacks, the SignHunter attack and Square

7For hard-label attacks, the ADBD value is always larger than the L∞ distortion.

45

attack achieve similar attack performances as their white-box counterparts. In terms of

hard-label attacks, our proposed RayS attack also achieves comparable attack performance

as black-box or even white-box attacks given the most restricted access to the target model.

When comparing with other hard-label attack baselines, it can be seen that our RayS attack

achieves significant performance improvement in terms of both robust accuracy (over 20%)

and the average decision boundary distance (reduced by 30%). The less effectiveness in

attacking L∞ norm threat model makes the SignOPT attack and HSJA attack less practical.

For the Sensible Adversarial Training model (in Table 3.7), it indeed achieves overall better

robust accuracy under white-box attacks, compared with Adversarial Training and TRADES.

For black-box attacks, the SignHunter attack achieves similar performance as the PGD

attack and the Square attack achieves similar performance as CW attacks. Interestingly,

we observe that for hard-label attacks, our proposed RayS attack achieves 42.5% robust

accuracy, reducing 20% from PGD attack and 15% from CW attack, suggesting that the

robustness of Sensible Adversarial Training is not truly better than TRADES and Adversarial

Training, but just looks better under PGD attack and CW attack. For Feature Scattering-

based Adversarial Training model (in Table 3.8), note that the CW attack is much more

effective than the PGD attack. Also for black-box attacks, the performance of the Square

attack is much better than SignHunter attack8, suggesting that the CW loss is more effective

than CrossEntropy loss in attacking Feature Scattering-based Adversarial Training model.

Again, we can observe that our proposed RayS attack reduces the robust accuracy of the

PGD attack by 28% and CW attack by 10%. This also suggests that Feature Scattering-

based Adversarial Training model does not really provide better robustness than Adversarial

Training or TRADES. For the Adversarial Interpolation Training model (in Table 3.9), under

white-box attacks, it achieves surprisingly high robust accuracy of 75.3% (under the PGD

attack) and 68.9% (under the CW attack), and similar results can be obtained under the

corresponding black-box attacks. However, it is still not truly robust under our RayS attack,

8Square attack is based on CW loss while the SignHunter attack is based on CrossEntropy loss.

46

reducing the robust accuracy of the PGD attack by 28% and the CW attack by 22%. Note

that in this experiment, the HSJA attack also achieves lower robust accuracy than the PGD

attack, suggesting that all hard-label attacks may have the potential to detect those falsely

robust models that deceive current white-box/black-box attacks, but the low efficiency of

HSJA restricts its power for greater use.

To obtain the overall comparison on the robustness of the five selected robust training

models under our proposed RayS attack, we plot the Average Decision Boundary Distance

(ADBD) against RayS attack iterations and the robust accuracy against RayS attack itera-

tions in Figure 3.3. First, it can be seen that the Average Decision Boundary Distance and

robust accuracy indeed converge and remain stable after around 10000 RayS attack itera-

tions. Figure 3.3 suggests that among the five selected robust training models, TRADES

and Adversarial Training remain the most robust models while Sensible Adversarial Train-

ing, Feature Scattering-based Adversarial Training and Adversarial Interpolation Training,

are not as robust as they appear under PGD attacked and CW attack. Note also that even

though Sensible Adversarial Training, Feature Scattering-based Adversarial Training and

Adversarial Interpolation Training have quite different robust accuracy results under RayS

attack, their ADBD results are quite similar.

(a) ADBD (b) Rob Accuracy

Figure 3.3: Average Decision Boundary Distance (ADBD) and Robust accuracy against

RayS attack iterations plot for several robust models.

47

Table 3.5: Comparison of different adversarial attack methods on Adversarial Training

[MMS+18] for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 87.4%).

Methods Att. Type ADBD Rob. Acc (%)

SignOPT hard-label 0.202 85.1

HSJA hard-label 0.060 76.8

RayS hard-label 0.038 54.0

SignHunter black-box - 50.9

Square black-box - 52.7

PGD-20 white-box - 51.1

CW-20 white-box - 51.8

PGD-100 white-box - 50.6

CW-100 white-box - 51.5

3.5 Discussions and Conclusions

In this paper, we proposed the Ray Searching attack, which only requires the hard-label

output of the target model. The proposed Ray Searching attack is much more effective in

attack success rate and efficient in terms of query complexity, compared with other hard-

label attacks. Moreover, it can be used as a sanity check tool for possible “falsely robust”

models that deceive current white-box and black-box attacks.

In the following discussions, we try to analyze the key ingredients for the success of the

proposed Ray Searching attack.

Why RayS attack is more effective and efficient than the other hard-label baselines?

As we mentioned before, traditional hard-label attacks are more focused on the L2 norm

threat model with only a few extensions to the L∞ norm threat model. While for our RayS

attack, we reformulate the continuous problem of finding the closest decision boundary into

a discrete problem based on empirical findings in L∞ norm threat model, which leads to a

48

Table 3.6: Comparison of different adversarial attack methods on TRADES [ZYJ+19] for

CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 85.4%).

Methods Att. Type ADBD Rob. Acc (%)

SignOPT hard-label 0.196 84.0

HSJA hard-label 0.064 71.6

RayS hard-label 0.040 57.3

SignHunter black-box - 56.1

Square black-box - 56.1

PGD-20 white-box - 56.5

CW-20 white-box - 55.6

PGD-100 white-box - 56.3

CW-100 white-box - 55.3

more effective hard-label attack. On the other hand, the strategy of directly searching for

the closest decision boundary together with a fast check step eliminates unnecessary searches

and significantly improves the attack efficiency.

Why RayS attack can detect possible “false” robust models while traditional white-box and

black-box attacks cannot?

One thing we observe from Section 6.5 is that although different attacks lead to different

robust accuracy results, their attack performances are correlated with the choice of attack

loss functions, e.g., both PGD attack and SignHunter attack utilize CrossEntropy loss and

their attack performances are similar in most cases. A similar effect can also be seen for

the CW attack and Square attack, both of which utilize the CW loss function. However,

these loss functions were used as surrogate losses to problem (3.3.1), and they may not be

able to truly reflect the quality/potential of an intermediate example (an example near the

original clean example that is not yet a valid adversarial example). For instance, consider

the case where two intermediate examples share the same log probability at ground truth

49

Table 3.7: Comparison of different adversarial attack methods on SENSE [KW20] for CI-

FAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 91.9%).

Methods Att. Type ADBD Rob. Acc (%)

SignOPT hard-label 0.170 88.2

HSJA hard-label 0.044 66.6

RayS hard-label 0.029 42.5

SignHunter black-box - 61.9

Square black-box - 58.2

PGD-20 white-box - 62.1

CW-20 white-box - 59.7

PGD-100 white-box - 60.1

CW-100 white-box - 57.9

class y, but vary drastically on other classes. Their CrossEntropy losses are the same in

such cases, but one may have a larger potential to develop into a valid adversarial example

than the other one (e.g., the second-largest probability is close to the largest probability).

Therefore, CrossEntropy loss does not really reflect the true quality/potential of the inter-

mediate examples. Similar instances can also be constructed for CW loss. In sharp contrast,

our RayS attack considers the decision boundary radius as the search criterion9. When we

compare two examples on the decision boundary, it is clear that the closer one is better.

In cases where the attack problem is hard to solve and the attacker could easily get stuck

at intermediate examples (e.g., attacking robust training models), it is easy to see that the

RayS attack stands a better chance of finding a successful attack. This partially explains

the superiority of the RayS attack in detecting “falsely robust” models.

9Actually it is a criterion for all hard-label attack.

50

Table 3.8: Comparison of different adversarial attack methods on Feature-Scattering [ZW19]

for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 91.3%).

Methods Att. Type ADBD Rob. Acc (%)

SignOPT hard-label 0.175 87.1

HSJA hard-label 0.048 70.0

RayS hard-label 0.030 44.5

SignHunter black-box - 67.3

Square black-box - 55.3

PGD-20 white-box - 72.8

CW-20 white-box - 57.2

PGD-100 white-box - 70.4

CW-100 white-box - 54.8

Table 3.9: Comparison of different adversarial attack methods on Adversarial Interpolation

Training [ZX20] for CIFAR-10 dataset (WideResNet, ε = 0.031, natural accuracy: 91.0%).

Methods Att. Type ADBD Rob. Acc (%)

SignOPT hard-label 0.169 84.2

HSJA hard-label 0.049 70.5

RayS hard-label 0.031 46.9

SignHunter black-box - 73.6

Square black-box - 69.0

PGD-20 white-box - 75.6

CW-20 white-box - 69.2

PGD-100 white-box - 75.3

CW-100 white-box - 68.9

51

Algorithm 6 Ray Searching Attack (Hierarchical)

1: input: Model f , Original data example {x, y};

2: Initialize current best search direction dbest = (1, . . . , 1)

3: Initialize current best radius rbest =∞

4: Initialize stage s = 0

5: Initialize block index k = 1

6: while remaining query budget > 0 do

7: dtmp = dbest.copy()

8: Cut dtmp into 2s blocks and denote index set in the k-th block by Ik

9: dtmp[Ik] = −dtmp[Ik]

10: rtmp = DBR-Search(f,x, y,dtmp, rbest)

11: if rtmp < rbest then

12: rbest,dbest = rtmp,dtmp

13: end if

14: k = k + 1

15: if k == 2s then

16: s = s+ 1

17: k = 1

18: end if

19: end while

20: return rbest,dbest

52

CHAPTER 4

Understanding the Intrinsic Robustness of Image

Distributions using Conditional Generative Models

4.1 Introduction

Deep neural networks (DNNs) have achieved remarkable performance on many visual [SHK12,

HZRS16a] and speech [HDY+12] recognition tasks, but recent studies have shown that

state-of-the-art DNNs are surprisingly vulnerable to adversarial perturbations, small im-

perceptible input transformations that are designed to switch the prediction of the clas-

sifier [SZS+14, GSS15]. This has led to a vigorous arms race between heuristic defenses

[PMW+16, MMS+18, CAD+18, WMB+19] that propose ways to defend against existing

attacks and newly-devised attacks [CW17, ACW18, TCBM20] that are able to penetrate

such defenses. Reliable defenses appear to be elusive, despite progress on provable defenses,

including formal verification [KBD+17, TXT19] and relaxation-based certification methods

[SND18, RSL18, WK18, GDS+19, WCAJ18]. Even the strongest of these defenses leave

large opportunities for adversaries to find adversarial examples, while suffering from high

computation costs and scalability issues.

Witnessing the difficulties of constructing robust classifiers, a line of recent works [GMF+18,

FFF18a, MDM19, SHS+19] aims to understand the limitations of robust learning by pro-

viding theoretical bounds on adversarial robustness for arbitrary classifiers. By imposing

different assumptions on the underlying data distributions and allowable perturbations, all

of these theoretical works show that no adversarially robust classifiers exist for an assumed

53

metric probability space, as long as the perturbation strength is sublinear in the typical norm

of the inputs. Although such impossibility results seem disheartening to the goal of building

robust classifiers, it remains unknown to what extent real image distributions satisfy the

assumptions needed to obtain these results.

In this paper, we aim to bridge the gap between the theoretical robustness analyses on

well-behaved data distributions and the maximum achievable adversarial robustness, which

we call intrinsic robustness (formally defined by Definition 4.3.2), for typical image distribu-

tions. More specifically, we assume the underlying data lie on a separable low-dimensional

manifold, which can be captured using a conditional generative model, then systematically

study the intrinsic robustness based on the conditional generating process from both theo-

retical and experimental perspectives. Our main contributions are:

• We prove a fundamental bound on intrinsic robustness (Section 4.4), provided that

the underlying data distribution can be captured by a conditional generative model,

solving an open problem in [FFF18a].

• Building upon a trained conditional generative model that mimics the underlying data

generating process, we empirically evaluate the intrinsic robustness on image distri-

butions based on MNIST and ImageNet (Section 4.7.2). Our estimates of intrinsic

robustness demonstrate that there is still a large gap between the limits implied by

our theory and the state-of-the-art robustness achieved by robust training methods

(Section 4.7.3).

• We theoretically characterize the fundamental relationship between the in-distribution

adversarial risk (which restricts adversarial examples to lie on the image manifold, and

is formally defined by Definition 4.3.3) and the intrinsic robustness (Remark 4.4.6),

and propose an optimization method to search for in-distribution adversarial examples

with respect to a given classifier. Our estimated in-distribution robustness for state-of-

the-art adversarially trained classifiers, together with the derived intrinsic robustness

54

bound, provide a better understanding on the intrinsic robustness for natural image

distributions (Section 4.7.4).

Notation: We use lower boldfaced letters such as x to denote vectors, and [n] to denote

the index set {1, 2, . . . , n}. For any x ∈ X and ε ≥ 0, denote by B(x, ε,∆) = {x′ ∈ X :

∆(x,x′) ≤ ε} the ε-ball around x with radius ε in some distance metric ∆. When the metric

is free of context, we simply write B(x, ε) = B(x, ε,∆). We use N (0, Id) to denote the

d-dimensional standard Gaussian distribution, and let νd be its probability measure. For the

one dimensional case, we use Φ(x) to denote the cumulative distribution function (CDF) of

N (0, 1), and use Φ−1(x) to denote its inverse function. For any function g : Z → X and

probability measure ν defined over Z, g∗(ν) denotes the push-forward measure of ν. The

`2-norm of a vector x ∈ Rn is defined as ‖x‖2 = (
∑

i∈[n] x
2
i)

1/2.

4.2 Related Work

Several recent works [GMF+18, MDM19, SHS+19, Doh19, BCM19] derived theoretical bounds

on maximum achievable adversarial robustness using isoperimetric inequality under differ-

ent assumptions of the input space. For instance, based on the assumption that the input

data are uniformly distributed over two concentric n-spheres [GMF+18] or the underlying

metric probability space satisfies a concentrated property [MDM19], any classifier with con-

stant test error was proven to be vulnerable to adversarial perturbations sublinear to the

input dimension. [SHS+19] showed that adversarial examples are inevitable, provided the

maximum density of the underlying input distribution is small relative to uniform density.

However, none of the above theoretical works provide any experiments to justify the imposed

assumptions hold for real datasets, thus it is unclear whether the derived theoretical bounds

are meaningful for typical image distributions. Our work belongs to this line of research,

but encompasses the practical goal of understanding the robustness limits for real image

distributions.

55

The most related literature to ours is [FFF18a], which proved a classifier-independent

upper bound on intrinsic robustness, provided the underlying distribution is well captured

by a smoothed generative model with Gaussian latent space and small Lipschitz parame-

ter. However, their proposed theory cannot be applied to image distributions that lie on a

low-dimensional, non-smooth manifold, as their framework requires examples from different

classes to be close enough in the latent space. In contrast, our proposed theoretical bounds

on intrinsic robustness are more general in that they can be applied to non-smoothed data

manifolds, such as image distributions generated by conditional models. In addition, we

propose an empirical method to estimate the intrinsic robustness on the generated image

distributions under worst-case `2 perturbations.

[MZME19] proposed to understand the inherent limitations of robust learning using

heuristic methods to measure the concentration of measure based on a given set of i.i.d.

samples. However, it is unclear to what extent the estimated sample-based concentration

approximates the actual intrinsic robustness with respect to the underlying data distribution.

In comparison, we assume the underlying data distribution can be captured by a conditional

generative model and directly study the robustness limit on the generated data distribution.

4.3 Preliminaries

We focus on the task of image classification. Let (X , µ,∆) be a metric probability space,

where X ⊆ Rn denotes the input space, µ is a probability distribution over X and ∆ is some

distance metric defined on X . Suppose there exists a ground-truth function, f ∗ : X → [K],

that gives a label to any image x ∈ X , where [K] denotes the set of all possible class labels.

The objective of classification is to learn a function f : X → [K] that approximates f ∗ well.

In the context of adversarial examples, f is typically evaluated based on risk, which captures

the classification accuracy of f on normal examples, and adversarial risk, which captures

the classifier’s robustness against adversarial perturbations:

56

Definition 4.3.1. Let (X , µ,∆) be a metric probability space and f ∗ be the ground-truth

classifier. For any classifier f , the risk of f is defined as:

Riskµ(f) = Pr
x∼µ

[
f(x) 6= f ∗(x)

]
.

The adversarial risk of f against perturbations with strength ε in metric ∆ is defined as:

AdvRiskεµ(f) = Pr
x∼µ

[
∃ x′ ∈ B(x, ε) s.t.f(x′) 6= f ∗(x′)

]
.

Other definitions of adversarial risk also exist in literature, such as the definition used in

[MMS+18] and the one proposed in [FFF18a]. However, these definitions are equivalent to

each other under the assumption that small perturbations do not change the ground-truth

labels. Another closely-related definition for adversarial robustness is the expected distance

to the nearest error (see [DMM18] for the relation between these definitions). Our results

can be applied to this definition as well.

Under different assumptions of the metric probability space, previous works proved

model-independent bounds on adversarial robustness. Intrinsic robustness, defined origi-

nally by [MZME19], captures the maximum adversarial robustness that can be achieved for

a given robust learning problem:

Definition 4.3.2. Using the same settings as in Definition 4.3.1 and let F be some class of

classifiers. The intrinsic robustness with respect to F is defined as:

Robεµ(F) = 1− inf
f∈F

{
AdvRiskεµ(f)

}
.

In this work, we consider the class of imperfect classifiers that have risk at least some α > 0.

Motivated by the great success of producing natural-looking images using conditional

generative adversarial nets (GANs) [MO14, OOS17, BDS19], we assume the underlying data

distribution µ can be modeled by some conditional generative model. A generative model

can be seen as a function g : Z → X that maps some latent distribution, usually assumed

to be multivariate Gaussian, to some generated distribution over X .

57

Conditional generative models incorporate the additional class information into the data

generating process. A conditional generative model can be considered as a set of generative

models {gi}i∈[K], where images from the i-th class can be generated by transforming latent

Gaussian vectors through gi. More rigorously, we say a probability distribution µ can be

generated by a conditional generative model {(gi, pi)}i∈[K], if µ =
∑K

i=1 pi · (gi)∗(νd), where

K is the total number of different class labels, and pi ∈ [0, 1] represents the probability of

sampling an image from class i.

Based on the conditional generative model, we introduce the definition of in-distribution

adversarial risk :

Definition 4.3.3. Consider the same settings as in Definition 4.3.1. Suppose µ can be

captured by a conditional generative model {(gi, pi)}i∈[K]. For any given classifier f , the

in-distribution adversarial risk of f against ε-perturbations is defined as:

In-AdvRiskεµ(f) = Pr
(x,i)∼µ

[
∃ z′ ∈ Z s.t. gi(z

′) ∈ B(x, ε) and f(gi(z
′)) 6= f ∗(gi(z

′))
]
.

Given the fact that the in-distribution adversarial risk restricts the adversarial exam-

ples to be on the image manifold, it holds that, for any classifier f , In-AdvRiskεµ(f) ≤

AdvRiskεµ(f). As will be shown in the next section, such a notion of in-distribution adver-

sarial risk is closely related to the intrinsic robustness for the considered class of imperfect

classifiers.

4.4 Main Theoretical Results

In this section, we present our main theoretical results on intrinsic robustness, provided

the underlying distribution can be modeled by some conditional generative model (our re-

sults and proof techniques could also be easily applied to unconditional generative models).

Based on the underlying generative process, the following local Lipschitz condition connects

perturbations in the image space to the latent space.

58

Condition 4.4.1. Let g : Rd → X be a generative model that maps the latent Gaussian

distribution νd to some generated distribution. Consider Euclidean distance as the distance

metric for Rd, and ∆ as the metric for X . Given r > 0, g is said to be L(r)-locally Lipschitz

with probability at least 1− δ, if it satisfies

Pr
z∼νd

[
∀z′ ∈ B(z, r),∆

(
g(z′), g(z)

)
≤ L(r)‖z′ − z‖2

]
≥ 1− δ.

As the main tool for bounding the intrinsic robustness, we present the Gaussian Isoperi-

metric inequality for the sake of completeness. This inequality, proved by [Bor75] and [ST78],

bounds the minimum expansion of any subset with respect to the standard Gaussian mea-

sure.

Lemma 4.4.2 (Gaussian Isoperimetric Inequality). Consider metric probability space (Rd, νd, ‖·

‖2), where νd is the probability measure for d-dimensional standard Gaussian distribution

N (0, Id), and ‖ · ‖2 denotes the Euclidean distance. For any subset E ⊆ Rd and r ≥ 0, let

Er =
{
z ∈ Rd : ∃z′ ∈ E , s.t. ‖z − z′‖2 ≤ r

}
be the r-expansion of E , then it holds that

νd(Er) ≥ Φ
(
Φ−1

(
νd(E)

)
+ r
)
, (4.4.1)

where Φ(x) = 1√
2π

∫ x
−∞ exp(−u2/2) ·du is the CDF of N (0, 1), and Φ−1(x) denotes its inverse

function.

In particular, when E belongs to the set of half-spaces, the equality is achieved in (4.4.1).

Making use of the Gaussian Isoperimetric Inequality and the local Lipschitz condition of

the conditional generator, the following theorem proves a lower bound on the (in-distribution)

adversarial risk for any given classifier, provided the underlying distribution can be captured

by a conditional generative model.

Theorem 4.4.3. Let (X , µ,∆) be a metric probability space and f ∗ : X → [K] be the

underlying ground-truth. Suppose µ can be generated by a conditional generative model

{(gi, pi)}i∈[K]. Given ε > 0, suppose there exist constants r > 0 and δ ∈ (0, 1] such that for

59

any i ∈ [K], gi satisfies Li(r)-local Lipschitz property with probability at least 1 − δ and

r · Li(r) ≥ ε. Then for any classifier f , it holds that

AdvRiskεµ(f) ≥ In-AdvRiskεµ(f) ≥
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Li(r)

)
− δ,

where µi = (gi)∗(νd) is the pushforward measure of νd though gi, for any i ∈ [K].

We provide a proof in Appendix 4.5.1. Theorem 4.4.3 suggests the (in-distribution)

adversarial risk is related to the risk on each data manifold and the ratio between the

perturbation strength and the Lipschitz constant.

The following theorem, proved in Appendix 4.5.2, gives a theoretical upper bound on the

intrinsic robustness with respect to the class of imperfect classifiers.

Theorem 4.4.4. Under the same setting as in Theorem 4.4.3, let Lmax(r) = maxi∈[K] Li(r).

Consider the class of imperfect classifiers Fα = {f : Riskµ(f) ≥ α} with α > 0, then the

intrinsic robustness with respect to Fα can be bounded as,

Robεµ(Fα) ≤ 1 + δ − min
i∈[K]

{
pi · Φ

(
Φ−1

(
α

pi

)
+

ε

Lmax(r)

)}
,

provided that α/pi ≤ 1 for any i ∈ [K]. In addition, if we consider the family of classifiers that

have conditional risk at least α for each class, namely F̃α = {f : Riskµi(f) ≥ α, ∀i ∈ [K]},

then the intrinsic robustness with respect to F̃α can be bounded by

Robεµ(F̃α) ≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
α
)

+
ε

Lmax(r)

)
.

Remark 4.4.5. Theorem 4.4.4 shows that if the data distribution can be captured by

a conditional generative model, the intrinsic robustness bound with respect to imperfect

classifiers will largely depend on the ratio ε/Lmax. For instance, if we assume the ratio

ε/Lmax = 1, then Theorem 4.4.4 suggests that no classifier with initial risk at least 5% can

achieve robust accuracy exceeding 75% for the assumed data generating process. In addition,

if we assume the local Lipschitz parameter Lmax is some constant, then adversarial robustness

60

is indeed not achievable for high-dimensional data distributions, provided the perturbation

strength ε is sublinear to the input dimension, which is the typical setting considered.

Remark 4.4.6. The intrinsic robustness is closely related to the in-distribution adversarial

risk. For the class of classifiers Fα, one can prove that the intrinsic robustness is equivalent

to the maximum achievable in-distribution adversarial robustness:

Robεµ(Fα) = 1− inf
f∈Fα
{In-AdvRiskεµ(f)}. (4.4.2)

Trivially, AdvRiskεµ(f) ≥ In-AdvRiskεµ(f) holds for any f . For a given f ∈ Fα, one can

construct an hf ∈ Fα such that hf (x) = f(x) if x ∈ Ef ∩M and hf (x) = f ∗(x) otherwise,

where Ef = {x ∈ X : f(x) 6= f ∗(x)} denotes the error region of f and M is the considered

image manifold. The construction immediately suggests In-AdvRiskεµ(f) = AdvRiskεµ(hf),

which implies,

inf
f∈Fα
{In-AdvRiskεµ(f)} = inf

f∈Fα
{AdvRiskεµ(hf)} ≥ inf

f∈Fα
{AdvRiskεµ(f)}.

Combining both directions proves the soundness of (4.4.2). This equivalence suggests the

in-distribution adversarial robustness of any classifier in Fα can be viewed as a lower bound

on the actual intrinsic robustness, which motivates us to study the intrinsic robustness

by estimating the in-distribution adversarial robustness of trained robust models in our

experiments.

4.5 Proof of Main Theorem

This section presents the detailed proofs of Theorems 4.4.3 and 4.4.4 in Section 4.4.

4.5.1 Proof of Theorem 4.4.3

Proof. Let E = {x ∈ X : f(x) 6= f ∗(x)} be the error region in the image space and

Eε = {x ∈ X : ∆(x, E) ≤ ε} be the ε-expansion of E in metric ∆. By Definition 4.3.1, we

61

have

AdvRiskεµ(f) = µ(Eε) =
K∑
i=1

pi · µi(Eε) =
K∑
i=1

pi · AdvRiskεµi(f).

Since according to Definition 4.3.3, we have AdvRiskεµi(f) ≥ In-AdvRiskεµi(f) for any i ∈ [K].

Thus, it remains to lower bound each term In-AdvRiskεµi(f) individually. For any classifier

f , we have

In-AdvRiskεµi(f) = Pr
z∼νd

[
∃ z′ ∈ Rd, s.t. ∆

(
gi(z

′), gi(z)
)
≤ ε and f

(
gi(z

′)
)
6= f ∗

(
gi(z

′)
)]

≥ Pr
z∼νd

[
∃ z′ ∈ B

(
z, ε/Li(r)

)
, s.t. f

(
gi(z

′)
)
6= f ∗

(
gi(z

′)
)]

︸ ︷︷ ︸
I

−δ (4.5.1)

where the first inequality is due to µi = (gi)∗(νd), and the second inequality holds because

gi is Li(r)-locally Lipschitz with probability at least 1 − δ and B
(
z, ε/Li(r)

)
⊆ B

(
z, r
)

for

any z ∈ Rd.

To further bound the term I, we make use of the Gaussian Isoperimetric Inequality as

presented in Lemma 4.4.2. Let Af = {z ∈ Rd : f(gi(z)) 6= f ∗(gi(z))} be the corresponding

error region in the latent space. By Lemma 4.4.2, we have

I ≥ Φ

(
Φ−1

(
νd(Af)

)
+

ε

Li(r)

)
= Φ

(
Φ−1

(
Riskµi(f)

)
+

ε

Li(r)

)
. (4.5.2)

Finally, plugging (4.5.2) into (4.5.1), we complete the proof.

4.5.2 Proof of Theorem 4.4.4

Proof. According to Definition 4.3.2 and Theorem 4.4.3, for any f ∈ Fα, we have

Robεµ(Fα) ≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Li(r)

)

≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Lmax(r)

)
, (4.5.3)

where the last inequality holds because Φ(·) is monotonically increasing. For any f ∈ Fα,

let E = {x ∈ X : f(x) 6= f ∗(x)} be the error region and αi = µi(E) be the measure of E

under the i-th conditional distribution.

62

Thus, to obtain an upper bound on Robεµ(Fα) using (4.5.3), it remains to solve the

following optimization problem:

minimize
α1,...,αK∈[0,1]

K∑
i=1

pi · Φ
(

Φ−1(αi) +
ε

Lmax(r)

)
subject to

K∑
i=1

piαi ≥ α. (4.5.4)

Note that for classifier in F̃α, by definition, we can simply replace αi = α in (4.5.4), which

proves the upper bound on Robεµ(F̃α).

Next, we are going to show that the optimal value of (4.5.4) is achieved, only if there

exists a class i′ ∈ [K] such that αi′ = α/pi′ and αi = 0 for any i 6= i′. Consider the simplest

case where K = 2. Note that Φ(·) and Φ−1(·) are both monotonically increasing functions,

which implies that
∑K

i=1 piαi = α holds when optimum achieved, thus the optimization

problem for K = 2 can be formulated as follows

min
α1,α2∈[0,1]

p1 · Φ
(

Φ−1(α1) +
ε

Lmax(r)

)
+ p2 · Φ

(
Φ−1(α2) +

ε

Lmax(r)

)
s.t. p1α1 + p2α2 = α.

(4.5.5)

Suppose α1 ≥ α2 holds for the initial setting. Now consider another setting where

α′1 > α1, α′2 < α2. Let s1 = Φ−1(α′1)− Φ−1(α1) and s2 = Φ−1(α2)− Φ−1(α′2). According to

the equality constraint of the optimization problem (4.5.5), we have

p1 ·
∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−x

2/2 dx = p2 ·
∫ Φ−1(α2)

Φ−1(α2)−s2

1√
2π
· exp−x

2/2 dx. (4.5.6)

Let η = ε/Lmax(r) for simplicity. By simple algebra, we have

p1 ·
∫ Φ−1(α1)+s1+η

Φ−1(α1)+η

1√
2π
· exp−x

2/2 dx

= p1 ·
∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−u

2/2−η·u−η2/2 du

< p1 · exp−η·Φ
−1(α1)−η2/2 ·

∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−u

2/2 du

≤ p2 · exp−η·Φ
−1(α2)−η2/2 ·

∫ Φ−1(α2)

Φ−1(α2)−s2

1√
2π
· exp−u

2/2 du

< p2 ·
∫ Φ−1(α2)+η

Φ−1(α2)−s2+η

1√
2π
· exp−x

2/2 dx,

63

where the first inequality holds because exp−η·u < exp−η·Φ
−1(α1) for any u > Φ−1(α1), the

second inequality follows from (4.5.6) and the fact that Φ−1(α1) ≥ Φ−1(α2), and the last

inequality holds because exp−η·Φ
−1(α2) < exp−η·u for any u < Φ−1(α2). Therefore, the optimal

value of (4.5.5) will be achieved when α1 = 0 or α2 = 0. For general setting with K > 2,

since α1, . . . , αK are independent in the objective, we can fix α3, . . . , αK and optimize α1

and α2 first, then deal with αi incrementally using the same technique.

4.6 Experimental Details

This section provides additional details for our experiments.

4.6.1 Network Architectures and Hyper-parameter Settings

For the certified robust defense (LP-Certify), we adopt the the same four-layer neural network

architecture as implemented in [WSMK18], with two convolutional layers and two fully

connected layers, and use the an Adam optimizer with learning rate 0.001 and batch size 50

for training the robust classifier. In particular, the adversarial loss function is based on the

robust certificate under `2 proposed in [WSMK18].

For training attack-based robust models (Adv-Train and TRADES), we use a seven-layer

CNN architecture which contains four convolution layers and three fully connected layers.

We use a SGD optimizer to minimize the attack-based adversarial loss with learning rate

0.05 on MNIST and learning rate 0.01 on ImageNet10. Table 4.1 summarizes all the hyper-

parameters we used for training the robust models (β is an additional parameter specifically

used in TRADES).

For evaluating the unconstrained adversarial robustness, we implemented PGD attack

with `2 metric. Table 4.2 shows all the hyper-parameters we used for robustness evaluation.

64

Table 4.1: Hyper-parameters used for training robust models.

Para.
Generated MNIST ImageNet10

LP-Certified Adv Training TRADES Adv Training TRADES

ε (in `2) 2.0 3.0 3.0 3.0 3.0

optimizer ADAM SGD SGD SGD SGD

learning rate 0.001 0.05 0.05 0.01 0.01

#epochs 60 100 100 100 100

attack step size - 0.5 0.5 0.5 0.5

#attack steps - 40 40 10 10

β - - 6.0 - 6.0

Table 4.2: Hyper-parameters used for evaluating the model robustness via PGD attack.

Para.
Generated MNIST ImageNet10

ε = 1.0 ε = 2.0 ε = 3.0 ε = 1.0 ε = 2.0 ε = 3.0

attack step size 0.1 0.3 0.5 0.1 0.3 0.5

#attack steps 100 100 100 100 100 100

4.6.2 Strategies for Estimating In-distribution Adversarial Robustness

Initialization of z: For MNIST data, we design an initialization strategy for z in order to

make sure the perturbation term ‖G(z, y) − x‖2 can be efficiently optimized. To be more

specific, starting from random noise, we first solve another optimization problem:

zinit = argmin
z
‖G(z, y)− x‖2.

By setting zinit as our initial point, we minimize the initial perturbation distance. Here z

can start from any random initial point as we will then optimize the generated image under

`2 distance.

65

For ImageNet10 data, even applying the above optimization procedure doesn’t result in

an initial z such that ‖G(z, y)−x‖2 ≤ ε when ε is small. Therefore, we use another strategy

by recording the z∗ when generating the test sample x, i.e., G(z∗, y) = x. And we adopt

z∗ as the initial point for z in solving (4.7.2). This makes sure that the whole optimization

procedure could at least find one point satisfying the perturbation constraint1.

The choice of λ: Inspired by [CW17], we also adopt binary search strategy for finding

better regularization parameter λ. Specifically, we set initial λ = 1.0 and if we successfully

find an adversarial example, we lower the value of λ via binary search. Otherwise, we raise

the value of λ. For each batch of examples, we perform 5 times binary search in order to

find qualified in-distribution adversarial examples.

Hyper-parameters: We use Adam optimizer with learning rate 0.01 for finding in-

distribution adversarial examples. We set maximum iterations for each λ binary search as

10000.

4.7 Experiments

This section provides our empirical evaluations of the intrinsic robustness on real image

distributions to evaluate the tightness of our bound. We test our bound on two image

distributions generated using MNIST [LBB+98] and ImageNet [DDS+09] datasets. Code for

all our experiments is available at https://github.com/xiaozhanguva/Intrinsic-Rob.

4.7.1 Conditional GAN Models

Instead of directly evaluating the robustness on real datasets, we make use of conditional

GAN models to generate datasets from the learned data distributions and evaluate the ro-

bustness of several state-of-the-art robust models trained on the generated dataset for a fair

1We didn’t use z∗ as the initialization for MNIST data as our empirical study shows that the optimization-
based initialization achieves better performances on MNIST.

66

https://github.com/xiaozhanguva/Intrinsic-Rob

(a) ACGAN Generated MNIST (b) BigGAN Generated ImageNet

Figure 4.1: Illustration of the generated images using different conditional models. For

BigGAN generated images, we select 10 specific classes from the 1000 ImageNet classes

(corresponding to the 10 image classes in CIFAR-10).

comparison with the theoretical robustness limits. Note that this approach is only feasible

with conditional generative models as unconditional models cannot provide the correspond-

ing labels for the generated data samples. For MNIST, we adopt ACGAN [OOS17] which

features an additional auxiliary classifier for better conditional image generation. The AC-

GAN model generates 28× 28 images from a 100-dimension latent space concatenated with

an addition 10-dimension one-hot encoding of the conditional class labels. For ImageNet,

we adopt the BigGAN model [BDS19] which is the state-of-the-art GAN model in condi-

tional image generation. It generates 128 × 128 images from a 120-dimension latent space.

We down-sampled the generated images to 32 × 32 for efficiency propose. We consider a

standard Gaussian2 as the latent distribution for both conditional generative models. Figure

4.1 shows examples of the generated MNIST and ImageNet images. For both figures, each

column of images corresponds to a particular label class of the considered dataset.

2The original BigGAN model uses truncated Gaussian. We adapted it to standard Gaussian distribution.

67

Table 4.3: Local Lipschitz constants of ACGAN model on MNIST classes with r = 0.5 and

δ = 0.001.

Class digit 0 digit 1 digit 2 digit 3 digit 4 digit 5 digit 6 digit 7 digit 8 digit 9

L(r) 7.9 8.6 8.3 7.8 10.3 11.0 9.5 7.8 9.3 10.9

Table 4.4: Local Lipschitz constants of BigGAN on 10 selected ImageNet classes with r = 0.5

and δ = 0.001.

Class airliner jeep goldfinch tabby cat hartebeest Maltese dog bullfrog sorrel pirate ship pickup

L(r) 13.1 14.5 11.7 12.4 10.4 11.3 9.4 13.0 13.1 14.9

4.7.2 Local Lipschitz Constant Estimation

From Theorem 4.4.4, we observe that given a class of classifiers with risk at least α, the de-

rived intrinsic robustness upper bound is mainly decided by the perturbation strength ε and

the local Lipschitz constant L(r). While ε is usually predesignated in common robustness

evaluation settings, the local Lipschitz constant L(r) is unknown for most real world tasks.

Computing an exact Lipschitz constant of a deep neural network is a difficult open prob-

lem. Thus, instead of obtaining the exact value, we approximate L(r) using a sample-based

approach with respect to the generative models.

Recalling Definition 4.4.1, we consider ∆ as the `2 distance and g(z) and g(z′) are easy

to compute via the generator network. Computing L(r), however, is much more complicated

as it requires obtaining a maximum value within a radius-r ball. To deal with this, our

approach approximates L(r) by sampling N points in the neighborhood around z and takes

the maximum value as the estimation of the true maximum value within the ball. Since the

definition of local Lipschitz is probabilistic, we take multiple samples of the latent vectors

z to estimate the local Lipschitz constant L(r). The estimation procedure is summarized

in Algorithm 7, which gives an underestimate of the underlying truth. Developing better

Lipschitz estimation methods is an active area in machine learning research, but is not the

68

main focus of this work.

Algorithm 7 Local Lipschitz Estimation

Input: number of samples S, number of local neighbors per sample N , r, δ

for i = 1, . . . , S do

Generate a latent space sample zi

Generate N samples {ẑji }Nj=1 within Br(zi)

Li = maxj
‖g(ẑji)−g(zi)‖2
‖ẑji−zi‖2

end for

Output: (1− δ)-percentile of {Li}Si=1

Tables 4.3 and 4.4 summarize the local Lipschitz constants estimated for the trained

ACGAN and BigGAN generators conditioned on each class. For both conditional generators,

we set S = 1000, N = 2000, r = 0.5 and δ = 0.001 in Algorithm 7 for Lipschitz estimation.

For BigGAN, the specifically selected 10 classes from ImageNet are reported in Table 4.4.

In addition, the reported estimates are averaged over 10 repeated trials, where the standard

deviation varies from 0.2 to 0.6 for ACGAN and varies from 0.3 to 1.1 for BigGAN.

Compared with unconditional generative models, conditional ones generate each class

using a separate generator. Thus, the local Lipschitz constant of each class-conditioned

generator is expected to be smaller than that of unconditional ones, as the within-class

variation is usually much smaller than the between-class variation for a given classification

dataset. For instance, we trained an unconditional GAN generator [GPAM+14] on MNIST

dataset, which yields an overall local Lipschitz constant of 27.01 from Algorithm 7 under the

same parameter settings. If we plug in this estimated Lipschitz constant into the theoretical

results in [FFF18a], the implied intrinsic robustness bound is in fact vacuous (above 1) with

perturbations strength ε ≤ 3.0 in `2 distance.

69

4.7.3 Comparisons with Robust Classifiers

We compare our derived intrinsic robustness upper bound with the empirical adversarial

robustness achieved by the current state-of-the-art defense methods under `2 perturba-

tions. Specifically, we consider three robust training methods: LP-Certify : optimization-

based certified robust defense [WSMK18]; Adv-Train: PGD attack based adversarial train-

ing [MMS+18]; and TRADES : adversarial training by accuracy and robustness trade-off

[ZYJ+19]. We adopt these robust training methods to train robust classifiers over a set of

generated training images and evaluate their robustness on the corresponding generated test

set.

For MNIST, we use our trained ACGAN model to generate 10 classes of hand-written

digits with 60, 000 training images and 10, 000 testing images. For ImageNet, we use the

BigGAN model to generate 10 selected classes of images, which contains 50, 000 images for

training set and 10, 000 images for test set. We refer to the 10-class BigGAN generated

dataset as ‘ImageNet10’. We set ε = 3.0 for training robust models using Adv-Train and

TRADES for both generated datasets, whereas we only train the LP-based certified robust

classifier with ε = 2.0 on generated MNIST data, as it is not able to scale with ImageNet10

as well as generated MNIST with larger ε (see Appendix 4.6.1 for all the selected hyper-

parameters and network architectures).

A commonly-used method to evaluate the robustness of a given model is by performing

carefully-designed adversarial attacks. Here we adopt the PGD attack [MMS+18], and report

the robust accuracy (classification accuracy on inputs generated using the PGD attack) as the

empirically measured model robustness. We test both the natural classification accuracy and

the robustness of the aforementioned adversarially trained classifiers under `2 perturbations

with perturbation strength ε selected from {1.0, 2.0, 3.0}. See Appendix 4.6.1 for PGD

parameter settings.

Table 4.5 compares the empirically measured robustness of the trained robust classifiers

70

Table 4.5: Comparisons between the empirically measured robustness of adversarially trained

classifiers and the implied theoretical intrinsic robustness bound on the conditional generated

datasets.

ACGAN generated MNIST BigGAN generated ImageNet10

ε = 0.0 ε = 1.0 ε = 2.0 ε = 3.0 ε = 0.0 ε = 1.0 ε = 2.0 ε = 3.0

LP-Certify 88.3% 74.0± 0.4% 51.1± 0.6% 23.5± 0.3% - - - -

Adv-Train 97.2% 93.1± 0.2% 83.5± 0.3% 58.9± 0.4% 82.1% 67.8± 0.3% 47.1± 0.4% 23.4± 0.4%

TRADES 98.3% 94.8± 0.2% 81.8± 0.4% 57.7± 0.4% 83.4% 68.5± 0.3% 49.1± 0.5% 27.8± 0.5%

Our Bound - 98.2% 97.8% 97.2% - 83.5% 81.8% 80.0%

and the derived theoretical upper bound on intrinsic robustness. More specifically, ε = 0

corresponds to the standard classification. For empirically measured robust accuracy with

ε > 0, we report both the mean and the standard deviation over 10 repeated trials. For

computing our theoretical robust bounds, we set the risk threshold α = 0.015 for generated

MNIST and α = 0.15 for ImageNet10, to reflect the best natural accuracy achieved by the

considered robust classifiers.

Under most settings, there exists a large gap between the robust limit implied by our

theory and the best adversarial robustness achieved by state-of-the-art robust classifiers.

For instance, Adv-Train and TRADES only achieve less than 50% robust accuracy on the

generated ImageNet10 data with ε = 2.0, whereas the estimated robustness bound is as

high as 81.8%. The gap becomes even larger when we increase the perturbation strength

ε. In contrast to the previous theoretical results on artificial distributions, for these image

classification problems we cannot simply conclude from the intrinsic robustness bound that

adversarial examples are inevitable. This huge gap between the empirical robustness of the

best current image classifiers and the estimated theoretical bound suggests that either there

is a way to train better robust models or that there exist other explanations for the inherent

limitations of robust learning against adversarial examples.

71

0.0 0.1 0.2 0.3
Risk

0.72

0.80

0.88

0.96

Ro
bu

st
ne

ss

Adv-Train (unc)
TRADES (unc)
LP-Certify (unc)

Adv-Train (in)
TRADES (in)
LP-Certify (in)

(a) Generated MNIST (ε = 1.0)

0.0 0.1 0.2 0.3
Risk

0.45

0.60

0.75

0.90

Ro
bu

st
ne

ss

Adv-Train (unc)
TRADES (unc)
LP-Certify (unc)

Adv-Train (in)
TRADES (in)
LP-Certify (in)

(b) Generated MNIST (ε = 2.0)

0.0 0.1 0.2 0.3
Risk

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
ne

ss

Adv-Train (unc)
TRADES (unc)
LP-Certify (unc)

Adv-Train (in)
TRADES (in)
LP-Certify (in)

(c) Generated MNIST (ε = 3.0)

0.1 0.2 0.3 0.4 0.5 0.6
Risk

0.4

0.5

0.6

0.7

0.8

0.9

Ro
bu

st
ne

ss

Adv-Train (unc)
TRADES (unc)

Adv-Train (in)
TRADES (in)

(d) ImageNet10 (ε = 1.0)

0.1 0.2 0.3 0.4 0.5 0.6
Risk

0.4

0.5

0.6

0.7

0.8

0.9
Ro

bu
st

ne
ss

Adv-Train (unc)
TRADES (unc)

Adv-Train (in)
TRADES (in)

(e) ImageNet10 (ε = 2.0)

0.1 0.2 0.3 0.4 0.5 0.6
Risk

0.30

0.45

0.60

0.75

Ro
bu

st
ne

ss

Adv-Train (unc)
TRADES (unc)

Adv-Train (in)
TRADES (in)

(f) ImageNet10 (ε = 3.0)

Figure 4.2: Comparisons between the theoretical intrinsic robustness bound and the empiri-

cally estimated unconstrained/in-distribution adversarial robustness, denoted as “unc” and

“in” in the legend, of models produced during robust training on the generated data under

`2. In each subfigure, the dotted curve line represents the theoretical bound on intrinsic

robustness with horizontal axis denoting the different choice of α.

4.7.4 In-distribution Adversarial Robustness

In Section 4.7.3, we empirically show the unconstrained robustness of existing robust classi-

fiers is far below the intrinsic robustness upper bound implied by our theory for real distri-

butions. However, it is not clear whether the reason is that current robust training methods

are far from perfect, or that our derived upper bound is not tight enough due to the Lipschitz

relaxation step used for proving such bound. In this section, we empirically study the in-

distribution adversarial risk for a better characterization of the actual intrinsic robustness.

As shown in Remark 4.4.6, the in-distribution adversarial robustness of any classifier with

72

risk at least α can be regarded as a lower bound for the intrinsic robustness Robεµ(Fα). This

provides us a more accurate characterization of the intrinsic robustness bound and enables

better understanding of intrinsic robustness.

While there are many types of attack algorithms in the literature that can be used to

evaluate the unconstrained robustness of a given classifier in the image space, little has been

done in terms of how to evaluate the in-distribution robustness. In order to empirically evalu-

ate the in-distribution robustness, we straightforwardly formulate the following optimization

problem to find adversarial examples on the image manifold:

min
z
L(f(G(z, y)), y) s.t. ‖G(z, y)− x‖2 ≤ ε, (4.7.1)

where z ∈ Rd, x is the data sample in the image space to be attacked, f is the given classifier,

and L denotes the adversarial loss function. The goal of (4.7.1) is to optimize the latent

vector to lower the adversarial loss (make the robust classifier mis-classify some generated

images) while keeping the distance between the generated image and the test image within

ε perturbation limit. The key difficulty in solving (4.7.1) lies in the fact that we cannot

perform any type of projection operations as we are optimizing over z but the constraints

are imposed on the generated image space G(z, y). This prohibits the use of common attack

algorithms such as PGD. In order to solve (4.7.1), we transform (4.7.1) into the following

Lagrangian formulation:

min
z
‖G(z, y)− x‖2 + λ · L(f(G(z, y)), y). (4.7.2)

This formulation ignores the perturbation constraint of ε and tries to find the in-distribution

adversarial examples with the smallest possible perturbation. In order to evaluate the in-

trinsic robustness under a given ε perturbation budget, we need to further check all in-

distribution adversarial examples found and only count those with perturbations within the

ε constraint. Note that even though (4.7.2) provides us a feasible way to compute the in-

distribution robustness of a classifier, equation (4.7.2) itself could be hard to solve in general.

73

First, it is not obvious how to initialize z. Random initialization of z could lead to bad lo-

cal optima which prevent the optimizer from efficiently solving (4.7.2) or even finding a z

that could make G(z, y) close enough to x. Second, the hyper-parameter λ could be quite

sensitive to different test examples. Failing to choose a proper λ could also lead to failures

in finding in-distribution adversarial examples within ε constraint. In order to the tackle

the aforementioned challenges, we propose to solve another optimization problem for the

initialization of z and adopt binary search for the best choice of λ (see Appendix 4.6.2 for

more details of our implementation).

Figure 4.2 summarizes results from our empirical evaluations on intrinsic robustness of

the generated MNIST and ImageNet10 data. We evaluate the empirical robustness of three

types of robust training methods at different time points during the training procedure. To

be more specific, we evaluate the robustness of the intermediate models produced every 5

training epochs. For each method, we plot both the unconstrained robustness measured by

PGD attacks and the in-distribution robustness measured using the aforementioned strate-

gies. In addition, based on the local Lipschitz constants estimated in Section 4.7.2, we plot

the implied theoretical bound on intrinsic robustness as the dotted line curve for direct

comparison.

Compared with the intrinsic robustness upper bound (dotted curve line), the uncon-

strained robustness of various robustly-trained models is much smaller, and the gap between

them becomes more obvious as we increase ε. This aligns with our observations in Section

4.7.3. However under all the considered settings, the estimated in-distribution adversarial

robustness is much higher than the unconstrained one and closer to the theoretical upper

bound, especially for the ImageNet10 data. Note that according to Remark 4.4.6, the actual

intrinsic robustness Robεµ(Fα) should lie between the in-distribution robustness of any given

classifier with risk at least α and the derived intrinsic robustness upper bound. Observing

the big gap between the estimated in-distribution and unconstrained robustness of various

robustly trained models, one would expect the current state-of-the-art robust models are

74

still far from approaching the actual intrinsic robustness limit for real image distributions.

4.8 Conclusions

We studied the intrinsic robustness of typical image distributions using conditional gener-

ative models. By deriving theoretical upper bounds on intrinsic robustness and providing

empirical estimates on the generated image distributions, we observed a large gap between

the theoretical intrinsic robust limit and the best robustness achieved by state-of-the-art

robust classifiers. Our results imply that the inevitability of adversarial examples claimed in

recent theoretical studies, such as [FFF18a], do not apply to real image distributions, and

suggest that there is a need for deeper understanding on the intrinsic robustness limitations

for real data distributions.

75

CHAPTER 5

Do Wider Neural Networks Really Help Adversarial

Robustness?

5.1 Introduction

Researchers have found that Deep Neural Networks (DNNs) suffer badly from adversar-

ial examples [SZS+14]. By perturbing the original inputs with an intentionally computed,

undetectable noise, one can deceive DNNs and even arbitrarily modify their predictions on

purpose. To defend against adversarial examples and further improve model robustness, var-

ious defense approaches have been proposed [PMW+16, MC17, DAL+18, LLD+18, XWZ+18,

GRCVDM18, SKN+18, SKC18]. Among them, adversarial training [GSS15, MMS+18] has

been shown to be the most effective type of defenses [ACW18]. Adversarial training can be

seen as a form of data augmentation by first finding the adversarial examples and then train-

ing DNN models on those examples. Specifically, given a DNN classifier f parameterized by

θ, a general form of adversarial training with loss function L can be defined as:

argmin
θ

1

N

N∑
i=1

[
L(θ; xi, yi)︸ ︷︷ ︸

natural risk

+λ · max
x̂i∈B(xi,ε)

[
L(θ; x̂i, yi)− L(θ; xi, yi)

]
︸ ︷︷ ︸

robust regularization

]
, (5.1.1)

where {(xi, yi)ni=1} are training data, B(x, ε) = {x̂ | ‖x̂ − x‖p ≤ ε} denotes the `p norm

ball with radius ε centered at x, and p ≥ 1, and λ > 0 is the regularization parameter.

Compared with standard empirical risk minimization, the extra robust regularization term

encourages the data points within B(x, ε) to be classified as the same class, i.e., encourages

the predictions to be stable. The regularization parameter λ adjusts the strength of robust

76

regularization. When λ = 1, it recovers the formulation in [MMS+18], and when λ = 0.5,

it recovers the formulation in [GSS15]. Furthermore, replacing the loss difference in robust

regularization term with the KL-divergence based regularization recovers the formulation in

[ZYJ+19].

0 20 40 60 80 100
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

 V
al

ue

WideResNet-34-1
WideResNet-34-10

(a) Natural Risk

0 20 40 60 80 100
Epochs

0.1

0.2

0.3

0.4

Lo
ss

 V
al

ue

WideResNet-34-1
WideResNet-34-10

(b) Robust Regularization

Figure 5.1: Plots of both natural risk and robust regularization in (5.1.1). Two 34-layer

WideResNet [ZK16] are trained by TRADES [ZYJ+19] on CIFAR10 [KH+09] with widen

factor being 1 and 10.

One common belief in the practice of adversarial training is that, compared with the

standard empirical risk minimization, adversarial training requires much wider neural net-

works to achieve better robustness. [MMS+18] provided an intuitive explanation: robust

classification requires a much more complicated decision boundary, as it needs to handle the

presence of possible adversarial examples. However, it remains elusive how does the network

width affect model robustness. To answer this question, we first examine whether the larger

network width contributes to both the natural risk term and the robust regularization term

in (5.1.1). Interestingly, when tracing the value changes in (5.1.1) during adversarial train-

77

ing, we observe that the value of the robust regularization part actually gets worse on wider

models, suggesting that larger network width does not lead to better stability in predictions.

In Figure 5.1, we show the loss value comparison of two different wide models trained by

TRADES [ZYJ+19] with λ = 6 as suggested in the original paper. We can see that the

wider model (i.e., WideResNet-34-10) achieves better natural risk but incurs a larger value

on robust regularization. This motivates us to find out the cause of this phenomenon.

In this paper, we study the relationship between neural network width and model ro-

bustness for adversarially trained neural networks. Our contributions can be summarized as

follows:

1. We show that the model robustness is closely related to both natural accuracy and pertur-

bation stability, a new metric we proposed to characterize the strength of robust regular-

ization. The balance between the two is controlled by the robust regularization parameter

λ. With the same value of λ, the natural accuracy is improved on wider models while the

perturbation stability often worsens, leading to a possible decrease in the overall model

robustness. This suggests that proper tuning of λ on wide models is necessary despite

being extremely time-consuming, while directly using the fine-tuned λ on small networks

to train wider ones, as many people did in practice [MMS+18, ZYJ+19], may lead to

deteriorated model robustness.

2. Unlike previous understandings that there exists a trade-off between natural accuracy

and robust accuracy, we show that the real trade-off should between natural accuracy

and perturbation stability. And the robust accuracy is actually the consequence of this

trade-off.

3. To understand the origin of the lower perturbation stability of wider networks, we further

relate perturbation stability with the network’s local Lipschitznesss. By leveraging recent

results on neural tangent kernels [JHG18, AZLS19, ZCZG20, CG19, GCL+19], we show

that with the same value of λ, larger network width naturally leads to worse perturbation

78

stability, which explains our empirical findings.

4. Our analyses suggest that to unleash the potential of wider model architectures fully, one

should mitigate the perturbation stability deterioration and enlarge robust regularization

parameter λ for training wider models. Empirical results verified the effectiveness of

this strategy on benchmark datasets. In order to alleviate the heavy burden for tuning

λ on wide models, we develop the Width Adjusted Regularization (WAR) method to

transfer the knowledge we gain from fine-tuning smaller networks into the training of

wider networks and significantly save the tuning time.

Notation. For a d-dimensional vector x = [x1, ..., xd]
>, we use ‖x‖p = (

∑d
i=1 |xi|p)1/p with

p ≥ 1 to denote its `p norm. 1(·) represents the indicator function and ∀ represents the

universal quantifier.

5.2 Related Work

Adversarial attacks: Adversarial samples and their intriguing properties were first found

in [SZS+14]. Since then, tremendous works have been done exploring the origins of this

intriguing property of deep learning [GR15, KGB17, FFF18b, TPG+17, GMF+18, ZCGE20]

as well as designing more powerful attacks [GSS15, PMJ+16, MFF16, MMS+18, CW17,

CG20] under various attack settings. [ACW18] identified the gradient masking problem and

showed that many defense methods could be broken with a few changes on the attacker.

[CZS+17] proposed gradient-free black-box attacks and [IEA+18, IEM19, CZYG20] further

improved its efficiency. Recently, [IST+19, JBZB19] pointed out adversarial examples are

generated from the non-robust or invariant features hidden in the training data.

Defensive adversarial learning: Many defense approaches have been proposed aiming

to directly learn a robust model that is able to defend against adversarial attacks. [MMS+18]

proposed a general framework of robust training by solving a min-max optimization problem.

[WMB+19] proposed a new criterion to quantitatively evaluate the convergence quality.

79

[ZYJ+19] theoretically studied the trade-off between natural accuracy and robust accuracy

for adversarially trained models. [WZY+20] followed this framework and further improved its

robustness by differentiating correctly classified and misclassified examples. [CBG+17] solve

the problem by restricting the variation of outputs with respect to the inputs. [CRK19,

SLR+19, LAG+19] developed provably robust adversarial learning methods that have the

theoretical guarantees on robustness. Recent works in [WRK20, QMG+19] focus on creating

adversarial robust networks with faster training protocol. Another line of works focuses on

increasing the effective size of the training data, either by pre-trained models [HLM19] or by

semi-supervised learning methods [CRS+19, AUH+19, NMKM19]. Very recently, [WXW20]

proposed to further conduct adversarial weight perturbation aside from input perturbation to

obtain more robust models. [GQU+20] achieves further robust models by practical techniques

like stochastic weight averaging.

Robustness and generalization: Earlier works like [GSS15] found that adversarial

learning can reduce overfitting and help generalization. However, as the arm race be-

tween attackers and defenses keeps going, it is observed that strong adversarial attacks

can cause severe damage to the model’s natural accuracy [MMS+18, ZYJ+19]. Many works

[ZYJ+19, TSE+19, RXY+19] attempt to explain this trade-off between robustness and nat-

ural generalization, while some other works proposed different perspectives. [SST+18] con-

firmed that more training data has the potential to close this gap. [BLPR19] suggested

that a robust model is computationally difficult to learn and optimize. [ZCGE20] showed

that there is still a large gap between the currently achieved model robustness and the the-

oretically achievable robustness limit on real image distributions. Very recently, [RXY+20]

showed that this tradeoff stems from overparameterization and insufficient data in the lin-

ear regression setting. [YRZ+20] proved that both accuracy and robustness are achievable

through locally Lipschitz functions with separated data and the gap between theory and

practice is due to either failure to impose local Lipschitzness or insufficient generalization.

80

Figure 5.2: An illustration of the robust samples, correctly classified samples, and stable

samples in (5.3.1).

5.3 Empirical Study on Network Width and Adversarial Robust-

ness

In this section, we empirically study the relation between network width and robustness in

a more thorough way by first taking a closer look at the robust accuracy and the associated

robust examples.

5.3.1 Characterization of Robust Examples

Robust accuracy is the standard evaluation metric of robustness, which measures the ratio

of robust examples, i.e., examples that can still be correctly classified after adversarial at-

tacks. Previous empirical results suggest that wide models enjoy both better generalization

ability and model robustness. Specifically, [MMS+18] proposed to extend ResNet [HZRS16b]

architecture to WideResNet [ZK16] with a widen factor 10 for adversarial training on the

CIFAR10 dataset and found that the increased model capacity significantly improves both

81

0 20 40 60 80 100
Epochs

25%

30%

35%

40%

45%

50%

55%

Ro
bu

st
 A

cc
.

widen-factor-1
widen-factor-3
widen-factor-5
widen-factor-10

(a) Robust Accuracy

0 20 40 60 80 100
Epochs

40%

50%

60%

70%

80%

Na
tu

ra
l A

cc
.

widen-factor-1
widen-factor-3
widen-factor-5
widen-factor-10

(b) Natural Accuracy

0 20 40 60 80 100
Epochs

64%

66%

68%

70%

72%

74%

Pe
rtu

rb
at

io
n

St
ab

ilit
y

widen-factor-1
widen-factor-3
widen-factor-5
widen-factor-10

(c) Perturbation Stability

1 3 5 10
48%

50%

52%

54%

Ro
bu

st
 A

cc
.

1 3 5 10
76%
78%
80%
82%
84%

Na
tu

ra
l A

cc
.

1 3 5 10
Width

68%

69%

69%

70%

Pe
rtu

rb
at

io
n

St
ab

ilit
y

(d) Metrics vs. Width

Figure 5.3: Plots of (a) robust accuracy, (b) natural accuracy, and (c) perturbation stability

against training epochs for networks of different width. Results are acquired on CIFAR10

with the adversarial training method TRADES and architectures of WideResNet-34. Train-

ing schedule is the same as the original work [ZYJ+19]. We record all three metrics when

robust accuracy reaches the highest point and plot them against network width in (d).

robust accuracy and natural accuracy. Later works such as [ZYJ+19, WZY+20] follow this

finding and report their best result using WideResNet [ZK16] with widen factor 10.

However, as shown by our findings in Figure 5.1, wider models actually lead to worse

robust regularization effects, suggesting that wider models are not better in all aspects

and the relation between model robustness and network width may be more intricate than

what people understood previously. To understand the intrinsic relationship between model

robustness and network width, let us first take a closer look at the robust examples. Math-

ematically, robust examples can be defined as Srob :=
{
x : ∀x̂ ∈ B(x, ε), f(θ; x̂) = y

}
. Note

that by definition of robust examples, we have the following equation holds:

{
x : ∀x̂ ∈ B(x, ε), f(θ; x̂) = y

}︸ ︷︷ ︸
robust examples:Srob

=
{
x : f(θ; x) = y

}︸ ︷︷ ︸
correctly classified examples:Scorrect

∧
{
x : ∀x̂ ∈ B(x, ε), f(θ; x) = f(θ; x̂)

}
,︸ ︷︷ ︸

stable examples:Sstable

(5.3.1)

where ∧ is the logical conjunction operator. (5.3.1) suggests that the robust examples

are the intersection of two other sets: the correctly classified examples (examples whose

82

predictions are the correct labels) and the stable examples (examples whose predictions are

the same within the `p norm ball). A more direct illustration of this relationship can be

found in Figure 5.2. While the natural accuracy measures the ratio of correctly classified

examples |Scorrect| against the whole sample set, to our knowledge, there does not exist a

metric measuring the ratio of stable examples |Sstable| against whole the sample set. Here

we formally define this ratio as the perturbation stability, which measures the fraction of

examples whose predictions cannot be perturbed as reflected in the robust regularization

term in (5.1.1).

5.3.2 Evaluation of Perturbation Stability

We apply the TRADES [ZYJ+19] method, which is one of the strongest baselines in robust

training, on CIFAR10 dataset and plot the robust accuracy, natural accuracy, and pertur-

bation stability against the training epochs in Figure 5.3. Experiments are conducted on

WideResNet-34 [ZK16] with various widen factors. For each network, when robust accuracy

reaches the highest point, we record all three metrics and show their changing trend against

network width in Figure 5.3(d). From Figure 5.3(d), we can observe that the perturbation

stability decreases monotonically as the network width increases. This suggests that wider

models are actually more vulnerable to adversarial perturbation. In this sense, the increased

network width could hurt the overall model robustness to a certain extent. This can be seen

from Figure 5.3(d), where the robust accuracy of widen-factor 5 is actually slightly better

than that of widen-factor 10.

Aside from the relation with model width, we also gain other insights from the newly

proposed perturbation stability:

1. Unlike robust accuracy and natural accuracy, perturbation stability gradually gets worse

during the training process. This makes sense since an unlearned model that always

outputs the same label will have perfect stability, and the training process tends to break

83

this perfect stability. From another perspective, the role of robust regularization in (5.1.1)

is to encourage perturbation stability, such that the learned models cannot be easily

perturbed for the sake of model robustness.

2. Previous works [ZYJ+19, TSE+19, RXY+19] have argued that there exists a trade-off

between natural accuracy and robust accuracy. However, from (5.3.1), we can see that

robust accuracy and natural accuracy are coupled with each other, as a robust example

must first be correctly classified. When the natural accuracy goes to zero, the robust

accuracy will become zero. On the other hand, higher natural accuracy also implies

that more examples will likely become robust examples. Works including [RXY+20] and

[Nak19] also challenged this robust-natural trade-off [TSE+19] does not hold for some

cases. Therefore, we argue that the real trade-off here should be between natural accuracy

and perturbation stability. And the robust accuracy is actually the consequence of this

trade-off.

3. [RWK20a] has recently shown that adversarial training suffers from over-fitting as the

robust accuracy might get worse as training proceeds, which can be seen in Figure 5.3(a).

We found that the origin of this over-fitting is mainly attributed to the degenerate pertur-

bation stability (Figure 5.3(c)) rather than the natural risk (Figure 5.3(b)). Future works

of adversarial training may consider evaluating our perturbation stability to understand

how their method takes effects. Do they only help natural risk, or robust regularization,

or maybe both of them.

5.4 Why Larger Network Width Leads to Worse Perturbation

Stability?

Our empirical findings in Section 5.3 explains why the larger network width may not help

model robustness as it leads to worse perturbation stability. However, it still remains unclear

what is the underlying reasons for the negative correlation between the perturbation stability

84

and the model width. In this section, we show that larger network width naturally leads

to worse perturbation stability from a theoretical perspective. Specifically, we first relate

perturbation stability with the network’s local Lipschitzness and then study the relationship

between local Lipschitzness and the model width by leveraging recent studies on neural

tangent kernels [JHG18, AZLS19, CG19, ZCZG20, GCL+19].

5.4.1 Perturbation Stability and Local Lipschitzness

Previous works [HA17, WZC+18] usually relate local Lipschitzness with network robustness,

suggesting that smaller local Lipschitzness leads to robust models. Here we show that lo-

cal Lipshctzness is more directly linked to perturbation stability, through which it further

influences model robustness.

To get started, let us first recall the definition of Lipschitz continuity and its relation

with gradient norms.

Lemma 5.4.1 (Lipschitz continuity and gradient norm [PŽ06]). Let D ∈ Rd denotes a

convex compact set, f is a Lipschitz function if for all x,x′ ∈ D, it satisfies

|f(x′)− f(x)| ≤ L‖x′ − x‖p,

where L = supx∈D{‖∇f(x)‖q} and 1/p+ 1/q = 1.

Intuitively speaking, Lipschitz continuity guarantees that small perturbation in the input

will not lead to large changes in the function output. In the adversarial training setting where

the perturbation x′ can only be chosen within the neighborhood of x, we focus on the local

Lipschitz constant where we restrict x′ ∈ B(x, ε) and L = supx′∈B(x,ε){‖∇f(x′)‖q}.

Now suppose our neural network loss function is local Lipschitz, let x′ be our computed

adversarial example x̂ and x be the original example, the robust regularization term satisfies

max
x̂∈B(x,ε)

[
L(θ; x̂, y)− L(θ; x, y)

]
≤ L max

x̂∈B(x,ε)

[
‖x̂− x‖p

]
≤ εL, (5.4.1)

85

where the first inequality is due to local Lipschitz continuity and L = supx′∈B(x,ε){‖∇L(θ; x′, y)‖q}.

(5.4.1) shows that the local Lipschitz constant is directly related to the robust regularization

term, which can be used as a surrogate loss for the perturbation stability.

0 20 40 60 80 100
Epochs

50

100

150

200

250

300

350

Lo
ca

l L
ip

sc
hi

tz
 C

on
st

an
t

widen-factor-1
widen-factor-3
widen-factor-5
widen-factor-10

Figure 5.4: Plot of approximated local Lipschitz constant along the adversarial training tra-

jectory. Models are trained by TRADES [ZYJ+19] on CIFAR10 dataset using WideResNet

model. Wider networks in general have larger local Lipschitz constants.

5.4.2 Local Lipschitzness and Network Width

Now we study how the network width affects the perturbation stability via studying the

local Lipschitz constant.

Recently, a line of research emerges, which tries to theoretically understand the optimiza-

tion and generalization behaviors of over-parameterized deep neural networks through the

lens of the neural tangent kernel (NTK) [JHG18, AZLS19, CG19, ZCZG20]. By showing

the equivalence between over-parameterized neural networks and NTK in the finite width

setting, this type of analysis characterizes the optimization and generalization performance

of deep learning by the network architecture (e.g., network width, which we are particularly

interested in). Recently, [GCL+19] also analyzed the convergence of adversarial training for

over-parameterized neural networks using NTK. Here, we will show that the local Lipschitz

86

constant increases as the model width.

In specific, let m be the network width and H be the network depth. Define an H-layer

fully connected neural network as follows

f(x) = a>σ(W(H)σ(W(H−1) · · · σ(W(1)x) · · ·)),

where W(1) ∈ Rm×d, W(h) ∈ Rm×m, h = 2, . . . , H are the weight matrices, a ∈ Rm is the

output layer weight vector, and σ(·) is the entry-wise ReLU activation function. For nota-

tional simplicity, we denote by W = {W(H), . . . ,W(1)} the collection of weight matrices and

by W0 = {W(H)
0 , . . . ,W

(1)
0 } the collection of initial weight matrices. Following [GCL+19],

we assume the first layer and the last layer’s weights are fixed, and W is updated via pro-

jected gradient descent with projection set B(R) = {W : ‖W(h) −W
(h)
0 ‖F ≤ R/

√
m,h =

1, 2, . . . , H}. We have the following lemma upper bounding the input gradient norm.

Lemma 5.4.2. For any given input x ∈ Rd and `2 norm perturbation limit ε, if m ≥

max(d,Ω(H log(H))), R/
√
m+ε ≤ c/(H6(logm)3) for some sufficient small c > 0, then with

probability at least 1−O(H)e−Ω(m(R/
√
m+ε)2/3H), we have for any x′ ∈ B(x, ε) and Lipschitz

loss L, the input gradient norm satisfies

‖∇L(f(x′), y)‖2 = O
(√

mH
)
.

The proof of Lemma 5.4.2 can be found in the supplemental materials. Note that Lemma

5.4.2 holds for any x′ ∈ B(x, ε), therefore, the maximum input gradient norm in the ε-ball

is also in the order of O(
√
mH). Lemma 5.4.2 suggests that the local Lipschitz constant is

closely related to the neural network width m. In particular, the local Lipschitz constant

scales as the square root of the network width. This in theory explains why wider networks

are more vulnerable to adversarial perturbation.

In order to further verify the above theoretical result, we empirically calculate the local

Lipschitz constant. In detail, for commonly used `∞ norm threat model, we evaluate the

quantity supx′∈B(x,ε){‖∇L(θ; x′, y)‖1} along the adversarial training trajectory for networks

87

with different widths. Note that solving this maximization problem along the entire training

trajectory is computationally expensive or even intractable. Therefore, we approximate this

quantity by choosing the maximum input gradient `1-norm among the 10 attack steps for

each iteration. We plot this result in Figure 5.4 and we can see that larger network width

indeed leads to larger local Lipschitz constant values. This backup the theoretical results in

Lemma 5.4.2.

5.5 Experiments

From Section 5.4, we know that wider networks have worse perturbation stability. This

suggests that to fully unleash the potential of wide model architectures, we need to carefully

control the decreasing of the perturbation stability on wide models. One natural strategy to

do this is by adopting a larger robust regularization parameter λ in (5.1.1). In this section,

we conduct thorough experiments to verify whether this strategy can mitigate the negative

effects on perturbation stability and achieve better performances for wider networks.

It is worth noting that due to the high computational overhead of adversarial training on

wide networks, previous works [ZYJ+19] tuned λ on smaller networks (ResNet18 [HZRS16a])

and directly apply it on wider ones, neglecting the influence of model capacity. Our analysis

suggests that using the same λ for models with different widths is suboptimal, and one should

use a larger λ for wider models in order to get better model robustness.

5.5.1 Experimental Settings

We conduct our experiments on CIFAR10 [KH+09] dataset, which is the most popular

dataset in the adversarial training literature. It contains images from 10 different categories,

with 50k images for training and 10k for testing. Here we first conduct our experiments

using the TRADES [ZYJ+19] method. Networks are chosen from WideResNet [ZK16] with

different widen factor from 1, 5, 10. The batch size is set to 128, and we train each model for

88

100 epochs. The initial learning rate is set to be 0.1. We adopt a slightly different learning

rate decay schedule: instead of dividing the learning rate by 10 after 75-th epoch and 90-th

epoch in [MMS+18, ZYJ+19, WZY+20], we halve the learning rate for every epoch after the

75-th epoch, for the purpose of preventing over-fitting. For evaluating the model robustness,

we perform the standard PGD attack [MMS+18] using 20 steps with step size 0.007, and

ε = 8/255. Note that previous works [ZYJ+19, WZY+20] report their results using step size

0.003, which we found is actually less effective than ours. All experiments are conducted on

a single NVIDIA V100 GPU.

5.5.2 Model Robustness with Larger Robust Regularization Parameter

We first compare the robustness performance of models with different network width using

robust regularization parameters chosen from {6, 9, 12, 15, 18, 21} for TRADES [ZYJ+19].

Results of different evaluation metrics are presented in Table 5.1.

From Table 5.1, we can observe that the best robust accuracy for width-1 network is

achieved when λ = 9, yet for width-5 network, the best robust accuracy is achieved when

λ = 12, and for width-10 network, the best λ is 18. This suggests that wider networks

indeed need a larger robust regularization parameter to unleash the power of wide model

architecture fully. Our exploration also suggests that the optimal choice of λ for width-10

network is 18 under the same setting as [ZYJ+19], which is three times larger than the one

used in the original paper, leading to an average improvement of 2.25% on robust accuracy. It

is also worth noting that enlarging λ indeed leads to improved perturbation stability. Under

the same λ, wider networks have worse perturbation stability. This observation is rather

consistent with our empirical and theoretical findings in Sections 5.3 and 5.4. As stated in

Section 5.3.2, the real trade-off is between natural accuracy and perturbation stability rather

than robust accuracy. Also, the stability provides a clear hint for finding the best choice of

λ.

We further show that our strategy also applies to the original adversarial training [MMS+18],

89

Table 5.1: The three metrics under PGD attack with different λ on CIFAR10 dataset using

WideResNet-34 model. We test TRADES as well as our (generalized) adversarial training.

Each experiment is repeated three times. The highest robustness value for each column is

annotated with bold number. From the table, we can tell that: 1) The best choice of λ

increases as the network width increases; 2) For models with the same width, the larger λ

always leads to higher perturbation stability; 3) With the same λ, the larger width always

hurts perturbation stability, which backs up our claim in Section 5.4.2.

Robust Accuracy (%) Natural Accuracy (%) Perturbation Stability (%)

λ width-1 width-5 width-10 width-1 width-5 width-10 width-1 width-5 width-10

TRADES [ZYJ+19]

6 47.81±.09 54.45±.16 54.18±.39 76.26±.10 84.44±.06 84.90±.80 69.33±.05 68.27±.22 67.25±.39

9 48.01±.06 55.34±.17 55.29±.45 73.78±.30 82.77±.07 84.13±.28 71.92±.33 70.66±.26 69.08±.80

12 47.87±.06 55.61±.04 55.98±.13 72.29±.25 81.59±.20 83.59±.62 73.33±.16 72.00±.20 70.18±.67

15 47.15±.13 55.49±.15 55.96±.09 70.98±.24 80.69±.08 82.81±.19 73.79±.27 72.87±.03 70.87±.23

18 47.02±.13 55.43±.12 56.43±.17 70.13±.06 79.97±.12 82.21±.21 74.63±.11 73.77±.13 72.04±.30

21 46.26±.19 55.31±.20 56.07±.21 68.95±.38 79.25±.23 81.74±.12 75.17±.28 74.15±.38 72.11±.12

Adversarial Training [MMS+18]

1.00 47.99±.16 50.87±.42 50.12±.13 77.30±.01 85.82±.01 85.62±.81 66.48±.24 62.23±.42 61.62±.46

1.25 49.24±.12 53.10±.09 51.97±.46 74.04±.47 84.73±.22 86.25±.12 70.34±.54 65.24±.08 62.94±.35

1.50 49.11±.03 54.15±.03 53.25±.52 72.16±.25 84.35±.19 85.50±.57 72.10±.11 66.65±.06 64.51±.72

1.75 48.32±.63 54.36±.14 53.65±.80 70.66±.46 83.95±.30 85.52±.24 72.43±.40 67.31±.03 65.67±.10

2.00 47.44±.06 54.10±.15 55.78±.22 69.67±.09 83.49±.06 85.41±.13 72.73±.04 67.53±.01 65.71±.15

as shown by the bottom part of Table 5.1. Proper adaptations should be made to boost the

robust regularization for original (generalized) adversarial training. We show the detail of

the adaptations in the Appendix. As shown by the table, the large improvements on both

TRADES and adversarial training using our boosting strategy suggest that adopting larger

λ is crucial in unleashing the full potential of wide models, which is usually neglected in

practice.

90

Table 5.2: Robust accuracy (%) for different datasets, architectures and regularization pa-

rameters under various attacks. The highest results are evaluated for three times of randomly

started attack. Our approach of boosting regularization for wider models apply to all cases.

The value of w and k represents the network width.

Dataset Architecture
widen-factor/

growth-rate

regulari-

zation
PGD [MMS+18] C&W [CH20a] FAB [CH20a] Square [ACFH19]

CIFAR10

WideResNet-34

w = 1

λ = 6 47.92±.01 44.95±.03 44.31±.04 49.25±.02

λ = 12 47.91±.04 44.24±.02 43.71±.05 47.75±.02

λ = 18 46.92±.05 43.48±.03 43.00±.01 46.01±.05

w = 5

λ = 6 54.50±.03 53.14±.03 52.13±.05 56.79±.02

λ = 12 55.56±.04 53.28±.04 52.55±.02 56.88±.05

λ = 18 55.21±.02 52.64±.02 52.18±.01 56.31±.01

w = 10

λ = 6 54.23±.04 54.02±.03 52.68±.07 57.64±.03

λ = 12 55.80±.06 54.41±.01 53.57±.04 57.72±.10

λ = 18 56.29±.10 54.57±.02 54.06±.02 58.04±.05

DenseNet-BC-40

k = 12

λ = 6 44.79±.02 40.83±.03 40.07±.03 45.66±.05

λ = 12 44.66±.03 40.91±.03 39.88±.01 44.23±.04

λ = 18 44.38±.05 40.63±.03 39.42±.01 43.31±.04

k = 64

λ = 6 55.51±.01 52.76±.04 51.74±.02 57.24±.01

λ = 12 55.85±.03 52.98±.02 52.10±.03 57.34±.04

λ = 18 55.71±.03 52.83±.06 51.66±.04 55.21±.03

CIFAR100 WideResNet-34

w = 1

λ = 6 24.28±.02 20.24±.01 19.97±.02 22.91±.02

λ = 12 24.18±.04 20.15±.02 19.83±.01 22.78±.01

λ = 18 23.99±.03 20.01±.02 19.01±.01 22.04±.01

w = 5

λ = 6 30.73±.03 27.25±.05 26.01±.03 30.11±.03

λ = 12 31.57±.02 27.83±.02 27.08±.01 30.45±.01

λ = 18 31.38±.01 27.66±.04 26.94±.03 30.02±.01

w = 10

λ = 6 30.48±.02 27.98±.01 27.00±.11 30.45±.06

λ = 12 31.75±.09 29.25±.04 28.14±.03 31.23±.04

λ = 18 32.98±.03 29.83±.01 28.78±.02 32.02±.01

91

5.5.3 Experiments on Different Datasets and Architectures

To show that our theory is universal and is applicable to various datasets and architectures,

we conduct extra experiments on the CIFAR100 dataset and DenseNet model [HLvdMW17].

For the DenseNet models, the growth rate k denotes how fast the number of channels

grows and thus becomes a suitable measure of network width. Following the original paper

[HLvdMW17], we choose DenseNet-BC-40 and use models with different growth rates to

verify our theory.

Experimental results are shown in Table 5.2. For completeness, we also report the results

under four different attack methods and settings, including PGD [MMS+18], C&W [CW17],

FAB [CH20a], and Square [ACFH19]. We adopt the best λ from Table 5.1 and show the

corresponding performance on models with different widths. It can be seen that our strategy

of using a larger robust regularization parameter works very well across different datasets and

networks. On the WideResNet model, we observe clear patterns as in Section 5.5.2. On the

DenseNet model, although the best regularization λ is different from that of WideResNet,

wider models, in general, still require larger λ for better robustness. On CIFAR100, our

strategy raises the standard PGD score of the widest model from 30.48% to 32.98%.

92

5.5.4 Width Adjusted Regularization

Algorithm 8 Width Adjusted Regularization
1: Input: initial weights θ0, WAR parameter ζ, learning rate η, adversarial attack A

2: λ0 = 0, α = 0.1

3: for t = 1, . . . , T do

4: Get mini-batch {(x1, y1), . . . , (xm, ym)}

5: for i = 1, . . . ,m (in parallel) do

6: x̂i ← A(xi)

7: lnat ← L(θt;xi, yi)

8: lrob ← L(θt; x̂i, yi)− L(θt;xi, yi)

9: λt ← max(λt−1 + α · (ζ − (lnat/lrob), 0)

10: θt ← θt−1 − (η/m)
∑m

i=1∇θ[lnat + λt · lrob]

11: end for

12: end for

Our previous analysis has shown that larger model width may hurt adversarial robust-

ness without properly choosing the regularization parameter λ. However, exhaustively cross-

validating λ on wider networks can be extremely time-consuming in practice. To address

this issue, we investigate the possibility of automatically adjusting λ according to the model

width, based on our existing knowledge obtained in fine-tuning smaller networks, which is

much cheaper. Note that the key to achieving the best robustness is to well balance between

the natural risk term and the robust regularization term in (5.1.1). Although the regular-

ization parameter λ cannot be directly applied from thinner networks to wider networks (as

suggested by our analyses), the best ratio between the natural risk and the robust regular-

ization across different width models can be kept roughly the same. Following this idea, we

design the Width Adjusted Regularization (WAR) method, which is summarized in Algo-

rithm 8. Specifically, we first manually tune the best λ for a thin network and record the

ratio ζ between the natural risk and the robust regularization when the training converges.

93

Then, on training wider networks, we adaptively1 adjust λ to encourage the ratio between

the natural risk and the robust regularization to stay close to ζ. Let’s take an example here.

We first cross-validate λ on a thin network with widen factor 0.5 and identify the best λ = 6

and ζ = 30 with 18 GPU hours in total. Now we compare three different strategies for train-

ing wider models and summarize the results in Table 5.3: 1) directly apply λ = 6 with no

fine-tuning on the current model; 2) exhaustive manual fine-tuning from λ = 6.0 to λ = 21.0

(6 trials) as in Table 5.1; 3) our WAR strategy. Table 5.3 shows that the final λ generated

by WAR on wider models are consistent with the exhaustively tuned best λ. Compared to

the exhaustive manual tuning strategy, WAR achieves even slightly better model robustness

with much less overall training time (∼4 times speedup for WRN-34-10 model). On the

other hand, directly using λ = 6 with no tuning on the wide models leads to much worse

model robustness while having the same overall training time. This verifies the effectiveness

of our proposed WAR method.

5.5.5 Comparison of Robustness on Wide Models

Previous experiments in Section 5.5.2 and Section 5.5.3 have shown the effectiveness of our

proposed strategy on using larger robust regularization parameter for wider models. In order

to ensure that this strategy does not lead to any obfuscated gradient problem [ACW18] and

gives a false sense of robustness, we further conduct experiments using stronger attacks. In

particular, we choose to evaluate our best models on the AutoAttack algorithm [CH20b],

which is an ensemble attack method that contains four different white-box and black-box

attacks for the best attack performances.

We evaluate models trained with WAR, with or without extra unlabeled data [CRS+19],

and report the robust accuracy in Table 5.4. Note that the results of other baselines are

1the learning rate α for λt in Algorithm 8 is not sensitive and needs no extra tuning.

94

Table 5.3: Comparison of TRADES with different tuning strategies. N/A denotes no fine–

tuning of the current model (tuning on small networks only). Manual represents exhaustive

fine-tuning.

Model Tuning λ PGD GPU hours

WRN-34-1
N/A 6.00 47.81 12+18=30

Manual 9.00 48.01 12×6=72

WAR 9.12 48.06 12+18=30

WRN-34-5

N/A 6.00 54.45 20+18=38

Manual 12.00 55.61 20×6=120

WAR 14.37 55.62 20+18=38

WRN-34-10

N/A 6.00 54.18 32+18=50

Manual 18.00 56.43 32×6=192

WAR 16.43 56.46 32+18=50

directly obtained from the AutoAttack leaderboard2. From Table 5.4, we can see that our

WAR significantly improves the baseline TRADES models on WideResNet. This experiment

further verifies the effectiveness of our proposed strategy.

5.6 Proof of Lemma 5.4.2

Lemma 5.6.1 (Restatement of Lemma 5.4.2). For any given input x ∈ Rd and `2 norm

perturbation limit ε, ifm ≥ max(d,Ω(H log(H))), R√
m

+ε ≤ c
H6(logm)3

for some sufficient small

c, then with probability at least 1 − O(H)e−Ω(m(R/
√
m+ε)2/3H), we have for any x′ ∈ B(x, ε)

and Lipschitz loss L, the input gradient norm satisfies

‖∇L(f(x′), y)‖2 = O
(√

mH
)
.

Proof. The major part of this proof is inspired from [GCL+19]. Let D(h)(W,x) =

2https://github.com/fra31/auto-attack

95

https://github.com/fra31/auto-attack

Table 5.4: Robust accuracy (%) comparison on CIFAR10 under AutoAttack. † indicates

training with extra unlabeled data.

Methods Model AutoAttack

TRADES [ZYJ+19] WRN-34-10 53.08

Early-Stop [RWK20b] WRN-34-20 53.42

FAT [ZXH+20b] WRN-34-10 53.51

HE [PYD+20] WRN-34-20 53.74

WAR WRN-34-10 54.73

MART [WZY+20]† WRN-28-10 56.29

HYDRA [SWMJ20]† WRN-28-10 57.14

RST [CRS+19]† WRN-28-10 59.53

WAR† WRN-28-10 60.02

WAR† WRN-28-20 61.84

diag(1{W(h)σ(· · ·σ(W(1)x)) > 0}) be a diagonal sign matrix. Then the neural network

function can be rewritten as follows:

f(x) = a>D(H)(W,x)W(H) · · ·D(1)(W,x)W(1)x.

By the chain rule of the derivatives, the input gradient norm can be further written as

‖∇L(f(x′), y)‖2 = ‖L′(f(x′), y) · ∇f(x′)‖2

≤ ‖L′(f(x′), y)‖2 · ‖∇f(x′)‖2

= ‖L′(f(x′), y)‖2 · ‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1)‖2. (5.6.1)

Now let us focus on the term ‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1)‖2. Note that by

96

triangle inequality,

‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1)‖2

≤ ‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1) − a>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 ‖2

+ ‖a>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 ‖2. (5.6.2)

Note that W is updated via projected gradient descent with projection set B(R). Therefore,

by Equation (12) in Lemma A.5 of [GCL+19] we have

‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1) − a>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 ‖2

= O

((R√
m

+ ε
)1/3

H2
√
m logm

)
, (5.6.3)

and by Lemma A.3 in [GCL+19] we have

‖a>D(H)(W0,x)W
(H)
0 · · ·D(1)(W0,x)W

(1)
0 ‖2 = O(

√
mH). (5.6.4)

Combining (5.6.2), (5.6.3), (5.6.4), when R√
m

+ ε ≤ c
H6(logm)3

, we have

‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1)‖2 = O(
√
mH). (5.6.5)

By substituting (5.6.5) into (5.6.1) we have,

‖∇L(f(x′), y)‖2 ≤ ‖L′(f(x′), y)‖2 · ‖a>D(H)(W,x′)W(H) · · ·D(1)(W,x′)W(1)‖2 = O(
√
mH),

where the last inequality holds since ‖L′(f(x′), y)‖2 = O(1) due to the Lipschitz condition

of loss L. This concludes the proof.

5.7 The Experimental Detail for Reproducibility

All experiments are conducted on a single NVIDIA V100 GPU. It runs on the GNU Linux

Debian 4.9 operating system. The experiment is implemented via PyTorch 1.6.0. We adopt

the public released codes of PGD [MMS+18], TRADES [ZYJ+19], and RST [CRS+19] and

97

adapt them for our own settings, including inspecting the loss value of robust regularization

and the local Lipschitzness.

CIFAR100 contains 50k images for 100 classes, which means that it has much fewer images

for each class compared with CIFAR10. This makes the learning problem of CIFAR100 much

harder. For DenseNet architecture, we adopt the 40 layers model with the bottleneck design,

which is the DenseNet-BC-40. It has three building blocks, with each one having the same

number of layers. This is the same architecture tested in the original paper of DenseNet for

CIFAR10. For simplicity reason, we make the training schedule stay the same with the one

used for WideResNet, which is the decay learning rate schedule. As DenseNet gets deeper,

its channel number (width) will be multiplied with the growing rate k. Thus, as k gets larger,

the width of DenseNet also does. Although this mechanism slightly differs from the widen

factor of WideResNet, which amplify all layers with the same ratio.

5.8 The Exponential Decay Learning Rate

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 R
at

e

consine
step-wise
exp-decay

Figure 5.5: The changing trend leanring rate against training epochs for different learning

rate schedule.

To demonstrate the fact that the over-fitting problem all comes from perturbation sta-

98

bility in Section 3.2(3), we use the training schedule of the original work for Figure 2. Aside

from that, all the other experiments and plots are results under our proposed learning rate

schedule, which halve the learning rate for every epochs after the 75-th epoch and can pre-

vent over-fitting. Different learning rate schedules are shown in Figure 5, including the

step-wise [ZYJ+19], cosine [CRS+19], and our exp-decay learning rate schedule. Basically,

our schedule is an early-stop version of the baseline of TRADES [ZYJ+19], which skips the

small learning rate stage as soon as possible in the later stage. We found this schedule is the

most effective one when only training on the original CIFAR10. However, when combined

with the 500K unlabeled images from RST [CRS+19], we find that the over-fitting problem

is much less severe and cosine learning rate is the best choice.

5.9 Boosting the Original Adversarial Training

We further show that our strategy also applies to the original adversarial training [MMS+18].

Note that our generalized adversarial training framework (5.1.1) allow us to further boost the

robust regularization for original (generalized) adversarial training. The only caveat is that

in adversarial training formulation, the robust regularization term is not guaranteed to be

non-negative in practice3. To avoid this problem, we manually set the robust regularization

term in (5.1.1) to be non-negative by clipping the L(θ; x̂, y)−L(θ; x, y) term. Let us denote

x′ as the empirical maximization solution, the final loss function becomes:

argmin
θ

E(x,y)∼D

{
L(θ; x, y) + λ · max

x̂i∈B(xi,ε)

(
L(θ; x′, y)− L(θ; x, y), 0

)}
.

The bottom part of Table 5.1 shows the experimental results for boosting the robust

regularization parameter for (generalized) adversarial training models. We can observe that

the boosting strategy still works in this method, and wider models indeed require larger λ

3Successfully solving the inner maximization problem in (5.1.1) is supposed to guarantee that L(θ;x′, y) >
L(θ;x, y), however, in practice, there still exist a very little chance that L(θ;x′, y) < L(θ;x, y) due to failure
in solving the inner maximization problem at the beginning of the training procedure with limited steps.

99

to obtain the best robust accuracy.

5.10 Conclusions

In this paper, we studied the relation between network width and adversarial robustness in

adversarial training, a principled approach to train robust neural networks. We showed that

the model robustness is closely related to both natural accuracy and perturbation stability,

while the balance between the two is controlled by the robust regularization parameter

λ. With the same value of λ, the natural accuracy is better on wider models while the

perturbation stability actually becomes worse, leading to a possible decrease in the overall

model robustness. We showed the origin of this problem by relating perturbation stability

with local Lipschitzness and leveraging recent studies on the neural tangent kernel to prove

that larger network width leads to worse perturbation stability. Our analyses suggest that:

1) proper tuning of λ on wider models is necessary despite being extremely time-consuming;

2) practitioners should adopt a larger λ for training wider networks. Finally, we propose the

Width Adjusted Regularization, which significantly saves the tuning time for robust training

on wide models.

100

CHAPTER 6

Backward Smoothing for Efficient Robust Training

6.1 Introduction

Deep neural networks are well known to be vulnerable to adversarial examples [SZS+13],

i.e., a small perturbation on the original input can lead to misclassification or erroneous

prediction. Many defense methods have been developed to mitigate the disturbance of ad-

versarial examples [GRCVDM18, XWZ+18, SKN+18, MLW+18, SKC18, DAL+18, MMS+18,

ZYJ+19], among which robust training methods, such as adversarial training [MMS+18] and

TRADES [ZYJ+19], are currently the most effective strategies. Specifically, adversarial

training method [MMS+18] trains a model on adversarial examples by solving a min-max

optimization problem:

min
θ

1

n

n∑
i=1

max
x′i∈Bε(xi)

L(fθ(x
′
i), yi), (6.1.1)

where {(xi, yi)}ni=1 is the training dataset, f(·) denotes the logits output of the neural net-

work, Bε(xi) := {x : ‖x − xi‖∞ ≤ ε} denotes the ε-perturbation ball, and L is the cross-

entropy loss.

On the other hand, instead of directly training on adversarial examples, TRADES [ZYJ+19]

further improves model robustness with a trade-off between natural accuracy and robust ac-

curacy, by solving the empirical risk minimization problem with a robust regularization

term:

min
θ

1

n

n∑
i=1

[
L(fθ(xi), yi) + β max

x′i∈Bε(xi)
KL
(
s(fθ(xi)), s(fθ(x

′
i))
)]
, (6.1.2)

101

where s(·) denotes the softmax function, and β > 0 is a regularization parameter. The

goal of this robust regularization term (i.e., KL divergence term) is to ensure the outputs

are stable within the local neighborhood. Both adversarial training and TRADES achieve

good model robustness, as shown on recent model robustness leaderboards1 [CH20b, CG20].

However, a major drawback lies in that both are highly time-consuming for training, limiting

their usefulness in practice. This is largely due to the fact that both methods perform iter-

ative adversarial attacks (i.e., Projected Gradient Descent) to solve the inner maximization

problem in each outer minimization step.

Recently, [WRK20] shows that it is possible to use single-step adversarial attacks to solve

the inner maximization problem, which previously was believed impossible. The key ingre-

dient in their Fast AT approach is adding a random initialization step before the single-step

adversarial attack. This simple change leads to a reasonably robust model that outperforms

other fast robust training techniques, e.g., [SNG+19]. However, the simple change also

has its downsides: 1) random initialization makes single-step robust training possible yet

it can be quite unstable [LWJC20]; 2) compared to state-of-the-art robust training models

[MMS+18, ZYJ+19], Fast AT still lags behind on model robustness. Besides these, It also

remains a mystery in [WRK20] on why random initialization is empirically effective.

Although some attempts have been made trying to explain the role of random initializa-

tion and further improve Fast AT [AF20, LWJC20], in this work, we aim to understand the

role of random initialization in [WRK20] from a new perspective and further close the ro-

bustness gap between standard adversarial training and Fast Adversarial Training [WRK20].

Specifically, We propose a new principle towards understanding Fast AT - that random ini-

tialization can be viewed as performing randomized smoothing for better optimization of

the inner maximization problem. In order to further improve the model robustness of fast

robust training techniques, we propose a new initialization strategy, backward smoothing,

which strengthens the smoothing effect within the ε-perturbation ball. The resulting method

1https://github.com/fra31/auto-attack and https://github.com/uclaml/RayS.

102

https://github.com/fra31/auto-attack
https://github.com/uclaml/RayS

significantly improves both stability and model robustness over the single-step random ini-

tialization strategies. Moreover, even comparing with full-step robust training methods such

as TRADES [ZYJ+19], our proposed backward smoothing strategy achieves similar model

robustness while consuming much less training time (∼ 3x improvement with the same

training schedule).

The remainder of this paper is organized as follows: in Section 6.2, we briefly review

existing literature on adversarial attacks, robust training as well as randomized smoothing

technique. We present our new understanding of random initialization in Section 6.3. We

present our proposed method in Section 6.4. In Section 6.5, we empirically evaluate our

proposed method with other state-of-the-art baselines. Finally, we conclude this paper in

Section 6.8.

6.2 Related Work

There exists a large body of work on adversarial attacks and defenses. In this section, we

only review the most relevant work to ours.

Adversarial Attack The concept of adversarial examples was first proposed in [SZS+13].

Since then, many methods have been proposed, such as Fast Gradient Sign Method (FGSM)

[GSS15], and Projected Gradient Descent (PGD) [KGB16, MMS+18]. Later on, various

attacks [PMJ+16, MDFF16, CW17, ACW18, CZYG20, CH20a, SABB20, TSE20] were also

proposed for better effectiveness or efficiency.

There are also many attacks focused on different attack settings. [CZS+17] proposed a

black-box attack where the gradient is not available, by estimating the gradient via finite-

differences. Various methods [IEA+18, ADO20, MAS19, ACFH19, TSE20] have been de-

veloped to improve the query efficiency of [CZS+17]. Other methods [BRB18, CLC+19,

CSC+20] focused on the more challenging hard-label attack setting, where only the predic-

tion labels are available. On the other hand, there is recent work [CH20b, CG20] that aims

103

to accurately evaluate the model robustness via an ensemble of attacks or effective hard-label

attack.

Robust Training Many heuristic defenses [GRCVDM18, XWZ+18, SKN+18, MLW+18,

SKC18, DAL+18] were proposed when the concept of adversarial examples was first in-

troduced. However, they are later shown by [ACW18] as not truly robust. Adversarial

training [MMS+18] is the first effective method towards defending against adversarial exam-

ples. Various adversarial training variants [WMB+19, WZY+20, ZYJ+19, WXW20, SABB20,

ZXH+20a] were later proposed to further improve the adversarially trained model robust-

ness. A line of researches focus on studying various others factors affecting model robustness

such as early-stopping [RWK20a], model width [WCC+20], loss landscape [LSL+20] and

parameter tuning [PYD+21, GQU+20]. Another line of research utilizes extra information

(e.g., pre-trained models [HLM19] or extra unlabeled data [CRS+19, AUH+19]) to further

improve robustness.

Recently, many focus on improving the training efficiency of adversarial training based

algorithms, such as free adversarial training [SNG+19] and Fast AT [WRK20], which uses

single-step attack (FGSM) with random initialization. [LWJC20] proposed a hybrid approach

for improving Fast AT which is orthogonal to ours. [AF20] proposed a new regularizer

promoting gradient alignment for more stable training. Yet, it is not focused on closing the

robustness gap with state-of-the-arts.

Randomized Smoothing [DBW12] proposed the randomized smoothing technique

and proved variance-based convergence rates for non-smooth optimization. Later on, this

technique was applied to certified adversarial defenses [CRK19, SLR+19] for building robust

models with certified robustness guarantees. In this paper, we are not targeting certified

defenses. Instead, we use the randomized smoothing concept in optimization to explain Fast

AT.

104

6.3 Pros and Cons of Random Initialization

In this section, we analyze the pros and cons of random initialization in Fast AT [WRK20].

First, let us explain why random initialization in Fast AT is effective by looking into why

one-step AT would fail without random initialization.

6.3.1 What Caused the Failure of One-step AT Without Random Initialization?

[WRK20] has already shown that without random initialization, one-step AT would almost

surely fail in the training procedure due to catastrophic overfitting, i.e., the robust accuracy

w.r.t. a PGD adversarial suddenly drops to near 0 even on training data. However, it is

not clear what exactly cause this phenomenon. One natural conjecture is that perhaps the

one-step attack is not effective enough for adversarial training purposes. Recall that the

perturbation is obtained by solving the following inner maximization problem in adversarial

training:

δ∗ = argmax
δ∈Bε(0)

L(fθ(x + δ), y). (6.3.1)

To figure out whether the attack effectiveness is the key cause for the poor performance

of the plain one-step AT without random initialization, we conduct the following simple

experiments by observing the loss increment after attack in each training step, i.e.,

∆L = L(fθ(x + δ∗), y)− L(fθ(x), y),

where {(x, y)} is the clean training example and δ∗ is the solution from (6.3.1). Since (6.3.1)

aims at maximizing the loss value, this loss increment term ∆L should always be positive

along the entire training trajectory.

In Figure 6.1, we plot the loss increment ∆L for three different training trajectories: Fast

AT without random initialization, Fast AT with random initialization, as well as standard

AT. We observe that with the random initialization, Fast AT’s loss increment is quite close to

standard AT (although it still can go wrong from time to time). However, without random

105

10 20 30 40 50 60 70 80 90
#Epochs

4

3

2

1

0

Lo
ss

 in
cr

em
en

t a
fte

r a
tta

ck

Fast AT (w/o rand init)
Fast AT (w rand init)
AT

Figure 6.1: Loss increment after attack, i.e., L(fθ(x+δ∗), y)−L(fθ(x), y), along the training

trajectory for different methods on training ResNet-18 on CIFAR-10 dataset.

initialization, the one-step attack is more than just not effective: the loss value after the

attack (the inner maximization step) is actually worse than that of clean data. Since Fast

AT performs a one-step gradient ascent to solve (6.3.1), this suggests that the step size used

in Fast AT for solving (6.3.1) is actually too large. On the other hand, in order to effectively

defend against perturbations of magnitude ε with only one step attack budget, the attack

step size has to be chosen close to ε. This is actually quite intuitive: with a small attack

step size and only one step attack budget, the generated adversarial examples during the

training phase will never reach the magnitude of ε. Therefore, when facing perturbations

of the magnitude of ε during the testing phase, the model stands little chance defending

against them. This dilemma explains the cause of failure for one-step AT without random

initialization.

6.3.2 Why Random Initialization Helps?

Now let us talk about random initialization. It is well known from optimization theory

[BV04] that, for gradient descent-based algorithms, the maximum allowed step size (in order

to guarantee convergence) is directly related to the smoothness of the optimization objective

function. Specifically, the smoother the objective function is, the larger the gradient step size

106

is allowed. Here we argue that random initialization works just as the randomized smoothing

technique [DBW12], which makes the overall optimization objective more smooth via random

perturbations of the optimization variable2.

To see why random initialization works as randomized smoothing here, let us apply

randomized smoothing to (6.3.1):

δ∗ = argmax
δ+εξ∈Bε(0)

Eξ∼U(−1,1)L(fθ(x + δ + εξ), y), (6.3.2)

where ξ is the perturbation vector for randomized smoothing, and δ is the adversarial per-

turbation vector (initialized as zero). Suppose we solve (6.3.2) in a stochastic fashion (i.e.,

sample a random perturbation ξ instead of computing the expectation over ξ), and using

only one step gradient update. We can see that this reduces to the Fast AT formulation.

This suggests that Fast AT can be viewed as performing stochastic single-step attacks on

a randomized smoothed objective function which allows the use of a larger step size. This

explains why random initialization helps Fast AT as it makes the loss objective smoother

and thus easier to optimize with large step sizes such as ε.

It is worth noting that [AF20] also provided an explanation of random initialization: it

reduces the magnitude of the perturbation and thus the network becomes more linear and

fits better toward single-step attack. In fact, our argument is more general and can cover

theirs, because if the loss function is approximately linear, then it will be very smooth, i.e.,

the second-order term in the Taylor expansion is small. And their observations that Fast

AT using smaller attack step size can succeed without random initialization actually also

validate our analysis above.

2Instead of using only the gradient at the original iterate, randomized smoothing proposes to randomly
generate perturbed iterates and use their gradients for the optimization procedure. More details about the
randomized smoothing technique are provided in Appendix 6.6.

107

Table 6.1: Model robustness comparison among AT, Fast AT, TRADES and Fast TRADES,

using ResNet-18 model on CIFAR-10 dataset.

Method Nat (%) Rob (%)

AT 82.36 51.14

Fast AT 84.79 46.30

TRADES 82.33 52.74

Fast TRADES 83.39 46.98

6.3.3 Drawbacks of Random Initialization

Although the random initialization effectively helps Fast AT avoid the catastrophic overfit-

ting from happening in the most time, it still exposes several major weaknesses.

Performance Stability Fast AT can still be highly unstable (i.e., catastrophic over-

fitting can still occur from time to time). This is also observed in [LWJC20]. In Figure

6.1, we also observe that Fast AT could still fail in solving the inner maximization problem

(especially when using a drastically large attack step size). It can be imagined that with

some bad luck, the training procedure of Fast AT could still fall apart even with random

initialization.

Unfortunately, Fast AT performs better with a larger attack step size. We run Fast AT

on CIFAR-10 using ResNet-18 model [HZRS16a] for 10 times3. For the best attack step size

of 10/255 (according to [WRK20]), the best run achieves 46.30% robust accuracy, however,

the average is only 42.11% since many runs actually failed.

Potential for Further Robustness Improvement Fast AT uses standard adversarial

training [MMS+18] as the baseline, and can obtain similar robustness performance. However,

later work [RWK20a] shows that adversarial training can cause the overfitting problem, while

3Here we exclude the additional acceleration techniques in [WRK20] and apply standard piecewise learning
rate decay as in [MMS+18, ZYJ+19].

108

early stopping can largely improve robustness. [ZYJ+19] further achieves even better model

robustness that is much higher than what Fast AT obtains. From Table 6.1, we observe that

there exists a 6% robust accuracy gap between Fast AT and the best-performing TRADES

model even for the best run over 10 repeats. This indicates that Fast AT is still far from

optimal, and there is still big room for further robustness improvement.

6.4 Proposed Approaches

6.4.1 A Naive Try: Randomized Smoothing for TRADES

In the previous section, we show that objective smoothness plays a key role in the success

of single-step adversarial training. Note the TRADES [ZYJ+19] method naturally promotes

the objective smoothness in its training formula (by minimizing the output discrepancy of

input examples within the perturbation ball). From this perspective, it should be more

fit to single-step robust training than AT. What’s more, as shown in Table 6.1, TRADES

enjoys better model robustness compared with standard AT. Therefore we first try to apply

randomized smoothing to TRADES and see if this leads to better robust training method.

Let us recall the inner maximization formulation for TRADES:

max
δ∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x + δ))

)
. (6.4.1)

Similarly, we can smooth this objective and solve the following objective instead:

max
δ∈Bε(0)

Eξ∼U(−1,1)KL
(
s(fθ(x)), s(fθ(x + δ + εξ))

)
. (6.4.2)

This leads to the same adversarial example formulation as using random initialization

and then performing single-step projected gradient ascent. We refer to this strategy as Fast

TRADES. We experimentally test Fast TRADES by training the ResNet-18 model on the

CIFAR-10 dataset. From Table 6.1, we can see that Fast TRADES indeed achieves better

performance than Fast AT. Yet the improvement is not significant and still falls far behind

109

o

x
x

x
x

x

x

Input Space Output Space

o++
+
+

+
+Randomized Smoothing

Stronger Randomized

Smoothing o

x
x

x

x

x

x

o+
+

+

+

++

Backward Smoothing o

+

+
+

+ +

+

o

x
x

x
x

x

x

o+

++

+
+

+

x/x : random perturbation in input/output space

+/+: computed perturbation in input/output space

Figure 6.2: A sketch of our proposed method.

the original TRADES method. This inspires us to study how to design a better strategy for

more significant improvements.

According to our previous analysis in Section 6.3, one way to further improve the robust

training performances is to further strengthen the smoothing effect. However, unlike the

general randomized smoothing setting, one of the special constraints in the adversarial setting

is that random perturbation on the input vector is subject to the ε-ball constraint, therefore

cannot be too large. This means that we cannot further increase the smoothing effect by

simply using larger random perturbations.

6.4.2 Backward Smoothing

Now we introduce our proposed method to address the above issue. The goal is to further

boost the smoothing effect of randomized smoothing without violating the ε-perturbation

110

constraint. Note that if we are allowed to use larger random perturbations, we expect that

KL(s(fθ(x)), s(fθ(x + uξ))) will also be larger, meaning that the neural network output of

the random initialization fθ(x +uξ) should be more different from the original output fθ(x)

(as shown in Figure 6.2). This inspires us to generate the initialization point in a backward

fashion. Specifically, let us denote the input domain x ∈ Rd as the input space, and their

corresponding neural network output fθ(x) ∈ Rc as the output space, where c is the number

of classes for the classifier. We first generate random points in the output space just as

randomized smoothing does in the input space, i.e., fθ(x) + γψ, where ψ ∼ U(−1, 1) is the

random variable and γ is a small number. Then we find the corresponding input perturbation

in a backward fashion and use it as our initialization. An illustrative sketch of our proposed

method is provided in Figure 6.2.

Now we formalize our proposed method in mathematical language. The key step in our

proposed method is to find the input perturbation ξ such that:

fθ(x + ξ) = fθ(x) + γψ. (6.4.3)

In order to find the best ξ∗ to satisfy (6.4.3), we turn to solve the following problem:

ξ∗ = argmin
ξ∈Bε(0)

KL
(
s(fθ(x) + γψ), s(fθ(x + ξ))

)
. (6.4.4)

Note that ξ is initialized as a zero vector. For the sake of computational efficiency, we solve

(6.4.4) using single-step PGD in practice. Then, similar to [WRK20], we use single-step

gradient update for the inner maximization problem:

δ∗ = argmax
δ+ξ∗∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x + δ + ξ∗))

)
. (6.4.5)

Finally, we update the neural network parameter θ using stochastic gradients at the adver-

sarial point x + ξ∗ + δ∗. A summary of our proposed algorithm is provided in Algorithm

94.

4[TSE20] proposed an attack which also samples diversified points in the output space. Yet we argue that
the formulation and the intuition are quite different. More details are provided in the Appendix.

111

Algorithm 9 Backward Smoothing

1: input: The number of training iterations T , number of adversarial perturbation steps

K, maximum perturbation strength ε, training step size η, adversarial perturbation step

size α, regularization parameter β > 0;

2: Random initialize model parameter θ0

3: for t = 1, . . . , T do

4: Sample mini-batch {xi, yi}mi=1 from training set

5: Obtain ξ∗ by solving (6.4.4)

6: Obtain δ∗ by solving (6.4.5)

7: θt = θt−1 − η/m ·
∑m

i=1∇θ
[
L(fθ(xi), yi) + β ·KL

(
s(fθ(xi)), s(fθ(xi + ξ∗ + δ∗))

)]
8: end for

10 20 30 40 50
Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

He
ss

ia
n

M
ax

im
um

 E
ig

en
va

lu
e

Orignal Examples
Random Perturbed Examples
Backward Smoothed Examples

Figure 6.3: Hessian maximum eigenvalue comparison against training epochs.

Figure 6.3 shows the maximum eigenvalue of Hessian of the loss function at the origi-

nal examples, randomly perturbed examples, and backward smoothed examples along the

training trajectory until Fast TRADES obtains its best robustness (the 51st epoch). We ob-

serve that during the model training process, the randomly perturbed examples have overall

smaller Hessian maximum eigenvalue5 than that of original examples. This suggests that ran-

dom smoothing indeed makes the loss function smoother. Moreover, the Hessian maximum

eigenvalue under backward smoothing is much smaller than that under random smoothing,

5The smaller Hessian maximum eigenvalue, the smoother the loss function is.

112

showing the insufficiency of the random smoothing techniques and the advantages of our

proposed backward smoothing method.

6.5 Experiments

In this section, we empirically evaluate the performance of our proposed method. We first

compare our proposed method with other robust training baselines on CIFAR-10, CIFAR100

[KH+09] and Tiny ImageNet [DDS+09]6 datasets. We also provide multiple ablation studies

as well as robustness evaluation with state-of-the-art adversarial attack methods to validate

that our proposed method provides effective robustness improvement.

6.5.1 Experimental Setting

Following previous work on robust training [MMS+18, ZYJ+19, WRK20], we set ε = 0.031

for all three datasets. In terms of model architecture, we adopt standard ResNet-18 model

[HZRS16a] for both CIFAR-10 and CIFAR-100 datasets, and ResNet-50 model for Tiny

ImageNet. We follow the standard piecewise learning rate decay schedule as used in [MMS+18,

ZYJ+19] and set decaying point at 50-th and 75-th epochs. The starting learning rate for

all methods is set to 0.1, the same as previous work [MMS+18, ZYJ+19]. For all methods,

we tune the models for their best robustness performances (making sure the performance

gain is not coming from exploiting the trade-off from natural accuracy). For Adversarial

Training and TRADES methods, we adopt 10-step iterative PGD attack with a step size

2/255 for both. For our proposed method, we set the backward smoothing parameter γ = 1.

For robust accuracy evaluation, we typically adopt 100-step PGD attack with the step size

2/255. To ensure the validity of the model robustness improvement is not because of the ob-

fuscated gradient [ACW18], we further test our method with current state-of-the-art attacks

6We do not test on ImageNet dataset mainly due to that TRADES does not perform well on ImageNet
as mentioned in [QMG+19].

113

Table 6.2: Performance comparison on CIFAR-10 using ResNet-18 model.

Method Nat (%) Rob (%) Time (m)

AT 82.36 51.14 430

Fast AT 84.79 46.30 82

Fast AT (2-step) 83.21 49.91 127

Fast AT (GradAlign) 84.37 46.99 402

TRADES 82.33 52.74 482

Fast TRADES 83.39 46.98 126

Fast TRADES (2-step) 83.51 48.78 164

Backward Smoothing 82.38 52.50 164

[CH20b, CG20]. All the experiments are conducted on RTX2080Ti GPU servers.

6.5.2 Performance Comparison with Robust Training Baselines

We compare the adversarial robustness of Backward Smoothing against standard Adversarial

Training [MMS+18], TRADES [ZYJ+19], as well as fast training methods such as Fast AT

[WRK20] and our naive baseline Fast TRADES. We also compare with recently proposed

Fast AT+ [LWJC20]7 and GradAlign [AF20]8. Since our proposed backward smoothing

initialization utilizes an extra step of gradient back-propagation, we also compare with Fast

AT, Fast TRADES using 2-step attack for fair comparison.

Table 6.2 shows the performance comparison on the CIFAR-10 dataset using ResNet-18

model. Our Backward Smoothing method significantly closes the robustness gap between

state-of-the-art robust training methods, achieving high robust accuracy that is almost as

7Since [LWJC20] does not have code released yet, we only compare with theirs in the same setting
(combined with acceleration techniques) using reported numbers.

8We only compare with [AF20] in Tables 6.2, 6.3, 6.7 as its double backpropagation formulation requires
much larger memory usage.

114

Table 6.3: Performance comparison on CIFAR-100 using ResNet-18 model.

Method Nat (%) Rob (%) Time (m)

AT 55.22 28.53 428

Fast AT 60.35 24.64 83

Fast AT (2-step) 56.00 27.84 128

Fast AT (GradAlign) 58.38 26.26 402

TRADES 56.99 29.41 480

Fast TRADES 60.26 21.33 126

Fast TRADES (2-step) 58.81 25.47 165

Backward Smoothing 56.96 30.50 164

Table 6.4: Performance comparison on Tiny ImageNet dataset using ResNet-50 model.

Method Nat (%) Rob (%) Time (m)

AT 44.50 21.34 2666

Fast AT 49.58 18.56 575

Fast AT (2-step) 45.74 20.94 817

TRADES 47.02 21.04 2928

Fast TRADES 50.36 17.22 805

Fast TRADES (2-step) 46.92 19.26 1045

Backward Smoothing 46.68 22.32 1035

good as TRADES, while consuming much less (∼3x) training time. Compared with Fast

AT, Backward Smoothing typically costs twice the training time, yet achieving significantly

higher model robustness. Notice that the GradAlign method indeed slightly improves upon

Fast AT, but it also costs much more training time due to its double backpropagation

formulation, making it less competitive to our Backward Smoothing method. Our method

also achieves a large performance gain against Fast TRADES. Note that even compared with

Fast TRADES using 2-step attack and Fast AT using 2-step attack, which costs about the

115

same training time as ours, our method still achieves a large improvement.

Table 6.3 shows the performance comparison on CIFAR-100 using ResNet-18 model. We

can observe patterns similar to the CIFAR-10 experiments. Backward Smoothing achieves

slightly higher robustness compared with TRADES, while costing much less training time.

Compared with Fast TRADES using 2-step attack and Fast AT using 2-step attack, our

method also achieves a large robustness improvement with roughly the same training cost.

Table 6.4 shows that on Tiny ImageNet using the ResNet-50 model, Backward Smooth-

ing also achieves significant robustness improvement over other single-step robust training

methods.

6.5.3 Evaluation with State-of-the-art Attacks

To ensure that Backward Smoothing does not cause obfuscated gradient problem [ACW18]

or presents a false sense of security, we further evaluate our method using state-of-the-

art attacks, by considering two evaluation methods: (i) AutoAttack [CH20b], which is an

ensemble of four diverse (white-box and black-box) attacks (APGD-CE, APGD-DLR, FAB

[CH20a] and Square Attack [ACFH19]) to reliably evaluate robustness; (ii) RayS attack

[CG20], which only requires the prediction labels of the target model (completely gradient-

free) and is able to detect falsely robust models. It also measures another robustness metric,

average decision boundary distance (ADBD), defined as examples’ average distance to their

closest decision boundary. ADBD reflects the overall model robustness beyond ε constraint.

Both evaluations provide online robustness leaderboards for public comparison with other

models.

We train our method with WideResNet-34-10 model [ZK16] and evaluate via AutoAt-

tack and RayS. Table 6.5 shows that under state-of-the-art attacks, Backward Smoothing

still holds high robustness comparable to TRADES. Specifically, in terms of robust accu-

racy, Backward Smoothing is only 2% behind TRADES, while significantly higher than

AT [MMS+18] and Fast AT [WRK20]. In terms of ADBD metric, Backward Smoothing

116

Table 6.5: Performance comparison with state-of-the-art robust models on CIFAR-10 eval-

uated by AutoAttack and RayS.

Method AutoAttack RayS

Metric Rob (%) Rob (%) ADBD

AT (original, no early-stop) 44.04 50.70 0.0344

AT 49.10 54.00 0.0377

Fast AT 43.21 50.10 0.0334

TRADES 53.08 57.30 0.0403

Fast TRADES 43.84 52.05 0.0348

Fast TRADES (2-step) 48.20 54.43 0.0383

Backward Smoothing 51.13 55.08 0.0403

achieves the same level of overall model robustness as TRADES, much higher than the other

two methods. Note that the gap between Backward Smoothing and TRADES is larger than

that in Table 6.2. We want to emphasize that this is not mainly due to the stronger attacks9

but the fact that we are using larger model architectures. Intuitively speaking, larger models

have larger capacities and may need stronger attacks to reach some dark spot in the area.

6.5.4 Stability and Sensitivity

In this subsection, we also study the stability and sensitivity of our proposed Backward

Smoothing method.

Training Stability We first take a look into the training stability. In Section 6.3 we

have shown that Fast AT can still be highly non-stable in spite of its decent robustness

performances. Figure 6.4 shows that Backward Smoothing is much more stable than Fast

9We also tested the ResNet-18 models in Table 6.2 with AutoAttack and the gap between Backward
Smoothing and TRADES is as small as 0.5%.

117

Fast AT Fast TRADES Backward Smoothing

40

42

44

46

48

50

52

Ro
bu

st
 A

cc
ur

ac
y

(%
)

39.80

46.72

51.34

42.11

46.62

51.32

Median
Mean

Figure 6.4: Training stability of different fast robust training methods.

AT with much smaller variances. Compared with Fast TRADES, Backward Smoothing

has achieved similar variance while obtaining much higher average model robustness. This

demonstrates the superiority of our Backward Smoothing method on training stability.

Sensitivity of Attack Step Size We also take a look at the sensitivity of our Backward

Smoothing method with various attack step sizes. From Table 6.6, we can observe that

unlike Fast AT, which typically enjoys better robustness with larger step size (until it is too

large and failed in training), Backward Smoothing achieves similar robustness with a slightly

smaller step size, while the best performance is obtained with step size 8/255. This suggests

that we do not need to pursue overly-large step size for better robustness as in Fast AT. This

also helps avoid the stability issue in Fast AT.

6.5.5 Combining with Other Acceleration Techniques

Aside from random initialization, [WRK20] also adopts two additional acceleration tech-

niques to further improve training efficiency with a minor sacrifice on robustness perfor-

mance: cyclic learning rate decay schedule [Smi17] and mix-precision training [MNA+17].

We show that such strategies are also applicable to Backward Smoothing. Table 6.7 provides

the results when these acceleration techniques are applied. We can observe that both work

118

Table 6.6: Sensitivity analysis of the attack step size on the CIFAR-10 and CIFAR-100

datasets using ResNet-18 model.

Dataset CIFAR-10 CIFAR-100

Step Size Nat (%) Rob (%) Nat (%) Rob (%)

6/255 81.38 52.38 56.83 29.78

7/255 81.96 52.40 56.61 29.82

8/255 82.38 52.50 56.96 30.50

9/255 82.47 52.16 56.45 29.35

10/255 81.71 52.04 60.85 24.21

11/255 67.43 42.45 40.40 20.92

12/255 65.56 41.12 37.90 18.83

universally well for all methods, significantly reducing training time (in comparison with

Table 6.2). Yet it does not alter the conclusions that Backward Smoothing achieves similar

robustness to TRADES with much less training time. Also when compared with the recent

proposed Fast AT+ method, Backward Smoothing achieves higher robustness and training

efficiency. Note that the idea of the Fast AT+ method is orthogonal to ours and we can also

adopt such a hybrid approach for further reduction on training time.

6.6 Randomized Smoothing

Randomized smoothing technique [DBW12] was originally proposed for solving convex non-

smooth optimization problems. It is based on the observations that random perturbation of

the optimization variable can be used to transform the loss into a smoother one. Instead of

using only L(x) and ∇L(x) to solve

minL(x),

119

Table 6.7: Performance comparison on CIFAR-10 using ResNet-18 model combined with

cyclic learning rate and mix-precision training.

Method Nat (%) Rob (%) Time (m)

AT 81.48 50.32 62

Fast AT 83.26 45.30 12

Fast AT+ 83.54 48.43 28

Fast AT (GradAlign) 81.80 46.90 54

TRADES 79.64 50.86 88

Fast TRADES 84.40 45.96 18

Fast TRADES (2-step) 81.37 47.56 24

Backward Smoothing 78.76 50.58 24

randomized smoothing turns to solve the following objective function, which utilizes more

global information from neighboring areas:

minEξ∼U(−1,1)L(x + uξ), (6.6.1)

where ξ is a random variable, and u is a small number. [DBW12] showed that randomized

smoothing makes the loss in (6.6.1) smoother than before. Hence, even if the original loss L

is non-smooth, it can still be solved by stochastic gradient descent with provable guarantees.

6.7 Additional Ablation Studies

In this section, we conduct additional ablation studies to provide a comprehensive view to

the Backward Smoothing method.

120

6.7.1 Does Backward Smoothing alone works?

To further understand the role of Backward Smoothing in robust training, we conduct exper-

iments on using Backward Smoothing alone, i.e., only use Backward Smoothing initialization

but do not perform gradient-based attack at all. Table 6.8 and Table 6.9 show the exper-

imental results. We can observe that Backward Smoothing as an initialization itself only

provides a limited level of robustness (not as good as a single-step attack). This is reason-

able since the loss for Backward Smoothing does not directly promote adversarial attacks.

Therefore it only serves as an initialization to help single-step attacks better solve the inner

maximization problems.

Table 6.8: Performance of using Backward

Smoothing alone on CIFAR-10 dataset using

ResNet-18 model.

Method Nat (%) Rob (%)

Fast AT 84.79 46.30

Fast TRADES 84.80 46.25

Backward Smoothing Alone 69.87 39.26

Table 6.9: Performance of using Backward

Smoothing alone on CIFAR-100 dataset us-

ing ResNet-18 model.

Method Nat (%) Rob (%)

Fast AT 60.35 24.64

Fast TRADES 60.22 19.40

Backward Smoothing Alone 43.47 18.51

6.7.2 More Experiments for Backward Smoothing using Multiple Random Points

We also conducted extra experiments using multiple random points for the Backward Smooth-

ing method. As can be seen from Table 6.10, a single random point already leads to similar

performance as multiple random points but saves more time. Note that our target is to

improve the efficiency of adversarial training, therefore, we only use a single random point

for randomized smoothing in our proposed method.

121

Table 6.10: Sensitivity analysis on the number of random points used in Backward Smoothing

on the CIFAR-10 dataset using ResNet-18 model.

RandPoints Rob (%) Time (m)

1 52.50 164

2 52.67 204

5 52.70 316

10 52.73 510

Table 6.11: Sensitivity analysis of γ on the CIFAR-10 and CIFAR-100 datasets using

ResNet-18 model.

Dataset CIFAR-10 CIFAR-100

γ Nat (%) Rob (%) Nat (%) Rob (%)

0.1 82.43 52.13 56.62 29.34

0.5 82.53 52.34 56.95 29.85

1.0 82.38 52.50 56.96 30.50

2.0 82.29 52.42 56.16 29.88

5.0 81.50 52.32 56.10 429.83

6.7.3 Ablation Studies

We also perform a set of ablation studies to provide a more in-depth analysis on Backward

Smoothing.

Effect of γ We analyze the effect of γ in Backward Smoothing by fixing β and the attack

step size. Table 6.11 summarizes the results. In general, γ does not have a significant effect

on the final model robustness; however, using too large or too small γ would lead to slightly

worse robustness. Empirically, γ = 1 achieves the best performance on both datasets.

122

Table 6.12: Sensitivity analysis of β on CIFAR-10 and CIFAR-100 datasets using ResNet-18

model.

Dataset CIFAR-10 CIFAR-100

β Nat (%) Rob (%) Nat (%) Rob (%)

2.0 84.87 46.46 62.22 24.83

4.0 84.58 50.01 59.03 27.58

6.0 83.96 51.65 57.46 28.66

8.0 82.48 51.88 57.51 29.38

10.0 82.38 52.50 56.96 30.50

12.0 81.63 52.38 56.46 29.95

The Effect of β We conduct the ablation studies to figure out the effect of β in the

Backward Smoothing method by fixing γ and the attack step size. Table 6.12 shows the

experimental results. Similar to what β does in TRADES [ZYJ+19], here in Backward

Smoothing, β still controls the trade-off between natural accuracy and robust accuracy. We

observe that with a larger β, natural accuracy keeps decreasing and the best robustness is

obtained with β = 10.0.

6.7.4 Experiments on different perturbation strength

We also conducted experiments to compare the performance in other ε settings. Specifically,

we compare the ε = 4/255 case and ε = 12/255 case in Table 6.13 and 6.14. Both tables

again show the advantages of our Backward Smoothing algorithm over other baselines.

6.7.5 PGD based Backward Smoothing

We also wonder whether Backward Smoothing is compatible with Adversarial Training, i.e.,

can we use a similar initialization strategy for improving Fast AT? Following the same idea

123

Table 6.13: Performance comparison on CIFAR-10 using ResNet-18 model (ε = 4/255).

Method Nat (%) Rob (%) Time (m)

AT 88.43 68.85 428

Fast AT 89.40 65.80 90

Fast AT (2-step) 89.50 66.89 129

Fast AT (GradAlign) 89.15 65.78 401

TRADES 88.35 70.05 478

Fast TRADES 89.20 66.71 136

Fast TRADES (2-step) 88.73 67.86 174

Backward Smoothing 87.22 69.67 165

Table 6.14: Performance comparison on CIFAR-10 using ResNet-18 model (ε = 12/255).

Method Nat (%) Rob (%) Time (m)

AT 72.92 39.56 433

Fast AT 64.06 26.14 90

Fast AT (2-step) 77.95 33.68 127

Fast AT (GradAlign) 76.02 33.03 400

TRADES 76.07 39.11 475

Fast TRADES 64.12 25.93 137

Fast TRADES (2-step) 75.98 29.91 174

Backward Smoothing 71.90 35.22 166

as in Section 6.4, we tend to find an initialization ξ∗ such that

ξ∗ = argmin
ξ∈Bε(0)

([fθ(x + ξ)− γψ]y)
2,

where ψ is the random vector and we only take the y-logit since the CrossEntropy loss

used in adversarial training mainly cares about the y-logit. We test this on CIFAR-10 using

ResNet-18 model, and summarize the results in Table 6.15. We can observe that combining

Backward Smoothing with PGD can still achieve certain level of improvements but not as

good as when combined with TRADES.

124

6.7.6 Comparison of Backward Smoothing and the ODI attack

We notice that [TSE20] proposed an ODI attack which shares some similarity as our proposed

Backward Smoothing method (it also computes an initialization direction before normal

attack), however, they are quite different in several ways. In this subsection, we compare the

differences and argue that our method is not like using ODI attack for adversarial training.

First and foremost, the formulation is totally different. In ODI attack, its initialization

is solved by

max
ξ∈Bε(0)

fθ(x)>ψ,

where ψ ∼ U(−1, 1). This is totally different formulation compared to (6.4.4) for Backward

Smoothing. Second, the motivations are different, ODI is a type of adversarial attack, which

aims at lowering the prediction accuracy of target classifier, while our Backward Smoothing

focuses on smoother the objective function. In fact, if one adopts Backward Smoothing for

an attack, it can hardly achieve superior performances (smoother loss landscape also means

hard to increase the loss significantly). To be more convincing, we also compare the result

of applying ODI attack for adversarial training in Table 6.15. We can observe that using

ODI attack for robust training achieves much worse robustness performances compared to

Backward Smoothing both for PGD based and TRADES based strategies.

6.8 Conclusions

In this paper, we analyze the reason why single-step robust training without random ini-

tialization would fail and propose a new understanding towards Fast Adversarial Training

by viewing random initialization as performing randomized smoothing for the inner maxi-

mization problem. Following this new perspective, we further propose a new initialization

strategy, Backward Smoothing. The resulting method closes the robustness gap to state-of-

the-art robust training methods and significantly improves model robustness over single-step

125

Table 6.15: Performance of single-step based robust training strategy on CIFAR-10 dataset

using ResNet-18 model.

Method Nat (%) Rob (%)

Fast AT 84.79 46.30

Fast TRADES 84.80 46.25

Backward Smoothing (PGD) 82.69 47.96

Backward Smoothing (TRADES) 82.38 52.50

ODI (PGD) 85.20 43.41

ODI (TRADES) 84.83 49.37

robust training methods.

126

CHAPTER 7

Conclusions and Future work

In this chapter, we summarize the introduced works in previous chapters, discuss the pros

and cons for them, and, based on them, hash out the blueprint of possible future directions.

In Chapter 2 and Chapter 3, we built better tools for evaluating model robustness under

different settings (different levels of information access). In Chapter 2, we have built a

Frank-Wolfe framework for efficient and effective adversarial attacks in white-box and black-

box settings. In Chapter 3, we introduce the RayS attack, which focuses on evaluating

model robustness in the hard-label setting. We also proposed a new robustness metric called

average decision boundary distance, which can be used to detect “falsely robust” models.

In Chapter 4, we carefully examined the fundamental limit of robust training methods on

image distributions and observed a large gap between the theoretical intrinsic robust limit

and the best robustness achieved by state-of-the-art robust classifiers.

In Chapter 5, we carefully examine the common belief that network width helps adver-

sarial robustness via thorough experiments and also careful analyses. And we have reached a

count-intuitive conclusion that the increased network width helps natural generalization but

may hurt robustness. To reach this conclusion, we conduct a thorough empirical study on

the network width and adversarial robustness, and also investigate the underlying reasons

behind the scenes.

In Chapter 6, we propose a new understanding towards Fast Adversarial Training [WRK20]

by viewing random initialization as performing randomized smoothing for the inner maxi-

mization problem. We then show that the smoothing effect by random initialization is not

127

enough under adversarial perturbation constraint. To address this issue, we propose a new

initialization strategy, Backward Smoothing. The resulting method closes the robustness

gap to state-of-the-art robust training methods and significantly improves model robustness

over single-step robust training methods.

Despite all the progress, there are still many things that remain unclear for robust train-

ing, which requires further understandings and more in-depth study towards the adversarial

robustness in deep learning. Here we summarize some possible future research directions in

the following.

• Adversarial Robustness for Physical Environments: Traditional adversarial ex-

amples and corresponding defenses are established based on static data, e.g., pictures

from the ImageNet dataset. These methods could fail in the physical environments due

to natural transformations such as viewpoint shifts, lens distortions, folds in clothes

and different gestures of animals. An adversarial perturbation that works on a static

image or frame may not work for the same object in the real world. This largely re-

stricts the practical impact of the current adversarial attack and defense algorithms.

Therefore, it is of great interest to study robust adversarial attacks that constantly fool

the neural network under various transformations and natural changes, as well as how

to defend such kind of “persistent” attacks. My insight is to generate adversarial per-

turbations upon the worst-case natural transformations and rigorously formulate them

using a max-min optimization problem, which can be solved via advanced nonconvex

optimization techniques. In addition, I plan to emphasize such type of “persistent”

attacks in defensive robust training to further improve model robustness under physical

environments.

• Adversarial Robustness on Discrete Data: Discrete data, such as text, graphs,

categorical features, pervasively exist in real life. Machine learning models dealing with

such data can also be attacked by perturbations defined in discrete space. For example

128

in fake news detection tasks, an attacker may mislead a detector by simply changing

the word “pleased” into “delighted”. In the representation learning task on graphs, an

attacker may fool the graph embedding model to learn wrong representations for tar-

get nodes by injecting unnoticeable changes to the graph structure (deleting or adding

edges). Therefore, studying the adversarial robustness of models training on discrete

data is equally important as continuous ones but more challenging: finding the opti-

mal discrete perturbation is intrinsically an NP-hard combinatorial optimization task;

gradient-based methods cannot be directly applied in discrete space. It still remains an

open problem how to perform effective and efficient searches towards the optimal solu-

tions. My research [CG20] already showed that the efficient search strategy is feasible

in continuous cases. To extend my research for discrete cases, the key is to properly

define the perturbation distance and decision boundary in the discrete space and then

build efficient search strategies upon them. I plan to develop efficient search strate-

gies to systemically explore adversarial robustness and utilize the knowledge gained to

further build robust models on discrete data.

• Efficient Large Scale Adversarial Learning: From the record-high performances

in ImageNet challenges to the success of pre-trained language models such as BERT,

GPT-3, in the past decade, we have observed the huge leap in AI brought by large

scale machine learning model training. However, such models usually need days or

months of training time under moderate hardware conditions. Furthermore, it is al-

most computationally infeasible to perform adversarial training on those models to

enhance their robustness. Therefore, it is of great value to make large scale robust

model training more efficient. Achieving such a goal would require efforts from both

robust training and deep learning optimization. My previous studies on optimizing

deep neural network training via adaptive gradient methods [CZT+20, ZCC+20] have

laid solid foundations for improving the training efficiency of large scale machine learn-

ing systems, however, they are universal optimization methods that work for general

129

problems. Recent studies show that popular optimizers such as Adam work well on

certain tasks (e.g., language modeling) but have degraded performance on the others

(e.g., image classifications). This suggests that specialized task-specific optimizers may

achieve better efficiency compared to universal ones on certain tasks. Combining with

my proposed efficient robust training strategy (Chapter 6), I aim to design task-specific

efficient optimizers that allow efficient adversarial training for widely used large scale

machine learning models.

Back to the main subject of this dissertation, the current robust training method and

the corresponding robust models are still far from satisfactory. There still exists a large gap

between the current best robust models with the theoretical limit of adversarial robustness.

It can also be anticipated that as we getting deeper and deeper understandings towards

robust training, more and more problems will be brought up and further solved by better

robust models. Hopefully the works we introduced in this dissertation can help researchers

in this area better evaluate and understand the fundamentals of robust training and actually

contribute to the development of better robust models.

130

Bibliography

[ACFH19] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and

Matthias Hein. Square attack: a query-efficient black-box adversarial attack

via random search. arXiv preprint arXiv:1912.00049, 2019.

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

In International Conference on Machine Learning, 2018.

[ADO20] Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for

black-box attacks. In International Conference on Learning Representations,

2020.

[AF20] Maksym Andriushchenko and Nicolas Flammarion. Understanding and im-

proving fast adversarial training. Advances in Neural Information Processing

Systems, 2020.

[AUH+19] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi,

Robert Stanforth, and Pushmeet Kohli. Are labels required for improving

adversarial robustness? In NeurIPS, pages 12214–12223, 2019.

[AZLS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep

learning via over-parameterization. In International Conference on Machine

Learning, pages 242–252, 2019.

[BCM19] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. Lower bounds

on adversarial robustness from optimal transport. In Advances in Neural

Information Processing Systems (NeurIPS), 2019.

[BCS+16] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and

Yoshua Bengio. End-to-end attention-based large vocabulary speech recog-

131

nition. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE

International Conference on, pages 4945–4949. IEEE, 2016.

[BDS19] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN train-

ing for high fidelity natural image synthesis. In International Conference on

Learning Representations (ICLR), 2019.

[BG18] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-

convex stochastic optimization via conditional gradient and gradient updates.

arXiv preprint arXiv:1809.06474, 2018.

[BHLS17] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Exploring

the space of black-box attacks on deep neural networks. arXiv preprint

arXiv:1712.09491, 2017.

[BLPR19] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya P. Razenshteyn. Adver-

sarial examples from computational constraints. In Kamalika Chaudhuri and

Ruslan Salakhutdinov, editors, ICML, volume 97 of Proceedings of Machine

Learning Research, pages 831–840. PMLR, 2019.

[Bor75] Christer Borell. The Brunn-Minkowski inequality in Gauss space. Inventiones

mathematicae, 30(2):207–216, 1975.

[BRB18] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adver-

sarial attacks: Reliable attacks against black-box machine learning models.

In International Conference on Learning Representations, 2018.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[CAD+18] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,

132

and Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey.

arXiv preprint arXiv:1810.00069, 2018.

[CBG+17] Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, and

Nicolas Usunier. Parseval networks: Improving robustness to adversarial

examples. In Doina Precup and Yee Whye Teh, editors, ICML, volume 70 of

Proceedings of Machine Learning Research, pages 854–863. PMLR, 2017.

[CG19] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient

descent for wide and deep neural networks. In Advances in Neural Informa-

tion Processing Systems, pages 10836–10846, 2019.

[CG20] Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-

label adversarial attack. In Proceedings of the 26rd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, 2020.

[CH20a] F. Croce and M. Hein. Minimally distorted adversarial examples with a fast

adaptive boundary attack. In ICML, 2020.

[CH20b] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial ro-

bustness with an ensemble of diverse parameter-free attacks. In ICML, 2020.

[CJW19] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hop-

skipjumpattack: A query-efficient decision-based attack. arXiv preprint

arXiv:1904.02144, 3, 2019.

[CLC+19] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-

Jui Hsieh. Query-efficient hard-label black-box attack: An optimization-

based approach. In International Conference on Learning Representations,

2019.

133

[CMV+16] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah

Sherr, Clay Shields, David Wagner, and Wenchao Zhou. Hidden voice com-

mands. In USENIX Security Symposium, pages 513–530, 2016.

[CRK19] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robust-

ness via randomized smoothing. In ICML, pages 1310–1320, 2019.

[CRS+19] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and

Percy S Liang. Unlabeled data improves adversarial robustness. In NeurIPS,

pages 11192–11203, 2019.

[CSC+20] Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu,

and Cho-Jui Hsieh. Sign-opt: A query-efficient hard-label adversarial attack.

In International Conference on Learning Representations, 2020.

[CSZ+17] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh.

Ead: elastic-net attacks to deep neural networks via adversarial examples.

arXiv preprint arXiv:1709.04114, 2017.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of

neural networks. In 2017 IEEE Symposium on Security and Privacy (SP),

pages 39–57. IEEE, 2017.

[CYZ+18] Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, and Cho-Jui Hsieh.

Seq2sick: Evaluating the robustness of sequence-to-sequence models with

adversarial examples. arXiv preprint arXiv:1803.01128, 2018.

[CZC+17] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh.

Show-and-fool: Crafting adversarial examples for neural image captioning.

arXiv preprint arXiv:1712.02051, 2017.

134

[CZS+17] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh.

Zoo: Zeroth order optimization based black-box attacks to deep neural net-

works without training substitute models. In Proceedings of the 10th ACM

Workshop on Artificial Intelligence and Security, pages 15–26. ACM, 2017.

[CZT+20] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quan-

quan Gu. Closing the generalization gap of adaptive gradient methods in

training deep neural networks. In International Joint Conferences on Artifi-

cial Intelligence, 2020.

[CZYG20] Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe

framework for efficient and effective adversarial attacks. In AAAI, 2020.

[DAL+18] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bern-

stein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic

activation pruning for robust adversarial defense. International Conference

on Learning Representations, 2018.

[DBW12] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized

smoothing for stochastic optimization. SIAM Journal on Optimization,

22(2):674–701, 2012.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Image-

net: A large-scale hierarchical image database. In Computer Vision and Pat-

tern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255.

Ieee, 2009.

[DLL+19] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradi-

ent descent finds global minima of deep neural networks. In International

Conference on Machine Learning, pages 1675–1685, 2019.

135

[DLP+18] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,

and Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

9185–9193, 2018.

[DMM18] Dimitrios Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Ad-

versarial risk and robustness: General definitions and implications for the

uniform distribution. In Advances in Neural Information Processing Systems

(NeurIPS), 2018.

[Doh19] Elvis Dohmatob. Generalized no free lunch theorem for adversarial robust-

ness. In International Conference on Machine Learning (ICML), 2019.

[FFF18a] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability

for any classifier. In Advances in Neural Information Processing Systems

(NeurIPS), 2018.

[FFF18b] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’

robustness to adversarial perturbations. Mach. Learn., 107(3):481–508, 2018.

[FKM05] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. On-

line convex optimization in the bandit setting: gradient descent without a

gradient. In Proceedings of the sixteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 385–394. Society for Industrial and Applied Math-

ematics, 2005.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic program-

ming. Naval research logistics quarterly, 3(1-2):95–110, 1956.

[GCL+19] Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Ja-

son D Lee. Convergence of adversarial training in overparametrized neu-

136

ral networks. In Advances in Neural Information Processing Systems, pages

13029–13040, 2019.

[GDS+19] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,

Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Scal-

able verified training for provably robust image classification. In International

Conference on Computer Vision (ICCV), 2019.

[Gir15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international confer-

ence on computer vision, pages 1440–1448, 2015.

[GMF+18] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra

Raghu, Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv

preprint arXiv:1801.02774, 2018.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative

adversarial nets. In Advances in Neural Information Processing Systems

(NeurIPS), 2014.

[GQU+20] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet

Kohli. Uncovering the limits of adversarial training against norm-bounded

adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

[GR15] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures

robust to adversarial examples. In Yoshua Bengio and Yann LeCun, editors,

ICLR, 2015.

[GRCVDM18] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten.

Countering adversarial images using input transformations. International

Conference on Learning Representations, 2018.

137

[GSS15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In International Conference on Learning

Representations (ICLR), 2015.

[HA17] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the ro-

bustness of a classifier against adversarial manipulation. In Advances in

Neural Information Processing Systems, pages 2266–2276, 2017.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian

Kingsbury, et al. Deep neural networks for acoustic modeling in speech recog-

nition. IEEE Signal processing magazine, 29, 2012.

[HLM19] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can

improve model robustness and uncertainty. In ICML, pages 2712–2721, 2019.

[HLvdMW17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

Densely connected convolutional networks. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[HT17] Weiwei Hu and Ying Tan. Generating adversarial malware examples for

black-box attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In CVPR, pages 770–778, 2016.

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings

in deep residual networks. In European Conference on Computer Vision,

pages 630–645. Springer, 2016.

[IEA+18] Andrew Ilyas, Logan Engstrom, Anish Athalye, Jessy Lin, Anish Athalye,

Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Black-box adversarial

138

attacks with limited queries and information. In Proceedings of the 35th

International Conference on Machine Learning, 2018.

[IEM19] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions:

Black-box adversarial attacks with bandits and priors. International Confer-

ence on Learning Representations, 2019.

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Bran-

don Tran, and Aleksander Madry. Adversarial examples are not bugs, they

are features. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, NeurIPS,

pages 125–136, 2019.

[Jag13] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimiza-

tion. In ICML (1), pages 427–435, 2013.

[JBZB19] Jörn-Henrik Jacobsen, Jens Behrmann, Richard S. Zemel, and Matthias

Bethge. Excessive invariance causes adversarial vulnerability. In ICLR. Open-

Review.net, 2019.

[JHG18] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent ker-

nel: Convergence and generalization in neural networks. In Samy Bengio,

Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,

and Roman Garnett, editors, NeurIPS, pages 8580–8589, 2018.

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. International Conference on Learning Representations, 2015.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochen-

derfer. Reluplex: An efficient SMT solver for verifying deep neural networks.

In International Conference on Computer Aided Verification, 2017.

139

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in

the physical world. arXiv preprint arXiv:1607.02533, 2016.

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine

learning at scale. In ICLR. OpenReview.net, 2017.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.

[KW20] Jungeum Kim and Xiao Wang. Sensible adversarial learning, 2020.

[LAG+19] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and

Suman Jana. Certified robustness to adversarial examples with differential

privacy. In SP, pages 656–672. IEEE, 2019.

[LBB+98] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit

database. 2010.

[LCLS18] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into trans-

ferable adversarial examples and black-box attacks. International Conference

on Data Mining (ICDM), 2018.

[LeC98] Yann LeCun. The mnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998.

140

[LJ16] Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objec-

tives. arXiv preprint arXiv:1607.00345, 2016.

[LLD+18] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and

Jun Zhu. Defense against adversarial attacks using high-level representation

guided denoiser. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1778–1787, 2018.

[LLW+19] Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, and Boqing Gong. Nat-

tack: Learning the distributions of adversarial examples for an improved

black-box attack on deep neural networks. In International Conference on

Machine Learning, pages 3866–3876, 2019.

[LSL+20] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine

Süsstrunk. On the loss landscape of adversarial training: Identifying chal-

lenges and how to overcome them. arXiv preprint arXiv:2006.08403, 2020.

[LWJC20] Bai Li, Shiqi Wang, Suman Jana, and Lawrence Carin. Towards understand-

ing fast adversarial training. arXiv preprint arXiv:2006.03089, 2020.

[MAS19] Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box

adversarial attacks via efficient combinatorial optimization. In International

Conference on Machine Learning, pages 4636–4645, 2019.

[MC17] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against ad-

versarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 135–147, 2017.

[MDFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

Deepfool: a simple and accurate method to fool deep neural networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2574–2582, 2016.

141

[MDH+12] Abdel-rahman Mohamed, George E Dahl, Geoffrey Hinton, et al. Acoustic

modeling using deep belief networks. IEEE Trans. Audio, Speech & Language

Processing, 20(1):14–22, 2012.

[MDM19] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The

curse of concentration in robust learning: Evasion and poisoning attacks from

concentration of measure. In AAAI Conference on Artificial Intelligence,

2019.

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

Deepfool: A simple and accurate method to fool deep neural networks. In

CVPR, pages 2574–2582. IEEE Computer Society, 2016.

[MLW+18] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema,

Grant Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. Char-

acterizing adversarial subspaces using local intrinsic dimensionality. Interna-

tional Conference on Learning Representations, 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,

and Adrian Vladu. Towards deep learning models resistant to adversarial

attacks. International Conference on Learning Representations, 2018.

[MNA+17] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich

Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,

Ganesh Venkatesh, et al. Mixed precision training. arXiv preprint

arXiv:1710.03740, 2017.

[MO14] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.

arXiv preprint arXiv:1411.1784, 2014.

[MZME19] Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, and David Evans.

Empirically measuring concentration: Fundamental limits on intrinsic ro-

142

bustness. In Advances in Neural Information Processing Systems (NeurIPS),

2019.

[Nak19] Preetum Nakkiran. Adversarial robustness may be at odds with simplicity.

CoRR, abs/1901.00532, 2019.

[NMKM19] Amir Najafi, Shin-ichi Maeda, Masanori Koyama, and Takeru Miyato. Ro-

bustness to adversarial perturbations in learning from incomplete data. In

Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-

Buc, Emily B. Fox, and Roman Garnett, editors, NeurIPS, pages 5542–5552,

2019.

[OOS17] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional im-

age synthesis with auxiliary classifier gans. In International Conference on

Machine Learning (ICML), 2017.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in

machine learning: from phenomena to black-box attacks using adversarial

samples. arXiv preprint arXiv:1605.07277, 2016.

[PMG+17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia Conference on Computer

and Communications Security, pages 506–519. ACM, 2017.

[PMJ+16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay

Celik, and Ananthram Swami. The limitations of deep learning in adversarial

settings. In Security and Privacy (EuroS&P), 2016 IEEE European Sympo-

sium on, pages 372–387. IEEE, 2016.

[PMW+16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram

Swami. Distillation as a defense to adversarial perturbations against deep

143

neural networks. In 2016 IEEE Symposium on Security and Privacy (SP),

pages 582–597. IEEE, 2016.

[PTL+18] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and

Girish Chowdhary. Robust deep reinforcement learning with adversarial at-

tacks. In Proceedings of the 17th International Conference on Autonomous

Agents and MultiAgent Systems, pages 2040–2042. International Foundation

for Autonomous Agents and Multiagent Systems, 2018.

[PYD+20] Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Hang Su, and Jun

Zhu. Boosting adversarial training with hypersphere embedding. CoRR,

abs/2002.08619, 2020.

[PYD+21] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of

tricks for adversarial training. In International Conference on Learning Rep-

resentations, 2021.

[PŽ06] Remigijus Paulavičius and Julius Žilinskas. Analysis of different norms and

corresponding lipschitz constants for global optimization. Technological and

Economic Development of Economy, 12(4):301–306, 2006.

[QMG+19] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy

Dvijotham, Alhussein Fawzi, Soham De, Robert Stanforth, and Pushmeet

Kohli. Adversarial robustness through local linearization. In NeurIPS, pages

13847–13856, 2019.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In Advances

in neural information processing systems, pages 91–99, 2015.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses

144

against adversarial examples. In International Conference on Learning Rep-

resentations (ICLR), 2018.

[RSPS16] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic

frank-wolfe methods for nonconvex optimization. In Communication, Con-

trol, and Computing (Allerton), 2016 54th Annual Allerton Conference on,

pages 1244–1251. IEEE, 2016.

[RWK20a] Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust

deep learning. ICML, 2020.

[RWK20b] Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust

deep learning. CoRR, abs/2002.11569, 2020.

[RXY+19] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi,

and Percy Liang. Adversarial training can hurt generalization. CoRR,

abs/1906.06032, 2019.

[RXY+20] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy

Liang. Understanding and mitigating the tradeoff between robustness and

accuracy. arXiv preprint arXiv:2002.10716, 2020.

[SABB20] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and R Venkatesh

Babu. Guided adversarial attack for evaluating and enhancing adversarial

defenses. arXiv preprint arXiv:2011.14969, 2020.

[Sha17] Ohad Shamir. An optimal algorithm for bandit and zero-order convex op-

timization with two-point feedback. Journal of Machine Learning Research,

18(52):1–11, 2017.

[SHC+17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.

145

Evolution strategies as a scalable alternative to reinforcement learning. arXiv

preprint arXiv:1703.03864, 2017.

[SHK12] Ilya Sutskever, Geoffrey E Hinton, and A Krizhevsky. Imagenet classification

with deep convolutional neural networks. Advances in neural information

processing systems, pages 1097–1105, 2012.

[SHS+19] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom

Goldstein. Are adversarial examples inevitable? In International Conference

on Learning Representations (ICLR), 2019.

[SJ17] Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning

as a generalization of adversarial training. Machine Learning and Computer

Security Workshop, 2017.

[SKC18] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Pro-

tecting classifiers against adversarial attacks using generative models. Inter-

national Conference on Learning Representations, 2018.

[SKN+18] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kush-

man. Pixeldefend: Leveraging generative models to understand and defend

against adversarial examples. International Conference on Learning Repre-

sentations, 2018.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 1–9, 2015.

[SLR+19] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang,

Sebastien Bubeck, and Greg Yang. Provably robust deep learning via adver-

sarially trained smoothed classifiers. In NeurIPS, pages 11292–11303, 2019.

146

[Smi17] Leslie N Smith. Cyclical learning rates for training neural networks. In

WACV, pages 464–472. IEEE, 2017.

[SND18] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distri-

butional robustness with principled adversarial training. International Con-

ference on Learning Representations, 2018.

[SNG+19] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dick-

erson, Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein.

Adversarial training for free! In NeurIPS, pages 3358–3369, 2019.

[SST+18] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and

Aleksander Madry. Adversarially robust generalization requires more data.

In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,

Nicolò Cesa-Bianchi, and Roman Garnett, editors, NeurIPS, pages 5019–

5031, 2018.

[ST78] Vladimir N Sudakov and Boris S Tsirelson. Extremal properties of half-spaces

for spherically invariant measures. Journal of Soviet Mathematics, 9(1):9–18,

1978.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.

How does batch normalization help optimization?(no, it is not about internal

covariate shift). arXiv preprint arXiv:1805.11604, 2018.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-

niew Wojna. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 2818–2826, 2016.

[SWMJ20] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. On pruning

adversarially robust neural networks. CoRR, abs/2002.10509, 2020.

147

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199, 2013.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural

networks. In Yoshua Bengio and Yann LeCun, editors, ICLR, 2014.

[TCBM20] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.

On adaptive attacks to adversarial example defenses. arXiv preprint

arXiv:2002.08347, 2020.

[TPG+17] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and

Patrick D. McDaniel. The space of transferable adversarial examples. CoRR,

abs/1704.03453, 2017.

[TSE+19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,

and Aleksander Madry. Robustness may be at odds with accuracy. In ICLR.

OpenReview.net, 2019.

[TSE20] Yusuke Tashiro, Yang Song, and Stefano Ermon. Diversity can be transferred:

Output diversification for white-and black-box attacks. Advances in Neural

Information Processing Systems, 33, 2020.

[TTC+18] Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng

Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. Autozoom: Autoencoder-based

zeroth order optimization method for attacking black-box neural networks.

CoRR, abs/1805.11770, 2018.

[TXT19] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neu-

ral networks with mixed integer programming. In International Conference

on Learning Representations (ICLR), 2019.

148

[UOKO18] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron Oord.

Adversarial risk and the dangers of evaluating against weak attacks. In In-

ternational Conference on Machine Learning, pages 5025–5034, 2018.

[WCAJ18] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Mix-

Train: Scalable training of formally robust neural networks. arXiv preprint

arXiv:1811.02625, 2018.

[WCC+20] Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do

wider neural networks really help adversarial robustness? arXiv preprint

arXiv:2010.01279, 2020.

[WK18] Eric Wong and Zico Kolter. Provable defenses against adversarial examples

via the convex outer adversarial polytope. In International Conference on

Machine Learning (ICML), 2018.

[WMB+19] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quan-

quan Gu. On the convergence and robustness of adversarial training. In

International Conference on Machine Learning, pages 6586–6595, 2019.

[WRK20] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting

adversarial training. In ICLR, 2020.

[WSG+14] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and

Jürgen Schmidhuber. Natural evolution strategies. The Journal of Machine

Learning Research, 15(1):949–980, 2014.

[WSMK18] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling

provable adversarial defenses. In Advances in Neural Information Processing

Systems (NeurIPS), 2018.

149

[WXW20] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturba-

tion helps robust generalization. Advances in Neural Information Processing

Systems, 33, 2020.

[WZC+18] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng

Gao, Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural

networks: An extreme value theory approach. In International Conference

on Learning Representations, 2018.

[WZY+20] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quan-

quan Gu. Improving adversarial robustness requires revisiting misclassified

examples. In ICLR. OpenReview.net, 2020.

[XCL+17] Xiaojun Xu, Xinyun Chen, Chang Liu, Anna Rohrbach, Trevor Darell, and

Dawn Song. Can you fool ai with adversarial examples on a visual turing

test? arXiv preprint arXiv:1709.08693, 2017.

[XWZ+18] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mit-

igating adversarial effects through randomization. International Conference

on Learning Representations, 2018.

[YRZ+20] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov,

and Kamalika Chaudhuri. A closer look at accuracy vs. robustness. Advances

in Neural Information Processing Systems, 33, 2020.

[YZS17] Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans. Generalized conditional

gradient for sparse estimation. The Journal of Machine Learning Research,

18(1):5279–5324, 2017.

[ZCC+20] Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quan-

quan Gu. On the convergence of adaptive gradient methods for nonconvex

150

optimization. NeurIPS Workshop on Optimization for Machine Learning,

2020.

[ZCGE20] Xiao Zhang, Jinghui Chen, Quanquan Gu, and David Evans. Understanding

the intrinsic robustness of image distributions using conditional generative

models. arXiv preprint arXiv:2003.00378, 2020.

[ZCZG19] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient

descent optimizes over-parameterized deep relu networks. Machine Learning

Journal, 2019.

[ZCZG20] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient de-

scent optimizes over-parameterized deep relu networks. Machine Learning,

109(3):467–492, 2020.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In

Richard C. Wilson, Edwin R. Hancock, and William A. P. Smith, editors,

BMVC. BMVA Press, 2016.

[ZW19] Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using

feature scattering-based adversarial training. In Advances in Neural Infor-

mation Processing Systems, pages 1829–1839, 2019.

[ZX20] Haichao Zhang and Wei Xu. Adversarial interpolation training: A simple

approach for improving model robustness, 2020.

[ZXH+20a] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama,

and Mohan Kankanhalli. Attacks which do not kill training make adversarial

learning stronger. In International Conference on Machine Learning, pages

11278–11287. PMLR, 2020.

151

[ZXH+20b] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama,

and Mohan S. Kankanhalli. Attacks which do not kill training make adver-

sarial learning stronger. CoRR, abs/2002.11242, 2020.

[ZYJ+19] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui,

and Michael Jordan. Theoretically principled trade-off between robustness

and accuracy. In International Conference on Machine Learning, pages 7472–

7482, 2019.

152

	Introduction
	Overview
	Challenges
	Evaluating Adversarial Robustness
	Understanding Adversarial Robustness

	Contributions
	Organization of the Dissertation

	A Frank-Wolfe Framework for Efficient and Effective Adversarial Attacks
	Introduction
	Related Work
	Methodology
	Notation
	Problem Formulation
	Frank-Wolfe vs. PGD
	Frank-Wolfe White-box Attacks
	Frank-Wolfe Black-box Attacks

	Main Theory
	Convergence Criterion
	Convergence Guarantee for Frank-Wolfe White-box Attack
	Convergence Guarantee for Frank-Wolfe Black-box Attack

	Experiments
	Evaluation Setup
	Baseline Methods
	White-box Attack Experiments
	Black-box Attack Experiments
	Experiments on Adversarially Trained Model

	Conclusions and Future Work

	RayS: A Ray Searching Method for Hard-label Adversarial Attack
	Introduction
	Related Work
	The Proposed Method
	Overview of Previous Problem Formulations
	Ray Search Directions
	Hierarchical Search

	Experiments
	Datasets and Target Models
	Baseline Methods
	Comparison with hard-label Attack Baselines on Naturally Trained Models
	Evaluating the Robustness of State-of-the-art Robust Models

	Discussions and Conclusions

	Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models
	Introduction
	Related Work
	Preliminaries
	Main Theoretical Results
	Proof of Main Theorem
	Proof of Theorem 4.4.3
	Proof of Theorem 4.4.4

	Experimental Details
	Network Architectures and Hyper-parameter Settings
	Strategies for Estimating In-distribution Adversarial Robustness

	Experiments
	Conditional GAN Models
	Local Lipschitz Constant Estimation
	Comparisons with Robust Classifiers
	In-distribution Adversarial Robustness

	Conclusions

	Do Wider Neural Networks Really Help Adversarial Robustness?
	Introduction
	Related Work
	Empirical Study on Network Width and Adversarial Robustness
	Characterization of Robust Examples
	Evaluation of Perturbation Stability

	Why Larger Network Width Leads to Worse Perturbation Stability?
	Perturbation Stability and Local Lipschitzness
	Local Lipschitzness and Network Width

	Experiments
	Experimental Settings
	Model Robustness with Larger Robust Regularization Parameter
	Experiments on Different Datasets and Architectures
	Width Adjusted Regularization
	Comparison of Robustness on Wide Models

	Proof of Lemma 5.4.2
	The Experimental Detail for Reproducibility
	The Exponential Decay Learning Rate
	Boosting the Original Adversarial Training
	Conclusions

	Backward Smoothing for Efficient Robust Training
	Introduction
	Related Work
	Pros and Cons of Random Initialization
	What Caused the Failure of One-step AT Without Random Initialization?
	Why Random Initialization Helps?
	Drawbacks of Random Initialization

	Proposed Approaches
	A Naive Try: Randomized Smoothing for TRADES
	Backward Smoothing

	Experiments
	Experimental Setting
	Performance Comparison with Robust Training Baselines
	Evaluation with State-of-the-art Attacks
	Stability and Sensitivity
	Combining with Other Acceleration Techniques

	Randomized Smoothing
	Additional Ablation Studies
	Does Backward Smoothing alone works?
	More Experiments for Backward Smoothing using Multiple Random Points
	Ablation Studies
	Experiments on different perturbation strength
	PGD based Backward Smoothing
	Comparison of Backward Smoothing and the ODI attack

	Conclusions

	Conclusions and Future work

