
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Towards grammaticality and fluency : characterizing and correcting ESL errors using
dictionary random walks and other means

Permalink
https://escholarship.org/uc/item/2n9390kk

Author
West, Randy

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n9390kk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Towards Grammaticality and Fluency: Characterizing and Correcting
ESL Errors Using Dictionary Random Walks and Other Means

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Randy West

Committee in charge:

Professor Roger Levy, Chair
Professor Garrison Cottrell
Professor Lawrence Saul

2011

Copyright

Randy West, 2011

All rights reserved.

The Thesis of Randy West is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Vita and Publications . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1
1.1 Related Work . 3
1.2 Thesis Organization . 4

Chapter 2 Background . 5
2.1 Noisy Channel Models in SMT 5
2.2 Expectation Maximization 7
2.3 Weighted Finite-State Transducers and Semiring Parsing 8

Chapter 3 Design and Implementation 12
3.1 Datasets . 12

3.1.1 Training, Development, and Evaluation Sets . . . 12
3.1.2 English-Korean Dictionary 13

3.2 Language and Sentence Models 15
3.2.1 Sentence Models 17

3.3 Training . 18
3.3.1 M-step . 18
3.3.2 E-step . 19
3.3.3 Online EM Settings and Testing for Convergence 21

3.4 Decoding . 22
3.5 Evaluation . 22

Chapter 4 Noise Models . 25
4.1 Infinitive ↔ Present Participle Model 25

4.1.1 Motivation . 25
4.1.2 Implementation 26
4.1.3 Training . 26

4.2 Random Walk Models 28

iv

4.2.1 Implementation 28
4.2.2 Uniform Replacement Model 29
4.2.3 Adding One-Way Word Frequency Sensitivity . . 30
4.2.4 Adding Two-Way Word Frequency Sensitivity . . 32
4.2.5 Constraining Random Walk Degree 34

Chapter 5 Results and Analysis . 36
5.1 Batch v. Online EM . 37
5.2 Infinitive ↔ Present Participle Model 38
5.3 Random Walk Models 43

5.3.1 Uniform Replacement Model 46
5.3.2 One-Way Word Frequency Sensitivity Model . . . 48
5.3.3 Two-Way Word Frequency Sensitivity Model . . . 48

Chapter 6 Conclusion and Future Work 49

Appendix A Stop Word Filter . 51

Appendix B Amazon Mechanical Turk Judgment Task 53

Bibliography . 57

v

LIST OF FIGURES

Figure 1.1: Example English-Korean dictionary graph for a subset of the
edges out of the English head, leader, and chief. 2

Figure 2.1: Two weighted finite-state transducers over the tropical semiring
and the result of the composition and ǫ-removal operations on
them. 11

Figure 3.1: An example language model for the sentence “see spot run.” . . 17
Figure 3.2: Simplified depiction of the E-step for the sentence “the chief”

under one of our random walk noise models. 21

Figure 4.1: A graphical representation of the to infinitive ↔ present par-
ticiple noise model transducer. 27

Figure 4.2: An example random walk transducer using a uniform walk prob-
ability parametrization. 29

Figure 5.1: Plots of parameter values for the inf pp model over time for 50
training iterations. 38

Figure 5.2: Plot of parameter values for the rw unif model over time for
10 training iterations. 39

Figure 5.3: Plots of parameter values for the rw freq unobs model over
time for 10 training iterations. 39

Figure 5.4: Plots of parameter values for the rw freq both model over time
for 10 training iterations. 40

Figure 5.5: AMT Judgments: inf pp . 41
Figure 5.6: AMT Judgments: All random walk models. 44
Figure 5.7: Plot of efreq(w

′)α for a representative range of word frequencies
using the values of α learned for rw freq unobs and rw freq both 47

vi

LIST OF TABLES

Table 2.1: Some common semirings. 9

Table 3.1: The V-expectation semiring of Eisner (2002). 20

Table 4.1: A summary of the types of errors corrected in our inf pp noise
model versus those corrected in the word form error model of
Park and Levy (2011). 26

Table 5.1: Final parameter values after 50 iterations for inf pp. 38
Table 5.2: METEOR and BLEU scores for the inf pp model. 41
Table 5.3: Final parameter values after 10 iterations for all random walk

models. 43
Table 5.4: METEOR and BLEU scores for all random walk models. 43

Table A.1: A list of stopwords used in filtering random walk candidates. . . 52

vii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my adviser Roger Levy and col-

league Y. Albert Park for their invaluable mentorship and for giving me this project

in the first place. I owe a debt of gratitude as well to my committee members

Lawrence Saul and Gary Cottrell for taking the time to review my work, to Markus

Dreyer for graciously allowing the use of his V-expectation semiring code, and to

the San Diego Supercomputer Center for providing time on the DASH system.

Thanks also to my local San Diego coffee shop for hundreds of hours of

internet usage for the price of hundreds of cups of coffee, and to Meredith for

gracefully bearing all of the late nights and relentless work schedule.

viii

VITA

2007 Bachelor of Science in Computer Science with Honors in the
Major, University of California, Santa Cruz

2011 Master of Science in Computer Science, University of Cali-
fornia, San Diego

PUBLICATIONS

Randy West, Y. Albert Park, and Roger Levy (2011). Bilingual Random Walk
Models for Automated Grammar Correction of ESL Author-Produced Text. In
Proceedings of the NAACL HLT 2011 Sixth Workshop on Innovative Use of NLP
for Building Educational Applications, IUNLPBEA ’11, Stroudsburg, PA, USA.
Association for Computational Linguistics.

ix

ABSTRACT OF THE THESIS

Towards Grammaticality and Fluency: Characterizing and Correcting
ESL Errors Using Dictionary Random Walks and Other Means

by

Randy West

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Roger Levy, Chair

We present two novel classes of noisy channel models to address verb in-

finitive/present participle confusion and word choice production errors in text pro-

duced by English as a second language (ESL) authors in an extension of Park

and Levy (2011). In our word choice model, which is the primary contribution of

this work, we model the English word choices made by ESL authors as a random

walk across an undirected bipartite dictionary graph composed of edges between

English words and associated words in the author’s native language. We use cas-

cades of weighted finite-state transducers (wFSTs) to model language model priors,

verb form confusion and random walk-induced noise, and observed sentences, and

expectation maximization (EM) to learn model parameters. Additionally, we ex-

x

plore the use of online EM for model training. We show that such models can

make intelligent verb form and dictionary-based word substitutions to improve

grammaticality and fluency in an unsupervised setting.

xi

Chapter 1

Introduction

How do language learners make word choices as they compose text in a

language in which they are not fluent? Anyone who has attempted to learn a

foreign language can attest to spending a great deal of time leafing through the

pages of a bilingual dictionary. However, dictionaries, especially those without a

wealth of example sentences or accompanying word sense information, can often

lead even the most scrupulous of language learners in the wrong direction. Consider

an example: the English noun “head” has several senses, e.g. the physical head

and the head of an organization. However, the Japanese atama can only mean the

physical head or mind, and likewise shuchou, meaning “chief,” can only map to the

second sense of head. A native English speaker and Japanese learner faced with

the choice of these two words and no additional explanation of which Japanese

word corresponds to which sense is liable to make a mistake on the flip of a coin.

One could of course conceive of more subtle examples where the semantics

of a set of choices are not so blatantly orthogonal. “Complete” and “entire” are

synonyms, but they are not necessarily interchangeable. “Complete stranger” is a

common two-word phrase, but “entire stranger” sounds completely strange, if not

entirely ungrammatical, to the native English speaker, who will correct “entire” to

“complete” in a surprisingly automatic fashion. Thus, correct word choice in non-

native language production is essential not only to the preservation of intended

meaning, but also to fluent expression of the correct meaning.

We propose that word choice production errors on the part of the language

1

2

learner can be modeled as follows. Given an observed word and an undirected

bipartite graph with nodes representing words in one of two languages, i.e. English

and the sentence author’s native tongue, and edges between words in each language

and their dictionary translation in the other (see Figure 1.1 for an example), there

exists some function f 7→ [0, 1] that defines the parameters of a random walk

along graph edges, conditioned on the source word. By composing this graph

with a language model prior such as an n-gram model or probabilistic context-

free grammar, we can “correct” an observed sentence by inferring the most likely

unobserved sentence from which it originated.

head

머리수령지휘자 우두머리장관 주요한지배자

chiefleader

Figure 1.1: Example English-Korean dictionary graph for a subset of the edges
out of the English head, leader, and chief.

There are of course many other classes of production errors that ESL au-

thors are wont to commit. Park and Levy (2011) address five such classes, namely

spelling, article, preposition, word form, and word insertion errors. We seek in this

thesis to extend their work to include generative models of verb infinitive/present

participle confusion and the word choice production errors described previously.

In addition, we extend their basic framework to employ online instead of batch ex-

pectation maximization for training and run a brief results comparison after Liang

and Klein (2009).

As a motivational aside, the development of software to correct ESL text is

valuable for both learning and communication. A language learner provided instant

grammaticality feedback during self-study is less likely to fall into patterns of

misuse, and the comprehension difficulties one may encounter when corresponding

with non-native speakers would be ameliorated by an automated system to improve

text fluency. Additionally, since machine-translated text is often ungrammatical,

3

automated grammar correction algorithms can be deployed as part of a machine

translation system to improve the quality of output.

1.1 Related Work

The literature on automated grammar correction is mostly focused on rule-

based methods and error identification rather than correction. However, there

has been a recent outgrowth in the application of machine translation (MT) tech-

niques to address the problem of single-language grammar correction. Park and

Levy (2011) propose a noisy channel model for learning to correct various types of

errors, including article and preposition errors, wordform errors, insertion errors

and spelling mistakes, to which this thesis is an extension.

Brockett et al. (2006) use phrasal SMT techniques to identify and correct

mass noun errors of ESL students with some success, but they correct no other

production error classes to our knowledge.

Lee and Seneff (2006) learn a method to aid ESL students in language

acquisition by reducing sentences to their canonical form, i.e. a lemmatized form

devoid of articles, prepositions, and auxiliaries, and then building an over-specified

lattice by reinserting all word inflections and removed word classes. They then

score this lattice using a trigram model and PCFG. While this method has many

advantages, it does not take into account the full context of the original sentence.

Kok and Brockett (2010) use random walks over bi- and multilingual graphs

generated by aligning English sentences with translations in 10 other European

languages to learn paraphrases, which they then evaluate in the context of the

original sentence. While their approach shares many high-level similarities with

our random walk model, both their task, paraphrasing correct sentences, and the

details of their methodology are divergent from the present work.

Désilets and Hermet (2009) employ round-trip machine translation from L1

to L2 and back again to correct second language learner text by keeping track of the

word alignments between translations. They operate on a very similar hypothesis

to that of our random walk model, namely that language learners make overly-

4

literal translations when the produce text in their second language. However,

they go about correcting these errors in a very different way than in the present

work, which is novel to the best of our knowledge, and their technique of using

error-annotated sentences for evaluation makes a comparison difficult.

1.2 Thesis Organization

The rest of this thesis is arranged as follows. In Chapter 2, we provide

the reader with a crash course on the theory and mechanisms employed herein.

In Chapter 3, we describe our datasets and the technical details of our software

implementation and experimental methodology. In Chapter 4, we detail our noise

models and the specifics of training each, and in Chapter 5, we present and ana-

lyze our models’ results. Finally, we discuss several avenues for future work and

conclude in Chapter 6.

Chapter 2

Background

In this chapter, we hope to provide readers with the background necessary to

understand the proceeding chapters. In particular, we will provide a brief review

of noisy channels (Shannon, 1948) as they apply to statistical machine transla-

tion (SMT) (Brown et al., 1993), the expectation maximization (EM) algorithm

(Dempster et al., 1977), and weighted finite-state transducers (wFST), especially

with regard to their parsing using semirings (Mohri, 2004; Goodman, 1999).

2.1 Noisy Channel Models in SMT

The fundamental problem of statistical machine translation is to determine

the most likely translation given an observed sentence, i.e. to determine

ŵ′ = argmax
w′

p(w′|w), (2.1)

where w is a vector of observed words andw′ is an associated translation, ŵ′ being

the optimal such vector (Brown et al., 1993). Although the vast majority of the

SMT literature focuses on translation between natural languages, grammar correc-

tion can similarly be viewed as a translation task from an erroneous “language” to

a correct one (Park and Levy, 2011). In a naive implementation, sentences in L1

and L2 would simply be stored in a vast lookup table and associated with numbers

indicating the likelihood of translating between them. Such a system would of

course be infeasible in practice, both due to the impossibility of enumerating the

5

6

infinite variety of valid sentences in each language and the impracticality of storing

a weight for each such pair, but it serves as a useful starting point for thinking

about the translation task from a computational perspective. As a next step, we

wish to decompose Equation 2.1 into more manageable components, which we can

accomplish using Bayes theorem, as in

p(w′|w) =
p(w′) p(w|w′)

p(w)
. (2.2)

The denominator in Equation 2.2 is unimportant in determining argmaxw′ , and

so we can drop it to arrive at the so-called Fundamental Equation of Machine

Translation (Brown et al., 1993),

ŵ′ = argmax
w′

p(w′) p(w|w′). (2.3)

We have now broken Equation 2.1 into two logical parts, a prior belief about the

validity of each translation w′, and the probability of w′ given the observed sen-

tencew. Together, these constitute a noisy channel model from information theory

(Shannon, 1948). Information theorists employ such models to reconstruct signals

subjected to noise during transmission, and we find that the grammar correction

task fits neatly into this paradigm. More concretely, we take the view that the pre-

language or native language production of a sentence is subjected to some noise

process that perturbs the sentence author’s intended form and/or meaning during

translation and outputs the observed sentence w. Our task, then, is to recover the

intended sentence w′, and we do so by choosing the most probable such sentence

according to a formulation that considers the stand-alone probability of producing

each possible correction in conjunction with the probability of the original sentence

having been perturbed to w′. The former probability is formalized in a language

model learned from a large corpus of text, e.g. an n-gram model or probabilistic

context-free grammar (PCFG), and the latter in a noise process which may be

hard-coded by experts, learned from training data, or some combination of the

two.

7

2.2 Expectation Maximization

The expectation maximization or EM algorithm is a broadly applicable

iterative method for computing maximum likelihood or maximum a posteriori es-

timates1 from incomplete data (Dempster et al., 1977). In order to motivate EM,

we imagine that we have a set of observed dataX, a set of latent data Z, a vector of

unknown model parameters θ, and a likelihood function L(θ;X,Z) = p(X ,Z|θ).

We would like use maximum likelihood estimation (MLE) to determine θ̂MLE, the

parameter vector which maximizes the marginal likelihood L(θ;X) = p(X|θ) =
∑

Z
p(X,Z|θ). However, a direct application of MLE is often intractable, and so

we find ourselves in need of a less direct approach, provided that we can maintain

acceptable guarantees of convergence.

With this motivation in mind, let us now turn to the algorithm itself. At

a high level, EM consists of an expectation step, which fixes model parameters

and calculates the expected value of the log likelihood function with respect to

the conditional distribution of Z given X under the current estimate of θ,2 and a

maximization step, which determines the parameter vector maximizing the quan-

tity computed in the previous step. These two steps are applied iteratively until

some criteria for convergence is satisfied. The algorithm guarantees convergence

to a local maximum within the exponential family of distributions and has sim-

ilar guarantees for any distribution satisfying the appropriate constraints (Wu,

1983). As we confine ourselves to binomial and multinomial likelihood functions

throughout this work, we find these guarantees to be sufficient in all respects.

Although the (batch) EM algorithm as described is guaranteed to converge,

the number of iterations required to reach convergence can be arbitrarily large. In

order to combat this issue, several online flavors of EM have been developed (Sato

and Ishii, 2000; Liang and Klein, 2009). We will focus in particular on a technique

known as stepwise-EM (sEM). Whereas batch EM computes expectations and

maximizes over the entire set of training data at each step, sEM takes a stochas-

1We will only cover the application of EM to MLE estimation in this work.
2When the likelihood function is in the exponential family, the E-step amounts to simply

summing the expectations of sufficient statistics.

8

tic approach that regards each individual example as a sample and interpolates

between estimates for each such example over time. sEM has the same conver-

gence guarantees as batch EM, provided that certain conditions are met regarding

the interpolation parameter ηk at each step k, namely that
∑∞

k=0 ηk = ∞ and
∑∞

k=0 η
2
k <∞. A common strategy is to take ηk = (k+2)−α for some 0.5 < α ≤ 1,

where a larger value of α indicates a more conservative update strategy. In order

to further bolster the stability of sEM, one may wish to perform updates using a

small set of examples, referred to as a mini-batch, instead of a single example at

a time. This is the strategy that we shall employ whenever we use online EM in

this work. Specifically, we set α = 1 and use a mini-batch size of 100 examples,

which is at most 1% of the total training data used in each experiment.

2.3 Weighted Finite-State Transducers and Semir-

ing Parsing

Weighted finite-state transducers (wFST) are a generalization of finite-state

automata (FSA) where state transition arcs are annotated with an output labels

and semiring weight elements in addition to the standard FSA input label (Mohri,

2004). wFSTs enjoy a well-developed theory, elegance, and wealth of standard

algorithms that make them ideal for developing compact mappings between dif-

ferent information sources, and their embedded weights offer a simple mechanism

by which to represent uncertainty or variability in said mapping. Moreover, there

exists a robust selection of software packages for implementing and processing wF-

STs, notably OpenFST, which we make use of in this work (Allauzen et al., 2007).

In order to formally introduce wFSTs, we must begin by describing the

elements and operations of a semiring.

Definition 1. A system (K,⊕,⊗, 0̄, 1̄) is a semiring if: (K,⊕, 0̄) is a commutative

monoid with identity element 0̄; (K,⊗, 1̄) is a monoid with identity element 1̄; ⊗

distributes over ⊕; and 0̄ is an annihilator for ⊗: ∀a ∈ K, a ⊗ 0̄ = 0̄ ⊗ a = 0̄

(Mohri, 2004).

9

Table 2.1: Some common semirings. ⊕log is defined by: x⊕logy = − log(e−x+e−y)
(Mohri, 2004).

Semiring K ⊕ ⊗ 0̄ 1̄
Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞,+∞} ⊕log + +∞ 0
Tropical R ∪ {−∞,+∞} min + +∞ 0

Some common semirings are listed in Table 2.1. It is useful to imagine the

various uses of these semirings in a graph setting. When each edge in a directed

graph is labeled with a semiring element, we can perform natural computations

on the graph simply by invoking the semiring operators. For example, if the

paths through a graph represent a probability distribution, then the first natural

operation is to compute the probability mass associated with each such path. This

is the product of the arc weights in the path, and we can compute it using
⊗

γ∈π γ,

where γ is an arc weight and π is a path, over the probability semiring. Likewise,

if we wish to determine the total probability of following several different paths,

we can do so using
⊕

π∈paths

⊗

γ∈π γ over the same semiring. If we wish instead

to compute the shortest path in a graph, then the tropical semiring is well-suited

for our purposes. For further reference on semirings and their uses in parsing

grammars, we direct the reader to Goodman (1999).

We will now proceed with formally defining a wFST.

Definition 2. A weighted finite-state transducer T over a semiring K is an 8-tuple

T = (Σ,∆, Q, I, F, E, λ, ρ) where Σ is the finite input alphabet of the transducer;

∆ is the finite output alphabet; Q is a finite set of states; I ⊆ Q the set of initial

states; F ⊆ Q the set of final states; E ⊆ Q × (Σ ∪ {ǫ}) × (∆ ∪ {ǫ}) × K × Q a

finite set of transitions; λ : I → K the initial weight function; and ρ : F → K the

final weight function (Mohri, 2004).

We will further discuss the two fundamental wFST algorithms that we make

use of in this work, composition and ǫ-removal (Mohri, 2004, 2001). Composition

is an algorithm used to create complex transducers by combining several simpler

10

ones. The composition operation, which we denote T1 ◦ T2 for two transducers T1

and T2 with ∆T1
= ΣT2

, performs this combination by discovering all paths through

T1 whose output symbols correspond exactly to the input symbols of a path in T2.

The resultant transducer is exactly the description of all such matching paths and

is defined for all (x, y) ∈ Σ∗
T1
×∆∗

T2
by

[T1 ◦ T2](x, y) =
⊕

z

T1(x, z)⊗ T2(z, y),

where Ti(x, y) indicates the semiring weight element associated with an x : y

input/output string transduction3 in Ti and [Tj](α, β) the cell in a transduc-

tion weight matrix associated with Tj and corresponding to the transduction

from α to β. In the OpenFST implementation, the complexity of composition

is O(v1v2d1(log d2 +m2)) in time and O(v1v2d1m2) in space, where vi is the num-

ber of transducer states, di the maximum number out-degree, i.e. number of arcs

leaving any given state, and mi is the maximum multiplicity, i.e. number of times

a label is repeated at any given state (Allauzen et al., 2007). This measure of

complexity further assumes that the arcs in second transducer are presorted, an

operation which itself takes O(vd log d) time and O(d) space.

The ǫ-removal algorithm transforms a transducer A containing ǫ : ǫ, i.e.

empty string to empty string transitions, into an equivalent transducer B con-

taining no such transitions (Mohri, 2001). In general, ǫ-removal allows for more

efficient parsing, and it also plays a role in other fundamental transducer opti-

mization algorithms such as determinization. For our purposes in this work, we

will regard it as a method of transferring the combined arc weights of a transducer

made up solely of ǫ : ǫ transitions into a single initial/final state, which is an

essential component of our noise model parameter training process (see Chapter

3 for details). In the OpenFST implementation, the complexity of the ǫ-removal

operation for the (acyclic) transducers over which we employ it is O(v2 + ve) in

time and O(ve) in space, where v is the number of transducer states and e is the

total number of arcs (Allauzen et al., 2007).

3We emphasize string, as opposed to symbol transduction, which indicates a string of symbols

being processed completely starting from some initial state in I to acceptance in some final state

in F .

11

A transducer T1 A second transducer T2

0

ε:ε/1

1

a:a/0.2

a:b/0.8

b:b/1

ε:ε/1

b:a/0.5

b:b/0.5

0

a:b/0.2

1
a:b/0.8

b:a/0.4

b:b/0.6

The result of composing the The result of running the

preceding two transducers, ǫ-removal algorithm on

T1 ◦ T2 T1 ◦ T2

0

ε:ε/1

1

a:b/1

a:a/1.2

b:a/1.4

2

a:b/0.4

b:b/1.1

3

ε:ε/1

ε:ε/1

b:a/0.9

b:b/1.3

b:b/0.7

a:b/1.4

b:b/1.6

ε:ε/1

0

1

b:a/1.4

a:a/1.2

a:b/1

2

a:b/0.4

a:b/2.4

b:b/1.1

b:b/1.3

a:b/2

a:a/2.2

b:a/0.9

b:b/0.7

a:b/1.4

Figure 2.1: Two weighted finite-state transducers over the tropical semiring and
the result of the composition and ǫ-removal operations on them.

In conclusion, we present the reader with several illustrative graphical rep-

resentations of weighted finite-state transducers and their operations in Figure

2.1.

Chapter 3

Design and Implementation

In this chapter, we will present the dataset of Park and Levy (2011) along

with a technical overview of their training, decoding, and evaluation systems. We

will additionally provide a description of our English-Korean dictionary and asso-

ciated preprocessing, the implementation of the convex optimization process used

during training to infer noise model parameters from sufficient statistics for two

of our random walk models, our online EM methodology and convergence test-

ing, and the Amazon Mechanical Turk-based judgment task developed for further

evaluating our final decoding results (West et al., 2011).

3.1 Datasets

3.1.1 Training, Development, and Evaluation Sets

We use the dataset of Park and Levy (2011), a collection of approximately

25,000 essays comprised of 478,350 sentences scraped from web postings made

by Korean ESL students studying for the Test of English as a Foreign Language

(TOEFL). Of these, we randomly select 10, 000 sentences for training, 504 as a

development set, and 1,007 held out for final model evaluation.

12

13

3.1.2 English-Korean Dictionary

We are unfortunately unaware of any freely available, downloadable English-

Korean dictionary databases. As such, we compiled the English-Korean dictionary

used throughout this work by scraping the contents of http://endic2009.naver.

com, a widely-used and trusted online dictionary source in South Korea. Then,

conceptualizing the dictionary as a bipartite graph (see Figure 1.1 for an example),

we developed a preprocessing algorithm to produce a mapping from English words

to other candidate English words reachable from the source word in a random

walk of length 2, subject to the constraint that each candidate shares some of the

syntactic class and morphological inflectional features of the source word.

Compiling the Dictionary

More pedantically, we cached the HTML and Javascript contents of ev-

ery page at http://endic2009.naver.com/endic.nhn?docid=x for all {x | x

mod 10 = 0 ∧ 10 ≤ x ≤ 1307390} and sliced out the contents of the sec-

tions labeled <div id="entryBody333"> and the value of the tag labeled <input

name="query">. As the text on each page is optimized for display and includes a

wide variety of somewhat inconsistent visual cues to distinguish between example

sentences, part of speech markers, and actual definitions, we were forced to employ

a complex heuristic to parse out the needed information. During development, we

incrementally chose a random sample of pages and compared our results with the

actual page content. When heuristic revisions were warranted, we made them and

performed complete regression tests on previously sampled pages to ensure consis-

tency. Thus, we assert without further clarification that we are highly confident

in the correspondence between our gathered dictionary and the underlying source

of the naver.com dictionary.

Preprocessing the Dictionary

In order to facilitate speedy processing and moreover to exactly bound the

number of candidate words reachable from each English source word in a random

walk of length 2 along our dictionary graph, we preprocess the dictionary as de-

14

tailed in Algorithm 1. In addition to speed and bounding concerns, we must handle

the non-trivial peculiars of arbitrary lookups in a roughly lemmatized dictionary

and preservation of word forms through random walks. We perform this analy-

sis using the CELEX database (Baayen et al., 1995), which provides interfaces for

mapping arbitrary English words to their lemmas, querying for lemma syntactic

(sub)classes, and discovering the morphological inflectional features of arbitrary

words, and a standard stop word filter to remove function and other overly com-

mon words (see Appendix A for a full list of the stop words used).

15

Algorithm 1 Preprocess the dictionary graph G to create a mapping of English

words wi → {wj, ...}, i 6= j for all wj reachable from wi in a random walk of length

2 along G, subject to several constraints.

Let G = (V,E) be an undirected dictionary graph, L the set of words in a

language model, B a set of stop words, and C the map of words to random walk

candidates, initially empty

for words wi ∈ L do

Let I be the set of inflectional features of wi, and Ci the set of random walk

candidates for wi, initially {}

for lemmas l of wi do

if l /∈ B then

Let S be the set of syntactic classes of l

for l′ generated from a random walk of length 2 in G from l do

if l′ /∈ B ∧ S ∩ {syntactic classes of l′} 6= {} then

for words w′ related to l′ do

if I ∩ {inflectional features of w′} 6= {} ∧ w′ ∈ L then

Ci ← Ci ∪ {w
′}

end if

end for

end if

end for

end if

end for

C ← C ∪ {wi → Ci}

end for

return C

3.2 Language and Sentence Models

Prior to describing our training and decoding processes, it is necessary to

first characterize our language model and method of implementing sentences and

16

language priors as wFSTs.

Language Model

For our language model, we use a Kneser-Ney smoothed trigram model

learned from a version of the British National Corpus modified to use Americanized

spellings (Chen and Goodman, 1996; Burnard, 1995). The implementation of

an n-gram model as a wFST requires that each state represent a context, and

so one must necessarily instantiate arcs for all words in the alphabet from each

state. In order to reduce model size and minimize memory usage, it is standard

practice to remove relatively uninformative higher-order n-grams from the model,

but under the wFST regime one cannot, for example, remove some trigrams from

a bigram context without removing all of them.1 Instead, we retain only the 1,000

most informative bigram contexts, as measured by the Kullback-Leibler divergence

between each bigram context and its unigram counterpart. This is in contrast

to standard cutoff models, which remove n-grams occurring less than some cutoff

number of times in the corpus. See Figure 3.1 for an example language model

transducer.

1Technically, one could add arcs to a wi−2, wi−1 context state with probabilities conditioned

only on wi−1, but the point here is that since the number of arcs leaving any given state is

predetermined by the size of our symbol alphabet, we do not gain any finite-state machine size

reduction without removing states.

17

0

1

see:see/0.00065257

2

.:./0.0014958

3

run:run/4.2494e-05

4

spot:spot/1.0698e-05

see:see/0.00071163

.:./0.014417

run:run/6.2277e-05

spot:spot/2.153e-05

5

ε:ε/0.0076634

see:see/7.6592e-06

.:./0.0048294

run:run/6.3497e-06

spot:spot/2.1951e-06

ε:ε/0.78794

see:see/6.3286e-05

.:./0.036324

run:run/0.00023336

spot:spot/1.0974e-05

ε:ε/0.0087544

see:see/4.14e-05

.:./0.079658

run:run/4.2221e-05

spot:spot/0.00043079

ε:ε/0.013634

Figure 3.1: An example language model for the sentence “see spot run.”

3.2.1 Sentence Models

Sentences are modeled as identity transducers, i.e. wFSTs with n+1 states

for a sentence of length n and a single arc between each state 0 ≤ i < n and state

i+ 1 labeled with input and output token i from the sentence and weight 1̄.

18

3.3 Training

In this section, we describe the noise model parameter training process due

to Park and Levy (2011) and Eisner (2002). Additionally we describe our use of the

BFGS and L-BFGS-B algorithms (Fletcher, 1970; Byrd et al., 1995; Nocedal and

Wright, 1999) to perform quasi-Newton optimization of parameters from sufficient

statistics in the M-step.

At a high level, we train our models by holding language model parameters

constant and using expectation maximization (Dempster et al., 1977) to learn noise

model parameters. This process proceeds as outline in Section 2.2, namely by be-

ginning with initial parameter values in the M-step, building each noise model and

gathering expected arc traversal counts over the training set as sufficient statistics

for the E-step, and then updating parameter values and repeating the process until

convergence. We implement the training system as a client-server model in a com-

bination of Java, R (R Development Core Team, 2010), C, and C++, notably using

OpenFST (Allauzen et al., 2007) and the V-expectation semiring code of Dreyer

et al. (2008).

3.3.1 M-step

We begin the training process by initializing all parameters to some appro-

priate values. In all subsequent iterations, we use the expected arc traversal counts

computed during the E-step to recompute the parameters for each noise model by

maximizing the conditional probability of the expected counts with respect to the

parameters. More concretely, we wish to compute argmax
λ
f(γ;n,p), where γ is

a vector of sufficient statistics, λ is a vector of noise model parameters, p is the

vector of probabilities which may be functions of λ and are associated with each

arc counted in γ, n is the number of training examples considered, and f is the

probability mass function of the multinomial distribution, formally defined as

f(γ;n,p) =







n!∏
i γi!

∏

i p
γi
i if

∑

i γi = 1

0 otherwise
. (3.1)

19

The combinatorial term and all terms in the product involving some pi which is

not a function of λ in Equation 3.1 are independent of λ in the argmax, and so

we may disregard them for simplicity.

The maximization process then proceeds in the standard way. Wherever

possible, we compute the gradient of f(γ;n,p) with respect to each λj , set it to

0, and solve for λj. In a simple coin flip model, i.e. one where pi = λj and

pi+1 = 1−λj , this amounts to setting λj =
γi

γi+γi+1
, the normalized expected count

of the arc labeled with λj .

In more complex models where a closed form computation is not possible,

however, we must employ an optimization algorithm to compute the argmax de-

scribed previously. For this, we compute closed-form gradients and plug them into

the optim function provided by the R language (R Development Core Team, 2010),

specifically using the BFGS and L-BFGS-B methods (Fletcher, 1970; Byrd et al.,

1995; Nocedal and Wright, 1999). For additional speed, we implement all functions

and gradients in a C language shared library, calls to which we wrap in R functions

for use with optim.

3.3.2 E-step

For our E-step, we begin by reading in a list of training sentences and creat-

ing an identity transducer for each. Then, using as our alphabet the set of symbols

from all training sentences in this batch, we work backwards to create a transducer

for each specified noise model. As each noise model may add additional symbols,

its input alphabet is always used as the output alphabet of the proceeding trans-

ducer. Throughout this process, we annotate relevant arcs with the V-expectation

semiring of Eisner (2002), which we define for reference in Table 3.1, in order

to keep track of the arcs traversed in any given transduction. After noise model

construction is complete, we use the input alphabet of the final model to create

a transducer modeling the prior probability of all possible n-gram combinations

from the alphabet. In order to facilitate the computation of sufficient statistics, we

additionally replace all language model input symbols and sentence model output

symbols with the empty symbol ǫ.

20

Table 3.1: The V-expectation semiring of Eisner (2002). val(π) ∈ V is a vector
space representing the arcs, features, or coin flips encountered along some path π.

K ∈ R≥0 × V

(p1, v1)⊕ (p2, v2)
def

= (p1 + p2, v1 + v2)

(p1, v1)⊗ (p2, v2)
def

= (p1p2, p1v2 + v1p2)

if p∗ defined, (p, v)∗
def

= (p∗, p∗vp∗)

0̄
def

= (0, 0)

1̄
def

= (1, 0)

Having completed transducer construction, we compose the language and

noise models with each sentence model in turn, which produces a transducer with

only ǫ-labeled arcs, and use ǫ-removal to move expectation information into a single

state from which we can easily read off the expected traversal count of each arc

labeled previously thanks to the V-expectation semiring’s bookkeeping (Eisner,

2002; Mohri, 2001). See Figure 3.2 for a graphical depiction of the composition

and ǫ-removal processes. We repeat this process over a batch of training sentences

and add the results together to yield a final vector of expected counts, which we

pass back to the M-step. This process goes back and forth from E- to M-step until

the parameters converge within some threshold.

21

s, the sentence transducer n, the noise model transducer

0 1
the:ε/1

2
chief:ε/1

0

the:the/1

chief:chief/(1-λ)[1=(1-λ)]

head:chief/(λ/2)[2=(λ/2)]

leader:chief/(λ/2)[2=(λ/2)]

l, the language model transducer l ◦ n ◦ s, the composed transducer

0

ε:the/(1/2)

ε:chief/(1/12)

ε:head/(1/4)

ε:leader/(1/6)

0 1
ε:ε/(1/2)

2

ε:ε/((1-�)/12)[1=((1-�)/12)]

ε:ε/(�/4)[2=(�/4)]

ε:ε/(�/6)[2=(�/6)]

l ◦ n ◦ s after ǫ-removal

0/((1+4λ)/24)[1=((1-λ)/24),2=(5λ/24)]

Figure 3.2: Simplified depiction of the E-step for the sentence “the chief” under
one of our random walk noise models. The pictured transducers are the observed
sentence s, a noise model n with parameter λ, a unigram language model l repre-
senting the normalized frequency of each word, the fully composed model l ◦ n ◦ s,
and l ◦ n ◦ s after ǫ-removal.

3.3.3 Online EM Settings and Testing for Convergence

Liang and Klein (2009) report that online expectation maximization not

only converges in fewer iterations but also tends to find better parameter choices.

We attempt to test their assertion by comparing the performance of batch versus

22

online EM in several of the experiments reported in Chapter 5. We note that

this is an improvement over Park and Levy (2011) and West et al. (2011), which

use only batch EM. As reported in Section 2.2, we interpolate between parameter

values computed in mini-batches of 100 example sentences using ηk = (k + 2)−α

and α = 1, where k is the number of mini-batches thus far covered and α is set to

interpolate in the most conservative manner possible.

We test for convergence after each complete iteration by computing the

amount by which the ratio of previous to current iteration values for each model

parameter deviates from 1. If this deviation is less than some threshold ∆, then

we say that the model has converged and discontinue training. More concretely,

we say that the model has converged if ∀λ, |λi−1+ǫ

λi+ǫ
− 1| ≤ ∆, where ǫ is some small

value (Java’s Double.MIN VALUE) used to prevent division by 0.

3.4 Decoding

The decoding or inference process is performed in much the same way as

the E-step of training. The main difference for decoding is that we use the nega-

tive log Viterbi semiring for computing shortest paths instead of the V-expectation

semiring. We first build a new noise model for each sentence using the parameter

values learned during training. Then, the language, noise, and sentence models

(sans the ǫ substitutions performed during training) are composed together, and

the shortest, i.e. most probable path is computed. The resulting transducer con-

tains a single path from which we can read off the observed sentence from the

output symbols and the corrected sentence from the input symbols.

3.5 Evaluation

The most probable unobserved sentence w′ from which the observed sen-

tence w was generated under our model, ŵ′ = argmax
w

′ p(w′) p(w|w′), can be

read off from the input of the transducer produced during the decoding process. In

23

order to evaluate its quality versus the observed ESL sentence, we use the METEOR2

and BLEU evaluation metrics for machine translation (Lavie and Agarwal, 2007; Pa-

pineni et al., 2002). This evaluation is performed using a set of human-corrected

sentences gathered via Amazon Mechanical Turk (AMT), an online service where

workers are paid to perform a short task, and further filtered for correctness by an

undergraduate research assistant. 8 workers were assigned to correct each sentence

from the development and evaluation sets described in Section 3.1, and so after

filtering we had 8 or fewer unique corrected versions per sentence available for

evaluation. We note that the use of METEOR and BLEU is justified inasmuch as the

process of grammar correction is translation from an ungrammatical “language”

to a grammatical one (Park and Levy, 2011). However, it is far from perfect, as

we shall see in Chapter 5.

While human evaluation is far too costly to attempt at every step during

development, it is worthwhile to examine our corrections through a human eye for

final evaluation, especially given the somewhat tenuous suitability of METEOR and

BLEU for our evaluation task. In order to facilitate this, we designed a simple task,

again using AMT, where native English speakers are presented with side-by-side

ESL and corrected sentences and asked to choose which is more correct. Workers

are instructed to “judge whether the corrected sentence improves the grammat-

icality and/or fluency of the ESL sentence without changing the ESL sentence’s

basic meaning.” They are then presented with two questions per sentence pair:

1. Question: “Between the two sentences listed above, which is more correct?”

Answer choices: “ESL sentence is more correct,” “Corrected sentence is more

correct,” “Both are equally correct,” and, “The sentences are identical.”

2. Question: “Is the meaning of the corrected sentence significantly different

from that of the ESL sentence?”

2Although the METEOR “synonymy” module may initially seem appropriate to our evaluation

task for the random walk models, we find that it does little to improve or clarify evaluation results.

For that reason, and moreover since we do not wish for differing forms of the same lemma to

be given equal weight in a grammar correction task, we instead use the “exact” module for all

evaluation in this work.

24

Answer choices: “Yes, the two sentences do not mean the same thing,” and,

“No, the two sentences have roughly the same meaning.”

Each task is 10 sentences long, 3 of which are identical filler sentences. When a

worker mislabels more than one sentence as identical in any single task, the results

for that task are thrown out and resubmitted for another worker to complete. We

additionally require that each sentence pair be judged by 5 unique, U.S.-based

workers. We reproduce the full text of the task in Appendix B.

Chapter 4

Noise Models

Park and Levy (2011) report five different noise models, namely those mod-

eling spelling, article, preposition, word form, and word insertion errors, which they

use in a batch EM framework to correct mistakes. In this chapter, we describe two

additional noise model classes, a verb infinitive ↔ present participle model, and

several different parametrizations of the bilingual dictionary random walk model

first reported in West et al. (2011), which is the primary contribution of this work.

4.1 Infinitive ↔ Present Participle Model

4.1.1 Motivation

The word form error model of Park and Levy (2011) works by over-generating

the observed sentence to include an arc transducing from each form of an observed

word to the word itself. This includes the case of verb infinitive to present partici-

ple forms and vice versa, e.g. going ↔ go, but it misses a somewhat more subtle

case. When ESL authors mistake the infinitive for the present participle form,

they may still remember to include the preposition to before the infinitive. But it

is not sufficient to change, for example, to go to to going ; we must also delete the

preposition.

We will hereafter refer to our model of infinitive ↔ present participle pro-

duction errors as inf pp. A summary of the types of errors handled by Park

25

26

and Levy (2011)’s word form error model versus those handled by our model is

presented in Table 4.1.

Table 4.1: A summary of the types of errors corrected in our inf pp noise model
versus those corrected in the word form error model of Park and Levy (2011). The
verb to go is used as an example to illustrate transductions.

Error Type Word Form
Infinitive ↔

Present Participle
to going → to go Yes No

go → going Yes No
to go → going No Yes
going → to go No Yes

4.1.2 Implementation

We model errors by assuming that there is a uniform probability σ of erro-

neously producing to infinitive in place of present participle and a separate uniform

probability λ of committing the opposite production error. Where participle forms

map to more than one infinitive form, the transduction probability is appropriately

normalized such that
∑

w p(w|w′) = 1. We implement our model as a wFST in four

states: where the word being parsed is wi, we have two states representing wi−1 6=

to, one which transduces participle → to infinitive and the other the identity, and

two states representing wi−1 = to, one which transduces to infinitive → participle

and the other the identity. All symbols which are not to, inf, or pp are inserted

as identity arcs between the two identity states. See Figure 4.1 for a graphical

representation of the transducer.

4.1.3 Training

Four statistics are gathered during the E-step, namely the expected count

of arc traversals for each of to inf → pp, pp → to inf, and their identities. In the

M-step, we wish to maximize the probability of these statistics γ with respect to

the parameters σ and λ, which in this case is just the closed form relative frequency

27

0

finishing:finishing/1-λ

thesis:thesis/1

finish:finish/1

1

to:to/1

2

�:to/1

3

to:�/1

finish:finish/1-σ

thesis:thesis/1

finishing:finishing/1-λ

to:to/1

ε:to/1

to:ε/1

finishing:finish/λ

finish:finishing/σ

Figure 4.1: A graphical representation of the to infinitive ↔ present participle
noise model transducer as described in Section 4.1.2. We use the verb finish and
the non-verb thesis to illustrate this example.

estimate for multinomials (see Section 3.3.1 for additional details). For clarity, we

restate the closed form derivation here, beginning with the maximization equation,

σ̂ = argmax
σ

p(γσ, γ1−σ|σ)

= argmax
σ

σγσ(1− σ)γ1−σ .

Next, we convert to log space for ease of manipulation, as in

log(σγσ(1− σ)γ1−σ) = γσ log(σ) + γ1−σ log(1− σ).

We then take the derivative with respect to σ,

∂

∂σ
=

γσ
σ
−

γ1−σ

1− σ
,

which we set equal to 0 and solve for σ, yielding the update equation

σ̂ =
γσ

γσ + γ1−σ

.

28

Noting that any normalization constant disappears in the gradient, a similar pro-

cess holds for the computation of λ.

4.2 Random Walk Models

Although the models presented in Park and Levy (2011) and Section 4.1

target a wide range of spelling and grammar errors commonly observed in ESL

author-produced text, they ignore a much broader and potentially more “difficult”

class of production errors, that of word choice. The ability to select the appropriate

word or phrase to express one’s intent in context is one of the cornerstones of

language fluency, and yet the ambiguity inherent in the way natural languages

map to one another presents language learners with a significant obstacle in the

pursuit of fluent composition.

We propose that word choice production errors can be modeled as follows.

Given the dictionary graph described in Section 3.1.2, there exists some function

f 7→ [0, 1] that defines the parameters of a random walk along graph edges, condi-

tioned on the source word. By implementing this graph as a wFST and composing

it with our language model prior and sentence transducers, we can “undo” word

choice errors by considering a range of candidate words for each observed word

consistent with a generative model of word choice and evaluate them in sentence

context using the language model. We parametrize the generative model in three

different ways, initially with a uniform probability of generating an erroneous word,

and subsequently with two different distributions sensitive to observed and unob-

served unigram word frequency.

4.2.1 Implementation

For our model of word choice error, we are tasked with creating a transducer

which obeys the semantics of a random walk of length 2 across our dictionary graph,

subject to the constraints detailed in Section 3.1.2. For this, we can use a single

initial/final state with arcs labeled with unobserved words as input, observed words

as output, and a weight defined by some function f that governs the parameters

29

of a random walk across our dictionary graph. We will present three different

parametrization of f in the proceeding sections, but the structure of the transducer

implementing each model does not vary. See Figure 4.2 for an example.

0

head:head/1-λ

head:leader/(λ/2)

head:chief/(λ/2)

leader:leader/1-λ

leader:head/(λ/2)

leader:chief/(λ/2)

chief:chief/1-λ

chief:head/(λ/2)

chief:leader/(λ/2)

Figure 4.2: An example random walk transducer using the uniform walk proba-
bility parametrization described in Section 4.2.2.

4.2.2 Uniform Replacement Model

Motivation

For our first model parametrization, which we will refer to subsequently as

rw unif, we assume that the probability of arriving at some word w′ 6= w after a

random walk of length 2 from an observed word w is uniform across all w. This is

perhaps not the most plausible model, but it serves as a baseline by which we can

evaluate more complex parametrizations.

Parametrization

More concretely, we use a single parameter λ modeling the probability of

walking two steps along the dictionary graph from an observed English word w to

its Korean definition(s), and then back to some other English word w′ 6= w. Since

30

we treat unobserved words as transducer input and observed words as output, λ

is normalized by |{w|w 6= w′ ∧ w ∈ walk(w′)}|, i.e. the number of words reachable

along a random walk from w′, and p(w|w) = 1− λ such that
∑

w p(w|w′) = 1.

Training

As with inf pp, rw unif is a coin flip model, and so we need only gather

two statistics during the E-step, replace and no fix. We can use these in the same

fashion as detailed in Section 4.1.3 to derive a closed form update for our single

parameter λ.

4.2.3 Adding One-Way Word Frequency Sensitivity

Motivation

For our second random walk parametrization, which we will hereafter refer

to as rw freq unobs, we hypothesize that there is an inverse relationship between

unobserved word frequency and random walk path probability. We motivate this

by observing that when a language learner produces a common word, it is likely

that she either meant to use that word or used it in place of a rarer word that

she did not know. Likewise, when she uses a rare word, it is likely that she chose

it above any of the common words that she knows. If the word that she chose

was erroneous, then, it is most likely that she did not mean to use a common

word but could have meant to use a different rare word with a subtle semantic

difference. Hence, we should always prefer to replace observed words, regardless of

their frequency, with rare words unless the language model overwhelmingly prefers

a common word.

31

Parametrization

In order to model this hypothesis, we introduce a second parameter α, which

we use as in

p(w|w) = 1− λe− freq(w)α

p(w|w′) =
λe− freq(w′)α

|{w|w 6= w′ ∧ w ∈ walk(w′)}|
,

where freq(w′) is the unigram frequency of the unobserved word w′ from our lan-

guage model. When α > 0, this parametrization will correctly implement the

inverse relationship between unobserved word frequency and random walk path

probability described previously.

Training

Although rw freq unobs may be regarded as a coin flip model, we now have

a different coin for every unique unobserved word frequency. Thus, we find that

we must keep track of a much larger number of sufficient statistics in the E-step

in order to successfully update α and λ in the M-step. Specifically, we track γi0

and γi1 for each word wi, where the subscript i0 signifies no fix and i1 indicates

replace.

Unfortunately, we are unaware of a closed form procedure for performing

parameter updates in this case.1 As such, we must resort to the convex opti-

mization procedure detailed in Section 3.3.1. We wish as before to maximize the

conditional probability of the statistics vector γ with respect to the parameters α

and λ. This is equivalent to maximizing the log probability of γ, which we per-

form using the quasi-Newton BFGS method with R’s optim function. Although we

technically want to perform a non-linearly constrained optimization to ensure that

the probability of any given transduction is in [0, 1], we find that unconstrained

1One possibility is to bucket words by their unique frequencies and approximate the full

function by learning a separate coin flip parameter for each bucket. We took this approach in

West et al. (2011) for a similar parametrization, but we found it to be suboptimal due to sparsity

issues (the approximation learned was not at all smooth as one would expect from the underlying

function).

32

optimization remains well-behaved. We present the function being maximized and

its gradients with respect to each parameter for reference.

p(γ|α, λ) =

(

∏

i

(

1− λe− freq(wi)α
)γi0

)(

∏

i

(

ciλe
− freq(wi)α

)γi1

)

log (p(γ|α, λ)) =

(

∑

i

γi0 log
(

1− λe− freq(wi)α
)

)

+

(

∑

i

γi1 log ci

)

+

(

log λ
∑

i

γi1

)

−

(

∑

i

γi1 freq(wi)
α

)

∂

∂α
=

(

∑

i

γi0λe
− freq(wi)α freq(wi)

α log (freq(wi))

1− λe− freq(wi)α

)

−

(

∑

i

γi1 freq(wi)
α log (freq(wi))

)

∂

∂λ
= −

(

∑

i

γi0e
− freq(wi)α

1− λe− freq(wi)α

)

+

(

1

λ

∑

i

γi1

)

,

where ci = |{wj|wj 6= wi ∧ wj ∈ walk(wi)}|. Notice that ci is independent of α and

λ and therefore drops out of the maximization function.

4.2.4 Adding Two-Way Word Frequency Sensitivity

Motivation

For our final and most complex parametrization, which we will refer to as

rw freq both, we extend the hypothesis behind rw freq unobs to include sensi-

tivity to observed as well as unobserved word frequency. Specifically, we postulate

that in addition to preferring to replace observed words with rare words, we should

also place a non-uniform distribution over replacement arcs to prefer those with

rarer observed word output, thereby imposing a penalty for replacing common

observed words. We justify this in much the same way, namely with the asser-

tion that language learners are likely to be most familiar with common words and

therefore more adept at using them than their rarer counterparts.

33

Parametrization

In order to model this hypothesis, we build in a third parameter β, which

we use as follows.

p(w|w) = 1− λe− freq(w)α

p(w|w′) =
λe− freq(w′)αe− freq(w)β

∑

{w∗|w∗ 6=w′∧w∗∈walk(w′)} e
− freq(w∗)β

When α > 0 and β > 0, this parametrization will correctly impose a preference for

using rare unobserved words as replacements and a penalty for replacing common

observed words.

Training

For this parametrization, we have moved away from any reasonable notion of

a coin flip. Instead, we have what amounts to a many-sided die, one per unobserved

word, whose throwing distribution depends on the frequency of the unobserved

word and that of all the words that it may walk to in our dictionary graph. Thus,

we must in the E-step track an expected count statistic for each side of every

attested die in order to update α, β, and λ in the M-step. We represent these

statistics as before in a vector γ where γi0 is the no fix count for word i, and γij

is the count of replacements from word i to word j.2

As in Section 4.2.3, we maximize the log probability of our sufficient statis-

tics with respect to our parameters, but in contrast to the other random walk

models, we find it necessary in this case to impose constraints on the optimization

process. The actual constraint that we wish to enforce is ∀w′, 0 ≤ λe− freq(w′)α ≤ 1,

but we find it sufficient to use a set of linear inequality constraints instead. Specif-

ically, we impose the box constraints 0 ≤ λ ≤ 1, −1 ≤ α ≤ 1, and −1 ≤ β ≤ 1

using the L-BFGS-B method (Byrd et al., 1995) implemented as part of optim.

We present the function being maximized and its gradients with respect to each

2Naturally, our actual implementation deals with the sparseness of the γ vector accordingly.

34

parameter for reference.

p(γ|α, β, λ) =

(

∏

i

(

1− λe− freq(wi)α
)γi0

)

(

∏

i,j

(

λe− freq(wi)αe− freq(wj)β

∑

k e
− freq(wk)β

)γij
)

log (p(γ|α, β, λ)) =

(

∑

i

γi0 log
(

1− λe− freq(wi)α
)

)

+

(

log (λ)
∑

i,j

γij

)

−

(

∑

i

(

∑

j

γij

)

freq(wi)
α

)

−

(

∑

i,j

γij freq(wj)
β

)

−

(

∑

i

(

∑

j

γij

)

log

(

∑

k

e− freq(wk)
β

))

∂

∂α
=

(

∑

i

γi0λe
− freq(wi)α freq(wi)

α log (freq(wi))

1− λe− freq(wi)α

)

−

(

∑

i

(

∑

j

γij

)

freq(wi)
α log (freq(wi))

)

∂

∂β
= −

(

∑

i,j

γij freq(wj)
β log (freq(wj))

)

+

(

∑

i

(

∑

j

γij

)

∑

k e
− freq(wk)

β

freq(wk)
β log (freq(wk))

∑

k e
− freq(wk)β

)

∂

∂λ
= −

(

∑

i

γi0e
− freq(wi)α

1− λe− freq(wi)α

)

+

(

1

λ

∑

i,j

γij

)

where all wk in the sums are in the set {wk|wk 6= wi ∧ wk ∈ walk(wi)} for the

appropriate wi.

4.2.5 Constraining Random Walk Degree

We have thus far proceeded by describing the construction of an ideal noise

model that completely implements the dictionary graph described previously. How-

ever, due to the size of the dictionary graph, such a model would be computation-

ally prohibitive. After all preprocessing, the range of random walk candidates is

1683 with a mean of 47 and standard deviation of 82.2. To put these numbers in

35

perspective, let us imagine that we are processing a three word sentence. Each

word will generate an average of 47 candidate arcs plus an arc for itself, bringing

our symbol count up to 144 from 3. From there, we must generate a language

model. Under the bigram regime, this would meaning having an initial state plus

one state per symbol and 144 arcs leaving each, bringing our language model edge

count to over 20,000.3 Recalling from Section 2.3 that the time complexity of the

composition operation is O(v1v2d2(log d1 +m1)) when the first transducer is arc-

sorted, the addition of each unique candidate word imposes a quadratic increase in

computation time since v1 and d2 both increase linearly. Building a language model

using the full dictionary graph over a mini-batch of only 100 sentences generates

transducers in the gigabyte range and quickly becomes prohibitive for training over

a reasonably-sized sample of example sentences. This issue is further exacerbated

when composing the random walk model with other noise models that themselves

generate many candidates for each observed word, e.g. the spelling correction

model of Park and Levy (2011).

Thus, even with a conservative estimate of candidate overlap, modern ma-

chinery simply cannot handle the large amount of data that would need to be

generated and processed for even a small batch of sentences. In order to combat

this issue, we employ a simple heuristic that chooses those words with the high-

est unigram frequencies from the set of possible random walk candidates for each

word.4 In West et al. (2011), we reported on models using a cutoff of 5 and 10

candidates per word, but our experiments demonstrated little difference in final

results. As such, we will use a cutoff of 10 candidate words for all experiments

reported in this thesis.

3It may initially seem naive to generate the language model transducer with so many extra-

neous arcs. However, as the model framework is designed to handle arbitrary noise models in

cascades, keeping track of the context states and arcs that are actually needed can become quite

complex. On the other hand, doing so successfully has the potential to significantly speed up our

model and is a viable subject for future study.
4In fact, an omitted portion of our dictionary preprocessing algorithm presorts the candidates

for each word by unigram frequency

Chapter 5

Results and Analysis

In total, we ran eight experiments, one trained with batch EM and one

with online EM for each noise model presented in Chapter 4. In each, we trained

over a set of 10,000 sentences randomly selected from our training set and then

decoded the 1,007 sentences from our evaluation set for judgment and analysis. We

found that the rw unif, rw freq unobs, and rw freq both models all converged to

within a delta of 5% after roughly 10 iterations, although some continued oscillating

well afterward. The inf pp model took somewhat longer, and so we present the

results of those two experiments after 50 iterations.

We will proceed with our results presentation in two stages. In the first, we

will present the evolution of parameter values over time for our series of otherwise

identical batch and online EM experiments. In the proceeding sections, we will

present the BLEU and METEOR scores for each experiment, the results of our AMT

judgment task on decoded sentences, and an accompanying analysis of individual

examples and trends. Our results were somewhat disappointing across the board,

and so as a sanity check and to test our common sense hypotheses about parameter

values versus the learned values, we additionally ran a decoding test and judgment

task on versions of each of the four models using initial (untrained) parameter

values.

36

37

5.1 Batch v. Online EM

Liang and Klein (2009) report that online EM not only converges faster

for many natural language processing tasks, but also has the advantage of find-

ing better parameters upon convergence. In our experiments, we achieve similar,

though not identical results. Beginning with the inf pp experiments plotted in

Figure 5.1, we see that online EM converges to a much smaller parameter value

for λ, the probability of transducing from the present participle to infinitive verb

form. In fact, both models find very small values for λ, which we interpret as

the unfortunate consequence of a more general issue with Park and Levy (2011)’s

model, namely that all else being equal, shorter sentences are always preferred.1

The λ learned under both regimes is small enough that no present participle to

infinitive corrections are made during decoding for the online model, and only a

single such correction is made under the batch model. As such, the difference be-

tween online and batch EM in this case is not actually significant. The parameters

learned while training rw unif exhibit a similar lowering effect under online EM

(see Figure 5.2), but we do find that the model converges faster in this case when

compared to batch EM.

The remaining experiments reveal more interesting results. Looking now to

Figures 5.3 and 5.4, we immediately notice that the learning process under online

EM is not nearly as smooth as with its batch counterparts. This actually leads

to slower convergence for the online versions of these models, but with the added

assurance that training has explored a larger section of the parameter space before

converging. The plot of α in Figure 5.4 epitomizes this behavior. However, the

results are oddly inconsistent. Noting that a value of approximately α = 0.1 (or

−0.1) maximizes the variance in e− freq(w′)α along the word frequency axis, we see

that online EM learns a weaker dependence on unobserved word frequency than

batch EM in rw freq unobs, but in rw freq both, the α learned under online EM

connotes a stronger dependence than that of batch EM. This is especially surprising

in that both online and batch EM eventually converge to β ≈ 1, a practical non-

1Since path probability is computed via the ⊗ operation under the probability semiring, the

addition of any arc with a weight of less than one invariably decreases the probability of a path.

38

dependence on observed word frequency, and as such one would suppose that

the other parameters should be very much the same as in rw freq unobs. We

shall explore the results of using these parameters in the decoding process in the

proceeding sections.

0 10 20 30 40 50

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Iteration

V
al

ue

Batch: λ
Online: λ

0 10 20 30 40 50
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Iteration

V
al

ue

Batch: σ
Online: σ

Figure 5.1: Plots of parameter values for the inf pp model over time for 50
training iterations. λ is the present participle→ infinitive replacement parameter,
and σ represents the probability of transducing in the opposite direction.

5.2 Infinitive ↔ Present Participle Model

Table 5.1: Final parameter values after 50 iterations for inf pp where σ is the
probability of correcting infinitive→ present participle and λ is the opposite trans-
duction probability.

Initial Values Batch EM Online EM
σ 0.01 0.267492 0.253619
λ 0.01 0.004848 1.31538e-12

The initial and final parameter values for the inf pp model are presented in

Table 5.1, the METEOR and BLEU scores in Table 5.2, and the AMT judgment task

39

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Iteration

V
al

ue

Batch: λ
Online: λ

Figure 5.2: Plot of parameter values for the rw unif model over time for 10
training iterations. λ is the uniform probability of word replacement in this model.

0 2 4 6 8 10

0.
08

5
0.

09
0

0.
09

5
0.

10
0

Iteration

V
al

ue

Batch: α
Online: α

0 2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

Iteration

V
al

ue

Batch: λ
Online: λ

Figure 5.3: Plots of parameter values for the rw freq unobs model over time for
10 training iterations. λ is the base replacement probability in this model, and α
represents the replacement variability related to unobserved word frequency.

results in Figure 5.5. The primary behavior that we observe is a strong preference

for present participles in place of to infinitive forms, to the point where not a single

correction is made in the opposite direction under the online model parameters.

40

0 2 4 6 8 10

0.
09

5
0.

10
0

0.
10

5
0.

11
0

0.
11

5
0.

12
0

Iteration

V
al

ue

Batch: α
Online: α

0 2 4 6 8 10

0.
5

1.
0

1.
5

2.
0

Iteration

V
al

ue

Batch: β
Online: β

0 2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

Iteration

V
al

ue

Batch: λ
Online: λ

Figure 5.4: Plots of parameter values for the rw freq both model over time
for 10 training iterations. λ is the base replacement probability in this model, α
represents the replacement variability related to unobserved word frequency, and
β represents the variability related to observed word frequency.

As mentioned in Section 5.1, this is a direct result of a more general systemic issue,

namely that the framework of Park and Levy (2011) prefers shorter sentences. The

problem persists even when decoding using initial parameter values, which we set

to 0.01 for both σ and λ.

This is not to say that the model corrections are uniformly bad, of course. In

41

Table 5.2: METEOR and BLEU scores and number of sentences corrected (out of
1007) for online and batch variations of the inf pp model. Better/Worse indicates
the number of corrected sentences scored higher/lower than the associated ESL
sentence. Note that sentences having identical scores are not listed in these counts.

METEOR BLEU Total Num
(Better/Worse) (Better/Worse) Corrected

ESL baseline 0.821 0.715634 –
inf pp init vals 0.820577 (0/5) 0.715142 (0/5) 5
inf pp batch EM 0.812668 (9/78) 0.705197 (8/78) 87
inf pp online EM 0.812813 (9/76) 0.705465 (8/76) 85

1.6%

1.5%

0.0%

13.7%

13.9%

9.1%

6.2%

6.1%

9.1%

62.2%

61.8%

68.2%

0.8%

0.8%

0.0%

15.5%

15.9%

13.6%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

inf_pp online EM

inf_pp batch EM

inf_pp init vals

Corrected better/Same meaning Corrected better/Different meaning

ESL better/Same meaning ESL better/Different meaning

Both equally good/Same meaning Both equally good/Different meaning

Figure 5.5: Human judgments of inf pp-corrected sentences gathered using
AMT. The items listed in the legend are answers to the questions Between the
[original (ESL) and corrected] sentences, which is more correct? / Is the meaning
of the corrected sentence significantly different from that of the ESL sentence? See
Section 3.5 for methodological details.

fact, the METEOR and BLEU scores are only loosely correlated with actual correction

quality, a trend that we will observe throughout this chapter. A large number of

the changes are relatively harmless, e.g. to take one of my cousin jennifer as an

42

example , ... → taking one of my cousin jennifer as an example , ..., where there

exists an equally valid interpretation under which each form is correct. Others are

actually rather good, e.g. to be a normal entertainer is not so hard . → being

a normal entertainer is not so hard . In still other cases, the correction simply

fails to unravel an already muddled sentence, e.g. this is because not everyone has

ability for leadership and they must to have responsibility about negative accident

. → this is because not everyone has ability for leadership and they must having

responsibility about negative accident . But then there are also a good number of

corrections that simply should not have been corrected, e.g. first , its aspect of

violation may influence people to do violent act . → first , its aspect of violation

may influence people doing violent act . The language model may prefer doing

in the immediate context, but making such a replacement changes the sentence

meaning and in some cases even renders a correct sentence ungrammatical. The

judgment task results confirm that this poor correction behavior is the norm,

and although training appears to have a minor positive effect on overall quality,

upon closer inspection, the initial value corrections are just a subset of the trained

corrections, only one of which is really very good.

Interestingly, an earlier, under-trained version of the model with λ ≈ 0.020

and σ ≈ 0.038 produced almost uniformly good or harmless corrections over our

development set, e.g. to illustration , when we learn playing tennis , ... → to

illustration , when we learn to play tennis , ... and another my opinion is that

becoming easier making food stimulus my desire for making more specific food .

→ another my opinion is that becoming easier to make food stimulus my desire

for making more specific food . We are not well-placed to say why such a disparity

between development and evaluation set results should occur, but the fact remains

that to infinitive ↔ present participle mistakes do occur in both directions in our

dataset and that our inf pp model is capable of intelligently correcting them in

at least some cases. There is thus a strong motivation in future work to develop a

method of normalizing for sentence length analogous to the word insertion penalty

common in speech processing (Takeda et al., 1998) such that trivial MLE solutions

such as our extremely low λ values are not learned during the optimization process.

43

5.3 Random Walk Models

Table 5.3: Final parameter values after 10 iterations for all random walk models.
See Section 4.2 for parametrization details.

Initial Values Batch EM Online EM
rw unif λ 0.25 0.026210 0.0075548

rw freq unobs α 0.1 0.088620 0.0837149
rw freq unobs λ 0.25 0.0354126 0.0133420
rw freq both α 0.1 0.0914392 0.0968309
rw freq both β 0.1 0.999 0.999043
rw freq both λ 0.25 0.839603 0.953206

Table 5.4: METEOR and BLEU scores and number of sentences corrected (out of
1007) for online and batch variations of all random walk models. Better/Worse
indicates the number of corrected sentences scored higher/lower than the associated
ESL sentence. Note that sentences having identical scores are not listed in these
counts.

METEOR BLEU Total Num
(Better/Worse) (Better/Worse) Corrected

ESL baseline 0.821 0.715634 –
rw unif init vals 0.81494 (1/73) 0.706141 (1/76) 98
rw unif batch EM 0.819977 (1/12) 0.713769 (1/13) 25
rw unif online EM 0.820728 (0/3) 0.715414 (0/3) 9
rw freq unobs init vals 0.816419 (1/55) 0.708953 (1/57) 79
rw freq unobs batch EM 0.820127 (1/11) 0.714081 (1/12) 24
rw freq unobs online EM 0.82054 (0/5) 0.714737 (0/6) 11
rw freq both init vals 0.816935 (1/49) 0.709692 (1/51) 71
rw freq both batch EM 0.812502 (1/104) 0.702765 (1/109) 132
rw freq both online EM 0.812502 (1/104) 0.702765 (1/109) 132

The initial and final parameter values for all random walk model experi-

ments are presented in Table 5.3, the METEOR and BLEU scores in Table 5.4, and the

AMT judgment task results in Figure 5.6. We will begin by analyzing the trained

model results in aggregate and then proceed to a discussion of model disparities,

including the effect of using initial parameter values for decoding.

44

22.0%

22.0%

19.0%

26.0%

19.6%

18.8%

29.3%

18.8%

20.2%

20.7%

20.7%

24.5%

30.0%

29.0%

22.8%

22.0%

27.7%

22.6%

22.8%

22.8%

22.3%

14.0%

20.6%

23.6%

14.6%

20.5%

22.1%

21.1%

21.1%

20.8%

12.0%

12.1%

21.2%

12.2%

13.4%

20.8%

3.5%

3.5%

4.3%

6.0%

4.7%

4.1%

7.3%

5.4%

4.3%

9.8%

9.8%

9.2%

12.0%

14.0%

9.5%

14.6%

14.3%

10.0%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

rw_freq_both online EM

rw_freq_both batch EM

rw_freq_both init vals

rw_freq_unobs online EM

rw_freq_unobs batch EM

rw_freq_unobs init vals

rw_unif online EM

rw_unif batch EM

rw_unif init vals

Corrected better/Same meaning Corrected better/Different meaning

ESL better/Same meaning ESL better/Different meaning

Both equally good/Same meaning Both equally good/Different meaning

Figure 5.6: Human judgments of random walk model-corrected sentences gath-
ered using AMT. The items listed in the legend are answers to the questions
Between the [original (ESL) and corrected] sentences, which is more correct? / Is
the meaning of the corrected sentence significantly different from that of the ESL
sentence? See Section 3.5 for methodological details.

45

At first glance, the experimental results are less than satisfactory. However,

as with the inf pp model results, METEOR and BLEU do not tell the whole story.

At a high level, these metrics work by computing the level of agreement, e.g.

unigram and bigram precision, between the sentence being evaluated and a pool

of “correct” sentences (Lavie and Agarwal, 2007; Papineni et al., 2002). When

the correct sentences agree strongly with each other, the evaluated sentence is

heavily penalized for any departures from the correct sentence pool. This sort of

penalization can occur even when the model-corrected sentence is a perfectly valid

correction that just had the misfortune of choosing a different replacement word

than the majority of the human workers. For example, one ESL sentence in our

evaluation set reads, progress of medical science helps human live longer. All of

our (trained) models correct this to progress of medical science helps people live

longer, but none of the workers correct to “people,” instead opting for “humans.”

This issue is exacerbated by the fact that AMT workers were instructed to change

each ESL sentence as little as possible, which helps their consistency but hurts

these particular models’ evaluation scores.2

With the exception of some mostly harmless but ultimately useless ex-

changes, e.g. changing “reduce mistakes” to “reduce errors,” the models actually

do fairly well when they correct ungrammatical words and phrases. As we alluded

to in Chapter 1, all of our models correct the sentence to begin with, i’d rather not

room with someone who is a entire stranger to me from our development set to

to begin with, i’d rather not room with someone who is a complete stranger to

me. But only 2 out of 5 human workers make this correction, 2 retain “entire,”

and 1 removes it altogether. As another example, all model variations correct

however, depending merely on luck is very dangerous from our evaluation set to

however, depending solely on luck is very dangerous. However, only 1 worker cor-

rects “merely” to “solely,” with the others either preferring to retain “merely” or

leaving it out entirely.

None of this is to say that the models suffer only from an unfortunate

2To be perfectly clear, we refer here to the AMT workers tasked with creating our pool of

correct sentences, not those who participated in the judgment task.

46

difference in correction bias relative to the workers, or even that the models make

good corrections a majority of the time. In fact, they make a range of false-

positive corrections as well.3 These seem to fall into three major categories: slight

preferences for similar words that don’t fit in the overall context of the sentence

or change its meaning in an undesired way, e.g. changing “roommate” to “lodger”

in you and your roommate must devide [sic] the housework, strong preferences

for very common words in the local context that render the corrected sentence

ungrammatical, e.g. changing “compose” to “take” in first, during childhood years,

we compose our personality, and misinterpretations of ambiguous parts of speech

that cause nouns to be replaced with verbs, etc., e.g. changing “circumstance” to

“go” in . . . that help you look abound your circumstance and find out

Many of these issues can be blamed at least partially on the myopia of the

language model, which, for example, vastly prefers “go and find” to “circumstance

and find.” However, they can also be attributed to the motivational intuition

for rw freq unobs, which states that we should avoid replacing observed words

with common alternatives. While Table 5.3 does demonstrate that rw freq unobs

and rw freq both learn to prefer rarer alternative candidates (see Figure 5.7 to

get a sense of exactly how much), overly common words are still preferred to a

fault in many corrections. This can be traced to the truncation policy detailed in

section 4.2.5, which selects only the highest frequency words from an over-sized

set of random walk candidates. While it is unclear how to intelligently select a

good candidate set of manageable size, a policy that butts heads with our intuition

about which words we should be correcting is clearly not the right one.

5.3.1 Uniform Replacement Model

Despite its simplicity, rw unif performs relatively well. The initial value

appears to be much too high to be at all discriminating in making corrections,

3Although Type I errors are of course undesirable, Gamon et al. (2009) suggest that learners

are able to effectively distinguish between good and bad corrections when presented with possible

error locations and scored alternatives. Such an interactive system is beyond the scope of this

thesis but nonetheless feasible without significant model modification.

47

1e−06 1e−05 1e−04 1e−03 1e−02

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Word Frequency (log scale)

ex
p(

−
fr

eq
^α

)

rw_freq_unobs batch
rw_freq_unobs online
rw_freq_both batch
rw_freq_both online

Figure 5.7: Plot of efreq(w
′)α for a representative range of word frequencies using

the values of α learned for rw freq unobs and rw freq both under batch and
online EM training regimes. Note that the range of transduction variability due
to unobserved word frequency is roughly 0.25.

but the trained values are low enough that they achieve some measure of success

according to our AMT judgment task. The worker judgments expose one partic-

ularly interesting finding: When the corrected sentence is judged to be at least

as grammatical as the ESL sentence, it also tends to preserve the ESL sentence’s

meaning. However, when the ESL sentence is judged more correct, the meaning

preservation trend is reversed. This observation leads us to believe that incorpo-

rating some measure of semantic distance into our random walk function f might

prove effective. We note that this trend breaks down on the ESL-more-correct side

when we decode with initial values, but this is to be expected.

48

5.3.2 One-Way Word Frequency Sensitivity Model

As in the AMT results for rw unif, we observe a strong correlation between

sentence quality judgment and meaning preservation. Additionally, the value of α

learned in rw freq unobs is nearly the strongest dependence on unobserved word

frequency possible under our model. Despite this, however, the BLEU, METEOR, and

AMT results are not much different from the base model, a flaw which we trace

as before to the truncation policy detailed in Section 4.2.5. There might be some

further headway to be made with a function capable of describing a stronger or

otherwise differently shaped frequency dependence, e.g. the logit function.

5.3.3 Two-Way Word Frequency Sensitivity Model

Despite our high hopes, the rw freq both model fails rather catastrophi-

cally relative to the other models. This is especially obvious when one considers

the data from Figure 5.6, in particular the way in which the sentence quality judg-

ment by meaning preservation correlation breaks down. The α value learned is

very similar to that of rw freq unobs, but the model does not learn any signif-

icant dependence on observed word frequency with β, essentially reducing it to

its one-way word frequency counterpart. Rather than learning a similar λ value

to rw freq unobs as one might expect, however, rw freq both learns, depending

on freq(w′), to reserve nearly half of its transduction probability mass for correc-

tions. The results when using this extremely high value of λ are commensurately

unstable.

Our best explanation for this instability lies in our use of approximate linear

box constraints to bound what is actually a more complex, non-linearly constrained

problem. Although L-BFGS-B does consistently converge within our constraints,

unconstrained quasi-gradient and global methods find very different values at each

step. Thus, while we are not convinced that our model is incorrect in its formu-

lation, our M-step is almost certainly ill-posed. We will need in future work to

either engage in a non-linear programming exercise or find a more satisfactory way

to linearly constrain our problem.

Chapter 6

Conclusion and Future Work

We have presented two novel noisy channel models for correcting verb in-

finitive/past participle confusion and word choice production errors and a demon-

stration of the application of online expectation maximization to the model of Park

and Levy (2011). Although our experimental results are mixed, we believe that

our random walk model especially constitutes an interesting and potentially very

fruitful approach to ESL grammar correction.

There are a number of opportunities for improvement available. Using a

richer language model, such as a PCFG, would undoubtedly improve our results.

Although our training process would need to be altered quite significantly to use

a Type-2 grammar, PCFGs are closed under intersection with regular languages

(Bar-Hillel, 1964), and as such might be useful for the decoding process if not

more directly during training. As noted previously, a higher-order n-gram model

could also come into the range of feasibility should we develop a way to implement

our language model as a wFST in a less naive and more space-conscious fashion.

Noting that ESL errors tend to occur in groups within sentences and are often

interdependent, the addition of other noise models, such as those detailed in Park

and Levy (2011), would further improve things by allowing the language model to

consider a wider range of corrected contexts around each word, as would a method

of normalizing transduction probability with respect to path length.

Our random walk model itself could also be improved by incorporating

some notion of semantic difference between observed and unobserved words, or by

49

50

learning separate parameters for different word classes. Moreover, a more disci-

plined application of convex optimization to our rw freq both model might yield

more promising results. Somewhat counter-intuitively, a structured reduction of

dictionary richness could also yield better results by limiting the breadth of ran-

dom walk candidates. Finally, a more intelligent, non-frequency-based heuristic for

truncating large sets of random walk candidates would likely foster improvement.

Appendix A

Stop Word Filter

In preprocessing our English-Korean dictionary, we removed a list of stop

words gathered from http://www.textfixer.com/resources/common-

english-words.txt. This list is fully reproduced in Table A.1.

51

52

Table A.1: A list of stopwords used in filtering random walk candidates.

a able about across after all almost also
am among an and any are as at
be because been but by can cannot could
dear did do does either else ever every
for from get got had has have he
her hers him his how however i if
in into is it its just least let
like likely may me might most must my
neither no nor not of off often on
only or other our own rather said say
says she should since so some than that
the their them then there these they this
tis to too twas us wants was we
were what when where which while who whom
why will with would yet you your

Appendix B

Amazon Mechanical Turk

Judgment Task

The following is the full text of the Amazon Mechanical Turk judgment task

outlined in Section 3.5. Note that there are ten unique sentence pairs presented

per task.

Please compare the grammaticality/fluency of the

following sentence pairs

Task Description

IMPORTANT:As this task involves judging English sentence fluency, we request

that only native English speakers participate. Please DO NOT attempt

this task if you are not a native English speaker.

The following are a list of closely-related sentence pairs. The first sentence in

each pair, labeled “ESL Sentence,” was written by a non-native English speaker,

and the second, labeled “Corrected Sentence,” is a corrected version of the ESL

sentence. One or both may contain errors (spelling, word choice, etc.). Your task

is to judge whether the corrected sentence improves the grammaticality and/or

53

54

fluency of the ESL sentence without changing the ESL sentence’s basic meaning.

More specifically, there are two parts to each question:

1. In the first part, you will be asked to judge whether the corrected sentence

improves the grammaticality and/or fluency of the ESL sentence. If you

believe that the corrected sentence is an improvement over the ESL sentence,

you should select “Corrected sentence is more correct.” If the ESL sentence is

more grammatical/fluent, you should select “ESL sentence is more correct.”

If you believe that both sentences are equally correct, you should select “Both

are equally correct,” and if the sentences are identical, that is, if every word

in the corrected sentence is the same as the ESL sentence, you should select

“The sentences are identical.”

2. In the second part, you will be asked to judge whether the basic meaning

of the two sentences is different, regardless of correctness. In response to

the question, “Is the meaning of the corrected sentence significantly different

from that of the ESL sentence,” if you believe that the meaning of the two

sentences is significantly different, please select “Yes, the two sentences do

not mean the same thing.” If the meaning of the two sentences is roughly the

same, please select “No, the two sentences have roughly the same meaning.”

Please ignore incorrect capitalization and any spaces between words and punctu-

ation.

Examples

1. • ESL Sentence: however , i am truly sure that there are a lot of advan-

tages to building restaurant .

• Corrected Sentence: however , i am very sure that there are a lot of

advantages to building restaurant .

• Answer, Part 1: Corrected sentence is more correct

• Answer, Part 2: No, the two sentences have roughly the same meaning

55

2. • ESL Sentence: one house are supposed to park one car but some people

have cars more than one .

• Corrected Sentence: one house are supposed to take one car but some

people have cars more than one .

• Answer, Part 1: ESL sentence is more correct

• Answer, Part 2: Yes, the two sentences do not mean the same thing

3. • ESL Sentence: for example , when i lived in dormitory with a student

last semester , i had so much trouble with her from cleaning the room

to locking the door .

• Corrected Sentence: for example , when i lived in house with a student

last quarter , i had so much trouble with her from cleaning the room to

locking the door .

• Answer, Part 1: Both are equally correct

• Answer, Part 2: Yes, the two sentences do not mean the same thing

4. • ESL Sentence: it could interesting to spend time with a large number

of friends .

• Corrected Sentence: it could interesting to spend time with a large

number of friends .

• Answer, Part 1: The sentences are identical

• Answer, Part 2: No, the two sentences have roughly the same meaning

Questions

1. PLEASE COMPARE THE FOLLOWING TWO SENTENCES:

ESL Sentence: 〈SENTENCE 1 ESL〉

Corrected Sentence: 〈SENTENCE 1 CORRECTED〉

Part 1: Between the two sentences listed above, which is more correct?

• ESL sentence is more correct

56

• Corrected sentence is more correct

• Both are equally correct

• The sentences are identical

Part 2: Is the meaning of the corrected sentence significantly different from

that of the ESL sentence?

• Yes, the two sentences do not mean the same thing

• No, the two sentences have roughly the same meaning

2. ...

Bibliography

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. (2007). Openfst: a

general and efficient weighted finite-state transducer library. In Proceedings of the

12th international conference on Implementation and application of automata,

CIAA’07, pages 11–23, Berlin, Heidelberg. Springer-Verlag.

Baayen, H. R., Piepenbrock, R., and Gulikers, L. (1995). The CELEX Lexical

Database. Release 2 (CD-ROM). Linguistic Data Consortium, University of

Pennsylvania, Philadelphia, Pennsylvania.

Bar-Hillel, Y. (1964). Language and information. Addison-Wesley, Reading, Mass.

Brockett, C., Dolan, W. B., and Gamon, M. (2006). Correcting esl errors using

phrasal smt techniques. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association

for Computational Linguistics, ACL-44, pages 249–256, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The

mathematics of statistical machine translation: parameter estimation. Comput.

Linguist., 19:263–311.

Burnard, L. (1995). Users Reference Guide British National Corpus Version 1.0.

Oxford University Computing Services, UK.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm

for bound constrained optimization. SIAM J. Sci. Comput., 16:1190–1208.

57

58

Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th annual meeting on Association

for Computational Linguistics, ACL ’96, pages 310–318, Stroudsburg, PA, USA.

Association for Computational Linguistics.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood

from incomplete data via the EM algorithm (with discussion). Journal of the

Royal Statistical Society B, 39:1–38.

Désilets, A. and Hermet, M. (2009). Using automatic roundtrip translation to

repair general errors in second language writing. pages 198–206. MT Summit

XII.

Dreyer, M., Smith, J. R., and Eisner, J. (2008). Latent-variable modeling of string

transductions with finite-state methods. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, EMNLP ’08, pages 1080–

1089, Stroudsburg, PA, USA. Association for Computational Linguistics.

Eisner, J. (2002). Parameter estimation for probabilistic finite-state transducers.

In Proceedings of the 40th Annual Meeting on Association for Computational

Linguistics, ACL ’02, pages 1–8, Stroudsburg, PA, USA. Association for Com-

putational Linguistics.

Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer

Journal, 13:317–322.

Gamon, M., Leacock, C., Brockett, C., Dolan, W. B., Gao, J., Belenko, D., and

Klementiev, A. (2009). Using statistical techniques and web search to correct

esl errors. CALICO Journal, 26:491–511.

Goodman, J. (1999). Semiring parsing. Comput. Linguist., 25:573–605.

Kok, S. and Brockett, C. (2010). Hitting the right paraphrases in good time.

In Human Language Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, HLT ’10,

59

pages 145–153, Stroudsburg, PA, USA. Association for Computational Linguis-

tics.

Lavie, A. and Agarwal, A. (2007). Meteor: an automatic metric for mt evaluation

with high levels of correlation with human judgments. In Proceedings of the

Second Workshop on Statistical Machine Translation, StatMT ’07, pages 228–

231, Stroudsburg, PA, USA. Association for Computational Linguistics.

Lee, J. and Seneff, S. (2006). Automatic grammar correction for second-language

learners. ICSLP.

Liang, P. and Klein, D. (2009). Online em for unsupervised models. In Proceedings

of Human Language Technologies: The 2009 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, NAACL

’09, pages 611–619, Stroudsburg, PA, USA. Association for Computational Lin-

guistics.

Mohri, M. (2001). Generic ǫ-removal algorithm for weighted automata. In Yu,

S. and Paun, A., editors, Implementation and Application of Automata, volume

2088 of Lecture Notes in Computer Science, pages 230–242. Springer Berlin /

Heidelberg.

Mohri, M. (2004). Weighted finite-state transducer algorithms: An overview. In

Mart́ın-Vide, C., Mitrana, V., and Paun, G., editors, Formal Languages and

Applications, volume 148. Springer, Berlin.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics, ACL ’02, pages 311–318,

Stroudsburg, PA, USA. Association for Computational Linguistics.

Park, Y. A. and Levy, R. (2011). Automated whole sentence grammar correction

using a noisy channel model. In Proceedings of the 49th annual meeting on Asso-

60

ciation for Computational Linguistics, ACL ’11. Association for Computational

Linguistics. In Press.

R Development Core Team (2010). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0.

Sato, M.-A. and Ishii, S. (2000). On-line em algorithm for the normalized gaussian

network. Neural Comput., 12:407–432.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems

Technical Journal, 27:623–656.

Takeda, K., Ogawa, A., and Itakura, F. (1998). Estimating entropy of language

from optimal word insertion penalty. In Proceedings of Int. Conf. Spoken Lan-

guage Processing. Citeseer.

West, R., Park, Y. A., and Levy, R. (2011). Bilingual random walk models for

automated grammar correction of esl author-produced text. In Proceedings of

the NAACL HLT 2011 Sixth Workshop on Innovative Use of NLP for Building

Educational Applications, IUNLPBEA ’11, Stroudsburg, PA, USA. Association

for Computational Linguistics. In Press.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The

Annals of Statistics.

