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Data-driven Approach for Analyzing Spatiotemporal
Price Elasticities of EV Public Charging Demands

Based on Conditional Random Fields
Zhiyuan Bao, Student Member, IEEE, Zechun Hu, Senior Member, IEEE, Daniel M. Kammen, and Yifan Su

Abstract—With the increase of electric vehicle (EV) sales, the
pricing strategies of public charging stations have significant
impacts on their revenues and the spatiotemporal distribution
of charging loads. In this paper, we quantify three kinds of
price elasticity of charging demands based on the historical
charging data of multiple public charging stations with different
pricing schemes. The relationship between the volume-weighted
average price (VWAP) and the corresponding total charging
demand within a zone is studied, which does not require to
change the charging prices to estimate elasticity. To evaluate the
shifting of charging demands in different periods and zones, a
conditional random field (CRF) model is built, which depicts
the spatiotemporal correlations of charging demands. In this
model, the VWAPs and the total charging demands are taken as
observed variables and hidden variables, respectively. The loopy
belief propagation algorithm is used to infer the loopy graph
approximately, and the learning algorithm with forgetting factors
is used to estimate the unknown parameters of the CRF model.
The price elasticities are derived from CRF, and the elasticity
matrices of charging demands are obtained. Computational
results based on historical charging data verify the validity of
the proposed model and method.

Index Terms—Electric vehicle, charging demands, price elas-
ticity, charging price, conditional random field.

NOMENCLATURE

A. Acronyms

EV Electric vehicle.
VWAP Volume-weighted average price.
CRF Conditional random field.
TOU Time of use.
BP Belief propagation.
LBP Loopy belief propagation.
ACS Aggregated charging station.
RTP Real-time price.

B. Sets

G Graph of hidden variables in CRF model.
V Set of vertices of the graph (ACSs in differ-

ence periods).
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E Set of edges of the graph (Paths of charging
demand shifting).

Et Paths of temporal shifting of charging de-
mands.

Ek Paths of spatial shifting of charging de-
mands.

X Set of discrete values of charging demand.
D Dataset of charging price-demand pairs.
T Set of periods.
K Set of zones.
N(·) Neighbourhoods of node ·

C. Parameters

ω Unknown parameters of CRF model.
ρ Charging prices of ACSs in different periods.
d Charging demands of ACSs in different pe-

riods.
Pω(d|ρ) Joint probability for charging demands under

giving charging prices and CRF parameters.
Z (ρ) Partition function.
ψi (di, ρi) Feature function for charging demand and

price in the ith ACS.
ψti,j

(
dti, d

t
j

)
Feature function between charging demands
in the ith and jth ACS.

ψt1,t2i (dt1i , d
t2
i )Feature function between charging demands

of periods t1, t2 in the ith ACS.
ωi Parameter for feature function ψi (di, ρi).
ωti,j Parameter for feature function ψti,j

(
dti, d

t
j

)
.

ωt1,t2i Parameter for feature ψt1,t2i (dt1i , d
t2
i ).

Sω(d|ρ) Score of ”fitness” for demands under giving
charging prices and CRF parameters.

lnL(d|ρ;ω) Logarithmic likelihood function.
| · | Cardinality of set ·
E(·) Expectation of random variable ·
V ar(·) Variance of random variable ·
ω∗ Optimal parameters for dataset D.
α Forgetting factor.
γ Learning rate.
mi,j(dj) Message from node i to j for charging de-

mand dj .
ε Elasticity.
d̂ Normalized charging demand.
d Average charging demand.
ρ̂ Normalized charging price.
ρ Average charging price.
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I. INTRODUCTION

W ITH the technical progresses and policy incentives, the
sales of electric vehicles (EVs) are increasing very

fast worldwide in recent years. To recharge the EVs, charging
facilities have been installed and charging service providers are
expanding their public charging networks in many areas. For
those EVs, e.g. electric taxis, that need convenient and/or fast
charging services in urban areas, a large part of their charging
demands are met in public charging stations [1]. Due to the
mobility of EVs, the EV drivers can schedule to recharge at
different time periods [2]–[4] and also different charging sta-
tions [5], [6] according to their convenience and the charging
prices. That is, for an area with a number of charging stations,
the pricing strategy of each station can potentially affect the
spatiotemporal distribution of charging demands. To measure
the responses of charging demands to prices, it is necessary to
quantify the price elasticity of charging demand, which also
plays an important role in modeling consumer behaviors [7],
determining pricing strategy for charging service providers,
and setting price signals for distribution system operators or
load serving entities [8], [9].

The mobility of the EV charging loads can be leveraged to
improve the secure and economic operation of power systems
[5]. There are methods to coordinate EV charging loads: 1) Set
proper charging service prices to coordinate EV charging loads
[10]–[14], e.g. setting time of use (TOU) charging prices or
real time pricing (RTP) in residential areas; 2) Participate elec-
tricity markets through EV aggregator, controlling charging
power to minimize charging cost or maximize market revenue
[15]–[21].

According to [11], a proper pricing strategy is an indi-
rect approach to mitigate EV charging impacts. For public
charging stations, transportation network is considered in some
references, e.g. [12] considered EV mobility and proposed
a double-layer optimization model to determine the pricing
scheme for fast charging stations. An online menu-based
pricing strategy was presented in [13] to reduce the violations
of power distribution system security constraints, i.e. line and
transformer capacity limits, voltage magnitude limit and three-
phase voltage imbalance limit. Reference [10] derived the
sufficient and necessary conditions of valley-filling pricing
mechanisms and proposed two pricing strategies for both non-
cooperative and cooperative scenarios.

EV aggregators can participate real time market and day-
ahead market to gain more revenues. For day-ahead electricity
market, reference [16] formulated a non-convex EV charg-
ing problem to maximize the aggregator’s benefit which is
solved by a distributed optimization-based heuristic method.
Reference [17] proposed a decision-making framework to offer
operation strategies in day-ahead market, which suits for both
risk-averse and risk-seeking decision makers. A hierarchical
strategy was presented in [19], where the aggregator and each
EV could share limited information. An aggregative game
model was proposed in [20] for the day-ahead EV charging
scheduling. The interaction between the EV charging demands
was considered in this game. For real time markets, the man-
agement framework for EV aggregator was developed in [18].

This framework assigned charging setting points to EVs based
on evolving charging priorities. Reference [21] developed a
real-time charging controller for EVs to participate ancillary
services market. Some studies considered both day-ahead and
real-time electricity markets to formulate their scheduling
models [15].

In the case of real-time price (RTP) or time-of-use (TOU)
charging price, EV drivers often adjust their charging strategies
to maximize their utilities. In previous studies, EV drivers are
considered to be rational [14], [22]–[24] or limited rational
[25], [26]. If the EV drivers are rational, they will maximize
their expected utilities [14], and the utility company or charg-
ing service provider also want to achieve their targets (profit
maximization, load profile adjustment, etc.). This problem
is a Stackelberg game, which can be solved under game-
theoretic framework if the utility function of each EV driver
is given. In [22]–[24], the authors all propose Stackelberg
game models to address interests conflict between the utility
company/aggregator and the customers. If the EV drivers are
assumed to be limited rational, as describe in [25], their de-
cisions are influenced by perceived subjective. The subjective
decision can be captured using the prospect theory.

Few studies have been conducted to quantify the price
sensitivity of EV users. Most published researches assumed
the EVs were either fully controllable or responded to price
in a certain pattern, e.g. linearly related to price. Till now,
there are only a few published papers on the price elasticity
of EV charging demands. There are three kinds of charging
demand elasticity considered in the published papers: self-
elasticity, temporal cross elasticity, and spatial cross elasticity.
Almost all the researches considered self-elasticity [27], [28]
and some of them gave extra consideration to one of temporal
cross elasticity [7], [29] and spatial cross elasticity [30], [31].
However, no study has combined all the three elasticities
together.

In [31], conditional random field (CRF) was applied to cap-
ture dependencies of EVs’ charging decisions. In this paper,
we consider the expectation of charging demands in a certain
zone rather than EVs’ charging decisions. Most importantly,
the temporal correlation of charging demands is taken into
account, which makes the CRF model a loopy graph. So, it’s
hard to infer the graph precisely. The relationship between
unknown parameters and elasticity is derived and examined
with real historical charging data. The contributions of our
work are as follows:

1) A conditional random field model considering the spa-
tiotemporal cross elasticity of charging demand is built. The
CRF model is used to represent not only the correlation
between charging demand and price, but also the correlation
between demands, which considers the shift of charging de-
mands in both time and space.

2) The loopy belief propagation (LBP) algorithm is used
to infer the loopy graph approximately. A training algorithm
with forgetting factors is proposed to estimate the parameters
of the CRF model. The relationship between the parameters
of the CRF model and price elasticity is derived theoretically.

3) By applying the concept of aggregated charging station
(ACS), which is made up of a number of charging stations in
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a same zone, the relationship between the volume-weighted
average price (VWAP) for charging and the total charging de-
mands is studied. In this way, the charging demand elasticities
can be quantified even the charging prices of the stations were
not changed.

II. THE IDEA OF PRICE ELASTICITY MODELING BASED ON
SPATIOTEMPORAL PARTITION

To calculate the price elasticity of electricity demand, the
traditional approach is to obtain changes in the demand as a
result of given changes in electricity price [32]. But for EVs,
their charging demands are not static, which can be served
by different charging stations at different times. This situation
is similar to a market filled with many substitute goods. In
this paper, we will quantify not only the temporal correlation
but also spatial correlation of charging demand. The relation
between price and demand is called self-elasticity of demand.
The relationship between price and demand in different periods
is called temporal cross elasticity of demand. The relationship
between price and demand in different regions is called spatial
cross elasticity of demand.

Besides, we do not need to experimentally change the prices
to calculate elasticity for a certain charging station. The basic
idea of this work is to collect charging data of multiple
charging stations with different prices for a certain period
of time. By observing the variations of charging demands
in different zones, we can model the price elasticity of EV
charging demands.

Because only a limited amount of historical data can be
collected, random perturbations of charging demand in a single
charging station cannot be neglected. And the correlation of
charging demand within a single charging station is usually
too weak to be precisely captured. Therefore, the research
objects in this study are zones instead of single charging
stations. Each zone includes multiple charging stations, thus
the effect of random perturbations is reduced. In order to
analyze the relationship between charging demands in different
time periods, the division of time is also necessary.

An example of division for zones is shown in Fig. 1. For
this urban area, there are a number of public charging stations.
Their prices and pricing strategies for EV charging may be
different, including different fixed prices and time of use
(TOU) prices. The volume-weighted average price (VWAP)
is the ratio of the total charging expenditure to total energy
over a particular period, e.g. an hour, in a certain zone.

To properly divide this area into a number of zones, we
should make sure each zone has multiple charging stations. A
whole day is also divided into periods (could be discontinuous)
such as two periods for day and night, three periods for peak,
valley, and flat, etc. Then, the aggregated charging station
(ACS) for a zone is formed to represent all charging stations
within it. The price of an ACS is the corresponding VWAP
and demands are the sum of charging demands over the same
period. Besides, we consider the charging demand can transfer
between ACSs in different periods.

Since we study the correlation between zones rather than
single charging stations, all public charging stations in a zone

Fig. 1. Illustration of dividing an urban area into zones and aggregated
charging station for a zone.

are aggregated into an ACS. Charging price of an ACS is set
as the corresponding VWAP, and the corresponding demands
are the total charging demands within the zone. Thus we
can obtain the price-demand pair of each ACS, varying with
time from the historical data. The price elasticity of charging
demands can be captured from price-demand pairs based on
following assumption.

Assumption: For a specific zone, the total charging demand
remains unchanged if prices of all the charging stations are
set equal to the VWAP in each period.

We believe that this assumption is reasonable because
VWAP is the result of EV driver’s decision between different
types of pricing strategies of charging stations. If we set the
charging price to VWAP, the total amount of charge demands
will not change, given the same consumer charging demand
elasticity.

III. CRF MODEL TO QUANTIFY PRICE ELASTICITY OF
CHARGING DEMAND

The elasticity of charging demand is related to a variety
of factors, and the charging price is often the major one.
The conditional random field model will be established in
this section to represent correlations between demands to
estimate self-elasticity, temporal cross elasticity, and spatial
cross elasticity.

A. CRF model considering spatiotemporal cross elasticity

A conditional random field [33] has a set of observed
variables and hidden random variables, which can be used
to describe the correlation of random variables. We consider
the prices of ACSs as observed variables and the charging
demands of ACSs as hidden random variables. The observed
variables are what we can directly observe or set. The hidden
variables can not directly observed but can inferred (through
a mathematical model) from other variables that are observed

Using the CRF model, the observed variable (charging
price) can be used to infer the probability distribution of the
hidden random variable (charging demand). A typical CRF
model is shown in Fig. 2.

In Fig. 2, the yellow dots denote the hidden random vari-
ables, and the blue dots are the observed variables. They re-
spectively represent the charging demands and charging prices
in this paper. Each hidden random variable has a corresponding
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Observed Variables

 (Charging Price)

Hidden Variables

 (Charging Demand)

Fig. 2. Illustration of a conditional random field model.

observed variable. The correlations between them are denoted
as red lines. Besides, there are also correlations between
hidden random variables, which are denoted as black lines.

The charging demands can shift to other zones and time
periods. The charging demands at different periods and zones
are substitutes for each other. Thus it is not enough to study
the correlations between the demand and price within a zone.
We need to measure the correlations with the demands for
substitutes.

A graphG = (V ,E) is used to represent the correlations of
charging demands. V is a set of hidden random variables, and
E is a set of edges representing their correlations. Random
variables that are not connected are independent. By con-
structing the graph G = (V ,E), spatiotemporal shifting of
charging demands can be described quantificationally. Edge
E also represents the path of shifting charging demands.

We take charging prices as the observed variables and charg-
ing demands as the hidden variables. In the CRF model, the
observed variables (charging prices here) need to be observed
first, and then the probability distribution of hidden variables
(charging demands here) can be inferred from them. We think
it is reasonable because this inference process is similar to
setting charging prices to determine charging demands.

The shifting of EV charging loads between time periods
and zones is described by the correlation of corresponding
charging demand. If the targeted charging station of an EV is
changed from zone i to zone j, the absolute change of charging
loads at zone i and zone j is equal, which means the charging
demand di in zone i is related to the charging demand dj
in zone j. This correlation is described by the edges E in
probability graph.

For an area divided into K zones and T periods, we have
KT hidden random variables. Because the charging demand
can shift between all periods and zones, there are C2

KT edges
in this complete graph. The model will be quite complex to
solve when KT is large enough. Therefore, in this paper, we
choose some influential connections from all the C2

KT edges.
The graph can be made up of selected edges. The omitted

edges are corresponding to the factors that can be neglected.
For example, Fig. 3 illustrates four zones and the correspond-
ing ACSs. The charging demand of each zone at a specific
period can partially exchange with its adjacent zones and other
periods. Besides, this graph particularly considers a edge from
period II of zone A to period I of zone B because of EV users
working and living in different zones. Demand shifting in time
periods and zones are drawn in blue and orange lines, notated
as Et and Ek, respectively.

Latitude

ACS

Spatial shifting

Temporal shifting

Longitude

Time period II

Time period I

A, II

B,I 

Fig. 3. Illustration of graph G = (V ,E) with four zones and two periods.

B. Representation, learning and inference of CRF
There are three main parts to set up the CRF model. The

first one is to select a proper feature function to represent price
elasticity. The second one is to estimate unknown parameters
ω := (ωi, . . . , ω

t
i,j , . . . , ω

t1,t2
i , · · · ) of CRF based on historical

charging data of ACS. The final part is the inference in a
loopy graph with known parameters, to get the probability
distribution of charging demand under observed prices.

1) Representation: We want to represent the joint proba-
bility using a proper feature function in this part. Considering
the period set T and zone set K , the conditional probability
of charging demands under a group of charging prices in CRF
can be formulated as equation (1).

Pω(d|ρ) =
1

Z (ρ)
[
∏
i∈V

eωiψi(di,ρi)
∏

(it,jt)∈Ek

eω
t
i,jψ

t
i,j(d

t
i,d

t
j)

∏
(it1 ,it2 )∈Et

eω
t1,t2
i ψ

t1,t2
i (d

t1
i ,d

t2
i )],

(1)

Where

Z (ρ) =
∑

d∈X |V |
[
∏
i∈V

eωiψi(di,ρi)
∏

(it,jt)∈Ek

eω
t
i,jψ

t
i,j(d

t
i,d

t
j)

∏
(it1 ,it2 )∈Et

eω
t1,t2
i ψ

t1,t2
i (d

t1
i ,d

t2
i )].

(2)

Where d := (dti, · · · ), i ∈ K, t ∈ T is the normalized charging
demand vector, ρ := (ρti, · · · ), i ∈ K, t ∈ T is the normalized
charging price vector, ω := (ωi, . . . , ω

t
i,j , . . . , ω

t1,t2
i , · · · )

contains the unknown parameters. The edge set E = Ek+Et
includes the edges representing temporal cross elasticity and
spatial cross elasticity. X is the discrete value set of charging
demand dti and |V | is the cardinality of set V . Therefore,
d ∈ X |V | is to pick element in X for |V | times to form
all possible d. Partition function Z (ρ) is used to normalize
the probability. ψi (di, ρi), ψti,j

(
dti, d

t
j

)
and ψt1,t2i (dt1i , d

t2
i )

are feature functions for correlations, describing self-elasticity,
spatial cross elasticity and temporal cross elasticity, respec-
tively.

There is another interpretation of this joint probability equa-
tion. For each possible discrete charging demand d ∈ X |V |,
we can first calculate a ”fitness” score under the given feature
functions.

Sω(d|ρ) = ωiψi (di, ρi)+ωti,jψ
t
i,j

(
dti, d

t
j

)
+ωt1,t2i ψt1,t2i (dt1i , d

t2
i )
(3)

Then, we can use softmax function to normalize these
scores.

Pω(d|ρ) =
eSω(d|ρ)∑
d

eSω(d|ρ) (4)
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Algorithm 1: Stochastic Gradient AscentAlgorithm 1: Stochastic Gradient Ascent Algorithm 2: Loopy Belief PropagationAlgorithm 2: Loopy Belief Propagation Calculate three kinds of elasticitiesCalculate three kinds of elasticities

Pick data with 
probability

Prepare dataset

Calculate gradient of 
parameters

Update parameters 
and average loss

Change selection 
probability 

n = n + 1

Meet exit 
conditions?

No

For all edges and all 
discrete demand values 

Initialization

Yes

Output: optimal 
parameters for CRF 

Messages converge? 

Calculate messages 
passing in edges under a 
discrete demand value

Normalize message of 
the edge

No

All messages have 
been calculated?

n = n + 1

Yes

Calculate and normalize 
probabilities

Output: expectations 
of charging demands

Yes

No

(
|

)
i

E
d

ρ

(
,

|
)

i
j

E
d

d
ρ

(
|

)
i

E
d

ρ

(
,

|
)

i
j

E
d

d
ρ

(
)

ln
|

;

L



=


n

n

i

n

ω

d
ρ
ω

ω

(
)

ln
|

;

L



=


n

n

i

n

ω

d
ρ
ω

ω

(
|

)
i

E
d

ρ

(
,

|
)

i
j

E
d

d
ρ

(
)

ln
|

;

L



=


n

n

i

n

ω

d
ρ
ω

ω

 For all nodes in the 
node set

Initialization

 Set two different prices in 
selected node and 

Calculate charging demand 
expectations of all nodes

Calculate elasticities of nodes 
(including itself and those 

connected to it) via equation (13)

All  nodes have 
been counted?

Yes

Output: three kinds of 
elasticities

n

ω
n

ω



n

ω





*



*

(
|

)
i

E
d

ρ
(

|
)

i

E
d

ρ

No

Self elasticity:

Temporal cross elasticity:

Spatial cross elasticity:

t

i

,

t

i j

1 2,t t

i

Provide optimal parameters *Provide optimal parameters *

Fig. 4. Flowchart of proposed algorithm to calculate three kinds of elasticities.

The feature functions are defined as product of the corre-
sponding variables [31].

ψi(di, ρi) =diρi, i ∈ V
ψti,j(d

t
i, d

t
j) =dtid

t
j , (it, jt) ∈ Ek, t ∈ T

ψt1,t2i (dt1i , d
t2
i ) =dt1i d

t2
i , (it1 , it2) ∈ Et

(5)

The self-elasticity εk ≈ ωkV ar(d̂k|ρ̂) can be derived
from the CRF model using the above feature functions un-
der a proper normalization of charging prices and demands.
V ar(dk|ρ) and E(dk|ρ) are the variance and expectation of
dk, respectively. Derivation of the price elasticities of charging
demands can be found in Appendix A.

2) Learning: given a probability graph and corresponding
feature functions, the learning problem of CRF is to find
the unknown parameters ω := (ωi, . . . , ω

t
i,j , . . . , ω

t1,t2
i , · · · )

that fits the data set D best. Therefore, this is a parameter
estimation problem aiming at finding the parameters to max-
imize the probability of the occurrence Pω(d|ρ) for data set
D. In this paper, the maximum likelihood estimation and the
gradient descent algorithm are used to obtain the values of the
parameters.

We can take logarithmic maximum likelihood function,
lnL(d|ρ;ω) = lnPω(d|ρ). If the feature functions are set as
(5), the gradients for unknown parameters of this likelihood

function can be formulated as (6).
∂

∂ωi
lnL(d|ρ;ω) = diρi − ρiE (di|ρ;ω)

∂

∂ωti,j
lnL(d|ρ;ω) = dtid

t
j − E

(
dtid

t
j |ρ;ω

)
∂

∂ωt1,t2i

lnL(d|ρ;ω) = dt1i d
t2
i − E

(
dt1i d

t2
i |ρ;ω

) (6)

The derivation details in Appendix B [33]. In the right side
of above equations, the first term is the value of the feature
function under actual data, and the second term is the expected
value of the feature function under parameter ω. The optimal
unknown parameters is to maximize logarithmic maximum
likelihood function, can be achieved by the gradient descent
algorithm.

There may exist abnormal data in historical data set. The
abnormal data is useful in finding the general direction of
parameters in the early stage of learning, but it is harmful to
search for the optimal parameters at a more precise stage later.
We propose a learning algorithm considering forgetting factor,
shown as Algorithm 1. This algorithm can gradually eliminate
the abnormal data in the learning process.

Remark 1: When we calculate the gradients of likelihood
function, the expected value of the feature function must be
calculated under the given CRF parameters. But it is not
easy to calculate. For example, for the first expected value
E (di) =

∑
di

diP (di|ρ), the marginal probability P (di|ρ), can

be calculated directly by summing up all the joint probabilities,
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Algorithm 1 Learning algorithm with forgetting factor
Input:

Forgetting factor, α;
Learning rate, γ;
Minimum and maximum number of iterations,nmin,nmax;
Number of periods to change selection probability, T ;
Number of days of data, N ;

Output:
Optimal parameters of CRF, ω∗;

Process:
1: Initializing ω0, n = 0, selection probability pi = 1

N and
loss li = 0 for the ith data;

2: while n < nmax do
3: Picking the ith day’s data from D with probability pi;
4: Calculating gradient ∆ωn = ∂

∂ωn lnL (d|ρi;ωn) us-
ing Algorithm 2 and equation (6);

5: ωn+1 = ωn + γ∆ωn;
6: Updating loss li+ = ‖∆ωn‖2 ;
7: if n > nmin then
8: if mod(n, T ) == 0 then
9: Changing selection probability using average loss

pi = e−αli∑
k∈D e

−αlk
;

10: end if
11: end if
12: n = n+ 1;
13: end while
14: return ωn;

i.e. P (di|ρ) =
∑
· · ·
∑

d\di
P (d|ρ). To get P (d|ρ), we need

get scores using (3) for all d ∈ X |V |, with an exponential
complexity of O(|X ||V |). Obviously, we can not bear such an
exponential complexity. Therefore, a faster inference algorithm
will be introduced in the next section.

3) Inference: Given certain parameters ω and a known
charging price ρ, the inference is to find the marginal distri-
bution P (di|ρ) and P (di, dj |ρ) . Then it is easy to calculate
expectations E (di|ω) , E

(
dtid

t
j |ω
)
, and E

(
dt1i d

t2
i |ω

)
.

The feature functions ψti,j(d
t
i, d

t
j) = dtid

t
j and

ψt1,t2i (dt1i , d
t2
i ) = dt1i d

t2
i are equivalent for all edges.

Therefore, the feature function and parameters are uniformly
notated as ψi,j(di, dj) = didj , (i, j) ∈ E and ωi,j in this
section.

For the inference in a radial network, if we take the sum
of joint probabilities directly in Remark 1, it will lead to an
exponential complexity. In previous studies, belief propagation
(BP) algorithm is usually used to infer the CRF problem.
Figure 5 provides a graphical representation of a BP algorithm
over a radial network. 1) First, selecting a root node for the
graph (take node 1 for example); 2) Then, propagating mes-
sages from leaf nodes to root node (4 => 2; 3 => 2; 2 => 1);
3) At last, propagating messages from leaf nodes to root node
(1 => 2; 2 => 3; 2 => 4). When all the leaf nodes receive
the message, the algorithm is terminated.

The message is defined as (7):

mi,j(dj) =
∑
di∈X

eωiψi(di,ρi)eωi,jψi,j(di,dj)
∏

k∈N(i)\{j}

mk,i(di)

(7)

Fig. 5. Belief propagation algorithm in a radial graph.

BP algorithm can be used to accurate inference in radial
graph, but in a loopy graph, the message needs to be prop-
agated several times to get a convergent result. This iterative
algorithm is called loopy belief propagation (LBP).

The LBP algorithm is widely used in probability graph
inference. In [34], empirical study proves that LBP algorithm
is a successful approximate inference method. Additionally, it
is proved that LBP algorithm will converge to the stationary
points of the Bethe approximation of the free energy in [35].
In case study, we also find that the model proposed in this
paper converges very quickly with about five iterations.

Remark 2: The time complexity of LBP algorithm is linear.
Specifically, if the number of iterations is K, its time com-
plexity is O(K|E|), which is much smaller than O(|X ||V |).

In this paper, the marginal distributions can be calculated
with LBP [34], which details in Algorithm 2.

C. Elasticity matrices

The price elasticity of demand is usually defined as the
change in demand over the change in price, as (8).

ε =
∂d/d

∂ρ/ρ
(8)

Where d and ρ represent demand and price, respectively.
By linearizing (8), we can get a linear equation as (9). It

is easy to solve the elasticity of charging demand using linear
regression.

Ln(d) = α+ εLn(ρ) (9)

In this paper, the spatial cross elasticity between zone i and
zone j, and the temporal cross elasticity in zone i between
period t1 and t2 are indicated as (10).

εti,j =
∂dti/d

t
i

∂ρtj/ρ
t
j

, εt1,t2i =
∂dt1i /d

t1
i

∂ρt2i /ρ
t2
i

(10)
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Algorithm 2 Loopy belief propagation algorithm [34]
Input:

Maximum number of iterations nmax;
Graph G = (E,V ), neighbourhood of i, N(i);
CRF parameters ω;
Charging prices of ACS ρ;

Output:
E (di|ω) , E

(
dtid

t
j |ω
)
, and E

(
dt1i d

t2
i |ω

)
;

Process:
1: Initializing messages m0

i,j(dj) = 1,∀(i, j) ∈ E, dj ∈ X ;
n = 1;

2: repeat
3: for (i, j) ∈ E do
4: for dj ∈ X do
5: Calculating message from i to j
mn
i,j(dj) =

∑
di∈X

eωiψi(di,ρi)eωi,jψi,j(di,dj)
∏

k∈N(i)\{j}
mn−1
k,i (di)

6: end for
7: Normalizing messages in a node:

mn
i,j(dj) =

mn
i,j(dj)∑

dj∈X
mn
i,j(dj)

8: end for
9: n = n+ 1

10: until
∑

(i,j)∈E,dj∈X
|mn

i,j(dj)−m
n−1
i,j (dj)|<ε or n>nmax

11: Calculating belief:

P̃ (di|ρ) =eωiψi(di,ρi)
∏

k∈N(i)

mk,i(di)

P̃ (di, dj |ρ) =eωiψi(di,ρi)eωjψj(dj ,ρj)eωi,jψi,j(di,dj)×∏
k∈N(i)\{j}

mk,i(di)
∏

r∈N(j)\{i}

mr,j(dj)

12: Normalizing belief:

P (di|ρ) =
P̃ (di|ρ)∑

di∈X
P̃ (di|ρ)

P (di, dj |ρ) =
P̃ (di, dj |ρ)∑

di∈X
P̃ (di, dj |ρ)

P (dj |ρ)

13: Calculating expectations:

E(di|ρ) =
∑
di∈X

diP (di|ρ)

E(di, dj |ρ) =
∑

di,dj∈X

didjP (di, dj |ρ)

If the zones and periods are both different, the elasticity
εt1,t2i,j = 0 is zero.

Considering K zones and T periods, the elasticity matrices

are formulated as (11) and (12).

εt =


εt1,1 εt1,2 · · · εt1,K
εt2,1 εt2,2 · · · εt2,K

...
...

. . .
...

εtK,1 εtK,2 · · · εtK,K

 , t ∈ {1, 2, · · · , T} (11)

εt1,t2i =


εt1,t1i εt1,t2i · · · εt1,tTi

εt2,t1i εt2,t2i · · · εt2,tTi

...
...

. . .
...

εtT ,t1i εtT ,t2i · · · εtT ,tTi

 , i ∈ {1, 2, · · · ,K}
(12)

Note that the diagonals of both matrices are actually self-
elasticities.

To quantify elasticity matrices, arc elasticity is introduced.
Arc is a section of the actual demand-price curve by giving
different price ρ1, ρ2 and corresponding charging demand
d1, d2. The mathematical definition is (13).

ε =
∂d/d

∂ρ/ρ
≈ ∆d/(d1 + d2)

∆ρ/(ρ1 + ρ2)
≈ (d1 − d2)/(d1 + d2)

(ρ1 − ρ2)/(ρ1 + ρ2)
(13)

D. An overview of proposed method

The flowchart of proposed method is shown in Fig. 4.
Algorithm 1 is to learn the optimal CRF parameters using
the training dataset. Algorithm 2 is to do inference under the
given CRF parameters (using the charging prices to get the
expected charging demands).

In Algorithm 1, the gradient of the logarithmic likelihood
function is calculated using the expected charging demands,
so Algorithm 2 is needed. Under the optimal parameters of
CRF, Algorithm 2 is a mapping of charging prices to expected
charging demands. In order to quantify the three kinds of
elasticities, the optimal CRF parameters obtained by Algorithm
1 can be used to estimate the elasticities with Algorithm 2.

We don’t always have to compute all three kinds of elas-
ticities. The mapping of charging prices to charging demands
in Algorithm 2 is actually the most valuable. However, the
relationship between charging prices and charging demands
is hidden under the CRF model. In order to get a clearer and
more instructive index, we quantified three kinds of elasticities
at a certain price.

Remark 3: The three kinds of elasticities can be achieved
using the historical charging records. Then, the spatiotemporal
distribution of charging demands can be adjusted through
charging prices. There are three applications of the proposed
method. 1) For a charging service provider, the proposed
method can be used to get an optimal charging price strategy to
maximize their revenue. 2) For utility companies who directly
operate the public charging station, the proposed method
can be used to set a time-of-use charging price to get a
favorable charging load profile. Furthermore, using the spatial
relationship of charging demands, the charging demands of
heavy load zones can be shifted to other zones to reduce
the reinforcement of power distribution equipment such as
transformers. 3) If the utility companies can set the electricity
price for charging service provider, the problem will become a
Stackelberg game. Both utility companies and charging service
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providers have their own optimization goals, the electricity
price for charging service provider and the charging price for
EV driver can be determined in an equilibrium state.

IV. CASE STUDY BASED ON SIMULATION DATA

In this section, we will apply the proposed CRF model to
simulation data to verify the reliability of the model and its
ability to solve a large scale problems.

A. Graphical structure and data preparation

The graphical structure used in this section is shown as
Fig. 6. The graphs include three layers namely peak, flat, and
valley. Each layer has 100 nodes (ACSs) connected into a grid
and same ACS is connected between layers. This topology has
a total of 300 nodes and 840 edges.

…

…

…

…

…

…
…

…

…

10 nodes

Peak

Flat

Valley

Charging price

(Observed  variable)

Charging demand

(Hidden  variable)

Fig. 6. Graphical structure of conditional random field in the case study for
simulation data.

To generate simulation data, we set the self-elasticities to
1.6, 0.6, 0.5 for valley, flat, and peak laryer, respectively. The
temporal cross elasticities are set to 0.05 (for valley-peak and
valley-flat), 0.02 (for peak-flat). The spatial cross elasticities
are set to 0.02 for all three layers.

A serise of demand-price pairs for all nodes are generated
as training set and test set. All the data should be normalized
using equation (21).

The parameters used in this case is as follow: the size of
training set N = 1000; the learning rete γ = 0.5; the discrete
set of normalized charging demand X = {−1,−0.5, 0, 0.5, 1};
the error tolerance for messages converge ε = 1e − 6; the
forgetting factor α = 5; the inital parameters are random
numbers between [−1, 0]; the inital messages are all set to
1; the precentage changes of prices are set to N(0, 0.1).

In this case study, abnormal data will be considered. The
simulation is carried out in the case of partial data error and
no data error. Here we use three scenarios as follow.

1) Scenario 1: The dataset is accurate.
2) Scenario 2: The dataset is not accurate and don’t use data

forgetting method in training process. 30% of the training
data has been added a Gaussian noise of N(0, 0.3). The

forgetting factor for this scenario is set to zero. (i.e. the
choose probabilities of daily data won’t change)

3) Scenario 3: The dataset is not accurate and use data
forgetting method in training process. 30% of the training
data has been added a Gaussian noise of N(0, 0.3). The
forgetting factor for this scenario is set to 5.

B. The result for simulation data

The test environment was MATLAB. The learning process
is stopped at about 1500 iterations with Intel i9-10980XE CPU
(about 30 minutes).

The parameters were tested in the test set (100 days), and
the mean absolute percentage errors of the model are listed
in Tab. I. Under the simulation data, CRF model has a high
accuracy for all nodes.

TABLE I
AVERAGE ABSOLUTE ERROR ON SIMULATION DATA

Peak Flat Valley Average

Scenario 1 (high quality) 0.51% 0.51% 0.68% 0.57%

Scenario 2 (noise) 1.04% 1.04% 1.60% 1.23%

Scenario 3 (noise+forgetting) 0.51% 0.52% 0.69% 0.57%

If training is in a high quality dataset, error of the model is
very small (see Scenario 1). When training in the dataset with
partial abnormal data, the abnormal data will slow down the
convergence and decreases the model accuracy (see Scenario
2). By using a forgetting factor, the abnormal data can be
eliminated in the middle period of model training, and finally
the accuracy can be similar to that of the data without errors
(see Scenario 3).

The loss function during learning process for the high
quality dataset is shown in Fig. 7:
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Fig. 7. Loss li = ‖∆ωn‖2 during learning process for accurate data in
Scenario 1.

Remark 4: We use a trick in the learning process. In each
iteration, the convergence of messages is time-consuming.
The initial message for each iteration can be set to the
converged messages in the previous iteration. With this trick,
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the inference process of LBP can converge rapidly (usually
one iteration).

V. CASE STUDY BASED ON ACTUAL DATA

A. Data preparation

We got three months of charging data from a charging
service provider in Beijing. Its public charging stations cover
most areas of the city. The pricing strategy can be categorized
into six main groups: one is fixed price and the others are
TOU prices. The locations and average prices of these charging
stations are shown in Fig. 8.

(a) Locations (color bar indicates rated power)

(b) Average prices

Fig. 8. Information of public charging stations in Beijing.

The charging data is made up of charging records. We divide
all charging records into different ACSs and normalize the
total charging demand in every period. The charging VWAP
is also calculated in every period. After that, we get the price-
demand pairs for all ACSs and periods. There is only a price-
demand pair for an ACS in each time period of a day.

The parameters used in this case is as follow: the size
of training set N = 90; the learning rete γ = 0.005;
the discrete set of normalized charging demand X =
{0, 0.25, 0.5, 0.75, 1}; the error tolerance for messages con-
verge ε = 1e−6; the forgetting factor α = 5; the inital parame-
ters are random numbers between [−1, 0]; the inital messages

are all set to 1. the minimum iterations nmin = 1000, the
period of probability change T = 200. This simulations is
implemented on a laptop computer with Intel i5-4300U CPU
and 4 GB memory. All programs are coded in MATLAB.

B. Establishment of graph

Firstly, we divide the charging time into peak, flat, and
valley according to the electricity price standard [36].

In this case, we have three time periods as Table II. Let
T = {H,M,L} denote the set of periods, which are peak,
flat, and valley. Every subgraph for time correlations has three
nodes connected in pairs. The three nodes indicate charging
demands of peak, flat and valley period at the same ACS.

TABLE II
PERIOD DIVISION AND ELECTRICITY PURCHASE PRICES

Period Time Range Prices
(CNY/kWh)

Valley [23h, 0h) ∪ [0h, 7h) 0.3023
Flat [7h, 10h) ∪ [15h, 16h) ∪ [17h, 18h) ∪ [21h, 23h) 0.7697
Peak [10h, 15h) ∪ [16h, 17h) ∪ [18h, 21h) 1.2884

Then, the subgraph for spatial correlations should be es-
tablished. The city center is divided by squares, and each
square represents a zone. After division, the number of EV
charging stations and average EV charging power in each
area are counted. The representative zones, i.e. zones with
large amount of charging demands and charging stations were
selected as part of the graph. In this paper, the graph shown
in Fig. 9 consists of 11 zones and correlation links between
adjacent zones. The charging demands can shift through the
links.

(a) Number of charging stations (b) Average power of ACS/kW

Fig. 9. Selected spatial subgraph of demand within the urban area.

The final graph and its node numbers for our case study
are shown in Fig. 10. This graph does not directly consider
the shifting of charging demands to different periods of other
zones. The graph is composed of subgraphs (Vk,Ek) about
zone (in red lines) and subgraphs (Vt,Et) about time (in
blue lines). The final graph shows the topological structure
of 11 zones and 3 time periods. When the price of a node
(zone) changes, the charging demand of this node changes
accordingly, as well as those of the nodes connected with it.
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Fig. 10. Considered graph with spatiotemporal correlation of eleven zones
and three periods.

C. Model evaluation

As the daily charging demand fluctuates, there are some
abnormal points in the historical data. Therefore, in the process
of data training, the days with large losses are gradually elim-
inated by reducing their selection probabilities. The algorithm
is stopped at about the 8000th iteration (about 15 minutes).
The average loss is shown in Fig. 11.
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Fig. 11. Loss li = ‖∆ωn‖2 during learning process (forgetting begin at
25th epoch).

In the training process, we take every 40 iterations as an
epoch. At the early stage (1-25th epoch) of the training,
selection probabilities of all daily data are the same. There
are some abnormal daily data in the original data, resulting in
serious fluctuation of the loss function, but loss function shows
a downward trend. The 40 iterations of an epoch are shown in
Fig. 11 (the small window at the top left position), with two
extremely daily data (6th and 20th iterations). After the 25th
epoch, the selection probabilities of abnormal daily data are
reduced because the average losses of them are large. Every
five epochs, selection probabilities of daily data are updated
according to their current average losses, so the value of the
loss function is rapidly declining (20-35 epochs). After the
35th epoch, the probabilities of selecting abnormal daily data
are very low, so the loss function began to decline slowly and
gradually.

Using the LBP algorithm to infer the probability distribution
of charging demand, we consider the expectation of charging
demand as predicted value. Because the elasticity is a long-
term demand prediction rather than a short-term forecasting,
we will pick those days which are not eliminated in Algorithm
1 and compare the sum of their expected demand and actual
demand. The accuracy is listed in Table III.

TABLE III
AVERAGE RELATIVE ERROR OF CRF MODEL

Peak Flat Valley Average
Zone1 -1.70% -3.20% 5.20% 3.40%
Zone2 -1.50% -1.70% 4.90% 2.70%
Zone3 -0.30% 2.60% 5.30% 2.70%
Zone4 -7.30% -5.80% 27.80% 13.60%
Zone5 -4.00% -2.20% 18.20% 8.10%
Zone6 -3.20% 2.80% -2.20% 2.70%
Zone7 1.80% 4.50% -5.00% 3.70%
Zone8 2.10% 1.10% 1.80% 1.70%
Zone9 -0.50% -0.70% 1.80% 1.00%
Zone10 -0.50% 2.30% -3.70% 2.20%
Zone11 -5.90% -3.40% 5.20% 4.80%
Average 2.60% 2.70% 7.40% 4.20%

The average relative error is 4.2%. The prediction errors of
valley charging demands are relatively large due to theirs high
fluctuation. The charging demand is high in the flat and the
peak periods, so the prediction errors are smaller. Generally
speaking, the long-term prediction accuracy is high except
for zone four, which indicates that the model is effective in
predicting the long-term charging demand.

Remark 5: The impact factors over the accuracy of the
model is listed as follow: a) The accuracy depends on the
amount and quality of the training data. The conditional
random field (CRF) is a statistic model. If the amount of
training data is small and the data quality is poor, the accuracy
of the CRF model will be reduced. b) The division of zones
is also important. Note that there should be enough charging
stations with different prices within a zone. In this way, an
EV driver will have enough charging stations to choose, so
as to reflect the EV driver’s response to different charging
prices. An extreme example is that there is only one charging
station in a zone and all EV drivers can only charge at this
charging station. So, the demand elasticity in this zone cannot
be captured. c) The selection of hyperparameters in the model
(such as the learning rate, etc.). Most of them should be
adjusted during the learning process. If the learning rate is
too large, the model will converge to a suboptimal solution
or even divergence, leading a reduction of model accuracy. If
the training step length is too small, it will take more time to
converge.

D. Verification of charging elasticities of model
For the trained CRF model, we now verify the elasticities

of the model. By changing the price of a specific ACS and
remaining others unchanged, the demand curve can be drawn
with the inference of CRF. The expected charging demand is
considered as predicted value similarly.
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The charging price in the zone 6 at the valley period, called
Zone6-valley below, is set between [1.0, 2.0] CNY, and other
zones are all set as 1.5 CNY. The demand curves of nodes
connected with it are shown in Fig. 12.

In Fig. 12, the first and second figures show the temporal
cross elasticity, the third figure shows the self-elasticity, and
the fourth, fifth and sixth figures show the spatial cross
elasticity. After the price of Zone6-valley changes, the charging
demand decreases with the increase of the price in sixth
zone during the valley period. However, the charging demand
of nodes connected with Zone6-valley increases with the
increase of the price of Zone6-valley, because these nodes
are considered as a substitute for the Zone6-valley. And the
change rate in Zone6-valley is much higher than that of
other nodes. In addition, the relationship between logarithmic
demand and logarithmic price is linear, which is consistent
with the definition of price elasticity of demand in (9). The
elasticity is the slope of the blue trend line. The spatial cross
elasticity and the temporal cross elasticity do not change with
the variation of price, but the self-elasticity does. When the
charging price is higher, the self-elasticity is larger, and vice
versa.
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Fig. 12. Demand (in logs) changes of adjacent zones after price (in logs)
changes in Zone6-valley.

E. Elasticity matrices

We use equation (13) to solve the temporal and spatial cross
elasticity matrices under actual average charging price. Set the
step of the price is 0.05 CNY and calculate the arc elasticity
around average price.

An example of spatial cross elasticity matrices is shown as
(14). This is a spatial cross elasticity matrix at valley. The
diagonal elements, known as self-elasticity, are all negative,
which means demand and price of the same zone change in
the opposite direction. The nondiagonal elements, known as
spatial cross elasticity, are all positive. Moreover, the absolute
value of self-elasticity is much larger than that of spatial cross
elasticity.

εL =



Zone1 Zone2 Zone3 Zone4 · · ·
Zone1 −1.391 0.027
Zone2 0.032 −1.742 0.025
Zone3 −1.274
Zone4 0.025 −1.497
...


(14)

An example of temporal cross elasticity matrices is shown
as (15). This is a temporal cross elasticity matrix at zone one.
Similarly, the nondiagonal elements are positive, indicating
that a charging station at different periods is the substitute
for itself and charging demand can shift between different
time periods. The valley-flat cross elasticity and valley-peak
cross elasticity are significantly greater than the peak-flat cross
elasticity. It means that it is easy to shift the charging demand
to the valley period because of the bigger price difference. The
prices of peak and flat periods are close to each other, so the
incentive of demand shifting is not enough.

εt1,t21 =

 peak flat valley
peak −0.274 0.0003 0.0180
flat 0.0004 −0.193 0.0175
valley 0.0148 0.0111 −1.390

 (15)
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Fig. 13. Illustration of three kinds of elasticity. (Dots for self-elasticities, blue
lines for temporal cross elasticities and red for spatial cross elasticities)

Fig. 13 demonstrates the self-elasticity, spatial cross elas-
ticity and temporal cross elasticity. Note that only absolute
values are considered.

The yellow node represents the self-elasticity, the blue
line represents the temporal cross elasticity, and the red line
represents the spatial cross elasticity. The larger the node,
the thicker the line, the greater the elasticity. The dotted line
indicates a small elasticity. Therefore, in a comprehensive
view, the cross elasticity connected by the valley period is the
greatest, and the valley time has the greatest self-elasticity.

VI. CONCLUSION

In this paper, we study the price elasticities of charging
demands for public charging stations. At first, we divide the
considered urban area into different zones. Each zone has
an aggregated charging station through summing up by all
public charging stations in that zone. To study the relationship
between the volume-weighted average price and the total
charging demand of an ACS, we bulid a conditional random
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field model considering spatiotemporal shifting of charging
demands. The elasticities in the CRF model are derived theo-
retically. The loopy belief propagation algorithm is designed to
infer the loopy graph, and a learning algorithm with forgetting
factors is proposed to estimate the unknown parameters of the
CRF model. Three kinds of elasticity of EV charging demand,
i.e. self-elasticity, temporal cross elasticity, and spatial cross
elasticity, can be quantified. A case study, based on historical
charging records of public charging stations, shows that the
proposed method can quantify the three kinds of elasticities
of charging demands effectively. These elasticities can be
used to model consumer behaviors, devise pricing strategy for
charging service providers, or set price signals for load serving
entities.

Our next step is to solve the problem that the distribution
of charging demands is not typical Gaussian distribution.
Then we will focus on optimal charging strategies for public
charging stations.

APPENDIX A

Since the elasticity can be formulated as (9), the self-
elasticity of kth zone can be expressed as (16).

εk =
∂Ln [E(dk|ρ)]

∂Ln(ρk)
=
∂E(dk|ρ)/E(dk|ρ)

∂ρk/ρk
(16)

Where
∂E(dk|ρ)

∂ρk
=

∫
· · ·
∫

d

dk
∂Pω(d|ρ)

∂ρk
(17)

The self-elasticity can be expressed as:

εk =
ρk

E(dk|ρ)

∫
· · ·
∫

d

[
dk ·

∂Pω(d|ρ)

∂ρk

]

=
ρk

E(dk|ρ)

∫
· · ·
∫

d

[
dk ·

∂Ln[Pω(d|ρ)]

∂ρk
Pω(d|ρ)

] (18)

From Appendix B, we can know:

∂

∂ρk
Ln [Pω(d|ρ)] = ωk [dk − E(dk|ρ)] (19)

Then

εk =
ωkρk

E(dk|ρ)

∫
dk

dk(dk − E(dk|ρ))Pω(dk|ρ)

=
ωkρk

E(dk|ρ)
[E(d2k|ρ)− E2(dk|ρ)]

=
ωkρk

E(dk|ρ)
V ar(dk|ρ)

(20)

If both charging price ρ and charging demand d in the CRF
model are normalized to a percentage change, i.e. :

d̂k =
dk − d
d

, ρ̂k =
ρk − ρ
ρ

(21)

The self-elasticity will become simpler:

εk ≈
E(d̂k|ρ)

ρ̂k
= ωkV ar(d̂k|ρ̂) (22)

APPENDIX B
The logarithmic maximum likelihood function is

lnL(d|ρ;ω) = lnPω(d|ρ)

= [
∑
i∈V

ωiψi (di, ρi) +
∑

(it,jt)∈Ek

ωti,jψ
t
i,j

(
dti, d

t
j

)
+

∑
(it1 ,it2 )∈Et

ωt1,t2i ψt1,t2i (dt1i , d
t2
i )]− Ln[Z(ρ;ω)]

(23)

Now, we consider ∂
∂ωi

lnL(d|ρ;ω).

∂

∂ωi
lnL(d|ρ;ω) = ψi (di, ρi)−

∂

∂ωi
lnZ(ρ;ω) (24)

Because
∂

∂ωi
lnZ(ρ;ω) =

1

Z(ρ;ω)

∑
d∈Xn

[ψi (di, ρi)
∏
i∈V

eωiψi(di,ρi)

∏
(it,jt)∈Ek

eω
t
i,jψ

t
i,j(d

t
i,d

t
j)

∏
(it1 ,it2 )∈Et

eω
t1,t2
i ψ

t1,t2
i (d

t1
i ,d

t2
i )]

=
∑

d∈Xn
ψi (di, ρi)Pω(d|ρ) = E (ψi (di, ρi) |ω)

(25)

Then
∂

∂ωi
lnL(d|ρ;ω) = diρi − ρiE (di|ω) (26)
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