
Lawrence Berkeley National Laboratory
LBL Publications

Title
HVAC and Control Templates for the Modelica Buildings Library

Permalink
https://escholarship.org/uc/item/2n57x714

Authors
Gautier, Antoine
Wetter, Michael
Hu, Jianjun
et al.

Publication Date
2023-12-22

DOI
10.3384/ecp204217

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n57x714
https://escholarship.org/uc/item/2n57x714#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

HVAC and Control Templates for the Modelica
Buildings Library

Antoine Gautier¹, Michael Wetter², Jianjun Hu², Hubertus Tummescheit³

¹Solamen, France, ²Lawrence Berkeley National Laboratory, Berkeley, CA,

³Modelon, Hartford, CT

Energy Technologies Area

October 2023

10.3384/ecp204217

HVAC and Control Templates for the Modelica Buildings Library

Antoine Gautier1 Michael Wetter2 Jianjun Hu2 Hubertus Tummescheit3

1Solamen, France, agautier@solamen.fr
2Lawrence Berkeley National Laboratory, Berkeley, CA

3Modelon, Hartford, CT

Abstract
This article reports on our experience in creating Mod-
elica classes that serve as templates for modeling HVAC
systems with thousands of configurations and closed-loop
controls. Our motivation is to reduce model creation and
parameterization time, provide access to state-of-the-art
control sequences, while limiting the risk of error and en-
forcing modeling best practices. The development of such
templates required exploration of class parameterization
techniques and data structures for handling large sets of
equipment parameters. By describing these issues and the
approach taken, we show how the Modelica language can
support advanced templating logic. The main limitation
we encountered relates to parameter assignment and prop-
agation. The interpretation of parameter attributes at user
interface runtime, or the handling of non-trivial constructs
involving record classes at compile time is not consistently
supported by Modelica tools. This leads to choices that are
difficult to make when looking for a generic implementa-
tion.
Keywords: Modelica Buildings Library, template, class
parameterization

1 Introduction
Modeling Heating, Ventilation and Air-Conditioning
(HVAC) systems with the Modelica Buildings Library
(Wetter, Zuo, et al. 2014) usually relies on a component-
by-component approach that is both time-consuming and
error-prone, requiring expertise in configuring HVAC sys-
tems and designing and implementing the appropriate
feedback control logic. This motivates the development of
pre-built Modelica models that can be easily reconfigured
and serve as templates for a variety of HVAC systems.

In our experience, developing Modelica-based tem-
plates for complex systems requires not only advanced
knowledge of the language, but also experience in tem-
plate development in particular. To circumvent a high
level of complexity, or to allow for a more straightfor-
ward development process, some tool developers instead
resorted to external templating engines, such as Mako
(Nytsch-Geusen et al. 2017) or Jinja (Long et al. 2021). In
the latter application, the highly variable network topol-
ogy of district heating and cooling systems is captured
by a GeoJSON parameter schema, from which a Python-
based templating layer generates Modelica code. For use

of templating engines, in addition to the underlying Mod-
elica models that serve as building blocks for such a work-
flow, a parameter schema must be developed, along with
template files and the software that does the translation
into Modelica. This leads to more dependencies to man-
age, and we believe it also increases the maintenance over-
head compared to Modelica-based templating. For exam-
ple, a change in the underlying Modelica library may re-
quire an update of the templates or the translator itself.
Moreover, such tools usually implement a one-way trip
from the parameter schema to Modelica. Any subsequent
change to the Modelica model will therefore result in the
configuration workflow no longer being applicable. If the
configuration workflow involves programmatic creation of
connect statements, this will most likely affect the graph-
ical aspect of the model. Finally, a lack of reusability
becomes apparent. There are as many template schemas
and translators as there are development projects, with
no clear way for other applications—even from the same
domain—to leverage the existing work.

Alternatively, some developments rely exclusively on
the Modelica language and its parametric polymorphism
(Broman, Fritzson, and Furic 2006). For example, the Ve-
hicle Dynamics Library developed by Modelon achieves
a high degree of configurability through the use of class
parameterization techniques, which are described in more
detail in this paper. The Vehicle Dynamics Library also
provides the ability to specify system parameters via
XML, JSON, MAT, or Adams data properties files. The
library covers both the chassis and the powertrain con-
figurations of all current architectures of passenger vehi-
cles, as well as many classes of trucks. The hierarchi-
cal use of class parameterization gives a high flexibility to
include new technologies, and also allows to use differ-
ent levels of modeling details during the design process.
Another example is given by Greenwood et al. (2017)
for modeling power plants. The approach uses replace-
able elements to configure subsystems and controls, and
a record class for parameter assignment within each sub-
system. More recently, Wüllhorst et al. (2023) introduced
BESMod, an open-source Modelica library for research
and teaching purposes that provides a modular approach to
domain-coupled simulations of building energy systems.
The library is structured with modules that represent the
various systems, e.g., demand, ventilation, hydraulic sys-
tem. Each module is built using expandable connectors,

vector-sized ports, and a unified parameterization frame-
work based on Modelica records. The modules are ag-
nostic of the component models, which can come from
various open source libraries such as Buildings or IBPSA
(Wetter, Blum, et al. 2019). An example illustrates how
building models are interchangeable from one library to
another. However, for each module, the configuration op-
tions are limited to those of the underlying libraries, and
there is still a need for system-level templates. For ex-
ample, it is not possible to change the system layout and
control options of an air handling unit if those features are
not present in the library that provides that component.

In this paper we will go over the advantages and dis-
advantages of Modelica-based templating, which is the
method we use. In addition to providing insights to help
future template developers, we discuss the main constructs
of the Modelica language that serve the purpose of tem-
plating, and we point out the limitations and possible lan-
guage extensions or tool improvements that could make
the task easier. We start with some important definitions
in section 2 and the key requirements guiding our devel-
opment in section 3. The core concepts that support tem-
plating are introduced in section 4. Some implementation
choices related to connecting signal variables, structuring
system parameters and integrating graphical elements for
control diagrams are then presented in section 5, section 6
and section 7, respectively. Finally, an overview of the test
workflow we use to validate the numerous configurations
covered by the templates is given in section 8.

2 Definitions
Throughout this article, the following terms are used ac-
cording to the definitions given here.

Configuration. A system configuration corresponds to
the specification of the type and layout of the equipment
and the corresponding control logic. Systems with differ-
ent capacities may have the same configuration, provided
they have the same control software and hardware type.

Parameterization. By parameterization we mean all
possible class modifications, such as changing parameter
values and redeclaring components or classes, which we
refer to as class parameterization (Zimmer 2010).

Structural and value parameters. We use the term
structural parameters if a parameter affects the number and
structure of the equations, and value parameters if they do
not. An example of a structural parameter is a parameter
used to specify an array size. The use of these terms is
consistent with Kågedal and Fritzson (1998).

System. By system we mean a set of components that
"share a load in common, i.e., collectively act as a source
to downstream equipment, such as a set of chillers in a
lead/lag relationship serving air handlers", whereas "each
air handler constitutes its own separate system because
it does not share a load (terminal unit) in common with
the other air handlers". Our use of the term "system" is
adopted from ASHRAE (2021).

Template. A template, or template class, is defined as
a Modelica model that can be parameterized (as defined
above) to represent a particular system configuration.

3 Requirements
We will now present key requirements that guided the de-
velopment of the templates to provide the necessary con-
text for understanding the main implementation choices.

3.1 Tool Compatibility
Our main requirement is that the language constructs used
to create the templates are supported by various Mod-
elica compilers. This appeared particularly constraining
when dealing with nested expandable connections (see
section 5) or choosing the right data structure for system
parameters (see section 6). Our test workflow (see sec-
tion 8) currently includes Dymola (Dassault Systèmes AB
2023), Modelon Impact (Modelon AB 2023b; Modelon
AB 2023a), and we are working on support with Open-
Modelica. In addition, the graphical primitives used for
icons and diagrams (see section 7) should also be sup-
ported by various Modelica tools, especially if they in-
clude a visible attribute that requires the evaluation of
Boolean expressions at user interface (UI) runtime.

3.2 Diversity of Equipment and Controls
To illustrate the diversity that must be represented, it
should be noted that a simple air handling unit can have
thousands of possible combinations of equipment, not
counting the various control options and the type and
placement of sensors required for them.

In addition, there is a strong dependency between the
different types of equipment and control logic. For in-
stance, ASHRAE (2021) specifies that the primary hot wa-
ter flow sensor in a boiler plant is "required for primary-
only plants", that the sensor is "optional for variable
primary-variable secondary plants" and "not required nor
recommended for constant primary-variable secondary
plants." In this case, the specification of some equipment
(the primary and secondary hot water pumps) together
with a control option (the type of sensors used to con-
trol the primary recirculation in variable primary-variable
secondary systems) constrains the possible options for an-
other piece of equipment (the primary flow sensor), which,
if present, can be located either in the supply or in the re-
turn pipe.

Conceptually, this means that the user’s choices can af-
fect the possible options that are exposed at another level
of the model’s composition. We will see in subsection 4.3,
with a concrete example, the language constructs that are
used to support this process.

3.3 System Parameters
The data structure containing the design and operating pa-
rameters should allow parameter values to be assigned via
a unique object at the top level of the simulation model.
Such an object can be viewed as a digital avatar of the

manufacturer’s data sheets for a complete HVAC system,
from plant to zone equipment.

System parameters usually run into the hundreds and
are highly dependent from one device to another, so it
should be possible to express these relationships in bind-
ing equations. In addition, a mechanism should be avail-
able to expose only the parameters required for a project’s
specific system configurations.

Finally, it should be possible to reuse existing equip-
ment datasets implemented as Modelica record classes
from the library on which the templates are based, e.g.,
pumps, fans, chillers and boilers for the Buildings library.

We will see in section 6 the resulting implementation
choices.

3.4 System Level Templates
The templates need to be provided at the system level,
e.g., a central plant or a air handler. Therefore, creating
a simulation model for a complete HVAC system involves
multiple instances of templates and multiple connections
between physical connectors (for fluid circuits) and in-
put/output connectors (for controls). This task should be
achievable without need of an automation tool. In prac-
tice, this leads to the use of expandable connectors (Mod-
elica Association 2021) to connect control inputs and out-
puts between systems (see section 5), as otherwise a large
set of connections would be required, and this set would
vary with each system configuration.

3.5 Scalability
Any number of identical devices must be supported. In
practice, this leads to use of array instances for models
that can represent multiple units, such as pumps, chillers
or zone equipment. The main difficulty then lies in man-
aging this dimensionality for non-trivial constructs such
as nested expandable connectors (see section 5) or record
classes (see subsection 6.2).

3.6 Integration With OpenBuildingControl
The OpenBuildingControl project aims to digitize the con-
trol delivery process based on control specifications that
are a subset of Modelica and now being standardized
through ASHRAE Standard 231P (Wetter, Grahovac, and
Hu 2018; Wetter, Ehrlich, et al. 2022). To support this
workflow, the templates shall contain the information nec-
essary to prepare the documents required for the bidding
and project execution of HVAC systems.

The ability to generate a control diagram is of particular
importance to our development, see section 7. The main
requirement is that the data used to create control diagrams
be provided as graphical annotations that a Modelica tool
with a graphical user interface (GUI) can interpret. This
way, when a template is configured in a Modelica tool,
the user can get direct graphical feedback on the system
layout.

Although outside the scope of this work, additional re-
sources can be exported by dedicated tools, all of which

use a JSON representation of Modelica templates as a cen-
tral digital resource (Wetter, Hu, et al. 2021). These re-
sources include documentation of the sequence of opera-
tion, the control point list, or an executable version of the
control sequence that control vendors can translate into
their product line and commissioning agents can use to
verify implementation of the control logic.

4 Structural Changes to a Model
In this section, we describe the mechanism by which we
enable structural changes to a model directly through the
parameter dialog, i.e., without manual user intervention
on the model components. These structural changes al-
low representing a variety of system layouts and control
options—and corresponding sensors and actuators—with
a single pre-built model. This mechanism is thus at the
core of template design and is based on the concept of
class parameterization, which we first introduce in sub-
section 4.1. To support class parameterization in practice,
template components typically need to be derived from in-
terface classes designed to ensure plug-compatibitility as
described in subsection 4.2. In subsection 4.3, we then
present a concrete example of how parameterization con-
structs are used in conjunction with element annotations
to represent dependencies between options for different
components of a model and, more broadly, to cover the
diversity of equipment and controls as first described in
subsection 3.2.

4.1 Class Parameterization
The concept of class parameterization is central to tem-
plate development. Class parameterization allows a class
or component to be used as a parameter of another class.
Zimmer (2010) gives an overview of the main language
constructs supporting class parameterization in Modelica.
Class parameterization can be accomplished via the fol-
lowing alternative approaches:

Container class. A container class, also called a wrap-
per class, is a class that contains structural parameters that
are used to conditionally instantiate the components of the
class. The main advantage is that a simple parameter bind-
ing with possible expressions can be used to reconfigure
the class when instantiating or extending it. The main dis-
advantage is that the instance tree becomes more complex
with additional nesting levels and instance names that vary
depending on the system configuration.

Replaceable elements. Replaceable elements, either
instances or classes, provide an alternative in which the
instance tree is preserved, at least down to the level of the
object being replaced. However, as pointed out by Zimmer
(2010), these elements cannot be manipulated as standard
parameters and require specific syntax (using the key-
words replaceable, constrainedby and redeclare)
that precludes conditional redeclarations involving expres-
sions and parameters.

There is no single way to achieve the same goals in cre-
ating templates, and our developments use a variety of the

Outdoor air
dampers

Heat recovery

Mixed air system 100 % outdoor air
system

Separate dampers for
ventilation and
economizer
Single damper for
ventilation and
economizer

No heat recovery

Shut-off damper

Flat plate heat
exchanger
Rotary air-to-air heat
exchanger
Run-around coil

System option →
Equipment ↓

Figure 1. Example of equipment options depending on a high-
level configuration option for an air handling unit air intake.

above constructs. In this section, we will try to illustrate
how these concepts can be put into practice to solve some
challenging use cases.

4.2 Interface Class
Designing appropriate interface classes is of paramount
importance when creating templates. The main goal is to
achieve plug-compatibility (Modelica Association 2021)
for each component model created by extending such in-
terface classes. Applying this concept ensures that all
possible connections and parameter assignments can be
specified in advance in a template class, so that each time
a component is redeclared, no change to the connect

clauses or binding equations is required.
This differs from the usual practice where interface

classes typically contain the minimum common set of el-
ements (e.g., outside connectors and parameters) required
by all derived classes, which then extend this set as needed
and are thus type compatible. In our templates, all outside
connectors are declared within the interface class, with
the appropriate conditional instance statements. Any class
that extends an interface class does not declare any outside
connector, but rather conditionally removes inherited con-
nectors. Similarly, the interface class instantiates a record
containing the full set of system parameters covering all
possible configurations, see section 6.

4.3 Redeclarations and Choices Annotations
4.3.1 Concrete Example

To illustrate the use of class parameterization, let us con-
sider the possible equipment options when specifying the
air intake section of a multiple-zone air handling unit. Fig-
ure 1 shows these options: In a mixed air system, there are
several options for the outdoor air dampers, but usually no
heat recovery. In contrast, a 100 % outdoor air system of-
fers several heat recovery options, but should be equipped
with a shut-off outdoor air damper. The challenge is to
fully cover these options and their constraints, and to se-
lect appropriate control logic while minimizing code du-
plication and maintenance overhead.

Subsection interface

Subsection
configuration 1

Subsection
configuration 2

Section
configuration A

Section
configuration B

replaceable model
 annotation(
 choices(...),
 Dialog(enable=...))

Extends Contains short class
definition of Instantiates

Section interface

Subsection
configuration 3

Subsection
configuration 4

Subsection
for section A

Subsection
for section B

Snippet from class
definition

Used in declaration
annotation

Figure 2. Class diagram for implementing the air intake section
for an air handling unit template.

One might see the lack of conditional class definitions
(or redeclarations) in the Modelica language as a limita-
tion when trying to represent dependencies between op-
tions for different components of a model. For example,
the following construct, although appealing, is not a valid
short class definition.
class-prefixes IDENT "=" if expression
then type-specifier [class-modification]
else type-specifier [class-modification]

Similarly, conditional choices annotations, in which
the exposed options depend on a Boolean expression, are
not allowed. However, by using different levels of inheri-
tance we can achieve almost the same intent, at the price
of a more complicated class structure though.

Figure 2 gives an overview of the classes developed
for such purpose, focusing on the options for one type of
equipment (e.g., the outdoor air dampers) and consider-
ing the most generic case where multiple options exist for
each system configuration, i.e., options 1 and 2 for system
configuration A (mixed air) and options 2 and 3 for system
configuration B (100 % outdoor air). At the top level of the
template, a so-called "section" is declared, which contains
all the interdependent components (labelled "subsection"
in the figure), e.g., in our case the outdoor air dampers
and the heat recovery (not shown in the figure for concise-
ness). This section derives from an interface containing
short class definitions, optionally as replaceable models,
and uses these definitions as constructors for its compo-
nents. As illustrated in Listing 1 the choices specified in
the annotation of the replaceable model Subsection_A
(resp. Subsection_B) are only exposed for configura-
tion "A" (resp. "B") due to the enable attribute in the di-
alog annotation. Then the model selected from the given
choices is used by the derived class Section_A (resp.
Section_B) to create the actual object representing the
subsection subSec.

Listing 1. Minimal working example illustrating the structure
of a template class.

model Template "Template"
replaceable Section_A sec
constrainedby PartialSection "Section"
annotation(choices(
choice(redeclare replaceable Section_A

sec),
choice(redeclare replaceable Section_B

sec)));
end Template;

partial model PartialSection
"Section interface"
parameter String config;

replaceable model Subsection_A = Config1
constrainedby PartialSubsection
"Subsection" annotation(choices(
choice(redeclare replaceable model

Subsection_A = Config1),
choice(redeclare replaceable model

Subsection_A = Config2)),
Dialog(enable=config=="A"));

replaceable model Subsection_B = Config3
constrainedby PartialSubsection
"Subsection" annotation(choices(
choice(redeclare replaceable model

Subsection_B = Config3),
choice(redeclare replaceable model

Subsection_B = Config4)),
Dialog(enable=config=="B"));

end PartialSection;

model Section_A "Section config A"
extends PartialSection(final config="A");
Subsection_A subSec "Subsection";

end Section_A;

model Section_B "Section config B"
extends PartialSection(final config="B");
Subsection_B subSec "Subsection";

end Section_B;

partial model PartialSubsection
"Subsection interface"
// I n s t a n t i a t e a l l p o s s i b l e connec to r s and

parameters .
end PartialSubsection;

model Config1 "Subsection config 1"
// Set parameter v a l u e s needed to remove

non−needed connectors , and implement
a c t ua l components .

end Config1;
model Config2 "Subsection config 2"
end Config2;
model Config3 "Subsection config 3"
end Config3;
model Config4 "Subsection config 4"
end Config4;

replaceable Template system;

Zimmer (2010) mentions that replaceable models are
most commonly used instead of replaceable components

when multiple instances are to be redeclared with a unique
statement. Replaceable packages are typically used for
medium models because access to enclosed elements (e.g.,
constants and functions) is required. Our use case dif-
fers and replaceable models are used here in conjunction
with inheritance and "deferred" instantiation as a practi-
cal means of achieving conditional class parameterization
and conditional choices for replaceable elements. From a
user experience (UX) perspective, this is identical to ma-
nipulating a replaceable component. Note that we sys-
tematically use choices annotations with redeclare
replaceable to support further editing of the template
after a configuration workflow.

4.3.2 Caveats and Alternatives

Resorting to UI features does not provide the same degree
of robustness as using pure language constructs for object
manipulation. For example, with a single line of code, one
could manually redeclare Subsection_A with any type
compatible model and violate the constraints imposed by
the choices annotation.

One could also argue that for the configurations de-
scribed in Figure 1, where there is either an option list
or a unique option, as opposed to another option list, a
simpler construct is to declare a replaceable component in
the air intake section to represent the outdoor air dampers,
with an enable attribute that evaluates to true for the
mixed air configuration, and to false for the 100 % out-
door air configuration. For the latter case, an additional
redeclare final statement then enforces the unique op-
tion for the outdoor air dampers (i.e., shut-off damper).
However, additional scrutiny on the configuration work-
flow is here necessary. Indeed, an issue appears if a sys-
tem model is first created by extending the template with a
class modification that pertains to the mixed air configura-
tion. Any further modification of the air intake section, ei-
ther during inheritance or instantiation, risks an error due
to a final override in the merging of modifiers, as shown
below.

partial model PartialSection
"Section interface"
parameter String config;

replaceable Config1 subSec "Subsection"
annotation(choices(
choice(redeclare replaceable Config1

subSec),
choice(redeclare replaceable Config2

subSec)),
Dialog(enable=config=="A"));

end PartialSection;

model Section_A "Section config A"
extends PartialSection(final config="A");

end Section_A;

model Section_B "Section config B"
extends PartialSection(final config="B",
redeclare final Config3 subSec);

end Section_B;

model System1
extends Template(sec(redeclare replaceable

Config2 subSec));
end System1;
// The f o l l ow i n g y i e l d s a f i n a l o v e r r i d e

e r r o r .
System1 system(redeclare Section_B sec);

Another limitation arises from the fact that no param-
eter dialog is generated for the subcomponent redeclared
as final, so that other configuration options nested below
it are not accessible to the user.

As an alternative, an annotation override may be con-
sidered. Indeed, Modelica Association (2021) spec-
ifies that a description is allowed as part of an
element-redeclaration. So, if the original com-
ponent is replaceable, the concrete syntax allows an
annotation-clause when redeclaring the component.
If a replaceable component subSec is declared inside
PartialSection as before, the same configuration logic
as in Listing 1 could be implemented as follows.
model Section_B "Section config B"
extends PartialSection(
redeclare replaceable Config3 subSec
annotation(choices(
choice(redeclare replaceable Config3

subSec),
choice(redeclare replaceable Config4

subSec))));
end Section_B;

However, although it conforms with Modelica Associ-
ation (2021), the above syntax is not interpreted by any of
the Modelica tools we tested.

5 Connections
The connect equations for signal variables in the tem-
plates use expandable connectors, also called control
busses, which have the following useful properties. The
set of variables in an expandable connector is augmented
whenever a new variable is connected to an instance of the
class. Thus, there is no requirement to pre-declare vari-
ables, and in fact we do not pre-declare any variable within
the control bus. Variables that are potentially present but
not connected are eventually considered as undefined, i.e.,
a tool may remove them or set them to a default value.
Not all variables need to be connected, and therefore the
control bus does not need to be reconfigured depending on
the model structure.

Like any other Modelica type, expandable connectors
can be used in array instances. A typical use case is to
connect control signals from a set of terminal units to a
supervisory controller of an air handling unit. In our ex-
perience, some care is required when handling such array
instances to maximize support by different Modelica com-
pilers, especially when nested expandable connectors are
involved. We have opted for the pragmatic rule of limiting
the number of nested expandable connectors to one. In
other words, a control bus may have none or one sub-bus.

Also, we use local instances of array sub-busses to force
the compilers to assign the dimensionality to the correct
variable. For instance, let us consider the following model
where the variables nested under the bus object are not
pre-declared.

model Control
parameter Integer nDim1 = 2, nDim2 = 1;
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
ControlBus bus;

Modelica.Blocks.Sources.RealExpression exp
[nDim1, nDim2](y=fill(fill(1, nDim2),
nDim1));

equation
connect(exp.y, bus.subbus.y);

end Control;

Some compilers assign the dimensionality of exp.y
(that is equal to two) to bus.subbus.y, while the
template developer may expect both bus.subbus and
bus.subbus.y to have a dimensionality of one. Other
compilers will reject such a model. Therefore, the follow-
ing implementation is used instead.

model Control
parameter Integer nDim1 = 2, nDim2 = 1;
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
ControlBus bus;

Modelica.Blocks.Sources.RealExpression exp
[nDim1, nDim2](y=fill(fill(1, nDim2),
nDim1));

protected
Modelica.Blocks.Examples.

BusUsage_Utilities.Interfaces.
SubControlBus subbus[nDim1];

equation
connect(exp.y, subbus.y);
connect(subbus, bus.subbus);

end Control;

Most compilers we have tested can handle the above
implementation, and bus.subbus and bus.subbus.y
are necessarily assigned a dimensionality of one. Further-
more, having the instance of the sub-bus as a protected
element of the control block instead of a pre-declared vari-
able inside the main control bus avoids binding equations
for the dimension parameters wherever the control bus is
used.

Finally, we use strict naming conventions for all com-
ponents, including signal variables, which support a natu-
ral syntax for the connect equations. For example, con-
necting the measurement signal yielded by the supply air
temperature sensor component to the bus variable used by
the controller is done with: connect(TAirSup.y, bus.

TAirSup). Connecting the supply fan command and feed-
back signals to the corresponding sub-bus is done with:
connect(fanSup.bus, bus.fanSup). Connecting all
signal variables for the air intake section described in sub-
section 4.3 is done with: connect(secAirInt.bus,

bus), where the main bus of the template is used in the
section class, because the section itself contains nested

components with sub-busses (such as dampers), so the
number of nested levels is effectively limited to one.

6 Design and Operating Parameters
When trying to meet the requirements of subsection 3.3,
the main difficulty is that conditional declarations cannot
be used for parameters, since a "component declared with
a condition attribute can only be modified and/or used in
connections" (Modelica Association 2021). We therefore
considered the use of an external data file and the use of
record classes and chose the latter in our implementation
for the reasons explained below.

6.1 External Data File
At first glance, using an external data source, such as a
JSON parameter file, is promising because it eliminates
the need for parameter propagation. Instead, each com-
ponent can retrieve the required parameter values by in-
voking accessor functions. The Modelica library Extern-
Data (Beutlich and Winkler 2021), which we used for this
purpose, provides accessor functions for each predefined
variable type (Real, Integer, Boolean, String) with
dimensionality up to 2.

However, we had to scale back our original require-
ments from subsection 3.3 due to the inherent limitations
of using literal constants from an external file. For in-
stance, referencing existing equipment data records from
the Modelica Buildings Library is not possible because a
class cannot be instantiated by passing the class name as
a string. Similarly, binding equations cannot be used to
express relationships between parameters of different sys-
tems because there is no built-in function to interpret a
string as Modelica code and evaluate it. Also left open is
the question of how to create the structure of this external
data file so that only the parameters required for the actual
system configurations are exposed, although automation
could address this problem.

More importantly, many structural parameters need to
be stored in the external data file, for example, to spec-
ify the size of the parameter array for a multi-unit com-
ponent. Ideally, the value for these parameters should be
assigned in this file. However, as structural parameters,
they must be evaluated at compile time. FMI-compliant
compilers (such as Modelon Impact) can handle this well
as the compiler flags that the accessor function must be
executed at compile time. This is not the case with other
compilers. Dymola, for example, requires the function an-
notation __Dymola_translate = true to force compile
time function execution, even though the parameter decla-
ration is already annotated with Evaluate = true. This
raises concerns about the impact on the translation time,
since each function call requires the creation of an exter-
nal object and access to the external file with fopen, even
though all function calls target the same external file.

It gets even worse when the compiler also stores the val-
ues for some variable attributes in the translated model, ei-
ther by legacy (e.g., nominal) or because they are used in

symbolic processing (e.g., min and max). Then all value
parameters used in bindings of these attributes have to be
evaluated as well, causing a significant translation over-
head. This marked the end of our attempt to use an exter-
nal parameter file.

6.2 Record Class
As an alternative, we resorted to record classes to handle
parameter assignment from the top level and propagation
throughout the instance tree. The use of record classes
benefits from the following features of the Modelica lan-
guage. Records are the only composite components al-
lowed in bindings, and the only composite components
of an instance that can be accessed by another instance.
Thus, the following conforms with Modelica Association
(2021) and records are the only specialized classes that
support such constructs, which largely help reduce the
number of binding equations when propagating parame-
ters.

record Rt "Template record"
parameter Rc c;

end Rt;

record Rc "Component record"
parameter Real p=1;

end Rc;

model Template
parameter Rt dat;
Component c(final dat=dat.c);

end Template;

model Component "Component"
parameter Rc dat;

end Component;

Specifically, in our case, two record classes are devel-
oped for each component model and instantiated within
the model’s interface class. The first record contains all
configuration parameters (structural parameters). This can
be considered as the "signature" for a given system config-
uration, accessible from any component and any template.
The second record contains the full set of design and oper-
ating parameters (value parameters) covering all possible
configurations, as well as an instance of the first configu-
ration record.

The inclusion of configuration parameters makes it pos-
sible to disable input fields in the parameter dialog if the
parameters are not needed for a particular configuration by
using the annotation attribute enable. Also, if enable =

false, no value can be assigned to this parameter (Mod-
elica Association 2021) although this is a non-normative
part of the language specification, and some compilers
may issue warnings or errors if no value is assigned to a
parameter, even with enable = false. In addition, some
compilers require that the start attribute be assigned for
parameters that have no assignment.

The inclusion of all value parameters is a requirement to
ensure plug compatibility with the interface class, which

serves as the constraining type and supports parameter
propagation via a single binding equation.

Although simple by design, the implementation of this
parameterization logic proves tricky, as shown in List-
ing 2.

Listing 2. Minimal working example illustrating the use of pa-
rameter records.

model Template
final parameter ConfigTemplate config(
comp=comp.config) "Configuration record";

parameter DataTemplate data(
config=config) "Data record";

Component comp(final data=data.comp)
"Component";

end Template;

model Component
parameter Integer typ;
final parameter ConfigComponent config(
typ=typ);

parameter DataComponent data(config=config
);

// Parameter myPar needed on ly i f typ==1.
SubComponent1 sub1(myPar=data.myPar)
if typ==1;

end Component;

model SubComponent1
parameter Real myPar;

end SubComponent1;

record DataTemplate
// Annotat ion enab l e used i n l i e u o f f i n a l

b i nd i ng i n i n s t a n c e to avo id f i n a l
o v e r r i d e .

parameter ConfigTemplate config
annotation(Dialog(enable=false));

parameter DataComponent comp(
config=config.comp);

end DataTemplate;

record DataComponent
parameter ConfigComponent config
annotation(Dialog(enable=false));

// E x p l i c i t s t a r t a t t r i b u t e i s needed to
avo id the warning : "The f o l l ow i n g
parameters don ’ t have any va lue "

parameter Real myPar(start=0)
annotation(Dialog(enable=config.typ==1));

end DataComponent;

record ConfigTemplate
parameter ConfigComponent comp;

end ConfigTemplate;

record ConfigComponent
// Annotat ion Eva luate i s needed to avo id

the warning : "The f o l l ow i n g parameters
don ’ t have any va lue "

parameter Integer typ
annotation(Evaluate=true);

end ConfigComponent;

// To use the template , they can be
i n s t a n t i a t e d as f o l l ow s :

// I f typ=1, the data need to be s e t to
a s s i g n parameter myPar .

replaceable Template system1(
comp(typ=1), data(comp(myPar=1)));

// The f o l l ow i n g i n s t an c e does not r e q u i r e
a s s i g n i n g parameter myPar .

replaceable Template system2(comp(typ=2));

The comments inserted in this listing give an insight
into our experience and show that some ad hoc rules from
the various Modelica tool vendors make a generic imple-
mentation difficult and lead to a lengthy trial-and-error
process. Also, a parameter with enable = false re-
mains in the variable namespace, and compilers use the
value of the start attribute to initialize the parameter
when it is unassigned. So we still need to assign a value to
this attribute and guard against corner cases, such as divi-
sion by zero of another variable attribute that has a binding
with this parameter, or zero-sized arrays of records. The
situation gets worse when dealing with UI/UX features
as, in the above example, the input field for the parame-
ter system.data.comp.m_flow_nominal may remain
enabled in the parameter dialog, even though the con-
figuration parameter system.data.comp.config.typ
evaluates to 2. This is the case with many Modelica tools
we tested, even for such a minimal example where class
name lookup is kept as simple as possible. In practice,
and as illustrated in subsection 4.3, templates require com-
plex class structures with multiple levels of inheritance
and composition, or the use of outer components that fur-
ther limit the support by various tools.

Our ultimate goal entails even more demanding require-
ments for interpreting annotation attributes at UI runtime.
Specifically, we want to read the configuration parameters
of template instances from an object at the top level of the
simulation model, such as with the following construct.
Note that we use a generic class construct as opposed to
the specialized class record because the latter does not
allow for outer elements.

class DataAllSystems
outer Template system;
parameter DataTemplate data_system(
config=system.config);

end DataAllSystems;

parameter DataAllSystems data;

inner replaceable Template system(
comp(typ=2),
final data=data.data_system);

The top-level component data can thus serve as a sin-
gle object for storing all design and operating parameters,
displaying only those required for the particular system
configurations, thus satisfying the requirements of sub-
section 3.3. This structure is composed of records for
each system and its components, so existing equipment
data records from the library can be easily reused. Vector-
ized instances are also possible for systems with multiple

units, and different classes can be used in them as long
as they have the same type. Parameterization of multiple
units with different properties is therefore straightforward
and most compilers allow these arrays to be populated on-
the-fly using record functions as shown below.

parameter ElectricReformulatedEIR.Generic
data[2] = {

ElectricReformulatedEIR.
Carrier_19XR_1234kW_5_39COP_VSD(),

ElectricReformulatedEIR.
Carrier_19XR_1143kW_6_57COP_VSD()};

All in all, the use of Modelica records offers great po-
tential, but suffers from uneven support from various com-
pilers, especially when using array instances or evaluating
the enable attribute at UI runtime, and for use cases re-
quiring complex class structures. At the beginning of the
development of system templates, we certainly did not ex-
pect that the handling of value parameters would be the
most difficult part and take the most development time—
estimated to be over 30 %—with a final result that we still
judge to be far from optimal. We believe that the lack of
conditional declarations of value parameters is the biggest
obstacle to the development of complex system templates
and makes the parametric polymorphism of the Modelica
language cumbersome in practice.

7 Control Diagram
To meet the requirements of subsection 3.6, all data
needed to create the diagram for a given system are in-
cluded in the template class in the form of Modelica
graphical annotations. Figure 3 shows the diagram view of
the boiler plant template and gives an example of the direct
graphical feedback that can be obtained about a particular
system configuration. It also illustrates the capability of
the template to adapt to different equipment and control
specifications by programmatically generating the neces-
sary objects for equipment, actuators and sensors, and re-
solving the hydronic routing of components and control
signal connections without user intervention.

The template components include Bitmap primitives in
the icon layer to reference equipment symbols provided
as vector graphics in SVG format (W3C 2003). Although
Modelica tools render them as raster images in the dia-
gram view, a tool can use the referenced SVG files to cre-
ate diagrams that conform to industry standards and are
accurate at the pixel level. The visibility of these graph-
ical objects is controlled with the annotation attribute
visible and bindings to the template class configura-
tion parameters. Due to the lack of a "group" element in
the Modelica Language Specification—as opposed to the
SVG specification (W3C 2003) which includes the 'g'
element—dealing with complex graphical objects using
only native graphical primitives would require many du-
plicates of the visible attribute and its binding equation,
which is the main reason we rely on external SVG files.
Text in equipment symbols is handled separately, so it can

be flipped or rotated independently of the component sym-
bol.

Piping systems are represented directly by the graphi-
cal annotations of the connect equations, with an explicit
visible attribute added in the case of conditional com-
ponents. This is necessary because Modelica tools, while
removing the corresponding connect statements at trans-
lation, generally do not provide direct graphical feedback
and the connection lines remain visible in the diagram
view. In the case of air systems, we use separate graph-
ical annotations in the diagram layer to represent the duct-
work. The connection lines are then graphical artifacts
that should be deleted when creating the final control dia-
gram.

8 Validation
We have implemented a comprehensive test workflow to
verify that all system configurations supported by a given
template are implemented correctly. However, generating
the list of these supported configurations was not straight-
forward, considering that elaborate class parameterization
techniques are used together with choices annotations
to implement the actual decision tree (see subsection 4.3).
Thus, we recreated this set of options in a standalone script
that first builds the list of all possible combinations of
structural parameters and redeclare clauses, and then
prunes this list based on exclusion patterns that must be
manually specified by the template developer. Then, sim-
ulations are run for all the resulting class modifications.
For example, this results in over 2000 simulations for the
chiller plant template and nearly 1000 simulations for the
boiler plant template. Due to the computation load, we
only trigger these tests in our continuous integration work-
flow when the checksum computed for all classes in the
Templates package changes.

Currently, the percentage of tool coverage is about
60 %,1 but is steadily growing with the updates of the
Modelica compilers released by various vendors.

9 Conclusion and Future Work
Our experience with relying entirely on the Modelica lan-
guage to create user-friendly models for systems with
thousands of configurations and closed-loop controls has
shown that complexity is not necessarily where one ex-
pects it to be. Originally, we saw the lack of condi-
tional element redeclaration as the main obstacle, espe-
cially since there is convincing work already pointing out
this deficiency and proposing some changes to allow for
better class parameterization (Zimmer 2010). Although
these proposed changes would have made our task easier,
it appeared to us that advanced model configuration could
be achieved with the current syntax, provided that com-

1The percentage of tool coverage is calculated as the ratio between
the number of successful tests and the number of tests, where the num-
ber of tests is equal to the number of templates times the number of
compilers tested.

Figure 3. Diagram view of the boiler plant template (as rendered by Dymola) in a primary-secondary configuration, with three
condensing boilers equipped with headered variable speed pumps and two non-condensing boilers equipped with dedicated constant
speed pumps.

ponents have well-designed interface classes and that UI
features are used in conjunction with pure language con-
structs for object manipulation.

However, the assignment of equipment parameters and
their propagation throughout the instance tree proved to
be the most problematic. The main reason is that the con-
ditional declaration of parameters used in binding equa-
tions, as opposed to connectable components, is not al-
lowed. We believe that this restriction is what most limits
the templating capabilities of the Modelica language. In
the absence of such a feature, we are left with only a non-
normative part of the specification, namely the use of the
attributes enable and start in parameter declarations.
With this pattern, a parameter can remain unassigned if
it is not needed for a given configuration where enable

evaluates to false. But this approach is fraught with some
issues. First, the fact that it is a non-normative feature
limits the support of our templates by various Modelica
compilers, which may issue a warning or error in case of
unassigned parameters. Second, a disabled parameter re-
mains in the variable namespace and compilers use the
value of the start attribute to initialize the parameter if
it is unassigned. So we still need to assign a value to this
attribute, and several corner cases occur that we need to
guard against. Finally, the behavior of the UI is almost
unpredictable because the interpretation of the enable at-
tribute at UI runtime to generate the parameter dialog is
not specified. Thus, if the logic to disable a parameter in-
put field fails, it is difficult to determine which constructs
are the cause. We believe that a unified UX matters, es-
pecially for templating, and that it would be good for the
Modelica community if more UI features were normative
and much more clearly specified than currently. The un-

even support by Modelica compilers of another fundamen-
tal structure for handling parameters further complicates
the task. Indeed, we have observed and reported many
compiler failures with record classes used in non-trivial
constructs such as array instances, composite component
bindings, or on-the-fly instantiation with record functions.
Thus, development work often becomes a tricky naviga-
tion around the specific limitations of the various Model-
ica compilers.

Our next step is to implement templates for entire
HVAC systems, from plant to zone equipment, with cou-
pling to thermal zone models. This means assembling
templates from templates, and for highly scalable systems.
The main difficulty that we foresee arises from the con-
straint that array elements must be of the same type, which
is rarely the case with class parameterization techniques
that only aim at type or plug compatibility. Again, we
think that the suggestions from Zimmer (2010) would be
very valuable to use an array of model parameters for this
purpose. We have some alternatives, such as building con-
tainer classes around templates, or using multiple array
instances for the same system type. This also means that
our developments have not yet reached the highest level
of complexity, even though it sometimes seems that they
have already exceeded the complexity that most compilers
can handle.

10 Data Availability
The templates discussed in this paper are available in the
feature branch issue3266_template_HW_plant from
commit e15d845, and are planned to be released in future
versions of the Modelica Buildings Library.

Acknowledgements
This work was supported by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Build-
ing Technologies of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

References
ASHRAE (2021). Guideline 36: High-Performance Sequences

of Operation for HVAC Systems. Guideline. Atlanta, GA.
Beutlich, Thomas and Dietmar Winkler (2021). “Efficient Pa-

rameterization of Modelica Models”. In: Proceedings of 14th
Modelica Conference. Linköping, Sweden. DOI: 10 . 3384 /
ecp21181141.

Broman, David, Peter Fritzson, and Sébastien Furic (2006-09).
“Types in the Modelica Language”. In: Proceedings of the
5th International Modelica Conference. Vienna, Austria: The
Modelica Association and arsenal research. URL: https : / /
modelica . org / events / modelica2006 / Proceedings / sessions /
Session3c3.pdf.

Dassault Systèmes AB (2023-03). Dymola: Dynamic Modeling
Laboratory. Full User Manual (Dymola 2023x Refresh 1).
Lund, Sweden.

Greenwood, Michael Scott et al. (2017). “A Templated Ap-
proach for Multi-Physics Modeling of Hybrid Energy Sys-
tems in Modelica”. In: DOI: 10.2172/1427611.

Kågedal, David and Peter Fritzson (1998-07). “Generating a
Modelica Compiler From Natural Semantics Specifications”.
In: Proceedings of the Summer Computer Simulation Confer-
ence. Reno, Nevada.

Long, Nicholas et al. (2021). “Modeling District Heating and
Cooling Systems With URBANopt, GeoJSON to Modelica
Translator, and the Modelica Buildings Library”. In: Proceed-
ings of the Building Simulation Conference. DOI: 10.26868/
25222708.2021.30943.

Modelica Association (2021-02). Modelica – A Unified Object-
Oriented Language for Systems Modeling. Language Specifi-
cation Version 3.5. Tech. rep. Linköping: Modelica Associa-
tion. URL: https://specification.modelica.org/maint/3.5/MLS.
html.

Modelon AB (2023a). Modelon Impact Helpcenter. Lund, Swe-
den. URL: https://help.modelon.com/latest/.

Modelon AB (2023b). OPTIMICA Compiler Toolkit. Version
1.43.4. Lund, Sweden.

Nytsch-Geusen, Christoph et al. (2017). “Template Based Code
Generation of Modelica Building Energy Simulation Mod-
els”. In: Proceedings of the 12th International Modelica Con-
ference. Prague, Czech Republic: Linköping University Elec-
tronic Press. DOI: 10.3384/ecp17132199.

W3C (2003-01). Scalable Vector Graphics (SVG) 1.1 Specifica-
tion. Tech. rep. URL: https://www.w3.org/TR/2003/REC-
SVG11-20030114/REC-SVG11-20030114.pdf.

Wetter, Michael, David Blum, et al. (2019-05). Modelica IBPSA
Library v1. DOI: 10.11578/dc.20190520.1.

Wetter, Michael, Paul Ehrlich, et al. (2022). “OpenBuildingCon-
trol: Digitizing the Control Delivery From Building Energy
Modeling to Specification, Implementation and Formal Veri-
fication”. In: Energy 238, p. 121501. DOI: https://doi.org/10.
1016/j.energy.2021.121501.

Wetter, Michael, Milica Grahovac, and Jianjun Hu (2018-08).
“Control Description Language”. In: 1st American Model-

ica Conference. Cambridge, MA, USA. DOI: 10 . 3384 /
ecp1815417.

Wetter, Michael, Jianjun Hu, et al. (2021). “Modelica-json:
Transforming Energy Models to Digitize the Control Deliv-
ery Process”. In: Proceedings of the IBPSA Building Simula-
tion Conference. Brugge, Belgium.

Wetter, Michael, Wangda Zuo, et al. (2014). “Modelica Build-
ings library”. In: Journal of Building Performance Simulation
7.4, pp. 253–270. DOI: 10.1080/19401493.2013.765506.

Wüllhorst, Fabian et al. (2023-02). “BESMod - A Modelica
Library pProviding Building Energy System Modules”. In:
pp. 9–18. DOI: 10.3384/ECP211869.

Zimmer, Dirk (2010). “Towards Improved Class Parameteriza-
tion and Class Generation in Modelica”. In: Proceedings of
the 3rd International Workshop on Equation-Based Object-
Oriented Modeling Languages and Tools. Oslo, Norway:
Linköping University Electronic Press. URL: https://ep.liu.
se/ecp/047/004/ecp4710004.pdf.

https://doi.org/10.3384/ecp21181141
https://doi.org/10.3384/ecp21181141
https://modelica.org/events/modelica2006/Proceedings/sessions/Session3c3.pdf
https://modelica.org/events/modelica2006/Proceedings/sessions/Session3c3.pdf
https://modelica.org/events/modelica2006/Proceedings/sessions/Session3c3.pdf
https://doi.org/10.2172/1427611
https://doi.org/10.26868/25222708.2021.30943
https://doi.org/10.26868/25222708.2021.30943
https://specification.modelica.org/maint/3.5/MLS.html
https://specification.modelica.org/maint/3.5/MLS.html
https://help.modelon.com/latest/
https://doi.org/10.3384/ecp17132199
https://www.w3.org/TR/2003/REC-SVG11-20030114/REC-SVG11-20030114.pdf
https://www.w3.org/TR/2003/REC-SVG11-20030114/REC-SVG11-20030114.pdf
https://doi.org/10.11578/dc.20190520.1
https://doi.org/https://doi.org/10.1016/j.energy.2021.121501
https://doi.org/https://doi.org/10.1016/j.energy.2021.121501
https://doi.org/10.3384/ecp1815417
https://doi.org/10.3384/ecp1815417
https://doi.org/10.1080/19401493.2013.765506
https://doi.org/10.3384/ECP211869
https://ep.liu.se/ecp/047/004/ecp4710004.pdf
https://ep.liu.se/ecp/047/004/ecp4710004.pdf

	Introduction
	Definitions
	Requirements
	Tool Compatibility
	Diversity of Equipment and Controls
	System Parameters
	System Level Templates
	Scalability
	Integration With OpenBuildingControl

	Structural Changes to a Model
	Class Parameterization
	Interface Class
	Redeclarations and Choices Annotations
	Concrete Example
	Caveats and Alternatives

	Connections
	Design and Operating Parameters
	External Data File
	Record Class

	Control Diagram
	Validation
	Conclusion and Future Work
	Data Availability

