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Abstract
Objectives A core assumption of meditation training is that cognitive capacities developed during formal practice will 
transfer to other contexts or activities as expertise develops over time. This implies that meditation training might influ-
ence domain-general neurocognitive systems, the spontaneous activity of which should be reflected in the dynamics of the 
resting brain. Previous research has demonstrated that 3 months of meditation training led to reductions in EEG beta band 
power during mindfulness of breathing practice. The current study extends these findings to ask whether concomitant shifts 
in power are observed during 2 min of eyes closed rest, when participants are not explicitly engaged in formal meditation.
Methods Experienced meditation practitioners were randomly assigned to practice 3 months of focused attention medita-
tion in a residential retreat, or to serve as waitlist controls. The waitlist controls later completed their own 3-month retreat. 
Permutation-based cluster analysis of 88-channel resting EEG data was used to test for spectral changes in spontaneous brain 
activity over the course of the retreats.
Results Longitudinal reductions in EEG power in the beta frequency range were identified and replicated across the two 
independent training periods. Less robust reductions were also observed in the high alpha frequency range, and in individual 
peak alpha frequency. These changes closely mirror those previously observed during formal mindfulness of breathing 
meditation practice.
Conclusions These findings suggest that the neurocognitive effects of meditation training can extend beyond the bounds of 
formal practice, influencing the spontaneous activity of the resting brain. Rather than serving as an invariant baseline, resting 
states might carry meaningful training-related effects, blurring the line between state and trait change.

Keywords Meditation · EEG · Beta · Resting state · Domain generalization · State versus trait

A central claim of Buddhist contemplative traditions is that 
training in meditation can bring about lasting changes in the 
nature and habits of the mind (e.g., Dalai Lama & Cutler, 
2009; Wallace 2006). Consistent with these claims, differ-
ent forms and regimens of meditation training have been 
shown to influence capacities as diverse as attentional stabil-
ity (e.g., Lutz et al., 2009; van Leeuwen et al., 2012; Zane-
sco et al., 2013, 2019), stress buffering (e.g., Creswell & 
Lindsay, 2014), emotion regulation and reactivity (e.g., Lutz 
et al., 2008; Rosenberg et al., 2015), and prosociality (e.g., 

Ashar et al., 2016; Condon et al., 2013; Weng et al., 2017). 
Critically, these changes may extend well beyond the bounds 
of formal meditation sessions, influencing broad domains 
of daily life (e.g., Donald et al., 2019; Sahdra et al., 2011; 
Skwara et al., 2017). The manifestation of these effects 
across domains that are not explicitly trained implies that 
meditation training might alter domain-general neurocogni-
tive systems. Generalized changes in such systems should 
theoretically be observed across a variety of situations, con-
texts, and, notably, in the spontaneous neural activity of the 
brain at rest (e.g., Bauer et al., 2019).

The brain is remarkably responsive to changes in envi-
ronment and behavior. For instance, immobilizing a per-
son’s arm for only 48 h can lead to neuroplastic changes in 
functional brain connectivity (Newbold et al., 2020). The 
capacity of the brain to undergo reorganization has also 
been observed in the context of contemplative practice. 
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Experienced meditators show persistent shifts in functional 
(e.g., Davidson & Lutz, 2008; Hasenkamp & Barsalou, 
2012) and structural (e.g., Fox et al., 2014; Lumma et al., 
2018) brain organization. These changes can be observed 
during active meditation practice (e.g., Braboszcz et al., 
2017; Fucci et al., 2018; Lee et al., 2018; Saggar et al., 
2012), during task engagement (e.g., Desbordes et al., 2012; 
van Leeuwen et al., 2012; Zanesco et al., 2019), and in the 
functional architecture of the resting brain (e.g., Dentico 
et al., 2018; Hasenkamp & Barsalou, 2012; Zanesco et al., 
2021).

Much of the neuroscientific literature on meditation has 
focused on investigations of brain activity during formal 
meditation practice (for reviews, see Cahn & Polich, 2006; 
Lee et al., 2018; Lomas et al., 2015). During formal medi-
tation practice, practitioners engage with a specified set of 
mental activities for a given period of time. These formal 
sessions are typically undertaken in a particular physical 
posture, such as sitting or lying down; and are conditioned 
by social, ethical, and other contextual factors (Lutz et al., 
2015). For example, during mindfulness of breathing medi-
tation, a practitioner might sit quietly in an upright posture, 
focusing on the sensations of breath at the aperture of their 
nostrils or the rising and falling of their abdomen. When 
they notice that their mind has wandered, they are instructed 
to gently redirect it back to the breath (Gunaratana, 2002). 
Through repeated practice, practitioners cultivate the ability 
to regulate attention and to volitionally maintain awareness 
on a chosen object. Over time, improvements in the ability to 
direct and sustain attention are thought to extend beyond the 
meditative context and generalize to other activities (Dalai 
Lama & Cutler, 2009; Lutz et al., 2015; Wallace, 2006).

While the boundary conditions of formal meditation ses-
sions are often clearly delineated, the effects of meditation 
training are much less circumscribed (Cahn & Polich, 2006; 
Skwara et al., 2017). Experiential (e.g., Dalai Lama & Cut-
ler, 2009; Kabat-Zinn, 2013) as well as empirical (e.g., Des-
bordes et al., 2012; Fox et al., 2014; Hasenkamp & Barsalou, 
2012) accounts suggest that neurocognitive changes instanti-
ated through meditation extend beyond the bounds of formal 
practice, and the brain systems and cognitive mechanisms 
engaged through various meditative practices are implicated 
in a wide array of psychological processes (Dahl et al., 2015; 
Lutz et al., 2015). As such, meditation-related changes in 
neurocognitive systems may manifest across a range of dif-
ferent contexts and outcomes. Experientially, shifts in per-
ception and awareness experienced during formal practice 
may, over time, extend into daily life in ways that are both 
pervasive and persistent (Dalai Lama & Cutler, 2009; David-
son & Kaszniak, 2015; Kabat-Zinn 2013; Wallace, 2006), 
blurring the line between meditative states and everyday 
experience.

Evidence for meditation-related domain generalization 
can be gleaned from tasks that engage the specific skills or 
capacities ostensibly trained by a given meditation practice, 
as well as from tasks that cut across cognitive and affective 
domains that are not specifically targeted by that practice. 
For example, previous investigations of a waitlist-controlled 
longitudinal study of focused attention meditation—known 
as the Shamatha Project—found that 3 months of intensive 
training in a retreat environment lead to improvements in the 
capacity to regulate one’s attention (MacLean et al., 2010; 
Sahdra et al., 2011; Shields et al., 2020; Zanesco et al., 2016, 
2018, 2019), but also to alterations in emotional responses 
to suffering (Rosenberg et al., 2015), and improvements 
socioemotional functioning (Sahdra et al., 2011). It remains 
unclear, however, what brain processes support the tendency 
for cognitive capacities engaged during formal practice to 
generalize across diverse psychological domains.

To the extent that meditation training leads to generalized 
changes in cognition and behavior, there should be observ-
able shifts in the activity of underlying brain systems that 
support these functions. One method for quantifying the 
functioning of such brain systems is to examine neural oscil-
lations, as indexed by electrical activity at the scalp (e.g., 
Buzsaki et al., 2012). In an analysis of EEG recorded dur-
ing mindfulness of breathing meditation as part the Shama-
tha Project, replicable changes in brain activity were also 
observed (Saggar et al., 2012). Participants who received 
meditation training demonstrated significant reductions in 
band power in the beta frequency range, as well as reduc-
tions in peak individual alpha frequency. These reductions 
replicated across two independent retreat interventions, and 
were not observed in waitlist controls. Building on research 
implicating beta band activity in attentional orienting to sen-
sory information (e.g., Pfurtscheller & Lopes da Silva, 1999; 
Schubert et al., 2009; van Ede et al., 2011), these findings 
were interpreted to reflect enhanced attention to, and sensory 
processing of, the subtle sensations of breath during mind-
fulness of breathing developed through intensive practice 
(Saggar et al., 2012).

The present report leverages data from the Shamatha 
Project to ask whether the neuroelectric changes observed 
during formal meditation practice might generalize to an 
uninstructed resting state. We hypothesized that 3 months 
of residential training would alter brain oscillatory activity 
during quiet rest. We further hypothesized that these changes 
would mirror those previously observed during mindfulness 
of breathing meditation, namely, overall reductions in beta 
band power and individual alpha frequency. By extending 
this investigation to the resting brain, we hoped to shed 
light on neurocognitive factors that might support general-
ized changes in meditation-related processes over a period 
of intensive practice.
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Method

Participants

We recruited experienced meditation practitioners through 
advertisements in print and online Buddhist publica-
tions. Following recruitment, 60 eligible participants (32 
females, 28 males; Mage = 48 years, range = 22 to 69) were 
randomly assigned to an initial training group (n = 30) or 
a waitlist control group (n = 30) using a stratified match-
ing procedure. The groups were matched at baseline on 
age, sex, ethnicity, and major personality characteristics, 
as well as several cognitive task variables assessed prior to 
assignment (for details of recruitment and group matching, 
see MacLean et al., 2010; Shields et al., 2020). They were 
also matched on lifetime meditation experience, with an 
overall mean of 2610 cumulative hours (initial training: 
M = 2549 h, range = 250 to 9500; waitlist control: M = 
2,668, range = 250 to 15,000). In addition, participants 
were screened for medical conditions and Axis I psy-
chiatric diagnoses as assessed by the Mini International 
Neuropsychiatric Interview screen (Sheehan et al., 1998) 
and a clinical interview administered by a licensed clinical 
psychologist.

One waitlist participant left the study after completing 
the control assessments due to circumstances unrelated to 
the study. This left a total of 29 participants for the second 
training intervention.

Procedures

The waitlist design included two 3-month-long residen-
tial meditation retreats conducted in the spring and fall of 
2007. The two retreats were formally identical in training 
structure and were held in the same scenic retreat envi-
ronment. During the first retreat (Retreat 1), active train-
ing participants lived and practiced meditation on-site at 
Shambhala Mountain Center in Red Feather Lakes, CO. 
Waitlist control participants continued with their daily 
lives during this time and were flown to the retreat center 
to complete on-site assessments at the beginning, middle, 
and end of the intervention period. At each assessment, 
waitlist control participants arrived at the retreat center 
approximately 3 days (range = 65–75 h) prior to their 
laboratory session for an initial acclimatization period to 
adjust to the altitude (~2500 m) and natural environment. 
Following Retreat 1, waitlist control participants returned 
to the retreat center and underwent their own 3-month 
retreat intervention as active training participants (Retreat 
2). Thus, the design comprised three participant statuses: 
Retreat 1 active training participants, Retreat 1 waitlist 

controls, and Retreat 2 active training participants. The 
Retreat 2 training participants were the same participants 
as Retreat 1 waitlist controls and completed their first 
assessment as active training participants approximately 
3 months after their final assessment as waitlist controls.

While on retreat, training participants practiced medita-
tion for 6 to 8 h a day, under the guidance of Dr. B. Alan 
Wallace, an experienced Buddhist teacher and contemplative 
scholar. Participants gathered twice daily to engage in guided 
group meditation and instruction and met individually with 
Dr. Wallace once a week. The meditation instructions were 
drawn from the Theravada and Mahayana Buddhist tradi-
tions and included Shamatha and four immeasurables prac-
tices (described in Wallace, 2006). Shamatha techniques 
aim to develop stability of attention, perceptual vividness, 
and concentration, and were the primary practices taught on 
retreat. These consisted of (1) mindfulness of breathing, in 
which attention is focused on the sensations of the breath; 
(2) observing mental events, in which attention is turned to 
all forms of mental phenomena; and (3) observing the nature 
of consciousness, in which focus is placed on the awareness 
of being aware. The four immeasurables of loving-kindness, 
compassion, empathetic joy, and equanimity aim to cultivate 
beneficial aspirations for the self and others (for a descrip-
tion, see Rosenberg et al., 2015; Wallace, 2010). The four 
immeasurables were taught as supportive practices, and par-
ticipants reported in engaging in four immeasurables prac-
tice for approximately 45 min per day, on average. Overall, 
training participants reported devoting most of their prac-
tice time to mindfulness of breathing (for full practice time 
details, see Sahdra et al., 2011).

Measures

On-site laboratory assessments were conducted at the begin-
ning (pre-assessment), middle (mid-assessment), and end 
(post-assessment) of each retreat. At each assessment, par-
ticipants completed approximately 4 h of testing on each of 
two consecutive days. The results of these assessments can 
be found in several other reports (e.g., MacLean et al., 2010; 
Rosenberg et al., 2015; Saggar et al., 2012; Sahdra et al. 
2011; Shields et al., 2020; Zanesco et al., 2019). All testing 
took place in two field laboratories with darkened, sound-
attenuated testing and control rooms built on-site at the retreat 
center. Retreat 1 training participants completed a total of 
three on-site assessments, while waitlist controls completed 
a total of six assessments—three as controls in Retreat 1, and 
three as active training participants in Retreat 2.

Resting EEG

Resting EEG was collected as the first laboratory task at each 
assessment. Continuous EEG was recorded across 4 min of 
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rest, divided into four 1-min segments of eyes open and eyes 
closed rest (open, closed, closed, open). At the beginning 
of each resting segment, participants were instructed via an 
audio recording: “For the next sixty seconds please sit qui-
etly with your eyes closed [open].” Importantly, however, 
participants’ interpretation of these instructions may have 
also been influenced by prior instructions given during the 
EEG set-up prior to the period of quiet rest. Before the rest-
ing period, the instructions “Rest without engaging in any 
particular form of directed mental activity” were displayed 
to participants on screen during set-up. Because our goal 
was to investigate brain activity in the absence of an explicit 
task, these instructions were intentionally non-directive and 
avoided any mention of meditation or mind wandering.

In our prior report, most participants practiced mindful-
ness of breathing with their eyes closed. Therefore, for con-
sistency with these data, we included data from the eyes 
closed resting epochs only. In addition, only participants 
who had usable EEG data at all assessment points of a given 
retreat were included in the analyses (in total, four files were 
excluded upon initial inspection; eight more were excluded 
following preprocessing). This resulted in a total of 52 par-
ticipants (27 female; Mage = 48.16 years, SDage = 14.18, 
range = 22.25 to 69.69) providing a total of 156 observa-
tions for Retreat 1. Of these, 25 were training participants 
(12 female; age: Mage = 49.70, SDage = 12.88, range = 23.90 
to 69.69), and 27 were waitlist controls (15 female; age: 
Mage = 46.74, SDage = 15.39, range = 22.25 to 65.16). For 
Retreat 2, 26 training participants (13 female; Mage = 46.47 
years, SDage = 15.56, range = 22.25 to 65.16) provided 78 
observations.

Data Acquisition and Processing EEG was recorded with the 
BioSemi ActiveTwo system (http:// www. biose mi. com) at a 
sampling rate of 2048 Hz. Easycap electrode caps (http:// 
www. easyc ap. de) were fitted with BioSemi electrode holders 
in an 88-channel equidistant montage, and individual elec-
trode locations were localized using a Polhemus Patriot dig-
itizer (http:// www. polme hus. com). On participant request, 
some electrodes (primarily at frontopolar locations) were 
not inserted or were removed to minimize discomfort. The 
EEG recordings were band-pass filtered offline between 0.1 
and 200 Hz (zero-phase; roll-off; 12 dB/octave LP, 24 dB/
octave HP) and then referenced to the average of all remain-
ing channels. Data preprocessing was conducted in BESA 
5.2 (www. besa. de). Channels with very low signal quality 
were discarded prior to analysis, and data were manually 
marked to remove extreme artifacts and intermittent high 
amplitude EMG contamination.

Separating Neural from Non‑neural Signal Sources Follow-
ing the process outlined in Saggar et al. (2012), second-
order blind source identification (SOBI; Belouchrani et al., 

1997) was used to separate signals of putative neural origin 
from non-neural sources. SOBI is a method similar to ICA 
that functions to separate signal components. Unlike ICA, 
which examines only momentary correlations, SOBI uses 
joint-diagonalization of correlation matrices at multiple 
temporal delays. This is used to identify maximally inde-
pendent sources by minimizing the sum of the squared cross-
correlations of all pairs of sources across all temporal delays. 
We used 41 temporal delays, τ = [1:1:10, 12:2:20, 25:5:100, 
120:20:300] ms, as recommended in Tang et al. (2005). The 
two consecutive 1-min segments of eyes closed resting EEG 
were concatenated and submitted to SOBI. A novel SeMi-
automatic Artifact Removal Tool (SMART; https:// stanf ord. 
edu/ ~saggar/ Softw are. html; Saggar et al., 2012) was used 
to generate signal source topography, spectra, autocorrela-
tion, and time series for inspection. These SMART outputs 
were used to manually classify signal sources as neural or 
non-neural (e.g., EMG, ocular artifacts, line noise) in origin 
(see Saggar et al., 2012, for examples of SMART output 
and a discussion of the parameters considered in source 
classification).

Reconstruction and Conversion into Standardized Electrode 
Space Following application of SOBI, sources identified as 
non-neural were removed and the remaining putative neu-
ral sources were reconstructed into the original 88-channel 
montage. To ensure that channel locations were standard-
ized across participants, the reconstructed montage was then 
transformed into a standard 81-channel montage (interna-
tional 10-10 system) using spherical spline interpolation 
(smoothing factor of 2e-07) as implemented in BESA 5.2. 
Eight channels of the standard 81-channel montage (AF9, 
Fpz, Fp2, Nz, AF10, CB1, CB2) did not have correspond-
ing nearest electrode sites in the original montage and so 
were removed from the interpolated locations, yielding a 
final standardized 73-channel montage.

Scalp Current Density We used the MATLAB CSD Tool-
box (http:// psych ophys iology. cpmc. colum bia. edu/ Softw 
are/ CSDto olbox; Kayser & Tenke, 2006), to transform data 
from the standardized 73-channel montage into a reference-
free estimation of scalp current source density (CSD) using 
spherical spline interpolation (Perrin et al., 1989). Result-
ing CSD units are given in μV/m2. The surface Laplacian 
was estimated as the second derivative of the scalp potential 
and smoothed by a lambda factor of 2e-05. Transformation 
of scalp voltage to CSD minimizes the effects of volume 
conduction and improves visualization of scalp topographic 
differences (Kayser & Tenke, 2012, 2015).

Power Spectral Estimation The 2 min of reconstructed 
EEG data were segmented into 2-s (4096 point) segments 
with 50% overlap. Power spectra estimates, averaged over 
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2-s windows, were computed in the MATLAB FieldTrip 
package (Oostenveld et  al., 2011) using multi-tapered 
power spectral density estimation (Mitra & Pesaran, 1999; 
Oostenveld et al., 2011) and a Hanning window (Welch, 
1967) at 0.5 Hz resolution. Frequency bands were defined 
relative to each individual’s peak alpha frequency (IAF). 
IAF was calculated within a frequency range of 7 Hz (f1) to 
14 Hz (f2) using the center-of-gravity method of Klimesch 
(1999):

where f i denotes the power-spectral estimate at fre-
quency i. For each EEG recording, IAF values were cal-
culated for each channel separately, and then averaged 
across all channels to obtain a single mean estimate of 
IAF per participant per assessment. Frequency bands 
were then calculated for each participant at each assess-
ment based on their mean IAF. Table 1 presents the IAF 
frequency band definitions and resultant IAF-based fre-
quency band ranges used in the current data set, along-
side the canonical frequency band definitions. After the 
IAF-based frequency ranges were defined, power was 
estimated within each band by averaging over the 2 min 
of eyes closed EEG for each individual’s idiosyncratic 
frequency range. The results presented below are based 
on a single estimate of power (μV2/m2) per frequency 
band for each electrode, participant, and assessment. 
We additionally conducted all analyses using canonical 
fixed frequency bands. Using fixed bands did not result 
in changes to our core findings. These results are pre-
sented in the Supplementary Information.
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Self‑Reported Meditation Practice

While on retreat, participants recorded the amount of time, 
in minutes, that they had dedicated to meditation practice 
each day (see Sahdra et al., 2011). For each participant, we 
averaged these daily estimates across days to compute an 
index of average daily practice time. Prior to group assign-
ment, participants provided self-reported histories of their 
past meditation practice. These reports were used to calcu-
late estimated lifetime hours (see MacLean et al., 2010).

Data Analyses

Non‑parametric Permutation‑Based Cluster Identification

We examined changes in electrode-wise band power estimates 
as a function of assessment (pre-, mid-, and post-retreat) 
using non-parametric cluster-based permutation testing, 
implemented with the ft_freqstatistics function in FieldTrip 
(Oostenveld et al., 2011). This data-driven approach identi-
fies contiguous clusters of electrodes that demonstrate reliable 
changes in band power, while also controlling for multiple 
comparisons (Maris & Oostenveld, 2007). It is important to 
note that identified clusters provide evidence for differences 
between conditions—in this case across the three assessment 
points—but do not provide evidence for changes at any spe-
cific electrode site (see Sassenhagen & Draschkow, 2019, for 
the spatial limitations of cluster-based permutation tests).

A separate non-parametric permutation test was con-
ducted for each participant status (Retreat 1 training, Retreat 
1 control, and Retreat 2 training) and IAF-based frequency 
band (delta, theta, alpha, beta, gamma). In cases where 
change was identified in the alpha band, we conducted fol-
low-up tests for changes in three alpha sub-bands (alpha 1, 
alpha 2, alpha 3), based on prior evidence for functional 

Table 1  IAF-based Frequency 
Band Values and Ranges

Ranges for the current data set are presented as the mean (SD) of the lower and upper limits of each IAF-
based frequency band across all participants and assessments. Canonical band definitions are as described 
in Cohen (2014), with the exception of alpha sub-bands, for which there are no established canonical 
ranges independent of IAF. †Range for IAF is the absolute minimum and maximum observed in the current 
data set

Frequency Band Range Based on IAF Range in Current Data Set Fixed Band 
Range

Delta 1.0 – 0.4 × IAF Hz 1.0 – 3.93 (0.19) Hz 0.1 – 4 Hz
Theta 0.4 × IAF – 0.6 × IAF Hz 3.93 (0.19) – 5.90 (0.29) Hz 4 – 8 Hz
Alpha 0.6 × IAF – 1.2 × IAF Hz 5.90 (0.29) – 11.80 (0.58) Hz 8 – 13 Hz
  Alpha 1 0.6 × IAF – 0.8 × IAF Hz 5.90 (0.29) – 7.86 (0.39) Hz ----
  Alpha 2 0.8 × IAF – IAF Hz 7.87 (0.39) – 9.83 (0.48) Hz ----
  Alpha 3 IAF – 1.2 × IAF Hz 9.83 (0.48) – 11.80 (0.58) Hz ----
Beta 1.2 × IAF – 30 Hz 11.80 (0.58) – 30 Hz 13 – 30 Hz
Gamma 30 – 50 Hz 30 – 50 Hz 30 – 50 Hz
IAF --- 8.69 – 11.28  Hz† ---
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differences between lower (alpha 1, alpha 2) and upper 
(alpha 3) alpha (Klimesch, 1999).

First, for each electrode, change in band power across 
assessments was evaluated as a multivariate F-statistic, and 
electrodes demonstrating a significance level of α ≤ 0.05 
were selected as candidate cluster members. These candidate 
electrodes were then grouped into clusters based on spatial 
adjacency. Cluster criteria were set such that each candidate 
electrode was required to have two adjacent electrodes that 
were also cluster candidates, resulting in a minimum cluster 
size of three electrodes. Cluster-level statistics were then cal-
culated by taking the sum of the F-statistics of all electrodes 
comprising a cluster. The significance of this cluster statistic 
was assessed non-parametrically through 10,000 permuta-
tions of a Monte Carlo approximation. Finally, we subjected 
the resultant cluster probabilities to the false discovery rate 
(FDR) procedure of Benjamini and Hochberg (1995) to con-
trol for multiple comparisons. Cluster statistics that survive 
this correction indicate change across assessments that are 
larger than would be expected by chance.

Parametric Analysis: Mixed Models

Cluster-wise power estimates were subjected to parametric 
statistical testing to assess the significance and directionality 
of change across assessments as a function of participant sta-
tus. First, band power at each electrode included in a signifi-
cant cluster was log-transformed. Then, these values were 
averaged within each cluster to create a cluster-wise estimate 
of band power, or cluster mean, reported in log (μV2/m2). 
This was done for each individual at each assessment. Fol-
lowing the approach in Saggar et al. (2012), when a cluster 
was identified for a given participant status (e.g., Retreat 1 
training), cluster mean power estimates based on the com-
prising electrodes were also calculated for the relevant com-
parison status. For example, if an alpha band cluster of 10 
electrodes was identified in Retreat 1 training participants, a 
cluster mean of these 10 electrodes would also be generated 
for each Retreat 1 control participant. Likewise, if a cluster 
was identified for Retreat 2 training participants, this cluster 
was also applied to the data from these same participants as 
Retreat 1 waitlist controls. This allowed for direct parametric 
comparison of power change in corresponding sets of elec-
trodes across experimental conditions.

Changes in cluster mean power were analyzed using 
linear mixed effects models implemented in SAS PROC 
MIXED version 9.4. Assessment (pre-, mid-, post-) and 
participant status (training, control) were included as fixed 
effects. In Retreat 1, status functioned as a between-groups 
effect (Retreat 1 training compared to Retreat 1 controls), 
while in Retreat 2 it served as a within-subjects contrast 
(Retreat 2 training participants compared to their prior 

status as Retreat 1 controls). A random effect of partici-
pant was included to allow for repeated measures within 
subjects. Parameters were estimated using restricted maxi-
mum likelihood, and degrees of freedom were calculated 
based on the Satterthwaite approximation.

Of primary interest was the assessment by status inter-
action, the presence of which would indicate that partici-
pants on retreat demonstrated a pattern of change across 
assessments that differed from participants not currently 
on retreat. This was followed by a test of the effect of 
assessment within each status and directed comparisons of 
model estimated marginal means. The effect of assessment 
was centered to pre-assessment and participant status was 
centered to the control group for all follow-up tests.

Changes in IAF were examined using an identical ana-
lytic procedure to that used in the parametric analysis of 
cluster mean power.

Associations Between Cluster Mean Power and Meditation 
Practice Hours

Correlations were computed between cluster mean power 
and the meditation practice variables of meditation prac-
tice hours while on retreat, and pre-assignment lifetime 
meditation experience (also in hours). For these corre-
lations, we examined training participants only, collaps-
ing across the two retreats to maximize statistical power. 
We examined associations between meditation practice 
variables and beta cluster mean power at the pre- and 
post-assessments, and change in power across the retreat 
intervention.

Additionally, we tested correlations between resting 
cluster mean power and cluster mean power in EEG col-
lected during 6 min of mindfulness of breathing medita-
tion recorded at each assessment as previously reported in 
Saggar et al. (2012).

Changes were quantified as difference scores from the 
pre-retreat to the post-retreat assessment, where negative 
scores indicate a reduction over the course of retreat. All 
variables were tested for normality using the Shapiro-Wilk 
test. We also checked for outliers (defined according to 
Tukey’s rule as 1.5 times the interquartile range below 
the first quartile, or above the third quartile). Associa-
tions between normally distributed variables were com-
puted using Pearson correlation coefficients, calculated 
both with and without outliers. Associations including 
non-normally distributed variables were calculated using 
Kendall’s Tau. Because Kendall’s Tau is robust to outliers, 
these correlations were always conducted on all available 
data. Significance values were FDR adjusted using the 
Benjamini-Hochberg (1995) procedure.
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Results

Retreat 1 Spectral Analysis

We first examined changes in IAF over the course of Retreat 
1. Table 2 presents mean IAF for Retreat 1 training and con-
trol participants at each assessment. We observed a main 
effect of assessment, F(2, 100) = 9.75, p < .001, but no main 
effect of status, F(1, 50) = 0.18, p = .670, or interaction 
between assessment and status, F(2, 100) = 1.48, p = .234, 
indicating that the groups did not significantly differ in their 
change across time.

In a previous report we observed retreat-related 
changes in IAF among this same participant cohort during 
mindfulness of breathing practice (Saggar et al., 2012). 
Therefore, as a follow-up to those findings, we chose to 
further explore changes in IAF during rest within each 
group in Retreat 1. A test of simple effects indicated that 
IAF significantly changed over assessments in training 
participants, F(2, 100) = 8.91, p < .001, but not in waitlist 
controls, F(2, 100) = 2.06, p = .133. Follow-up compari-
sons of model estimated means indicated that IAF did not 
significantly differ between training and control partici-
pants at the pre-retreat assessment (b = −0.01, SE = 0.13, 
p = .957, 95% CI [−0.26, 0.25]). Additional comparisons 
indicated that IAF in training participants decreased sig-
nificantly from pre- to mid-retreat (b = −0.12, SE = 0.03, 
p < .001, 95% CI [−0.19, −0.05]), and from pre- to post-
retreat (b = −0.14, SE = 0.04, p < .001, 95% CI [−0.21, 
−0.07]), but not from mid- to post-retreat (b = −0.01, SE 
= 0.04, p = .593, 95% CI [−0.08, 0.06]). However, there 
were no significant differences in IAF between the retreat 
and control groups at the mid-retreat (b = −0.06, SE = 
0.13, p = .617, 95% CI [−0.32, 0.19]), or post-retreat (b 
= −0.09, SE = 0.13, p = .488, 95% CI [−0.34, 0.17]) 
assessments.

Cluster Identification

The non-parametric permutation analysis for Retreat 1 train-
ing participants indicated a significant change in alpha band 
power, cluster statistic = 108.99, p = .010, and beta band 
power, cluster statistic = 161.24, p = .004, across assess-
ments (see Fig. 1A). We followed up on the identified alpha 
cluster in retreat participants by testing for clusters in alpha 
sub-bands. This analysis indicated significant band power 
differences between assessments in the upper alpha range 
only (i.e., alpha 3; IAF – 1.2 × IAF Hz), cluster statistic 
= 157.60, p = .003. An additional cluster was identified in 
alpha 2 that did not reach statistical significance, cluster sta-
tistic = 33.03, p = .060. No changes were indicated for the 
remaining bands in training participants. No clusters were 
identified in any band in waitlist controls.

Table 2 presents descriptive statistics for cluster mean 
power estimates (derived from identified clusters) for fre-
quency bands demonstrating significant change across 
assessments. Estimates are given for training participants, 
in whom the clusters were identified, as well as the corre-
sponding values for these clusters in waitlist controls. The 
findings of the cluster analysis for bands showing significant 
change (beta, whole band alpha, and the alpha 3 sub-band) 
in Retreat 1 training participants are shown in the left side of 
Fig. 1, panel A. The electrodes comprising identified clusters 
are superimposed as stars on the electrode-wise F-values. 
The leftmost column of panel B shows the F-values in the 
beta band for Retreat 1 controls. As no clusters were identi-
fied in this group, no electrodes are marked. Fig. 2, panel A, 
displays the average power from 1 to 50 Hz at each assess-
ment averaged across the electrodes comprising the beta 
cluster identified in Retreat 1. This spectral visualization 
shows power decreases specific to the training group, with 
regions of exaggerated change extending across a broad 
range of frequencies corresponding to the beta band, as well 

Table 2  Descriptive Statistics for Retreat 1 Dependent Measures

Values are presented as mean (SD). Band power units are log (μV2/m2). Cluster means for waitlist controls (n = 27) are based on the clusters 
identified in Retreat 1 training participants (n = 25). Daily retreat hours represent the average time participants reported dedicating to practice in 
their daily logs while on retreat, and lifetime hours represent an estimate of lifetime practice hours at pre-assignment

Band Power Meditation Practice Hours

IAF Alpha Cluster Alpha 3 Cluster Beta Cluster Daily Retreat Lifetime

Training Group 6.58 (1.36) 2408.00 (2684.23)
  Pre 9.93 (0.36) 2.91 (0.93) 2.69 (0.95) 1.73 (0.63)
  Mid 9.81 (0.44) 2.78 (0.82) 2.49 (0.78) 1.50 (0.60)
  Post 9.79 (0.43) 2.59 (0.85) 2.34 (0.82) 1.40 (0.60)
Waitlist Controls -- 2615.41 (3146.96)
  Pre 9.93 (0.47) 3.53 (0.95) 3.29 (0.98) 2.18 (0.64)
  Mid 9.87 (0.48) 3.46 (0.86) 3.20 (0.85) 2.16 (0.60)
  Post 9.88 (0.54) 3.49 (0.75) 3.22 (0.79) 2.13 (0.49)
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as in a narrower frequency range under the alpha peak. Cor-
responding power spectra of the alpha and alpha 3 clusters 
can be found in Supplementary Materials.

Parametric Tests

We next examined condition differences in mean power for 
the identified alpha and beta band clusters (Fig. 3). As no 
clusters of significant change were identified in waitlist con-
trols, their Retreat 1 cluster mean power estimates are based 
on the clusters identified for Retreat 1 training participants, 
which were applied to both groups (see “Method”).

For the alpha band cluster, type 3 tests of fixed effects 
indicated a main effect of assessment, F(2, 100) = 4.32, p 
= .002, a main effect of participant status F(1, 50) = 10.27, 
p = .002, and a non-significant interaction between assess-
ment and status, F(2, 100) = 2.82, p = .065. Due to the lack 
of a significant interaction effect, no follow-up tests were 
conducted. For the cluster specific to upper alpha (alpha 3), 
there was a main effect of assessment, F(2, 100) = 6.08, p 
= .003, a main effect of status, F(1, 50) = 10.05, p = .003, 
and, again, a non-significant interaction between assessment 
and status, F(2, 100) = 2.81, p = .065.

For the beta band, there were significant main effects of 
assessment, F(2, 100) = 8.21, p < .001, and status, F(1, 
50) = 15.29, p < .001, and a significant interaction between 
assessment and status, F(2, 100) = 4.64, p = .012. A test of 
simple effects within each group revealed a significant effect 
of assessment in training participants, F(2, 100) = 12.12, 
p < .001, but not in controls, F(2, 100) = 0.28, p = .760. 
Follow-up comparisons indicated that training and control 
participants significantly differed in cluster mean beta power 
at the pre-retreat assessment (b = −0.45, SE = 0.17, p = 
.001, 95% CI [−0.78, −0.12]), such that training partici-
pants had lower cluster mean beta power at the beginning 
of retreat. In addition, within-group comparisons indicated 
that training participants decreased significantly in cluster 
mean beta band power from pre- to mid-retreat (b = −0.23, 
SE = 0.07, p = .001, 95% CI [−0.36, −0.09]), and from 
pre- to post-retreat (b = −0.33, SE = 0.07, p < .001, 95% 
CI [−0.46, −0.19]), but not from mid- to post-retreat (b = 
−0.10, SE = 0.07, p = .153, 95% CI [−0.23, 0.04]). Consist-
ent with these patterns, training participants demonstrated 

significantly lower cluster mean beta band power than did 
waitlist controls at the mid-retreat (b = −0.65, SE = 0.17, p 
< .001, 95% CI [−0.98, −0.32]) and post-retreat (b = −0.73, 
SE = 0.17, p < .001, 95% CI [−1.06, −0.40]) assessments.

Retreat 2 Spectral Analysis

For analyses of Retreat 2 data, we compared active training 
participants to their own prior status as Retreat 1 waitlist 
controls.

We first checked for change in IAF across assessments. 
Mean values for IAF in Retreat 2 participants are presented 
in Table 3. For IAF, there was a significant main effect of 
assessment, F(2, 124) = 16.57, p < .001, a significant main 
effect of participant status, F(1, 125) = 55.78, p < .001, 
and a significant interaction between assessment and status, 
F(2, 124) = 6.81, p = .002. A test of simple effects further 
indicated a significant effect of assessment when partici-
pants were on retreat, F(2, 124) = 21.70, p < .001, but not 
when they served as waitlist controls, F(2, 124) = 1.30, p 
= .277. Follow-up comparisons revealed no difference in 
pre-assessment IAF as a function of participant status (b = 
−0.08, SE = 0.04, p = .082, 95% CI [−0.17, 0.01]). Moreo-
ver, during Retreat 2, IAF significantly decreased from pre- 
to mid-assessment (b = −0.21, SE = 0.04, p < .001, 95% CI 
[−0.29, −0.12]), and from pre- to post-retreat (b = −0.28, 
SE = 0.04, p < .001, 95% CI [−0.36, −0.19]), but not from 
mid- to post-retreat (b = −0.07, SE = 0.04, p = .120, 95% 
CI [−0.15, 0.02]). Consistent with these patterns, Retreat 
2 participants demonstrated significantly lower IAF during 
training than as waitlist controls, at both the mid-retreat (b 
= −0.22, SE = 0.04, p < .001, 95% CI [−0.31, −0.13]) and 
post-retreat (b = −0.30, SE = 0.04, p < .001, 95% CI [−0.39, 
−0.21]) assessments.

Cluster Identification

We next conducted non-parametric cluster analyses of 
Retreat 2 training participants across their 3 assessments 
while on retreat. Non-parametric tests indicated a significant 
difference in beta band power, cluster statistic = 121.53, 
p = .008. No clusters were identified in any other band. 
The identified cluster can be seen in the left side of Fig. 1, 
panel C, and descriptive statistics for cluster mean power 
estimates can be found in Table 3. Figure 2, panel B, shows 
the average power from 1 to 50 Hz at each assessment in 
the electrodes comprising the significant cluster identified 
in Retreat 2. This visualization of the cluster spectra dem-
onstrates power reductions specific to the training condition, 
with exaggerated change in frequencies corresponding to the 
beta range and potentially extending into higher frequencies.

Fig. 1  Identified clusters of current source density (CSD) power 
change across retreat in (A) Retreat 1 training participants, n = 25; 
(B) Retreat 1 waitlist controls, n = 27; and (C) Retreat 2 training 
participants (previously waitlist controls), n = 26. The asterisk (*) 
indicates electrodes that comprise a significant cluster. All cluster 
ps < 0.01. For each panel, the leftmost maps depict cluster statistic 
F-values; the right upper maps depict CSD beta power at pre-, mid-, 
and post-retreat; and the right lower maps depict raw subtracted dif-
ferences in CSD power between assessments (e.g., “Pre to Post” = 
post – pre)

◂
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Fig. 2  Mean power spectra 
(μV2/m2) in electrodes compris-
ing the beta clusters identi-
fied in (A) Retreat 1 training 
participants (n = 25) and (B) 
Retreat 2 training participants (n 
= 26). Mean spectra for waitlist 
controls (n = 27) were also 
calculated for the comprising 
electrodes and are displayed 
next to training participants for 
comparison. Note that panel B 
therefore displays a comparison 
between waitlist participants 
as controls in Retreat 1 and as 
training participants in Retreat 
2. Also note that the peak at 16 
Hz is a known artifact due to 
the excitation frequency of the 
electrodermal measurement in 
the Biosemi system used for 
recording and does not reflect 
neural activity
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Parametric Tests

No clusters were identified in Retreat 2 training participants 
when they served as waitlist controls during Retreat 1 (see 
“Retreat 1 Spectral Analysis”). Consequently, all Retreat 2 
cluster mean power estimates are based on the significant 
cluster identified in Retreat 2 training participants, applied 
to their EEG collected during each of the two retreats. Using 
these estimates, we tested for differences in cluster mean 
power in Retreat 2 participants in their status as active retreat 
participants versus waitlist controls (Fig. 3). Tests of fixed 
effects for mean beta power indicated no main effect of 
assessment, F(2, 124) = 2.50, p = .087, a significant main 
effect of status, F(1, 128) = 7.65, p = .007, and a significant 
interaction between assessment and status, F(2, 124) = 4.82, 
p = .010. A test of simple effects revealed a significant effect 
of assessment when Retreat 2 participants were actively on 
retreat, F(2, 124) = 6.99, p = .001, but not when they served 
as controls, F(2, 124) = 0.20, p = .820. Follow-up com-
parisons further indicated that cluster mean beta band power 
did not differ at the pre-retreat assessment as a function of 
participant status (b = 0.07, SE = 0.08, p = .421, 95% CI 
[−0.10, 0.23]). During Retreat 2, participants demonstrated 
a significant decrease in cluster mean beta band power from 
pre- to mid-retreat (b = −0.27, SE = 0.08, p = .001, 95% CI 

Fig. 3  Beta cluster mean power at each assessment point in clusters 
identified for each retreat training group (Retreat 1, Retreat 2). Sig-
nificant clusters were identified in the training groups only, and were 
then applied to the waitlist control group, for whom no significant 
clusters were identified. Thus, the two sets of data displayed for wait-
list controls represent their cluster means for the electrodes compris-
ing the beta clusters identified in Retreat 1 and Retreat 2 training par-

ticipants, respectively. Black dots are individual data points, yellow 
circles are group means, and yellow lines are the standard error of the 
mean. Retreat 1, n = 25, Waitlist Control, n = 27. Retreat 2, n = 26. 
Note that the Waitlist Control and Retreat 2 Training groups represent 
the same participants before attending, and while attending retreat, 
respectively

Table 3  Descriptive Statistics for Retreat 2 Dependent Measures

Values are presented as means (SD). Band power units are log(μV2/
m2). Cluster means for participants as controls (n = 27) are based on 
the clusters identified in these participants during Retreat 2 training 
(n = 26). Daily retreat hours represent the average time participants 
reported dedicating to practice in their daily logs while on retreat, 
and lifetime hours represent an estimate of lifetime practice hours at 
pre-assignment. Note that lifetime hours vary slightly between the “in 
training” and “as controls” conditions as slightly different subsets of 
participants in this group provided usable data in each of these condi-
tions

Band Power Meditation Practice Hours

IAF Beta cluster Daily 
Retreat

Lifetime

In Training 6.26 (1.54) 2688.46 
(3315.96)

  Pre 9.84 (0.50) 1.49 (0.59)
  Mid 9.63 (0.50) 1.21 (0.57)
  Post 9.56 (0.49) 1.24 (0.53)
As Controls -- 2615.41 

(3146.96)
  Pre 9.93 (0.47) 1.41 (0.53)
  Mid 9.87 (0.48) 1.46 (0.54)
  Post 9.88 (0.54) 1.44 (0.42)
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[−0.44, −0.11]), and from pre- to post-retreat (b = −0.25, 
SE = 0.08, p = .002, 95% CI [−0.41, −0.09]), but not from 
mid- to post-retreat (b = 0.02, SE = 0.08, p = .780, 95% 
CI [−0.14, 0.18]). Consistent with these patterns, Retreat 2 
participants demonstrated significantly lower cluster mean 
beta band power at the mid-retreat (b = −0.26, SE = 0.08, p 
< .001, 95% CI [−0.42, −0.09]) and post-retreat (b = −0.22, 
SE = 0.08, p = .008, 95% CI [−0.39, −0.06]) assessments 
than they did as waitlist controls.

Associations Between Cluster Mean Power 
and Other Measures

Correlations with Meditation Practice

We examined the relationship between cluster mean beta 
power during rest and the meditation practice metrics of 
estimated lifetime meditation hours and average reported 
daily meditation hours while on retreat. As both measures 
of practice hours were shown violate the assumptions of 
normality (daily hours: W = 0.94, p = .009; lifetime hours: 
W = 0.67, p < .001), Kendall’s Tau was used. Lifetime hours 
showed a significant positive correlation with cluster mean 
beta power at the beginning, rτ = .27, pajd = .039, and end, 
rτ = .24, pajd = .047, of retreat, such that participants with 
greater meditation experience coming into retreat tended to 
have higher beta power, when both variables were converted 
to rank order. There was no significant relationship between 
lifetime hours and change in cluster mean beta power while 
on retreat, rτ = −.05, pajd = .760. Similarly, there were no 
significant relationships between average daily meditation 
practice hours while on retreat and cluster mean beta power, 
all psajd >.720.

Correlations with Beta Band Reductions During 
Mindfulness of Breathing

Finally, we calculated Pearson correlations between cluster 
mean beta band power during eyes closed rest and corre-
sponding values from a previous analysis of mindfulness 
of breathing practice in these same participants (see Sag-
gar et al., 2012 for a full description of the clusters identi-
fied in that analysis). Beta band cluster mean power was 
strongly correlated between rest and mindfulness of breath-
ing in retreat participants at the pre-, r(36) = .61, padj < 
.001, 95% CI [.36, .78], mid-, r(36) = .55, padj < .001, 95% 
CI [.28, .74], and post-retreat, r(36) = .62, padj < .001, 95% 
CI [.38, .79] assessments. There was also a moderate cor-
relation between changes in resting cluster mean power and 
changes in mindfulness of breathing, r(36) = .37, padj = 
.02, 95% CI [.06, .62]. This association is shown in Fig. 4. 
There were no outliers in cluster mean beta power at rest or 
during mindfulness of breathing at any assessment. There 

was one outlier for change in cluster mean beta power dur-
ing rest and one outlier during mindfulness of breathing. 
After removing these outliers, the correlation between these 
measures remained significant, r(34) = .43, p = .009, 95% 
CI [.12, .67], indicating that the relationship was not driven 
by extreme values.

Discussion

This study was motivated by a central question in con-
templative research: can engaging in dedicated periods of 
meditation practice lead to generalized changes outside of 
formal practice? To this end, we examined changes in the 
spontaneous activity of the brain over the course of intensive 
meditation training. We had participants engage in focused 
attention (shamatha) meditation practice for 6 to 8 h a day 
and measured continuous EEG activity during a period of 
uninstructed rest. We found power reductions in the high 
alpha and beta bands, as well as reductions in IAF, during 
an eyes closed resting task over the course two 3-month-
long retreat interventions. Importantly, the reductions in 
beta band activity replicated across two independent train-
ing periods, mirroring longitudinal changes we previously 
observed in EEG collected during active practice of mind-
fulness of breathing meditation in these same participants 

Fig. 4  Correlation between change in beta band cluster mean power 
during eyes closed rest and during mindfulness of breathing practice 
in active retreat participants, r(36) = .37, padj = .02, 95% CI [0.06, 
0.62] with all data included; r(34) = .43, p = .009, 95% CI [.12, .67] 
with outliers removed. The density distribution of each variable is 
represented on the respective axis
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(Saggar et al., 2012). By contrast, changes in alpha were 
identified in only one of the two retreat groups. Our findings 
demonstrate that intensive meditation training can result in 
neurophysiological changes that extend beyond the bounds 
of formal practice.

Our findings, as well those of Saggar et al. (2012), were 
seemingly specific to longitudinal changes in the beta band. 
While the identified reductions in IAF suggest change in 
the peak frequency of the EEG signal—which could, in 
turn, affect band power by shifting the range of IAF-defined 
bands—an analysis of fixed frequency bands indicated that 
IAF shifts did not underlie the observed reductions in beta 
band power (see Supplementary Materials). The consist-
ency of these effects across meditation and rest points to 
beta band activity as a potential indicator of domain-general 
change in neural processes resulting from this type of medi-
tation training.

Beta band activity is broadly implicated in a range of 
neurocognitive functions and network dynamics, including 
sensorimotor processing (e.g., Pfurtscheller & Lopes da 
Silva, 1999; van Ede et al., 2011), cognitive effort (Kopell 
et al., 2010), attentional orienting (van Ede et al., 2011), 
top-down control of visual attention (Bastos et al., 2015; 
Buschman & Miller, 2007), predictive coding of the sen-
sory environment (e.g., Arnal & Giraud, 2012), and working 
memory (Axmacher et al., 2008; Miller et al., 2018). Recent 
work also demonstrates the relevance of beta band activity 
to cross-domain inhibitory control. For instance, Castiglione 
et al. (2019) showed that actively preventing a thought from 
coming to mind elicits increases in beta power similar to 
those elicited when stopping a physical action. These find-
ings offer support for the idea that beta power may reflect the 
activity of neurocognitive networks that exert their effects 
across different modalities.

One possible interpretation of the current findings is that 
power reductions at rest signal alterations in the structure, 
efficiency, or dynamics of the default mode or other large-
scale brain networks (e.g., de Pasquale et al., 2012; Wens 
et al., 2019). Power in the beta range during rest appears to 
fluctuate with BOLD activity in several canonical resting 
state networks, notably showing a positive correlation with 
activity in regions of the default mode network, and a nega-
tive correlation with those of the dorsal attention network 
(Mantini et al., 2007). Beta band activity is also associated 
with functional connectivity between and within resting 
state networks (de Pasquale et al., 2012, 2018; Wens et al., 
2019), with band-limited power in the beta frequency cor-
responding to moments of high network efficiency (Betti 
et al., 2021). Thus, it appears that beta activity may relate to 
efficiency of communication between the brain’s core net-
works (Betti et al., 2021).

Consistent with this, research in experienced meditators 
indicates that long-term meditation training may lead to 

altered resting functional connectivity and reduced activity 
within the default mode network (Berkovich-Ohana et al., 
2014; Brewer et al., 2011; Garrison et al., 2015). Moreover, 
in our own work in the Shamatha Project, we found retreat-
related changes in dynamic patterns of resting EEG micro-
states (Zanesco et al., 2021). These lines of research sug-
gest that the observed reductions in beta over retreat could 
be reflective of altered patterns of functional connectivity, 
and possibly changes in the predominance of default mode 
activity during uninstructed rest (e.g., Bauer et al., 2019). 
This implies that—rather than being specific to meditative 
states—the observed retreat-related changes in beta band 
activity could indicate broad shifts in baseline patterns of 
brain activity and its underlying functional architecture.

While other studies have characterized meditation-related 
reductions in the beta frequency range during meditation 
practice compared to rest (during Shamatha practice: Sag-
gar et al., 2012; during Zen practice: Faber et al., 2015, 
Hauswald et al., 2015; see also Cahn & Polich, 2006 and 
Lomas et al., 2015, for reviews), to our knowledge, the only 
other study to identify changes in the beta frequency range in 
the resting brains of experienced meditators found increases 
in power following a day of Vipassana or Metta practice 
(Dentico et al., 2018). Interestingly, in the current study, 
we found that greater lifetime meditation experience before 
entering retreat was associated with higher overall beta 
power. However, neither previous lifetime experience nor 
practice time while on retreat were related to observed power 
reductions over retreat. This suggests that the current find-
ings may reflect the holistic training experience of retreat, 
or that the acute effects of intensive meditation might dif-
fer from the cumulative, lasting effects of lifelong practice. 
That our between-individual and within-individual effects 
were in opposite directions speaks to the complex trajecto-
ries of meditation-related change, particularly in the context 
of longer term or intensive training (see, for example, King 
et al., 2019), and points to the importance of mapping within 
person variability in addition to group-level differences.

A number of recent studies have found that differ-
ent aspects of meditation practice and experience may be 
indexed by different components of the EEG signal. For 
example, a study by DeLosAngeles et al. (2016) found that 
increased alpha band power characterized focused attention 
meditation when compared to rest, but that decreasing beta 
band power was associated with self-reported depth of medi-
tation during practice. Similarly, Bauer et al. (2019) found 
a reduction in activity and functional connectivity in the 
default mode network of experienced meditators at rest com-
pared to novices, but comparative increases in these same 
metrics during focused attention meditation. Of particular 
relevance to the current study, Rodriguez-Larios et al. (2021) 
found that modulations in individualized alpha as well as 
power in the alpha/beta range associated with meditation and 
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mind wandering differed between experienced meditators 
and novices. In their study, experienced meditators showed 
decreases in IAF and power in the alpha/beta range, as well 
as a steeper 1/f slope, during meditation compared to rest—
patterns not observed in novices. In contrast, novices demon-
strated increased alpha/beta power during episodes of mind 
wandering while actively engaged in meditation practice—
an effect not noted in experienced meditators. These findings 
indicate alterations to both oscillatory and non-oscillatory 
aspects of the EEG signal (Donoghue et al., 2022) as a func-
tion of meditation experience, as well as more broadband 
changes spanning multiple frequency bands.

Similarly, our current findings were not entirely restricted 
to the beta band. In Retreat 1, we identified a cluster of 
change in the alpha range, which an analysis of alpha sub-
bands localized to high alpha (alpha 3). Power reductions 
in the alpha range did not replicate in Retreat 2 and were 
not robust enough to reach significance in between-group 
parametric analyses. However, the presence of these clus-
ters indicates that spectral changes extended beyond the beta 
range. Potential broadband spectral change was further sug-
gested by visualizations of the full power spectra obtained 
from the significantly identified beta clusters (shown in 
Fig. 2). In line with our cluster analyses, clear reductions 
were apparent for training participants in the beta range. 
However, reductions also appeared to manifest across a 
broader frequency spectrum. Consistent with this, a broad-
band cluster analysis—not restricted by frequency bands—
found a significant cluster of change extending across a 
wide range of frequencies in Retreat 2 (see Supplementary 
Materials). Moreover, global visualizations of the strength of 
electrode-wise change in both retreats were similarly sugges-
tive of broadband reductions, with elevated power change in 
the alpha, and particularly the beta, ranges (Supplementary 
Figs. 2 and 3).

Whether these broader changes represent a distinct phe-
nomenon from the reductions in beta power is an open ques-
tion. Power in the beta (Ploner et al., 2006; Tamura et al., 
2005) and high alpha bands (Klimesch, 1999; Samaha et al., 
2017) share a degree of functional overlap: both appear to 
be inversely related to cortical excitability, such that lower 
power is associated with greater activation of local corti-
cal networks. Suppression in these frequencies may reflect 
disinhibition of underlying neural assemblies, allowing for 
greater cortical excitability and thus enhanced stimulus 
processing. This interpretation is consistent with reports 
of reduced acoustic startle habituation among experienced 
practitioners of Tibetan non-dual traditions (i.e., Dzogchen 
or Mahamudra; Antonova et al., 2015), suggesting that the 
sensory systems of experienced meditators may maintain 
their responsiveness in contexts that would typically induce 
habituation. However, it is also possible that the observed 
alpha and beta clusters relate to distinct functional changes 

not sufficiently captured in the current study, or that appar-
ent frequency-specific changes were an artifact of our band-
based analytic approach (e.g., Donoghue et al., 2022). Future 
work is needed to delineate the spectral specificity of medi-
tation-related changes in trait-like neural patterning.

The discrepancies between the aforementioned find-
ings in the literature could result from various methodo-
logical sources, including (a) differing cognitive-affective 
processes engaged across distinct styles of practice (e.g., 
Dahl et al., 2015; Lutz et al., 2015), (b) design and analytic 
approaches—including the choice of comparison groups 
(e.g., novice or experienced meditators) and baseline con-
ditions (e.g., instructed mind-wandering, uninstructed rest; 
see Cahn & Polich, 2006; Davidson & Kaszniak, 2015; Van 
Dam et al., 2018), and the methodology used to character-
ize neural oscillations (e.g., Donoghue et al., 2022; Rodri-
guez-Larios et al., 2021), and (c) the experience levels of 
practitioner groups, who may display unique trajectories of 
training-related change (e.g., King et al., 2019; Skwara et al., 
2017). Indeed, the effects of meditation practice and training 
may manifest differently as a function of these design deci-
sions, pointing to the important, perhaps even deterministic, 
role that these choices play in outcomes of meditation stud-
ies (Van Dam et al., 2018).

Similarities Between Rest and Mindfulness 
of Breathing

The retreat-related changes in brain activity observed in 
the current study mirror those previously identified in these 
same participants during active practice of mindfulness of 
breathing (Saggar et al., 2012). Both analyses found reduc-
tions in frontoparietal EEG power in the beta band, as well 
as IAF slowing. The similarity of these findings raises ques-
tions regarding the meaning of ostensible state versus trait 
measures in the context of intensive meditation training.

First, might our participants have been meditating when 
asked to rest quietly? While our instructions discouraged 
participants from engaging in active, formal meditation 
practice during the resting period, we were intentionally 
non-directive as to what mind-state participants should 
maintain. In contrast to more explicit resting instructions 
given in other studies (e.g., instructed mind wandering; see 
Braboszcz et al., 2017; Cahn et al., 2010), our instructions 
allowed us to observe more naturalistic changes in the rest-
ing brain, albeit while sacrificing a degree of methodologi-
cal control and certainty. We therefore cannot fully rule out 
the possibility that participants were engaging in meditation 
practice during the resting period. Nevertheless, participants 
were instructed to avoid “engaging in any particular form of 
directed mental activity.” In addition, we included a separate 
guided meditation task at each assessment that was distinct 
from the resting task, of which participants were aware. 
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Therefore, we believe it unlikely that most participants were 
intentionally and actively engaging in a formal meditation 
practice.

The second question pertains to the fluidity of meditative 
versus non-meditative states for experienced practitioners, 
and what it means to “rest” in the context of retreat. The 
observed reductions in beta power during rest were strongly 
correlated with previously reported reductions in beta dur-
ing mindfulness of breathing at each assessment, while 
retreat-related changes in the two measures were moder-
ately correlated. This lends support to the idea that at least 
a portion of the observed reductions in beta power reflect 
patterns of change common to quiet rest and formal prac-
tice. While formal meditation practice is undertaken within 
relatively circumscribed bounds, the effects of training may 
be more far-reaching, leading to pervasive shifts in percep-
tion, emotion, and cognition that have long been reported in 
traditional practitioner accounts (e.g., Dalai Lama & Cut-
ler, 2009; Wallace 2006). From this perspective, medita-
tion is not discontinuous with other domains of experience. 
This may especially be true in the context of a meditation 
retreat, where participants are encouraged to imbue all their 
daily activities with contemplative awareness. Thus, one’s 
baseline quality of awareness may, over time, come to more 
closely resemble those states cultivated during sessions of 
formal meditation. This points to the complexity of separat-
ing state and trait effects, and lends support to dimensional, 
process-oriented models of meditation-related change (e.g., 
Dahl et al., 2015; Lutz et al., 2015). Taken in the broader 
context of other findings from the Shamatha Project (e.g., 
Rosenberg et al., 2015; Sahdra et al., 2011; Shields et al., 
2020; Zanesco et al., 2018), the present work speaks to the 
wide range of domains that were affected by the same retreat 
experience. Importantly, the current findings demonstrate 
that rest is not an invariant baseline and that it may be altered 
in meaningful ways through meditative practice.

Limitations and Future Research

Our study is limited by having a waitlist, rather than active, 
control group. Additionally, all of our participants were 
experienced meditators. As such, our findings speak to pat-
terns that occur during an intensive period of retreat training 
in already-experienced practitioners, and may not pertain to 
changes that occur earlier in the developmental trajectory 
of contemplative practice or in non-intensive interventions 
(e.g., King et al., 2019). Though participants dedicated many 
of their waking hours to formal meditation practice during 
retreat, our findings might also reflect the complex and non-
specific influences of retreat experience—including diet, 
distance from the stressors and commitments of daily life, 
social and spiritual support, and the idyllic natural setting 

of the retreat center—rather than the effects of a specific 
meditative practice in isolation (King et al., 2019).

The lack of a direct statistical comparison to EEG during 
mindfulness of breathing practice limits our ability to inter-
pret the relative strength and similarity of observed changes 
to those of active meditation. To clarify the relationship 
between changes in the functional architecture of the resting 
brain and brain activity during meditative practice, future 
longitudinal studies should characterize within-individual 
trajectories of change in each of these conditions separately, 
as well as in direct comparison to one another. Based on the 
current findings, we expect that similar patterns of change 
will be reflected in both conditions, with the stronger instan-
tiations during active practice.

Additionally, while other work in this participant cohort 
has linked brain activity at rest to self-reported felt quali-
ties of awareness (Zanesco et al., 2021), the current findings 
do not provide a direct experiential or behavioral link. To 
test the functional relevance of meditation-related changes 
in resting brain dynamics, future studies should attempt to 
relate resting neurophysiology to behavioral measures that 
tap skills cultivated during active meditation practice. We 
expect that training-related shifts in resting brain activity 
should predict concomitant improvements in relevant behav-
ioral performance.

Finally, methodological issues complicate our interpre-
tation of neural oscillatory and frequency-specific effects 
(see Donoghue et al., 2022). We used IAF-based bands to 
account for individual variation in peak alpha frequency and 
visualized the spectra within identified clusters to visually 
confirm the presence of peaks in spectral power. However, 
we did not apply formal peak detection methods in the cur-
rent analysis (e.g., Donoghue et al., 2020; Kosciessa et al., 
2020; Watrous et al., 2018). As such, despite the apparent 
specificity of the current findings, it is possible that the 
results were at least partially driven by changes in aperiodic 
signal components. Future studies should employ emerg-
ing methods that decompose the EEG signal into putative 
periodic and aperiodic components (Donoghue et al., 2020, 
2022). Such parameterization of the power spectrum can 
provide greater certainty as to the origin of observed shifts 
meditation-related neural activity. Following on the current 
findings and the observations of Rodriguez-Larios and col-
leagues (2021), we predict that approaches incorporating 
parameterization of the power spectrum will reveal training-
related changes in both periodic and aperiodic components 
of the EEG signal.
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