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Abstract 

A large body of research has shown that engaging in self-explanation improves learning across a 

range of tasks. It has been proposed that the act of explaining draws attention and cognitive 

resources towards evidence that supports good explanations—information that is broad, abstract, 

and consistent with prior knowledge—which in turn aids discovery and promotes generalization. 

However, it remains unclear whether explanation impacts the learning process via improved 

hypothesis generation, increasing the probability that the most generalizable hypotheses are 

considered in the first place, or hypothesis evaluation, the appraisal of such hypotheses in light of 

observed evidence. In two experiments with adults, we address this question by separating 

hypothesis generation and evaluation in a novel category learning task and quantifying the effect 

of explaining on each process independently. We find that explanation supports learners’ 

generation of broad and abstract hypotheses but does not impact their evaluation of them. These 

results provide a more precise account of the process by which explanation impacts learning and 

offer additional support for the claim that hypothesis generation and evaluation play distinct 

roles in problem solving. 

Keywords: explanation, learning, inference, hypothesis generation, hypothesis evaluation 
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Explanation Impacts Hypothesis Generation, but not Evaluation, During Learning 

Though every student knows the fear of being asked to explain their answer in front of 

the class, the benefits of explaining for learning have been shown across a broad range of tasks 

and knowledge domains. These effects have also been observed across the lifespan: Children as 

young as three years of age are more likely to generalize on the basis of causal properties over 

salient perceptual features when prompted to explain (Walker et al., 2014; Legare & Lombrozo, 

2014), five- and six-year-olds are better able to abstract the moral of a story when they are asked 

to explain key events (Walker & Lombrozo, 2017), and adolescents learning biology concepts 

construct better mental models and show improved abstraction when they self-explain during 

study (Chi et al., 1994). Explaining also supports learning among adults. In a category learning 

task with unfamiliar stimuli, adults prompted to explain why the evidence they observed was 

consistent with category distinctions were more likely to discover the underlying rule for 

category discrimination (Williams & Lombrozo, 2010; Williams & Lombrozo, 2013).  

Why might explaining benefit learning across such a broad range of ages and domains? 

Some researchers have proposed that learners who are prompted to explain tend to privilege 

hypotheses that support “good explanations,” focusing on simplicity, breadth, and consistency 

with prior knowledge (e.g., Bonawitz & Lombrozo, 2012; Lombrozo, 2016; Walker et al., 2017). 

In other words, the act of explaining may help guide learners towards hypotheses that best 

exhibit these explanatory virtues (Lipton, 2008; Walker et al., 2014). While this typically 

supports causal inference and abstract reasoning, in some contexts, explaining makes learners 

less attentive to counterevidence, biasing them too strongly in favor of broad generalizations and 

alignment with existing knowledge (e.g., Engle & Walker, 2021; Kuhn & Katz, 2009; Williams 

& Lombrozo, 2013; Williams et al., 2013; Walker et al., 2016). In other contexts, when the 
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available counterevidence is sufficiently strong, explaining can facilitate belief revision (Macris 

& Sobel, 2017; Walker et al., 2016) and encourage exploratory behavior aimed at forming new 

hypotheses (Legare, 2012). Taken together, this literature suggests that explaining prompts 

learners to pursue hypotheses that have the broadest scope, incorporating both their prior 

knowledge and their current observations (Walker et al., 2016; Williams & Lombrozo, 2013). 

Across studies, the act of constructing an explanation plays a selective role in the learning 

process by influencing which solutions the learner is most likely to entertain (Legare et al., 2010; 

Williams & Lombrozo, 2010; Schulz, 2012).  

This ability to privilege certain kinds of hypotheses over others is central to 

commonsense reasoning. Despite the infinite space of solutions for everyday problems, learners 

tend to restrict their responses to those that best fit (Schulz, 2012, Lake et al., 2017). However, it 

remains unclear how people do this so effectively. Here, we explore this question by examining 

the particular effect of explanation on learning: How does the act of explaining lead learners to 

select certain hypotheses over others? If explaining ultimately supports learning by influencing 

the solutions that learners endorse, does it modify the set of hypotheses that they initially 

entertain, or does it change how they appraise the hypotheses under consideration? In other 

words, does explaining facilitate reasoning via hypothesis generation or hypothesis evaluation?  

Generating hypotheses in novel situations is a central challenge for learners engaged in 

inductive inference (Kuhn, 1989; Mehle, 1982; Weber et al., 1993). Early theories of hypothesis 

generation proposed structured search processes in long-term memory (Gettys & Fisher, 1979) 

and stressed the foundational role of drawing analogies to other domains (Gick & Holyoak, 

1980; Gentner, 1983). In settings that require generating hypotheses about decontextualized or 

unfamiliar stimuli, researchers have observed biases and limitations in the generation process, 
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such as the tendency to narrow existing hypotheses rather than generate them anew (Klayman & 

Ha, 1989; Goodman et al., 2008). In fact, hypothesis generation is often highly dependent on 

contextual factors. For example, early research exploring the role of schemas in problem solving 

found that, when faced with logically equivalent problems, people produce strikingly different 

hypotheses depending on the semantic content of those problems (e.g., evaluating the logical 

implications of p → q using rules about the legal drinking age vs. using abstract letter and 

number associations, Griggs & Cox, 1982; Cheng & Holyoak, 1985).  

Indeed, a substantial body of subsequent work has provided evidence for the impact of 

environmental factors in determining which hypotheses are generated during a particular task, 

including working memory capacity, cognitive load, perceived likelihood, the number of 

alternatives available, and the design of the learning environment, among others (e.g., Dougherty 

& Hunter, 2003; Klein, 1993; Koehler, 1994; Schunn & Klahr, 1995; Walker et al., 2020). Recent 

results suggest that even young children are responsive to environmental features that restrict the 

hypothesis space, including how the data were sampled, who provided the evidence, and why 

(e.g., Bonawitz et al., 2011; Butler & Markman, 2012; Gergely et al., 2002; Walker et al., 2014). 

If the effectiveness of explanation for learning lies in directing the learner’s attention and 

cognitive resources to hypotheses that are consistent with explanatory virtues, we might expect 

explaining to impact hypothesis generation in a similar way as other contextual changes.  

However, it is possible that explaining might also affect hypothesis evaluation, by, for 

example, causing learners to overweight the data they observe in favor of hypotheses that are 

more consistent with explanatory virtues. Indeed, there is some evidence to support this 

possibility: Williams et al. (2013) found that when learners were given statistics problems in 

which the solutions violated their intuitions, participants who explained the evidence performed 
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better than controls, even when they had been provided with the correct procedure in advance. 

The authors conclude that since explanation still facilitates learning when participants had prior 

exposure to the rule, explaining must be helping them to apply this rule to the data they observe. 

In the current study, we examine the role of explaining in hypothesis generation and 

evaluation by modifying methods used in prior work that was designed to pull these interrelated 

cognitive processes apart. Specifically, Bonawitz & Griffiths (2010) show that when participants 

were given a simple prime before performing a rule learning task, the prime impacted the 

proportion of participants who correctly inferred the rule but did not impact how likely 

participants rated the correct rule to be. In this way, priming can be interpreted as constraining 

hypothesis generation, but not evaluation. Building on these results, the current study asks 

whether there is a similar effect of engaging in explanation during learning.  

The current study 

To test this, we presented participants with a category learning task which required them 

to generate and evaluate hypotheses about which kinds of fishing lures were most likely to catch 

fish. All participants were presented with a series of events in which particular lure combinations 

did or did not catch fish. After each event, participants in an explanation condition were 

prompted to explain the evidence they observed, while control participants were asked to 

describe it. In Experiment 1, all participants were then presented with a hypothesis generation 

task, drawing on the “explicit report” method used in prior research on explanation (Williams & 

Lombrozo, 2010), as well as a related classification task to test their generalization. This was 

followed by a separate hypothesis evaluation task modeled after Bonawitz and Griffiths (2010). 

We then examined the effects of explanation on learning outcomes in each task.  
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Given prior findings that explanation recruits prior knowledge and encourages learners to 

search for abstract patterns, we designed the rule learning task so that it could be solved by 

capitalizing on these strategies. Specifically, each fishing lure was composed of two stacked 

shapes, and any lure combination with a triangle, diamond, or four-pointed star on the bottom 

would catch fish (see Figure 1). It is therefore possible to succeed on this task by attending to 

each lure’s concrete features in pursuit of rule-like statistical patterns. Critically, however, this 

evidence was also consistent with an abstract rule: lures with pointy shapes on the bottom catch 

fish. This rule was chosen based on prior research suggesting that explainers are more likely to 

infer abstract hypotheses (i.e., pointy, rather than triangle, diamond, or star) (Williams & 

Lombrozo, 2010), and those that are more consistent with prior mechanistic knowledge (i.e., 

pointed objects are used to catch fish) (Williams & Lombrozo, 2013).1  

We expected that participants would apply different cognitive strategies depending on 

whether they were prompted to explain or describe their observations. Specifically, while 

explainers may be more likely to recruit real world knowledge and search for broad patterns, 

describers may be more likely to attend to concrete features. Although both strategies can lead to 

success on the current task, the pursuit of an abstract rule is likely to increase the availability of 

the target hypothesis. Critically, our goal was not to demonstrate that explanation makes learners 

more likely to privilege this target hypothesis. We anticipated this outcome based on the prior 

work. Instead, by combining research on the effects of explanation during learning with 

investigations of hypothesis generation and evaluation, we aim to provide a more precise 

description of the expected impact that explaining has on the learning process.  

 

 

1 This was also confirmed in a pilot study. 
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Experiment 1 

Participants 

Participants were 86 undergraduate students at a major West Coast university who 

received course credit for their participation. Given that our study design was based on Bonawitz 

& Griffiths (2010), we conducted a power analysis using their free response results. This analysis 

suggests that 88 participants would be required to detect a similar effect size (Cohen’s w = 0.3) 

as the priming intervention they report. For a closer comparison to the specific effects of 

explanation on category learning, we also analyzed the effect size reported in Williams & 

Lombrozo (2010), Experiment 1 (Cohen’s w = 0.33, see Table 2 in Williams & Lombrozo, 

2010). With 43 participants per condition, we had an estimated 86% power to detect a similar 

effect for hypothesis generation. Informed consent was obtained from all participants in 

accordance with the Institutional Review Board’s approved protocol. Participants were randomly 

assigned to either explain or describe (control) conditions. 

Procedure 

Participants completed the experiment in a web browser on laboratory computers.2 All 

participants were given instructions indicating that they would see a number of different fishing 

lure combinations, and that their task was to determine which combinations were most likely to 

catch fish. The fishing lures used throughout the experiment were composed of two stacked 

shapes: one smaller shape on the bottom of the fishing lure and one larger shape on the top (see 

Figure 1). Each of the top and bottom pieces were composed of one of six possible shapes, three 

of which were rounded (circle, oval, and teardrop) and three of which were pointy (triangle, 

 

 

2 All code for Experiment 1, as well as data and analysis code for the results presented, can be 

found at: https://github.com/erik-brockbank/go_fish. 
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diamond, and four-pointed star). Each shape in the fishing lure combination was one of four 

possible colors: red, blue, green, or yellow. In addition, each shape either did or did not have a 

purple dot. As noted previously, the fishing lure combinations that caught fish were determined 

by the following rule: lures with pointy shapes on the bottom catch fish.  

The experiment was composed of a trial phase, a hypothesis generation phase, a 

hypothesis evaluation phase, and a memory check. 

Trial Phase 

In the trial phase, participants observed eight fishing lure trials, each consisting of an 

evidence component, a description or explanation component, and a prediction component. 

These are illustrated in Figure 1.  

In the evidence component of each trial, participants were shown a novel fishing lure 

combination and told whether or not this combination successfully caught a fish. In the 

subsequent explanation or description component, participants in the explain condition were 

prompted to provide a written explanation for the evidence they had just seen (“Explain why 

your friend might have [not have] caught a [any] fish with this lure combination”), while in the 

control describe condition, participants were simply asked to describe the evidence they had just 

seen (“Describe this lure combination that your friend caught a fish [didn’t catch a fish] with”). 

This was the only difference between conditions. In the prediction component of each trial, 

participants were shown a novel fishing lure combination which retained one of the elements of 

the earlier lure combination they observed. They were then asked to indicate whether they 

thought this new combination would catch fish or not. All participants saw the same prediction 

lure combinations on each trial, since these lures were designed to share a common element with 
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the previously presented lure combination (see Supplementary Materials for all prediction 

stimuli). Participants were not given feedback about their predictions.  

 

 

Figure 1. A sample trial from the trial phase of Experiments 1 and 2. (A) A sample evidence 

component in which participants see a lure combination that does or does not catch fish. (B) 

Response components for participants in the explain condition (top) and describe (control) 

condition (bottom). (C) A sample prediction component for a new lure. 
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Accumulated evidence from previous trials remained visible at the bottom of the screen 

throughout all subsequent trials to help participants recall which fishing lure combinations did 

and did not catch fish. The evidence and prediction components of the trials included four fishing 

lure combinations that did catch fish and four that did not. The fishing lures chosen and the order 

in which they appeared were identical across conditions (refer to Figures 1 and 2). The decision 

to present fishing lures in the same order for all participants allowed for tight control over when 

participants saw each negative exemplar, and therefore when various hypotheses could be ruled 

out by the evidence. Any order effects resulting from the presentation of evidence would 

therefore impact participants in both conditions equally. 

Trial Response Coding. Following similar analyses used in past work (Williams & 

Lombrozo, 2010), each of the eight explanations and descriptions participants provided during 

the trial phase were coded for the number of concrete and abstract references to fishing lure 

features. Features of the fishing lure combinations were limited to their top and bottom shape, 

color, and the presence of a purple dot. A reference was coded as concrete if it was specific to 

that feature (e.g., “triangle,” “yellow,” “has a dot”) and abstract if the reference was also true of 

other lures with different features (e.g., “pointy shape” refers to triangles, diamonds, and four-

pointed stars, “bright color” refers to yellow and red, “has an eye” refers to lures with a dot) 

(Williams & Lombrozo, 2010). Critically, the number of abstract references do not by themselves 

indicate success on the task, since participants could detect the rule based on the use of an 

abstract strategy (“pointy shapes”) or by attending to concrete patterns (“triangles, diamonds, or 

squares”) (see below). However, examining the frequency of each type of reference does provide 

evidence for differences in participants’ problem-solving approach. 
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In this vein, we compared the average number of abstract and concrete feature references 

made by participants in each condition to assess whether explainers generated a greater number 

of abstract hypotheses, relative to describers. We also coded explanations and descriptions for the 

number of references to an underlying mechanism to explain the data (e.g., “Perhaps this 

teardrop piece is too round for the fish to latch onto”, “Because the bottom blue part of the lure 

blended in with the water”). In line with prior work, we predicted that explainers would be more 

likely to draw on prior knowledge and provide mechanism-based responses (Williams & 

Lombrozo, 2013). Again, although we anticipated that this tendency was likely to be beneficial 

for explainers, our primary aim was to examine whether these effects are associated with 

hypothesis generation, evaluation, or both. 

A second coder who was blind to condition coded explanations and descriptions for 

reliability. A total of 552 explanations and descriptions belonging to 69 subjects were coded (this 

constitutes 80% of the complete set; the remaining 20% was used to train the second coder). 

Agreement ranged from 95.3% to 99.5% for shape, color, and purple dot references, with 94.6% 

agreement for references to mechanism. Disagreements were resolved through discussion among 

the two coders. 

Hypothesis Generation Phase 

After completing the eight evidence trials in the trial phase, participants were tested on 

hypothesis generation. First, they were given a free response prompt to assess whether they had 

inferred the target rule: “Describe the single best rule you used for deciding whether or not each 

lure combination will catch fish.” Next, they were given a classification task in which they were 

shown a set of eight novel fishing lure combinations and asked to indicate whether each of these 

combinations would catch fish, along with a confidence rating from 1 to 7 (see Figure 2). This 



EXPLANATION IMPACTS HYPOTHESIS GENERATION 13 

classification task provided an indirect measure as a means of validating the hypothesis 

generation process alongside participants’ free response answers. Critically, during the 

hypothesis generation phase, the evidence from earlier trials was not available for reference; this 

ensured that the rules participants provided were generated during the trial phase, rather than by 

careful study during the generation phase itself. 

 

 

Figure 2. Top, the classification task used to test whether participants had generated a correct 

rule for categorizing fishing lure combinations in Experiment 1. Bottom, the hypothesis 

evaluation task for a sample rule in Experiment 1. 
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Generation Response Coding. Participants’ free responses were coded as either correct 

or incorrect, depending on whether they were able to provide a rule which was consistent with 

100% of the evidence and would allow them to successfully classify a novel fishing lure 

combination. By this criterion, participants who were explicit about the shapes that caught fish 

(noting the triangle, diamond, and star), but did not refer to them as “pointy,” were still coded as 

correct. Responses that provided insufficient evidence that the learner generated the correct rule 

(e.g., “I used the lure’s shape”) were coded as incorrect. A second researcher who was blind to 

condition coded the responses for reliability, and agreement was 99%. Though it was possible to 

come up with a rule other than the target rule which was consistent with all of the evidence, no 

participant did so. 

Hypothesis Evaluation Phase 

Next, participants were tested on hypothesis evaluation. Participants were shown a series 

of six possible rules representing candidate hypotheses about which types of fishing lure 

combinations catch fish (see Table 1). The same six rules were presented to all participants in 

both conditions. Participants were asked to rate the strength of each rule as an explanation of the 

evidence on a 1 to 7 scale (see Figure 2). During this phase, participants were provided with a 

visual reminder of the outcome of each of the eight trials at the bottom of the screen. Following 

Bonawitz & Griffiths (2010), this was done to assess participants’ appraisal of each hypothesis in 

light of the evidence. The decision to display the evidence during the evaluation phrase was 

critical. If the evidence had not been available, there is considerable risk that any variance 

observed in evaluation might have reflected variance in participants’ memory of the training 

trials. Further, we might expect ratings of the target rule to be different depending on whether 
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participants had generated it during the earlier trials; those who did may be more likely to rate 

this rule highly. 

 

Table 1. Rules presented in the hypothesis evaluation task in Experiment 1 

Rule Category Consistency with Evidence 

If a lure combination has a red shape or a 

blue shape, it will catch fish. 

 

Misc. 62.5% (5/8) 

If a lure combination has a diamond, it will 

catch fish. 

 

Misc. 62.5% (5/8) 

If a lure combination has a pointy shape on 

the bottom, it will catch fish. 

 

Target 100% (8/8) 

There is no pattern to which lure 

combinations catch fish: the results are 

random, but there are approximately equal 

numbers that catch fish and don’t. 

 

Random NA 

If a lure combination has a yellow shape or a 

diamond on the bottom, it will catch fish. 

 

Distractor 100% (8/8)* 

If a lure combination has a purple dot on at 

least one of the lures, it will catch fish. 

Misc. 75% (6/8) 

Note: These six rules were presented in the fixed order above. 

* See Footnote 3.  

 

During the hypothesis evaluation task, the rules were presented in a fixed order for all 

participants: Any effects of order should therefore be stable across conditions. Of the six rules, 

the target rule and a “distractor” rule were both consistent with 100% of the evidence, but the 

distractor rule was considerably more complex (“If a lure combination has a yellow shape or a 
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diamond on the bottom, it will catch fish.”).3 If explaining influences learners’ evaluation of 

candidate hypotheses, we predict that explainers may be more likely to privilege the abstract 

target rule that better reflects explanatory virtues (i.e., simplicity, breadth, mechanism). The 

distractor rule was included to test whether explainers also disfavored rules that were consistent 

with all (or most) of the evidence but did not provide a “good” explanation. Three additional 

miscellaneous rules that were plausible but less consistent with the evidence (62.5% or 75%) 

were also included, as well as one rule suggesting that it was randomly determined which fishing 

lure combinations caught fish.  

Memory Check 

Finally, after completing the hypothesis evaluation task, participants were given a 

memory probe in which they were shown a set of eight fishing lure combinations, including four 

novel combinations and four that had previously appeared during the training phase. Participants 

all saw the same eight fishing lure combinations in the memory probe; the novel combinations 

were chosen from among a fairly limited set that participants had not previously seen on the 

evidence trials, predictions, or on the classification task. Participants were prompted to indicate 

whether they had seen each fishing lure combination at any point during the experiment. This 

was included to assess any differences in general attention between conditions. The memory 

probe also addressed the possibility that any condition differences observed on the hypothesis 

 

 

3 There is an alternative, pragmatically valid interpretation of the distractor rule (i.e., if a lure 

combination has a yellow shape or a diamond on the bottom, it will catch fish can be interpreted as either 

[1] if a lure combination has a yellow shape anywhere or a diamond on the bottom, or [2] if a lure 

combination has a yellow shape on the bottom or a diamond on the bottom). The latter interpretation is 

only consistent with 88% of the evidence (seven out of eight lure combinations). While the distractor 
remains appealing from an evidentiary standpoint in either case, it is possible that not all participants 

interpreted it as equivalent to the target rule [1]. Comparisons between distractor and target rule 

evaluations should therefore be interpreted with caution. 
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generation task were due to explainers having better memory for the evidence. Since participants 

were not provided with the evidence during the generation task, those learners who had not 

previously generated the target hypothesis but had improved memory for the stimuli might 

nonetheless have come up with the target hypothesis purely from memory. If so, we would 

expect better performance on the memory probe from participants in the explain condition.  

Results 

To understand the role of explaining on hypothesis generation and evaluation, we 

compare the explain and describe (control) conditions on the hypotheses they generate, their 

accuracy at classifying novel fishing lure combinations based on these hypotheses, and their 

subsequent evaluation of candidate hypotheses about which combinations catch fish. For a 

summary of the evidence trial prediction results, refer to the Supplementary Materials. 

Hypothesis Generation 

We first examine the effect of explanation on hypothesis generation. Figure 3 shows 

accuracy on both hypothesis generation tasks. In line with our hypothesis, a significantly greater 

proportion of participants in the explain condition provided a correct hypothesis in their free 

response (51.2%) compared with describers (18.6%), 𝜒2(N = 86, 1) = 8.65, p = .003. This 

difference is further borne out in participants’ ability to apply the hypotheses they generated to 

novel stimuli; participants in the explain condition were better able to classify novel fishing lure 

combinations in the classification task compared with describers. First, we applied a similar 

strategy as the one used to analyze free responses above by coding participants who scored 100% 

on the classification task as having the correct hypothesis and all others as incorrect. The 
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proportion of participants meeting this criterion is significantly higher in the explain condition 

than in the describe condition (explain: .54; describe: .30; 𝜒2(N = 86, 1) = 3.87, p = .049).4  

However, this provides a rather coarse indication of the condition differences observed. 

To better account for the potential role of individual and item variation in classification accuracy 

across conditions, we fit a generalized linear mixed effects model (GLMM) to participants’ 

response accuracy with condition as a fixed effect and random intercepts for participant and 

question item.5 A likelihood ratio test revealed a significant effect of condition, with explainers 

more likely to produce correct classification responses, 𝜒2(1) = 8.31, p = .004. Weighting 

participants’ response accuracy by their confidence ratings—1 for correct answers, -1 for 

incorrect—produces similar results. Again, condition was a significant predictor of weighted 

accuracy judgments, 𝜒2(1) = 7.45, p = .006. In sum, both the free response and classification 

measures indicate that participants in the explain condition were more likely to produce and 

apply a version of the target hypothesis, providing strong evidence that explanation plays a role 

in hypothesis generation. 

 

 

 

4 These results are robust to lower cutoff scores of 7/8 and 6/8 correct. 
5 All GLMMs and LMMs were fit in R using the ‘lme4’ package (Bates et al., 2015). 
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Figure 3. Accuracy on hypothesis generation tasks by condition in Experiment 1. Left: the 

proportion of responses coded as correct in the free response task. Right: the average 

classification accuracy per subject in the classification task. Error bars indicate one standard 

error of the mean (SEM). 

 

Hypothesis Evaluation 

Figure 4 shows average evaluation ratings for the target rule, the distractor rule, and the 

combined average ratings across all remaining rules.  

Broadly, participants in both conditions rated the rules similarly: Evaluations of the target 

rule were near ceiling and higher than all other rules, including the distractor. We first analyzed 

whether the overall pattern of ratings differed across conditions and whether evaluations of the 

target and distractor rules were different in particular. To do this, we fit a linear mixed effects 

model to individual rule evaluations (1-7) with each rule as a fixed effect interacting with 

condition and a random intercept for participant. Model comparison via likelihood ratio test finds 

that including the main effect of condition does not improve model fit relative to a main effect of 
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rule alone, 𝜒2(1) = 0.35, p = .56. This suggests that the general pattern of responding on each 

rule does not differ by condition. Further, including the interaction between condition and rule 

(as in the full model above) does not significantly improve model fit relative to the simple main 

effects of rule and condition, 𝜒2(5) = 9.53, p = .09. Focusing on the target and distractor rule 

evaluations, estimated marginal means from the interaction model are not significantly different 

across conditions on the target or distractor rules (target: p = .96, distractor: p = .85). Thus, when 

accounting for individual variability in ratings, we do not find evidence of an effect of condition 

on hypothesis evaluation for the rules provided to participants. 

When considering participant evaluations of each rule in isolation, we can compare the 

results above to traditional statistical methods based on individual ratings of a given rule. In a 

simple comparison of evaluation ratings across conditions, we find no significant difference in 

evaluations of the distractor rule, t (84) = 1.53, p = .13, but there is a significant difference 

between conditions in ratings of the target rule, t (84) = -2.04, p = .045. In paired t-tests 

comparing the target and distractor rule evaluations, we find that participants in both conditions 

rated the distractor rule significantly lower than the target rule (explain: t (42) = -6.99, p < .001; 

describe: t (42) = -3.87, p < .001). This may reflect a general prior preference for explanations 

which are not only consistent with the evidence, but also simple and easily generalizable 

(Williams et al., 2013). Recall, however, that some participants may have interpreted the 

distractor rule as consistent with seven out of eight, rather than all eight of the evidence trials. 

Although we must avoid drawing strong conclusions about participants’ overall preference for 

the target rule, a 2 (task: explain, describe) by 2 (rule: target, distractor) analysis of variance 

(ANOVA) comparison of evaluation ratings finds a significant interaction between condition and 

rule type. This indicates that the difference between target and distractor rules was larger for 
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participants in the explain condition than in the describe condition, F (1, 82) = 5.60, p = .019. 

Explaining may therefore have led participants to treat the target and distractor rules as more 

distinct.  

 

 

Figure 4. Experiment 1 evaluation ratings by condition for target rule, distractor, and all 

remaining rules aggregated. Error bars indicate one standard error of the mean (SEM). 

 

In sum, our findings are consistent with the hypothesis that participants across conditions 

evaluate the target rule based on the available evidence, as well as its generality. While they do 

not conclusively suggest a role for explanation in hypothesis evaluation, these results also do not 

definitively rule out this possibility. Experiment 2 was designed to address this.  

Memory 

To assess whether the observed effects of explaining might be due to a general increase in 

attention or engagement that would be reflected in memory for task items, we tested condition 



EXPLANATION IMPACTS HYPOTHESIS GENERATION 22 

differences in memory for fishing lure combinations. To account for variation across individual 

responses and items, we fit a generalized linear mixed effects model to participants’ response 

accuracy (binary) with a fixed effect of condition and random intercepts for subject and memory 

probe. A model comparison revealed no significant role of condition in explaining memory 

accuracy, 𝜒2(1) = 0.39, p = .535. This suggests that the overall condition differences observed in 

hypothesis generation are not attributable to explainers’ better memory of the stimuli.  

We also investigated the potential role of attention or task engagement on hypothesis 

generation on an individual level, once again using data on the memory probe. We first ran a 

logistic regression of accuracy on the free response generation task as a function of condition and 

individual accuracy on the memory probe (percent correct). We find that memory probe accuracy 

is not a significant predictor of hypothesis generation behavior (p = .563), and that condition 

remains a significant predictor even after controlling for memory probe accuracy (p = .002). In 

line with our initial analysis of individual performance on the classification task, we fit a 

generalized linear mixed effects model to participant accuracy on each of the classification 

questions, this time with fixed effects of condition and individual memory probe accuracy (the 

random effects structure was the same as the previous analysis). Here, we find that including 

memory accuracy does not significantly improve fit over the random effects alone, 𝜒2(1) = 3.03, 

p = .082, while the fixed effect of condition remains significant, even after including memory 

probe accuracy, 𝜒2(1) = 8.77, p = .003. This further suggests that effects of attention or 

processing that may impact recall of task items cannot account for accuracy in hypothesis 

generation.  
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Explanation and Description Content 

To assess whether explainers generate different types of hypotheses than describers (i.e., 

abstract, generalizable, mechanistic), or whether their improved performance is merely a result 

of generating more hypotheses during the process of explanation, we coded participants’ 

responses during the trial phase for whether they addressed abstract or concrete features of the 

stimuli. In line with prior results (Williams & Lombrozo, 2010), we hypothesized that explainers 

would not reference more features of the lure combinations than describers, but would instead 

show a greater tendency to reference abstract features. We also coded participants’ responses for 

whether they provided a mechanism in their explanation or description. We hypothesized that 

explainers would be more likely to provide a mechanism, though critically, there is nothing to 

prevent describe participants from providing this information in their descriptions as well. For 

example, one describer wrote: “The main body of the lure is a circle and attached there is a 

teardrop shaped segment. Perhaps this teardrop piece is too round for the fish to latch onto.”  

Figure 5 shows the average number of mechanisms and concrete and abstract feature 

references participants made in each condition, summed across the eight trials for each 

participant. Given the possibility of individual differences in participants’ references to features 

and mechanisms over the eight trials, we analyze feature references using generalized linear 

mixed effect models for counts of each type of reference that factor in variance across subjects 

and trials (all GLMMs described in this section use Poisson regression unless otherwise noted). 

First, we model each participant’s total reference counts on each trial (shape + color + purple 

dot) with random intercepts for subject and trial stimulus and a fixed effect of condition. A model 

comparison reveals that including the fixed effect of condition provides a significantly better fit 

to the data, 𝜒2(1) = 74.94, p < .001, but this is because describers produce significantly more 
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feature references per trial than explainers (marginal mean estimates from the model above are 

3.83 per trial for describers and 1.09 for explainers) (refer to Figure 5). Therefore, explainers’ 

success in hypothesis generation is likely not a function of simply generating more hypotheses.  

Instead, as Figure 5 suggests, explainers reference the same stimuli differently than 

describers. To better understand this, we model each participant’s a) total mechanisms, b) total 

abstract references (shape + color + purple dot), and c) total concrete references (shape + color + 

purple dot) in each trial with a similar mixed effect structure to the one above, but now exploring 

the interaction between fixed effects of condition and reference “type” (mechanism, abstract, 

concrete). Model comparison using a likelihood ratio test reveals that the interaction of condition 

and reference type significantly improves model fit over main effects alone 𝜒2(2) = 682.88, p 

< .001. Critically, estimated marginal mean number of mechanisms and abstract references per 

trial are significantly higher for explainers (mechanisms: explain = 0.48, describe = 0.06, p 

< .001; abstract references: explain = 0.52, describe = 0.09, p < .001), while concrete references 

per trial are significantly higher for describers (explain = 0.56, describe = 3.76, p < .001). These 

results echo previous findings reported by Williams & Lombrozo (2010) and suggest that 

explanation prompts learners to privilege certain types of hypotheses during generation. In 

particular, explainers were more likely to refer to the fishing lure combinations in abstract terms 

and provide mechanistic accounts of the ones that caught fish; in some cases, these accounts 

went well beyond the available evidence (“Because it looks like food that fish would like to eat 

and also have the smell the fish like”).  

An important question that arises from these results is whether explainers’ success is a 

function of being prompted to explain (the process of explaining) or generating the right sort of 

explanation (the product of explaining) (e.g., Wilkenfeld & Lombrozo, 2015). To better 
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understand this, we ran a logistic regression with the free response data from participants in the 

explain condition to explore whether accuracy was predicted by the kinds of explanations 

provided in the earlier evidence trials. As predictors, we used: a) the total number of references 

(mechanism + abstract + concrete) across all eight evidence trials, b) the total number of 

mechanisms across all trials, and c) the proportion of abstract feature references out of all 

abstract and concrete references across all trials. This last metric was selected in place of total 

abstract or concrete references because we found that these references had a significant negative 

correlation (r = -0.36, p = .04). The proportion metric therefore allowed us to test whether the 

ratio of these features contributed separately from the overall number. We find a significant 

positive slope on proportion of abstract references only (p = .004).6 To complement this, we ran a 

generalized linear mixed effects model comparison using individual responses on the 

classification task (rather than subjects’ binary accuracy on the free response task); this analysis 

used a binomial link function for classification accuracy. A nested model comparison found that 

effects of mechanism and abstract reference proportion significantly improved model fit, while 

total references did not (total references: 𝜒2(1) = 1.80, p = .18; mechanisms: 𝜒2(1) = 10.31, p 

= .001; abstract proportion: 𝜒2(1) = 9.20, p = .002).  

Broadly, this suggests that an explainer’s probability of generating a correct hypothesis 

likely increased with the proportion of abstract references and may also have increased by 

including mechanisms. Thus, our results suggest that the kind of explanation produced matters; 

participants who used more abstract references were also more likely to generate a correct 

hypothesis. However, given that nearly all explainers included these references in their 

 

 

6 This result and the one below are the same if we use total abstract references rather than the 

proportion. 
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explanations, these results cannot rule out the possibility that the act of explaining was itself 

epistemologically valuable, regardless of the explanation produced.  

 

 

Figure 5. Average total number of mechanisms and concrete and abstract references to shape, 

color, and purple dot features in the explanations and descriptions provided by each participant in 

Experiment 1. Error bars indicate one standard error of the mean (SEM). 

 

Discussion 

In this experiment, we developed a novel category learning task to investigate the role 

that explaining plays in the processes of hypothesis generation and evaluation. We find that 

participants who are prompted to explain the evidence they observe are more likely to generate a 

correct rule for category membership than participants who were asked to describe the same 

evidence. This suggests that explaining may constrain the initial set of hypotheses generated by 
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the learner. By comparison, the effect of explaining on hypothesis evaluation is less clear. 

Although participants in both conditions rated the target rule significantly higher than all other 

rules, including the distractor rule, we did find a small but significant difference between 

conditions in their rating of the target rule. However, given that these ratings were near ceiling in 

both groups and that no such difference was observed when applying a mixed effects model, this 

finding is difficult to interpret. We address this issue in Experiment 2. 

Experiment 2 

Though the condition differences in hypothesis generation found in Experiment 1 were 

consistent with our initial predictions, the modest impact of explaining on hypothesis evaluation 

deserves further attention. One possibility is that the subtle difference we observed between 

conditions in their evaluations of the target rule was spurious. This seems likely, given that the 

target rule was rated highly across conditions and that our additional analysis accounting for 

individual subject variation in ratings did not find a significant effect of condition. In Experiment 

2, we address this concern by increasing our sample size, modifying the hypothesis rating scale 

to reduce ceiling effects, and assessing participants’ evaluation of a broader range of rules. 

In addition to resolving this remaining uncertainty, we also aimed to address whether any 

effect of explaining on hypothesis evaluation was attenuated by the demands of the hypothesis 

generation task. First, the hypothesis generation task may itself involve some amount of tacit 

hypothesis evaluation. In particular, during the free response generation prompt, all participants 

were asked to provide the best rule for which lure combinations catch fish. This may have caused 

participants in both conditions to evaluate the goodness of the rule they were providing. In such a 

case, the hypothesis generation task might plausibly interfere with participants’ subsequent 

evaluations, thereby masking effects of explaining on hypothesis evaluation. 
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 A second possibility is that the free response hypothesis generation prompt served to 

reduce any differences between conditions on hypothesis evaluation by prompting describe 

participants to explain the evidence they saw. In other words, if the hypothesis generation prompt 

(“Describe the single best rule you used for deciding whether or not each lure combination will 

catch fish”) led describers to seek a broad and generalizable hypothesis to apply to the data, they 

may have behaved more similarly to explainers in the subsequent hypothesis evaluation task. 

Concretely, producing “the single best rule” in the hypothesis generation task might have biased 

participants to evaluate abstract rules more favorably in both conditions. To address each of these 

concerns in Experiment 2, we removed the hypothesis generation tasks to assess condition 

effects on evaluation in isolation. 

Method 

Participants 

Participants were 164 undergraduate students from a major West Coast university who 

received course credit for their participation. Unlike Experiment 1, which was completed on lab 

computers, Experiment 2 was administered to students online.7 As in Experiment 1, participants 

were randomly assigned to either explain or describe (control) conditions. This sample size was 

chosen based on a power analysis indicating that we needed 82 participants in each condition to 

detect a difference in target rule evaluations with 80% power and an estimated effect size similar 

to Experiment 1.  

An additional 9 participants were tested, but excluded, based on criteria established prior 

to data collection. Specifically, seven (explain: 4, describe: 3) were excluded for providing a 

 

 

7 All code for Experiment 2, as well as data and analysis code for the results presented, can be 

found at: https://github.com/erik-brockbank/go_fish_v2. 
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rating above 80 on a scale from 1 (“not good”) - 100 (“very good”) for a rule that was only 

consistent with 25% of the evidence observed (i.e., a very poor rule), and two (explain: 1, 

describe: 1) were excluded for total experiment completion times that were greater than five 

standard deviations above the group mean (i.e., over 8 hours). Note, however, that all reported 

results remain in the absence of one or both of these exclusions.  

Procedure 

The procedure for Experiment 2 was identical to Experiment 1, except for the following 

changes. First, we removed both hypothesis generation tasks. After completing the training 

phase, all participants proceeded directly to the hypothesis evaluation phase. Second, we 

modified the hypothesis evaluation task to include a set of eight rules (see Table 2). In addition to 

the target rule, distractor rule, and random (i.e., “no rule”) prompts from Experiment 1, we 

included two “virtuous” abstract rules that were consistent with 75% of the evidence (abstract 

shape rule: “If a lure combination has a rounded top shape that resembles a fish’s body, it will 

catch fish”; abstract color rule: “If a lure combination has a top lure with bright colors that are 

more visible under water (red or yellow), it will catch fish”). If explaining influences hypothesis 

evaluation, we predicted that explainers might rate these rules higher, despite their lack of 

parsimony (Williams & Lombrozo, 2013). Participants were also asked to evaluate three 

“miscellaneous” rules, which represented a broader range of consistency with the evidence.  

Further, unlike in Experiment 1, in which the rule order was fixed, we randomized the 

rule order in Experiment 2 to avoid the possibility of order effects in either condition. Finally, 

participants evaluated all rules on a continuous 1-100 scale, from “not good” to “very good”, 

rather than a discrete 1-7 scale. As in Experiment 1, our primary dependent variable is the ratings 

that participants provided for each rule. However, once again, we also examine the content of the 
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explanations and descriptions provided during the trial phase to better understand how providing 

explanations may support the learning process.  

 

Table 2. Rules presented in the hypothesis evaluation task in Experiment 2 

Rule  Category Consistency 

with Evidence 

If a lure combination has a red shape on the bottom, it will catch 

fish. 

 

Misc. 25% (2/8) 

If a lure combination has a blue shape, it will catch fish. 

 

Misc. 50% (4/8) 

If a lure combination has a purple dot on at least one of the 

lures, it will catch fish. 

 

Misc. 75% (6/8) 

If a lure combination has a pointy shape on the bottom, it will 

catch fish. 

 

Target 100% (8/8) 

There is no pattern to which lure combinations catch fish: the 

results are random, but there are approximately equal numbers 

that catch fish and don’t. 

 

Random NA 

If a lure combination has a yellow shape or a diamond on the 

bottom, it will catch fish. 

 

Distractor 100% (8/8*) 

If a lure combination has a rounded top shape that resembles a 

fish’s body, it will catch fish. 

 

Abstract 

(shape) 

75% (6/8) 

If a lure combination has a top lure with bright colors that are 

more visible under water (red or yellow), it will catch fish. 

 

Abstract 

(color) 

75% (6/8) 

Note: The order of presentation for these eight rules was randomized.  

*See footnote 8. 

 

Results 

To probe the role of explaining on hypothesis evaluation, we compare the explain and 

describe conditions on their evaluation of the eight candidate rules provided to all participants.  
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Hypothesis Evaluation 

Figure 6 shows evaluation ratings for each rule: target, distractor, the two “abstract” rules, 

the “random” rule, and the “miscellaneous” rules, all indicated by their consistency with the 

evidence observed during the training phase (25%, 50%, 75%, or 100%).8 The changes made in 

Experiment 2 removed the ceiling effects from Experiment 1, allowing for more meaningful 

analysis of target rule evaluations (explain: M = 81.1, SD = 23.5; describe: M = 84.9, SD = 24.6).  

Paralleling our approach in Experiment 1, we begin with a mixed effects analysis with 

individual rule evaluations (1-100) modeled using interacting fixed effects of rule and condition 

and random intercepts for each subject. As in Experiment 1, the main effect of condition did not 

significantly improve model fit over a main effect of rule alone, 𝜒2(1) = 0.32, p = .57, and the 

interaction between condition and rule did not improve model fit over the main effects 𝜒2(7) = 

5.11, p = .65. Considered alongside the previous findings, this suggests that explanation does not 

meaningfully intervene in hypothesis evaluation. Once again, we also evaluate the pairwise 

difference between rules across conditions using the full model described above. Here, a 

comparison of marginal means estimates finds no significant differences across conditions in 

their ratings of the individual rules.  

We next turn to traditional statistics to complement these findings. Unlike in Experiment 

1, a t-test of subject ratings on the target rule finds no significant difference in target rule 

evaluation (explain: M = 81.1, describe: M = 84.9), t(162) = -1, p = .32. We observe similar 

results in participant evaluations of the distractor rule (explain: M = 63.8; describe: M = 61.6, t 

 

 

8 As in Experiment 1, we note the possibility that the distractor rule, which was intended to be 

unambiguously consistent with 100% of the evidence, can also be interpreted in a way that is consistent 

with seven of the eight evidence trials. 
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(162) = 0.43, p = .67) as well as the “abstract” rules (abstract color rule; explain: M = 40.3; 

describe: M = 38.0, t (162) = 0.52, p = .60; abstract shape rule; explain: M = 44.5; describe: M = 

39.4, t (162) = 1.15, p = .25). Taken together, findings of Experiment 2 provide no evidence that 

explanation impacts the process of hypothesis evaluation.  

 

 

Figure 6. Evaluation results for Experiment 2. From left to right, ratings for the target rule, the 

distractor rule, the two abstract rules, the “random” rule, and three “miscellaneous” rules. Each 

label includes the percent of lure combinations (out of eight) that were consistent with the rule. 

Error bars indicate one standard error of the mean (SEM). 

 

Instead, the current results suggest that hypothesis evaluation is sensitive to both the 

likelihood of the hypotheses (i.e., their consistency with the evidence), as well as information 

about their prior probabilities, signaled by their consistency with explanatory virtues. Further, 

results suggest that this sensitivity is not affected by explanation. First, as noted above, we 
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replicate the finding from Experiment 1 that, on average, the distractor rule is rated close to the 

midpoint of the scale, despite being consistent with all (or most) of the evidence. This indicates 

that prior knowledge likely plays an additional role in learner evaluations. Second, participant 

ratings of the “miscellaneous” rules suggest that learners incorporate likelihood information into 

their rule evaluations, with increases in mean ratings paralleling increases in consistency with the 

evidence (25%, 50%, and 75%). People’s responsiveness to considerations of likelihood and 

prior knowledge appears to be equivalent for both explain and describe participants. 

Explanation and Description Content 

 As in Experiment 1, we coded participant response data from the evidence phase of 

Experiment 2 to assess whether there were systematic differences in the kinds of hypotheses 

participants considered when viewing successful and unsuccessful lure combinations for the first 

time. For each participant’s response on each of the eight evidence trials (explanation or 

description of the outcome), we count the number of abstract and concrete shape, color, and 

purple dot references, as well as the number of mechanisms provided in the response. The coding 

criteria were identical to those used in Experiment 1. As before, we hypothesized that explainers 

would show a greater tendency to reference abstract features, but not necessarily more features in 

aggregate (Williams & Lombrozo, 2010), and be more likely to provide a mechanistic account.  

 The trials were divided into two roughly equal sets and each set was coded by a pair of 

coders who were naïve to the subsequent analysis. The analysis reported here is based on 75% of 

the responses in each set (1,328 total), with the remaining responses used to train coders. 

Agreement between coders across the two sets averaged 95% for feature references and 88% for 

mechanisms. Disagreements were resolved by the experimenter.  
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Results from this analysis mirror those of Experiment 1. First, we model each 

participant’s total reference counts on each trial (shape + color + purple dot) using a Poisson link 

function with random intercepts for subject and trial stimulus and a fixed effect of condition. As 

in Experiment 1, including the fixed effect of condition provides a significantly better fit to the 

data, 𝜒2(1) = 120.74, p < .001, but this is because, once again, describers produced significantly 

more feature references per trial than explainers (marginal mean estimates are 3.8 per trial for 

describers and 0.8 for explainers, similar to the means in Experiment 1). Next, we model total a) 

mechanisms, b) abstract references (shape + color + purple dot), and c) concrete references 

(shape + color + purple dot) for each participant in each trial with the identical mixed effects 

structure used in Experiment 1. As in Experiment 1, we find that the interaction between 

condition and reference type significantly improves model fit, 𝜒2(2) = 1,220.79, p < .001. 

Critically, estimated marginal mean number of mechanisms and abstract references per trial are 

significantly higher for explainers (mechanisms: explain = 0.42, describe = 0.04, p < .001; 

abstract references: explain = 0.41, describe = 0.07, p < .001), while concrete references per trial 

are significantly higher for describers (explain: 0.43, describe: 3.82, p < .001). Again, these are 

similar to the findings in Experiment 1. Together, findings suggest that explainers’ success is due 

to generation of abstract and mechanistic hypotheses, not their generation of a greater number of 

hypotheses overall. 

General Discussion 

In two experiments, we examine whether explaining supports category learning by 

promoting generation of broad hypotheses, by leading learners to evaluate those hypotheses as 

more likely, or both. In Experiment 1, we found that participants who explained the evidence 

they observed were more likely to generate the target rule about which lure combinations catch 
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fish. However, we obtained mixed results with respect to the role of explanation in hypothesis 

evaluation. In Experiment 2, using a more diagnostic evaluation procedure and rule set, we find 

no evidence that explanation impacts hypothesis evaluation when examined in isolation. These 

findings provide strong evidence that explaining improves learning by intervening on the process 

of hypothesis generation, but not the evaluation of those same hypotheses.  

There are several alternative explanations for the condition differences in hypothesis 

generation that are worth considering. First, it’s possible that participants in the explain condition 

simply paid more attention to the evidence. Generating explanations is undoubtedly more 

challenging than simply describing that same evidence, so the increased attention required in this 

condition could have accounted for the results (e.g., Siegler, 2002). If this were the case, we 

might expect participants in the explain condition to have better memory for the fishing lure 

combinations. However, the results from the memory probe do not support this explanation. 

These same results also rule out a related interpretation of the observed condition differences, 

namely, that effects of explanation on generation were due to explainers’ better recall of the 

training trials, since the evidence was not available for reference during the generation tasks.  

Although these results rule out alternative proposals that the observed effects are due to 

increases in overall attention, it remains possible that explanation impacted performance by 

leading participants to generate more hypotheses than were generated in response to the describe 

prompt. Consistently re-sampling hypotheses over the eight evidence trials may have ultimately 

resulted in a greater proportion of explainers generating the target hypothesis. However, in that 

case, we would expect to find no differences in the manner in which fishing lure features were 

mentioned in explanations compared to descriptions; explainers might have provided candidate 

rules on the basis of features like shape and color (e.g., “lure combinations with yellow shapes 
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catch fish”), while describers might have simply described the same features (e.g., “this lure 

combination has a yellow shape on top”). Our analysis of the trial phase explanations and 

descriptions suggests that explainers were not merely sampling more rules about the same set of 

features but thinking about those features in fundamentally different ways. Specifically, although 

explainers provided fewer references to the fishing lure features overall, they were far more 

likely to make abstract references to those features (e.g., “round” rather than “circle”). Similar 

findings from the coded responses in our second experiment support these claims. 

Finally, while we have suggested that it is broadly the act of explaining which produces 

the differences in hypothesis generation observed in our results, it is possible that producing the 

right kind of explanation (i.e., one that is sufficiently abstract and generalizable) facilitates 

success instead. Since nearly all explainers produced abstract or mechanistic references during 

the training trials, we are unable to evaluate whether the act of explaining supported hypothesis 

generation over and above the effect of explanation quality (e.g., see Wilkenfeld & Lombrozo, 

2015). This represents a promising avenue for future work. 

Future research might also explore the role of explaining in a wider range of generation 

contexts. Specifically, the constraints of the current task likely simplified hypothesis generation 

to a process of extrapolating from the available data and winnowing the set of possible 

hypotheses as evidence accumulates (Klayman & Ha, 1989; Goodman et al., 2008). However, 

this approach bypasses the more constructive process of hypothesis generation in everyday 

settings, in which the hypothesis space is initially less well-defined (Bramley et al., 2018; 

Gureckis & Markant, 2012). 

Further, our finding that explaining does not impact hypothesis evaluation contrasts with 

at least one prior study (Williams et al., 2013) and raises additional questions for future inquiry 
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into the process of hypothesis evaluation. In Williams and colleagues, participants were asked to 

apply subtle statistical reasoning techniques to the evidence in order to evaluate hypotheses. In 

contrast, the current study provided participants with all the necessary evidence during 

evaluation, reducing the level of difficulty. It is therefore possible that explaining plays a greater 

role in the process of hypothesis evaluation in settings where evaluation itself is more cognitively 

demanding. It is also possible that explanation might impact hypothesis evaluation when the 

explanations are not generated by the participants themselves, e.g., in pedagogical settings where 

learners receive explanations from a teacher. In these situations, receiving possible explanations 

might affect the learner’s evaluations of candidate hypotheses, independent of the evidence 

observed. Future work is needed to explore whether the effects of explanation in the current 

study generalize across learning contexts.  

The present results provide several meaningful contributions to existing work on 

explanation and learning more broadly. First, they help to resolve a key question left unanswered 

by prior work on explanation: Though earlier results with children and adults showed that 

learners who explain tend to privilege hypotheses that are abstract and consistent with prior 

knowledge (Williams & Lombrozo, 2010, 2013; Walker et al., 2014, 2017), this might have been 

due to learners selectively generating these hypotheses, evaluating them differently, or both. 

Here, we show that explanation’s primary function is to intervene on the process of hypothesis 

generation. This is consistent with prior literature on hypothesis testing, which has found that the 

set of hypotheses people entertain may be heavily dependent on contextual factors such as the 

framing of the task (Cheng & Holyoak, 1985) or the physical affordances of the problem (Walker 

et al., 2020). Prompting participants to explain can be viewed as a modification of the learning 

context which narrows the space of candidate solutions to the most broad and generalizable ones 
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(see, e.g., Ullman et al., 2016). This may provide additional insight into developmental results in 

which explaining has a dramatic and immediate effect on reasoning (Brockbank et al., in review; 

Walker, et al., 2017; Walker, et al., 2014 Experiment 1) and belief revision (Macris & Sobel, 

2017). Further, this account may open the door to computational models of explanation, as well 

as hypothesis generation more broadly (e.g., Thomas et al., 2008).  

More generally, the current work sheds light on some of the larger questions that lie at the 

heart of human learning and problem solving. First, our findings provide additional support for 

prior claims that hypothesis generation and evaluation are separable processes, and that different 

cognitive scaffolds may target learning in unique ways (Bonawitz & Griffiths, 2010). Second, 

these results add to a growing body of work examining the effects of learning context and goals 

in learners’ ability to generate the right type of solution (Schulz, 2012, Lake et al., 2017; Walker 

et al., 2020). Despite the potentially infinite number of possible solutions to everyday problems, 

people are remarkably adept at selecting solutions that “make sense” (Ullman et al., 2016; 

Phillips, Morris & Cushman, 2019). Constraining the hypothesis space in this way remains a 

challenge for computational models of human inductive reasoning in many domains (Bonawitz 

& Griffiths, 2010; Lake et al., 2017). The current findings refine our understanding of how 

human learners accomplish this; the goal of producing good explanations constrains which 

hypotheses are initially generated when the learner is confronted with a novel problem.  
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