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Abstract

Introduction Sepsis, a systemic inflammatory response to
infective etiologies, has a high mortality rate that is linked both
to excess cytokine activity and apoptosis of critical immune
cells. Dexmedetomidine has recently been shown to improve
outcome in a septic cohort of patients when compared to
patients randomized to a benzodiazepine-based sedative
regimen. We sought to compare the effects of
dexmedetomidine and midazolam, at equi-sedative doses, on
inflammation and apoptosis in an animal model of severe sepsis.

Methods After central venous access, Sprague Dawley rats
underwent cecal ligation and intestinal puncture (CLIP) with an
18 G needle without antibiotic cover and received either saline,
or an infusion of comparable volume of saline containing
midazolam (0.6 mg.kg-1.h-1) or dexmedetomidine (5 ug.kg-1.h-
1) for 8 hours. Following baseline measurements and CLIP,
blood was sampled for cytokine measurement (tumour necrosis
factor (TNF)-alpha and interleukin (IL)-6; n = 4-6 per group) at 2,
4 and 5 hours, and animal mortality rate (MR) was monitored (n
= 10 per group) every 2 hours until 2 hours had elapsed. In

addition, spleens were harvested and apoptosis was assessed
by immunoblotting (n = 4 per group).

Results The 24 hour MR in CLIP animals (90%) was
significantly reduced by sedative doses of either
dexmedetomidine (MR = 20%) or midazolam (MR = 30%).
While both sedatives reduced systemic levels of the
inflammatory cytokine TNF-alpha (P < 0.05); only
dexmedetomidine reduced the IL-6 response to CLIP, though
this narrowly missed achieving significance (P = 0.05).
Dexmedetomidine reduced splenic caspase-3 expression (P <
0.05), a marker of apoptosis, when compared to either
midazolam or saline.

Conclusions Sedation with midazolam and dexmedetomidine
both improve outcome in polymicrobial severely septic rats.
Possible benefits conveyed by one sedative regimen over
another may become evident over a more prolonged time-
course as both IL-6 and apoptosis were reduced by
dexmedetomidine but not midazolam. Further studies are
required to evaluate this hypothesis.

Introduction
Sepsis affects 750,000 patients per year in the USA, killing
250,000 of these people. In the UK severe sepsis has a mor-
tality rate of 45% [1-3] and despite putative therapeutic
options including early goal-directed therapy [4] and activated
protein C [5], outcome in septic patients has not vastly
improved. Septic pathogenesis involves multiple mechanisms
including inflammation, organ malperfusion and apoptosis of
critical cells including lymphocytes and enterocytes [2,3]. The
inflammatory response is initially exaggerated (best exempli-
fied in meningoccemia or toxic-shock syndrome) at which
stage anti-inflammatory therapy may have some utility [6]. Fol-

lowing this phase of injury a hypo-inflammatory phase ensues
that is characterized by the apoptosis of B and T lymphocytes
and subsequent failure of the adaptive and innate immune sys-
tems [2,3].

Sedative agents exert anti-inflammatory effects that may differ-
entially effect this biphasic inflammatory response to sepsis.
Initially, their anti-inflammatory effects may prove beneficial by
reducing the 'cytokine storm'; in this case early institution of
sedation may contribute to the benefits of early goal-directed
therapy. Indeed, anti-inflammatory agents in early, severe sep-
sis [7-10] or those with high circulating IL-6 levels [8,11] may
Page 1 of 8
(page number not for citation purposes)

CLIP: cecal ligation and double intestinal puncture; IL: interleukin; TNF: tumour necrosis factor.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19691839
http://ccforum.com/content/13/4/R136
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Critical Care    Vol 13 No 4    Qiao et al.
prove useful. Equally plausible, the sedative-induced anti-
inflammatory effect may exacerbate the subsequent immuno-
suppression in the secondary hypo-inflammatory phase and
potentiate lymphocyte apoptosis [12]. Sedatives affect
immune responses directly [13,14] but may also modulate
these processes by indirect mechanisms such as through the
burden of sleep deprivation [15] and effects on autonomic
nervous system activity [16,17].

Accumulating evidence suggests that the currently used sed-
atives may exert a deleterious effect in the presence of infec-
tion [14], notably morphine and benzodiazepines increase
mortality from bacterial infections in animals [18-20]. Clinical
epidemiological evidence also suggests an association
between chronic benzodiazepine usage and increased sever-
ity of community-acquired pneumonia [21]. In contrast, dexme-
detomidine improves mortality from endotoxic shock in rats
[22] and cecal ligation and intestinal puncture in mice [23]
associated with an anti-inflammatory effect. Clinically, the anti-
inflammatory effects of dexmedetomidine have proven supe-
rior to both midazolam [24] and propofol [25]. In addition,
dexmedetomidine has organ-protective effects and can inhibit
apoptotic cell death [26] that plays a pivotal role in the patho-
genesis of sepsis [2,3]. Stimulation of α2 adrenoceptors also
enhances the phagocytic ability of macrophages in vitro [27-
29] and thus may enhance bacterial clearance by the innate
immune system. The sympatholytic effects of α2 adrenoceptor
agonists may be useful as sympatholysis has been shown to
improve outcome in septic animals [30]. Finally, dexmedetomi-
dine induces a sedative state more analogous to natural sleep
than benzodiazepines and therefore we hypothesize that
dexmedetomidine could reduce immune dysfunction related to
sleep deprivation [31]. Recently we performed a secondary
analysis of data from the MENDS trial [32] revealing a mortality
benefit in septic patients sedated with dexmedetomidine rela-
tive to lorazepam. In order to understand whether this repre-
sents an advantage of dexmedetomidine or a deleterious
effect of the benzodiazepine we have utilised a model of acute
severe sepsis to understand whether the choice of sedative
influences outcome in the early phase where hyper-inflamma-
tion is an important contributor to mortality.

Materials and methods
The study protocol conforms with the United Kingdom Animals
(Scientific Procedures) Act of 1986, the Home Office (UK)
and was approved by the local institutional review board.

Sixty 10 to 14 week old, male Sprague-Dawley rats weighing
340 to 390 g were used in this study. Animals were acclima-
tized to laboratory conditions for three days before experimen-
tal use, housed at 21°C with a 12-hour light-dark cycle, and
allowed free access to tap water and standard rodent chow.
On the day of study, the rats were weighed and anesthetized
with an intraperitoneal injection of pentobarbital sodium 50
mg/kg repeated twice (every three hours). The internal jugular

vein was cannulated to draw blood samples and for the seda-
tive infusion. The rats were then randomized to saline infusion
(C group), midazolam infusion at 0.6 mg/kg/hr (M group) or
dexmedetomidine infusion at 5 μg/kg/hr (D group) [22] for
eight hours (n = 20 per group) with equal volume infusion rate
at 1 ml/hr in each group. Drug doses were calculated from
human doses scaled for body surface area using the Meeh-
Rubner formula. The dexmedetomidine dose had previously
been applied in rats [22] and the midazolam dose was the cal-
culated equivalent of the dexmedetomidine dose for the rat
(scaled from human dosing). All animals appeared sedated
and did not need further sedation to maintain immobility. All
groups were administered intravenous fluids at 1 ml/hr (thus
ensuring the same volume of fluid resuscitation). After this pro-
cedure, the animals were rested for 30 minutes followed by a
baseline venous blood sample (time = 0 hours). Body temper-
ature was maintained at 37 ± 0.2°C with the aid of a heating
pad.

Cecal ligation and double intestinal puncture
After cannulation and the start of the sedative infusions cecal
ligation and double intestinal puncture (CLIP) was performed
as previously described [33,34] under additional pentobarbital
anesthesia. The procedure was performed under sterile condi-
tions with the abdominal skin disinfected with 70% alcohol.
Laparotomy was conducted through a 2 cm lower-midline inci-
sion. The cecum was exposed and ligated immediately distal
to the ileocecal valve to avoid intestinal obstruction and then
punctured twice with an 18-gauge needle, squeezed gently to
force out a small amount of feces, and then returned to the
abdominal cavity. The abdomen is closed with 3-0 silk sutures
in two layers. Following completion of CLIP the sedative (or
saline) infusions were continued without bolus administration.

Plasma cytokine measurement
Venous blood samples (1 ml) were drawn for the measure-
ment of plasma cytokine (TNF-α and IL-6) concentrations at
two, four, and six hours after CLIP (n = four to six per group).
Double the volume of saline was injected to replace blood lost
after each sampling. A total amount of 4 mL of blood was
drawn from each animal over eight hours. Samples were cen-
trifuged at 3500 rpm for 10 minutes at 4°C and plasma was
collected and stored frozen at -80°C until assaying. IL-6 and
TNF-α were measured in duplicate using a commercially avail-
able ELISA kit (Biosource, CA, USA). The sensitivities of the
assays were 3 pg/ml for IL-6 and 3 pg/ml for TNF-α and 3 pg/
ml for IL-6.

Western blot methodology
At the end of the experimental period (nine hours for western
blot experiments) spleens were harvested (n = four per group).
The samples of spleen were then homogenized (Polytron
homogenizer by Kinematica, Bethlehem, PA, USA) in ice-
cooled lysis buffer (20 mm Tris-HCl, 150 mm NaCl, 1 mm
Na2DTA, 1 mm EGTA, 1% Triton, 2.5 mm sodium
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pyrophosphate, 1 mm β-glycerophosphate, 1 mm Na3VO4, 2
mm dl-dithiothreitol, 1 mm phenylmethanesulfonyl, and 1 μg/
ml leupeptin; pH 7.5) and centrifuged at 3000 g for 10 min-
utes at 4°C. The supernatant was further centrifuged twice, ini-
tially at 12,000 g for 15 minutes at 4°C and a second time at
20,000 g for 45 minutes at 4°C. The protein concentration of
supernatant was determined with the Bradford protein assay
(Bio-Rad, Herts, UK). The supernatant (10 μg protein per sam-
ple) were denaturated in NuPAGE LDS Sample buffer (Invitro-
gen, Paisley, UK) at 70°C for 10 minutes and then were loaded
on a NuPAGE 4 to 12% Bis-Tris Gel (Invitrogen, Paisley, UK).
After electrophoresis, the proteins were electrotransferred to
a nitrocellulose membrane (Hybond ECL; Amersham Bio-
sciences, Buckinghamshire, UK) and incubated with a block-
ing solution composed of 5% fat dry milk in Tween-containing
Tris-buffered saline (pH 8.0, 10 mm Tris, 150 mm NaCl, 0.1%
Tween). The blocked membrane was incubated overnight at
4°C with the cleaved caspase-3 antibody (New England
Biolab, Hitchin, United Kingdom). After washing with Tween-
containing Tris-buffered saline for four times, the membrane
was incubated for one hour at room temperature with the
appropriate horseradish peroxidase-conjugated secondary
antibody directed at the primary antibody. The bands were
then visualized with enhanced chemiluminescence (New Eng-
land Biolab, Hitchin, United Kingdom) and exposed onto
Hyperfilm ECL film (Amersham Biosciences, Buckingham-
shire, United Kingdom). Subsequently, the membrane was re-
probed with caspase 3 and beta-action primary antibody
respectively and the rest procedures were repeated again as
above. The band density was analyzed densitometrically and
normalized with the housekeeping protein beta-actin and then
presented as percentage of control.

Mortality rate
Animals were monitored every two hours via video recording
of the animal in its cage following the initial eight-hour sedative
infusion period and animal mortality was noted (n = 10 per
group). After 16 hours of follow up (i.e., 24 hours post CLIP)
all animals were sacrificed by lethal sodium pentobarbital
injection.

Statistics
The results are presented as mean ± standard error of the
mean. Statistical analysis was performed by analysis of vari-
ance followed by post-hoc Newman Keuls testing using the
instat program. Twenty-four hour mortality was analyzed by Chi
squared test. A P < 0.05 was set as significant.

Results
Animal illness and mortality
The CLIP model employed induced severe sepsis with leth-
argy and sickness behavior observable in the saline-infused
animals. Nine of the 10 animals died within 24 hours (90%)
indicating that very severe sepsis was provoked (Figure 1).
Sedation with either drug significantly decreased mortality at

24 hours after CLIP compared with saline (P < 0.01; mida-
zolam 30% and dexmedetomidine 20% mortality, respec-
tively). However, no difference was noted between
dexmedetomidine and midazolam (P = 0.6).

Cytokine signalling: TNF-α
Both midazolam and dexmedetomidine reduced TNF-α levels
compared with saline-treated controls. At two hours the saline
group had a significantly higher level (166 ± 37 pg/ml) than
either midazolam (51 ± 12 pg/ml) or dexmedetomidine (50 ±
11 pg/ml); this pattern was also present at four hours (saline
130 ± 54 pg/ml; midazolam 55 ± 8 pg/ml; dexmedetomidine
62 ± 39 pg/ml) and five hours (saline 141 ± 30 pg/ml; mida-
zolam 62 ± 20 pg/ml; dexmedetomidine 73 ± 40 pg/ml). Inte-
grated over time revealed an area under the curve of 626 ±
137 in the saline group, 232 ± 40 in the midazolam group, and
244 ± 93 in the dexmedetomidine group. Thus the reduction
in mortality effect in the sedative group was associated with a
reduction in TNF-α levels in both sedated groups (Figure 2).

Cytokine signalling: IL-6
In contrast to sedation with midazolam, dexmedetomidine
reduced IL-6 levels relative to the saline group (P < 0.05; Fig-
ure 3). At two hours the saline (188 ± 37 pg/ml), midazolam
(176 ± 40 pg/ml), and dexmedetomidine groups were similar
(50 ± 11 pg/ml). At four hours the IL-6 levels in the dexme-
detomidine group (181 ± 15 pg/ml) were significantly lower
than midazolam (312 ± 39 pg/ml) and saline (282 ± 70 pg/ml)
groups. At six hours the IL-6 levels in the dexmedetomidine
group (262 ± 38 pg/ml) were again lower than midazolam
(371 ± 14 pg/ml) and saline (455 ± 96 pg/ml) groups. The
mean area under the curve was 1135 ± 187 in the saline
group, 1132 ± 90 in the midazolam group, and 771 ± 100 in
the dexmedetomidine group.

Figure 1

Kaplan-Meier survival curves for saline, midazolam or dexmedetomidine treated severely septic ratsKaplan-Meier survival curves for saline, midazolam or dexmedetomidine 
treated severely septic rats.  Dex = dexmedetomidine.
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Effects on splenic caspase-3 expression
At death or at eight hours after CLIP splenic caspase-3
expression was reduced in the dexmedetomidine group rela-
tive to both midazolam and controls (P < 0.05; Figure 4) with
similar effects on both the 17 and 19 KDa caspase-3 fractions.
Interestingly midazolam reduced expression of the 17 KDa but
not the 19 KDa fractions relative to saline.

Discussion
In this model of acute, severe sepsis the sedatives, dexme-
detomidine and midazolam, reduced early mortality. This mor-
tality benefit was associated with reduced TNF-alpha
signalling in both groups. Additionally, dexmedetomidine
sedation also reduced IL-6 levels (P = 0.05) and splenic cas-
pase-3 expression (P < 0.05) compared with benzodiazepine
sedation. These two actions indicate that dexmedetomidine
may show benefit models of sepsis explored at later time
intervals.

Caveats
This model of sepsis in healthy rats does not necessarily repli-
cate vulnerable patients with sepsis. Although attempts were
made to fluid resuscitate the animals this was in a protocol
driven manner and thus was not necessarily analogous to the
clinical situation where resuscitation is titrated to patient's
needs determined by invasive hemodynamic monitoring. We
chose not to administer antibiotics, a departure from clinical
practice, because we wanted to observe the consequences of
acute polymicrobial sepsis. Our model is analogous with acute
sepsis that is severe enough to require provision of sedation
for mechanical ventilation and can lead to death within hours
in the absence of appropriate management. We chose a lim-
ited sedative period as continuous sedation cannot be pro-
vided for more than 12 hours in animals according to the
institutional license and all animals received further pentobar-
bital boluses to allow blood sampling in the animals rand-
omized to saline. Although we scaled the dexmedetomidine
and midazolam drug doses using established methodology
and there were no observable differences in the level of animal
sedation, it is possible that the level of sedation did differ

Figure 2

Plasma TNF-α levels immediately prior to (0 hours) and after (2, 4 and 5 hours) induction of severe sepsis by double caecal ligation and punc-ture in rats (n = 4 to 6)Plasma TNF-α levels immediately prior to (0 hours) and after (2, 4 and 5 
hours) induction of severe sepsis by double caecal ligation and punc-
ture in rats (n = 4 to 6).  (a) The actual change in levels is shown. (b) 
The total difference in levels via analysis of area under the curve (AUC) 
is shown. Dex = dexmedetomidine.

Figure 3

Plasma IL-6 levels immediately prior to (0 hours) and after (2, 4 and 5 hours) induction of severe sepsis by double caecal ligation and punc-ture in rats (n = 4 to 6)Plasma IL-6 levels immediately prior to (0 hours) and after (2, 4 and 5 
hours) induction of severe sepsis by double caecal ligation and punc-
ture in rats (n = 4 to 6).  (a) The actual change in levels is shown. (b) 
The total difference in levels via analysis of area under the curve (AUC) 
is shown. Dex = dexmedetomidine.
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between the groups. Future studies looking at electroen-
cephalogram-guided sedation are planned to overcome this
caveat to our experiment. We have previously used caspase-3
expression as a marker of apoptosis for which it is well vali-
dated [2]; however, our approach of using splenic western
blotting lacks specificity for vulnerable cell types such as lym-
phocytes, although the CLIP model does induce apoptosis in
these cells. Therefore, apoptosis of other cell types (including
endothelial cells and macrophages) may have contributed to
the caspase-3 expression. These cells appear to have less rel-
evance to clinical sepsis [2,3] and thus may have skewed our
data.

Sedation induced anti-inflammatory effects
Previous preclinical studies had shown that sedation with
dexmedetomidine does improve mortality from endotoxic
shock in rats compared with a non-sedated group [22]. Based
upon the inflammatory and apoptosis biomarkers we would
anticipate superior benefits of sedation with dexmedetomidine
vs midazolam in the acute phase of sepsis; possible reasons
why this putative benefit was not borne out by the mortality
data may relate to the 'hyper-aggressive' septic state that
appears primarily to be TNF-α dependent (as mortality bene-
fits were associated with reduced TNF-α levels). It is notewor-
thy that midazolam and dexmedetomidine reduced TNF-α
levels by a similar amount although previous clinical trials have
suggested that dexmedetomidine was superior to midazolam

in this regard [24]. Dexmedetomidine has also been shown to
improve mortality and reduce inflammatory cytokine levels
induced by CLIP in mice when dexmedetomidine was started
prior to the sepsis [23] though the dosing schedule in this
study was irregular. In our study the sedatives were com-
menced by infusion shortly before provoking sepsis and there-
fore the levels were unlikely to be therapeutic as sepsis was
induced.

The anti-inflammatory effects of dexmedetomidine have now
been shown against endotoxin (compared with saline) [22], in
single CLIP [23], in double CLIP (compared with midazolam;
Figures 2, 3) and in critically ill humans (compared with propo-
fol [25] or midazolam [24]). How dexmedetomidine induces its
anti-inflammatory effect is currently unclear though it may be
related to its central sympatholytic effects [23,30] and relative
stimulation of the cholinergic anti-inflammatory pathway
[16,17]. Inflammation also appears to alter the effects of α2
adrenoceptor stimulation shifting them from a pro- to an anti-
inflammatory effect [35].

The effect of the sedatives on IL-6 require further considera-
tion as IL-6 levels are predictive of mortality in septic humans
[36] and animals [37]. Therefore, the reduction of IL-6 levels
by dexmedetomidine relative to midazolam and saline may
prove crucial in future studies. The achieved significance value
of P = 0.05 means the results are of borderline significance

Figure 4

Splenic caspase-3 western blots samples from severely septic ratsSplenic caspase-3 western blots samples from severely septic rats.  (a) Representative bands (each band from each one individual animal; n = 4) 
from the western blots are shown. (b) Densitometry analysis from the western blots showing quantative change in caspase-3 levels. C = control 
treatment (saline); D = dexmedetomidine treatment; M = midazolam treatment.
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though we suspect this is due to a reduced sample size in the
midazolam group. Power analysis based on our results sug-
gests that six animals per group are required to achieve power
to find a statistical difference of P < 0.05. Therefore our study
was designed with appropriate power but a loss of two animal
samples in the midazolam group, leaving a sample size of four
animals in that group, may have been responsible for our result
that is of borderline significance. The superiority of dexme-
detomidine's ability to reduce IL-6 levels has already been
shown in humans [24,25]; however, it should be noted that
dexmedetomidine was administered immediately after the sep-
tic insult in this study. This is important as the timing of anti-IL-
6 therapy is critical; delays greater four hours after CLIP show
no benefit in septic animals [38].

How midazolam induces an anti-inflammatory effect is unclear
but immune cells express both the peripheral benzodiazepine
receptor [39] and gamma-amino butyric acid receptors [40]
and thus at least two local targets exist for benzodiazepines.
For example, midazolam suppressed lipopolysaccharide-
induced TNF-α activity in macrophages, an effect that was
blocked by the peripheral benzodiazepine receptor antagonist
PK 11195 [39]. Midazolam also inhibits lipopolysaccharide-
induced up-regulation of cyclooxygenase 2 and inducible nitric
oxide synthase in a macrophage cell line. Other markers of
immune cell activation (induced by lipopolysaccharide) such
as IκB-α degradation, nuclear factor-κB transcriptional activ-
ity, phosphorylation of p38 mitogen-activated protein kinase
and superoxide production were also suppressed by the mida-
zolam [41].

Interestingly dexmedetomidine and midazolam appear to exert
opposite effects on innate immunity. Dexmedetomidine
appears to potentiate macrophage function and phagocytosis
[27-29], while, as described above, midazolam inhibits it
[39,41,42]. This may be related to opposing effects on p38
mitogen-activated protein kinase signaling in these cells
[41,43]. Thus although both sedatives suppressed circulating
cytokines, at a local level the effects on macrophages may
have been very different. Benzodiazepine induced suppres-
sion of immunity has been noted against Salmonella typhimu-
rium with 15 days of diazepam treatment [19] and Klebsiella
pneumoniae with three days of diazepam treatment in vivo
[20]. In these settings of infection, diazepam treatment
increased animal mortality. Thus longer treatment times may
be needed to show impairment of immune responses by mida-
zolam than used in this study. We consider that differing
effects on innate immunity may explain why critically ill patients
sedated with dexmedetomidine experienced fewer infections
than those patient sedated with midazolam in a recent rand-
omized controlled trial of 366 critically ill patients [44]. Further
studies addressing the relative effects of longer dosing sched-
ules and different doses of the two sedatives on innate
immune responses are in progress. It is interesting to note that
daily interruption of sedative infusions appear to be associated

with fewer infective complications [45]; this may be related to
the reduced dose of sedatives resulting in less inhibition of the
immune system. Recently, deep sedation has been associated
with increased mortality in the critically ill [46] although it is
unclear whether this affected immune responses. In this study
we did not measure depth of sedation with electroencephalo-
gram monitoring; however, based on recently published clini-
cal data [46], future studies should consider this. Nonetheless
our data suggests that the sedatives are equally able to reduce
mortality during the acute phase of sepsis and therefore that
choice of sedative in this acute phase may not matter.

Effects of sedation on apoptosis in sepsis
Apoptotic (or programmed) cell death occurs in physiological
conditions; for example, it is an important mechanism by which
immune responses are controlled via activated cell death of
lymphocytes. Sepsis induces apoptosis in lymphocytes, den-
dritic cells and enterocytes and death of these cells appear
pivotal to the pathogenesis of the hypo-inflammatory phase of
the condition [2,3]. Prevention of this apoptotic injury with
inhibitors of the caspase enzymes [47], regarded as the final
executioners in apoptosis or of over expression of anti-apop-
totic proteins, has been shown to improve survival in animal
models of less acute sepsis.[2,3] Critical mediators of this
septic apoptotic injury include pro-apoptotic proteins such as
BAX and activated caspase-3 [2,3].

Both midazolam and dexmedetomidine reduced the burden of
splenic caspase-3 expression indicating that they may exert
some anti-apoptotic effects in the presence of severe sepsis.
It is possible that in the present model, TNF-α binding stimu-
lated the extrinsic apoptotic cascade. Thus the observed inhi-
bition of apoptotic markers may be, in part, due to suppression
of the inflammatory response. This would account for why both
sedatives showed some anti-apoptotic ability. Interestingly,
midazolam was only capable of reducing the 19 KDa fragment
of cleaved caspase-3; why it had such an effect is currently
unclear. Nonetheless, dexmedetomidine exhibited significantly
superior anti-apoptotic effects, consistent with previous
reports demonstrating that dexmedetomidine could prevent
apoptotic injury from hypoxia and isoflurane in neurons
[26,48]. α2 adrenoceptor stimulation reduces pro-apoptotic
proteins such as BAX and increases anti-apoptotic Bcl-2 sig-
naling [49], indicating activity against the intrinsic apoptotic
cascade. As apoptotic mechanisms are highly conserved and
therefore anti-apoptotic agents are likely to work in different
tissue types we hypothesized that stimulation of α2 adreno-
ceptors by dexmedetomidine may inhibit septic apoptosis.
Indeed activation of AKT/protein kinase B, extracellular regu-
lated signalling kinase and Bcl-2 improves survival in sepsis
[2,3] and these effectors are upregulated by dexmedetomidine
[49,50]. Therefore, the reduction in sepsis-induced splenic
apoptosis is plausible (Figure 3).
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The consequences of apoptosis may be more relevant in clin-
ical sepsis and in the less acute phase of sepsis in animal
models. Also, in acute severe sepsis apoptosis of cells may
have a protective effect by dampening the immune response;
improved mortality has been noted from endotoxic shock in
animals treated with apoptotic cells [51]. This suggests a
complex and dynamic set of circumstances pertain during sep-
sis expressed in apoptotic and inflammatory responses that
are observed at different times. Indeed corticosteroids show
anti-inflammatory effects (that have correlated with increased
speed of reversal of septic shock in the CORTICUS trial [10])
but exacerbate lipopolysaccharide-induced apoptosis [52].
However an agent, such as dexmedetomidine, that can com-
bat both inflammation (in the early phase of sepsis) and apop-
tosis (in the later phase of sepsis) could have particular utility
in septic patients. These data also help explain the remarkable
mortality benefit we have seen in septic patients from the
MENDS study [32]. This hypothesis will need evaluation in fur-
ther preclinical studies.

Conclusions
Sedation in acute severe sepsis may be of benefit to dampen
the accompanying cytokine storm and reduce mortality.
Dexmedetomidine offers some theoretical advantages over
midazolam that may become evident in a less severe septic
model. Nonetheless, although sedation appears therapeutic in
the acute phase of sepsis, choice of sedative at this stage is
unlikely to determine outcome (Figure 1).
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