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Abstract: The tumor microenvironment (TME) plays an essential role in the development, prolifera-
tion, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and
peripheral blood, various phenotypically and functionally altered cells in the TME provide critical
signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus,
unraveling the complex interplay between AML and its microenvironment may have important
clinical implications and are essential to directing the development of novel targeted therapies. This
review summarizes recent advancements in our understanding of the AML TME and its ramifica-
tions on current immunotherapeutic strategies. We further review the role of natural products in
modulating the TME to enhance response to immunotherapy.

Keywords: acute myeloid leukemia; tumor microenvironment; immunotherapy; natural products

1. Introduction

Acute myeloid leukemia (AML) is a complex hematologic malignancy driven by the
abnormal proliferation and differentiation of immature myeloid precursors [1,2]. The rapid
accumulation of the AML blasts in the bone marrow (>20%) and peripheral blood consequently
reduces normal hematopoiesis, resulting in life-threatening cytopenias and immunodeficiency.

Progress in deciphering the remarkable complexity and heterogeneity of AML has led
to the development of selected therapies for certain AML subsets. Chemotherapy remains
the mainstay treatment for AML over the decades. The use of combination of cytarabine
and anthracycline, known as the “3+7 regimen”, hematopoietic stem cell transplantation
(HSCT), and, more recently, the use of targeted therapies, such as hypomethylating agents
(HMA, azacytidine, decitabine), venetoclax, FLT3- inhibitors, and IDH inhibitors, have
resulted in promising responses in select AML subsets [3]. However, many patients develop
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relapsed and refractory disease, highlighting the need to better understand the AML tumor
microenvironment (TME) and how it can help AML blasts evades immune surveillance.

The TME comprises a complex network of stromal cells (e.g., fibroblasts, mesenchymal
and endothelial cells), immune cells (B and T lymphocytes, natural killer cells, and tumor-
associated macrophages), the extracellular matrix (ECM), and secreted factors, such as
cytokines [4] (Figure 1). Although the TME in AML has been recognized for many years,
the critical role of the TME on disease development, progression, relapse, and resistance to
therapy has only recently gained widespread attention [5]. Both preclinical experiments
and clinical trials have demonstrated the potential for targeting elements of the immune
microenvironment to restore proper anti-tumor immunity. In this review, we describe
recent advancements in our understanding of the AML TME, current immunotherapeutic
strategies under investigation, and finally potential strategies to modulate the TME using
natural products to enhance response to immunotherapy.
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Figure 1. Schematic illustration summarizing the AML tumor microenvironment and current im-
munotherapeutic strategies. AML blasts residing in the bone marrow evade elimination through
interaction with the tumor microenvironment (TME). The TME is composed of a complex network
or stromal cells (fibroblasts, mesenchymal, and endothelial cells), extracellular matrix, immune
cells (NK cells, TAMS, T and B lymphocytes), and the soluble factor they secrete. Together the
components of the TME orchestrate the survival and proliferation of tumor cells. Approaches to
target the immunosuppressive microenvironment include the use of CAR T cell, ICI, BiTE, and TIL
immunotherapy or the use of natural products, such as vitamin D, C, B6, and E. Abbreviations: AML,
Acute myeloid leukemia; TIL, tumor infiltrating lymphocyte; MSC, mesenchymal stromal cell; TAM,
tumor associated macrophage; MDSC, myeloid derived suppressor cell; Treg, regulatory T cell, BiTE,
bispecific T cell engager; ICI, immune checkpoint inhibitor; CAR, chimeric antigen receptor; NK,
natural killer cell; IDO, indoleamine 2,3 dioxygenase; ARG, arginase II; ROS, reactive oxygen species;
IL, interleukin; PD-L1/PD, programmed cell death/ligand 1; TIM-3, T cell immunoglobulin domain
and mucin domain 3; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; TGF, transforming
growth factor; NKG2D, natural killer group 2 member D; KIR, Killer IG-like receptor. Image created
with Biorender.com (accessed on 17 May 2022).
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2. Composition of the AML Tumor Microenvironment
2.1. Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitors that constitute
an essential component of the bone marrow (BM) niche and are well known to possess
important immunomodulatory function and the ability to regulate the development and
differentiation of HSCs via direct cell-to-cell contact and release of a wide array of sol-
uble growth factors and cytokines [6–8]. Their ability to differentiate into other stromal
components of the marrow (e.g., pericytes, myofibroblasts, BM stromal cells, osteocytes,
osteoblasts, and endothelial cells) is further essential for successful allogeneic stem cell
transplantation [9,10]. In the context of AML, BM- MSCs are largely considered critical
contributors to tumor pathogenesis, recurrence, and resistance to chemotherapy through
their ability to provide survival and anti-apoptotic signals to leukemic blasts [11,12]. Many
studies have demonstrated that co-culturing AML blasts with stromal or mesenchymal stem
cells result in (1) increased tumor growth [13,14], (2) aberrant phenotype expression [15–17],
and (3) decreased sensitivity to chemotherapy [11,18,19].

2.2. Conventional and Regulatory T Cells

Evidence exists to suggest some degree of T lymphocyte dysfunction in AML [20].
However, their role in disease pathogenesis and the extent to which T lymphocytes influence
the TME remains largely unclear. A recent study by Le Dieu et al. characterizing the T cells
in the peripheral blood of newly diagnosed AML patients, surprisingly showed an increase
in absolute T cell numbers [21].

Regulatory T cells (Tregs) are a CD4+ CD25+ T cell subset critical to maintain the
peripheral homeostasis and central tolerance through their ability to suppress the prolifera-
tion/function of T helper cells. Over the past decade, studies have observed abnormally
high levels of Tregs in the BM and peripheral blood of patients with AML compared
with healthy donors [22,23]. Moreover, the presence of an elevated Treg population has
been observed to correlate with worse treatment outcomes in patients with AML and
the depletion of tumor-associated Tregs has been observed to improve cytotoxic T cell
immunotherapy [24,25]. These findings have indicated that Tregs promote the survival of
leukemia cells by inhibiting the function of effector T cells utilize direct cell-to- cell contact
and the secretion of a variety of secreted factors, such as IL-35, IL10, and TGF-B [22,26].

2.3. Natural Killer Cells

In recent years, natural killer (NK) cells have been increasingly identified for their
role in tumor immune surveillance through direct cytotoxicity, as well as indirect influence
on other immune cells in the TME [27]. Using a diverse repertoire of germline-encoded
inhibitory and activating receptors, NK cells can recognize cells with absent or downreg-
ulated MHC class I expression. Their importance in anti-leukemic immunity has been
demonstrated by the efficacy of donor-versus-recipient NK cell alloreactivity in reducing
AML relapse and reducing graft vs. host disease (GVHD) [28,29]. However, several studies
have shown that NK cells are defective in AML at the time of diagnosis through the down-
regulation of activating receptor (e.g., natural cytotoxicity receptor family and NKG2D),
upregulation of inhibitory receptors (e.g., KIR and CD94-NKGA), reduction in cytotoxic
NK subtypes and impairment in NK maturation [30–32]. Furthermore studies have shown
that AML blast ligand repertoire and correlating NK receptor expression confers better
outcomes in patients undergoing chemotherapy [33,34]. The downregulation of NKG2D
ligands (NKG2DL) via PARP1 in AML blasts has gained recent attention as a mechanism of
NK-cell escape [35].

2.4. Myeloid-Derived Suppressor Cells and Tumor- Associated Macrophages

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of CD11b+
CD33+ HLA-DR-immature myeloid cells with immunosuppressive function. The expansion
of MDSCs has been well documented in AML patients, are associated with poor outcomes,
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tumor progression, and are believed to be involved in hampering the efficacy of immune-
based therapies [36–38]. However, the specific mechanisms by which MDSC proliferate
and contribute to the immunosuppressive TME in AML remain to be fully explored.
To date, preclinical studies have suggested that MUC1 oncogene expression mediates
MDSC expansion via c-myc expression [37]. Furthermore, the expression of V-domain Ig
suppressor of T cell activation (VISTA), a negative regulator of tumor immune invasion has
been shown to be highly expressed on MDSCs. The knockdown of VISTA was shown to
reduce MDSC-mediated CD8 T cell inhibition, suggesting that VISTA may independently
dampen anti-tumor response [39].

Tumor-associated macrophages (TAMs) are a major component of the TME, and the
polarization to M2 phenotype in AML has been shown to subvert antitumor immunity and
promote tumor progression [40,41]. Recent research has demonstrated that AML promote
infiltration of TAMs in the BM and spleen in humans and mice, and that TAMs supported
in vivo expansion of AML Blasts better than to macrophages from non-leukemic mice [42].
Furthermore, the expression of the transcriptional repressor Growth factor independence 1
has been shown to be crucial to macrophage polarization in the AML [42].

2.5. Soluble Environmental Factors

The secretion of soluble environmental factors, such as chemokines, cytokines, and
growth factors, play an indispensable role in shaping the immunosuppressive milieu.
Although AML blasts may prompt the secretion of pro-inflammatory cytokines, such as
tumor necrosis factor-a (TNF-a), IL1b, and IL6, AML blasts also secrete immunoinhibitory
factors, such as IL-10, TGF B, IL-35, and indoleamine 2,3-dioxygenase 1 (IDO1) [43–45].
Overexpression of these factors polarize T helper cell populations towards induced Tregs,
thereby promoting T cell tolerance and leukemia immune evasion.

Chemokines orchestrate the migration and adhesion of immune cells within the TME
and are known to play a prominent role in AML progression. The expression of the
chemokine CXCL12 by mesenchymal stromal cells has gained considerable attention as
a potential therapeutic target in AML. CXCL12 and its receptor CXCR4 provide critical
signals to prompt cell survival, adhesion, and migration. Furthermore, our lab, as well
as others, have demonstrated the importance of the CXCL8-CXCR1/CXCR2 signaling
pathways, which has more recently been intertwined with the upregulated expression of
macrophage migration inhibitory factor (MIF) [46–49].

Several soluble metabolic factors have also been cited for their immunosuppressive
capabilities in AML. Notably, the expression and release of arginase II by AML blasts has
been shown to alter the immune microenvironment by enhancing arginine metabolism. By
limiting arginine availability within the TME, AML blasts promote T cell exhaustion and
polarize surrounding monocytes toward an suppressive M2-like phenotype [50,51]. The
constitutive activation of NADPH oxidase 2 (NOX2) in >60% of AML cases has additionally
been shown to result in the over production of reactive oxygen species (ROS) that promote
increased glucose uptake and proliferation in AML [52–54].

3. Targeting the Tumor Microenvironment Using Immunotherapy
3.1. Specific Alterations in TME by AML Blasts

Alteration of the TME by AML blasts leads to increased resistance, recurrence, and pro-
gression of the disease. To better understand and discover potential treatment modalities,
scientists have identified a few specific strategies deployed by AML blasts for alteration
of the TME. Through the expression of immune checkpoint inhibitors, alteration of the
formation of T cell immune synapses, secretion of immunoinhibitory soluble factors that
affect T cell responses, and proliferation of myeloid-derived-suppressor cells (MDSC) and
macrophages, AML blasts can facilitate T cell dysfunction.

NK cell dysfunction is achieved with altered expression of NK-cell ligands, such as
MICA, ULBP1, ULBP2, and ULBP3 via epigenetic modifications, thus leading to alteration
of the activating receptor NKG2D, which rely on those ligands, and through induction
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of co-inhibitory receptors in NKs, such as TIGIT, which inhibit IFN-y release. Increased
TIGIT expression decreases the amount of NK cells available in marrow and is associated
with poor outcomes. In addition to this, the hypoxic and inflammatory environment
and metabolic reprogramming all contribute to the stromal and vascular niches in the
TME, facilitating progression of the disease. Particularly, mesenchymal stromal cells
(MSC) have been shown to inhibit both innate and adaptive immunity in hematological
malignancies, however the theory behind how this is achieved is still being reviewed. Of
note, recent literature indicates that NK cells are significantly less effective in destroying
AML blasts when they are cultured with MSCs, highlighting the protective effect of the
stromal microenvironment. This protective effect towards the AML blasts is hypothesized
to be mediated via TLR4. Differences in MSC expression of inhibitory and pro/anti-
inflammatory ligands have been noted across different clinical/cytogenetical subgroups of
AML, further emphasizing the important role that they play in the pro-AML TME and the
additional research needed to further elucidate their role in immunomodulation and effect
on treatment with immunotherapies.

Altered immune cell homing via manipulation of the CXCL12/CXCR4 axis plays a
major role in the survival, growth, and chemotherapeutic resistance of AML blasts. This
key migratory axis is strongly implicated in leukemic stem cells (LSCs) relocation in bone
marrow. Particularly, overexpression of CXCR4 on AML blasts portends poor prognosis, as
it facilitates trafficking of malignant LSCs within BM. This effect is further amplified by
decreased MSC expression of CXCL12 in AML, which reduces migration of nonmalignant
stem cells in BM. Additionally, AML blasts are known to induce the downregulation
and/or loss of HLA1 and HLAII leading to defective antigen presentation. Due to the
complex interplay within the TME, immunotherapies have begun to be geared towards
combinatorial strategies. The bone marrow microenvironment is a critical player in the NK
cell response against acute myeloid leukemia in vitro [55,56].

3.2. Strategies to Overcome AML Resistance to Immunotherapy

Altered immune cell homing via manipulation of the CXCL12/CXCR4 axis plays a
major role in the survival, growth, and chemotherapeutic resistance of AML blasts. This
key migratory axis is strongly implicated in leukemic stem cells (LSCs) relocation in bone
marrow. Particularly, overexpression of CXCR4 on AML blasts portends poor prognosis, as
it facilitates trafficking of malignant LSCs within BM. This effect is further amplified by
decreased MSC expression of CXCL12 in AML, which reduces migration of nonmalignant
stem cells in BM. Additionally, AML blasts are known to induce the downregulation
and/or loss of HLA1 and HLAII leading to defective antigen presentation. Due to the
complex interplay within the TME, immunotherapies have begun to be geared towards
combinatorial strategies [55,56].

Future directions will be focusing at overcoming multiple immunosuppressive mecha-
nisms, as well as at targeting non-malignant components of the TME, such as stromal cells
and vascular components, and enhance the immune-related effects.

3.3. Immunomodulation as a Hallmark of Cancer

Recognized as one of the hallmarks of cancer, immunomodulation leading to can-
cer cell evasion of the innate immune system has been researched in detail for the past
half-century, leading to the development of novel therapies targeting the immune system
and the tumor microenvironment associated with immune evasion. The immune system
acts on and shapes malignant cells in a process called “immunoediting” which consists
of three recognized steps: elimination, equilibrium, and escape. Elimination involves the
innate and adaptive immune responses acting to eradicate developing tumors. Equilibrium,
considered to be the most dangerous phase because it is the longest, is the continuous
sculpting of tumor cells, which can lead to resistant variants emerging that have increasing
resistance to immune pressure. Finally, in the escape phase, those resistant variants over-
come the immune pressure and escape from immunomodulation, allowing them to grow
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uncontrollably. This final phase is where most of the current research and clinical trials are
focused. Current immunotherapies try to take advantage of the three major principles of
escape mechanisms: alteration of tumor or effector cells leading to the lack of antigenic
recognition of malignant cells, resistance to cell death, and induction of immunotolerance
and ignorance through alteration of the tumor microenvironment (TME) via secretion of
immunosuppressive factors. The TME in AML and the various treatment modalities that
are being trialed are the focus of this review [55,57].

3.4. Immune Checkpoint Blockade

The expression of inhibitory checkpoint (IC) molecules on AML blasts has been
recognized as an important mechanism of immune evasion described extensively in the
literature [58]. Programmed cell death ligand 1(PD-L1) is perhaps the most well-known IC
molecule expressed on AML. It is encoded by the PDCD1 gene on chromosome 2q37.3 and
plays a key role in maintaining self-tolerance, but also inducing CD8 T cell exhaustion in
the TME by providing co-inhibitory signaling to the PD-1 receptor on T cells and promoting
the expansion of Tregs [59]. The expression T cells immunoglobulin-mucin 3 (Tim-3)
and C-type lectin-like inhibitory rector (CTLA)-4 have additionally been identified to be
highly expressed in leukemic blasts, and experimentally shown to result in NK and T cell
dysfunction (Figure 2).
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Figure 2. Schematic illustration of immune checkpoint inhibitor mechanism of action. Monoclonal
antibodies, such as those targeting PD1/PDL-1, CTLA-4, and TIM3, block key immune checkpoint
molecules typically expressed on AML blasts for the purpose of immune evasion. Image created with
Biorender.com (accessed on 17 May 2022).

Although the use of immune checkpoint inhibitors (ICIs), especially those targeting
PD-1 and CTLA-4, have demonstrated remarkable efficacy in solid tumors, their application
for AML remains an active area of exploration. Several studies attempted to evaluate tumor
microenvironment in AML to utilize the ICI in the management of AML (Table 1). Studies
have shown variable expression of inhibitory surface receptor in AML, at the time of
diagnosis and relapse as compared to health controls (HC). In one study, it was noted

Biorender.com
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that PD1 and OX40 are over-expressed in BM of patient with untreated and relapsed
AML compared to healthy controls. There was no significant difference in PD1 expression
between untreated and relapsed patients, however OX40 expression was significantly
higher on all T cell subpopulations in relapsed AML compared to untreated AML. Higher
expression of PD-L2 on AML blasts was also noted on untreated AML with adverse
karyotype [60].

Table 1. Published trials of immune checkpoint inhibitors.

Author Phase Intervention Patient
Population Disease State Outcomes

Davis et al.
2016 [61] I/IIb Ipilimumab

AML, NHL,
HL, CML,
CLL, MM,
MPN, AL

Relapsed after
Allo-HSCT

CR: 23% (5/28)
PR: 9% (2/22)

Daver et al.
2016 [62] I/IIb Nivolumab +

Azacitidine AML Relapsed after
prior therapy

CR: 18% (6/51)
HI: 15% (5/51)

Lindblad
et al. 2018 I/II Pembrolizumab

+ decitabine AML Relapsed after
prior therapy

CR: 10% (1/10)
SD:40% (4/10)

Daver et al.
2018 [63] II

Nivolumab +
Azacitidine +
Ipilimumab

AML R/R
CR/CRi: 36% (6/20)
Prolonged SD:10%

(2/20)

Ravandi
et al. 2019

[64]
II

Idarubicin +
Cytarabine +
Nivolumab

AML and
high risk

MDS

Newly
diagnosed

CR:/CRi 78%
(34/44) Negative

MRD: 41% (18/34)

In a different study, 23 samples from patients with AML were compared with those of
30 healthy controls. PD-1 expression on CD8 + and CD4+ T cells did not differ significantly
compared with healthy controls. Instead, PD-1 was upregulated in peripheral blood sam-
ples of patients with AML who relapsed after either intensive chemotherapy or allogeneic
stem cell transplantation (allo-SCT) compared with those of the same patients at the time of
diagnosis. Out of the two relapsed group, the upregulation of PD-1 expression on CD4 and
CD8 T cells was more pronounced on its with Allo-SCT [65]. Another study demonstrated
that the bone marrow tumor microenvironment in RR-AML is enriched for PD-1+ CD8+
marrow-infiltrating lymphocytes [66]. Ipilimumab showed a response in patients with
hematologic malignancies that relapsed after allo-HSCT. In a multicenter phase I study,
28 patients with relapsed hematologic malignancies, including 12 patients with AML and
1 patient with MDS, were enrolled. Among five patients (23%) who achieved CR, four had
AML and one had MDS [61].

Table 2 summaries prior clinical trials of antibody construct therapies. Ravandi
et al. [67] explored the efficacy of different dosing schedules with AMG 330. A total
of 55 patients with R/R AML were enrolled in 16 cohorts and administered AMG 330
on four different schedules with 0–3 dose steps prior to achieving the target dosage of
0.5–720 ug/day. Then, 100% of patients treated with AMG reported treatment-related
AEs, with 90% of those AEs being attributable to AMG 330, including, but not limited
to, 67% CRS, 58% dermatological issues, and 30% gastrointestinal issues. AEs that were
≥grade 3 included febrile neutropenia, CRS, skin issues, transaminitis, decreased appetite
at rates of 17%, 15%, 10%, 5%, and 2%, respectively. Then, 13 patients were not able to be
evaluated further for the study. Of the 42 evaluable patients, 8 responded to treatment,
with 3 complete remissions (CR), 4 CR with incomplete hematological recovery (CRi), and
1 morphologic leukemia free state (MLFS).
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Table 2. Prior clinical trials of antibody construct therapies.

Target Author Drug (Antibody
Construct) Patient Population Outcomes

CD33 Ravandi et al.
2018/2020 [67]

AMG330 (anti-CD3 ×
CD33 BiTE)

55 patients with
R/R-AML

Efficacy: 19% ORR (7% CR, 9% CR
with incomplete hematologic

recovery, 2% with morphological
leukemia free state)

Safety: 90% AE rate; 67% CRS
(13% ≥ grade 3), nausea (20%)

CD33 (HLE *) Subklewe et al.
2019 [68]

AMG673 (Half-Life
Extended

Anti-CD3 × CD33
BiTE)

30 patients with
R/R-AML

Efficacy: (12/27) 44% with bone
marrow blast reduction, 6 of which

had >50% reduction in blasts;
1 patient with complete remission

with 85% reduction
Safety: 50% patients had CRS
(13% ≥ grade 3), transaminitis

(17%), leukopenia (13%),
thrombocytopenia (7%), febrile

neutropenia (7%)

CD123 Uy et al. 2021 [69]
Flotetuzumab (anti

CD3 × CD123
DART)

92 R/R-AML patients

Primary induction failure or early
relapse cohort (n = 30): Efficacy: 27%

with CR/CRh; median OS
10.2 months among responders

Safety: 100% CRS (13% ≥ grade)

CD123 Ravandi et al. 2020
[70]

Vibecotamab
(XmAb14045; anti CD3

× CD123 BiTE)

104 R/R-AML, 1 B-cell
ALL,

and 1 CML

Efficacy: 14% ORR (4% CR); 71% SD
Safety: 59% CRS (15% ≥ grade 3)

CD123 Watts et al. 2021
[71]

APVO436 (anti CD3 ×
CD123 BiTE)

22 R/R-AML and 6
R/R-MDS

Efficacy: 2 patients with blast
reduction

Safety: edema (32%), febrile
neutropenia (29%), infusion reaction

(21%), CRS (18%)

* Half-Life Extended (HLE).

Ranvandi et al. [70] also investigated the use of Vibecotomab, a CD123 × CD3 BiTE,
at doses from 0.003 to 12.0 µg/kg, in a study that enrolled 104 patients with AML, 1 with
B-cell ALL, and 1 with CML. CRS was the most common treatment related adverse event
(TRAE), occurring in 60% of patients (62/104) with only 15% grade ≥3, which is reported
to occur on the first dose. There was no evidence of bone marrow suppression or TLS
reported. At higher doses of 0.75 µg/kg, there was an ORR of 14% (7/51, 2 Cr, 3 CRi,
2 MLFS). Stable disease was seen in 36 patients. At lower doses, no significant responses
were noted, thus highlighting the higher doses needed for effective response.

Watts et al. [71] investigated the effects of APVO436 in 46 patients with R/R AML/MDS.
The most common TRAE’s seen were infusion-related reactions (28.3%) and CRS (21.7%).
Transient neurotoxicity, as evidenced by headache, tremor, insomnia, memory loss and
confusion were noted in 10.9% of patients. No bone marrow suppression was reported.
8/39 patients with R/R AML responded to the treatment, evidenced by stable disease,
partial remissions (PR) or CR, notably 1 with >50% decrease in BM blasts, 2 with PR that
deepened to CR. Overall, 3/7 evaluable patients with R/R MDS showed marrow CRs,
however, this is too few to accurately gauge clinical activity.

Subklewe et al. [68] investigated the efficacy of AMG 673 in 30 patients with R/R
AML. After a median of 1.5 cycles of AMG, 90% of patients (27/30) were discontinued
due to disease progression. CRS was reported in 50% of patients (15/30, 4 (13%) of which
were grade ≥ 3). Other grade ≥ 3 AEs were noted to be transaminitis (17%), leukopenia
(13%), thrombocytopenia (7%), and febrile neutropenia (7%). In total, 44% (12/27) patients
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responded to treatment as evidenced by decreased in bone marrow blasts, with 22%
achieving >50% reduction. One patient achieved CRi with 85% reduction in blasts.

Uy et al. [69] investigated the efficacy of flotetuzumab in a study of 88 patients with
R/R AML. The most common TRAE was IRR/CRS, which occurred in 100% of patients, of
which 60% led to dose interruptions. Other commonly seen AE’s grade ≥ 3 include anemia,
thrombocytopenia, leukopenia, hypophosphatemia, and hypokalemia (28.4%, 20.5%, 18.2%,
14.8%, 13.6%, respectively). The ORR was noted to be 13.6% (12/88), with 10/88 (11.7%)
with CR or CR with partial hematological recovery (CRh).

3.5. Bispecific T- Cell Engagers

Bispecific T-Cell Engagers (BiTEs) are bispecific antibody constructs that allow for
the simultaneous binding of the CD3 receptor on T cells, and tumor-associated antigens
on malignant cells. Combining the two different specificities should, in theory, activate
exhausted T cells in the TME through sustained tumor antigen exposure. This highly
specific process reduces off-target cytotoxicity, as the T cell will only be activated in the
presence of malignant cells. Significantly, despite the downregulation of cell-surface anti-
gens by malignant cells to evade the immune system via the downregulation of major
histocompatibility complexes (MHC) and costimulatory signals, BiTEs act in an MHC-1
and signal independent manner. This is performed through the formation of a cytolytic
synapse between CD8+ T cells regardless of the MHC-1 expression on tumor cells. One
issue with the utilization of BiTEs Is the rapid clearance by the kidney, therefore requiring
daily continuous infusion to administer the medication. Half-life-extending (HLE) BiTEs,
such as AMG673, which include the fusion of an Fc domain, that leads to extension of the
half-life, allowing weekly dosing of the agent [72]. The caveat to this is that additional drug
retention leads to higher rates of adverse events. Figure 2 summarizes the prior clinical
trials of antibody construct therapies, adapted from Allen et al. 2021 showing [1]. Further
exploration and understanding of the mechanics of BiTEs have led to additional variant
constructs that are still being explored (Table 3).

Table 3. Summarizing the Current Trials and Targets of BiTEs, DARTs, BiKEs, and TriKEs.

Target Drug (Antibody Construct) Patient Population NCT Phase

CD33

AMV564 (CD3 × CD33 bispecific antibody) R/R AML NCT03144245 1

AMG673 (CD3 × CD33 bispecific antibody) R/R AML NCT03224819 1

GEM333 (CD3 × CD33 bispecific antibody) R/R AML NCT03516760 1

JNJ-67571244 (CD3 × CD33 bispecific antibody) R/R AML, MDS NCT03915379 1

AMG330 (CD3 × CD33 bispecific antibody) R/R AML, Minimal Residual
Disease Positive AML, MDS NCT02520427 1

AMV564 (CD3 × CD33 bispecific antibody) MDS NCT03516591 1

CD123

JNJ-63709178 (CD3 × CD123 bispecific antibody) R/R AML NCT02715011 1

APVO436 (CD3 × CD123 bispecific antibody) R/R AML, MDS NCT03647800 1

MGD006 (CD3 × CD123 DART) R/R AML, MDS NCT02152956 1 and 2

SAR440234 (CD3 × CD123 bispecific antibody) R/R AML, MDS, B-ALL NCT03594955 1 and 2

XmAb14045 (CD3 × CD123 bispecific antibody) CD123 Expressing
hematologic malignancies NCT02730312 1

CD16/CD33 GTB-3550 (CD16/IL-15/CD33 TriKE) R/R AML, MDS, Advanced
Systemic Mastocytosis NCT03214666 1 and 2

CD135 AMG427 (CD3 × CD135(FLT3) bispecific antibody) R/R AML NCT03541369 1

CLEC12A MCLA-117 (CD3 × CLEC12A bispecific antibody) R/R AML and newly
diagnosed elderly AML NCT03038230 1
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Dual affinity retargeting antibodies (DARTs) have a disulfide bridge that stabilizes the
structure, and results have been encouraging in AML patients, noting an objective response
rate ranging between 18% and 30% [55]. Additionally, in head to head comparisons, they
have yielded stronger B-cell lysis and T cell activation [73]. However, DARTs have been
shown to have increased incidence of cytokine release syndrome (CRS).

Bispecific killer cell engagers (BiKEs) and trispecific killer cell engagers (TriKEs) utilize
NK cells via the CD16 receptor, which when activated produces cytokines, such as IL2,
that invokes a cytolytic response against the target tumor cells (Figure 3). Despite NK cells
being inactivated by interaction with MHC-1, which can sometimes be expressed in AML
blasts, BiKEs were able to exhibit a cytotoxic response regardless of the MHC-1 expression.
TriKEs have an additional IL-15 crosslinker that allow expansion of the NK cell response
and there is promising data that indicates it was able to reduce tumor burden while also
sparing hematopoietic stem cells (HSCs) [73].
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Figure 3. Schematic illustration of BiTE, BiKE, and TriKE structure and mechanism of action. Bis-
pecific antibodies containing single-chain variable fragment (scFv) specific for CD3 on T cells (BiTE
therapy) or CD16 on NK cells (BiKE therapy) and a specific tumor-associated antigen (TAA) are used
to trigger T and NK cell activation and cytokine release. TriKE therapy similarly contains scFV specific
for CD16a and TAA, but also a humanized anti-CD16 heavy chain camelid single-domain antibody
(sdAb) that provides signals for NK priming, expansion, and survival. By inducing immunologic
synapse formation and costimulatory signals, BiTE, BiKE, and Trike therapy can overcome immune
exhaustion and improve anti-tumor activity in the setting of the AML TME. Image created with
Biorender.com (accessed on 17 May 2022).

Some limitations of BiTE therapy include rapid renal clearance, antigen escape, and
nonselective activation of the immune system. Various new constructs have been devel-
oped to overcome the rapid clearance, however they come with their own issues. Longer
bioavailability leads to increased potential for adverse effects [73]. The most notable ad-
verse events associated with these antibody constructs include cytokine release syndrome
(CRS), myelosuppression, and neurotoxicity in the form of immune effector cell associ-
ated neurological syndrome (ICANS), which presents as altered mentation in the form

Biorender.com
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of inattentiveness or reduced cognitive functions. ICANS is more commonly seen with
CAR-T therapy but has been associated with BiTE therapy as well. Alteration of the TME
via proliferation of MDSC’s and upregulation of PD-1 on activated T cells are significant
barriers to using BiTEs as these both can hinder the function of T cells and reduce drug
efficacy. This has led to the idea of co-administration of PDL-1 inhibitors with BiTEs, which
has been effective in improving T cell proliferation and tumor cell lysis, which highlights
the potential of co-administered immunotherapies to improve efficacy of these constructs.
MDSCs are arising as a potential new target as they have been shown to inhibit T cell
responses. Their elimination can lead to improved response rates via reduced leukemic cell
burden [74].

3.6. Tumor Infiltrating Lymphocytes

Successful response to immunotherapy is predicated on the immunological com-
position of the TME. Tumor infiltrating lymphocytes (TILs) represent a heterogeneous
population of effector T cells, B cells, and innate lymphoid cells recruited to the TME in
response to tumor immune stimulus [75,76]. Accumulating evidence has demonstrated that
increased levels of TILs correlate with a favorable microenvironment, can predict response
to therapy, and improve prognosis [77–79]. Although tumor antigen-specific T cells should
theoretically recognize and eliminate AML blasts, the presence of TILs is insufficient to
inhibit tumorigenesis alone. As previously discussed, AML and its microenvironment have
the capacity to both evade and suppress immune surveillance [55]. Furthermore, it has
become increasingly evident that the differentiation, localization, and composition of TIL
subsets is equally important for prognosis and response to treatment [80,81].

The use of engineered TILs that are expanded ex vivo and reinfused back into pre-
conditioned patients has demonstrated remarkable efficacy in treating multiple solid tu-
mors, including melanoma, colorectal, breast, and cervical cancer [82–85]. However, the
application of TIL therapy in hematopoietic malignancies, including AML, remains to be
fully investigated. Clinical trials for the application of marrow-infiltrating lymphocytes
(MILs) in multiple myeloma have demonstrated promising efficacy in phase I/II clini-
cal trials, highlighting the potential feasibility and efficacy for use in other hematologic
tumors [86].

The clinical application of TIL therapy in AML may offer several advantages over
other immunotherapies being investigated [87]. When compared to other adoptive T
cell therapies, circulating TILs may be isolated from the peripheral blood rather than
BM. Unlike CAR-T therapies, TIL based therapies have the advantage in that they are
highly polyclonal and may respond to multiple antigens on cancer cells, rather than being
limited by a defined tumor associated antigen (TAA) recognized by a CAR [88,89]. This is
important to consider given that the lack of an identifiable AML-specific antigen remains
a limiting factor for CAR T cell therapy in AML [90]. Allogeneic transplantation of TIL
is also significantly less cytotoxic than allogeneic or CAR-T therapies given that targeted
TAAs raise the risk of on-target off-tumor toxicities [91].

Using human bone marrow aspirates from AML patients, we recently demonstrated
that CD3+ TILs could be isolated and expanded to clinically applicable scales using a novel
ex vivo culture system [92]. Expanded TILs were immunophenotypically determined to
express either CCR7+CD95− or CD62L+ CD45RA+, which are markers for naïve T cells [93].
As proof of concept, we also showed that expanded TILs could be pharmaceutically and
genetically bioengineered ex vivo to downregulate PD-1 and express lentivirus CYP27B1
gene. Finally, we showed that that TILs can cause cytotoxicity to autologous blasts ex
vivo (90.6% in control vs. 1.89% in experimental groups) and are able to infiltrate the bone
marrow and reside in close proximity to pre-injected autologous AML blasts of engrafted
immunodeficient mice [92]. A study by Garcìa-Guerrero and colleagues alternatively
demonstrated the feasibility of isolating functional tumor-reactive T cells (doublet-forming
T cells) from AML patients using FACS-based cell sorting [94]. Together these results
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provide compelling evidence that autologous transplantation of bioengineered TILs could
be used as a vehicle for gene therapy in AML.

The above studies highlight several challenges that will need to be addressed before
clinical translation for use in AML. Firstly, we will need to address the reason for variability
of TIL populations amongst AML patients. We observed two groups of patients that either
displayed low (2.3%) or high numbers (32.6%) of CD3+ TILs, which was consistent with
a recent report that CD3 TILS were preserved in 50% of patient samples [92,95]. Future
experiments will also need to determine the in vivo cytotoxic and proliferative potential
of TILs following transplantation in AML. It will also be necessary to demonstrate the
feasibility of reversing TIL exhaustion within the context of the AML TME.

3.7. CAR T Cell Therapy

Chimeric antigen receptor (CAR) therapy involves engineering synthetic receptors to
redirect lymphocytes, most frequently T cells, to identify and eliminate cancer cells. The
extracellular domain of CARs is typically derived from the single chain variable fragment
of monoclonal antibodies which bind to cancer cell antigens. Binding of CAR to the cancer
cell antigen initiates intracellular domain signaling through CD3ζ which is suspected to
facilitate T cell activation. Simultaneously, a costimulatory domain signaling through
4-1BB or CD28 is suspected to occur which allows T cells to have sustained anti-tumor
activity [96].

The highly immunosuppressive AML microenvironment is a challenge to CAR T
cell therapy. There are proposed direct and indirect mechanisms contributing to AML
immune escape. AML blasts can express the enzymes arginase II and indoleamine 2,3
dioxygenase (IDO) which produce metabolites that hinder T cells while concurrently
creating an environment that favors T regulatory cell and MDSC expansion which further
dampen CAR T cell response and decrease proliferation. AML blasts may also express
ectonucleotidases, such as CD38, CD39, and CD73, that are involved in breaking down ATP
and NAD+ to adenosine; the resulting adenosine accumulation leads to T cell suppression.
Notably, AML blasts have been reported to directly suppress T cell anti-tumor response by
inducing reactive oxygen species (ROS) triggering T cell apoptosis [90].

Despite these challenges, success has been demonstrated in the use of CART cell
therapy in AML patients. The first reported clinical trial that demonstrated CAR T cell
efficacy in AML was in 2013 (Table 4). Ritchie et al. utilized a second generation CD28-ζ
CAR directed against the Lewis Y antigen. The observed efficacy was limited; however,
the study demonstrated CAR T durable in vivo persistence [97]. There are currently more
than 20 clinical trials regarding AML and CAR T cell therapy. Targets of interest in trials
are CD33, CD123, CD38, CCL1, NKG2D, Lewis Y, WT1, and CD7. CD38 is known to
be expressed on most AML cells and a limited prospective study has demonstrated that
CAR T-38 cells eliminated CD38 AML cells without off-target effects on lymphocytes and
monocytes [98]. In an analysis of 81 primary bone marrow samples, the Lewis Y antigen
has been shown to be expressed in 46% of AML cases. Moreover, CAR T therapy in a mouse
model targeting Lewis Y has demonstrated prolonged survival [99]. Wilms Tumor 1 (WT1)
is overexpressed in most AML patients and studies have demonstrated that increased
WT1 is associated with resistance to therapy, higher incidence of relapse, and poor overall
survival. WT1 CAR T cells have also exhibited the ability to lyse WT1 primary tumor
cells [100]. CD33 and CD123 in particular are of interest and explained further below [101].

The most significant barrier limiting the application of CAR T cell therapy in AML is
the absence of an AML-specific antigen. CD33 and CD123 are highly expressed by AML
blasts and pre-clinical models have demonstrated CD33 and CD123 directed CAR T cells
have highly potent anti-tumor activity [102,103]. However, as hematopoietic stem cells
also express CD33 and CD123, CAR T cells are unable to differentiate between cancerous
and normal cells. Several strategies have been postulated to remedy CAR T therapy
limitations. One proposed mechanism is the incorporation of a “safety switch” into T cells.
A traditionally utilized suicide gene in T cell therapy is HSV-tk, which allows for apoptosis
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of cells expressing HSV-tk upon administration of a prodrug. Use of HSV-tk is limited by
immunogenicity of the viral enzyme and long latency to activation which is not effective in
the setting of immediate termination of therapy in order to manage toxicity [104].

Table 4. Ongoing clinical trials for CAR T cell therapy against AML.

Target Antigen Population NCT ID Phase

CD33

R/R AML NCT03126864 I

R/R AML NCT02799680 I

R/R AML NCT01864902 I/II

R/R AML NCT02944162 I/II

R/R AML, MDS; ALL NCT03291444 I

R/R AML NCT03473457

AML NCT03222674 I/II

CD123

AML NCT03585517 I

Recurred AML after allo-HSCT NCT03114670 I

R/R AML NCT03556982 I/II

R/R AML NCT02623582 I

R/R AML NCT02159495 I

R/R AML NCT03672851 I

R/R AML NCT03766126 I

R/R AML, MDS; ALL NCT03291444 I

R/R AML NCT03473457 n/a

R/R AML NCT03796390 I

AML NCT03222674 I/II

CD38

R/R AML, MDS; ALL NCT03291444 I

R/R AML NCT03473457

AML NCT03222674 I/II

UCART23
R/R AML NCT03190278 I

R/R AML, high-risk AML NCT01864902 I

CD/123/CLL1 R/R AML NCT03631576 II/III

CD33/CLL1 R/R AML, MDS, MPN, CML NCT03795779 I

CCL1 AML NCT03222674 I/II

NKG2D
AML, MDS-RAEB, MM NCT02203825 I

R/R AML, AML, Myeloma NCT03018405 I/II

Lewis Y Myeloma, AML, MDS NCT01716364 I

WT1 R/R AML, ALL, MDS NCT03291444 I

CD7/NK92 R/R AML NCT03018405 I/II

The ultimate application of CAR T therapy in AML is hypothesized in the identification
of an AML specific neoantigen that can facilitate cancer cell eradication while sparing
normal cells (Figure 4). Neoantigens that have been associated with AML are the metabolic
enzymes IDH1 and IDH2 (estimated to be present in approximately 20% of de novo AML
patients) [105,106]. Unfortunately, the proteins encoded by these mutations are expressed
intracellularly and not available to CAR therapy. Dysregulated splicing may also provide a
source of neoantigens. Adamia et al. reported that an estimated 33% of AML expressed
genes undergo differential RNA splicing which may contribute to splice variants and
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potential neoantigens [107]. A subsequent study from the same group, discovered two
novel splice variants, one for Flt3 and one for NOTCH 2, reported in 50% and 73% of AML
patients, respectively. Of note, these splice variants were absent from healthy donors [108].
Another identified AML specific isoform is the CD44v6 variant, noted to be expressed in
more than 60% of AML patients while not present in normal HPSC. CD44v6 is expressed
on the cell surface therefore is available by CAR therapy and a preclinical model has shown
CART cells targeting this isoform had robust anti-tumor properties [109]. As research
expands into identifying CAR T cell therapy targets in AML the limitations presented by
the AML TME may be addressed, thus providing patients with a novel therapeutic avenue.
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Figure 4. Mechanism of action of CAR T cell therapy. The T cell chimeric antigen receptor binds
the target antigen on the tumor cell. This will subsequently allow T cells to mediate anti-tumor
effects through the perforin and granzyme axis. Cytokines, such as IL-2, TNF-alpha, and IFN-gamma,
promote T cell activation and proliferation.

4. Application of Natural Products in AML Therapy
4.1. Vitamin C

More evidence indicated that high concentrated intravenous vitamin C showed po-
tential therapeutic effect in cell lines from cancer patients, including patients with AML.
There is a dose- and time-dependent inhibition of proliferation in acute myeloid leukemia
(AML) cell lines [110]. Phase I evaluation of intravenous vitamin C in combination with
gemcitabine and erlotinib in cancer patients does not reveal increased toxicity [111]. As a
potential cofactor of TET activity, vitamin C can induce Tet-dependent DNA demethylation,
which is a type of epigenetic modification [112]. In the research of Zhao et al., low dose of
vitamin C has a synergistic efficacy with decitabine in elderly patients with AML, which
improved complete remission rate and prolonged overall survival [113]. Regarding RCT
trial, normalization of plasma vitamin C by oral supplementation leads to an increase in
the 5hmC/5mC ratio compared to placebo-treated patients [114]. Vitamin C expressed
anti-proliferative effects for AML cells with both TET2 and TP53 mutations [115]. However,
currently, large scale clinical trial data are required to establish the clinical anti-proliferative
effect of vitamin C in AML patients.

4.2. Vitamin D

Through the nuclear vitamin D receptor (VDR), 1, 25(OH) 2D3 can attach to the
promoter regions of target genes. Many pathways, including MAPKs, JAK/STAT, and
PI3K/Akt, are related to 1, 25(OH) 2D3 [116–120]. MAPKs involved in 1, 25-D3-stimulated
monocytic differentiation [121]. PI3K-Akt-mTOR pathway related to suppression of



Biomedicines 2022, 10, 1410 15 of 23

leukemic cell growth and involved in AML [122]. Through in vitro studies with different
cell lines, multiple pathways and signals are proof related to AML cell differentiation and
can be affected by VDR [123,124]. These were also proofed in some in vivo studies with
mice and further confirmed the possibility of increasing survival within mice [125–129]. Re-
garding clinical experience, there was no inspiring development in this field. The previous
clinical trials including AML patients and vitamin D are small scale with large variation
of outcome [124,130]. In the study of Paubelle et al., combination of DFX and vitamin D
significantly increased the median survival in the treatment group [131]. Low serum level
of vitamin D also associated with shorter survival within AML patients [132,133]. However,
the limitation of vitamin D-affect therapy is the need for high concentration of vitamin
D to reach therapeutic effect, which might cause systemic side effects [134–136]. Several
methods are possible to overcome the barriers we face currently, including possible oral
supplementation [132], select patient according to receptor polymorphisms [137], gene
therapy involving CYP27B1 treatment [126].

4.3. Vitamin B6 and Vitamin E

Compared to the board research of vitamin C and vitamin D, rare articles mentioned
about vitamin B and vitamin E and those articles are in vitro studies. Tocopherols and
tocotrienols are vitamin E derivatives. In Ghanem’s study, γ-tocotrienol exhibits time
and dose-dependent anti-proliferative, pro-apoptotic and antioxidant effects on U937 and
KG-1 cell lines (AML cell lines) [138]. Additionally, KG-1 was significantly affected at
concentrations of δ-T as low as 20 µM [139]. Vitamin B6, known as pyridoxine, induces the
death of primary AML cells from AML patients by activating caspase-8/3 [140]. Vitamin
B6 phosphorylation regulates AML cell growth [141]. In vivo study will be needed in this
new field.

4.4. Other Natural Products

Except for vitamins, there are lots of natural products that are proven to be related to
AML and have the potential to contribute to the idea against the multi-drug resistance of
AML cells. Those natural products have different anti-tumor effects, including increasing
apoptosis of AML cells, inducing cell cycle arrest, anti-proliferative effects, and even reverse
of drug resistance [142–144]. There are a few studies involved in mice in this field, including
(-)-Epicatechin [145], quercetin [146], green tea [147], curcumin [148], parthenolide [149],
emodin [150], compound kushen injection [151], and northern labrador tea extracts [152].
Through regulating different proteins, including Fas ligand, Bcl-2, BCL-xL, Mcl-1, histone
H2AX, NF-κB, Prdxs/ROS/Trx1 signaling pathway, these natural products can induce
apoptosis [145–151]. Not only this category, but there are also more natural products that
have some in vitro evidence of effectiveness in AML cell lines (HL60, U937, KG1). Since
some natural products express the possibility of toxin or side effects, and doubt about
bioavailability, the method of delivery could be a possible future topic. Compared to
in vitro studies and animal models, in the human population, the results of some research
are disappointing. Regarding green tea, in Calgarotto’s study, despite the involvement of
only 10 cases, we can only obtain the result that combined with low dose chemotherapy
in the elderly are safe in this pilot study [153]. On the other hand, qinghuang powder
containing arsenic, used as an alternative treatment for elderly AML patients, showed no
significant difference in overall survival [154]. In conclusion, the research is limited and
there is a lack of clinical effectiveness proven to happen in the human population [142,143].

5. Concluding Remarks

Over the past two decades, the conception of hematologic malignancies as a cell-
intrinsic disorder driven by genetic and epigenetic alterations has been revised to include
extrinsic mechanisms of resistance.

AML is no longer merely viewed as a genetic disease, but rather a complex interplay
between leukemic cells with the surrounding cellular and humoral environment. The
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tumor microenvironment is an important aspect of AML biology, as it contributes to a
multitude of mechanisms driving tumorigenesis and resistance to current therapies.

Immune-based therapies in AML remain of large interest, despite limited success in
clinical trials. The complex immunosuppressive TME likely limits the efficacy of immune-
based therapeutic strategies. Thus, it will be critical to consider the AML immune contex-
ture so that we may develop therapies that appropriately redirect the immune microen-
vironment to favor the elimination of leukemic blasts. Intrinsic and extrinsic factors of
AML cells, including genetic mutations and cytokine secretion, affect AML response to
immunotherapies. Based on the review of the above literature, it is likely that combination
therapy with ICIs, BITE, adoptive T cell therapy (CAR-T or TIL), and natural products
will provide more opportunities to achieve sustained clinical remission. Early detection
of resistance mechanisms and utilization of strategies to overcome resistance will be the
future direction for the development of immunotherapy against AML.
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