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1 Introduction

Charge conjugation symmetry — the interchanging of particles and antiparticles — plays
a central role in our understanding of the strong and electromagnetic interactions. It
explains, for example, why the neutral pion may decay into two photons, π0 → 2γ, but not
three, π0 6→ 3γ. Its violation in the weak interaction is a hallmark of the standard model;
it is at the same time tied to and guides proposed solutions to outstanding questions that
the standard model leaves unanswered, including the strong CP problem and the matter-
antimatter asymmetry of the universe.

The action of charge conjugation in gauge theories is an example of an outer auto-
morphism of the gauge group; see e.g. [1]. An outer automorphism of a group G is an
automorphism, i.e. an isomorphism of G onto itself, that can not be written in the form
g → hgh−1, with some fixed h ∈ G. The Lie algebra is mapped onto itself under an
automorphism such that the commutation relations are preserved. In general, the outer
automorphisms of a Lie algebra can be discerned from the symmetries of the corresponding
Dynkin diagram. Charge conjugation is the name reserved for the map that exchanges all
representations of the Lie algebra with their complex conjugates. Another example of an
outer automorphism is parity which acts by reversing the signs of certain components of
the vector representation; see e.g. [2].

In this paper we study subtleties and curiosities of outer automorphisms in gauge
theories, with a particular eye to how they behave in the quantum theory, namely, whether
or not they are anomalous. Anomalies also play a central role in our understanding of
quantum field theory (explaining, for example, the rate of π0 → 2γ decay [3, 4]). The
’t Hooft anomaly matching conditions [5] offer a rare and powerful non-perturbative probe
of strongly coupled dynamics. Another recent proposal by one of the present authors
(HM) uses anomaly-mediated supersymmetry breaking to give a controlled approximation
to probe non-supersymmetric strongly coupled systems [6–10]. The study of anomalies for
discrete gauge symmetries was pioneered in the works [11–17], with the ’t Hooft matching
conditions for discrete symmetries studied in [15] by one of the authors (HM); the treatment
of outer automorphism anomalies was however missed, with the present work filling this
gap. For a modern take on discrete gauge anomalies from the viewpoint of symmetry
protected topological phases; see e.g. [18].

One example of a subtlety we encounter is the not widely known fact that in certain
cases there can be two inequivalent versions of charge conjugation. This issue was, to our
knowledge, only recently discussed in the literature, in the context of gauging principle
extensions of SU(N) gauge theories [19, 20]. We will see another example of this below
in the context of parities for the Spin(2r) symmetries. For the case of charge conjugation
in SU(N), for even N we can define both a symmetric and an anti-symmetric version
of charge conjugation. This gives rise to an apparent paradox in QCD, since the anti-
symmetric charge conjugation symmetry should forbid the expected chiral condensate that
dynamically breaks chiral symmetry. We will see the resolution to this paradox is that the
anti-symmetric version of charge conjugation symmetry is anomalous. The two versions
are shown explicitly to be related by a flavor transformation which explains the difference
in anomalies.
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For the cases where the outer automorphism is non-anomalous under the gauge group,
studying the anomalies associated with it leads to a variety of interesting and important
conclusions and consistency conditions. We will illustrate this in numerous examples. We
study the anomaly matching conditions that must hold for well-established dualities in
N = 1 supersymmetric QCD-like gauge theories. Specifically we consider charge conjuga-
tion anomalies in Seiberg duality [21], Kutasov duality [22], and a duality due to Intrili-
gator, Leigh, and Strassler [23]; we also consider parity outer automorphism anomalies in
a duality studied by Intriligator and Seiberg [24]. In all cases we observe the matching
conditions to hold. We also check an example of an N = 1 supersymmetric s-confining
theory [25] with a parity outer automorphism, and confirm that the anomalies between UV
and IR match, as by definition they must.

We further consider two examples of confining supersymmetric theories to study the
spontaneous breaking of outer automorphisms. On the face of it, the two theories — an
SO(6) theory (from [24]) that breaks to SU(2) × SU(2), and an SU(6) theory (from [25])
that breaks to SU(3)× SU(3) — have similar dynamics. However, we find that only in the
case of the SO(6) theory, the outer automorphism anomalies do not match between UV
and IR, indicating its spontaneous breakdown in this case. It leads to this theory having
two ground states, and to the possibility of domain walls.

The paper has the following outline. We first give an overview of the outer automor-
phisms of simple Lie algebras in section 2, with an emphasis on three different types of
equivalence relations among them. In section 3, we provide a concrete discussion of the
two inequivalent versions of the charge conjugation for SU(N) symmetries. Section 4 is
dedicated to a similar discussion on the parities for general SO(2r) symmetries. In sec-
tion 5, we briefly discuss the case of E6 and the special triality of SO(8). In section 6,
we discuss a paradox that occurs in QCD-like SU(N) theories for one of the definitions
of charge conjugation, and provide its resolution. In section 7, we first review the results
of [15] on discrete anomaly matching, and then study the anomaly matching conditions
for outer automorphism symmetries in supersymmetric QCD-like gauge theories (SQCD),
finding they are satisfied in all cases. In section 8, we study the possibility of spontaneous
breaking of charge conjugation in two different N = 1 supersymmetric gauge theories,
finding that in one case spontaneous breaking does occur. We conclude in section 9 with a
discussion on the consequence of our results for gauge theories of the principle extensions
of SU(N) by charge conjugation, and possible connections to topological protected states.

2 Outer automorphisms

It is well known that outer automorphisms of simple Lie algebras correspond to the sym-
metries of the corresponding Dynkin diagrams. Therefore, they exist only for

SU(N) figures 1 and 2

SO(2r) figures 3 and 4

E6 figure 5
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· · · · · ·
1 k − 1 k 2k − 1

A2k−1

· · ·Ck

Figure 1. Dynkin diagram A2k−1 (Lie algebra su(N = 2k)) has a Z2 outer automorphism, which
flips the order of its nodes. Folding it by average yields the Dynkin diagram Ck, which represents
its CA-invariant subalgebra sp(2k).

· · · · · ·
1 k k + 1 2k

A2k

· · ·Bk

Figure 2. Dynkin diagram A2k (Lie algebra su(N = 2k+ 1)) has a Z2 outer automorphism, which
flips the order of its nodes. Folding it by average yields the Dynkin diagram Bk, which represents
its CS-invariant subalgebra so(2k + 1).

· · ·Dr

· · ·Br−1

Figure 3. Dynkin diagramDr (Lie algebra so(2r)) has a Z2 outer automorphism which interchanges
its two branches. Folding it by average yields the Dynkin diagram Br−1, which represents its P-
invariant subalgebra so(2r − 1).

For all these groups but SO(8), the outer automorphism is a Z2 group, which we will call

“charge conjugation”: Z2 = {1 , C} or “parity”: Z2 = {1 , P}

interchangeably. We also accept the abuse of these terms to refer to both the group
Z2 = {1 , C} (Z2 = {1 , P}) and the element C (P). For SO(8), the outer automorphism
group is S3 which is called triality. Yet for our applications we will be only interested in
the Z2 subgroup of S3 and use the same terminology. Unfortunately, we could not find
mathematical literature that fleshed out how the outer automorphisms act explicitly on
each Lie algebra. So we briefly describe it in this section.

On the Lie algebra, an outer automorphism leaves a subalgebra invariant while all
the other elements are odd. Namely it is an involution of the Lie algebra. We will refer
to the subalgebra that is left invariant as the “C-invariant” or “P-invariant” subalgebra
(subgroup). For some involutions, the C-invariant subalgebra can be obtained by folding
the Dynkin diagram, as shown in figures 1 to 5.1 Lie algebra involutions have been system-

1See [26–28] as well as appendix B in [1] and appendix C.2 in [2] for details of folding, in particular, the
two types of folding: folding by average and folding by sum.
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D4

G2

Figure 4. Dynkin diagram D4 (Lie algebra so(8)) has a triality S3 outer automorphism which
permutates its three branches. Folding it by average yields the Dynkin diagram G2.

E6

F4

Figure 5. The Dynkin diagram E6 has a Z2 outer automorphism which interchanges its two
branches. Folding it by average yields its C-invariant subalgebra F4.

atically classified as symmetric spaces G/K (e.g. [20]), but in general only a small subset
of symmetric spaces may give outer automorphisms on the group G. In addition, the outer
automorphism on G must interchange certain representations indicated by the symmetry
of the Dynkin diagram, which become equivalent under K:

SU(N) fundamental and anti-fundamental representations

SO(2r) two inequivalent spinor representations

E6 27 and 27∗ representations

These requirements leave us with only the following possibilities for G/K to form an outer
automorphism:

SU(N)/SO(N)

SU(2k)/Sp(2k)

SO(2r)/ (SO(q)× SO(2r − q)) (q odd)

E6/(Sp(8)/Z2)

E6/F4

(2.1)

Before discussing each of these outer automorphisms at length, let us summarize some
general properties of them. We find that there are three different types of “equivalence
relations” that can be discussed regarding two outer automorphisms C1 and C2 of the same
group G:

1. They are equivalent representatives of the quotient group Aut(G)/Inn(G), namely
that they yield the same coset Inn(G)◦C1 = Inn(G)◦C2. Operationally, this condition
is the same as requiring ∃ g ∈ G such that (g C1) g0 (g C1)−1 = C2 g0 C−1

2 , ∀g0 ∈ G.
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2. They yield equivalent semidirect product (extension) groups, i.e. G o {1 , C1} =
Go{1 , C2} in the sense that the two extension groups are isomorphic. Operationally,
this condition is the same as requiring ∃ g ∈ G such that g C1 = C2.

3. They are equivalent upon basis change (i.e. G-conjugation). Operationally, this con-
dition is the same as requiring ∃ g ∈ G such that g C1 g

−1 = C2.

The above conditions become stronger in order, i.e. later ones are sufficient to guarantee
the former ones2

3 ⇒ 2 ⇒ 1 , (2.2)

but not the other way around. Therefore, two outer automorphisms that are equivalent
under a former criteria, may still be inequivalent under a latter criterion. In fact, all the
outer automorphisms for the same group G are equivalent under criterion 1, and they are
all represented by the symmetry of the Dynkin diagram of G. However, under criterion
2, they may fall into inequivalent categories. As we will see, in the case of SU(2k), we
indeed find two versions of charge conjugations, CS and CA, that are inequivalent under
criterion 2. A similar story holds for the case of parities for SO(2r). Under criterion 3,
there could be many more inequivalent charge conjugations or parities. A few remarks
about the implications of each of these equivalence criteria:

• Outer automorphisms that are equivalent under criterion 3 are obviously equivalent
physical observables and will lead to the same physical consequences. Since their
difference completely stems from different basis choices, they are not distinguishable.

• Outer automorphisms that are not equivalent under criterion 3 are not the same
physical observable. In this case, they may correspond to different involutions of
the Lie algebra, and their C-invariant (P-invariant) subalgebras may be different.
Nevertheless, if they are still equivalent under criterion 2, then they give the same
extension group of G. In this case, we expect them to have the same anomaly
properties and lead to the same anomaly matching condition.

• Outer automorphisms that are not equivalent under criterion 2 can in principle have
different anomaly properties and yield different anomaly matching conditions. As we
will see, this indeed happens for the charge conjugations CS and CA.

• We will see that of the possible symmetric spaces SO(2r)/ (SO(q)× SO(2r − q)) (for
q odd) in eq. (2.1), only two correspond to inequivalent outer automorphims under
criterion 2.

3 Two versions of charge conjugation for SU(N)

How do we extend an SU(N) symmetry with an outer automorphism which we call charge
conjugation? Here, the charge conjugation C is meant to be the outer automorphism
of the su(n) Lie algebra which interchanges a representation with its complex conjugate

23⇒ 2 because C2 = g C1 g
−1 =

(
g C1 g

−1 C1
)
C1 = g′ C1.

– 6 –
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representation. The symmetry group is then the semi-direct product SU(N) o C; see
e.g. for its application in QCD chiral Lagrangian. Here we demonstrate that there is a
unique definition of charge conjugation for SU(N) with odd N up to basis changes, but
there are two inequivalent definitions of charge conjugation for SU(N) with even N . This
point is consistent with the papers [19, 20] where they discussed gauging the principal
extension SU(N) o C. Here we present the discussion which is very concrete compared to
previous literature.3 Our result confirms the argument in the previous section 2 that the
C-invariant subgroup under charge conjugation is either SO(N) or Sp(N) if N is even.

3.1 Requirements

The charge conjugation is an operation that interchanges the fundamental representation
and the anti-fundamental representation which has the following properties:

1. linear

2. unitary

3. C2 = 1

4. compatible with SU(N)

We will see below concrete realizations of these requirements.

3.2 Fundamental and anti-fundamental representations

We start with the fundamental representation N of SU(N). It is a complex representation
and the charge conjugation is not closed within this representation. The charge conjugation
works on the direct sum N⊕N, and because it interchanges N and N and is linear, it can
be written as

C
(

N
N

)
=
(

0 C−
C+ 0

)(
N
N

)
. (3.1)

Here, C± are N by N matrices. Strictly speaking, the matrix C here is a representation
matrix of the abstract operation C on N⊕N, but we accept the abuse of notation. Once
the matrix C is specified on N ⊕N, it can be generalized to any other representations of
SU(N) because they are all obtained by tensor products of N and N.

The unitarity requirement is

C†C =
(

0 C†+
C†− 0

)(
0 C−
C+ 0

)
= 1 . (3.2)

Namely,

C†−C− = C†+C+ = 1 , (3.3)

3The anomalies associated with charge conjugation was incorrectly dismissed in [15].
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and hence C± are unitarity. On the other hand, it also needs to square to unity,

C2 =
(

0 C−
C+ 0

)(
0 C−
C+ 0

)
= 1 , (3.4)

and hence

C−C+ = C+C− = 1 , (3.5)

or

C− = C−1
+ = C†+ . (3.6)

We henceforth use the notation C+ = C and C− = C†. We will also use the tensor
notation where the fundamental representation comes with an upper index, and the anti-
fundamental representation with a lower index. Then the matrix C has indices Cij while
the inverse matrix (C†)ij .

Now we discuss the compatibility with SU(N), which means for any g ∈ SU(N), CgC
must also be an element of SU(N). Focusing on unitary representations, any element of
g ∈ SU(N) can be represented on N⊕N as

U(g)
(

N
N

)
=
(
eiT

aωa 0
0 V †e−iT

aTωaV

)(
N
N

)
. (3.7)

Here T a are traceless hermitian matrices forming the fundamental representation of the
su(N) Lie algebra and ωa are real parameters. The anti-fundamental representation should
be equivalent to

(
eiT

aωa
)∗

= e−iT
aTωa up to a unitary transformation V ,4 which can be

set to 1 without loss of generality by further changing the basis for the anti-fundamental
representation. Then the element CgC is represented as

CU(g)C =
(

0 C†

C 0

)(
eiT

aωa 0
0 e−iT

aTωa

)(
0 C†

C 0

)

=
(
C†e−iT

aTωaC 0
0 CeiT

aωaC†

)
. (3.8)

For this to be an element of SU(N), there must be a parameter set ηa such that(
C†e−iT

aTωaC 0
0 CeiT

aωaC†

)
=
(
eiT

aηa 0
0 e−iT

aT ηa

)
. (3.9)

From the upper block in eq. (3.9), we find

e−iT
aTωa = CeiT

aηaC† , (3.10)

4Note that if the matrices T a form a representation of the Lie algebra [T a, T b] = ifabcT c, so will their
negative transposed matrices −T aT : [−T aT ,−T bT ] = ifabc(−T cT ).
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and its complex conjugate is

eiT
aωa = C∗e−iT

aT ηaCT . (3.11)

Inserting the right-hand side of the lower block in eq. (3.9) into the right-hand side above,
we obtain

eiT
aωa = C∗CeiT

aωaC†CT . (3.12)

By multiplying C∗C from the right on both sides of the equation, we see that

eiT
aωaC∗C = C∗CeiT

aωa . (3.13)

Namely C∗C commutes with any element eiTaωa ∈ SU(N), while they form the irreducible
(fundamental) representation. Therefore, Schur’s lemma says C∗C must be proportional
to an identity matrix

C∗C = a1 , (3.14)

and hence

C = aCT ⇒ CT = aC . (3.15)

Subbing the second expression into the first, we get C = a2C which dictates a = ±1. On
the other hand,

detC = aN detCT = aN detC , (3.16)

and hence aN = 1. For N odd, the only possibility is a = 1. For N even, we have two
possibilities a = ±1.

3.3 Symmetric or anti-symmetric charge conjugations

We found C has to be symmetric for N odd, and either symmetric or anti-symmetric for
N even. It is important to note that the symmetry property is independent of the choice
of the basis.

When we change the basis of N → U †N and N∗ → UTN∗ representations, the C
matrix changes as

C′ =
(
U 0
0 U∗

)(
0 C†

C 0

)(
U † 0
0 UT

)
=
(

0 UC†UT

U∗CU † 0

)
. (3.17)

We can identify the matrix C ′ in the new basis

C ′ = U∗CU † . (3.18)

The fact that this is not the usual unitary transformation is important. When C is sym-
metric CT = C in a basis, it is also symmetric in any other bases. The same is true
when C is anti-symmetric CT = −C. Whether C is symmetric or anti-symmetric is hence

– 9 –
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basis-independent and makes a difference. Therefore, SU(N) groups admit two inequiva-
lent definitions of charge conjugation when N is even. We call them CS for CTS = CS and
CA for CTA = −CA.

With a special unitary transformation U , any complex symmetric matrix can be
brought to the real positive-semi-definite diagonal matrix, up to a phase factor:

CS = UT eiθS


c1
c2
. . .

cN

U , (3.19)

with ci ≥ 0. Given that C is unitary, we have

1 = CSC
†
S = UT


c2

1
c2

2
. . .

c2
N

U∗ , (3.20)

and hence c2
1 = c2

2 = · · · = c2
N = 1. Because all ci are positive-semi-definite, they all have

to be one. Therefore, one can always choose a basis such that CS is just a phase factor,
CS = eiθS . In this basis, we clearly see from eq. (3.18) that the elements in SU(N) that
commute with CS satisfy

eiθS = C ′S = U∗CSU
† = U∗eiθSU † ⇒ UTU = 1 , (3.21)

which form the SO(N) subgroup in SU(N). We can also choose an alternative basis where

CS = eiθS



1
0 1

. .
.

1 0
1


, (3.22)

which is more useful to identify the action of outer automorphism that reverses the Dynkin
diagram as an action on roots and weights.

When C = CA is anti-symmetric, special unitary transformations can always make it
into skew-diagonal matrix with positive semi-definite eigenvalues ci, up to a phase factor:

CA = UT eiθA



0 c1
−c1 0

. . .

0 ck
−ck 0


U . (3.23)
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Of course, this is possible only when N = 2k is even. When N is odd, the last eigenvalue
has to be zero and CA cannot be unitary, consistent with the conclusion in the previous
section. Now assuming N = 2k, the unitarity of CA implies

1 = CAC
†
A = UT



c2
1
c2

1
. . .

c2
k

c2
k


U∗ , (3.24)

and hence c2
1 = · · · = c2

k = 1. Again because ci are positive-semi-definite, they all have to
be one. Therefore, we can always choose a basis such that CA is the symplectic matrix J
multiplied by a phase factor:

CA = eiθA



0 1
−1 0

. . .

0 1
−1 0


= eiθAJ . (3.25)

In this basis, we see again from eq. (3.18) that elements in SU(2k) that commute with CA
satisfy

eiθAJ = C ′A = U∗CAU
† = U∗eiθAJU † ⇒ UTJU = J , (3.26)

which form the Sp(2k) subgroup in SU(2k). We can also choose an alternative basis where

CA = eiθA



1

0 . .
.

1
−1

. .
. 0

−1


, (3.27)

which is more useful to identify the action of outer automorphism that reverses the Dynkin
diagram as an action on roots and weights.

From the above discussion, we see that CS and CA are inequivalent charge conjugations
under the criterion 3 in section 2, namely that we cannot find an element g ∈ SU(2k)
such that CA = g CS g−1. As explained in section 2, in this case they are not the same
physical observable, and they could also lead to different C-invariant subgroups. This is
indeed verified in the above — the CS-invariant subgroup of SU(2k) is SO(2k), while the
CA-invariant subgroup of SU(2k) is Sp(2k).

In fact, CS and CA are also inequivalent under criterion 2 in section 2, namely that we
cannot find an element g ∈ SU(2k) such that CA = g CS . To see this, let us assume such
an g exists. Then it must come with the form

g =
(

Ω 0
0 Ω∗

)
, (3.28)

– 11 –
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with Ω an N by N special unitary matrix Ω†Ω = 1, det Ω = 1. This would mean

CA = g CS ⇒

C†A = ΩC†S

CA = Ω∗CS
, (3.29)

which leads to the contradiction

1 = C†ACA = −C†AC
T
A = −ΩC†S (Ω∗CS)T = −ΩC†S CS Ω† = −1 . (3.30)

Therefore, such a g must not exist, which means that CS and CA are inequivalent under
criterion 2 in section 2. A consequence of this is that SU(2k) o CS and SU(2k) o CA are
actually different groups that are not isomorphic to each other. In this case, they could
have different anomaly properties.

In fact, CS and CA are almost gauge equivalent, except that we also need a sign flip of
either N or N, as implied by eq. (3.30) above. More concretely, take the by-now-standard
choice CS = I, CA = J . Using the gauge transformation

g =
(
J 0
0 J∗

)
, (3.31)

the transformation law is(
N
N

)
CA−→

(
J−1N
JN

)
−g−→

(
−N
N

)
CS−→

(
N
−N

)
, (3.32)

which yields a state with a sign flip of N but not N. This additional sign flip can be
identified as an element in the flavor transformation group U(Nf ). In other words, al-
though SU(2k) o CS 6= SU(2k) o CA as we have proved above in eq. (3.30), if one also
includes the flavor transformation group U(Nf ), we actually have [SU(2k)×U(Nf )]oCS =
[SU(2k)×U(Nf )] o CA. Therefore, the difference in the anomaly properties between CS
and CA can be explained by the anomaly property of the flavor group U(Nf ). In particular,
CS and CA should have the same anomaly properties when Nf is even. We will discuss this
point further in section 6.

3.4 Self-conjugate representations

There are representations of SU(N) self-conjugate under charge conjugation. They are real
or pseudo-real. When N is odd, they are obtained by tensor products of the same number
of fundamental and anti-fundamental representations. In general, they are given in tensor
notation

Ai1i2···inj1j2···jn , (3.33)

where the symmetry properties among the indices are the same between upper and lower
indices. The charge conjugation acts on this representation as

Ai1i2···inj1j2···jn → ±(C†)i1k1(C†)i2k2 · · · (C†)inknCj1l1Cj2l2 · · ·CjnlnA
l1l2···ln
k1k2···kn . (3.34)
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The overall sign is the “intrinsic charge conjugation” for a given field. Otherwise everything
is fixed by the choice of the C matrix. Specifically for the adjoint representation, we can
write the transformation as

Aij → ±(C†)ikCjlAlk , (3.35)

which can be written in the matrix notation

A→ ±C†ATCT . (3.36)

When the adjoint representation is identified as the generators, the sign above must be
− to preserve the Lie algebra. For a general field in the adjoint representation, however,
there can be an intrinsic sign assignment ±.

When N = 2k is even, there is another possibility of self-conjugate representations
with rank-k anti-symmetric tensor Ak (real for even k and pseudo-real for odd k) and
its tensor products with other real or pseudo-real representations. Using the Levi-Civita
symbols,

Ak = Ai1···ik → ± i
k

k!ε
i1···ikj1···jkCj1l1 · · ·CjklkA

l1···lk . (3.37)

Here, the factor ±ik makes sure that doing charge conjugation twice returns the original
representation. In general, once the C matrix is chosen for the fundamental and anti-
fundamental representations, it determines the action of charge conjugation for any self-
conjugate representations up to the intrinsic signs.

Now let us examine the relationship between CS and CA in self-conjugate represen-
tations when N = 2k is even. Similar to the case of fundamental and anti-fundamental
representations, we will see that CS and CA are not guaranteed to be gauge equivalent, but
they are equivalent (in the sense of our criterion 2) upon a further flavor transformation.

We start with the adjoint representation. Under CS , the generators transform as

Ta
CS−→ −T Ta , (3.38)

while under CA,

Ta
CA−→ −JT Ta J−1 . (3.39)

On the other hand, under the gauge transformation J ,

Ta
J−→ J−1TaJ . (3.40)

Performing all of the above, we find

Ta
CS−→ −T Ta

CA−→ JTaJ
−1 J−→ Ta . (3.41)

Therefore, CS and CA are gauge equivalent in the adjoint representation up to the intrinsic
sign assignment in eq. (3.36). However, this sign assignment can be identified as a flavor
transformation.
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Going beyond the adjoint representation, we make use of the fact that any self-
conjugate representation can be obtained by an appropriate tensor product of Ak. Taking
the gauge element

g = diag(i, · · · , i︸ ︷︷ ︸
k

,−i, · · · ,−i︸ ︷︷ ︸
k

) ∈ SU(2k) , (3.42)

one can check that in the Ak representation, CS is gauge equivalent to CA up to an overall
factor of ±ik, which can again be identified with a flavor transformation. This completes
the proof that in any self-conjugate representation CS and CA are related by a gauge and
a flavor transformation.

3.5 C-invariant subgroups

When we discuss anomalies that involve charge conjugation, we need to figure out how
the fermion path integral measures transform under the charge conjugation. There is one
important problem: the charge conjugation does not commute with the gauge symmetry
precisely due to its definition being an outer automorphism. The charge conjugation may
not commute with other global symmetries either. So it is necessary to study the subgroups
of gauge and global symmetries that commute with the charge conjugation. Here we
summarize some of the important cases relevant for later discussions.

We have seen that the charge conjugation CS of an SU(N) group leaves an SO(N)
subgroup invariant. For the fundamental N and anti-fundamental N representations, they
become identical vector representations under the CS-invariant subgroup, and they are in-
terchanged under the charge conjugation. Therefore, the two linear combinations N ±N
are “eigenstates” under the charge conjugation with definite signs as “eigenvalues.” This
property is extended to higher representations as well. For instance, anti-symmetric tensors
A of SU(N) are irreducible anti-symmetric tensors of SO(N). A and A∗ are interchanged
and we again find two eigenstates with opposite signs. There is one exception to this rule
when N = 2k is even. The rank k anti-symmetric tensor decomposes as “self-dual” and
“anti-self-dual” rank k tensors5 of SO(2k). We assign opposite signs for them under charge
conjugation. For self-conjugate representations, they decompose into several representa-
tions under the C-invariant subgroups. For example, an adjoint representation of SU(N)
decomposes into a traceless symmetric tensor and an anti-symmetric tensor repre-
sentation of SO(N), and they transform with opposite signs under the charge conjugation.

The same consideration applies to global symmetries. For example, QCD-like theories
based on SU(N) gauge groups have SU(F )L × SU(F )R global flavor symmetry. Under
charge conjugation, L and R switches, and the C-invariant subgroup is the diagonal sub-
group SU(F )C . Note that this is not the usual SU(F )V where VL = VR. To correctly iden-
tify the C-invariant subgroup of the flavor symmetry, we need to treat the relevant fields on

5As we discussed earlier, the Hodge dual performed twice is trivial ∗(∗ω) = ω when k is even, and the
self-dual is defined by ∗ωk = ωk while the anti-self-dual is ∗ωk = −ωk. On the other hand, when k is odd,
∗(∗ω) = −ω. Therefore self-dual and anti-self-dual means ∗ω = ±iω. This point is also related to the fact
that the rank-k anti-symmetric tensor is real for k even and pseudo-real for k odd.
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an equal footing. Therefore we need to take the charge conjugation6 of the right-handed
quarks and treat them as left-handed anti-quarks in the anti-fundamental representation of
the color group. Then under the C-invariant subgroup SO(N) of the gauge group, quarks
in N and anti-quarks in N are interchanged under CS . The anti-quark field transforms by
V ∗R, and the C-invariant subgroup SU(F )C is defined by VL = V ∗R. The mesons decompose
as a symmetric tensor and an anti-symmetric tensor representation of SU(F )C , and
they transform with opposite signs under the charge conjugation.

For the other charge conjugation CA for SU(2k), we apply the same consideration to
the C-invariant subgroup Sp(2k). We decompose each SU(2k) representations to irreducible
representations of Sp(2k), and assign signs to each of them appropriately. For example, an
adjoint representation of SU(2k) decomposes into a symmetric tensor and a traceless
anti-symmetric tensor representation of Sp(2k), and they transform with opposite signs
under the charge conjugation. As another example, the rank-k antisymmetric tensor of
SU(2k) decomposes into Sp(2k) as

• ⊕ ⊕ ⊕ · · · ⊕

...

for k even (with the final column consisting of k boxes) and

⊕ ⊕ ⊕ · · · ⊕

...

for k odd (with the final column again consisting of k boxes); the representations in the
above sums transform with alternating sign under charge conjugation.

4 Parities for general SO(2r)

As discussed in section 2, SO(2r) in general can have “parity” defined in a way to break the
symmetry to SO(q)× SO(2r − q) with q odd. Namely the parity is defined by an element
of O(2r),

Pq = diag(+, · · · ,+︸ ︷︷ ︸
q

,−, · · · ,−︸ ︷︷ ︸
2r−q

) . (4.1)

Take the example of SO(6) ' SU(4). For P1 = (+,−,−,−,−,−), the P-invariant
subgroup is SO(5) ' Sp(4). This is consistent with the charge conjugation of SU(4)

6This is the charge conjugation in textbooks for Dirac fields ψ → ψc = −iγ0γ2ψ̄T .
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with CA. On the other hand, for P3 = (+,+,+,−,−,−), the P-invariant subgroup is
SO(3)× SO(3) ' SO(4). This is consistent with the charge conjugation of SU(4) with CS .

For general SO(2r), there are a wider variety of parities. We can study them by
constructing an explicit representation of Spin(2r)(the double cover of SO(2r))—we let
each γi be a tensor product of r Pauli matrices:

γ1 = σ1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1 ,
γ2 = σ2 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1 ,
γ3 = σ3 ⊗ σ1 ⊗ · · · ⊗ 1 ⊗ 1 ,
γ4 = σ3 ⊗ σ2 ⊗ · · · ⊗ 1 ⊗ 1 ,

...

γ2r−3 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ1 ⊗ 1 ,
γ2r−2 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ2 ⊗ 1 ,
γ2r−1 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ1 ,

γ2r = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ2 ,

γ2r+1 = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ3 .

(4.2)

The last one γ2r+1 plays the role of γ5 in case of 2r = 4 — one can readily verify

γ2r+1 = (−i)rγ1 γ2 · · · γ2r−1 γ2r . (4.3)

It is easy to check the gamma matrices in eq. (4.2) satisfy the Clifford algebra {γi, γj} = 2δij
for Spin(2r). The so(2r) Lie algebra is then generated by

1
2σij = i

4[γi, γj ] . (4.4)

Spin(2r) groups extended to include the parity are called Pin(2r), removing “S” that stands
for “Special” for unit determinant to allow for determinant of −1, as a joke attributed to
Jean-Pierre Serre.

In this convention, all γ2n−1 are symmetric while γ2n are anti-symmetric. It is natural
to separate them into two separate groups and define parities accordingly. In what follows,
we show this explicitly for the cases of even r = 2k and odd r = 2k + 1 separately.

4.1 Even r = 2k
In this case, all spinor representations are real (k = 2`) or pseudo-real (k = 2` + 1). The
parities can be defined by the action of

P1 = γ1 , P̄1 = iP1γ2r+1 ,

P3 = iγ1γ3γ5 , P̄3 = iP3γ2r+1 ,
...

...

P2n−1 = in−1γ1γ3 · · · γ4n−3 , P̄2n−1 = iP2n−1γ2r+1 ,
...

...

P2k−1 = ik−1γ1γ3 · · · γ4k−3 , P̄2k−1 = iP2k−1γ2r+1 .

(4.5)

The definitions above make sure that they all satisfy P2 = 1 and P†P = 1.
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Note that although P2n−1 and P̄2n−1 lead to the same P-invariant subgroup SO(2n−
1)× SO(2r − 2n+ 1), they have different symmetry properties:

PT2n−1 = (−1)n−1 P2n−1 , P̄T2n−1 = (−1)n P̄2n−1 . (4.6)

In particular, P2n−1 is a product of (2n − 1) gamma matrices, while P̄2n−1 is a product
of 2r − (2n − 1) gamma matrices. Since the number of gamma matrices is preserved by
Spin(2r) basis changes, all of them above are inequivalent under the criterion 3 in section 2.

How about criterion 2 in section 2, namely PA ' PB ⇔ PB = gPA for g ∈ Spin(2r)?
To see the equivalence relations among these parities under criterion 2, we recall that the
Spin(2r) generators are

1
2σij = 1

2 iγiγj , (4.7)

and in particular we have the elements

exp
(
±iπ1

2σij
)

= ∓γiγj . (4.8)

Any products of these elements are also Spin(2r) elements. With these, we can easily see
that the following four sets each forms an equivalence class under criterion 2:

P1 ' P5 ' P9 ' · · · , P̄1 ' P̄5 ' P̄9 ' · · · , (4.9a)

P3 ' P7 ' P11 ' · · · , P̄3 ' P̄7 ' P̄11 ' · · · . (4.9b)

However, they are still not all inequivalent. In the case r = 2k even, there are an even
number of −i factors in γ2r+1 (see eq. (4.3)) and one can further verify that

P1 ' P̄3 , (4.10a)

P3 ' P̄1 . (4.10b)

So they reduce to two equivalence classes, represented by P1 and P3 respectively. To
see that these two are indeed inequivalent, we construct the following matrix Γ, which
transforms the Spin(2r) generators as

Γ ≡ γ2 γ4 · · · γ2r−2 γ2r ⇒ Γσij Γ−1 = −σTij . (4.11)

This tells us that any element g ∈ Spin(2r) must satisfy

gT Γ g = Γ , ∀ g ∈ Spin(2r) . (4.12)

On the other hand
P1P3 = iγ3γ5 , (4.13)

does not satisfy eq. (4.12). So P1P3 is not a Spin(2r) element, namely that the two parities
cannot be linked by a multiplication of a Spin(2r) element. Therefore, we end up with two
inequivalent classes of parities under criterion 2 in section 2; they are the analogs of CS
and CA that we saw in the case of SU(2k).
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4.2 Odd r = 2k + 1

In this case, all spinor representations are complex. The parities can be defined by the
action of

P1 = γ1 , P̄1 = iP1γ2r+1 ,

P3 = iγ1γ3γ5 , P̄3 = iP3γ2r+1 ,
...

...

P2n−1 = in−1γ1γ3 · · · γ4n−3 , P̄2n−1 = iP2n−1γ2r+1 ,
...

...

P2k+1 = ikγ1γ3 · · · γ4k+1 , P̄2k+1 = iP2k+1γ2r+1 .

(4.14)

What is different from the case r = 2k is that now γ2r+1 has an odd number of −i factors
in it (see eq. (4.3)). Consequently, eq. (4.10) now needs to be replaced by

P1 ' P̄1 , (4.15a)

P3 ' P̄3 . (4.15b)

Since the argument around eq. (4.13) still holds, there are still two inequivalent classes of
parities under criterion 2 in section 2.

4.3 Relation to the pin group

The two equivalence classes above with representatives P1 and P3 correspond to the groups
Pin±. In the above we only consider the case where they square to +1. If we further allow
for the parity to square to −1, then there are more parities, corresponding to a factor of
i multiplying all of the above Pi. In this case, we find the following equivalences under
multiplication of a Spin(n) element: P1 ' iP3 ' P5 ' . . ., and iP1 ' P3 ' iP5 ' . . ..
Thus the equivalence classes can be represented by P1 and iP1, whence the identification
with Pin±. Therefore, the two parities are gauge equivalent up to an overall factor of ±i
on the field and have different anomalies in general.

4.4 Decompositions under P-invariant subgroups

The parity for SO(2r) were already studied in the literature concerning discrete anoma-
lies [15]. However, it was studied only in the context that the mapping between discrete
symmetries between the electric and magnetic dual theories sometimes include the parity.
The anomaly associated with parity itself was not studied.

In the rest of this paper, we will focus on P1 when discussing anomalies involving
parity. The P1-invariant subgroup of SO(2r) is SO(2r− 1). Under this subgroup, a vector
representation decomposes as 2r = 2r− 1 ⊕ 1, where the singlet 1 switches its sign. An
adjoint representation decomposes as adj2r = adj2r−1 ⊕ 2r− 1, where the vector 2r− 1
switches its sign. On top of this, one can assign an “intrinsic parity” on each field.
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5 E6 and SO(8)

As discussed in section 2, there are two outer automorphisms for E6. One of them has the
C-invariant subgroup Sp(8), where the E6 fundamental representation 27 becomes Sp(8)
rank-two anti-symmetric representation

27 = 1
2(8× 7)− 1 . (5.1)

The E6 adjoint representation 78 decomposes as

36 = = 1
2(8× 9) ∈ (27⊗ 27)A , (5.2a)

42 = ∈ (27⊗ 27)S . (5.2b)

The 36 is even under the charge conjugation and anti-symmetric under the interchange of
two 27, while the remaining 42 is odd under the charge conjugation and symmetric under
the interchange of two 27. This is the analog of CS that we saw in the case of SU(2k).

The other outer automorphism of E6 has the invariant subgroup F4, where the funda-
mental representation 27 is decomposes as 26⊕ 1. The adjoint representation 78 decom-
poses as 52 ⊕ 26. Here, 52 ∈ (26 ⊗ 26)A is the adjoint of F4 which is even under charge
conjugation, while 26 is odd. Namely the E6 generators can be viewed as 27× 27 matrix
where the charge conjugation is given by the diagonal matrix

(+,−,−, · · · ,−,−︸ ︷︷ ︸
26

), (5.3)

similar to that of the parity P1 for SO(2r). This is an analog of the outer automorphism
CA that we saw in the case of SU(2k).

The two outer automorphisms are inequivalent under the criterion 2. in section 2.
However, just like in the case of SU(2k), they are related by a combination of gauge and
flavor transformations. To identify the combination, we look at the subgroup Sp(2)×Sp(6)
common between Sp(8) and F4. The adjoint representation decomposes as

78 = 28( , )⊕ 14(·, )⊕ 21(·, )⊕ 12( , )⊕ 3( , ·). (5.4)

In addition to CS and CA, we consider Z2 center of Sp(2) as the gauge transformation. The
multiplets transform as

28 14 21 12 3
Sp(8) − − + + +
F4 + − + − +

gauge − + + − +

(5.5)

The product of all three is + for all multiplets, and hence CS and CA are gauge equivalent,
while an intrinsic charge conjugation is possible with ±1.
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In the case of SO(8), there is a very special triality S3 outer automorphism as discussed
in section 2. It interchanges the vector and two inequivalent spinor representations. The
C-invariant subgroup is G2 under which the vector and spinor representations decompose
as 8 = 7⊕ 1 while the adjoint as 28 = 14⊕ 7⊕ 7.

For the outer automorphisms of E6 and the triality of SO(8), we are not aware of
well-established examples of gauge theories where we can study their anomalies.

6 A paradox about charge conjugation in QCD?

The massless QCD Lagrangian is invariant under charge conjugation. To make this point
most apparent, we write Nf quark fields as left-handed Weyl fermions, where qi is in the
fundamental N representation, while q̃i = (qiR)c is in the anti-fundamental N representa-
tion, where i = 1, · · · , Nf . Then the Lagrangian is

L = −1
2TrGµνGµν +

(
q̄i ¯̃qi

)( iγµ(∂µ − igAµ) 0
0 iγµ(∂µ + igATµ )

)(
qi
q̃i

)
. (6.1)

Under the charge conjugation eq. (3.8), or more specifically

q → C†q̃ , (6.2a)
q̃ → Cq , (6.2b)

it is guaranteed that this Lagrangian is invariant, if the gauge field is also transformed as

Aµ → −C†ATµC . (6.3)

Note that this is the classical invariance of the Lagrangian. It remains to be seen whether
it is respected at the quantum level, or in other words, whether the charge conjugation is
anomalous.

We all believe that QCD-like gauge theories with relatively few number of flavors lead
to dynamical chiral symmetry breaking with a chiral condensate

〈(q̃T q)〉 ∝ 1Nf 6= 0 . (6.4)

Under the charge conjugation, the quark bilinear transforms as

q̃T q → (Cq)T (C†q̃) = (q̃TCT †)(Cq) = ±q̃T q , (6.5)

where the sign depends on CT = ±C. Here, we implicitly used the fact that the spinor
indices are contracted with the anti-symmetric tensor εαβ while the fermion fields anti-
commute, so that we can treat q and q̃ as if they commute.

It is a paradox that the chiral condensate is forbidden under the anti-symmetric charge
conjugation CA. For instance, consider an SU(4) gauge theory with three flavors of quarks.
In this theory, baryons are bosons so we do not have any candidate massless fermions to
match the U(1)B(SU(3)L)2 anomaly, which means this symmetry must be spontaneously
broken in the IR. Note that the U(1)B symmetry is not spontaneously broken due to the
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Vafa-Witten theorem [29], so the chiral symmetry must be broken. Yet the quark bilinear
condensate appears forbidden by the charge conjugation. It appears to require that the
charge conjugation symmetry is also broken spontaneously by the chiral condensate, which
leads to two discrete sets of vacua (each with the coset space G/H) and domain walls.
This is very unlikely. For instance, it does not happen in the class of SQCD with anomaly-
mediated supersymmetry breaking analyzed in refs. [6–8]. We believe this paradox is
resolved because the charge conjugation CA is anomalous.

The unambiguous way to study the anomaly is to look at the transformation of the
Euclidean path integral measure under the symmetry. For the usual chiral anomaly, the
path integral measure for fermion can be decomposed under the eigenmodes of the Dirac
operator

i /D ψnR = λn ψnL , (6.6a)

i /D ψnL = λn ψnR , (6.6b)

which are always paired between left- and right-handed fermions when λn 6= 0. But for
zero modes λn they do not need to be paired, and the mismatch is given by the index
theorem

n0
L − n0

R = index
(
i /D
)

= g2

32π2

∫
εµνρσ Tr (GµνGρσ) = # instantons . (6.7)

The path integral measure is then

DψLDψR =
∏
n 6=0

dψnLdψnR

n0
L∏

i=1
dψi0L

n0
R∏

i=1
dψi0R . (6.8)

Under the chiral transformation ψL → e−iθψL, ψR → e+iθψR, the path integral measure
changes by e−i(n0

L−n
0
R)θ and hence is not invariant. This is the origin of the chiral anomaly.

We can apply the same argument to discrete symmetries [15, 16]. By considering an
instanton background, a Z2 symmetry may change the sign of the path integral measure.
Then the Z2 symmetry is anomalous and hence is not a symmetry of the gauge theory. To
apply this argument to charge conjugation, we must decompose the fermion fields into even
and odd eigenstates under the charge conjugation. However, this requires the instanton to
have well-defined number of zero modes for even and odd states, and hence the instanton
must belong to the C-invariant subgroup.

For the symmetric charge conjugation, the CS-invariant subgroup is SO(N). The q
and q̃ fields are both in the vector representation of SO(N) and they are not distinguished
under the SO(N) instanton background. Because q and q̃ are interchanged under the
charge conjugation, the linear combinations q ± q̃ are even and odd eigenstates. Therefore
there are Nf even and Nf odd eigenstates under the charge conjugation. The Nf odd
eigenstates q − q̃ could potentially make CS anomalous. However, since each flavor of
q − q̃ forms the vector representation of SO(N), which always has an even number of
zero modes under the minimum SO(N) instanton, the path integral measure is always
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invariant under CS . Therefore, CS is always non-anomalous.7 More concretely, for N ≥ 4,
the vector representation of SO(N) has two zero modes under the minimum instanton, as
tr�

(
tatb

)
= 2 · 1

2δ
ab. The easiest way to understand it is by breaking SO(N) to SU([N2 ])

where the vector representation decomposes as [N2 ] ⊕ [N2 ]∗(⊕1) (the singlet is there when
N is odd). Since both [N2 ] and [N2 ]∗ have one zero mode each, there are two zero modes
altogether. For N = 3, the vector representation has four zero modes under the SO(3)
instanton, as tr

(
tatb

)
= 4 · 1

2δ
ab for the vector representation of SO(3). For N = 2, the C-

invariant subgroup of SU(2) under CS is SO(2) ' U(1), and no instanton could be formed.
Nevertheless, one may still be concerned with the CSU(1)2 anomaly. In this case, each
flavor of q − q̃ forms the doublet representation of SU(2), the two components of which
share the same charge q under the C-invariant subgroup U(1). So its contribution to the
CSU(1)2 anomaly is 2q2, always an even number.

For the anti-symmetric charge conjugation, the CA-invariant subgroup is Sp(N), pos-
sible only when N is even. The q and q̃ fields are both in the fundamental representation
of Sp(N) and they are not distinguished under the Sp(N) instanton background. Because
q and q̃ are interchanged under the charge conjugation, the linear combinations q ± q̃ are
even and odd eigenstates. Therefore there are Nf even and Nf odd eigenstates under the
charge conjugation. Unlike the case of CS , the fundamental representation of Sp(N) group
has one zero mode under its minimum instanton, as tr�

(
tatb

)
= 1

2δ
ab for Sp(N). Therefore

the path integral measure changes its sign as (−1)Nf under CA. We conclude that CA is
anomalous when Nf is odd. For odd Nf , therefore, there is no charge conjugation invari-
ance CA, and hence the existence of chiral condensate is consistent without two discrete
sets of vacua.

For even Nf we have two charge conjugations CS and CA as symmetries of the theory.
Under CS , the chiral condensate is transposed, and it respects the charge conjugation
because it is proportional to an identity matrix. On the other hand, under CA, it still
changes its sign. However, given that Nf is even, the SU(Nf )L flavor symmetry has the
ZNf center, which contains the element −1. So it is the CA compensated by this element
that should be identified as the unbroken anti-symmetric charge conjugation symmetry.

Note that the observation in this section is consistent with the fact that CA is considered
gauge equivalent to CS together with a sign flip of all q (or q̄ but not both). Each sign flip
is anomalous, while the overall anomaly is indeed given by (−1)Nf .

7 Anomaly matching

Here we demonstrate the anomaly matching condition for charge conjugation as well as
other outer automorphisms using well-established dualities in N = 1 SQCD.

7For the purpose of showing that a symmetry is anomalous, it is sufficient to pick a background gauge
field under which the path integral measure is not invariant. For the purpose of showing that a symmetry is
non-anomalous, however, we need to show that the path integral measure is invariant under any background
gauge fields. Since the argument here picks only background gauge fields that are invariant under the charge
conjugation, it leaves some concern whether the invariance is indeed true. Yet the experimental fact that
the charge conjugation is a symmetry of the strong interactions give us confidence. See appendix A for
further discussion.
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7.1 Review of discrete anomaly matching

In this section, we summarize main results of the paper by Csaba Csáki and one of the
authors (HM) [15] that studied the anomaly matching conditions of discrete symmetries.
Here we pay a special attention to Z2 symmetries. There are Type-I and Type-II anomalies.

The Type-I anomaly matching condition is uncontroversial. The anomaly arises when
the fermion determinant is not invariant under the discrete symmetry. First we promote a
continuous non-anomalous non-abelian global symmetry to a gauge symmetry. Then under
an instanton background of this gauge symmetry, the Fujikawa measure of the fermion path
integral is decomposed similar to eq. (6.8). Now under a discrete symmetry ZN , the fermion
field transforms as ψ → ωψ with ωN = 1. If the fermion path integral is not invariant
under this transformation, then there is an anomaly for the discrete symmetry. For an
anomaly matching argument, two theories, either UV vs IR or electric vs magnetic, must
behave the same way. This is the same as studying triangle anomalies by assigning a “U(1)
charge” under the ZN symmetry, and the anomalies must match modulo N .

The argument can be applied also for the gravitational instanton background. It needs
to be remembered, however, that a Z2 symmetry does not lead to a meaningful constraint.
This is due to the Rohlin’s theorem: for any smooth four-dimensional manifold that admits
a spin structure (i.e., its second Stiefel-Whitney class vanishes), its signature is divisible
by 16. On the other hand, the Hirzebruch signature theorem says the signature of 4-
dimensional manifolds is eight times the Â-genus which counts the number of fermion zero
modes. Therefore, the number of fermion zero modes is always even. It implies that the
gravitational instanton leaves the fermion path integral invariant under any Z2 symmetries.

The Type-II anomalies match in all known well-established dualities, but it has a
potential loophole. When the argument above is extended from non-abelian global sym-
metries to a U(1) symmetry, we can still consider an instanton background, but the number
of zero modes depends on the minimum unit of the U(1) charges in the theory. In ref. [15],
it was argued that we can take the smallest charge in the particle content of the theory.
There is a caveat, however. In principle, some of the heavy states that are integrated out
in the IR limit may have charge fractionalization. In this case the minimum unit of the
U(1) charges may become smaller, leading to weaker constraints.

Similarly, any abelian discrete symmetries can be embedded into U(1)s and we can
consider triangle anomalies for U(1) factors, and require that they match modulo the least
common multiple among the relevant N ’s. In addition, when the relevant N ’s are all even,
there is an important consideration. For ZN1 = Z2k1 , ZN2 = Z2k2 , and ZN3 = Z2k3 , it is
possible that a state transforms by −1 under all of the discrete symmetries (namely charge
(k1, k2, k3)) so that it is allowed to have a Majorana mass and decouples, thereby shifting
the anomaly by k1k2k3 = 1

8N1N2N3. In particular, it implies that there are no constraints
considering Z3

2 anomalies because they can be shifted by 1 (see e.g. [11, 13, 17]). This case
is subject to the same caveat about charge fractionalization.

In the later sections, we consider both Type-I and Type-II anomalies. They all match
when they should, namely when the discrete symmetries are respected by the ground states.
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SU(N) U(1)R SU(F )Q SU(F )Q̃
Wα adj +1 1 1

Q 1− N
F 1

Q̃ 1− N
F 1

Table 1. Quantum numbers of fields in the electric SU(N) SQCD.

SU(F −N) U(1)R SU(F )Q SU(F )Q̃
Wα adj +1 1 1

q 1− Ñ
F 1

q̃ 1− Ñ
F 1

M = Q̃Q 1 2− 2N
F

Table 2. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = F −N) SQCD.

7.2 Seiberg duality

The Seiberg duality in SU(N) gauge theories [21] states that electric and magnetic SU(Ñ)
(Ñ = F −N) theories in tables 1 and 2 are equivalent in the IR limit. The electric theory
does not have a superpotential, while the magnetic theory has the superpotential

W = 1
µ
M ij q̃iqj . (7.1)

The meson field in the magnetic theory is matched to the composite in the electric theory as

M ij = Q̃iQj . (7.2)

It is highly non-trivial that the continuous symmetry anomalies (grav)2U(1)R, U(1)3
R,

U(1)RSU(F )2
Q, U(1)RSU(F )2

Q̃
all match between the two theories.

In the following, we will investigate the discrete anomaly matching conditions associ-
ated with the charge conjugation CS and CA. As explained in sections 3 and 6, CS generally
exists and is also non-anomalous. On the other hand, CA exists only for even N and it is
non-anomalous only for even F .

CSSU(F )2
C anomaly matching. The charge conjugation CS interchanges Q and Q̃ fields

and hence does not commute with SU(F )Q or SU(F )Q̃. Therefore, it is not clear how to
study the anomalies such as CSSU(F )2

Q or CSSU(F )2
Q̃
. Instead, we study the anomaly

CSSU(F )2
C , where SU(F )C is the diagonal subgroup SU(F )C ⊂ SU(F )Q × SU(F )Q̃ that

commutes with CS .8
8Note that the common convention is that Q is in the fundamental representation under SU(F )Q and Q̃

is anti-fundamental under SU(F )Q̃, but this is not our convention here. For our convenience, we choose the
definition of SU(F )Q̃ such that Q̃ is fundamental under SU(F )Q̃. In this way, Q and Q̃ are on equal footing
under the flavor symmetries; e.g. they are in the same representation under the diagonal subgroup SU(F )C .
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Let us first look at this anomaly in the electric theory. The gaugino field λ in Wα is
a singlet under SU(F )C , so it does not contribute. The quark and anti-quark fields Q, Q̃
both have N zero modes under the instanton of SU(F )C . Since Q and Q̃ are interchanged,
the linear combinations Q± Q̃ are even and odd eigenstates under CS respectively. There-
fore, their contributions to the CSSU(F )2

C anomaly is N tr
(
tatb

)
= N 1

2δ
ab, where ta are

generators of SU(F )C in the fundamental representation.
Similarly in the magnetic theory, the CSSU(F )2

C anomaly receives a contribution
Ñ tr

(
tatb

)
= Ñ 1

2δ
ab from magnetic quark and anti-quark fields q, q̃. In addition, there

is a contribution from the meson field M , which transforms as M → UMUT under el-
ements in the diagonal subgroup U ∈ SU(F )C . Clearly, M decomposes into symmetric
(MT = M) and antisymmetric MT = −M representations. Under CS , Q and Q̃ fields
are interchanged in the electric theory, and correspondingly in the magnetic theory the
meson field M is transposed. Obviously, the anomaly receives contributions only from the
antisymmetric representation. The contribution is tr

(
taasymt

b
asym

)
= (F − 2)1

2δ
ab.

Altogether, the anomalies do match between the electric and magnetic theories:

N = Ñ + (F − 2) mod 2 . (7.3)

CSU(1)2
R anomaly matching. One can also study the CSU(1)2

R anomalies. Since the
R-charges are fractional, we use the R-charge normalized in the unit of 1/F . The gaugino
field λ in Wα forms an adjoint representation of the gauge field SU(N), which decomposes
into and representations of its CS-invariant subgroup SO(N). Since the gaugino
field transforms as λ → −λT under charge conjugation (see e.g. eq. (6.3)), it is the
component that is odd under CS . Their contributions to the CSU(1)2

R anomaly are there-
fore

[
1
2N(N + 1)− 1

]
F 2 and

[
1
2Ñ(Ñ + 1)− 1

]
F 2 in the electric and magnetic theories

respectively.
For the quark and anti-quark fields, note that the R-charge listed in tables 1 and 2 are

those for the chiral superfields; the R-charge for the fermionic components are obtained
by further adding −1 on top of them. After normalizing the R-charge to the unit of 1/F ,
we obtain their contributions to the CSU(1)2

R anomaly as FN ×N2 and FÑ × Ñ2 in the
electric and magnetic theories respectively.

Finally, we also have a contribution 1
2F (F − 1)(F − 2N)2 from the meson field M in

the magnetic theory. Putting everything together, one can check that the anomaly does
match between the electric and magnetic theories:[1

2N(N + 1)− 1
]
F 2 + FN ×N2

=
[1

2Ñ(Ñ + 1)− 1
]
F 2 + FÑ × Ñ2 + 1

2F (F − 1)(F − 2N)2 mod 2 . (7.4)

Anomaly matching associated with CA. When N and F are both even, we can
also consider anomalies associated with the charge conjugation CA. However, since all
integers involved will be even, the matching conditions will work out trivially. This fact
is consistent with the observation that CA is equivalent to CS up to the sign flips of all Q̃
which is non-anomalous when F is even.
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SU(N) U(1)R SU(F )Q SU(F )Q̃
Wα adj +1 1 1

X adj 2
k+1 1 1

Q 1− 2N
(k+1)F 1

Q̃ 1− 2N
(k+1)F 1

Table 3. Quantum numbers of fields in the electric SU(N) SQCD with an adjoint.

SU(kF −N) U(1)R SU(F )Q SU(F )Q̃
Wα adj +1 1 1

Y adj 2
k+1 1 1

q 1− 2Ñ
(k+1)F 1

q̃ 1− 2Ñ
(k+1)F 1

Mj = Q̃XjQ 1 2 + 2jF−4N
(k+1)F

Table 4. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = kF −N) SQCD with an adjoint.

7.3 Kutasov duality

The Kutasov duality [22] is a generalization of Seiberg duality when an adjoint superfield
X is added with the superpotential

W = Tr
(
Xk+1

)
. (7.5)

The dual magnetic theory is based on the gauge group SU(Ñ) (Ñ = kF − N) with the
adjoint superfield Y and meson fields Mj = Q̃XjQ for j = 0, · · · , k − 1 and the superpo-
tential

W = Tr
(
Y k+1

)
+
k−1∑
j=0

Mj q̃ Y
k−1−j q . (7.6)

The field representations in the electric and magnetic theories in the Kutasov duality are
summarized in tables 3 and 4. In order for the superpotential to be invariant for all k, we
assign the odd intrinsic charge conjugation to X so that X → +XT , and similarly for Y .
Note that in the limit k → 1, the Kutasov duality reduces to the Seiberg duality, because
the superpotential Tr

(
X2) and Tr

(
Y 2) are mass terms for the new adjoint fields, which

can be integrated out and decouple from the rest of the theory.

CSSU(F )2
C anomaly matching. Compared to the case of Seiberg duality, the newly

added adjoint fields X and Y are singlets under the flavor symmetries and hence do not
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contribute to the CSSU(F )2
C anomaly. Contributions from other fields are essentially the

same as we discussed in Seiberg duality, except that we now have a different value of
Ñ = kF − N , and that we have more meson fields in the dual magnetic theory. The
anomaly matching condition does work out:

N = (kF −N) +
k−1∑
j=0

(F − 2) mod 2 . (7.7)

CSU(1)2
R anomaly matching. The R-charges now come in the unit of 1

(k+1)F . One can
check that the CSU(1)2

R anomalies are also matched:[1
2N(N + 1)− 1

]
[(k + 1)F ]2 +

[1
2N(N − 1)

]
[2F − (k + 1)F ]2 + FN(2N)2

=
[1

2Ñ(Ñ + 1)− 1
]

[(k + 1)F ]2 +
[1

2Ñ(Ñ − 1)
]

[2F − (k + 1)F ]2 + FÑ
[
2Ñ
]2

+ 1
2F (F − 1)

k−1∑
j=0

[(k + 1 + 2j)F − 4N ]2 mod 2 . (7.8)

7.4 An example with anti-symmetric tensor

A non-trivial example of duality with an anti-symmetric tensor was found by Intriligator,
Leigh, and Strassler in [23]. The electric gauge group is SU(N) with the superpotential

W = Tr
[
(XX̃)k+1

]
, (7.9)

while the magnetic theory has the gauge group SU(Ñ) (Ñ = (2k+ 1)F − 4k−N) and the
superpotential

W = Tr
[
(Y Ỹ )k+1

]
+

k∑
j=0

Mk−j q (Ỹ Y )j q̃

+
k−1∑
r=0

[
Pk−1−r q (Ỹ Y )r Ỹ q + P̃k−1−r q̃ (Y Ỹ )r Y q̃

]
. (7.10)

The field representations are summarized in tables 5 and 6. Under charge conjugation, the
rank-two anti-symmetric tensor X and its conjugate representation X̃ are exchanged, so
are Y and Ỹ ; the fields Pr and P̃r also get interchanged; transformations of other fields are
the same as in the Seiberg duality. When k = 0, this example reduces to Seiberg duality.

For discrete anomaly matching conditions, U(1)X and U(1)B do not commute with CS .
The CSSU(F )2

C anomalies match as

N = Ñ +
k∑
j=0

(F − 2) +
k−1∑
r=0

(F − 2) mod 2 . (7.11)
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SU(N) SU(F )Q SU(F )Q̃ U(1)X U(1)B U(1)R

Wα adj 1 1 0 0 +1

X 1 1 1 2
N

1
k+1

X̃ 1 1 −1 − 2
N

1
k+1

Q 1 0 1
N 1− N+2k

(k+1)F

Q̃ 1 0 − 1
N 1− N+2k

(k+1)F

Table 5. Quantum numbers of fields in the electric SU(N) SQCD with rank-two anti-symmetric
tensors X and X̃.

SU(Ñ) SU(F )Q SU(F )Q̃ U(1)X U(1)B U(1)R

Wα adj 1 1 0 0 +1

Y 1 1 N−F
Ñ

2
Ñ

1
k+1

Ỹ 1 1 −N−F
Ñ

− 2
Ñ

1
k+1

q 1 k(F−2)
Ñ

1
N 1− Ñ+2k

(k+1)F

q̃ 1 −k(F−2)
Ñ

− 1
N 1− Ñ+2k

(k+1)F

Mj = Q̃(X̃X)jQ 1 0 0 Ñ−N+(2j+1)F
(k+1)F

Pr = Q(X̃X)rX̃Q 1 1 −1 0 Ñ−N+2(r+1)F
(k+1)F

P̃r = Q̃(X̃X)rXQ̃ 1 1 1 0 Ñ−N+2(r+1)F
(k+1)F

Table 6. Quantum numbers of fields in the magnetic SU(Ñ) (Ñ = (2k + 1)F − 4k − N) SQCD
with rank-two anti-symmetric tensors Y and Ỹ .

The CSU(1)2
R anomalies match as

[1
2N(N + 1)− 1

]
[(k + 1)F ]2 +

[1
2N(N − 1)

]
[F − (k + 1)F ]2 + FN(N + 2k)2

=
[1

2Ñ(Ñ + 1)− 1
]

[(k + 1)F ]2 +
[1

2Ñ(Ñ − 1)
]

[F − (k + 1)F ]2 + FÑ(Ñ + 2k)2

+ 1
2F (F − 1)

k∑
j=0

[
Ñ −N + (2j + 1)F − (k + 1)F

]2
+ 1

2F (F − 1)
k−1∑
r=0

[
Ñ −N + 2(r + 1)F − (k + 1)F

]2
mod 2 . (7.12)
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SO(N) U(1)R SU(F )Q Z2F

Wα adj +1 1 0

Q 1− N−2
F 1

Table 7. Quantum numbers of fields in the electric SO(N) SQCD.

SO(Ñ) U(1)R SU(F )Q Z2F

Wα adj +1 1 0

q 1− Ñ−2
F −1

M = QQ 1 2− 2N−2
F +2

Table 8. Quantum numbers of fields in the magnetic SO(Ñ) (Ñ = F −N + 4) SQCD.

7.5 Parity in SO(2r) gauge theories

It is instructive to study anomalies associated with the parity outer automorphism in
SO(2r) gauge theories. The electric-magnetic duality found by Intriligator and Seiberg [24]
says N = 1 supersymmetric SO(N) gauge theory with F chiral superfields in the vector
representation is dual to SO(F − N + 4) gauge theory also with F vectors and a meson
superfield M in the rank-two symmetric representation of SU(F ). See tables 7 and 8 for
the particle contents.

One special aspect is the Z2F discrete symmetry. The matching of baryon operators
between the electric and magnetic theories is given by

B`1···`N−4 = 1
N ! εi1···iN Q

i1
`1
· · ·QiN−4

`N−4
W iN−3iN−2
α WαiN−1iN

= 1
(F −N + 4)!

1
F ! ε

i1···iF−N+4 ε`1···`N−4`N−3···`F q
`N−3
i1

· · · q`FiF−N+4
. (7.13)

Here, ik are the gauge indices while `k are the flavor indices. Its Z2F charge in the electric
theory is N − 4, while that in the magnetic theory is −Ñ = −(F −N + 4) = N − 4− F .
The mismatch is fixed by mapping the Z2F in the electric theory to Z2FP in the magnetic
theory, where P provides a minus sign for the Levi-Civita symbol for the gauge indices
which can be identified as charge F under the Z2F symmetry. It was verified in ref. [15]
that all Type-I and Type-II anomalies match under this identification.

The parity P is an independent symmetry only when both N and F are even. When N
is odd, we can combine P with the rotation diag(−1,−1, · · · ,−1,−1,+1) in SO(N), which
becomes an overall sign change of Q. It is then a subgroup of Z2F , not a new symmetry.
When F is odd and N even, Z2F = ZF × Z2 since 2 and F are relatively prime, and ZF is
the center group of SU(F ), while Z2 is a part of the center group of SO(N).

Now we can verify anomaly matching conditions under P. Only one of the components
of the vector representation switches its sign. The PSU(F )2 anomalies are matched as

1 = 1 mod 2 . (7.14)
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SO(8) SU(3) SU(3) U(1)1 U(1)2 U(1)R
Wα adj 1 1 0 0 +1
Q 8v 1 1 0 6 1
S 8s 3 1 1 −1 0
S′ 8c 1 3 −1 −1 0

Q2 1 1 0 12 2
S2 1 2 −2 0
S′2 1 −2 −2 0
SS′Q 0 4 1
S3S′Q 1 2 2 1
S′3SQ 1 −2 2 1
S2S′2 0 −4 0

Table 9. Quantum numbers of fields in the s-confining SO(8) theory and massless composites.

The PZ2
2F anomalies are matched as

F × 12 = F × (−1)2 mod 2 . (7.15)

The PU(1)2
R anomalies are matched, on the other hand, using the 1/F as the minimum

charge as

(N − 1)F 2 + F (N − 2)2 = (Ñ − 1)F 2 + F (Ñ − 2)2 mod 2 . (7.16)

Here, the first terms on both sides of the equation are the N − 1 (Ñ − 1) vector of the
P-invariant SO(N − 1) (SO(Ñ − 1)) subgroup of gauginos in the adjoint representation,
which flip sign under the parity P.

7.6 SO(8) s-confining theory

Here is another non-trivial example where we can test the parity P. It is an SO(8) theory
with three spinors, three conjugate spinors, and one vector [25]. Under parity, the P-
invariant subgroup is SO(7). See table 9 for the particle content and quantum numbers. S
and S′ are interchanged, while the gauge multiplet decomposes as adj8 = adj7 + 7 and the
7 changes its sign. Two SU(3) are interchanged, and we consider the diagonal subgroup
SU(3)C . U(1)1 does not commute with parity and we do not consider its anomaly.

PSU(3)2
C . Note that SS′Q decomposes as + under SU(3)C and is odd under

parity. Similarly for S2S′2. The linear combinations S − S′, S2 − S′2, S3S′Q− S′3SQ are
odd. The matching condition works out as

8S−S′ = 5S2−S′2 + 1
SS′Q( )

+ 1S3S′Q−S′3SQ + 1S2S′2( ) mod 2 . (7.17)
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PU(1)2
2. Note that one component of Q changes its sign under parity. The matching

condition works out as

1× 62
Q + 8× 3(−1)2

S−S′

= 6(−2)2
S2−S′2 + 3× 42

SS′Q( )
+ 3× 22

S3S′Q−S′3SQ + 3(−4)2
S2S′2( ) mod 2 . (7.18)

PU(1)2
R. Here, gauginos also contribute. The anomalies do match

7× 12
λ + 8× 3(−1)2

S−S′ = 6(−1)2
S2−S′2 + 3× (−1)2

S2S′2( ) mod 2 . (7.19)

PU(1)2U(1)R. This anomaly matching also works out

8× 3(−1)(−1)S−S′ = 6(−2)(−1)S2−S′2 + 3(−4)(−1)S2S′2( ) mod 2 . (7.20)

8 Spontaneous breaking of outer automorphism

Here we discuss two theories that exhibit similar dynamics where the theory confines with a
moduli space of vacua. Yet in one example the charge conjugation is spontaneously broken,
while in the other it is not. Both of them are N = 1 supersymmetric gauge theories.

8.1 SO(6) with two vectors

The first example is SO(6) with two vectors φi, i = 1, 2. This is a well-known example by
Intriligator and Seiberg. The field representations are summarized in table 10. Once two
vectors go along the D-flat direction, SO(6) generically breaks to pure SO(4) ' SU(2)1 ×
SU(2)2 Yang-Mills. The matching condition is that the SU(2) dynamical scale is given by
the SO(6) dynamical scale as

Λ6
2 = Λ10

6
detM , Mij = φiφj . (8.1)

The point here is that the outer automorphism of SO(6), namely parity, is equivalent to
interchange of two SU(2)’s, which leaves the P-invariant subgroup SO(5), under which the
φi decomposes into 5 ⊕ 1 as expected under parity. Two SU(2) factors develop gaugino
condensates and hence the superpotential is

W = ±Λ3
2,1 ± Λ3

2,2 = (±1± 1) Λ5
6

(detM)1/2 . (8.2)

Note that the signs are coming from the square root of the dynamical scale Λ6
2 above,

and not correlated, as each SU(2) factors lead to two vacua and hence there are four
configurations altogether. When two signs are the same, namely (+,+) or (−,−), the
superpotential has run-away behavior for the meson superfields and there is no ground
state; similar to the Affleck-Dine-Seiberg superpotential in SU(2) theory with one flavor.
In this case, the charge conjugation that interchanges two SU(2) factors is unbroken. These
two run-away directions correspond to Z4/Z2 while the charge conjugation is unbroken.
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When two signs are the opposite, namely (+,−) or (−,+), the meson dependence
cancels exactly in the superpotential, and we have a moduli space of vacua. In this case,
the charge conjugation is spontaneously broken and hence there are two ground states; one
can even have domain walls (probably BPS). The order parameter of charge conjugation
(or equivalent parity) breaking is

〈εabcdef εαβW ab
α W

bc
β φ

e
iφ
f
j ε
ij〉 6= 0 , (8.3)

where a, b, c, d, e, f = 1, · · · , 6 are the SO(6) indices, as shown in [15].9 In fact, the anomaly
matching for the charge conjugation fails in this case, as shown in table 12. These two
vacua correspond to C × Z4/Z4 where the generator of the unbroken Z4 is embedded as
(−, ω) ∈ C × Z4 with ω = i.

8.2 SU(6) with one rank-three anti-symmetric tensor

The second example is SU(6) with one rank-three anti-symmetric tensor Aijk. The field
representations are summarized in table 13. Since this is a pseudo-real representation,
there is no A2 invariant; the lowest invariant is A4. Along the D-flat direction, it breaks
SU(6) to SU(3)1 × SU(3)2 with the matching condition

Λ9
3 = ± Λ15

6
(A4)3/2 . (8.4)

Note the unusual square root in the denominator that leads to the sign ambiguity. We
show below it is not an ambiguity; two low-energy SU(3) groups have opposite signs in
their dynamical scales.

The representation Aijk has Dynkin index 6. Under CA, it decomposes into one rank-
three tensor (Dynkin index 5) and one fundamental representation (Dynkin index 1) under
the CA-invariant subgroup Sp(6). Under either assignment of even and odd eigenvalues,
there is an odd number of zero modes under an Sp(6) instanton, and hence CA is anomalous.
On the other hand, under CS , it decomposes into two rank-three tensors under the CS-
invariant subgroup SO(6). Each has the “self-duality” constraint

Aijk± = ± i

3!ε
ijklmnAlmn± . (8.5)

Note that there is no distinction between upper and lower indices under SO(6). In an SO(6)
instanton background, there are six zero modes for each, and hence CS is the symmetry of
the theory.

Going back to the original SU(6), the CS is given by a symmetric Cij matrix

Aijk → i

3!ε
ijklmnClrCmsCntA

rst , (8.6)

where we chose one possible sign. Note that a factor of i is needed to ensure C2
S = 1 in the

basis where Cij = δij . Then a charge-conjugation invariant D-flat direction is

A123 = v , A456 = −iv . (8.7)
9This condensate also breaks the Z4 discrete symmetry as reflected in table 11.
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SO(6) U(1)R SU(2)f Z4

Wα adj +1 1 0
φi 6 −1 2 1

Mij 1 −2 3 2
WαW

α 1 +2 1 0
O 1 0 1 2

Table 10. Quantum numbers of various fields in the SO(6) theory with two vectors φi. The first
two fields are in the UV theory, while the last three are in the IR theory. The last row is the operator
O = εabcdef ε

αβW ab
α W bc

β φ
e
iφ
f
j ε
ij that acquires an expectation value and breaks Z4 to Z2 [15].

R(grav)2 R3 R(SU(2))2 Z4(SU(2))2 Z4R
2 Z2

4R Z3
4

Wα +15 +15 0 0 0 0 0
φi −24 −96 −6 6 48 −24 12

UV total −9 −81 −6 6 48 −24 12

Mij −9 −81 −6 4 54 −18 24

Table 11. Anomalies between the UV and IR particle contents. The anomalies of continuous
symmetries all match [24]. The Z4 anomalies are supposed to be matched mod 4, but they match
only mod 2, indicating the spontaneous breaking due to 〈O〉.

SO(5) CAR2 CA(SU(2))2

Wα 10+ ⊕ 5− − +
φi 5+ ⊕ 1− + −

UV total − −

Mij 1+ + +

Table 12. The first column is the quantum number under the P-invariant subgroup Sp(4) =
SO(5). Anomalies of charge conjugation do not match, indicating that the charge conjugation is
spontaneously broken. These anomalies were not studied before.

Note that the D-flatness requires only D = |A123|2 − |A456|2 = 0 and it does not fix the
relative phase between the two expectation values. It is the charge conjugation invariance
that fixes the relative phase.10 It breaks SU(6) to SU(3)1 × SU(3)2, and the low-energy
gauge coupling constants are given by decoupling the heavy vector multiplet of mass v or

10If the relative phase is different, we choose a different basis to define a new Cij = δije
iα and the charge

conjugation invariance always holds.
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−iv, and hence

8π2

g2
1

+ iθ1 = 8π2

g2
6

+ iθ6 + 6 ln v
µ
, (8.8a)

8π2

g2
2

+ iθ2 = 8π2

g2
6

+ iθ6 + 6 ln −iv
µ

. (8.8b)

As a result, the low-energy couplings differ by i(θ1 − θ2) = iπ. Therefore, the two signs
in eq. (8.4) correspond to different low-energy SU(3) gauge groups. Namely, it is not an
ambiguity; both appear in the low-energy theory.

Each SU(3) factor develops the gaugino condensate

W = ωn1Λ3
3,1 + ωn2Λ3

3,2 = (ωn1 − ωn2) Λ5
6

(A4)1/2 . (8.9)

Here, ω = e2πi/3 is the cubic root of unity, and n1,2 = 0, 1, 2, leading to nine configurations.
Note the relative minus sign that comes from the difference in vacuum angles θ1 − θ2 = π

in the gauge coupling constants of SU(3)1,2.
The charge conjugation is the interchange of two SU(3) factors. When n1 6= n2, the

charge conjugation is broken and therefore the configurations are paired (n1, n2)↔ (n2, n1),
and also the theory has run-away behavior. When n1 = n2, on the other hand, the
superpotential cancels exactly and there is a moduli space of vacua. The charge conjugation
is unbroken in this case.

The UV theory has a Z6 discrete symmetry of changing the phase of Aijk by the sixth
root of unity because of its Dynkin index six. However, this symmetry is spontaneously
broken. This is because two gaugino condensates can be parameterized by expectation
values of WαW

α and O = εijklmnA
ijkAlmr(Wα)sr(Wα)ns , where the latter breaks Z6 to

Z2 [15]. Therefore Z6 anomalies are not matched mod 6, but are only matched mod 2. The
anomalies of charge conjugation are matched correctly (table 14).

9 Conclusion

In this paper, we investigated issues of anomalies associated with the outer automorphisms
of the gauge groups. We discovered a variety of interesting issues. In some cases, outer
automorphisms themselves can be anomalous and hence are not symmetries of the theory.
This resolves some paradox about charge-conjugation invariance of chiral symmetry break-
ing order parameter. When the outer automorphism is non-anomalous, it serves a role in
’t Hooft anomaly matching conditions between UV and IR theories, or for duality between
electric and magnetic theories. In all cases we studied, they do match perfectly. When
the anomaly matching appears to fail, it serves as an indication that parts of the global
symmetries are broken. We discussed such cases as well. In all cases, studying anomalies
associated with the outer automorphisms are useful and even necessary. This is the main
result of this paper.

There is an immediate consequence of our result. The authors of the papers [19, 20, 30]
discussed gauging the principal extension SU(N)oC. Obviously, this is possible only when
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SU(6) U(1)R Z6 SO(6)

Wα adj +1 0 − ⊕ +

A −1 1 + ⊕ −

A4 1 −4 4 1+

WαW
α 1 +2 0 1+

O 1 0 2 1+

Table 13. Quantum number of fields in the SU(6) theory with rank-three anti-symmetric tensor
A. The last row is the operator O = Tr (T aAA) Tr (T aWαW

α) that acquires an expectation value
and breaks Z6 to Z2.

R(grav)2 R3 Z6(grav)2 Z6R
2 Z2

6R CSR2

Wα 35 35 0 0 0 +
A −40 −160 40 80 −40 +

UV total −5 −125 4 2 4 +

A4 −5 −125 8 100 −80 +

Table 14. Anomaly matching conditions between the UV and IR. The R-charge of A is −1 so
that U(1)R is anomaly free under the SU(6) gauge group. Note that the Z6 anomalies are not
matched because it is broken to Z2 due to the A2WW condensate. On the other hand, the charge
conjugation anomalies had not been studied before, and are matched correctly.

C is non-anomalous under SU(N). For the N = 2 SQCD theories in four dimensions that
these works focused on, C is guaranteed to be non-anomalous. But for a more general
construction, this constraint needs to be considered. Furthermore, we have shown that
the technique introduced in [20] of finding possible principle extensions of the gauge group
G = SU(N) via the Cartan classification of symmetric spaces does not work for the case
G = SO(2k).

There are possible future directions concerning outer automorphisms. In topological
insulators, the boundary states may be Majorana fermion. The presence of such a state is
protected by topology. It would be interesting to see if it has a connection to anomalies
under charge conjugation. If the bulk theory is anomalous under charge conjugation, it
needs to be accompanied by edge states that cancel the anomaly. It may provide an
alternative argument for topologically protected states. See a related discussion concerning
time reversal in [31].

We restricted the background gauge fields to configurations that are invariant under
the outer automorphisms to study well-defined transformation properties of path integral
measures. It would be also interesting to see if this restriction can be relaxed. We briefly
discussed difficulties associated with such an effort in the appendix.

We believe our paper is only the beginning of studies of outer automorphism anomalies.
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A Non-self-conjugate gauge fields

In this paper, we studied anomalies associated with outer automorphisms by restricting
to the gauge field configurations (both for the dynamical gauge field and those associated
with weakly gauged global symmetries with spectators) that are self-conjugate (invariant)
under the outer automorphism. This is because the question whether

∫
DψDψ̄ exp

[
i

∫
dx ψ̄ i /D(A)ψ

]
C−→ ±

∫
DψDψ̄ exp

[
i

∫
dx ψ̄ i /D(A)ψ

]
, (A.1)

due to the property of the measure is a well-defined question we could study by working
out eigenvalues under outer automorphism for each eigenmode of the Dirac operator. How-
ever, one may wonder if stronger constraints can be obtained by considering gauge field
configurations that are not self-conjugate configurations.

Obviously for such not self-conjugate gauge fields, we are looking at
∫
DψDψ̄ exp

[
i

∫
dx ψ̄ i /D(A)ψ

]
C−→ ±

∫
DψDψ̄ exp

[
i

∫
dx ψ̄ i /D(AC)ψ

]
, (A.2)

where AC is the charge-conjugated gauge field. The question then is what happens when
AC is deformed smoothly back to A. If we perfectly understand the spectral flow, namely
the continuous change of the eigenvalues of the Dirac operator for At = (1− t)AC + tA, we
can probably extend the discussion to non-self-conjugate gauge field configurations. This
is beyond the scope of this paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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