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Abstract

Amalgamation Constructions And Recursive Model Theory

by

Uri Andrews

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

We employ the Hrushovski Amalgamation Construction to generate strongly minimal
examples of interesting recursive model theoretic phenomena. We show that there
exists a strongly minimal theory whose only recursively presentable models are prime
or saturated. We show that there exists a strongly minimal theory in a language with
finite signature whose only recursively presentable model is the saturated model.
Similarly, we show that for every k ∈ ω + 1 there exists a strongly minimal theory in
a language with finite signature whose recursively presentable models are those with
dimension less than k. Finally, we characterize the complexity of strongly minimal or
ℵ0-categorical theories that have only recursively presentable models by generating
examples in every possible tt-degree.
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Chapter 1

Introduction & Background

Recursive mathematics explores the extent to which mathematical constructions
can be carried out effectively. The particular additional perspective of recursive model
theory is to analyze structures based on their theories. Model theorists classify the
level of structure afforded to models by their theories. This allows for a hierarchy
beginning with the most structured, the strongly minimal theories, extending to the
ω-stable theories, then the super-stable, stable, and much work has been done in
understanding even unstable theories. We will focus on the strongly minimal theo-
ries and despite the structural characterization of strongly minimal models, we will
generate examples of interesting recursive model theoretic phenomena.

Hrushovski [8] developed the amalgamation method for generating strongly min-
imal theories. We will present new tools for using amalgamation constructions to
partly answer the following three general questions regarding strongly minimal theo-
ries:

Question 1. What relationships exist between the complexity of the theory and the
complexity of its models?

Question 2. If some models of a theory are recursive, do we know that other models
of the theory are recursive?

Question 3. If we restrict our sights to theories in languages with finite signatures,
does that change the answer to the first two questions?

1.1 Basic Definitions

Definition 1. • A subset S of the natural numbers is recursive if there exists a
Turing machine which given input x outputs 1 if x ∈ S and 0 otherwise.
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• We will work with recursive languages. We say a set of formulae is recursive if
the set of Gödel codes for formulae in the set is a recursive subset of the natural
numbers.

• A set A is turing reducible to a set B, written A ≤T B, if there exists a turing
machine using B as an oracle determining membership in A. Two sets A and B
are turing equivalent, written A ≡T B, if A ≤T B and B ≤T A. The equivalence
class of A under ≡T is the Turing degree of A.

• A set A is tt-reducible to a set B, written A ≤tt B if there exists a total turing
machine using B as an oracle determining membership in A, where a total turing
machine is one which halts on any input and any oracle. Two sets A and B are
tt-equivalent, written A ≡tt B, if A ≤tt B and B ≤tt A. The equivalence class
of A under ≡tt is the tt-degree of A.

• Unless otherwise stated, all languages are countable and recursive. Further, we
will often conflate a language with its signature, saying for instance that L is
finite to mean that L has finite signature.

Definition 2. • A model M with universe ω is decidable if
{φ(a1, . . . an)|φ(x1 . . . xn) ∈ L∧ni=1ai ∈ ω∧M |= φ(a1, . . . an)} is a recursive set.

• A model M is decidably presentable if M is isomorphic to a decidable model.

• A model M with universe ω is recursive if {φ(a1, . . . an)|φ(x1 . . . xn) ∈ L ∧ni=1

ai ∈ ω ∧M |= φ(a1, . . . an)∧ φ is quantifier-free} is a recursive set.

• A model M is recursively presentable if M is isomorphic to a recursive model.

• Let M be any L-structure, and suppose L′ is a language with signature contained
in the signature of L. Then the structure M |L′ is the L′-structure where each
relation symbol is interpreted as in M . We also think of M |L′ as the L-structure
where each symbol in Lr L′ is interpreted as the empty relation.

Definition 3. • A subset of N is Σn it is defined in (N,+, ·) by a formula with
≤ n alternations of unbounded quantifiers starting with an existential quantifier.
Such a formula is called a Σn formula. A subset of N is Σn in X if it is defined
in (N,+, ·, X) by a Σn formula.

• A subset of N is Πn it is defined in (N,+, ·) by a formula with ≤ n alternations
of unbounded quantifiers starting with a universal quantifier. Such a formula is
called a Πn formula. A subset of N is Πn in X if it is defined in (N,+, ·, X) by
a Πn formula.

• 0n is the set of Gödel codes of true Σn formulas in the structure (N,+, ·).
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• 0ω = {〈i, n〉|n ∈ 0i}, where 〈·, ·〉 is a recursive pairing function, ie: a bijection
from N2 to N.

1.2 Model Theory of Strongly Minimal Theories

The content of this section is standard and can be found for instance in Marker
[13].

Definition 4. A theory T is strongly minimal if for all M |= T and all φ(x) ∈ LM
(in one variable and allowing parameters from M), {x ∈ M |M |= φ(x)} is either
finite or co-finite in M .

A model M is strongly minimal if Th(M) is strongly minimal.

Strongly minimal theories form one of the nicest classes of structures. In one
variable, all definable sets are definable from the language with just equality. The
following are some classical examples of strongly minimal theories.

• Let L be the language generated by equality alone. Let T be the theory of an
infinite set.

• Let L be the language generated by a single binary relation symbol. Let T be
the theory of an infinite regular acyclic graph.

• Let L be the language generated by {+} ∪ {c · |c ∈ Q}. Let T be the theory of
a vector space over Q where c · x is interpreted as multiplying the vector x by
the scalar c.

• Let L be the language generated by {+, ·, 0, 1}. Let T be the theory of any
algebraically closed field.

Also note that any reduct of a strongly minimal theory to a smaller language is
strongly minimal, and strongly minimal theories remain strongly minimal after nam-
ing constants. All of these example theories are very well behaved. In particular,
we have notions of closure and dimension which characterize models up to isomor-
phism. In the first example, the closure of a set is the set itself and the dimension of
a model is its cardinality. In the second example, the closure of a set is the union of
the connected components of its elements and dimension is the number of connected
components in the model. In the third example, the closure of a set is its span, and
dimension is regular dimension of vector spaces. In the fourth case, closure is alge-
braic closure and dimension is transcendence degree. This is no coincidence. In fact,
we will see that these are particular cases of a notion of closure and dimension which
are defined for any strongly minimal theory.
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Definition 5. Suppose A ⊆ M and M is strongly minimal. We write aclM(A) for
the set {b ∈M |∃φ(x) ∈ LA∃n ∈ ωM |= ((¬∃nyφ(y))∧ φ(b))}, ie: the set of elements
contained in finite A-definable sets.

Claim 6. M along with the aclM operator forms a pre-geometry, ie: it satisfies the
following 4 conditions:

1. A ⊆ aclM(A)

2. aclM(aclM(A)) = aclM(A)

3. aclM(A) =
⋃
{aclM(A0)|A0 a finite subset of A}

4. If a ∈ aclM(A ∪ {b})r aclM(A) then b ∈ aclM(A ∪ {a})

Proof. 1-3 are relatively easy to see, so let us prove 4. Suppose φ(x) ∈ LA, M |=
φ(a, b), and there are only finitely many x realizing φ(x, b). Then let us examine the
set {y|φ(a, y)}. If this set is finite, then b ∈ aclM(A ∪ {a}). If this set is infinite
then it is co-finite and since a /∈ aclM(A), the set Sx = {y|φ(x, y)} is co-finite for
all but finitely many x. But b ∈ Sx for only finitely many x, say n such x. Thus
M |= ¬∃n+1x(b ∈ Sx), but there can only be finitely many elements satisfying this
formula as the intersection of any n+ 1 co-finite sets is co-finite. So b ∈ aclM(A).

Definition 7. Suppose A ⊆ M . We say A generates M if aclM(A) = M . We say
A is independent if for each a ∈ A, a /∈ aclM(A r {a}). If A generates M and A is
independent, then we say A is a basis for M .

Claim 8. Every pre-geometry has a basis. In particular, every strongly minimal
model has a basis. Further, any two bases must have the same cardinality.

Proof. This proof is similar to the analogous statement about vector spaces. The one
difference is that we use the exchange property, property 4 of pre-geometries, where
the proof for vector spaces multiplies by scalars and reorganizes variables within an
equation.

Definition 9. Let M be a strongly minimal model. We set dim(M), the dimension
of M , to be the cardinality of a basis for M .

Claim 10. Let M and N be models of a strongly minimal theory T . If dim(M) =
dim(N) then N ∼= M .

Proof. We build an elementary map one element at a time. We start with ρ0 mapping
one basis to the other. To build ρα+1, we take an element a of M . We set the formula
φa to define the smallest dom(ρα)-definable set containing a. There must be an
element c satisfying ρ(φ) (the formula achieved by replacing parameters b̄ by ρ(b̄)).
The extended map ρα+1 = ρα ∪ {〈a, c〉} is still elementary. This defines a forth step.
Reversing roles of M and N gives the back step.
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Claim 11. Let M be a strongly minimal model. Suppose N ⊆ M is an infinite
substructure so that aclM(N) = N , ie: N is algebraically closed in M . Then N �M .

Proof. We use the Tarski-Vaught test to verify thatN �M : Fix a formula φ(x) ∈ LN ,
and suppose M |= ∃xφ(x). There are two cases to consider depending on whether
the set {x ∈ M |M |= φ(x)} is finite or co-finite. Suppose this set is finite. Then the
set is contained in aclM(N) = N , so M |= ∃x ∈ Nφ(x). Suppose the set is co-finite.
Since N is infinite, M |= ∃x ∈ Nφ(x).

Claim 12. Suppose M is strongly minimal and infinite, dim(M) = k, k ∈ ω, and
k < n ∈ ω + 1. Then there is a model N |= Th(M) such that dim(N) = n. Further,
there is such an N such that M � N .

Proof. For n ∈ ω, it suffices to show this for n = k + 1. We will apply compactness
to get a larger model than M , then we will take the algebraic closure of a generic
k + 1 element set to form our model N . Fix ā a basis for M . Let p(x) be the
1-type over ā defined by φ(x) ∈ p ↔ {x ∈ M |M |= φ(x)} is infinite (equivalently
co-finite). Let Γ be the set of sentences Diag(M) ∪ p(c), where Diag(M) is the full
elementary diagram of M and c is a new constant symbol. By compactness and the
fact that the intersection of finitely many co-finite sets is non-empty, Γ is consistent.
Let M ′ be a model of Γ. We have M � M ′, and {ā, c} is independent in M ′. Let
N = aclM ′({ā, c}). By property 2 of pre-geometries, N = aclM ′(N), so N � M ′.
Thus N |= Th(M) and it is clear by the definition of N that {ā, c} forms a basis for
N and thus dim(N) = k + 1.

Having the result for n ∈ ω, we have a chain: Mk � Mk+1 � Mk+2 � . . . � Mω,
where Mω =

⋃
i≥kMi. It is easy to see that Mω cannot have a finite basis, thus has

dimension ω.

Baldwin and Lachlan [2] showed that any ℵ1-categorical theory is ‘controlled’ by
a strongly minimal part, and thus they extended the following result to apply to any
ℵ1-categorical theory.

Corollary 13. (Baldwin-Lachlan Theorem for Strongly Minimal Theories) Let T be
a strongly minimal non-ℵ0-categorical theory with infinite models. Then the countable
models of T form an elementary ω + 1-chain: M0 ≺M1 ≺M2 ≺ . . . ≺Mω.

Proof. Let M0 be the countable model of smallest dimension. This dimension is finite
since otherwise each countable model would have dimension ω, and T would be ℵ0-
categorical by claim 10. Repeatedly applying claim 12 gives us the desired chain of
models. As every model is characterized up to isomorphism by its dimension, every
countable model of T appears in the chain.
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1.3 The Spectrum Problem

Definition 14. Fix a non-ℵ0-categorical strongly minimal theory T with infinite mod-
els. Let M0 ≺ M1 . . . ≺ Mω be the elementary chain of countable models described
by the Baldwin-Lachlan theorem. Then we say the Spectrum of Recursive Models of
T (written SRM(T )) is the set {i|Mi has a recursive presentation}. We will often
refer to this as simply the spectrum of T .

Let S be a subset of ω + 1. If there exists a strongly minimal theory T so that
SRM(T ) = S, then we say that S is a spectrum.

We now re-pose Question 2 in a more precise way.

Question (2’). Which sets are spectra?

There are relatively few known examples of spectra. The trivial examples are easy
to construct:

Example 15. The empty set is a spectrum. Let L be the language with signature
{E}, a single binary relation symbol. Let S be a complete Π1-set and let M be the
model

⋃
n∈S(one n-cycle). If N |= Th(M), n ∈ S ↔ ∃x1 . . . xnN |= “x1 . . . xn form

an n-cycle”. Thus, a complete Π1-set is Σ1 in the atomic diagram of N . Thus N
cannot be recursive.

Example 16. ω + 1 is a spectrum. Let T be the theory of (Q,+). The models of T
are determined by the number of linearly independent elements. It is easy to see that
(Qn,+) is a recursively presentable structure for each n ∈ ω + 1.

Constructing other examples becomes more difficult. Due to the scarcity of known
examples, included below is a complete list of known results and sketches of their
proofs.

Theorem 17. (Goncharov, 1978 [3]) The set {0} is a spectrum.

Proof. Let L be the language with signature {ci|i ∈ ω} ∪ {Rj|j ∈ ω} where each ci
is a constant symbol and each Rj is a unary relation symbol. We define a theory
by specifying a model. Let M be a model with universe ω where ci is interpreted
as the number i and M |= Rj(ci) if and only if j ∈ Ki, where K is a complete
Σ1 set and Ki is the part of K enumerated by the ith step. Let T be the theory
of M . Note that if j /∈ K then T |= ∀x¬Rj(x), and if j ∈ K, say first in Ki,
then T |= Rj(x) ↔

∧i−1
k=0 x 6= ck. This shows that T is strongly minimal as it is a

definitional expansion of the theory of pure equality with countably many constants
named. Further, any non-prime model has an element not named by a constant.
Suppose N |= T and a ∈ N with N |= a 6= ci for all i. Then j ∈ K if and only if
N |= Rj(a). This shows that N cannot be recursive. Thus only the prime model has
a recursive presentation.
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Theorem 18. (Kudaibergenov, 1980 [12]) The set {0, . . . , n} is a spectrum.

Proof. Let L be the language with signature {ci|i ∈ ω} ∪ {Rj|j ∈ ω} where each ci is
a constant symbol and each Rj is an n+ 1-ary relation symbol. We define the theory
by specifying a model. Let M be a model with universe ω where ci is interpreted
as the number i and M |= Rj(ci1 , . . . cin+1) if and only if the cik are distinct and
j ∈ Kmin{i1,...in}. Again, each Rj is definable in terms of the constant symbols, so T
is strongly minimal. Let N be a model with fewer than n+ 1 elements not named by
constants. Then to determine whether Rj should hold on a distinct tuple of length
n + 1 involves only a finite stage approximation to K, since the tuple must include
a constant. Thus N has a recursive presentation. Let N ′ be any model with at least
n + 1 elements not named by constants: a1, . . . an+1. Then j ∈ K if and only if
N ′ |= Rj(a1, . . . an+1). Thus N ′ cannot be recursive.

Theorem 19. (Khoussainov, Nies, Shore, 1997 [10]) The set ω is a spectrum.

Proof. Let L be the language generated by {Rk,s|k, s ∈ ω} ∪ {ci|i ∈ ω}, where each
Rk,s is a k-ary relation. Fix a complete Π2 set S = {k|∀l∃jφ(k, l, j)}. Let M be a
model with universe ω where the number n is named by the constant cn, and Rk,s(x̄)
holds if and only if the xi are distinct and ∀n ≤ s∃j ≤ Bφ(k, n, j) where B = min{x̄}.

Again, we see that a model of dimension k has exactly k elements not named by
constants. Let Mω be the model of dimension ω. Then we see that

k ∈ S if and only if ∃ȳ(∀sMω |= Rk,s(ȳ))

But then if Mω were recursive, S would be presented as a Σ2 set, which is impossible.
To construct the m-dimensional model for m finite, we take non-constructively the

finite set of information describing whether k ∈ S for each k ≤ m, and if k /∈ S, what
is the first s such that ¬∀n ≤ s∃jφ(k, n, j). This is a finite amount of information, so
we can take it as given in our construction. Using this information, we can recursively
determine whether Rk,s should hold for any tuple in the m-dimensional model.

Theorem 20. (Khoussainov, Nies, Shore, 1997 [10]) The set ω + 1r {0} is a spec-
trum.

Proof. We fix the language L generated by {Ri|i ∈ ω} where each Ri is binary.

Definition 21. The canonical n-cube is the L-structure with universe (Z2)n where
Ri(x, y) holds if x = y+ ei where ei is the vector with a single 1 in the ith copy of Z2.

An n-cube is an L-structure isomorphic to the canonical n-cube.
An ω-cube is the L-structure which is the direct limit of n-cubes (eg: it has universe

⊕i∈ωZ2 with Ri(x, y) holding if x + ei = y where ei is the element with a single 1 in
the ith copy of Z2).
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Let S be any subset of ω. We define AS to be the structure comprised of the
disjoint union of n-cubes, one for each n ∈ S. We set TS to be Th(AS).

Claim 22. If S is Σ2, then ω + 1r {0} ⊆ SRM(TS).

Proof. For i ≥ 1, the i-dimensional model is comprised of AS along with i ω-cubes.
As long as S is Σ2, we have recursive guesses about whether k ∈ S, and k ∈ S if
and only if we guess k /∈ S only finitely many times. The construction proceeds by
building an n-cube for each n ∈ ω. At each stage when we guess k /∈ S, we join the
k-cube into one of the ω-cubes we are building and create a new k-cube. In the limit,
the only finite cubes which exist are the ones which we only finitely often join with
an ω-cube. This is precisely the set S.

Definition 23. A function g(x) : ω → ω is a limitwise monotonic function if there
is a total recursive function f(s, x) so that f(s, x) ≤ f(s + 1, x) for all s, x and
limsf(s, x) always exists and equals g(x).

Claim 24. 0 ∈ SRM(TS) implies that S is the range of a limitwise monotonic
function.

Proof. Let N be any recursive model of dimension 0. In particular, N has universe
ω. Then N is isomorphic to AS. At stage s, we conduct a search in the model N of
the first s elements and the first s relations. Define f(s, x) to be the largest cube x
is seen to be in during the stage s search in N . Then limsf(s, x) is n if x is in an
n-cube, but x is not in an n+1-cube. Thus S is the range of this limitwise monotonic
function.

We need to pick S to be any Σ2 set which is not the range of a limitwise monotonic
function. Such an S can be constructed via a finite injury construction.

Theorem 25. (Nies, 1999 [14]) The set {1} is a spectrum.

Proof. The proof, which will not appear in full here, proceeds by a refinement of the
proof in the previous theorem. The idea is to add predicates Pk so that if (x, y) forms
a sufficiently generic pair then Pk(x, y) ↔ k ∈ K. A similar refinement produces
theories Tα so that SRM(T ) = [1, α) for any α ∈ ω + 1 (Hirschfeldt, Nies).

Theorem 26. (Hirschfeldt, Khoussainov, Semukhin, 2006 [6]) The set {ω} is a spec-
trum.

Proof. The proof is a slick refinement of the two previous examples. What follows is
a sketch of the idea of the proof. First, generalize the notion of n-cube to A-cube for
A any finite subset of ω. Then, we decide that each finite cube we build will have
two edges Rk, Rl not appearing in any other cube. Upon observing the recursion-
theoretic trigger for that cube, we change our mind and declare that all big-enough
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cubes should have an Rk edge, and we decide that our cube is actually much larger
than it first appeared. In doing this, we add all the recently declared non-special
edges. We add a new edge that only this cube should contain. By repeating this,
there are 2 cases for the outcome of this cube in our construction. Either it turns
into a copy of the infinite generic cube or at some point we stop observing triggers.
The trigger for a cube is that a particular recursive structure contains an isomorphic
copy of that cube. The two cases correspond to either the particular recursive model
building an infinite generic cube (pushing its dimension up) or it does not copy this
cube, in which case, the cube being algebraic ensures that the model is not of the
same theory as the model we construct. By doing this, we end up building infinitely
many copies of the infinite generic cube, and we ensure that every other recursive
model of the theory also has infinitely many of the infinite generic cube.

Finally, completing the list of known spectra, the following theorem is one of the
main results of chapter 3 and negatively answers the question of whether all spectra
are intervals in ω + 1.

Theorem 27. The set {0, ω} is a spectrum.

1.3.1 The Finite Language Spectrum Problem

One of the main tools of coding information into models that we have seen in the
examples above is as follows: We take a strongly minimal theory T (such as equality
alone with constants named) and we append infinitely many relation symbols to
the language. We decide that each relation symbol will be definable in terms of T
in one of two or more ways. Which way we use codes one bit of a set (such as
K). Thus, by scrolling through the sequence of all relation symbols, we code the
full set K. This pattern is especially apparent in the examples of SRM(T ) = {0},
SRM(T ) = {0, . . . , n} and SRM(T ) = ω. This particular tool of coding shows no
relationship between the model theory involved in the theory and its spectrum, since
this tool adds no definable sets to the theory. In view of this, one way to focus on the
general relationships between the geometry of a theory and the recursion theoretic
patterns in the models of a theory is to focus on theories in finite languages. In view
of this, we pose the following version of Question 2:

Question (2′′). Which sets are spectra of strongly minimal theories in finite lan-
guages?

Note that Example 15 and Example 16 use finite languages, so ∅ and ω + 1
are spectra of strongly minimal theories in finite languages. The following theorem
provided the first interesting example.

Theorem 28. (Herwig, Lempp, Ziegler, 1999 [5]) The set {0} is the spectrum of a
strongly minimal theory in a finite language.
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The following theorem is one of the main results of chapter 3 and the one after
that summarizes the results in chapter 5.

Theorem 29. The set {ω} is a spectrum of a strongly minimal theory in a finite
language.

Theorem 30. For any n ∈ ω, the set {0, . . . n} as well as ω are spectra of strongly
minimal theories in a finite language.

1.4 The Complexity of Theories with Recursive

Models

It is well known that if a theory T is recursive then the Henkin construction
effectivizes to yield that T has a decidable model. Also, if T is recursive and ℵ1-
categorical, then all of its countable models are decidable [4], since the generic n-type
as well as the procedure of taking algebraic closures are recursive. This yields a
one-directional answer to Question 1.

On the other hand, if T has a recursive model (a model whose quantifier-free
diagram is recursive), then in general we can only say that T is tt-reducible to 0ω,
(N,+, ·) being an example. Naturally, one would like to know whether this bound
can be improved upon for ‘tame’ theories. Two natural classes of ‘tame’ theories are
the ℵ0-categorical and ℵ1-categorical theories. Within the ℵ1-categorical theories, our
focus is primarily on the strongly minimal theories.

Goncharov and Khoussainov in [3] showed that for each n there is an ℵ1-categorical,
non-ℵ0-categorical non-strongly minimal theory turing equivalent to 0(n) all of whose
countable models have recursive presentations. They also showed that for each n
there is an ℵ0-categorical theory turing equivalent to 0(n) with a recursive countable
model. Goncharov and Khoussainov conclude by asking the following two questions,
which clarify the remaining direction of Question 1:

Question (1′). Does there exist a theory turing equivalent to 0ω which is ℵ1-categorical
and all of its countable models are recursive?

Question (1′′). Does there exist is an ℵ0-categorical theory turing equivalent to 0ω

with a recursive model.

The latter question was settled by Montalban and Khoussainov [9] in the affir-
mative. They generalize the construction of the random graph to allow the theory
to code true arithmetic. The following theorem settles the first question also in the
affirmative. Further, the theory used is strongly minimal and in a finite language.

Theorem 31. There is a strongly minimal theory T in a finite language all of whose
models are recursive such that T ≡T 0ω.
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In fact, in chapter 4 we show that every tt-degrees below 0ω contains a strongly
minimal theory with recursive models.

Theorem 32. Let d be a tt-degree below 0ω. Then there exists a strongly minimal
theory T in a finite language such that T ∈ d and each countable model of T is
recursively presentable.

We also give the following analogous result for ℵ0-categorical theories.

Theorem 33. Let d be a tt-degree below 0ω. Then there exists an ℵ0-categorical theory
T in a finite language such that T ∈ d and the countable model of T is recursively
presentable.

As an immediate consequence we have the following improvement of the result of
Montalban and Khoussainov.

Theorem 34. There exists an ℵ0-categorical theory T in a finite language with a
recursive model such that T ≡T 0ω.
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Chapter 2

Amalgamation Constructions

The content of this chapter derives from an alteration to the construction of
Hrushovski [8] and is presented here as we will use this and an analog in further
chapters as a major tool to build strongly minimal theories. As in any amalgamation
construction, the aim is to define a class of structures with a well-behaved amalga-
mation property. At first, we work in generality so that the definitions and Lemma
42 can be used in future chapters without repetition. We will then switch gears to
choose a δ and make some choices for the class C to demonstrate the Hrushovski
amalgamation method in an infinite language.

2.1 General Definitions

Definition 35. Let L be any fixed relational language. Let {Bi}i∈I be a collection
of finite L-structures whose pairwise intersection is A. We say

⋃
i∈I Bi is a free-join

over A if whenever R(ā) holds for any relation symbol R in L and ā ⊆
⋃
i∈I Bi, then

ā ⊆ Bi for some i.

The core idea in Hrushovski’s amalgamation construction for building strongly
minimal sets is to use a pre-dimension function to give a coherent notion of what
algebraicity should be in the constructed theory.

Definition 36. A pre-dimension function is a function δ from finite L-structures to
Z ∪ {−∞} with the following properties.

1. For any finite L-structures A and B, δ(A ∪B) ≤ δ(A) + δ(B)− δ(A ∩B)

2. For M any finite L-structure and B1, B2 ⊆ M , δ(B1 ∪ B2) = δ(B1) + δ(B2) −
δ(B1 ∩B2) if and only if B1 ∪B2 is the free-join of B1 and B2 over B1 ∩B2 in
M .
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Note that we define pre-dimension functions to have range in Z ∪ {−∞}, though
this construction can be adapted to pre-dimension functions with other ranges, such
as R. Our choice of Z∪{−∞} is motivated by our focus on constructions of strongly
minimal models. From a pre-dimension function, we will define the ideas of dimension
relative to a set, dimension in a set, and precisely identify which extensions we want to
limit in our amalgamation class. The fundamental idea is that having δ ≤ 0 should
mean algebraicity. These notions are defined for any pre-dimension function, and
in what follows we will specify a particular pre-dimension function δ and use these
corresponding definitions for δ.

Definition 37. For any finite L-structures A and B and infinite L-structure D, we
define:

• δ(B/A) = δ(A ∪B)− δ(A). This is the relative dimension of B over A.

• If A ⊆ B, we set δ(A,B) = min{δ(C)|A ⊆ C ⊆ B}. This is the dimension of
A in B.

• If A ⊆ B, we say A is strong in B or A ≤ B if δ(A) = δ(A,B).
We say A is strong in D if A ⊆ D and A is strong in C for each finite A ⊆
C ⊆ D.

• We say B is simply algebraic over A if A ∩ B = ∅, A ≤ A ∪ B, δ(B/A) = 0,
and there is no proper subset B′ of B such that δ(B′/A) = 0.

• We say that B is minimally simply algebraic over A if B is simply algebraic
over A and there is no proper subset A′ of A such that B is simply algebraic
over A′.

We verify that strongness forms a transitive reflexive relation, justifying the use
of the symbol ≤. Also, we verify that relative dimension acts as we expect.

Lemma 38. Let A ⊆ N be L-structures. Suppose A ≤ N

1. δ(X ∩ A) ≤ δ(X) whenever X ⊆ N .

2. δ(A′, A) = δ(A′, N) whenever A′ ⊆ A.

3. In particular, if A′ ≤ A ≤ N , then A′ ≤ N

Proof. 3 is immediate from 2, which in turn is immediate from 1, so we will only
prove 1.
δ(X ∪A) ≤ δ(X)+δ(A)−δ(X ∩A). So, 0 ≤ δ(X ∪A)−δ(A) ≤ δ(X)−δ(X ∩A).

Lemma 39. If X,A, and B are finite L-structures such that A ⊆ B, then δ(X/A ∪
(X ∩B)) ≥ δ(X/B). In particular, if X ∩B = ∅, then δ(X/A) ≥ δ(X/B).
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Proof. δ((X ∪ A) ∪B) ≤ δ(X ∪ A) + δ(B)− δ((X ∪ A) ∩B), which simplifies to
δ(X ∪B)− δ(B) ≤ δ(X ∪ A)− δ(A ∪ (X ∩B)), as needed.

Lemma 40. Let M be a finite L-structure. Let A ⊆ M and suppose Bj are simply
algebraic over A and A ≤ (A ∪

⋃
j Bj), (j ∈ J). Then:

1. The Bj are pairwise equal or disjoint.

2. A ∪
⋃
j Bj is a free join of the Bj over A.

3. Suppose A ⊆ A′ ⊆ M , A′ ≤ A′ ∪ Bj, and Bj is not a subset of A′ (j=1,2).
Then any isomorphism of B1 with B2 over A extends to an isomorphism over
A′. In fact, A′ ∪Bj is a free join of A′ and Bj over A.

Proof. 1. We need to show that B1 ∩B2 = ∅ assuming B1 6= B2.
δ(A) ≤ δ(A ∪B1 ∪B2) ≤ δ(A ∪B1) + δ(A ∪B2)− δ(A ∪ (B1 ∩B2)).
So, δ(A) ≤ 2δ(A) − δ(A ∪ (B1 ∩ B2)). Hence, δ(A ∪ (B1 ∩ B2)) ≤ δ(A). By
strongness of A, these are equal. But B1 and B2 are simply algebraic over A,
so by the minimality condition in the definition of simply algebraic, B1 ∩B2 is
empty or else equal to both B1 and B2.

2. As we saw above:
δ(A ∪B1 ∪B2) = δ(A ∪B1) + δ(A ∪B2)− δ(A) and A = (A ∪B1) ∩ (A ∪B2).
Hence A ∪ B1 and A ∪ B2 are freely joined over A. Inductively repeating this
argument shows that A ∪

⋃
j Bj is a free join of the Bj over A.

3. 0 ≤ δ(B1/A
′) = δ(B1 ∪A/A′) ≤ δ(B1 ∪A/A′ ∩ (B1 ∪A)) = δ(B1 ∪A/A∪ (B1 ∩

A′)) = δ(B1 ∪A)− δ(A ∪ (A′ ∩B1)) = δ(A)− δ(A ∪ (A′ ∩B1)) ≤ 0, where the
last inequality is because A ≤ A ∪ B1. So, δ(A ∪ (A′ ∩ B1)) = δ(A), but by
the fact that B1 is simply algebraic over A, A′ ∩B1 = ∅ or B1. By assumption,
A ∩B1 must be ∅. Similarly for B2.
As δ(B1 ∪ A/A′) = δ(B1 ∪ A/A′ ∩ (B1 ∪ A)), we see that
δ(A′ ∪B1) = δ(A′) + δ(A ∪B1)− δ(A ∪ (A′ ∩B1)) = δ(A′) + δ(A ∪B1)− δ(A).
So, we have that A′ ∪B1 is a free join over A.

Definition 41. Let C0 be the class of finite L-structures C such that if A ⊆ C ∈ C0,
then δ(A) ≥ 0.

We have worked in generality by not specifying a particular pre-dimension function
or a specific class C ⊆ C0 so that the technical details of the following combinatorial
lemma will be widely applicable.
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Lemma 42. Suppose A,B1, B2 ∈ C0, A = B1 ∩ B2, and A ≤ B1. Let E be the
free-join of B1 with B2 over A. Suppose C1, . . . Cr, F are disjoint substructures of E
such that each Ci is minimally simply algebraic over F and the structures Ci and Cj

are isomorphic over F for each 1 ≤ i, j ≤ r. Then one of the following holds:

1. One of the Ci is contained in B1 r A and F ⊆ A.

2. Either F∪
⋃r
i=1C

i is entirely contained in B2 or F∪
⋃r
i=1 C

i is entirely contained
in B1 and one of the Ci is contained in B1 r A.

3. r ≤ δ(F )

4. For one Ci, setting X = (F ∩ A) ∪ (Ci ∩ B2), δ(X/X ∩ A) < 0. Further, one
of the Cj is contained in B1 r A. (Note that this cannot happen if A ≤ B2 by
Lemma 38).

Proof. Let Cj
0 = Cj ∩ A, Cj

1 = Cj ∩ B1, and Cj
2 = Cj ∩ B2, and define F0, F1, F2

similarly. Renumber the Cj so that δ(Cj
1/F ) < δ(Cj

0/F ) (ie: δ(Cj
1 rC

j
0/C

j
0 ∪F ) < 0)

if and only if j ≤ r0, and for j > r0, Cj = Cj
2 if and only if j ≤ r1 (r1 ≥ r0).

Claim 1: r0 ≤ δ(F1/A)

Proof. Take j ≤ r0.
δ(Cj

1 ∪ A ∪ F ) ≤ δ(A ∪ F ) + δ(Cj
1 ∪ F )− δ(Cj

0 ∪ F ).
So, δ(Cj

1 − C
j
0/A ∪ F ) ≤ δ(Cj

1 − C
j
0/C

j
0 ∪ F ) < 0.

As A∪F and Cj
1∪A∪F1 are freely joined over A∪F1, we get δ(Cj

1−C
j
0/A∪F1) =

δ(Cj
1 − C

j
0/A ∪ F ) ≤ δ(Cj

1 − C
j
0/C

j
0 ∪ F ) ≤ −1.

We set C∗ =
⋃
j≤r0 C

j
1 . We will inductively show that δ(C∗/A∪F1) ≤ r0 · (−1) =

−r0. We have shown the base case. Now, suppose δ(
⋃
j<mC

j
1/A∪F1) ≤ m(−1), and

m ≤ r0. We see that δ(
⋃
j≤mC

j
1/A∪ F1) = δ(

⋃
j<mC

j
1 ∪Cm

1 ∪A∪ F1)− δ(A∪ F1) ≤
δ(
⋃
j<mC

j
1 ∪ A ∪ F1) + δ(Cm

1 ∪ A ∪ F1) − δ(A ∪ F1) − δ(A ∪ F1) = δ(
⋃
j<mC

j
1/A ∪

F1) + δ(Cm
1 /A ∪ F1) ≤ −m− 1 as needed.

But A ≤ B1, so A ≤ (A ∪ C∗ ∪ F1). Thus 0 ≤ δ(C∗ ∪ F1/A) = δ(C∗/F1 ∪ A) +
δ(F1/A), showing that δ(F1/A) ≥ r0.

Claim 2: For each j, δ(Cj
1/F ) + δ(Cj

2/F )− δ(Cj
0/F ) = 0

Proof. δ(Cj
1/F ) + δ(Cj

2/F )− δ(Cj
0/F ) = δ(Cj

2 ∪ F ) + δ(Cj
1 ∪ F )− δ(Cj

0 ∪ F )− δ(F ).
(Cj

2 ∪ F ) and (Cj
1 ∪ F ) are freely joined over Cj

0 ∪ F , so δ(Cj
2 ∪ F ) + δ(Cj

1 ∪ F ) −
δ(Cj

0 ∪ F )− δ(F ) = δ(Cj
2 ∪ C

j
1 ∪ F )− δ(F ) = δ(Cj ∪ F )− δ(F ) = 0.

Claim 3: If j > r1, then Cj
2 = ∅

Proof. δ(Cj
2/F ) = −δ(Cj

1/F ) + δ(Cj
0/F ) ≤ 0, as j > r0. But F ≤ F ∪ Cj

2 . So,
δ(Cj

2/F ) = 0. Thus, by minimality of Cj, Cj
2 = Cj or ∅. The first case is ruled out

since j > r1.
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Case 1: F ⊆ B2

Proof. Then F1 ⊆ A. By Claim 1, r0 = 0. By Claim 3, Cj
2 = ∅ or Cj

2 = Cj for every j.
If Cj

2 = Cj for each j, then conclusion 2 of our lemma holds. We may assume Cj
2 = ∅

for one j. Since Cj ⊆ B1 r A, we see that F ⊆ A. (To see that F ⊆ A, note that
δ(Cj∪F ) = δ(Cj∪F0)+δ(F2)−δ(F0). So, 0 = δ(Cj∪F )−δ(F ) = δ(Cj∪F0)−δ(F0),
and by the fact that Cj is minimally simply algebraic over F, we see that F = F0.)
This shows that conclusion 1 of our lemma holds. From here on, we may assume that
F 6= F2.

Claim 4: r1 − r0 ≤ δ(F1/F0)− δ(F1/A)

Proof. Take any j so that r0 < j ≤ r1, ie: Cj = Cj
2 . We will show that F1 is

not freely joined with Cj over F0. Suppose for a contradiction that F1 was freely
joined with Cj over F0. Then we see that F1 is freely joined with Cj ∪ F2 over F0.
Thus, 0 = δ(Cj/F ) = δ(Cj ∪ F ) − δ(F ) = δ(F1) + δ(Cj ∪ F2) − δ(F0) − δ(F ) =
(δ(F1) + δ(F2) − δ(F0)) − δ(F ) + δ(Cj ∪ F2) − δ(F2) = δ(Cj/F2) Thus Cj is simply
algebraic over F2, showing that F = F2 contrary to assumption. We conclude that
F1 is not freely joined with Cj over F0. Thus F1 is not freely joined with Cj

0 over F0,
and δ(Cj

0 ∪ F1) < δ(Cj
0 ∪ F0) + δ(F1)− δ(F0)

Combining these bounds as in Claim 1, we see that δ(
⋃
r0<j≤r1 C

j
0 ∪ F1) ≤

δ(
⋃
r0<j≤r1 C

j
0∪F0)+δ(F1)−δ(F0)−(r1−r0). Set C∗ =

⋃
r0<j≤r1 C

j
0 and we have that

δ(C∗∪F1)−δ(C∗∪F0) ≤ δ(F1)−δ(F0)−(r1−r0). Thus, δ(F1/A) ≤ δ(F1/(C
∗∪F0)) ≤

δ(F1/F0)− (r1 − r0) yielding the claim by rearranging terms.

Case 2: r > r1, ie: Cr
2 = ∅.

As we saw above, this implies that F = F1. If all the Cj are contained in B1, then
conclusion 2 of our lemma holds (Cr witnessing the second part of the conclusion).
So, we may assume that Cj 6= Cj

1 for some j. If it were that Cj ⊆ B2 − A, then F
would equal F2, and we have already dealt with that case, so we may assume also
that Cj

0 6= ∅.
δ(Cj

2 − C
j
0/C

j
0 ∪ F ) = δ(Cj

2/F )− δ(Cj
0/F ) = −δ(Cj

1/F ) ≤ 0. This last inequality
is true because F ≤ F ∪ Cj.

Case 2a: −δ(Cj
1/F ) = 0. Then by minimality of Cj, either Cj

1 = Cj or Cj
1 = ∅.

Either way, this contradicts one assumption.
Case 2b: δ(Cj

2−C
j
0/C

j
0∪F ) = −δ(Cj

1/F ) < 0. Then, letting X = F0∪Cj
2 , we have

δ(X/X ∩A) = δ(Cj
2/C

j
0 ∪ F0) = δ(Cj

2 ∪ F0)− δ(Cj
0 ∪ F0) = δ(Cj

2 ∪ F )− δ(Cj
0 ∪ F ) =

δ(Cj
2/F )− δ(Cj

0/F ) = −δ(Cj
1/F ) < 0, showing that the last conclusion of our lemma

holds. The equality replacing F0 by F in the previous chain holds because F and Cj

are freely joined over F0 ∪ Cj
0 since F ⊆ B1 and Cj ⊆ B2.

Case 3: Not Case 1 or Case 2.
r = r1 = (r1 − r0) + r0 ≤ (δ(F1/F0) − δ(F1/A)) + δ(F1/A) = δ(F1/F0) = δ(F ) −

δ(F2) ≤ δ(F ) showing that the third condition of our lemma holds.
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2.2 The Amalgamation Class

Now we switch gears by declaring a particular δ-function and a particular amal-
gamation class to demonstrate the construction of a strongly minimal theory.

Definition 43. • Let L be a countable relational language with signature {Ri|i ∈
I} Let ki be the arity of Ri.

• Throughout the construction, we enforce that each relation symbol is symmetric
and holds only on distinct tuples.

• For R a relation symbol in L, we write |R(A)| for the number of subsets of A
on which R holds.

• Let δ(A) = |A| −
∑

i∈I |Ri(A)|.

• For any disjoint L-structures ā, b̄ ⊆ C, we write tpr.q.f.(b̄/ā) for the set
{Ri(x̄i, ȳi)|(b̄iāi) ⊆ (b̄ ∪ ā)ki r āki , i ∈ ω, and Ri(b̄i, āi) holds}. We call this set
the relative quantifier-free type of b̄ over ā. We say two relative quantifier free
types are the same if they are equal after a re-ordering of b̄ and a re-ordering of
ā. Thus we can talk about the relative quantifier-free type of the set B over A,
and we write tpr.q.f (B/A).

• Let µ(B,A) be a function from pairs of L-structures B,A with B minimally
simply algebraic over A to N so that µ depends only on the isomorphism type
of the pair (B,A) and µ(B,A) ≥ |A|. We further suppose that if Γ is a rel-
ative quantifier-free type, then there exists a sub-language L′ with a finite sub-
signature of L so that if tpr.q.f.(B/A) = Γ = tpr.q.f.(B

′/A′) and tpq.f.(A)|L′ =
tpq.f.(A

′)|L′ then µ(B,A) = µ(B′, A′).

On first introduction to amalgamation constructions, one should take L = {R},
R a single ternary relation symbol, and µ(B,A) = |A|.

Definition 44. Let Y and X be finite L-structures such that Y is minimally sim-
ply algebraic over X. Let LY/X be the language generated by {Ri|∃x̄ ⊆ (B ∪ A)ki r
Aki(Ri(x̄))}, ie: the language occurring in tpr.q.f.(Y/X). Suppose B and A are fi-
nite L-structures such that tpr.q.f.(B/A)|LY/X

= tpr.q.f.(Y/X) and tpqf (X) = tpqf (A).
Then we say the extension B over A is of the form of Y over X.

Definition 45. Let b be in ω and µ a function as described above. Then we define
Cb,µ to be the class of finite L-structures C such that:

• If A ⊆ C, then δ(A) ≥ min(|A|, b)
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• Suppose Y over X is some minimally simply algebraic extension. If B1, . . . , Bn,
A are disjoint subsets of C such that each Bi over A is an extension of the form
of Y over X. Then n ≤ µ(Y,X).

Though Cb,µ is defined only relative to b and µ, we will prove the results in this
section for any such Cb,µ and will simply refer to the class as C. The following two
theorems verify that C behaves as expected when we pass to smaller languages.

Lemma 46. Suppose C ∈ C and L′ is any language whose signature is a subset of
{Ri|i ∈ ω}. Then C|L′ ∈ C0.

Proof. Let A′ be any subset of C|L′ . Let A be the corresponding subset of C. Then
δ(A′) ≥ δ(A) ≥ 0.

Lemma 47. Suppose A and B are any finite L-structures such that A ≤ B and L′ is
a language whose signature is a subset of {Ri|i ∈ ω}. Let A′ = A|L′ and B′ = B|L′.
Then A′ ≤ B′

Proof. Fix any C ′ such that A′ ⊆ C ′ ⊆ B′. Letting C be the corresponding subset of
B, we see that 0 ≤ δ(C/A) ≤ δ(C ′/A′). Thus δ(C ′) ≥ δ(A′) showing that A′ ≤ B′.

We wish to amalgamate the class C to form a model. Though C does not satisfy
the standard amalgamation property (as if δ(B/A) = δ(C/A) = −δ(A), then B and
C cannot be amalgamated over A without δ(B ∪ C) < 0), as the next lemmas show,
C still has a form of amalgamation property for strong substructures.

Lemma 48. (Algebraic Amalgamation Lemma) Suppose A,B1, B2 ∈ C, A = B1∩B2,
and B1 r A is simply algebraic over A. Let E be the free-join of B1 with B2 over A.
Then E ∈ C unless one of the following hold:

1. B1rA is minimally simply algebraic over some F ⊆ A, and B2 contains µ(B1r
A,F ) disjoint extensions over F of the form of B1 r A over F .

2. There exists a set Z ⊆ B2, and a subset L̂ of LB1/A such that (A∩Z)|L̂ 6≤ Z|L̂.
Further, B1|L̂ contains an isomorphic copy of Z|L̂.

Proof. We will show that E satisfies the first condition of being in C. Let X be any
subset of E. Then δ(X) = δ(X ∩ B1) + δ(X ∩ B2) + δ(X ∩ A). Note that from this,
we see δ(X) ≥ δ(X ∩ B2). If |X ∩ B2| ≥ b, then δ(X) ≥ b. So, we may suppose
|X∩B2| = δ(X∩B2) < b. Thus no relations hold on X∩B2. Thus δ(X∩A) = |X∩A|
as well. Finally, we have δ(X) = δ(X ∩ B1) + |X ∩ (B2 r A)| ≥ min(b, |X ∩ B1|) +
|X ∩ (B2 rA)| ≥ min(b+ |X ∩ (B2 rA)|, |X ∩B1|+ |X ∩ (B2 rA)|) ≥ min(b, |X|).

Suppose Y is minimally simply algebraic over X and E contains disjoint sets
C1, . . . , Cr, F where each of the Cj over F are of the form of Y over X. We will
look at the structure E|LY/X

. Call this structure E ′. Our focus will be on using the
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structure E ′ to count the Cjs, so we abuse notation and write Cj also for the structure
induced by the corresponding set in E ′. Here, each of the Cj over F are minimally
simply algebraic extensions. Note further that E ′ is the free-join of B1|LY/X

with
B2|LY/X

over A|LY/X
and B1|LY/X

and B2|LY/X
are members of C0 by Lemma 46. Each

of the Cj are minimally simply algebraic over F and A|LY/X
≤ B1|LY/X

by Lemma
47. By Lemma 42, there are 4 cases:

1. One of the Ci is contained in B1 r A and F ⊆ A. Since B1 r A is simply
algebraic over A in E, Ci = B1 r A. As the Cj and F are disjoint and one is
B1 r A, each of the other Cj and F are contained in B2. If r > µ(Y,X) then
there must be µ(Y,X) of them contained in B2 putting us in the case of the
first exception to this lemma.

2. F ∪
⋃r
i=1C

i is entirely contained in either B1 or B2. Then r ≤ µ(Y,X) as
B1, B2 ∈ C

3. r ≤ δ(F ). δ(F ) ≤ |F | = |X| ≤ µ(Y,X)

4. For one Ci, setting X = (F ∩ A) ∪ (Ci ∩ B2), we see that δ(X/X ∩ A) < 0.
Further, one of the Cj is contained in B1 r A. Using this set as Z and using
LY/X as L̂ yields the second exception in our lemma.

Lemma 49. (Strong Amalgamation Lemma) Suppose A,B,C ∈ C, A ≤ B, A ≤ C.
Then there exists D ∈ C so that C ≤ D, and an g : B → D an embedding so that
g(B) ≤ D and g(A) = id|A.

Proof. This follows from the Algebraic Amalgamation Lemma by induction on |B −
A| + |C − A|. We may assume there is no A ( B′ ( B such that A ≤ B′ ≤ B.
Otherwise, using the inductive hypothesis we can amalgamate B′ with C over A and
then B can be amalgamated with B′ ∪ C over B′, and we are done. We have two
cases remaining to consider.

Case 1: B is comprised of A along with a single element unrelated to A. In this
case, the free-join of B with C over A suffices.

Case 2: B is simply algebraic over A, say minimally simply algebraic over F ⊆ A.
If neither of the conditions of the Algebraic Amalgamation Lemma hold, then the
free-join of B with C over A suffices. Since A ≤ C, if Z ⊆ C then Z ∩ A ≤ Z. Thus
by Lemma 47 for any language L̂, (Z ∩ A)|L̂ ≤ Z|L̂, so the second condition of the
Algebraic Amalgamation Lemma can not hold.

Suppose the first condition of the Algebraic Amalgamation Lemma holds. C
contains µ(B r A,F ) disjoint extensions of the form of B r A over F .

Claim 50. Let K ⊆ C be such that K over F is of the form of B rA over F . Then
K ⊆ A or K ∩ A = ∅.
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Proof. Suppose otherwise, that K ∩A is a proper subset of K. As C ∈ C and A ≤ C,
we have that A′ = A|LY/X

≤ C|LY/X
by Lemma 47. Also, since K over F is of the form

of Y over X, K ′ = K|LY/X
is minimally simply algebraic over F ′ = F |LY/X

. See that
0 = δ(K ′/F ′) = δ(K ′/(K ′∩A′)∪F ′)+ δ((K ′∩A′)/F ′). But δ(K ′/(K ′∩A′)∪F ′) ≥ 0
as A′ ≤ C ′ and δ((K ′∩A′)/F ′) > 0 as K ′ is minimally simply algebraic over F ′. This
yields the contradiction.

At most µ(BrA,F )−1 disjoint extensions of the form of BrA over F can occur
inside A since B ∈ C. Thus there is an X ⊆ C r A such that X over F is of the
form of B rA over F . Since A ≤ C, we see that there can be no additional relations
holding on X, ie: tpr.q.f.(X/F ) = tpr.q.f.(B r A/F ). By Lemma 40, tpr.q.f (X/Q) =
tpr.q.f (B r A/A), and identifying B r A with X suffices.

Using the Strong Amalgamation Lemma, we can build a generic modelM whose
age is C.

2.3 The Theory of M
Using the Strong Amalgamation Lemma, we get a model M which satisfies the

following 3 properties:

1. M is countable

2. Every finite substructure of M is an element of C

3. Suppose B ≤ M, B ≤ C, and C ∈ C. Then there exists an embedding
f : C →M such that f |B = idB and f(C) ≤M.

Note that for any A ⊆ M, there exists a finite B ⊆ M such that A ⊆ B ≤ M
because N is well-ordered. By a standard back-and-forth argument using finite strong
substructures, (1,2,3) defines M up to isomorphism.

We would like to show that M is saturated by showing that any countable ele-
mentary supermodel of M must also have properties (1,2,3) and thus would have to
be isomorphic to M. The problem is that 3 is not a first-order property. To make
the argument work, we replace 3 by 3′ and 3′′:
3′. M contains an infinite set I such that no relations hold on any tuples from I and
A ≤M for each finite A ⊂ I.
3′′. Suppose B ⊆ M, B ≤ C, C ∈ C, and C r B is simply algebraic over B, say
minimally simply algebraic over F ⊆ B. Suppose also that for any subset L̂ of LC/B
and any X ⊆ C, there is no set X ′ ⊆M such that X|L̂ ∼= X ′|L̂ and (B∩X ′)|L̂ 6≤ X ′|L̂.
Then there are µ(C r B,F ) disjoint extensions over F of the form of C r B over F
in M.

Note that 3′′ is first order since LC/B has finite signature and µ(C r B,F ) is
determined by the type of F in a finite signature sublanguage of L.
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Claim 51. (1, 2, 3) and (1, 2, 3′, 3′′) are equivalent.

Proof. →: 3′ follows from 3 directly and 3′′ follows from the Algebraic Amalgamation
Lemma.
←: 3 follows as in the proof of the Strong Amalgamation Lemma.

Corollary 52. M is saturated.

Proof. Since 3′ and 3′′ are first order conditions, any countable elementary extension
of M satisfies (1, 2, 3′, 3′′), hence is isomorphic to M. It follows that there are only
countably many types realized in elementary extensions of M. Hence, there is a
saturated countable elementary extension ofM, whichM must be isomorphic to.

We want to explain what algebraicity amounts to in M. We define d(A) =
min{δ(C)|A ⊆ C ⊆ M, C finite}. Clearly for any A and x, either d(xA) = d(A) or
d(xA) = d(A) + 1.

Lemma 53. If d(xA) = d(A) + 1 and d(yA) = d(A) + 1, then (M, Ax) ∼= (M, Ay).

Proof. Let B be such that A ⊆ B, δ(B) = d(A). Then B ≤ M. d(xB) = d(xA) =
d(A) + 1. Thus, xB ≤M, and similarly yB ≤M. Using property 3 and a standard
back-and forth, we see that (M, xB) and (M, yB) are isomorphic.

We have shown that there is a unique type over A of an element x such that
d(xA) > d(A). Next we show that d(xA) = d(A) implies that x ∈ aclM(A).

Lemma 54. If d(xA) = d(A), then x ∈ aclM(A).

Proof. Suppose d(xA) = d(A). First, let B be a minimal set such that A ⊆ B and
δ(B) = d(A). We show that B is algebraic over A in M. Suppose there were two
realizations of the positive atomic type of B over A. Call the second realization B′.
Then δ(B ∪ B′) ≤ δ(B) + δ(B′) − δ(B ∩ B′) < δ(B′) ≤ d(A). The strict inequality
is due to B being a minimal set with the properties that A ⊆ B and δ(B) = d(A).
This inequality contradicts the definition of d(A).

Fix E to be a set such that xA ⊆ E and δ(E) = d(A). Then δ(E ∪ B) ≤
δ(E)+δ(B)−δ(E∩B). If E does not contain B, then δ(E∩B) > d(A) by minimality
of B. Then δ(E ∪B) ≤ d(A) +d(A)− δ(E ∩B) < d(A), again a contradiction. Thus,
E contains B and d(xB) = d(B).

Take a sequence of extensions B0, B1, B2, . . . Bn such that B0 = B, Bn = E, and
Bi+1 is a minimal set such that Bi ( Bi+1 ⊆ E and δ(Bi+1) = d(A). Then Bi+1 rBi

is simply algebraic over Bi, say minimally simply algebraic over Fi. Since Bi ≤ M,
any two realizations of the positive atomic type of Bi+1rBi over Bi must be disjoint
by Lemma 40 and there can be no more than µ(Bi+1 r Bi, Fi) many of these. Thus
Bi+1 is algebraic over Bi. We conclude that E is algebraic over A. In particular,
x ∈ aclM(A).
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Corollary 55. Th(M) is strongly minimal.

Proof. In the previous lemma, we showed that over any set there is a unique non-
algebraic type realized in M. Since M is saturated, we see that Th(M) is strongly
minimal.

In two of the following chapters, this construction will be used explicitly via nam-
ing a µ and b to apply this construction to. In chapter 5, we will need an alteration
of this method and will have to verify the validity of that construction.
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Chapter 3

A New Spectrum

In this chapter, we will use the Hrushovski Amalgamation method as well as a
diagonalization argument to produce strongly minimal theories as in the following
theorems.

Theorem 56. There exists a strongly minimal theory T such that SRM(T ) = {0, ω}.

Theorem 57. There exists a strongly minimal theory T in a finite language such that
SRM(T ) = {ω}

Both main theorems will proceed via use of the Hrushovski construction presented
in Chapter 2 by specifying an integer b and function µ.

3.1 The Amalgamation Class

In this section, we will describe the construction of a model relative to any given set
S ⊆ ω. In section 3.3, we will fix a particular set S to yield the desired theorems. We
view S as a set of pairs of natural numbers 〈j, k〉 by using a standard pairing function
(a recursive bijection between N and N×N). We refer to {m ∈ S|∃k (m = 〈j, k〉)} as
the jth column of S and will write S[j] to denote this set. From the set S, we define
the set Q to consist of the first two elements of each column not contained in S, ie:
Q = {〈j, k〉|〈j, k〉 /∈ S and ¬∃2k′(k′ < k ∧ 〈j, k′〉 /∈ S)}.

We define L to be the language with signature {R} ∪ {Ri|i ∈ ω} where each
relation symbol is ternary. Throughout the construction, we enforce that each relation
is symmetric and holds only on distinct triples. We use the construction from section
2.2, using the same δ function (δ(A) = |A| − |R(A)| −

∑
i∈omega|Ri(A)|). We need

only specify a function µ and an integer b.
We enumerate recursively the relative quantifier-free types of all minimally simply

algebraic extensions over a 3 element set involving only the relation R. We refer to
the ith enumerated relative quantifier-free types as Λi.
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Definition 58. We say B/A is a Λi-extension if tpr.q.f (B/A)|R = Λi.

Definition 59.

µ(Y,X) =


4 if Y/X is a Λ〈j,k〉-extension, 〈j, k〉 ∈ Q, and Rj(X) holds

4 if Y/X is a Λ〈j,k〉-extension and 〈j, k〉 ∈ S
|X| otherwise

Note that in the first two cases |X| = 3 as the Λ’s are relative quantifier-free types
over 3 element sets. Any integer greater than 3 could be used in the place of 4 in the
above definition.

Now we use µ to bound the number of extensions allowed of the form of a given
minimally simply algebraic extension and define our amalgamation class, C2,µ. Recall
the following definition of C2,µ.

Definition 60. Let C be the class of finite L-structures C such that the following
hold:

• If A ⊆ C then δ(A) ≥ min(|A|, 2)

• Let Y/X be a minimally simply algebraic extension. Let Bi, i = 1, . . . , n, and
A be disjoint subsets of C such that Bi/A is an extension of the form Y/X for
each i. Then n ≤ µ(Y,X).

From the results of section 2.3, we know that we get a saturated amalgam M of
the class C and that Th(M) is strongly minimal.

Lemma 61. Suppose S is a Σ1 set. Then M is a recursively presentable structure.

Proof. If S is finite, then µ is a recursive function, C is a recursive set of L-structures
and repeatedly applying the strong amalgamation lemma lets us recursively build
M. We may assume S is infinite. We fix uniformly recursive approximations Si to
S such that Si ⊆ Si+1 and |Si| = i. We will use these recursive approximations to
S to build recursive approximations to the amalgamation class and will be able to
amalgamate to buildM. We define Qi to be the first 2 elements of the first i columns
not contained in Si.
At stage i, define

µi(Y,X) =


4 if Y/X is of the form of Λ〈j,k〉, 〈j, k〉 ∈ Qi, and Rj(X) holds

4 if Y/X is of the form of Λ〈j,k〉 and 〈j, k〉 ∈ Si
|X| otherwise

We define Ci, the amalgamation class allowed at the ith stage, from µi.
Let Ci = C2,µi

be the class of finite L-structures C such that the following hold:
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• If A ⊆ C then δ(A) ≥ min(|A|, 2).

• Let Y/X be a minimally simply algebraic extension. Let Bj, j = 1, . . . , n, and
A be disjoint subsets of C such that Bj/A is an extension of the form Y/X for
each j. Then n ≤ µi(Y,X).

Since µi(Y,X) ≤ µi+1(Y,X), we see that Ci ⊆ Ci+1. As limi µi = µ, we see that C =⋃
i Ci. To constructM, we work in stages. At the ith stage, we amalgamate the first i

possible amalgamations allowed in Ci. As C =
⋃
i Ci, every possible amalgamation in

C is amalgamated at a finite stage, and since Ci ⊆ C, we never leave the amalgamation
class C. This constructs a generic model for C which is therefore isomorphic toM.

From here forward we assume S is a Σ1 set, and thus the result of the lemma holds.
We fix a recursive presentation of M, and we refer to this particular presentation as
M from here on.

3.2 The Restricted Language

To obscure the recursion theoretic content of the construction from the presenta-
tion of the model, we will restrict to the language generated by the single relation
symbol R. Also, to force the prime model to be recursive in Theorem 56, we will
name constants which will identify the prime model.

We fix a non-algebraic pair of elements x and y fromM. By the characterization
of algebraic closure in section 2.3, aclM({x, y}) is a Σ1 set (ie: z ∈ aclM({x, y}) if
and only if d({z, x, y}) = 2 if and only if ∃A ⊇ {x, y, z}(δ(A) = 2), which is a Σ1

condition). Using this observation, we fix a recursive enumeration of aclM({x, y}),
i 7→ zi.

Definition 62. Let M′ be the model obtained by restricting M to the language gen-
erated by {R}.
Let M′′ be the model constructed by adding constant symbols {ci|i ∈ ω} to M′ where
ci names the element zi.

Our next goal is to understand algebraicity in the model M′. In particular, we’ll
see that the relations that ‘count’ are R and the Ri such that S[i] 6= ω[i]. From here
forth, we call the language generated by {R}∪{Ri|S[i] 6= ω[i]} by the name L′. Recall
Λj is a relative quantifier-free type of an extension of a 3-element set. In the context
of a first order formula, we write Λj(ȳ, x̄) to represent the formula which states that
ȳ is a Λj-extension of x̄ (ie: tpr.q.f (ȳ/x̄)|R = Λj). Note that Λj(ȳ, x̄) is a formula
involving only the relation R.

Lemma 63. Let i be an integer such that S[i] 6= ω[i]. Then Q[i] 6= ∅. Let 〈i, k〉 be
an element of Q[i]. Then M |= ∀x̄(Ri(x̄)↔ ∃4ȳΛ〈i,k〉(ȳ, x̄)) (here we read ∃4 as there
exist 4 disjoint tuples ȳ satisfying the condition).
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Proof. ←: If there are 4 disjoint Λj-extensions over x̄ and Ri(x̄) does not hold, then
taking the finite set A comprised of the 4 extensions and x̄, we see that A /∈ C
contradicting property (2) of M.
→: Suppose Ri(x̄) holds. Then δ(x̄) = 2, which shows x̄ ≤ M. By (3′′), we see

that there are 4 disjoint Λj-extensions over x̄.

Since each of the relations Ri ∈ L′ are definable in M′, we will abuse notation
and say Ri(x̄) holds in M′ to mean that the equivalent statement involving only R
holds in M′. Similarly for M′′. This shows that these relations still ‘count’ in the
reduct M′. The next lemma shows that these are the only relations that still count.

Definition 64. • For finite A ⊆ M ′, let δ′(A) = δ(A|L′) = |A| − |R(A)| −∑
Rj∈L′|Rj(A)|.

• Let d′(A) = min{δ′(B)|A ⊆ B ⊆M′, B finite}

• The class CL′ is the set of L′-structures in C.

The following lemma holds as well for any sub-language of L containing L′.

Lemma 65. M|L′ is generic for the class CL′.

Proof. We need to show that M|L′ satisfies the conditions to be a generic model of
CL′ . We use the versions of (1, 2, 3′, 3′′) for CL′ :
1: M|L′ is countable
2: For any finite A ⊆M|L′ , A ∈ CL′
3′: M|L′ contains an infinite set I such that there are no relations holding on I, and
for any finite A ⊆ I, d′(A) = |A|.
3′′: Suppose B ⊆M|L′ , B ≤ C, C ∈ CL′ , and C r B is simply algebraic over B, say
minimally simply algebraic over F ⊆ B. Suppose also that for any subset L̂ of LC/B
and any X ⊆ C, there is no set X ′ such that X|L̂ ∼= X ′|L̂ and (B ∩ X ′)|L̂ 6≤ X ′|L̂.
Then there are µ(C rB,F ) many copies of C rB over F in M|L′ .

1 is equivalent to the 1 above. 2 follows from the fact that for any A ∈ C,
A|L′ ∈ CL′ , which follows from the identity µ(Y,X) = µ(Y,X|L′). 3′ is formally weaker
than the 3′ above. Since µ(Y,X|L′) = µ(Y,X), 3′′ follows from the 3′′ above.

Lemma 66. x ∈ aclM′(A) if and only if d′(xA) = d′(A).

Proof. Above we showed that for M the generic model of C, algebraicity meant
d(xA) = d(A). By the analogous argument for M|L′ , we see that algebraicity here
means d′(xA) = d′(A). Since M|L′ is a definitional expansion of M′, algebraicity is
the same for M′.

Lemma 67. M′ and M′′ are both recursive, saturated, and strongly minimal.
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Proof. M′ is recursive, saturated, and strongly minimal, as it is a reduct to a recursive
language of a model with all of these properties.
M′′ is recursive since the assignment of the constants is recursive. It is strongly

minimal, as adding constants to a strongly minimal theory retains strong minimality.
Take I an infinite algebraically independent sequence in M beginning with {x, y}.
I − {x, y} is algebraically independent over the algebraic closure of {x, y} in M.
Thus I −{x, y} is algebraically independent inM′′. This shows thatM′′ has infinite
algebraic dimension, thus is saturated.

3.3 Defining S

Thus far we have constructed the two recursive models M′ and M′′ relative to
any given Σ1 set S. We aim for a construction where SRM(Th(M′)) = {ω} and
SRM(Th(M′′)) = {0, ω}. To ensure this, we need to diagonalize against the possible
finite-dimensional models of each theory. In this section, we construct the Σ1 set S
to ensure these results.

We want to ensure that finite dimensional models are not recursive. There is no
0-dimensional model of Th(M′) (ie: acl(∅) = ∅), so we will diagonalize only against
positive dimensional models. We fix a recursive enumeration of all pairs (f, U) where
f is a partial recursive function from the set of quantifier-free formulas in the language
{R} ∪ {ci|i ∈ ω} ∪N to {true, false} and U is a non-empty finite subset of N. This is
to be interpreted as f giving the quantifier-free diagram of a model N with universe
N and U representing a basis of the model.

We will describe a routine for enumerating S. For the ith pair (f, U), we will have
an ith subroutine Routinei whose job it is to ensure that this pair does not represent
a model N with a basis U satisfying either of the theories of M′ or M′′.

Given a pair (f, U), at stages we read off information about the model it describes
from fj the computation of f at stage j. We let N0 be the empty model, and Nj be
comprised of all n ≤ j such that for each m < n, fj(n = m) ↓= ‘false’. In Nj, we
say R(x̄) holds if fj(R(x̄)) ↓= ‘true’. We say for Ri ∈ L with i < j, Ri(x̄) holds if

there is a 〈i, k〉 ∈ T [i]
j such that Nj |= ∃4ȳ Λ〈i,k〉(ȳ, x̄), where Λk(ȳ, x̄) has already been

defined in Nj as a conjunction of R-statements. For a set A of natural numbers, we
write δj(A) for δ(A) as A is seen in the structure Nj. Finally, we set Kj ⊆ Nj to be
the set of elements x ∈ Nj such that fj(x = ci) ↓= ‘true’ for some i ≤ j.

Routinei is the only part of our program allowed to enumerate anything into S[i].
When Routinei is initialized, S[i] = ∅. The routine runs in parts as follows:

Part 1) Wait until a stage j when there is some set X ⊆ Nj and a set K ⊆ Kj

such that (X ∪ U ∪K)|Ri
is a minimally simply algebraic extension over (U ∪K)|Ri

.
Once found, for the duration of its run Routinei refers to these sets as X and K.

Part 2) The first thing Routinei does when it gets to part 2 is to define the set
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of obstructions to moving to part 3. A set Y ⊆ Nj is an obstruction to moving to
part 3 if δj(Y/Kj) < |U |, and U ⊆ Y . Suppose we first got to part 2 on stage j and
defined the sets Y as such. If during a stage s > j an element is enumerated into S[k],
then we say Rk is removed. If at a stage s enough Rk are removed so that “counting
only the non-removed Rk”, δs(Y/Kj) ≥ |U |, then we say the obstruction Y has been
removed. That is: if

|Y ∪Kt| − |R(Y ∪Kt)| −
∑
Rj not

removed

|Rj(Y ∪Kt)|

−
|Kt| − |R(Kt)| −

∑
Rj not

removed

|Rj(Kt)|

 ≥ |U |,
then the obstruction Y is removed.

If for each tuple x̄ ∈ X ∪U ∪K, Nj |= ∃4ȳΛl(ȳ, x̄)↔ ∃4ȳΛm(ȳ, x̄) where {l,m} =

T
[i]
j , then we say Routinei is ready for part 3. If Routinei is ready for part 3 and all

obstructions have been removed, Routinei moves to part 3.
Part 3) Take the least element of ω[i] which has not yet been enumerated into S,

and enumerate it into S. Now, Routinei goes back to part 2.
The possible outcomes of a run of Routinei are that it gets stuck in part 1, it gets

stuck in part 2, or it cycles between part 2 and part 3 infinitely often. In the first
two cases, S[i] is finite, and in the third case, S[i] = ω[i]. In any case, we will show
that either N does not satisfy the right theory or U is not its basis.

3.4 Verifying the Spectra

In the last section we defined a Σ1 set S, and in the previous section we gave a
construction of two models M′ and M′′ from any fixed Σ1 set. We fix M′ and M′′

to be those models obtained by applying the construction to the set S defined in the
last section.

It is clear that ω ∈ SRM(Th(M′)) and 0, ω ∈ SRM(Th(M′′)). The first being
because M′ has a recursive presentation and is saturated. The second is because
M′′ has a recursive presentation and is saturated and the set of constants in M′′ is
algebraically closed and infinite, hence also a model of the same theory. Since the set
of constants is Σ1 in the recursive presentation of M′′, they form a recursive prime
model. It remains to show that for any other n ∈ ω + 1, n is not in SRM(Th(M′))
or SRM(Th(M′′))

Theorem 68. SRM(Th(M′)) = {ω}
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Proof. Suppose N is a recursive model of Th(M′), and N has a finite basis U . Let
i be the index of the pair (f, U) where f is the recursive function describing the
quantifier-free diagram of N .

Case 1: Routinei gets stuck in part 1.
Ri ∈ L′, as Routinei is never in stage 3. M′ has minimally simply algebraic extensions
involving only the relation Ri. Thus N does not satisfy Th(M′).

Case 2: Routinei gets stuck in part 2.
Case 2a: Routinei gets stuck in part 2 because it is never ready for part 3.

This means that for some x̄ ∈ X∪U and l,m ∈ Q[i]
j , N 6|= ∃4ȳΛl(ȳ, x̄)↔ ∃4ȳΛm(ȳ, x̄).

Since Routinei never gets to part 3 again, Q[i] = Q
[i]
j . By Lemma 63, M′ |=

∃4ȳΛl(ȳ, x̄)↔ Ri(x̄)↔ ∃4ȳΛm(ȳ, x̄). Thus N 6|= Th(M ′).
Case 2b: There is an obstruction Y which is never removed.

As N is a model of Th(M′), there are no constants in N . Thus when counting
the non-removed relations, δj(Y ) = δj(Y/Kj) < |U |. Since the obstruction is never
removed, δ′(Y ) < |U |, contradicting U being an independent set in N .

Case 3: Routinei loops through part 2 and part 3 infinitely often.
By assumption, U is a basis for N . Thus X is algebraic over U , which means that
there is a set Y such that δ′(Y ) = |U |, and X ∪ U ⊆ Y . Let s be a stage when
Routinei enters Part 2 and s is large enough that Y ⊆ Ns and for each relation Rj in

L′ occurring on Y , S
[j]
s = S[j]. We will show that Routinei never enters part 3 after

stage s, leading to a contradiction.
As Routinei is ready for part 3 each time it leaves part 2, we see that for all j,

Nj realizes occurrences of Ri on X. Let t > s be a stage when Routinei is in part
2. Then δt(Y ) < δ′(Y ) since Ri occurs on X but does not count in δ′. Then Ri is
a relation which has not been removed since entering part 2 and neither has any of
the relations counted in δ′, so δt(Y ) < |U |. Thus, Y is an obstruction which is never
removed after stage s, contradicting our being in case 3.

In any case, we get a contradiction to the assumption that N is a recursive model
of Th(M ′) with finite basis U .

Lemma 69. Let U be a finite subset of M′′. Then x ∈ aclM′′(U) if and only if there
is a finite set K ′ of elements named by constants and x ∈ aclM′(U ∪K ′).

Proof. The left direction is trivial. To prove the rightward direction, take an algebraic
formula φ(x, U,K ′) defining x over U involving constantsK ′. See that φ is an algebraic
formula over U ∪K ′ in M′.

Theorem 70. SRM(Th(M′′)) = {0, ω}

Proof. Suppose N is a recursive model of Th(M′′) and N has a finite basis U . Let i
be the index of the pair (f, U) where f is the function describing the quantifier-free
diagram of N .
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Case 1: Routinei gets stuck in part 1.
Ri ∈ L′, as Routinei is never in stage 3. M′′ has minimally simply algebraic exten-
sions involving only the relation Ri. Thus N does not satisfy Th(M′′).

Case 2: Routinei gets stuck in part 2.
Case 2a: Routinei gets stuck in part 2 because it is never ready for part 3.

This means that for some x̄ ∈ X∪U∪K, l,m ∈ Q[i]
j , N 6|= ∃4ȳΛl(ȳ, x̄)↔ ∃4ȳΛm(ȳ, x̄).

But since Routinei never gets to part 3 again, Q[i] = Q
[i]
j . By Lemma 63, M′′ |=

∃4ȳΛl(ȳ, x̄)↔ Ri(x̄)↔ ∃4ȳΛm(ȳ, x̄). Thus N 6|= Th(M ′′).
Case 2b: There is an obstruction Y that is never removed.

There is a finite set of constants C in N such that counting only the non-removed
relations on Y , δj(Y/C) < |U |. As the obstruction is never removed, δ′(Y/C) < |U |,
implying that U is not an M ′-independent set over the constants C. Hence U is not
algebraically independent over ∅.

Case 3: Routinei loops through part 2 and part 3 infinitely often.
By assumption, U is a basis for N . Thus X is algebraic over U , which means that
there is a finite set Y and a finite set of constants C such that δ′(Y/C) = |U | and
X ∪U ⊆ Y . Let s be a stage when Routinei enters part 2 and s is large enough that
Y ∪ C ⊆ Ns and for each relation Rj in L′ occurring on Y ∪ C, S

[j]
s = S[j]. We will

show that Routinei never enters part 3 after stage s, leading to a contradiction.
As Routinei is ready for part 3 each time it leaves part 2, we see that for all j,

Nj realizes occurrences of Ri on X. Let t > s be a stage when Routinei is in part
2. Then δt(Y/C) < δ′(Y/C) since Ri occurs on X but does not count in δ′. Then Ri

is a relation which has not been removed since entering part 2 and neither has any
of the relations counted in δ′, so δt(Y/C) < |U |. Thus, Y is an obstruction which is
never removed after stage s, contradicting our being in case 3.

In any case, we get a contradiction to the assumption of N being a recursive model
of Th(M′′) with finite basis U .
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Chapter 4

On Degrees of Strongly Minimal
Theories with Recursive Models

We will use a new application of the Hrushovski amalgamation method to answer
the following questions of Goncharov and Khoussainov.

Question (1′). Does there exist an ℵ1-categorical theory T turing equivalent to 0ω

such that all of the countable models of T are recursively presentable?

Question (1′′). Does there exist an ℵ0-categorical theory turing equivalent to 0ω with
a recursive model.

We answer 1′ via the following theorem.

Theorem 71. There exists a strongly minimal theory T in a finite language such that
T ≡T 0ω and each countable model of T is recursively presentable.

In fact, we prove the following somewhat stronger theorem.

Theorem 72. Let d be a tt-degree below 0ω. Then there exists a strongly minimal
theory T in a finite language such that T ∈ d and each countable model of T is
recursively presentable.

The proof of this theorem uses the Hrushovski Amalgamation construction to pro-
duce a strongly minimal theory as well as the Ash-Knight Meta-theorem, which will
be introduced in Section 4.2, to manage the recursion theoretic needs of a construction
managing 0ω-level information.

In section 4.4, we provide the following refinement of the result of Khoussainov
and Montalban which answered question 1′′ affirmatively.

Theorem 73. There exists an ℵ0-categorical theory T in a finite language such that
T ≡T 0ω and the countable model of T is recursively presentable.
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In fact, we prove the following somewhat stronger theorem.

Theorem 74. Let d be a tt-degree below 0ω. Then there exists an ℵ0-categorical theory
T in a finite language such that T ∈ d and the countable model of T is recursively
presentable.

4.1 The Theory

We will define a theory relative to any set S ⊆ N such that whether n ∈ S is
uniformly recursive in 0n. We will construct the theory to be tt-equivalent to S and
we will show that any tt-degree below 0ω contains such a set. We begin with an
infinite language L, construct a model M in the language L, and our theory will be
a reduct of Th(M) to a sublanguage with finite signature. We define the language
L = {Ri|i ∈ ω} where each Ri is ternary. Recalling the conventions from Chapter 2,
we ensure that the relations defined by each of the Ri are symmetric and hold only on
distinct tuples. We write |Ri(A)| for the number of sets x̄ in A so that Ri(x̄) holds,
and we set δ(A) = |A| −

∑
i∈ω|Ri(A)|.

We will follow the construction for section 2.2, and will specify an integer b and
function µ. We fix a particular minimally simply algebraic extension H over G, G a
three element set such that tpr.q.f (H/G) involves a single ternary relation symbol. We
fix k = |G ∪H|. For i ≥ 1, we write Γi for the relative quantifier-free type received
by replacing the relation symbol in tpr.q.f.(H/G) by Ri−1.

Definition 75. Let B be minimally simply algebraic over A.

µ(B,A) =


|A|+ 2k if ∀i tpr.q.f.(B/A) 6= Γi

|A|+ 2k + 2 if tpr.q.f.(B/A) = Γi and ¬Ri(A)

|A|+ 2k + 1 if tpr.q.f.(B/A) = Γi and Ri(A) and i ∈ S
|A|+ 2k if tpqf (B/A) = Γi and Ri(A) and i /∈ S

Definition 76. If B and A are finite L-structures such that tpr.q.f.(B/A)|Ri−1
= Γi,

then we say the extension B over A is a Γi-extension.

We work with the amalgamation class C = C0,µ. Recall the following definition of
the amalgamation class C.

Definition 77. Let C be the class of finite L-structures C such that

• δ(A) ≥ 0 for all A ⊆ C.

• If B1, . . . , Bn, A are disjoint subsets of C such that each Bi over A is an exten-
sion of the form of Y over X. Then n ≤ µ(Y,X).
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From the amalgamation of this class we generate a model and a theory. In section
2.3, we showed that the amalgamated structure is saturated and the theory is strongly
minimal.

Th(M) encodes S. We want to restrict to a finite language while still encoding
this set. To do so, we will show that each Ri is definable in terms of Ri−1, so we can
restrict to the language generated by the single relation symbol R0. To show this, we
need a stronger version of the Algebraic Amalgamation Lemma specifically for the
Γi. The following lemma should explain the occurrences of 2k in the definition of our
chosen µ function.

Lemma 78. (Algebraic Amalgamation Lemma for Γi) Suppose A,B1, B2 ∈ C, A =
B1∩B2, B1rA is simply algebraic over A. Suppose further that B1rA is minimally
simply algebraic over A′ ⊆ A, and tpr.q.f.(B1rA/A′) = Γi. Then one of the following
two conditions holds:

• The free-join of B1 and B2 over A is in C.

• B2 contains µ(B1 r A,A′) disjoint Γi-extensions of A′ (ie: extensions of the
form of B1 r A over A′).

Proof. Let E be the free-join of B1 with B2 over A. Suppose E /∈ C. This means that
there are disjoint C1, . . . Cn, F contained in E and a pair (Y,X) such that each Cj

over F is of the form of Y over X and n > µ(Y,X). Restricting E to the language
LY/X , we see each of the Cj are minimally simply algebraic over F in the same way.
Here we have the same set-up as in Lemma 42. Claims 1-3 and case 1 of Lemma
42 hold exactly as proved there. We need only count the number of Cj which are
entirely contained in B1 r A. There are certainly fewer than 2|(B1rA)∪A′| = 2k such
Cjs. So n ≤ |F |+ 2k = |X|+ 2k ≤ µ(Y,X).

We will write Γi(ȳ, x̄) to denote the first order formula designating that ȳ over x̄
is an Γi-extension.

Lemma 79. Fix i ≥ 1. M |= Ri(x̄) ↔ ¬∃5+2k
ȳ(Γi(ȳ, x̄)). (Note: we write ∃mȳ to

say that there exists m disjoint tuples ȳ satisfying the property.)

Proof. The rightward direction follows from the fact that any finite substructure of
M is an element of C. If the rightward direction did not hold, then we would be
explicitly violating the µ-bound.

The leftward direction follows from the previous lemma. Suppose ¬Ri(x̄) holds.
Let A be such that x̄ ⊆ A ≤M. Repeated application of the previous lemma shows
that there is a B ∈ C such that A ≤ B and B contains 5 + 2k disjoint Γi-extensions
over x̄. Property 3 of M guarantees that this B embeds in M over A.

Since the first order formula Γi(ȳ, x̄) is defined using only the relation Ri−1, we
see that each of the Ri are definable via the relation R0.
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Definition 80. Let T = Th(M)|R0.

By Lemma 79, Th(M) is a definitional expansion of T . This T is going to be the
strongly minimal theory of the theorem. The following lemma shows that Th(M),
and thus T , computes S.

Lemma 81. Fix i ∈ ω. Then i ∈ S if and only if M |= ∀x̄∃4+2k
ȳ(Γi(ȳ, x̄)).

Proof. There are as many disjoint Γi-extensions inM over x̄ as µ allows by the same
argument as in Lemma 79. If i ∈ S, then µ always allows at least 4 + 2k extensions.
If i /∈ S and Ri(x̄), then µ allows only 3 + 2k Γi-extensions over x̄, witnessing that
M |= ¬∀x̄∃4+2k

ȳ(Γi(ȳ, x̄)).

This shows that S ≤tt Th(M) ≡tt T . As this construction works for any S, we
see that the recursive function computing T from S is total, so T ≡tt Th(M) ≡tt S.
In Section 4.3 we will complete the proof of the main theorem by showing that all of
the countable models of T are recursive.

Here we recall the construction of a countable model of T , ignoring the recursion-
theoretic obstructions. As follows from the proof of M being strongly minimal, the
set of formulae which describe algebraicity are those that describe the various ways
that d(xA) could be the same as d(A). Thus, looking at the structure of a model with
a basis U of size k, we see that for any x, d(xU) = d(U) = k. Taking unions, we see
that d(A) = k for any finite set containing U and d(A) ≤ k for any finite set. Further,
any countable model of T satisfies 1,2, and 3′′. In fact, these properties characterize
the k-dimensional model. Thus, we present a way to construct the k-dimensional
model of T:

At each stage s, we have a finite L-structure Ms built by stage s.
Stage 0: start with M0 being a k-element set with no relation symbols holding on it.
Stage s: Ensure 3′′ holds for the first s possible minimally simply algebraic extensions
on some list of all minimally simply algebraic extensions. Do this by repeated use
of the algebraic amalgamation lemma over Ms−1. Doing so ensures that Ms−1 ≤ Ms

and δ(Ms) = k.
Any finite set A ⊆

⋃
sMs is contained in some Ms, so d(A) ≤ δ(Ms) = k. Also

M0 ≤ M and d(M0) = |M0| = k, so M0 is a basis for
⋃
sMs. Thus this procedure

produces the k-dimensional model of T .
This is the construction we will employ, but we need to do so recursively. The

obstruction to doing this is that µ is determined by S. The saving grace is that the
µ-bound is on occurrences of Γi, which take many quantifiers to describe in T . We
can employ a worker construction via the metatheorem to deal with the non-recursive
information.
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4.2 The Metatheorem

This section entirely follows (Ash-Knight [1], see pg. 235), with the notational
exception that the set which we call V is there referred to as L. To maintain as
much of the Ash-Knight notation as possible, we still refer to elements of V as l’s.
The elements of an ω-system should be understood as follows: V will be the set of
finite L-structures we might build in our construction, U is the set of estimates to
S we may have in our construction, l̂ will be the structure we start our construction
from, P will be the tree of partial constructions pairing finite pieces of S with the
finite structure we build given that information, E enumerates the content of the
construction that we commit to, and ≤n represents the potential layers of injury to
be handled in the construction. Finally, q will provide ‘free’ information about the
true value of S, and the Meta-theorem will allow us to handle enough injury that we
can carry out a construction along a path through P agreeing with q.

Let V and U be recursively enumerable sets, E be a partial recursive enumeration
function on V , and let P be a recursively enumerable alternating tree on V and U
made up of non-empty finite sequences which all start with the same l̂ ∈ V . Let
(≤n)n∈ω be uniformly recursively enumerable binary relations on V .

We define the structure (V, U, l̂, P, E, (≤n)n<ω) to be an ω-system if it satisfies the
following properties:

1. ≤n is reflexive and transitive for all n < ω.

2. l ≤n l′ ⇒ l ≤m l′ for m < n < ω.

3. If l ≤0 l
′, then E(l) ⊆ E(l′).

4. If σu ∈ P , where σ has length 2n+1 ending in l0 ∈ V and

l0 ≤n0 l
1 ≤n1 . . . ≤nt−1 l

t

for n > n0 > . . . > nt, then there exists l∗ such that σul∗ ∈ P and li ≤ni
l∗ for

each 0 ≤ i ≤ t.

Theorem 82. (Ash-Knight Metatheorem)
Let (V, U, l̂, P, E, (≤n)n<ω) be an ω-system, and let q be a uniformly 0n instruction
function for P (ie: uniformly in n, q computes un on input l̂u0l0u1l1 . . . ln−1 using
oracle 0n). Then there is a path π = l̂u0l0u1l1 . . . through P which agrees with the
instruction function q such that E(π) is recursively enumerable.

We will use the metatheorem to get a structure whose atomic diagram is recur-
sively enumerable, ie: a recursive structure. The method of building the structure,
the ω-system, will be explained in the next section. Note that the proof that a partic-
ular ω-system satisfies property 4 necessarily contains all the details as to how injury
is handled in the construction.
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4.3 Constructing the Countable Models of T

We are going to use the Ash-Knight Metatheorem to construct the k-dimensional
model of T by defining an ω-system (V, U, l̂, P, E, (≤n)n∈ω). Throughout the construc-
tion, we will be working with various estimates to the set {i|i ∈ 0i}. These estimates
will be represented by elements of 2<ω. Given the estimate τ , we define µτ and Cτ ,
the corresponding approximations to µ and C.

Definition 83. Let τ be an element of 2<ω where length(τ) = n + 1 (τ(0) is never
referenced, so this index is off by one).

We define Lτ = Ln to be the language generated by the relation symbols {Ri|i < n}
For B a minimally simply algebraic extension over A, let

µτ (B,A) =


|A|+ 2k if B over A is not a Γi-extension for any i

|A|+ 2k + 2 if B over A is a Γi-extension and ¬Ri(A)

|A|+ 2k + 1 if B over A is a Γi-extension, Ri(A), and τ(i) = 1

|A|+ 2k if B over A is a Γi-extension, Ri(A), and τ(i) = 0

Let Cτ be the class of finite Lτ structures C such that the following conditions hold:

• δ(A) ≥ 0 for all A ⊆ C.

• Let Y over X be a minimally simply algebraic extension. Suppose B1, . . . , Bn,
A are disjoint subsets of C such that each Bi over A is an extension of the form
of Y over X. Then n ≤ µτ (Y,X).

Definition 84. Fix k ∈ ω. We define Sk to be the following system:

• V is the set of pairs (M,σ), where M is a finite L-structure whose universe is
an initial segment of ω and σ ∈ 2<ω such that M ∈ Cσ. We write l = (Ml, σl).

• U is 2<ω.

• l̂ is the pair (M,σ) where M is the structure with k elements and no relations
and σ is the trivial string of length 0.

• E(l) is the set of primitive statements true about Ml in the language generated
by the single relation symbol R0

• l ≤n l′ if the following conditions hold:

1. σl|n = σl′|n (ie: σl(i) = σl′(i) for i ≤ n).

2. The universe of Ml is a subset of the universe of Ml′.
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3. Ml|Ln ≤ Ml′|Ln. By this, we mean that as Ln-structures Ml|Ln ⊆ Ml′|Ln

and it is a strong substructure.

• P is the tree defined by l̂, u0, l0, . . . , ut, lt ∈ P if

1. For each i, σli = ui.

2. For each i, Mli ≤Mli+1
.

3. For each i, δ(Mli) = k.

4. Take a universal list of all minimally simply algebraic extensions in L along
with sets the extension could be over, call it List. For the first i entries on
List, if the extension is in Cσli

, then 3′′ holds for that extension and Mli.

(the last item says that all the allowed copies of each of the first i extensions
occur already in Mli)

Theorem 85. Sk is an ω-system.

Proof. We focus on the difficult condition.
Suppose τu ∈ P , length(τ)=2n+1, τ ends in l0, and

l0 ≤n0 l
1 ≤n1 . . . ≤nt−1 l

t

for n > n0 > n1 > . . . nt−1 > nt. Without loss of generality, we assume that n0 = n−1.
We need to show that there exists an l∗ such that τul∗ ∈ P , and for each i, li ≤ni

l∗.
First we will define an auxiliary structure l# which will handle the injury occurring
in this sequence of l’s. Then we will extend l# to an l∗ which has the right dimension
and contains amalgamations of the required structures from Cu. To avoid notation
such as Mlj , we write lj = (Mj, σj).

Let l# be the pair (N , σ), defined as follows. σ = u and N has the same universe
as Mt. Let x̄ be a tuple in N . We will describe whether or not Ri holds on x̄. Let m
be least such that x̄ ⊆Mm. Then Ri holds on x̄ in N if and only if Ri is in Lnm and
holds on x̄ in Mm.

We will write Ni for the substructure of N with the same universe as Mi, and we
will write  Li for Lni

.

Claim 86. Mi| Li
⊆ N| Li

, ie: for each relation in  Li and every tuple in Mi, the
relation holds in Mi if and only if it holds in N .

Proof. For any j ≤ i, lj ≤ni−1
li, in particular, lj ≤ni

li. Let x̄ be any tuple in Mi and
let m be minimal such that x̄ ⊆Mm. Then m ≤ i, so lm ≤ni

li. Thus for R ∈  Li, R(x̄)
holds in Mm if and only if it holds in N (by definition of N ) and the first condition
is equivalent to R(x̄) holding in Mi as lm ≤ni

li.

In particular, since n0 = n− 1, M0 = N0.
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Lemma 87. l# ∈ V

Proof. we need to verify that N ∈ Cσ. We verify this by verifying each condition in
the definition of Cσ.

1. δ(A) ≥ 0 for all A ⊆ N

Proof. Let A be a subset of N . Let Ai = A ∩ Ni. We need to show that
δ(At) ≥ 0. We achieve this by showing that δ(Ai+1/Ai) ≥ 0 for each i. This
suffices since δ(At) = δ(At/At−1) + δ(At−1/At−2) + . . .+ δ(A1/A0) + δ(A0) and
A0 is a subset of N0 = M0, hence has non-negative dimension.

δ(Ai+1/Ai) is |Ai+1 r Ai| − (the number of relations holding in Ai+1 involving
at least one element in Ai+1 r Ai). Consider B the subset of Mi+1 with the
same underlying set as Ai+1. Since Mi ≤ni

Mi+1, δ(B| Li
/(B ∩Mi)| Li

) ≥ 0, but
δ(B| Li

/(B∩Mi)|Li
) ≤ δ(Ai+1/Ai), as every relation counting on the right counts

on the left as well. Thus, each summand is non-negative and δ(A) ≥ 0.

2. If C1, . . . , Cn, F are disjoint subsets of N , and each Cj over F is of the form
of Y over X (for Y over X a minimally simply algebraic extension), then n ≤
µσ(Y,X).

Proof. We proceed by induction to show that the condition holds for each Ni.
The condition holds on N0, as this is just M0. Suppose the condition holds for
Ns−1. We will show that the condition holds on Ns as well.

The proof follows via Lemma 42. Suppose C1, . . . , Cn, F are disjoint subsets of
Ns, and each Cj over F is of the form of Y over X (for Y over X a minimally
simply algebraic extension). Since Ns−1 ≤ Ns, we apply Lemma 42 with B1 =
Ns|LY/X

, A = B2 = Ns−1|LY/X
. There are 4 cases to consider. In one case,

r ≤ |X| < µσ(Y,X). In each of the other cases, one Cj is entirely contained in
Ns rNs−1.

In this case, tpr.q.f.(Y/X) only includes relations from the language  Ls. There
are a number of possibilities to consider:

• Y over X is not a Γi-extension for any i. Since Ms| Ls
⊆ Ns| Ls

, we see that

each of the Cj over F , looked at as subsets of Ms, are of the form of Y
over X. Since for non-Γi-extensions, µτ does not depend on τ , and since
Ms satisfies the property for µσs , n ≤ µσs(Y,X) = µσ(Y,X).

• Y over X is a Γi-extension and ¬Ri(X). In this case, we look at the Cj

and F as subsets of Ms. The Cj are each Γi-extensions over F . If Ri(F )
in Ms, then the number of Cj is bounded by µσs(Y,X

′) (where X ′ is the
same as X but with Ri(X) holding) which is even less than µσs(Y,X). If
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¬Ri(F ) in Ms, then the number of Cj is bounded by µσs(Y,X). Since
σs|ns−1 = σ|ns−1 , µσs(Y,X) = µσ(Y,X).

• Y over X is a Γi-extension and Ri(X). If Ri ∈  Ls, then we have the
corresponding fact in Ms, so we get the µ-bound from the fact that Ms

satisfies the property for µσs and σs|ns−1 = σ|ns−1 . We may assume Ri /∈  Ls.
Since Y over X is a Γi-extension, Ri−1 ∈  Ls. So Ri ∈  Ls−1. Clearly, Ri(F )
implies that F ⊆ Ns−1. But then Ri(F ) holds in Ms−1, and ls−1 ≤ns−1 l

s,
so Ri(F ) holds in Ms as well. Again, we get the µ-bound from Ms.

This concludes the inductive step, showing that N = Nt satisfies the condition.

Claim 88. For each i, li ≤ni
l#.

Proof. We verify the two properties. First we verify σi|ni
= σ|ni

. We know that
l0 ≤ni−1

li. So, σ|ni
= σ0|ni

= σi|ni
.

Second we verify that Mi| Li
≤ N| Li

. Claim 86 gives us that Mi| Li
⊂ N| Li

.
Now, let X be a subset of N| Li

. We use the same argument as before (when
we showed that δ(A) ≥ 0 for all A ⊆ N ). We need to show that δ(X/Ni| Li

) ≥ 0.
For i ≤ j ≤ t, we write Xj = ((X ∩ Nj) ∪ Ni)| Li

. Then we write δ(X/Ni| Li
) =

δ(Xt/Xt−1) + δ(Xt−1/Xt−2) + . . . + δ(Xi+1/Xi). As in the previous argument, each
summand is non-negative, so δ(X/Ni| Li

) ≥ 0.

The only obstructions to l# being what we need for l∗ is that it might not contain
the first n minimally simply algebraic extensions and perhaps δ(N ) > k. Extend
N using only the relation symbol Rn−1 to N ′ so that δ(N ′) = k, M0 ≤ N ′, and
N ′ ∈ Cσ. Then proceed to extend N ′ to N ∗ by amalgamating to ensure that the
first n minimally simply algebraic extensions occur inside N ∗ if they are allowed in
Cσ. We set l∗ to be (N ∗, u). By construction, li ≤ni

l# ≤ni
l∗ and τul∗ ∈ P as

l∗ ∈ V , M0 ≤ N ∗, σl∗ = u, and δ(N ∗) = k. Having found this l∗, we have shown that
(V, U, l̂, E, P, (≤n)n∈ω) is an ω-system.

We have a uniformly 0n instruction function for u, namely un = S|n, the string in
2<ω describing membership in S for integers ≤ n. Thus, the metatheorem gives us
a run, π = l̂u0, l0, u1, l1, . . . such that E(π) is recursively enumerable. E(π) gives us
the R0-atomic diagram of

⋃
iMli .

Theorem 89. The k-dimensional model of T is recursively presentable.
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Proof. All that remains to be shown is that this model M =
⋃
iMli is isomorphic to

the k-dimensional model of T .
To see this, we see by construction that M satisfies properties 1, 2, and 3′′, thus

M |= T . Furthermore, l̂ ≤ M , so the dimension is at least k. For any finite A ⊆ M ,
there is some Mli such that A ⊆Mli and δ(Mli) = k, so d(A) ≤ k. Thus the dimension
of M is k.

Theorem 90. The saturated model of T is recursively presentable.

Proof. We use a similar ω-system which is identical except that instead of insisting
that δ(Mli) = k in the definition of P , we insist that δ(Mli) ≥ i. To get N ′ from N we
add a single element not related to anything else. In the final model, we constructed
it so that 1, 2, 3′, 3′′ all hold so the constructed model is the saturated model of T .

We conclude the desired theorem.

Theorem 91. Let d be a tt-degree below 0ω. Then there exists a strongly minimal
theory T in a finite language such that T ∈ d and each countable model of T is
recursively presentable.

Proof. All that remains to show is that each tt-degree d below 0ω contains a set S for
which whether n ∈ S is uniformly recursive in 0n. Let S ′ be any member of d, and
let f be a recursive function such that x ∈ S if and only if f(x) ∈ 0ω. Let S be the
set {〈x, f(x)〉|x ∈ S}. It is easy to see that S ≡tt S ′ and 〈x, f(x)〉 ∈ S is uniformly
recursive in 0〈x,f(x)〉.

4.4 The ℵ0-categorical Case

Again, we fix a set S so that whether n ∈ S is uniformly recursive in 0n. We work
at first in an infinite language to produce the theory, then we will take a reduct to a
finite language. Let L be the language with signature {P,Q} ∪ {Ri|i ≥ 3}, where P
and Q are binary relation symbols and each Ri is i-ary.

Definition 92. Let K be the class of finite L-structures C which satisfy the following
properties:

• Each relation symbol is symmetric and holds only on tuples of distinct elements

• If i− 10 /∈ S or i < 10, then C satisfies

¬∃x̄, y, z

Ri(x̄) ∧ P (y, z) ∧
∧

w̄⊂x̄,|w̄|=i−2

(Ri−1(y, w̄) ∧Ri−1(z, w̄))
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• If i− 10 ∈ S, then C satisfies

¬∃x̄, y, z

Ri(x̄) ∧Q(y, z) ∧
∧

w̄⊂x̄,|w̄|=i−2

(Ri−1(y, w̄) ∧Ri−1(z, w̄))


To carry out a Fräıssé construction using K, we must verify the following lemma:

Lemma 93. K has HP, JEP, and AP.

Proof. Since K is defined via ∀1 formulas, it automatically satisfies HP.
Given two disjoint structures B,C ∈ K, see that the free-join of B with C over ∅ is
in K. So K satisfies the JEP.
Lastly, given three structures A,B,C ∈ K where A = B ∩ C, we will show that the
free-join of B with C over A is in K. Suppose not, then there exists i, x̄, y, z witnessing
this. We may assume i− 10 ∈ S. So, x̄, y, z satisfy:

Ri(x̄) ∧Q(y, z) ∧
∧

w̄⊂x̄,|w̄|=i−2

(Ri−1(y, w̄) ∧Ri−1(z, w̄))

Since Ri(x̄), we know that one of the following holds:
Case 1:x̄ ⊆ A. Here, since Q(y, z), {y, z} ⊆ B or {y, z} ⊆ C. Thus {x̄, y, z} ⊆ B or
{x̄, y, z} ⊆ C, witnessing that B /∈ K or C /∈ K, either way yielding a contradiction.
Case 2:x̄ ⊆ B, xi ∈ x̄, xi ∈ B r A. Take any w̄ ⊂ x̄ so that |w̄| = i − 2 and
xi ∈ w̄. Then Ri−1(y, w̄) and Ri−1(z, w̄) implies that y and z are both in B. Thus
{x̄, y, z} ⊆ B, which shows B /∈ K, a contradiction.
Case 3:x̄ ⊆ C, xi ∈ x̄, xi ∈ C r A. This is the same as case 2.

Now we use Fräıssé’s theorem ([7],6.1.2) which guarantees a countable ultra-
homogeneous L-structureM withAge(M) = K. Further, asM is ultra-homogeneous,
it admits quantifier elimination. Thus, the number of n-types is bounded by the num-
ber of possible configurations of the finitely many relations in L of arity less than n.
Thus, Th(M) is ℵ0-categorical. The following lemma allows the reduction to a finite
sub-language.

Lemma 94. Suppose i > 3:
If i− 10 /∈ S or i < 10, then

M |= Ri(x̄)↔ ¬∃y, z

P (y, z) ∧
∧

w̄⊂x̄,|w̄|=i−2

(Ri−1(y, w̄) ∧Ri−1(z, w̄))


Similarly, if i− 10 ∈ S, then

M |= Ri(x̄)↔ ¬∃y, z

Q(y, z) ∧
∧

w̄⊂x̄,|w̄|=i−2

(Ri−1(y, w̄) ∧Ri−1(z, w̄))
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Proof. The rightward direction follows via the fact that Age(M) = K.
To show the leftward direction, take a tuple x̄ such that M |= ¬Ri(x̄). By ultra-
homogeneity ofM, it suffices to show that x̄ embeds into an element of K where such
a y and z exist. Consider the structure A = x̄ ∪ {a, b}, where each of a and b are
Ri−1-related to every i − 2-element subset of x̄, a and b are P -related (Q-related in
the case of the second equivalence above), and no other relations hold involving a or
b. It is easy to verify that this structure is in K.

Definition 95. Let T = Th(M)|{P,Q,R3}

By the previous lemma, Th(M) is a definitional expansion of T . Thus, T is also
ℵ0-categorical. Also, from T we can in a tt way determine which definition of Ri is
correct and recover Th(M), and thus S ≡tt K ≡t tTh(M) ≡tt T . Thus it remains
only to prove that the countable model of T is recursively presentable.

Lemma 96. Uniformly in n, T ∩ ∃n is computable in 0n−7.

Proof. We first show that any ∃n formula in T is equivalent to a quantifier-free for-
mula in relations {P,Q,Ri}i≤3+n. The proof proceeds by setting up the appropriate
Ehrenfuecht-Fräıssé game and seeing that ‘∃loise’ has a winning strategy. The game
is the standard Ehrenfuecht-Fräıssé game of length n where we start with tuples ā
and b̄ which have the same {P,Q,Ri}i≤3+n-quantifier-free type. Then whichever tuple
c̄ ‘∀belard’ chooses, ∃loise can choose a tuple d̄ so that āc̄ and b̄d̄ satisfy the same
{P,Q,Ri}i≤3+n−1 type. Proceeding as such, ∃loise wins the game of length n.
This shows that any ∃n formula depends only on the relations {P,Q,Ri}i≤3+n ([13],
Lemma 2.4.9). Thus, the ∃n formula ∃∀ . . . φ(x̄) is equivalent to∨

(configurations in {P,Q,Ri}i≤3+n in K)

∧
(configurations in {P,Q,Ri}i≤3+n−1 in K)

. . . φ(x̄)

To verify whether this statement is true, we need only to be able to parse “in K” for
configurations in the language {P,Q,Ri}i≤3+n. The conditions of being in K is then
described recursively in 03+n−10.

We use the following case of a theorem of Knight [11] to show that the countable
model of T is recursively presentable.

Theorem 97. (Knight) Let T be an ℵ0-categorical theory. If T ∩∃n+1 is Σ0
n uniformly

in n, then T has a recursive model.

Since T is ℵ0-categorical, Lemma 96 shows that T satisfies the conditions of this
theorem. Thus we conclude the promised theorem.

Theorem 98. Let d be a tt-degree below 0ω. Then there exists an ℵ0-categorical theory
T in a finite language such that T ∈ d and the countable model of T is recursively
presentable.
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Proof. Let S ∈ d be a set with the property that whether n ∈ S is uniformly recursive
in 0n. Let T be the theory attained by applying this construction to S. T ≡tt S and
the countable model of T is recursively presentable.
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Chapter 5

New Spectra in Finite Languages

In this chapter, we present an alteration of the Hrushovski method which produces
strongly minimal theories as in the following theorems.

Theorem 99. For each n ∈ ω, there exists a strongly minimal theory T in a finite
language so that SRM(T ) = {0, . . . , n}

Theorem 100. There exists a strongly minimal theory T in a finite language so that
SRM(T ) = ω

Recall the methods of coding used in Theorems 18 and 19. We want to employ
similar encodings of non-recursive content into the generic (n+1)-type or ω-type, but
use a finite language to do so.

5.1 Altering the Hrushovski Construction

We will use the definitions and results from section 2.1 and we will specify a new
amalgamation class. We fix the language L generated by the single ternary relation
symbol R. We write R(A) for the set of tuples from A on which R holds. We define
a function δ : {finite L-structures} → Z by δ(A) = |A|− |R(A)|. Note that δ is a pre-
dimension function. From δ, we use the definitions of relative dimension, dimension
in, strong substructure, simply algebraic extension, and minimally simply algebraic
extension as in section 2.1.

Unlike the standard Hrushovski construction of a strongly minimal set, we provide
the definition:

Definition 101. For A ⊆ B L-structures, A finite, we define fB(A) = min{|C||A ⊆
C ⊆ B, δ(C) < |A|}, where we say the min of an empty set is ∞.

Lemma 102. If A ⊆ B ⊆ C and B ≤ C, then fB(A) = fC(A)
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Proof. Take X ⊆ C of minimal size with δ(X) < |A|. Then δ(X ∩B) ≤ δ(X) < |A|.
Thus X ⊆ B by minimality.

One can think of fB(A) as a measure of how much A looks independent to the
set B. We define the µ function similarly to its analog in chapter 2, but we want to
incorporate f into our definition.

Definition 103. Let µ(A,B, n) be a function from quantifier free types of finite L-
structures A,B and an n ∈ ω ∪ {∞} to ω so that for all but finitely many n ∈ ω,
µ(A,B, n) = µ(A,B,∞). Furthermore, we suppose µ(A,B, n) ≥ δ(A) for all triples
A,B, n.

Given a pair A,B of finite L-structures, set h(A,B) to be the least n ≥ |A| so that
µ(A,B,m) is constant for all m ≥ n. For k ∈ ω, we set g(k) = max{h(A,B)||A|, |B| ≤
k}.

From any such µ function, we define the following amalgamation class:

Definition 104. Let C be the class of finite L-structures C such that the following
hold:

1. δ(A) ≥ 0 for all A ⊆ C

2. Suppose Xi, i = 1, . . . , n, Y are disjoint subsets of C so that the Xi are min-
imally simply algebraic over Y , and the Xi are isomorphic over Y . Then
n ≤ µ(Y,X1, fC(Y ))

Note that unlike the original construction, µ depends on fC(Y ), which means that
it is possible that A ⊂ C ∈ C, but A /∈ C. Despite this, we will show that C leads us
to a strongly minimal amalgam.

Definition 105. Let A ⊆ B be L-structures. We say A is n-strong in B if δ(A∪X) ≥
δ(A) for all X ⊆ B with |X| ≤ n.

Lemma 106. If B ≤ C ∈ C, then B ∈ C. In fact, if B is g(|B|)-strong in C, then
B ∈ C.

Proof. The first condition holds as any subset A of B is a subset of C. Suppose
Xi, i = 1, . . . , n, Y are disjoint subsets of B so that the Xi are minimally simply
algebraic over Y , and the Xi are isomorphic over Y . Then n ≤ µ(Y,X1, fC(Y )).
Since fB(Y ) ≥ fC(Y ), if fC(Y ) > h(Y,X1), then µ(Y,X1, fC(Y )) = µ(Y,X1, fB(Y )).
So, we may assume there exists a Z of minimal size so that Y ⊆ Z and δ(Z) < |Y |
with |Z| < h(Y,X1). Since B ≤ B ∪Z by assumption, δ(B ∩Z) ≤ δ(Z) showing that
Z ⊆ B and fC(Y ) = fB(Y ).
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Lemma 107. (Algebraic Amalgamation Lemma) Suppose A = B1 ∩ B2, A,B1, B2 ∈
C, and B1 r A is simply algebraic over A. Let E be the free-join of B1 with B2 over
A. Then E ∈ C unless one of the following holds:

• B1 r A is minimally simply algebraic over F ⊆ A, and there are µ(F,B1 r
A, fB2(F )) disjoint copies of B1 r A in B2.

• There is a set X ⊆ B2 such that X ∩A � X, and X satisfies a type realized by
a subset of B1.

• There is a set F ⊆ B1 and C ⊆ B1 minimally simply algebraic over F so that
µ(F,C,B1) > µ(F,C,E).

Proof. If X ⊆ E, then δ(X) = δ(X ∩B1) + δ(X ∩B2)− δ(X ∩A) ≥ δ(X ∩B2) ≥ 0.
If there are disjoint Ci, F ⊆ E so that each of the Ci are minimally simply algebraic
over F and each (Ci, F ) is isomorphic, then by Lemma 42, we need consider only four
cases:

• One of the Ci is B1rA. As the Cj and F are disjoint, each of the other Cj and
F are contained in B2. If r > µ(Y,X, fE(F )) then there must be µ(Y,X, fE(F ))
of them contained in B2. Since B2 ≤ E, fE(F ) = fB2(F ), showing that the first
exception in this lemma holds.

• F ∪
⋃r
i=1 C

i is entirely contained in either B1 or B2. Here, r ≤ µ(C1, F, fBj
(F ))

as B1, B2 ∈ C. Since B2 ≤ E, if F,Ci ⊆ B2, then r ≤ µ(C1, F, fE(F )) as
fE(F ) = fB2(F ). So, we need only consider the case where F,Ci ⊆ B1 and
µ(F,C1, fE(F )) < µ(F,C1, fB1(F )). In this case, the third exception of this
lemma holds.

• r ≤ δ(F ). In this case r ≤ δ(F ) ≤ µ(C1, F, fE(F )).

• For one Cj, setting X = (F ∩ A) ∪ (Cj ∩ B2), we see that δ(X/X ∩ A) < 0.
Further, one of the Cj is contained in B1rA. This yields the second exception
in this lemma.

Lemma 108. (Strong Amalgamation Lemma) Suppose A,B1, B2 ∈ C, A ≤ Bi Then
there exists D ∈ C so that B2 ≤ D, and an g : B1 → D an embedding so that
g(B1) ≤ D and g(A) = id|A.

Proof. We may assume there is no B′ such that A ≤ B′ ≤ B1. Thus, B1 = A ∪ {x}
where x is unrelated to A by R, or B1rA is simply algebraic over A. In the first case,
the free-join suffices. In the second case, the free-join fails only if one of the conditions
of the last lemma holds. The second and third conditions cannot hold, as A ≤ B2. Let
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F ⊆ A be so thatB1rA is minimally simply algebraic over F . AsA ≤ B1 andA ≤ B2,
fB1(F ) = fA(F ) = fB2(F ). If condition 1 holds, then we have µ(F,B1 r A, fB2(F ))
many copies of B1 rA in B2. There must be no more than µ(F,B1 rA, fB2(F ))− 1
many contained in A, as B1 ∈ C and fB2(F ) = fA(F ) = fB1(F ). As no copy of B1rA
in B2 can be partially in A (as A ≤ B2), we have one contained in B2rA with which
to identify B1 r A. This gives us the required amalgamation.

The above lemma guarantees that there is a generic amalgamation of the class C,
which we call M. M is characterized by three properties:

1. M is countable.

2. For any finite A ≤M, A ∈ C.

3. Suppose A ≤M, A ≤ B, and B ∈ C. Then there is an embedding g : B →M
so that g|A = idA and g(B) ≤M .

By a standard back-and-forth on strong substructures, and that each A is a subset
of a finite B such that B ≤ M , we see that these 3 properties fully characterize M
up to isomorphism. Showing that M is strongly minimal will be analogous to the
proof in section 2.3 with the exception of the difference of the new µ appearing in 3′′

and the change to 2′.
As in the proof that the construction of section 2.2 yields a saturated model, we

would like to show that M is saturated by showing that any elementary extension
of M satisfies properties (1, 2, 3), but properties 2 and 3 are not first order. So, we
replace them by 2′, 3′,and 3′′:
2′: For any finite A ⊆M, if A is h(|A|)-strong in M, then A ∈ C.
3′: There is an infinite set I with R not holding on any tuple in I such that for all
finite A ⊂ I, A ≤M.
3′′: Suppose A ⊂ M, A ≤ B, and B r A is minimally simply algebraic over F ⊆ A.
Further, suppose that A is g(|B|)-strong in M. Then there are µ(F,B1 rA, fM(F ))
many distinct realizations of tpr.q.f.(B/F ) over F in M.
Note that 2′, 3′, 3′′ are first order conditions. Note that if A is g(|B|)-strong in M,
then µ(F,B1 r A, fM(F )) = µ(F,B1 r A, fA(F )) as in the proof of Lemma 106.

Claim 109. The conditions (1, 2, 3) are equivalent to the conditions (1, 2′, 3′, 3′′).

Proof. Assume (1, 2, 3). To see 2′ from 2, let B be least so that A ⊆ B ≤M. Apply
lemma 106 to the pair (A,B). 3′ follows trivially from 3. 3′′ is a consequence of the
algebraic amalgamation lemma employed for anyA,B, and set C so thatA ⊂ C ≤M.
If the free-join of C with B over A is in C, then 3 implies that we can amalgamate
E into M over C. Otherwise, one of the conditions in the algebraic amalgamation
lemma holds. Since A is g(|B|)-strong inM, the second and third conditions cannot
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hold, and if the first condition holds, then there are already µ(BrA,F, fM(F )) many
copies of B r A over F in C.

Assume (1, 2′, 3′, 3′′). 2 is formally weaker than 2′, so it follows immediately. We
show 3: Suppose A ≤ M, A ≤ B. We may assume that there is no B′ such that
A ≤ B′ ≤ B. Thus, B is either simply algebraic over A, or B = A ∪ {x} a singleton
unrelated to A. In the latter case, 3′ gives us an infinite independent sequence from
which to choose an embedding of B over A. In the former case, 3′′ guarantees that
there is an embedding of B over A exactly as in the strong amalgamation lemma.

Corollary 110. M is saturated.

Proof. Let N be any countable model elementarily containing M. Then since N
satisfies (1, 2, 3′, 3′′) and hence (1, 2, 3), N is isomorphic to M. Thus there are only
countably many types realized in elementary extensions ofM, so there is a countable
saturated model elementarily containing M, which M must be isomorphic to.

We define d(A) = min{δ(C)|A ⊆ C ⊆ M, C finite}. Clearly for any A and x,
either d(xA) = d(A) or d(xA) = d(A) + 1.

Lemma 111. If d(xA) = d(A) + 1 and d(yA) = d(A) + 1, then (M, Ax) ∼= (M, Ay).

Proof. Let B be such that A ⊆ B, δ(B) = d(A). Then B ≤ M. d(xB) = d(xA) =
d(A) + 1. Thus, xB ≤M, and similarly yB ≤M. Using property 3 and a standard
back-and forth, we see that (M, xB) and (M, yB) are isomorphic.

Lemma 112. If d(xA) = d(A) then x ∈ aclM(A).

Proof. Suppose d(xA) = d(A). First, let B be a minimal set such that A ⊆ B and
δ(B) = d(A). We show that B is algebraic over A in M. Suppose there were two
realizations of the positive quantifier-free type of B over A. Call the second realization
B′. Then δ(B∪B′) ≤ δ(B)+δ(B′)−δ(B∩B′) < δ(B′) = d(A). The strict inequality
is due to B being a minimal set with the properties that A ⊆ B and δ(B) = d(A).
This inequality contradicts the definition of d(A).

Fix E to be a set such that xA ⊆ E and δ(E) = d(A). Then δ(E ∪ B) ≤
δ(E)+δ(B)−δ(E∩B). If E does not contain B, then δ(E∩B) > d(A) by minimality
of B. Then δ(E ∪B) ≤ d(A) +d(A)− δ(E ∩B) < d(A), again a contradiction. Thus,
E contains B and d(xB) = d(B).

Take a sequence of extensions B0, B1, B2, . . . Bn such that B0 = B, Bn = E,
and Bi+1 is a minimal set such that Bi ⊆ Bi+1 ⊆ E and δ(Bi+1) = d(A). Then
Bi+1 is simply algebraic over Bi, say minimally simply algebraic over Fi. Thus Bi+1

is algebraic over Bi (any two extensions of Bi satisfying the positive atomic type of
Bi+1rBi over Bi must be disjoint and isomorphic to Bi+1rBi over Bi since Bi ≤M,
so we explicitly forced there to be no more than µ(Fi, Bi+1 r Bi, fM(Bi) of these).
We conclude that E is algebraic over A. In particular, x ∈ aclM(A).
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Corollary 113. M is strongly minimal.

Proof. In the previous lemma, we showed that over any set there is a unique non-
algebraic type realized in M. Since M is saturated, we see that Th(M) is strongly
minimal.

5.2 SRM(T ) = {0, . . . ,m}
Fix an integer m. We define K to be the standard complete Σ1 set, ie: the halting

problem. We set Ks to be the part of K enumerated by stage s (ie: the first s
programs to halt by stage s). We set K∞ = K. We will construct a theory T via
the construction from the previous section so that SRM(T ) = {0, . . . ,m}. We need
only define the µ function and the previous section will give a corresponding strongly
minimal theory. Fix a recursive enumeration of all the relative quantifier-free types
in our language L of minimally simply algebraic extensions over a set of size m + 1.
We will refer to these as Λi, and will say Λi(A,B) to mean that B is a minimally
simply algebraic extension of A of relative type enumerated as Λi.

Definition 114.

µ(A,B, k) =


|A|+ 1 if for all i, ¬Λi(A,B)(ie: |A| 6= m+ 1)

|A|+ 1 if Λi(A,B), and i ∈ Kk

|A|+ 2 if Λi(A,B), and i /∈ Kk

We employ the previous section, and we get a generic modelM, which is saturated
and strongly minimal. Let T = Th(M). We need only to verify that SRM(T ) is as
promised.

Claim 115. k > m→ k /∈ SRM(T )

Proof. Let N be any model of dimension > m. Let x̄ be any algebraically independent
tuple of size m+ 1 in N . Then i ∈ K ↔ ¬∃m+3ȳ N |= Λi(x̄, ȳ). Thus, a complete Σ1

set can be represented as a Π1 set using an oracle for quantifier-free statements true
about N . Therefore, N cannot be recursive.

Claim 116. k ≤ m→ k ∈ SRM(T ).

Proof. If X is a finite L-structure and δ(X) ≤ m, then whether X ∈ C is a recursive
question. This is simply because fX(Y ) is finite for any m+ 1 element set Y ⊆ X, so
we can compute µ(A,B, fX(A)) for any A,B ⊆ X. To construct the k-dimensional
model, we start with M0 as k elements unrelated by R. At stage s, we start with
Ms−1 and we list off the first s possible simply algebraic extensions over subsets of
Ms−1. Then we check if the associated free-join keeps us in C. If it does, we pass
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to the free-join. After doing this for these s possible extensions, we call the result
Ms. This yields a model where we have amalgamated every simply algebraic extension
possible, in particular we amalgamate B over A for any strong enough A. Thus we get
a model of 1, 2′, 3′′. By compactness, there is an elementary superstructure satisfying
2′, 3′, 3′′, and by downward Lowenheim-Skolem, there is an elementary superstructure
satisfying 1, 2′, 3′, 3′′. Thus we get a model of T . Since δ(Mi) = k for each Mi and
M0 ≤Mi for each Mi, we have built the k-dimensional model.

Thus we have proved the promised theorem.

Theorem 117. There exists a strongly minimal theory in a language with a single
ternary relation symbol such that SRM(T ) = {0, . . . ,m}.

5.3 SRM(T ) = ω

We will be employing the same construction as above, so we need only define
a new µ function. In order to work with the more complicated recursion theoretic
necessities of this proof, we will be using a complete Π2 set. We fix one now: S =
{k|∀l∃jφ(k, l, j)}. Fix a recursive enumeration of all relative quantifier-free types of
minimally simply algebraic extensions Λk,s, so that the extension Λk,s is over a set of
size k. Now we can define the bounding function µ:

Definition 118.

µ(A,B, n) =

{
|A|+ 1 if Λk,s(A,B), and ∀l ≤ s∃j ≤ nφ(k, l, j)

|A|+ 2 if Λk,s(A,B), and ¬∀l ≤ s∃j ≤ nφ(k, l, j)

Note that µ satisfies the required property that all but finitely many integers agree
with the value outputted at ∞.

We employ the construction above, and we thus get a generic model M which is
saturated and strongly minimal. Let T = Th(M). Now, we verify that SRM(T ) is
as promised.

Claim 119. ω /∈ SRM(T ).

Proof. Let N be any particular presentation of the saturated model. For any k,

k ∈ S ↔ ∃x̄
(
(∀s¬∃k+2ȳN |= Λk,s(x̄, ȳ)) ∧ (x̄ is strong in N)

)
Then, we see that a complete Π2 set is Σ2 (being strong in N is a Π1-condition)
in a presentation of the quantifier-free diagram of N . Thus N has no recursive
presentation.

Claim 120. n ∈ ω → n ∈ SRM(T ).
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Proof. Fix n ∈ ω.

Claim 121. The set of finite L-structures X such that δ(X) ≤ n and X ∈ C is a
recursive set.

Proof. Non-uniformly, fix a finite set of information detailing for each i ≤ n, whether
i ∈ S, and if not, which is the first s so that ¬∃jφ(i, s, j).

Given any A ⊆ X, either |A| ≤ n or fX(A) is finite. In the latter case, computing
µ is recursive, since all the quantifiers are bound. In the former case, the information
we specified tells us how to compute µ when fX(A) =∞.

To construct the n-dimensional model, we start with M0 as n elements unrelated
by R. At stage s, we start with Ms−1 and we list off the first s possible simply
algebraic extensions over subsets of Ms−1. Then we check if the associated free-join
keeps us in C. If it does, we pass to the free-join. After doing this for these s possible
extensions, we call the result Ms. This yields a model where we have amalgamated
every simply algebraic extension possible, in particular we amalgamate B over A
for any strong enough A. Thus we get a model of 1, 2′, 3′′. By compactness and
Lowenheim-Skolem, there is an elementary superstructure satisfying 1, 2′, 3′, 3′′, so we
get a model of T . Since δ(Mi) = n for each Mi and M0 ≤ Mi for each Mi, we have
built the n-dimensional model.

Thus we have proved the promised theorem.

Theorem 122. There exists a strongly minimal theory in a language with a single
ternary relation symbol such that SRM(T ) = ω.



52

Bibliography

[1] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hi-
erarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[2] J. T. Baldwin and A. H. Lachlan. On strongly minimal sets. J. Symbolic Logic,
36:79–96, 1971.

[3] S. S. Goncharov and B. Khoussainov. Complexity of theories of computable
categorical models. Algebra Logika, 43(6):650–665, 758–759, 2004.

[4] Leo Harrington. Recursively presentable prime models. J. Symbolic Logic,
39:305–309, 1974.

[5] Bernhard Herwig, Steffen Lempp, and Martin Ziegler. Constructive models of
uncountably categorical theories. Proc. Amer. Math. Soc., 127(12):3711–3719,
1999.

[6] Denis R. Hirschfeldt, Bakhadyr Khoussainov, and Pavel Semukhin. An uncount-
ably categorical theory whose only computably presentable model is saturated.
Notre Dame J. Formal Logic, 47(1):63–71 (electronic), 2006.

[7] Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cam-
bridge, 1997.

[8] Ehud Hrushovski. A new strongly minimal set. Ann. Pure Appl. Logic, 62(2):147–
166, 1993. Stability in model theory, III (Trento, 1991).

[9] B. Khoussainov and A. Montalban. A Computable ℵ0-categorical Structure
Whose Theory Computes True Arithmetic. To appear in Journal of Symbolic
Logic, December 2008.

[10] Bakhadyr Khoussainov, Andre Nies, and Richard A. Shore. Computable models
of theories with few models. Notre Dame J. Formal Logic, 38(2):165–178, 1997.

[11] Julia F. Knight. Nonarithmetical ℵ0-categorical theories with recursive models.
J. Symbolic Logic, 59(1):106–112, 1994.



BIBLIOGRAPHY 53

[12] K.Z. Kudaibergenov. On constructive models of undecidable theories. Sib. Math.
Journ., 21:155–158, 1980.

[13] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. An introduction.
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