
Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance portability of an intermediate-complexity atmospheric research model in 
coarray Fortran

Permalink
https://escholarship.org/uc/item/2nb6f99f

Authors
Rouson, Damian
Gutmann, Ethan D
Fanfarillo, Alessandro
et al.

Publication Date
2017-11-12

DOI
10.1145/3144779.3169104
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2nb6f99f
https://escholarship.org/uc/item/2nb6f99f#author
https://escholarship.org
http://www.cdlib.org/


Performance portability of an intermediate-complexity
atmospheric research model in coarray Fortran

Extended Abstract

Damian Rouson1, Ethan D Gutmann2, Alessandro Fanfarillo2, Brian Friesen3
1Sourcery Institute, USA

2National Center for Atmospheric Research, USA
3Lawrence Berkeley National Laboratory, USA

ABSTRACT
We examine the scalability and performance of an open-source,
coarray Fortran (CAF) mini-application (mini-app) that implements
the parallel, numerical algorithms that dominate the execution of
The Intermediate Complexity Atmospheric Research (ICAR) [4]
model developed at the the National Center for Atmospheric Re-
search (NCAR). The Fortran 2008 mini-app includes one Fortran
2008 implementation of a collective subroutine defined in the Com-
mittee Draft of the upcoming Fortran 2018 standard. The ability of
CAF to run atop various communication layers and the increasing
CAF compiler availability facilitated evaluating several compilers,
runtime libraries and hardware platforms. Results are presented for
the GNU and Cray compilers, each of which offers different parallel
runtime libraries employing one or more communication layers, in-
cluding MPI, OpenSHMEM, and proprietary alternatives. We study
performance on multi- and many-core processors in distributed
memory. The results show promising scaling across a range of
hardware, compiler, and runtime choices on up to ∼100,000 cores.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; • Applied computing → Environmental sciences;

KEYWORDS
coarray Fortran, computational hydrometeorology

ACM Reference Format:
Damian Rouson1, EthanDGutmann2, Alessandro Fanfarillo2, Brian Friesen3

1Sourcery Institute, USA 2National Center for Atmospheric Re-
search, USA 3Lawrence Berkeley National Laboratory, USA . 2017.
Performance portability of an intermediate-complexity atmospheric
research model in coarray Fortran. In Proceedings of PAW17: Second
Annual PGAS Applications Workshop, Denver, CO, USA, November
12–17, 2017 (PAW17), 4 pages.
https://doi.org/10.1145/3144779.3169104

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PAW17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5123-2/17/11.
https://doi.org/10.1145/3144779.3169104

1 INTRODUCTION
1.1 Motivation and Background
Since the Fortran 2008 standard was published in 2010 [5], a For-
tran program executes as a fixed number of instances that the
standard refers to as “images.” Each image has its own state, in-
cluding data and input/output streams, corresponding to a single-
program, multiple-data (SPMD) programming style. Images exe-
cute asynchronously except at program launch, termination, and
program-specified synchronization points. Images may define so-
called coarray data structures to provide one-sided access to data
by other images in a partitioned global address space (PGAS).

A few published studies have provided encouraging assessments
of using Fortran’s PGAS features in research applications running
at scale [3, 6, 8]. One of the most attractive characteristics of these
features is the ability to express parallel algorithms in a single
language without embedding compiler directives or referencing
communication layers that are not part of the language standard
(e.g., no MPI or OpenMP). In theory, this should delay choice of
communication layers to link-time. Ideally, an application developer
writes a standard, Fortran-only application, compiles it into object
code, and then links to one or more communication layers.

Such flexibility poses the computing equivalent of what food
author Michael Pollan termed “The Omnivore’s Dilemma:” if I
belong to a species that owes some of its evolutionary advantage to
being able to eat a wide variety of foods, what food is best for me to
eat? [7] Similarly, if I can express my parallel algorithm once using
CAF and then consume cycles atop a multitude of software stacks
and hardware platforms, where best to consume cycles and using
which supporting software stack? Here we report the results of an
initial study of several current options for compiling, linking, and
executing a mini-app designed to be representative of the parallel
numerical algorithms and physics employed in ICAR.

ICAR simulates the motion of the atmosphere at kilometer length
scales and produces flow patterns with a fidelity that is attractive
to the hydrology community for studying surface water. Figure 1
depicts results from ICAR simulations over North America.

1.2 Objectives
This paper evaluates alternatives for compiling, linking, and execut-
ing one mini-app CAF source code using the following technologies:

• MPI [1] and OpenSHMEM [10] communication layers,
• GNU Compiler Collection (GCC) and Cray compilers, and
• Multi- and many-core processors.

https://doi.org/10.1145/3144779.3169104
https://doi.org/10.1145/3144779.3169104


PAW17, November 12–17, 2017, Denver, CO, USA Damian Rouson et al.

Figure 1: A visualization of the atmospheric distribution of
water vapor (blues) and the resulting precipitation (green to
red) simulated by ICAR.

We also tested the Intel Fortran compiler versions 16 and 17. The
resulting executable program crashes on Cray platforms and hangs
at launch on when run on more than 16 cores on the SGI platform.

We show performance for two one-sided data access patterns:

(1) Gets: an image retrieves data from memory managed by
another image without the providing image’s involvement,
and

(2) Puts: an image stores data in memory managed by another
image without the receiving image’s involvement.

We also explore the performance and scalability of multi- versus
many-core processors.

2 METHODOLOGY
2.1 Physics and numerics
The coarray-ICAR implemention employed here uses the Thompson
Eidhammer microphysics parameterization [11] and the first-order
MP-DATA advection algorithm [9]. The microphysics parameteri-
zation requires 11 primary input variables (e.g. air pressure, water
vapor, cloud water), 9 of which are modified by the parameteriza-
tion and advected throughout the domain requiring communication
between processes.

The test case described here uses an idealized hill: a sine curve
representing a 1000 m high mountain in the middle of the domain.
The air is initially near 100% relative humidity with a background
wind of approximately 10 m s−1.

At every time step, the outer edges of the local domain are pro-
cessed first, then passed to their neighbors while the interior of the
domain is processed. This is tested using both a CAF “put” operation,
in which one-sided communication is initialized asynchronously
to send data to a neighbor, and a CAF “get” operation, in which
one-sided blocking communication retrieves data from a neighbor.

2.2 Compilers, runtimes, and hardware
We performed the experiments presented here on two supercom-
puters at the National Energy Research Scientific Computing Cen-
ter (NERSC), located at Lawrence Berkeley National Laboratoory
(LBNL), and one supercomputer at NCAR. The LBNL systems are
• Edison: a Cray XC30 featuring 5586 nodes with two sockets
of 12-core Intel Xeon Processor E5-2695 v2 (“Ivy Bridge”),
running at 2.4 GHz.
• Cori: a Cray XC40 with 12 076 compute nodes, spanning two
architectures; 2388 nodes each have two sockets of 16-core
Intel Xeon Processor E5-2698 v3 (“Haswell”) operating at
2.3 GHz; the other 9688 nodes are single-socket, 68-core Intel
Xeon Phi Processor 7250 (“Knights Landing”) at 1.4 GHz.

Edison and Cori have the same “Aries” interconnect with a dragon-
fly topology. All Cori measurements on the Xeon Phi nodes ran in
the “quadrant” NUMA configuration with theMCDRAM configured
as a transparent cache to the DDR4 memory.

The NCAR system is “Cheyenne,” an SGI ICE XA Cluster with
4032 compute nodes, each containing two sockets of 18-core In-
tel Xeon Processor E5-2697 v4 (“Broadwell”), running at 2.3 GHz.
Cheyenne uses a Mellanox EDR Infiniband interconnect with a par-
tial 9D Enhanced Hypercube single-plane topology. We compiled
coarray-ICAR on the NERSC systems using the Cray Fortran com-
piler version 8.6.0. We compiled at NCAR using the GCC version
6.3 Fortran front end, which uses the OpenCoarrays application
binary interface (ABI) [2] to support CAF. We tested two parallel
runtime libraries that implement the OpenCoarrays ABI:

(1) The default MPI library using the SGI MPT MPI,
(2) The recently released OpenSHMEM library.

We distributed CAF images as follows:
• 68 images per Xeon Phi node on Cori,
• 24 images per Xeon node on Edison, and
• 36 images per node on Cheyenne,

corresponding to one image per physical core in each case.

3 DISCUSSION OF RESULTS
Figure 2 shows results with two domain sizes (500 × 500 × 20 and
2000 × 2000 × 20 grid cells) running on Cheyenne. These tests com-
pare scaling with blocking “get” and non-blocking “put” operations,
and compare scaling using MPI or OpenSHMEM. The differences
between MPI and OpenSHMEM are minor, with OpenSHMEM per-
forming only slightly better. However, the differences between the
“get” and “put” operations are substantial. For the 500 × 500 × 20
domain, “puts” scale well to 1800 cores, then scale poorly to 3600
cores; however, “gets” only scale well to 504 cores, scale poorly to
1224, and no further improvement comes from up to 3600 cores.

MPI “gets” are not reported because a problem with the MPI
implementation makes them several orders of magnitude less ef-
ficient. Similarly, MPI “put” results are not reported beyond 1800
cores because a problem in theMPI implementation caused memory
allocations to become a bottleneck at higher process counts. The
2000 × 2000 × 20 domain exhibits the same pattern but the scaling
of “puts” remains strong up to 3600 cores; whereas scaling of “gets”
continues, albeit poorly, to 3600 cores.

https://github.com/gutmann/icar


Performance portability of coarray-ICAR PAW17, November 12–17, 2017, Denver, CO, USA

Figure 2: Speedup and timing results for two different domain sizes, two different communications backends
(OSH=OpenSHMEM, MPI=MPI) and two different communication methods (“get” and “put”) using Coarray ICAR.

Figure 3 (top) depicts results across multiple compilers, machines,
and architectures. In this case, only “puts” are tested, and only
for the 2000 × 2000 × 20 domain. The GNU compiler was used
on Cheyenne (Xeons). The Cray compiler was used on Edison
(Xeons) and Cori (KNL). To aid interpretation, the scaling results are
reported as a fraction of the ideal scaling for each machine in the
top left. These results show that the Cray compiler+system scales
better than the gfortran+SGI system, with 75% efficiency at >10k
cores, while on Cheyenne, only 55% of ideal was achieved. This
also shows that the KNL system scales well out to large core counts
(60% of the ideal with 19 200 cores), but that the total runtimes are
significantly slower than the equivalent runtimes on Xeons (top
right). The KNL performance might be improved in the future by
implementing OpenMP threaded parallelism within a node.

To further test the scaling performance in the best case, “puts”
on Cray Xeons, a limited set of tests were performed up to nearly
100 000 cores (fig. 3 bottom). This system scaled well to over 10 000

cores, and continued scaling with nearly 50% of the single-node
efficiency at 98 304 cores.

4 CONCLUSIONS
We have presented scaling and performance analysis using CAF on
different architectures, compilers, and communications backends.
These tests have utilized modern Fortran standards and as a result
no changes to the code were required for different configurations.

This work demonstrates the capability of one-sided non-blocking
communications protocols to readily scale up to very high core
counts. It is expected that withmoderate performance optimizations
and a larger total problem size, this system will be able scale to
even higher core counts.

ACKNOWLEDGMENTS
The first author would like to thank the Visitor Programs of the
Computational Information Systems Laboratory and the Research

https://github.com/gutmann/coarray_icar


PAW17, November 12–17, 2017, Denver, CO, USA Damian Rouson et al.

Figure 3: Cross-platform and extreme scaling results using Coarray ICAR.

Applications Laboratory of NCAR for travel support for a visit dur-
ing which much of the work presented in this paper was performed.

This work was funded in part through a contract from the U.S.
Army Corps of Engineers.

REFERENCES
[1] 2016. MPI: A Message Passing Interfacew Standard. Standard. University of

Kentucky, Knoxville, Tennessee USA.
[2] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan

Nagle, and Damian Rouson. 2014. OpenCoarrays: open-source transport layers
supporting coarray Fortran compilers. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. ACM, 4.

[3] Sudip Garain, Dinshaw S Balsara, and John Reid. 2015. Comparing Coarray
Fortran (CAF) with MPI for several structured mesh PDE applications. J. Comput.
Phys. 297 (2015), 237–253.

[4] Ethan Gutmann, Idar Barstad, Martyn Clark, Jeffrey Arnold, and Roy Rasmussen.
2016. The intermediate complexity atmospheric research model (ICAR). Journal
of Hydrometeorology 17, 3 (2016), 957–973.

[5] ISO/IEC 1539-1:2010 2010. Information technology – Programming languages –
Fortran – Part 1: Base language. Standard. International Organization for Stan-
dardization, Geneva, CH.

[6] George Mozdzynski, Mats Hamrud, and Nils Wedi. 2015. A partitioned global
address space implementation of the European centre for medium range weather
forecasts integrated forecasting system. The International Journal of High Perfor-
mance Computing Applications 29, 3 (2015), 261–273.

[7] Michael Pollan. 2006. The omnivore’s dilemma: A natural history of four meals.
Penguin.

[8] Robert Preissl, Nathan Wichmann, Bill Long, John Shalf, Stephane Ethier, and
Alice Koniges. 2011. Multithreaded global address space communication tech-
niques for gyrokinetic fusion applications on ultra-scale platforms. In Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 78.

[9] P K Smolarkiewicz and L G Margolin. 1998. MPDATA: A finite-difference solver
for geophysical flows. J. Comput. Phys. 140, 2 (1998), 459–480.

[10] Monika ten Bruggencate, Matthew Baker, Barbara Chapman, Tony Curtis, Ed-
uardo DâĂŹAzevedo, James Dinan, Karl Feind, Manjunath Gorentla Venkata, Jeff
Hammond, Oscar Hernandez, David Knaak, Gregory Koenig, Jeff Kuehn, Jens
Manser, Tiffany M. Mintz, Nicholas Park, Steve Poole, Wendy Poole, Swaroop
Pophale, Michael Raymond, Pavel Shamis, Sameer Shende, Lauren Smith, and
Aaron Welch. 2016. OpenSHMEM Application Programming Interface, Version
1.3. (February 2016). http://bit.ly/openshmem-1-3 Accessed on 3 October 2017.

[11] Gregory Thompson and Trude Eidhammer. 2014. A Study of Aerosol Impacts on
Clouds and Precipitation Development in a Large Winter Cyclone. Journal of the
Atmospheric Sciences 71, 10 (Sept. 2014), 3636–3658.

https://github.com/gutmann/coarray_icar
http://bit.ly/openshmem-1-3

	Abstract
	1 Introduction
	1.1 Motivation and Background
	1.2 Objectives

	2 Methodology
	2.1 Physics and numerics
	2.2 Compilers, runtimes, and hardware

	3 Discussion of Results
	4 Conclusions
	Acknowledgments
	References



