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Abstract 
 

Mechanisms of Resilience to Megafire in Californian Wildlife Communities 
 

by 
 

Kendall Calhoun 
 

Doctor of Philosophy in Environmental Science, Policy, & Management 
 

University of California, Berkeley 
 

Professor Justin Brashares, Chair 
 

Anthropogenic pressures continue to shift the patterning and intensity of ecological disturbances 
globally. These changes in disturbance dynamics threaten conservation efforts of biodiversity in 
ecosystems around the world. One of the most conspicuous examples of this are novel, rapid 
changes in global fire regimes that have increased the frequency and severity of wildfires in fire-
prone ecosystems. These megafires have the potential to quickly and dramatically change entire 
landscapes in ways that may impact the natural resilience of ecosystems and their wildlife 
communities. In this dissertation, I explore the potential mechanisms in which ecological 
resilience to severe fire may be facilitated and potentially enhanced in Californian wildlife 
communities, predominantly in oak woodland savannas.  
 
This work addresses the interaction between principles of resilience and fire disturbance at 
multiple ecological scales. In Chapter 1, I present an overview of the ways wildfire in California 
spatially overlaps areas of conservation priority as well as broad categories of land cover types. 
In Chapters 2-4, I then zoom into a specific case study to address how a specific megafire, the 
2018 Mendocino Complex Fire, impacts the resilience of wildlife communities (Chapter 2 and 
Chapter 4) and the adaptive capacity and behaviors of an ecologically dominant ungulate species 
(Chapter 3). Specifically, in Chapter 2, I examine the impacts of this fire on the recovery and 
response of mammal species using an array of trail cameras before, during, and after this fire 
event. In Chapter 3, I focus on the specific behavioral responses of a single species (Odocoileus 
hemionus columbianus) to this wildfire event and discuss how these behaviors may influence 
interspecies interactions at broader ecological scales. Finally, in Chapter 4 I examine the impacts 
of this wildfire event on broad patterns of species diversity and community assemblages across 
bird and bat communities using a set of acoustic monitors. Understanding how these qualities of 
resilience are realized, and potentially enhanced by human action, will become increasingly 
critical as fire regimes across the state, and globally, continue to change in response to 
anthropogenic pressures. 
 
 
 
 
 
 



 i 

Table of Contents 
 
Acknowledgements……………………………………………………………………………...iii  

Introduction……………………………………………………………………………………...vi 

Chapter 1. Spatial Overlap of wildfire and biodiversity in California highlights gap in non-

conifer fire research and management…………………………………………………………….1 

 Introduction………………………………………………………………………………..1 

 Methods……………………………………………………………………………………4 

 Results……………………………………………………………………………………..8 

 Discussion………………………………………………………………………………..13 

 Supplement to Chapter 1…………………………………………………………………18 

Chapter 2. Mammalian resistance to megafire in western U.S. woodland savannas…………...35 

 Introduction………………………………………………………………………………35 

 Methods…………………………………………………………………………………..38 

 Results……………………………………………………………………………………46 

 Discussion………………………………………………………………………………..53 

 Supplements to Chapter 2……………………………………………………..…………58 

Chapter 3. Movement behavior in a dominant ungulate underlies successful adjustment to a 

rapidly changing landscape following megafire…………………………………………………75 

 Introduction……………………………………………………………………………....75 

 Methods…………………………………………………………………………………..77 

 Results…………………………………………………………………………………....83 

 Discussion………………………………………………………………………………..87 

 Supplement to Chapter 3………………………………………………………………....91 

Chapter 4. Severity and pyrodiversity shape avian and bat species distributions following an oak 

woodland megafire……………………………………………………………………………...103  
 Introduction……………………………………………………………………………..103 

 Methods………………………………………………………………………………....105 

 Results…………………………………………………………………………………..113 

 Discussion……………………………………………………………………………....119 

 Supplement to Chapter 4………………………………………………………………..123 

Conclusion……………………………………………………………………………………..144 



 ii 

References………………………………………………………………..…………………….147  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

Acknowledgements 
Producing this dissertation would not have been possible without the many groups, communities, 
and families I’ve been able to work and grow with. Gardens don’t grow well without a solid 
network of roots that can support the rest of the community. So first and foremost, I have to 
thank my family, who always have been and always will be the roots of the garden I’m trying to 
grow. I’d like to thank both my parents, Alicia Winrow and Kenneth Calhoun, for their 
continuous support, encouragement of my curiosity, and for pushing me to be confident in 
myself and my identities. My love for this planet stems straight from the love I was shown from 
my two grandmas, Bobbie Palmer and Nannie Calhoun, who showed me what unconditional and 
transcendental love feels like. And I want to shout a big thank you to the group of siblings and 
cousins, Sheliah Calhoun, William Nash, and Nanette Thompson, who constantly provided me a 
dependable, warm home base to come back to. I also want to thank my partner, Adam Langton 
Burnell, for the constant support, encouragement, and laughs he’s given to me so generously 
through the entirety of grad school.    
 
The Brashares Lab provided a supportive second family throughout this entire journey. A major 
reason I decided to come back to Berkeley for grad school was because I could feel how 
uniquely special this lab group was. Through field work, quals, and an entire pandemic, the 
Brashares Lab has been a constant and dependable source of support both academically and 
personally. I want to give big thank you to Justin Brashares, who also served as my dissertation 
chair, for working so hard to craft and promote such a supportive culture in our lab group. I’m so 
thankful to all my current and former labmates who continue to provide support and mentorship 
to me as I move through different phases of my career: Amy Van Scoyoc, Phoebe Parker-
Shames, Kaitlyn Gaynor, Alex McInturff, Christine Wilkinson, Millie Chapman, Guada Verta, 
Jessie Moravek, Mitch Serota, Tyus Williams, Sheherazade, Thomas Connor, Dave Kurz, 
Lindsey Rich, Jennie Miller, Tristan Nunez, and Mario Klip. 
 
While the lab provided a strong home base, the support I received from the broader ESPM 
community proved invaluable to my perseverance in completing this dissertation as well. 
Collaboration is etched strongly into the culture of our department, and I’ve enjoyed each and 
every opportunity I’ve had to work with friends throughout the department. Each of these 
friendships and conversations have been so important in my own development and in defining 
the type of scientist I want to be. As will probably always be the case, I came to grad school with 
an unshakeable sense of imposter syndrome, but working and learning with these collaborators, 
friends, and labmates really helped me feel like I belong in this shared space too. In this same 
vein, I’m truly indebted to the work of the ESPM Graduate Diversity Council (ESPM GDC) for 
their work in creating space that fostered this sense of belonging for people of color and queer 
people who don’t often see themselves in academic settings. In addition, I’ve been inspired by 
my time with the ESPM GDC to continue to advocate for diversity and equity in academia for 
marginalized groups wherever I choose to go next. Thank you ESPM community: Alexandra 
Kahn, Wenjing Xu, Ben Goldstein, Katherine Siegel, Kari Norman, Chelsea Andreozzi, Whitney 
Mgbara, Cesar Estien, Harshad Karandikar, Zachary Steel, Avery Shawler, Robin Lopez, 
Chippie Kislik, Sean Perez, Annie Taylor, Kenzo Esquivel, Ryann Madden, Sam Maher, Kristin 
Barker, Carmen Tubbesing, Ashton Wesner, Aidee Guzman and many, many more. Thank you 
for inspiring me to do what I do! 



 iv 

 
I’d also like to thank the various committee members for their time and support while 
completing various stages of this dissertation: Bree Rosenblum (Quals Committee and mentor), 
Paul Fine (Quals Committee), Arthur Middleton (Quals and Dissertation Committee), and Scott 
Stephens (Quals and Dissertation Committee). I’d also like to share a personal thank you to a 
few faculty members who’ve been key role models in defining the type of empathetic faculty 
member I’d like to be one day: Stephanie Carlson, Damian Elias, John Battles, and Chris Schell.  
 
Much of my dissertation involved a significant amount of work at the Hopland Research and 
Extension Center (HREC) in Mendocino County, California. Here, I’d like to acknowledge the 
history and injustices suffered by the indigenous communities on the unceded lands where the 
university (Berkeley) and HREC (Hopland) now stand. I recognize that UC Berkeley sits on the 
territory of xučyun (Huichin), the ancestral and unceded land of the Chochenyo speaking Ohlone 
people, the successors of the sovereign Verona Band of Alameda County. This land was and 
continues to be of great importance to the Muwekma Ohlone Tribe and other familial 
descendants of the Verona Band. In addition, I recognize that the land that HREC now sits on is 
the traditional land of the Sho-Ka-Wah of the Central Pomo people and continues to be of great 
cultural importance to their local communities.   

I’d like to extend a big thank you to all the staff members of the Hopland Research and 
Extension Center who made all of the field work we performed for this dissertation possible. A 
significant portion of my dissertation work involved various field components, and all the work 
that we completed would not have been possible without the hands-on support of HREC staff. 
I’d like to give a huge thank you to Alison Smith, Troy McWilliams, and Greg Solberg for their 
work and expertise in keeping our field projects running. Alison Smith, specifically, was the 
heart of so much of this work and her dedication continues to inspire me. I’d also like to thank 
John Bailey, Jackie Mara Beck, and Hannah Bird for their continuous support and 
encouragement while completing my work at HREC that created an atmosphere of belonging for 
me.  

I’d also like to send a big thank you to all of the research volunteers and undergraduate research 
apprentices that assisted with fieldwork and with organizing the overwhelming amount of data 
we collected. I’d like to share a very, very big thank you to undergraduate research apprentices 
(URAPs) and research volunteers Leonel Solorio, Haylee Oyler, Grace Gau, Vishal 
Subramanyan, Juliet Liu, Aliya Haas Blinman, Claire Winthrop, and Emma Klessing for their 
assistance in collecting and sorting camera trap images from HREC. I also want to share a 
special thank you to Chuck Vaughn who assisted organizing bird vocalizations and also took me 
out birding across HREC on several occasions. Chuck’s invitations and friendliness were a huge 
first step in me feeling welcome at HREC. 

Finally, I’d like thank my closest friends outside of school who’ve cheered me on from the 
beginning and until the very end of this dissertation. Thank you for all the encouragement and 
for providing space where I could just be myself and recharge. Big thank yous and hugs to Eileen 
Ortega, Stephanie Overen, Jay Abraham, Rosemary Schandelmier, Sarah Acosta, Michael 
Dzima, Casie Lee, and Nathania Susila.  



 v 

It's weird looking back at yourself at the end of this 6-year journey and noticing all the things 
that have changed within yourself. What at the time felt like a start of a half-baked idea has 
developed into this sprawling journey. It’s taken me to different continents, transformed me into 
a “data scientist”, deepened my love for the world around us, and pushed me to grapple with 
some of my biggest fears (i.e. public speaking). I still have plenty of half-baked ideas on my 
plate as I finish my PhD, but I feel like I have the confidence and tools now to know how to 
finish them. And for that I’m eternally grateful, and happy! But what’s even more important to 
me are all the things that haven’t changed, and in so many ways it’s been the relationships and 
support I’ve received from all of you. Thank you all, I couldn’t have done this without you! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 vi 

Introduction 
Rapid global change defines our age and drives our greatest conservation challenges. 
Biodiversity loss continues to escalate, with current estimates of species extinction rates 
outpacing the average background rates in geologic time (Barnosky et al. 2012). The causes of 
current defaunation loss are multi-faceted and involve a variety of human influences. 
Overharvesting, habitat loss, land conversion, invasive species, disease, pollution, and 
anthropogenic climate change all contribute to pronounced declines in global species diversity 
and have altered ecological communities around the globe (Dirzo et al. 2014; Young et al. 2016). 
One underappreciated result of these species declines is the loss of ecological interactions, which 
are integral for the persistence of many ecosystem functions and services. The loss of one species 
can have considerable direct and indirect impacts on the viability of its interacting partners 
(Brodie et al. 2014; Pérez-Méndez et al. 2016). Furthermore, these environmental stressors and 
species losses cause “rewiring” of food webs that can reverberate throughout communities. Food 
web rewiring can be topological, affecting the structure of food webs, or can involve shifts in 
interaction strengths, which alters the degree to which one species interacts with other species in 
its community (Bartley et al. 2019).  Both forms of rewiring can have lasting impacts on how 
communities respond to future pressures and disturbances. Despite these challenges, humans still 
have the opportunity to adapt our actions and ecosystems to better conserve and coexist with the 
species around us. 

Enhancing the resilience of ecosystems is often suggested as the best option to pre-emptively 
prepare ecological communities for the future stresses of global change. As a concept, resilience 
encapsulates some of the foremost goals embodied in recent conservation work which embodies 
a holistic model that takes into account entire ecosystems as well as the integration of human 
livelihoods and institutions (Heller and Zavaleta 2009; Dawson et al. 2011; Chornesky et al. 
2015). The mechanisms to improve resiliency, however, are not well understood. “Resilience” as 
a term is nebulous in the scientific literature, but it is broadly defined as the capacity for 
ecological systems to absorb disturbances and recover to their initial state (Peterson et al. 1997). 
This definition has evolved over time to encompass how species, interactions, structures, and 
functions reorganize after disturbances (Desjardins et al. 2015). This inherent ability to 
reassemble after disturbances is essential for the sustainable functioning of ecosystems (Elmqvist 
et al. 2003), but extreme events have the potential to dramatically alter ecological communities 
(Scheffer et al. 2001), sometimes producing alternative ecological states that are highly resistant 
to recovery (Standish et al. 2014). Understanding how resilience is created and lost at multiple 
ecological scales and how it interacts with different types and intensities of disturbance will be 
an integral component of predicting, preventing, and combating the effects of global change on 
nature. 
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Figure 1. Conceptual diagram illustrating how response to disturbance at various ecological scales may scale up 
to affect broader communities and ecosystems. Resilience at various scales is potentially created and sustained by 
the drivers at lower levels. Top-down management decisions made my people at the human scale could also 
influence the ways wildlife are able to respond to disturbances at these varying scales.  

Recent shifts in the frequency and intensity of wildfires observed across the planet present a 
frightening example of potential radical change to ecosystem structure, function, and services. 
Nowhere is this more apparent than in California where megafires (uncharacteristically large and 
severe fires with dramatic socio-ecological impacts) have become an annual occurrence. Shifting 
fire regimes in California present a natural experiment to investigate how forms of global change 
are impacting the structure of ecological communities and their resilience to change. California 
has a long history of fire being integrated into its ecosystems. For thousands of years, indigenous 
groups have utilized fire as an important management tool to facilitate the production of food 
and material resources (Anderson 2006; van Wagtendonk et al. 2018; Taylor et al. 2016). As a 
result, much of California’s flora and fauna has coevolved with a broad range of fire regimes. 
Coastal chaparral historically burned relatively infrequently, but with high severity crown fires 
(M. A. Moritz et al. 2014). Oak woodlands burned more frequently, but at lower severity, 
burning the understory of trees with low flame lengths (J. Keeley 2011). Other parts of the state 
are composed of a combination of vegetation types and were characterized by mixed-severity 
fire regimes (Agee 2005). Anthropogenic influences, including suppression, urbanization, and 
climate change, have altered the historical patterning of fire in many of these systems (Lydersen 
et al. 2017; Syphard et al. 2007). A warming climate across the state has extended the fire season 
and decreases fuel moisture which changes fire behavior (Westerling and Bryant 2008). 
Historical suppression of fire has caused a build-up of fuels that create larger and more severe 
fires in some ecosystems (Collins and Stephens 2007). The expanse of the Wildland Urban 
Interface (WUI) increases ignitions and the frequency of fire in other ecosystems (Radeloff et al. 
2018). Each of these pressures challenge the natural capacity of these systems (including their 
ecological interactions) to react and regenerate in response to altered fire regimes.  
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The 2018 Mendocino Complex fire is one of the latest examples in a trend of increasingly large 
and frequent megafires, fires larger than 100 km2 (Linley et al. 2022), within California. This fire 
burned more than 1,800 km2, becoming the largest wildfire in California recorded history at the 
time. The response of the wildlife community and species interactions to this type of extreme 
environmental shock is not well understood, but this fire created an important opportunity to 
examine how characteristics of fire may differentially affect species and mechanisms of 
reassembly. To take advantage of this opportunity, I monitored the ecological responses of 
wildlife to the Mendocino Complex fire at the Hopland Research and Extension Center 
(hereafter HREC) in Mendocino County, CA.  

The River Fire, the southern half of the Mendocino Complex, entered HREC in late July and 
burned approximately 12.14 km2 acres (over half of the center’s total area). The center is 
composed of a diverse range of habitat types including grassland, oak woodland, and chaparral, 
all represented by plant species characteristic of a mixed-severity fire regime. HREC is situated 
at an intersection of wildlands and ranchlands; it provides habitat for a diverse range of wildlife 
and also serves as pastoral land for people and livestock. As is becoming increasingly common 
while human populations expand outward towards wilderness lands, HREC straddles landscapes 
for both wildlife and human settlement. These Urban-Wildland Interfaces have also received 
recent attention as being areas of high risk for future fires. As more of California begins to 
resemble Hopland and other WUIs, HREC presents itself as a unique and powerful opportunity 
to study the future implications of fire for the rest of the state and, perhaps, provide insights on 
how we can best build ecosystems resilient to this threat.  

To better understand the mechanisms of recovery in post-fire wildlife communities, as well as 
the potential role human actions may play in influencing these mechanisms, I examined both 
broad- (state-wide) and local-scale (at HREC) impacts of wildfire on biodiversity: 

1. In Chapter 1 I examine how wildfires in California spatially overlap with a) different 
dominant vegetation types and b) different areas of conservation emphasis. We then 
compare these findings with the historical coverage of wildfires in both media and 
research literature to facilitate a discussion of potential research gaps surrounding the 
impacts of wildfire in western US ecosystems. To do so, we compiled a dataset of 
Californian wildfires from 2000-2020 and compare these to broad land cover categories, 
CDFW defined Areas of Conservation Emphasis, and WUI-defined areas.   
 

2. In Chapter 2 I examine the effects of the aforementioned megafire, the 2018 Mendocino 
Complex Fire, on a diverse woodland savanna mammal community. I used a grided 
network of trail cameras to compare the distributions of 8 medium to large-sized mammal 
species before, during, and after this megafire. From these observations, I discuss the 
resistance of certain mammal species to severe fire in these ecosystems, as well as 
community-wide impacts.  
 

3. In Chapter 3 I zoom into a finer ecological scale to examine how movement and behavior 
influence the adaptative capacity of a single species, Black-tailed deer (Odocoileus 
hemionus columbianus), following the same megafire event (the 2018 Mendocino 
Complex Fire). To do so, I combine GPS-data across 28 individual female deer to explore 
how home range size, habitat selection, and the distribution of behavioral modes change 
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before and after this fire as well as in response to specific fire characteristics, such as 
severity. 
 

4. Lastly, in Chapter 4 I zoom back out to explore how specific characteristics of the 2018 
Mendocino Complex Fire influence patterns of species’ distributions across bird and bat 
communities at the Hopland Research and Extension Center. To achieve this, I deployed 
acoustic monitors throughout the study site to record the presence of bird and bat species, 
and used an occupancy modeling framework to examine whether species presence was 
associated with burn severity and pyrodiversity.  
 

Taken together, these questions and studies highlight the process in which ecological resilience 
to fire across wildlife communities may be facilitated at multiple scales (Figure 1). 
Understanding how these qualities of resilience are realized, and potentially enhanced by human 
action, will become increasingly critical as fire regimes across the state continue to change in 
response to anthropogenic pressures. I hope that the work of this dissertation can help advance 
ongoing conversations in conservation and wildlife management in California, as well as more 
broadly, in ways that pre-emptively prepare our shared ecosystems to rapid environmental 
change.   
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Chapter 1 
 
Spatial overlap of wildfire and biodiversity in California highlights gap 
in non-conifer fire research and management 
 
This chapter has been previously published (Calhoun et al., 2021) and is included here with 
permission from the dissertation chair.  
 
Kendall L. Calhoun, Melissa Chapman, Carmen Tubbesing, Alex McInturff, Kaitlyn M. Gaynor, 
Amy Van Scoyoc, Christine E. Wilkinson, Phoebe Parker-Shames, David Kurz, Justin S. 
Brashares 
 
Abstract 

Global change has spurred the escalation of megafires in California over the last 20 years 
throughout a variety of ecosystems. Here, we examine the spatial distribution of California 
wildfires and megafires from the last two decades (2000–2020) in relation to ecosystem types 
and biodiversity metrics. We offer insights into the prevalence of fire across vegetation types and 
its potential implications for biodiversity, and for fire and land management. These results 
challenge the prevailing discourse that wildfire in California is chiefly an issue of forest 
management. We calculated burned area across vegetation types from 2000 to 2020 by 
integrating fire perimeter and land cover data and compared this to a content analysis of 
coverage of wildfires by media and scientific research across California. We then compared the 
distribution of fire perimeters across biodiversity metrics (richness and endemism) for five 
terrestrial taxonomic groups (birds, reptiles, plants, mammals and amphibians) and against the 
distribution of the wildland-urban interface (WUI). Total burned area from 2000 to 2020 was 
highest in shrubland ecosystems (38%), followed by conifer (36%), hardwood (17%) and 
grasslands (9%). In aggregate, ecosystems other than conifer make up the majority (64%) of the 
area burned in wildfires over the last 20 years. Fires most likely to impact endemic species, 
overlap areas of high species richness or burn within the WUI occurred predominantly in non-
conifer ecosystems. Fires outside of forests have burned biodiverse areas critical to endemic 
species, but recent research and management in fire ecology continues to focus 
disproportionately on forests. Non-conifer forested areas in California represent an important gap 
in fire research and management. As fire regimes shift dramatically in the state, other ecosystem 
types must be part of the wider conversation on fire management and policies to better protect 
people and biodiversity. 

Introduction 

Global change has accelerated the frequency of large-scale ecological disturbances around the 
globe (Stott 2016). These large-scale disturbances, or environmental shocks, often dwarf the 
level of historical disturbance most ecosystems have experienced and potentially threaten the 
long-term resilience of affected ecological communities (Gaiser et al. 2020). Powerful examples 
of this trend are megafires, here defined as fires exceeding 100,000 acres in size, that greatly 
surpass the size and severity of historical fires and have disproportionate impacts on social and 
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ecological systems (Stephens et al. 2014; Tedim et al. 2018). The immediate and secondary 
effects of megafires can dramatically alter ecosystem processes that sustain biodiversity (Adams 
2013; van Wagtendonk et al. 2018). At a global scale, modified fire regimes are a threat to at 
least 15% of IUCN identified threatened and endangered species (Kelly et al. 2020). It is 
therefore important to develop appropriate management tools to reduce and mitigate the effects 
of megafires on biodiversity. 

Fire science in California serves as an emblematic case study as recent megafires in the state 
have prompted intense debates over the best policy and strategies in response to the escalation of 
massive, destructive wildfires. Many of these discussions have entered the political sphere (e.g. 
in the 2020 U.S. presidential debates). California often serves as a bellwether of future 
environmental policy at the national scale and the outcomes of these public discussions could 
directly impact the future of biodiversity conservation in fire-prone ecosystems. While many 
contemporary U.S. fire management strategies stem from a long, intertwined history between 
fire, forestry and industry (e.g. wood products), strategies for managing fire in other, non-forest 
ecosystems are not widespread (Smith and United States. Forest Service, Colo. 2017; Minor and 
Boyce 2018). Furthermore, as many fire ecologists and land managers have recently noted, 
conifer forest management alone is not enough to address California's escalating wildfires 
(Schwartz et al. 2020). While recent work has defined the broad range of fire regime ecoregions 
across California (Syphard and Keeley 2020), we lack a comprehensive and detailed comparison 
of wildfire distribution across the state that includes the most severe fire seasons to date, like 
those of 2018 and 2020, and how these overlap with patterns of biodiversity within California. 

To address this research gap, we must examine the role of changing fire regimes in California 
and its impact on biodiversity. Humans have and continue to play a significant role in shaping 
fire regimes across the state (Norgaard 2014; Taylor et al. 2016). Global pressures, including fire 
suppression, colonialism, land use change, invasive species and climate change, have altered 
many of the state's historic fire regimes (Westerling et al. 2006; Stephens et al. 2014; 
Abatzoglou, Williams, and Barbero 2019). For example, fire suppression since the 1930's has 
decreased the frequency of fire in California and caused a build-up in fire fuels in forested 
regions like the Sierra Nevada (van Wagtendonk et al. 2018; Syphard et al. 2007). Today, human 
activity and urban expansion into more wildland spaces also play significant roles in altering fire 
regimes in certain ecosystems (Radeloff et al. 2018). The wildland-urban interface (WUI), the 
transition zone between unoccupied land and human development, is associated with increased 
fire ignition and is quickly expanding across the United States (Hammer, Stewart, and Radeloff 
2009). 

Recent work has observed more frequent wildfires in hardwood and shrubland ecosystems, less 
frequent but more severe fires in conifer ecosystems and an overall increase in the size of 
wildfires across the state due to these synergistic pressures (Safford and Van De Water 2014; 
Parks et al. 2015; L. A. L. Hill et al. 2020; Li and Banerjee 2021). Severe departures from 
historic fire return intervals could indirectly impact the presence of endemic and native species 
by altering existing habitats over time. In certain regions, dramatic alterations to fire frequency 
may also impact the likelihood of megafires occurring (Parks et al. 2018). In chaparral 
(shrubland) ecosystems, where the pre-colonial fire regime was characterized by infrequent 
severe fire, biodiversity and ecosystem integrity are now potentially threatened by increased fire 
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frequency near the WUI (Halsey and Syphard 2015). Additionally, much of the structural 
damage, costs to repair those damages and the potential loss of human life occurs within the 
WUI (Kramer et al. 2019). The influence of these global change pressures on fire ecology must 
be considered for wildfire management in fire-prone landscapes, particularly those of high 
biodiversity value. 

California is recognized as a global biodiversity hotspot (Burge et al. 2016), and its diverse 
ecosystems offer an ideal context for studying the impact of changing fire regimes on 
biodiversity. California's biodiversity stems from a wide range of topographic, geographic and 
climatic variation across many ecosystem types (Davis and Richardson 1995, 109:199) and 
includes endemic species across many taxonomic groups (Harrison 2013). Fire plays an 
important role in maintaining a variety of ecological processes (Kelly, Brotons, and McCarthy 
2017; Nimmo et al. 2019; He, Lamont, and Pausas 2019) and previous work has explored the 
specific mechanisms by which fire influences patterns of Californian biodiversity (Schuette et al. 
2014; Tingley et al. 2016; Ponisio et al. 2016; Newman et al. 2018; Z. L. Steel et al. 2019). 
However, in modern fire regimes, fire may instead play an increasingly disruptive role in 
ecosystems across California. 

Dramatic, anthropogenic-driven shifts in fire severity, size, frequency and seasonality may harm 
vulnerable species and interrupt important ecological processes (Stephens et al. 2014). Many 
species in fire-prone landscapes are fire-adapted, but even fire-adapted species could be 
threatened when fire regimes shift drastically from historical norms (Stillman et al. 2019). 
Ongoing research, however, reveals that these fire patterns are changing in different ways and 
magnitudes across ecosystem types (Parks et al. 2015; Williams et al. 2019). In a global analysis, 
(Kelly et al. 2020) found that species extinction risk from changes in fire regimes was greater in 
savannas, grasslands and shrublands than in forests. Thus, the omission of non-coniferous 
ecosystems from robust fire management strategies in California could have far-reaching 
consequences for biodiversity and ecosystem health (M. Moritz et al. 2004; Wilkin et al. 2017; 
Schriver et al. 2018; Newman et al. 2018). The combined impacts of shifting fire regimes and 
their management responses on biodiversity are likely ecosystem-specific, and discussions of 
impacts and their solutions need to be sufficiently nuanced to capture these dynamics. 

As a region on the front lines of escalating wildfires in a diversity of ecosystem types within the 
most populous state in the United States, California is an important model for other fire-prone 
and biodiverse regions of the world in developing management strategies and policies that 
address the challenges presented by changing fire regimes and environmental shocks. Although 
the distribution of California's ecoregions is geographically distinct and land jurisdiction within 
the state includes an extent of federal land, we chose to focus our attention at the state-scale to 
match the scope of recent political discussions, the scale of data availability, and to inform state-
level policy decisions that ultimately influence local levers for fire management. To provide 
improved context for these discussions on fire management and biodiversity conservation 
broadly, we conducted spatial analyses detailing the distribution of fires in California over the 
last two decades (2000–2020). We compared the land cover composition of megafires to all 
wildfires over the last 20 years to investigate whether megafires occur in distinctly different 
areas from milder wildfires. For our study, we limit our focus to wildfires occurring in the last 
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20 years to examine the recent intensification in fire size and destructiveness (L. A. L. Hill et al. 
2020; Li and Banerjee 2021). 

To understand the potential impacts of the distribution of wildfires and megafires on 
biodiversity, we compared the distribution of burned land cover classes and shifts in historical 
fire frequencies to the distribution of designated areas of conservation emphasis (Supplement S1: 
CDFW, 2019a-b) across the state for bird, plant, mammal, reptile, and amphibian native species 
diversity and endemism. To assess whether departures from historical fire frequencies affected 
observed patterns of species richness and endemism across California, we compared the same 
biodiversity metrics with spatial variation in recorded fire return intervals. We also compared 
burned land cover to the distribution of the WUI across the state to examine where fires overlap 
with areas of urban expansion. Finally, to assess our contention that forest science and 
management have dominated the discussion of wildfire, we performed a bounded media content 
analysis to categorize articles written about wildfires in California within the academic literature 
and news media. Together, these findings highlight (1) a potential mismatch in the prevalence of 
forest and non-forest fire in published literature, (2) the actual distribution of wildfires and (3) 
the potential effects of those distributions on biodiversity. 

 

Methods 

Study Area 

We examined wildfire from 2000 to 2020 across the state of California, USA. Like other 
Mediterranean climate regions of the world, California experiences dry summers and mild 
winters and has many fire-prone landscapes (Moreira et al. 2020). Peak fire season historically 
occurred during September and October, though climate change and other factors have increased 
the duration of this window (Westerling et al. 2003). Some of the ecosystem types found in the 
state include conifer forests, oak woodland savanna, freshwater wetlands and coastal shrublands, 
which provide habitat for a wide variety of threatened biodiversity. 

Literature and media content analysis 

To better understand the relative degree of scientific and media attention given to fires in forest 
versus non-forest habitats, we systematically searched library databases. We used the search 
terms “California AND forest* AND fire*” for fires in forest habitats and “California AND 
(shrub* OR brush OR grass* OR woodland) AND fire*” for fires in non-forest habitats. We 
chose these search terms after our initial exploration revealed that they best captured the range of 
studies about wildfires in California with references to specific habitat types. We searched for 
academic literature on the Web of Science Core Collection and identified the number of articles 
published in 2000–2020 for which the search terms were found in the title, abstract and/or 
keywords. We searched for news media on Access World News and identified the number of 
newspaper articles published in the United States in 2000–2020 for which the search terms were 
found anywhere in the text. We conducted all searches on 9 November 2020 using the University 
of California, Santa Barbara, and University of California, Berkeley library databases. 
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Fire perimeters and land cover data 

To quantify burned area in each land cover type over the 20-year period from 2000 to 2020, we 
intersected fire perimeters with Cal Fire's vegetation land cover map (Supplement S1: 
CALFIRE–FRAP, 2015; Figure 1, Supplement S2: Figure S1). We derived our land cover 
classes by aggregating California Wildlife Habitat Relationship classes 
(https://wildlife.ca.gov/Data/CWHR/Wildlife-Habitats) from fveg. These categories included the 
following: Conifer, Desert, Grassland, Hardwood, Shrubland and Urban/Agriculture. A full list 
of land cover class aggregations can be found in Supplement S2: Table S2.1. For this study, we 
only consider fire-prone land cover classes and therefore exclude “Desert” and 
“Urban/Agriculture” classes from our analysis. We combined fire perimeter data from the years 
2000 to 2019 (Supplement S1: CALFIRE–FRAP, 2020) with fire perimeters from 2020 
(Supplement S1:National Interagency Fire Center, 2020). The CALFIRE-FRAP only contains 
burn perimeters for fires greater than 300 acres, so for the analysis, we only consider fires 300 
acres or larger in both databases (n = 1,208 fires). We then intersected the compiled fire 
perimeter dataset with fveg land cover types and then calculated the area burned in each class in 
each year. Finally, to find the relative distribution of wildfire between land cover types, we 
divided the total area burned for each land cover type by the total area available of that land 
cover type. We performed the spatial intersection in ArcGIS Pro 2.6.0 and the data cleaning and 
summarizing in R (v.4.0.2) (R Core Team 2021). A list of these land cover and fire perimeter 
data sources can be found in “Supplement S1: Data Sources”. To compare these results to the 
distribution of areas burned by megafires in the same time period, we performed the same 
analysis with a subset of data that only included megafires, or fires greater than 10,000 km2 
(n = 28 megafires). 
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Figure 1. Map of California land cover composition with megafires in the last 20 years displayed on top. In this 
map, land cover is divided into “Conifer” and “Non-Conifer” fire-prone land cover categories. Non-Conifer land 
cover included the grouped “Grassland”, “Hardwood” and “Shrubland” land cover categories. “Urban”, 
“Agricultural” and “Desert” were not considered for analyses and left uncolored within the map. Megafire 
perimeters (in red) were defined as fires >10,000 km2 (n = 28) and were obtained from the CALFIRE and NIFC 
databases (2000–2020). The inset map (top-right corner) shows a zoomed image of the burn perimeter of the August 
Complex fire, California's largest recorded wildfire to date. Though widely considered a “forest fire”, the inset 
shows that the August Complex megafire did not burn purely within Conifer, but instead a mix of several different 
land cover types. Megafires in southern California burn primarily outside of Conifer, but pose some of the biggest 
threats to people and infrastructure. 

Biodiversity metrics 

To assess the potential impacts of current changes in fire dynamics on biodiversity, we examined 
the degree to which recent fires have overlapped with regions of “high conservation priority” 
using the California Department of Fish and Wildlife (CDFW) Areas of Conservation Emphasis 
(Supplement S1: CDFW 2019a-b). We define areas of “conservation priority” as regions with 
“high” or “very high” native species richness as defined in the CDFW ACE dataset and/or 
regions containing at least one endemic species. These datasets provide maps of the distribution 
of species richness and endemism via collected occurrence models and predicted species ranges. 

We considered native species richness and species endemism across five terrestrial taxonomic 
groups: birds, reptiles, plants, mammals and amphibians. For native species richness, we used the 
“Terrestrial Native Species Richness Summary” dataset for each taxonomic group (Supplement 
S1: CDFW 2019). Using the “sf” package in R (Pebesma 2018), we filtered each taxonomic 
dataset to delineate regions we define here as “high species richness” which contained the upper 
two quantiles (or upper 40%) of observed or predicted native species occurrence. This 
delineation follows the categorizations of “high” and “very high” species richness provided by 
the CDFW ACE dataset. We applied this filtering approach to each taxonomic group 
independently to identify regions that were particularly biodiverse across taxonomic groups. We 
then overlaid these regions of “high species richness” with the previously created dataset of fire 
perimeters by land cover class. We summed the area of these intersections to assess which 
regions of high biodiversity burned across each land cover type for each taxonomic group. To 
determine the relative importance of these burned areas for biodiversity, we divided the area of 
burned land cover types identified as having high species richness by the total area burned of that 
land cover type. This provided a proportion of the total area burned that may be of high 
conservation priority. 

To examine how species endemism overlaps with recently burned areas, we followed a similar 
workflow. For each taxonomic group, we downloaded the corresponding “Terrestrial 
Irreplaceability Summary” dataset which counts the number of endemic species in each spatial 
plot (Supplement S1: CDFW, 2019) and filtered it to identify areas of the state containing at least 
one endemic species. These areas of endemism were then intersected with the aforementioned 
shapefile of fire perimeters by land cover type. We then totaled the area of burned land cover 
types. To observe the relative importance of burned land cover class to endemism, we again 
divided the area of the calculated burned areas of endemism by the total area burned in each land 
cover class. A list of biodiversity data sources can be found in Supplement S1: Data Sources. 
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Spatial analyses for both biodiversity metrics (richness and endemism) were repeated with the 
subset dataset of megafires to allow comparison with the dataset containing all fires. 

Wildland-urban interface data 

To examine how urban expansion overlaps with wildfire in California, we explored the land 
cover composition of fires in the wildland-urban interface (WUI). To do this, we analyzed how 
the land cover composition of fires overlapped with the 2010 WUI Assessment layer for 
California (Supplement S1). This dataset is based on US Census housing data and the US 
Geological Survey's National Land Cover Database (Supplement S1; (Radeloff et al. 2018)). 
Using ArcMap 10.8 (Esri 2011), we combined both “interface,” where houses and wildland 
vegetation meet, and “intermix,” where houses and wildland vegetation intermingle, into a single 
WUI layer which we intersected with the burned land cover layer. We totaled the area of burned 
WUI by each land cover type. The data source for WUI layers can also be found in Supplement 
S1: Data Sources. Spatial analyses for the WUI were repeated with the subset dataset of 
megafires to allow comparison with the dataset containing all fires. 

Fire return interval departure analysis 

In order to observe how alterations in fire frequency may impact biodiversity, we performed an 
analysis to observe whether departures from historical fire frequencies affect observed patterns 
of species richness and endemism across California. For this analysis, we compared the above 
biodiversity metrics provided by the CDFW ACE dataset (Supplement S1: CDFW, 2019) with 
the Fire Return Interval Departure (FRID) dataset provided by USDA (Supplement S1: USDA, 
2020) hypothesizing that greater departures from historical fire return intervals would be 
associated with less native species richness and decreased species endemism. We compared this 
relationship between biodiversity metrics and FRID across taxonomic groups as well as across 
coarse ecosystem types (conifer versus. non-conifer). A full description of the methods used in 
this analysis can be found in Supplement S3. 

 

Results 

Media and literature content analysis 

Based on our review of the published scientific academic literature, studies on fires in forested 
habitats (1,605 articles) were more than twice as abundant as those based in non-forested habitats 
(705 articles). Forest fires also received more attention than fires in other land cover types in 
popular news coverage (164,568 articles compared to 126,546; Supplement S2: Figure S2). 

Fire perimeters and land composition  

We found that most of the area burned in California wildfires from 2000 to 2020 was outside of 
conifer ecosystems (Figure 2a; Supplement S2: Table S2). Furthermore, shrubland and hardwood 
burned a greater percentage of their total available area than conifer ecosystems (Figure 2b), 
highlighting the prevalence of fires within these unique ecosystems. 
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Figure 2. Breakdown of land cover types burned in California from 2000 to 2020. Panel “a” displays the total 
yearly area burned by all wildfires in million hectares across each land cover type from 2000 to 2020. Panel “b” 
displays the total summed burned area (2000–2020) for each land cover category. Light shading displays the total 
area burned by all wildfires, while dark shading displays the total area burned by megafires in each land cover 
category (bars are not additive). Panel “c” displays the percentage of each land cover category's total available area 
that burned during our study period (2000–2020). Light shading displays the percentage of all available land cover 
that was burned by all fires from 2000 to 2020; dark shading displays what percentage of all available land cover 
was burned by megafires from 2000–2020. 
 
Non-conifer ecosystems make up 64% of the area burned in California during the last 20 years, 
totaling 4.17 million hectares burned (Supplement S2: Table S2). Among distinct habitat types, 
shrubland ecosystems had the greatest amount of area burned (2.48 million hectares) and made 
up 38% of the total burned area. Conifer forest burned the second greatest amount of area with 
2.31 million hectares burned, making up 36% of the total burned area. Hardwood (which also 
included savanna habitats) and grassland regions comprise the remaining 26% of the total burned 
area (Figure 2a, Supplement S2: Table S2). Shrubland burned at the greatest percentage of total 
available area over our study period (39%; Figure 2b). This was followed by hardwood where 
29% of its available land cover burned, and then conifer where 26% of its total available cover 
burned. Across all land cover types, burned area varied each year, but in 2020 there was a sharp 
increase in burned area across all land cover types and most notably in conifer (Figure 2c). The 
total area burned in 2020 was greater than the area burned in any other year from the 20-year 
study period. 

Megafire and land cover composition 

Prior to 2018, the majority of area burned by megafires was within shrubland habitat 
(Supplement S2: Figure S3). Megafires burned one million hectares of shrubland during the 
study period, 39% of the total area burned in shrublands overall (Supplement S2: Table S3). 
Megafires burned the second most area in conifer (947,000 ha), followed by hardwood 
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(522,000 ha) and finally grassland (139,000). A chi-square goodness-of-fit test found significant 
differences between the expected distribution of areas burned across ecosystem types based on 
the complete fire dataset and the observed area burned by megafires in each land cover type 
(χ2 = 44,724.07, df = 3, p < .0001). Megafires tended to burn more in conifer and hardwood and 
less in grassland areas than expected. 

Fire perimeters and species richness  

Areas of high species richness for different taxonomic groups burned within a range of land 
cover types. Areas within the top two quantiles of species richness for birds, reptiles and 
amphibians burned most predominantly outside of conifer ecosystems. For each of these three 
taxonomic groups, shrubland was the most common land cover type burned in areas of high 
species richness, with 1.30 million ha burned in critical areas for birds, 1.05 million ha burned 
for reptiles and 1.58 million ha burned for amphibians (Figure 3b,d,j). Burned areas of highest 
plant and mammal richness were most often in conifer forest ecosystems, with 2.08 million ha 
burned in areas of high plant richness and 2.05 million ha burned for mammals (Figure 3d,f). 
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Figure 3. Total area burned by all wildfires (2000–2020) in areas of high biodiversity and endemism across land 
cover classes in California. Regions that contained the upper two quantiles (or upper 40%) of predicted native 
species occurrence were identified as being regions of “high species richness” for each taxonomic group. Regions 
that contained at least one endemic species were identified as regions with species endemism. In both richness and 
endemism plots, light shading displays the total area burned in each land cover type (2000–2020) while dark shading 
displays the total area burned in areas of high species richness and endemism. The burned area of these identified 
regions is displayed in Figure 3a,b for birds, Figure 3c,d for reptiles, Figure 3e,f for plants, Figure 3g,h for mammals 
and Figure 3i,j for amphibians. 

Although the total area burned in hardwood was less than that in shrubland and conifer habitats, 
burned areas of hardwood were more likely to support high species richness for birds, plants and 
amphibians. For plants, 77% of the total burned hardwood area from 2000 to 2020 was 
categorized as areas of high plant species richness. For birds, 59% of burned hardwood areas 
were also areas of high species richness, and for amphibians, 76% of burned hardwood areas 
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were also areas of high amphibian species richness. A full table of hectares burned in areas of 
“high species richness” can be found in Supplement S2: Table S4. 

Fire perimeters and species endemism 

Burned areas containing at least one endemic species were predominantly outside of conifer 
forests (Figure 3). From 2000 to 2020, shrubland was the dominant land cover type for burned 
areas with endemic species for each taxonomic group, with 1.22 million ha burned for birds 
(Figure 3a), 1.04 million ha for reptiles (Figure 3c), 1.64 million ha for plants (Figure 3e), 0.40 
million ha for mammals (Figure 3g) and 0.97 million ha for amphibians (Figure 3i). The 
proportion of areas with endemic species that burned relative to the total area burned for each 
land cover type was relatively equal across land cover types. A full table of hectares burned in 
areas with endemic species can be found in Supplement S2: Table S6. 

Megafire and biodiversity metrics 

Megafires overlapped areas of high species richness most often in hardwoods for birds, in 
shrublands for amphibians and reptiles and in conifer for plants and mammals. In areas with 
endemic species, megafires overlapped shrubland most often across all taxonomic groups except 
mammals. A full table of hectares burned by megafires in areas of high species richness and with 
endemic species can be found in Supplement S2: Table S5 and Supplement S2: Table S7. 

In regions of high species richness and endemism, chi-square goodness-of-fit tests revealed 
significant (p < .05) differences in the distribution of areas burned by ecosystem type between 
megafires and the complete fire dataset. Across most taxonomic groups (e.g. birds, reptiles, 
mammals and amphibians), a greater area of hardwood was burned by megafires in areas of high 
species richness than was evident in the complete fire dataset. Megafires were less likely to burn 
in grasslands with endemic species and/or high species richness. A full table of chi-square 
significance test results for each biodiversity metric and taxonomic group can be found in 
Supplement S2: Table S8. 

Fire perimeters in the WUI 

Hardwood was the most common ecosystem type that overlapped with the WUI followed by 
grassland, conifer and finally shrubland (Figure 4). However, shrubland was the predominant 
land cover type burned in the WUI, burning 104,000 hectares from 2000 to 2020 (Figure 4). 
Shrubland in the WUI burned nearly three times the area burned in conifer. Shrubland was 
followed closely by hardwood where 71,000 hectares burned. Burned conifer forest made up just 
14% of the total burned WUI areas. A full list of hectares burned in WUI can be found in 
Supplement S2: Table S9. 
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Figure 4. Area burned in million hectares from all wildfires across land cover categories in California's wildland-
urban interface (WUI) summed from 2000 to 2020. Light shading displays the total area of the WUI available to 
burn in each ecosystem type while dark shading displays the total area of the WUI that burned during our study 
period (2000–2020). 

Megafire and the WUI 

The land cover composition of megafires within the WUI matches the overall distribution of 
wildfires in the WUI from the complete fire dataset. Shrubland megafires in the WUI account for 
the most area burned during our study period (30,000 ha), followed by hardwood (25,000 ha), 
then conifer (14,000) and finally grassland (9,000 ha). Using a chi-squared test, we found 
significant differences in the composition of WUI megafires, with a greater area of conifer and 
hardwood WUI areas being burned than would be expected when compared to the complete fire 
dataset within WUI (χ2 = 915.3304, df = 3, p < .0001). A full list of hectares burned by megafires 
in WUI can be found in Supplement S2: Table S10. 

Fire return interval departure analysis results 

We found the overall effect of the departure from historic fire return intervals varied by 
taxonomic group and across coarse habitat types. Trends in species richness varied greatly across 
taxonomic groups as FRID increases (Supplement S3: Figure S1, Figure S1). In contrast, 
endemic species were less likely to be observed as FRID increased in non-conifer ecosystems 
than in conifer ecosystems (Supplement S3: Figure S2, Figure S2). A full description of results 
and their discussion can be found in Supplement S3. 

 

Discussion 

California's megafires and wildfires burned across all of the state's ecosystems over the last 
20 years, but media and scientific coverage of forest and non-forest wildfire within the state does 
not reflect this fact. We found that both wildfires and megafires overlapped with regions of high 
species richness and species endemism across different land cover types for several taxonomic 
groups. However, the relationship between ecosystem type and biodiversity was taxon-specific 
(e.g. of burned regions with high native bird richness, a greater area burned within shrubland 
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ecosystems than any other burned ecosystem type). Finally, we found that fires burned 
predominantly in shrubland in the wildland-urban interface. Taken together, our results suggest 
an urgent need for increased research on megafires and wildfires outside of forests, and they 
support the call for land stewardship and adaptation strategies that support ecosystem-specific 
solutions. 

Megafire and wildfire in California do not occur in one land cover type, but across a diverse 
range of ecosystems. Of the land cover classes we examined, no single ecosystem type made up 
the majority of burned areas in the past 20 years, though the largest single land cover category 
burned was in shrubland habitat. Similarly, burned non-conifer ecosystems have considerable 
biodiversity value and the potential loss of this biodiversity from megafire and/or changing fire 
regimes merits further attention. Though not all taxa are negatively affected by a single fire, 
changing fire regimes and growing megafires may threaten many ecologically and economically 
important species, particularly those outside of forests (Kelly et al. 2020). Fire-prone 
Mediterranean regions around the world all contain multiple ecosystem types and support a 
breadth of unique biodiversity (Cox and Underwood 2011). As evidenced in California, this 
diversity in ecosystems must be considered to effectively address the challenges presented by 
megafires and changing fire regimes. Furthermore, as previous research has addressed, the 
predominance of burned land cover classes is geographically distinct (Syphard and Keeley 
2020). Northern California has predominantly burned conifer ecosystems and southern 
California has predominantly burned shrubland ecosystems. Despite this difference, both regions 
are still managed, in large, by the policies and guidelines created at the shared state level. The 
mechanisms underlying how ecosystem-specific fire regimes maintain patterns of biodiversity 
will be essential for designing applicable fire and land management practices that promote 
conservation. 

Of all burned land cover types, shrubland in particular deserves increased consideration given (a) 
the high value of shrublands in California for biodiversity, and (b) our finding that shrubland 
burned more than any other land cover class when considering all wildfires, only megafires, and 
WUI fires. Most fire policies in the United States originated in historical forest management 
(Minor and Boyce 2018), but many of the tools that are successful for fire management in 
conifer forests often have unintended effects in shrublands. For example, more frequent 
prescribed fire and thinning restore natural landscape heterogeneity and ecological processes in 
some conifer forest ecosystems (Collins and Stephens 2007; Boisramé et al. 2017; Knapp et al. 
2017), but these types of strategies can erode ecological integrity in many shrubland systems. 
Frequent burning and mastication can provide opportunities for invasion by non-native annual 
grass species that may further alter the shrubland's fire regime (Halsey and Syphard 2015; J. E. 
Keeley and Brennan 2012; Wilkin et al. 2017). Shifts in fire regimes and frequent megafire in 
shrubland regions could endanger valuable biodiversity, particularly endemic species across all 
studied taxonomic groups. Diverse management strategies are required to meet each of their 
unique fire management challenges. Alternative strategies such as powerline hardening, zoning 
or other forms of landscape modification that are more appropriate for shrublands are necessary 
to preserve the fire regimes and biodiversity in these unique ecosystems (Kolden and Henson 
2019; McWethy et al. 2019). 
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Wildfire in the WUI plays an important role in how fire regimes are changing across the state 
and we found that this interface burns predominantly outside of conifer ecosystems. Human 
activity at the WUI has the potential to alter future fire regimes, and the impacts of these fires on 
biodiversity and the built environment may be exacerbated by urban expansion. Shrubland and 
hardwood ecosystems were the predominant land cover type burned within WUIs and their fire 
regimes may be affected more often by their proximity to urban areas than other ecosystems. 
Large wildfires in the WUI pose the greatest risk to people, cause considerable structural and 
economic damage and strain important ecosystem services that connect biodiversity to human 
livelihoods (Kramer et al. 2019). Hardwood ecosystems make up the greatest proportion of the 
total WUI within California and provide a plethora of ecosystem services (Huntsinger et al. 
2010); thus, concerted efforts are needed to prepare communities living in these areas for future 
fires. This is particularly true for communities living in the WUI within shrubland ecosystems, 
an area that burns the most despite being less common that other habitat types within the WUI. 
In shrubland ecosystems, proximity to the WUI increases the frequency of fires in areas that 
historically burned infrequently (Haidinger and Keeley 1993). For areas outside of California, 
the ecosystem composition of the WUI must be taken into consideration to identify areas of 
prioritization and in designing appropriate management strategies. 

From 2000 to 2020, megafires were recorded across each of the ecosystem types examined in 
this analysis. Management of megafires, specifically, warrants increased emphasis and priority 
due to their potential to quickly alter entire ecosystems and threaten biodiversity and people. 
Though megafires burned significantly more conifer and hardwood area than expected, the 
majority of area burned by megafires was in non-conifer ecosystems. The overall prevalence of 
megafires across ecosystem types closely resembles the distribution of all fires, reiterating the 
need for new management strategies that meet the unique challenges presented in each 
ecosystem to prevent or mitigate future megafires. Megafires around the world are likely to alter 
ecosystems in profound and enduring ways similar to outcomes observed with other 
environmental shocks such as flooding and extreme drought (Bartley et al. 2019; Bodmer et al. 
2018; Prugh et al. 2018). Recent work has already explored some of the dramatic effects 
megafire has on local biodiversity by homogenizing entire landscapes in forested ecosystems (Z. 
L. Steel et al. 2019; Wintle, Legge, and Woinarski 2020; Jones et al. 2020; Pickrell and Pennisi 
2020), but these results highlight the need for more research on effects of megafires on 
biodiversity in non-forest habitats. Additionally, the impacts of megafires in each of these 
ecosystem types may extend far past their initial, short-term effects and create reverberations that 
influence future habitat quality as well as the composition of ecological communities within the 
ecosystems they disturb (Gaiser et al. 2020). 

Megafire is a pulse disturbance in that it occurs quickly and acutely, but some disturbances, like 
changes in fire frequency, present longer-term alterations to ecosystems. For example, 
urbanization, climate change and other global change pressures have altered ignition patterns in 
recent years across the state (J. E. Keeley and Syphard 2018). Recent anthropogenic shifts in the 
fire return interval in certain ecosystems can change the composition and structure of ecological 
communities (Brooks and Matchett 2006; Safford and Van De Water 2014; Horn and St. Clair 
2017). In our analysis of changes in fire frequency, we examined whether altered fire return 
intervals impact broad patterns of native species richness and endemism, hypothesizing that 
greater changes in fire return interval would result in decreased species richness and endemism 
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(Supplement S3: Fire Return Interval Departure Analysis). Though we did not find strong 
evidence to support our hypothesis, we list several suggestions for future research that may 
expand our understanding of the relationship between altered fire return intervals and patterns of 
biodiversity. Furthermore, current observed patterns in species richness and endemism are likely 
more strongly informed by longer evolutionary history than recent shifts in fire return intervals. 
We anticipate, however, that continued departure from historic fire return intervals could 
influence future patterns of communities, species and endemism. Future work should take 
advantage of opportunities to explore the implications of press disturbances (long-term changes 
in fire regimes and ignition patterns) and pulse disturbances (megafire) for biodiversity and how 
these fire disturbance dynamics interact. 

Despite evidence that wildfire has a broad distribution across ecosystems, policy, media and 
even scientific literature do not reflect the nuanced importance of ecosystem-specific strategies 
in their reporting on wildfire. Recent political and scientific attention on California wildfires has 
centered primarily on forest fire (Christopher 2020). As reflected in Supplement S2: Figure S2, 
academic papers examining California wildfires in forests made up the large majority of all 
research on wildfires in California over the last 20 years (70%). The distribution of scientific 
literature does not match the observed distribution of wildfire between conifer and non-conifer 
ecosystems. The analysis of news coverage of California wildfires revealed a similar result, 
although with a smaller majority of coverage of forest fires over other forms of fire (57%). 
Forest fire science and management has benefited from a history of synonymizing fire with 
forests in the psyche and policies of the United States (Minor and Boyce 2018). In addition, 
management of conifer forests is often supported by various incentives including the cap-and-
trade market and timber industry (Daniels 2010; Smith and United States. Forest Service, Colo. 
2017; Dass et al. 2018). Established management practices, including prescribed burning and 
thinning, often provide more examples of “win-wins” in conifer forests by improving ecological 
integrity, reducing fire severity and reducing risk to humans (Vaillant, Fites-Kaufman, and 
Stephens 2009; Boisramé et al. 2017; Lydersen et al. 2017). These “win-wins” are, thus far, rarer 
for non-conifer ecosystems, but we argue that continued research is needed in management, 
adaptation and policy that can address gaps in non-forested systems. Reducing fire risk through 
vegetation management may be difficult or ineffective in some of California's ecosystems, but 
strategies such as ignition-reduced zoning, urban planning, defensible space, home hardening, 
linear fuel breaks and other forms of fuel modification could bring us closer to adapting and 
coexisting with fire (J. E. Keeley 2002; Syphard, Brennan, and Keeley 2014; M. A. Moritz et al. 
2014). 

 
Conclusion 

Conifer forest management has been the crux of fire policy, management and research 
throughout the United States for decades, yet our results emphasize that fire management for 
biodiversity and ecosystem health does not have a one-size-fits-all solution. Our results also 
reveal an important disconnect between how media and scientific research reports on fire and 
where fires are occurring. Given that most megafires in California do not occur in conifer 
ecosystems, fire management in conifer forests alone will not address the breadth of California's 
recent wildfire challenges. Regions of endemism and high native species richness are afflicted by 
megafire across all ecosystem types, highlighting a solutions gap for protecting California's 
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biodiversity. To improve fire adaptation, management and policy decisions must reflect the 
specific needs of the diverse ecosystems in fire-prone regions of the world and must be informed 
by research that is specific to these systems. Nuanced, ecosystem-specific approaches will be 
essential for robust conservation and wildfire management. 
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Supplement S2 – Additional Figures and Tables 

Table S1. Aggregated list of land cover classes for California generated from the CALFIRE fveg land cover data 
source. Original land cover classes are on the left, aggregated classes used for analysis are on the right. Hardwood 
and conifer are given distinct categories for analyses. Hardwood ecosystems include the distinctly Californian 
rolling hills of oak woodland. Though these woodlands have trees, their ecology and fire histories are distinct from 
forests and they require very different approaches to fire mitigation. 

CALFIRE fveg Land Cover Class Aggregation 

Original Classes Aggregated Classes 

Agriculture Urban/Agriculture/Desert 

Urban Urban/Agriculture/Desert 

Water Urban/Agriculture/Desert 

Wetland Urban/Agriculture/Desert 

Desert Shrub Urban/Agriculture/Desert 

Desert Woodland Urban/Agriculture/Desert 

Conifer Forest Conifer  

Conifer Woodland Conifer  

Herbaceous Grassland 

Barren/Other Urban/Agriculture/Desert 

Hardwood Forest Hardwood  

Hardwood Woodland Hardwood  

Shrub Shrubland 
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Figure S1. Map of California megafires in the last 20 years and land cover composition. In this map, land cover is 
divided into the four fire-prone classes used in the analysis: “Conifer”, “Hardwood”, “Grassland”, and “Shrubland”. 
“Urban”, “Agricultural”, and “Desert” land cover categories were not considered for analyses and left uncolored 
within the map. Megafire perimeters (in red) were defined as fires > 100,000 acres (n = 28) and were obtained from 
the CALFIRE and NIFC databases (2000-2020). The inset map (top-right corner) shows a zoomed image of the burn 
perimeter of the August Complex fire, California’s largest recorded wildfire to data. Though widely considered a 
“forest fire”, the inset shows that the August Complex megafire did not burn purely within Conifer, but instead a 
mix of several different land cover types. Megafires in southern California burn primarily outside of Conifer, but 
pose some of the biggest threats to people and infrastructure.  

 

 
Figure S2. Comparison of articles written on forest and non-forest fires in California in academic literature (left) 
and news media (right) over the last twenty years (2000-2020). In the published scientific academic literature, there 
were 1,605 articles on fires in forest ecosystems and 705 articles on fires in non-forest ecosystems Forest fires also 
received more attention in the news media (164,568 articles, as compared to 126,546 articles on fires in non-forest 
ecosystems).  
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Figure S3. Yearly total area by land cover type in hectares burned over time by megafire. Prior to 2018, 
megafires burned predominantly in shrubland ecosystems.  

Table S2. Total area burned by land cover class in California wildfires from 2000-2020. The top section of the 
table is divided into the six land cover categories. The “Total Area Available” column shows the total area of each 
land cover types within California. The “Percentage of Total Area Burned” column shows the burned areas in a 
given land cover class, divided by the total area burned across all land cover classes in the 20-year period. The 
“Percentage of Total Available Land Cover Burned” column shows the percentage each land cover class burned of 
the total available land cover to burn for that respective land cover. The bottom section splits the total burned area 
into conifer and non-conifer land cover aggregations.  

TOTAL AREA BURNED BY LAND COVER CLASS (2000-2020)  
LAND COVER Total Area 

Available 
(Hectares) 

Area Burned 
(Hectares) 

Percentage of 
Total Area Burned 

Percentage of 
Total 

Available 
Land Cover 

Burned  
CONIFER 8,777,000 2,310,000 36 % 26 % 
GRASSLAND 5,979,000 563,000 9 % 9 % 
HARDWOOD  3,909,000 1,125,000 17 % 29 % 
SHRUBLAND 6,300,000 2,484,000 38 % 39 % 

CONIFER  8,777,000 2,310,000 36 % 26 % 
NON-CONIFER  16,188,000 4,171,000 64 % 25 % 
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Table S3. - Total area burned by land cover class in California megafires from 2000-2020. The top section of the 
table is divided into the six land cover categories. The “Total Area Available” column shows the total area of each 
land cover types within California. The “Percentage of Total Area Burned” column shows the burned areas in a 
given land cover class, divided by the total area burned across all land cover classes in the 20 year period. The 
“Percentage of Total Available Land Cover Burned” column shows the percentage each land cover class burned 
during megafires of the total available land cover to burn for that respective land cover. The bottom section splits the 
total burned area into conifer and non-conifer land cover aggregations. 

TOTAL AREA BURNED BY LAND COVER CLASS IN MEGAFIRES (2000-
2020) 

 

LAND COVER Total Area 
Available 
(Hectares) 

Area Burned 
(Hectares) 

Percentage of 
Total Area Burned 

Percentage of 
Total 

Available 
Land Cover 

Burned  
CONIFER 8,777,000 947,000 36 % 11 % 
GRASSLAND 5,979,000 139,000 5 % 2 % 
HARDWOOD  3,909,000 522,000 20 % 13 % 
SHRUBLAND 6,300,000 1,008,000 39 % 16 % 

CONIFER  8,777,000 947,000 36% 11 % 
NON-CONIFER  16,188,000 1,669,000 64 % 10 % 
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Table S4. – Area burned in areas of high species richness by land cover type and taxonomic group in California. 
Regions that contained the upper two quantiles (or upper 40%) of predicted native species occurrence were 
identified as being regions of “high species richness” for each taxonomic group. The “Percentage of Total Burned 
Land Cover” column shows what percent of the total burned land cover was burned in areas with high species 
richness. 

Hectares Burned in Areas with High Species Richness (2000-2020)  
Land Cover Area Burned 

(Hectares) 
Percentage of Total Burned Land 

Cover 
Taxa 

Conifer 480,000 21 % Birds 
Grassland 328,000 58 % Birds 
Hardwood 648,000 59 % Birds 
Shrubland 1,308,000 53 % Birds 

Conifer 142,000 6 % Reptiles 
Grassland 170,000 30 % Reptiles 
Hardwood 268,000 24 % Reptiles 
Shrubland 1,056,000 43 % Reptiles 

Conifer 2,087,000 90 % Plants 
Grassland 280,000 50 % Plants 
Hardwood 864,000 77 % Plants 
Shrubland 1,398,000 56 % Plants 

Conifer 2,050,000 89 % Mammals 
Grassland 187,000 33 % Mammals 
Hardwood 477,000 42 % Mammals 
Shrubland 1,307,000 53 % Mammals 

Conifer 1,288,000 56 % Amphibians 
Grassland 317,000 56 % Amphibians 
Hardwood 858,000 76 % Amphibians 
Shrubland 1,594,000 64 % Amphibians 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

Table S5. Area burned from megafires in areas of high species richness by land cover type and taxonomic group in 
California. Regions that contained the upper two quantiles (or upper 40%) of predicted native species occurrence 
were identified as being regions of “high species richness” for each taxonomic group. The “Percentage of Total 
Burned Land Cover” column shows what percent of the total burned land cover was burned in areas of high species 
richness by megafires.   

       Hectares Burned by Megafires in Areas with High Species Richness (2000-2020)as 
with High Species Richness (2000-2020) 

Land Cover Area Burned 
(Hectares) 

Percentage of Total Burned Land 
Cover 

Taxa 

Conifer 165,000 7 % Birds 
Grassland 83,000 15 % Birds 
Hardwood 283,000 25 % Birds 
Shrubland 513,000 21 % Birds 

Conifer 47,000 2 % Reptiles 
Grassland 45,000 8 % Reptiles 
Hardwood 141,000 13 % Reptiles 
Shrubland 416,000 17 % Reptiles 

Conifer 883,000 38 % Plants 
Grassland 103,000 18 % Plants 
Hardwood 433,000 39 % Plants 
Shrubland 637,000 26 % Plants 

Conifer 843,000 37 % Mammals 
Grassland 52,000 9 % Mammals 
Hardwood 239,000 21 % Mammals 
Shrubland 496,000 20 % Mammals 

Conifer 556,000 24 % Amphibians 
Grassland 120,000 21 % Amphibians 
Hardwood 408,000 36 % Amphibians 
Shrubland 762,000 31 % Amphibians 
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Table S6. Area burned in areas containing endemic species by land cover class and taxonomic groups in 
California (2000-2020). The “Percentage of Total Burned Land Cover” column shows what percent of the total 
burned land cover was burned in areas with endemic species. 

Hectares        Hectares Burned in Areas with Species Endemism (2000-2020)with Endemic 
Species (2000-2020) 

Land Cover Area Burned 
(Hectares) 

Percentage of Total Burned Land 
Cover 

Taxa 

Conifer 814,000 35 % Birds 
Grassland 236,000 42 % Birds 
Hardwood 429,000 38 % Birds 
Shrubland 1,228,000 49 % Birds 

Conifer 350,000 15 % Reptiles 
Grassland 234,000 42 % Reptiles 
Hardwood 426,000 38 % Reptiles 
Shrubland 1,047,000 42 % Reptiles 

Conifer 1,382,000 60 % Plants 
Grassland 357,000 63 % Plants 
Hardwood 724,000 64 % Plants 
Shrubland 1,641,000 66 % Plants 

Conifer 360,000 16 % Mammals 
Grassland 138,000 25 % Mammals 
Hardwood 120,000 11 % Mammals 
Shrubland 402,000 16 % Mammals 

Conifer 883,000 38 % Amphibians 
Grassland 224,000 40 % Amphibians 
Hardwood 552,000 50 % Amphibians 
Shrubland 979,000 39 % Amphibians 
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Table S7. Area burned by megafires in areas containing endemic species by land cover class and taxonomic 
groups in California (2000-2020). The “Percentage of Total Burned Land Cover” column shows what percent of the 
total burned land cover was burned in areas with endemic species. 

            Hectares Burned by Megafires in Areas with Species Endemism (2000-2020) 
Endemic Species (2000-2020) 

Land Cover Area Burned 
(Hectares) 

Percentage of Total Burned Land 
Cover 

Taxa 

Conifer 402,000 17 % Birds 
Grassland 57,000 10 % Birds 
Hardwood 219,000 20 % Birds 
Shrubland 579,000 23 % Birds 

Conifer 185,000 8 % Reptiles 
Grassland 57,000 10 % Reptiles 
Hardwood 209,000 19 % Reptiles 
Shrubland 426,000 17 % Reptiles 

Conifer 583,000 25 % Plants 
Grassland 85,000 15 % Plants 
Hardwood 336,000 30 % Plants 
Shrubland 668,000 27 % Plants 

Conifer 144,000 6 % Mammals 
Grassland 19,000 3 % Mammals 
Hardwood 52,000 5 % Mammals 
Shrubland 125,000 5 % Mammals 

Conifer 405,000 18 % Amphibians 
Grassland 68,000 12 % Amphibians 
Hardwood 264,000 24 % Amphibians 
Shrubland 416,000 17  % Amphibians 
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Table S8. We used Chi Square Goodness of Fit Tests to observe whether the distribution of megafire across 
ecosystem types in areas of high species richness/endemism matched the distribution of all wildfires across 
ecosystem types in areas of high species richness/endemism. In each Goodness of Fit test, expected values were 
calculated using the percentage composition of each land cover type from the complete fire data set and compared to 
the observed total area burned by megafires across land cover types. All Goodness of Fit tests revealed significant 
differences between the composition of megafire and all wildfires across biodiversity metrics and taxonomic groups.     

Chi Square Goodness of Fit Tests - Megafire and Biodiversity Metrics  

 c2 Degrees of Freedom p-value 

Native Bird Richness 19,024.69 3 < 0.0001 

Native Reptile Richness 20,167.86 3 < 0.0001 

Native Plant Richness 12,754.57 3 < 0.0001 

Native Mammal Richness 20,632.68 3 < 0.0001 

Native Amphibian Richness 8,348.27 3 < 0.0001 

Bird Endemism 30,149.36 3 < 0.0001 

Reptile Endemism 32,116.51 3 < 0.0001 

Plant Endemism 31,698.04 3 < 0.0001 

Mammal Endemism 25,115.19 3 < 0.0001 

Amphibian Endemism 12,339.68 3 < 0.0001 

 

Table S9. Total area burned by land cover class in California wildfires from 2000-2020 within the Wildland 
Urban Interfaces (WUIs). The “Total Area Available” column shows the total area of overlap between each land 
cover type and the WUI. The “Percentage of Total Area Burned” shows the percentage each land cover in the WUI 
burned of the total area burned within the WUI. The “Percentage of Total Area Available” column shows the 
percentage each land cover burned within the WUI of the total available area in that respective land cover.  

 Hectares Burned within the WUI (2000-2020)  

Land Cover Total Area 
Available 
(Hectares) 

Area Burned 
(Hectares) 

Percentage of Total 
Area Burned 

Percentage 
Burned of Total 
Area Available 

Conifer 391,000 42,000 17 % 11 % 

Grassland 429,000 33,000 13 % 8 % 

Hardwood 533,000 71,000 28 % 13 % 

Shrubland 321,000 104,000 42 % 32 % 
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Table S10. Total area burned by megafires across land cover types in California from 2000-2020 within the 
Wildland Urban Interfaces (WUIs). The “Total Area Available” column shows the total area of overlap between 
each land cover type and the WUI. The “Percentage of Total Area Burned” shows the percentage each land cover in 
the WUI burned of the total area burned within the WUI. The “Percentage of Total Area Available” column shows 
the percentage each land cover burned within the WUI of the total available area in that respective land cover.  

 Hectares Burned within the WUI (2000-2020) by Megafires  

Land Cover Total Area 
Available 
(Hectares) 

Area Burned 
(Hectares) 

Percentage of Total 
Area Burned 

Percentage 
Burned of Total 
Area Available 

Conifer 391,000 14,000 18 % 11 % 

Grassland 429,000 9,000 12 % 8 % 

Hardwood 533,000 25,000 32 % 13 % 

Shrubland 321,000 30,000 38 % 32 % 

 

Supplement S3 – Fire Return Interval Departure Analysis 

Motivation 

Long-term changes in fire frequency may have broad-scale impacts on the patterning of species 
richness and endemism as well as influencing the likelihood of megafire in certain habitat types. 
In this analysis, we examined whether departure from historic fire return intervals influences 
patterns of biodiversity, hypothesizing that increased departure from historic fire return intervals 
would result in lower levels of native species richness and endemism across taxonomic groups. 
The analysis did not produce conclusive results but invites the opportunity for future work to 
explore the potential relationship between changes in fire frequency and broad patterns of 
biodiversity.  

Methods 

To explore whether changes in fire frequency, a major component of fire regimes, affects broad 
patterns of species richness and endemism, we compared the Fire Return Interval Departure 
(FRID) dataset (USFS) to the ACE Biodiversity datasets (“Native Richness” and 
“Irreplaceability”) using a linear regression and a logistic regression respectively (CDFW, 2019; 
CDFW, 2020; USDA, 2020). The FRID dataset contains polygon data across California logging 
the percentage difference between contemporary and historical fire return intervals. For this 
analysis, we took the absolute value of these percentage values within each polygon, ignoring 
directionality (whether fires are occurring more or less often) and instead focusing on the 
magnitude of change. These polygons were rasterized and the mean Percentage FRID was 
extracted for each ACE Biodiversity polygon cell. The most common fveg land cover type was 
also extracted to each ACE Biodiversity polygon cell. Land cover types were collapsed to a 
binary variable – “Conifer” or “Non-Conifer”. Previous work has found significant differences in 
the change of fire return intervals between Conifer and Non-Conifer ecosystems (Safford and 
Van De Water 2014; Parks et al. 2015). Therefore, we create separate models for Conifer and 
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Non-Conifer ecosystems to account for these previously observed differences and increase 
interpretability.  

A linear regression was run for each taxonomic group’s “Native Richness” dataset using the 
absolute value of FRID as the explanatory variable. 

Native Species Count ~ FRID 

A logistic regression was run for each taxonomic group’s “Irreplaceability” dataset using the 
absolute value of FRID as the explanatory variable. Endemic species counts from the CDFW 
“Irreplaceability” dataset were regrouped into two groups – “0” where no endemic species were 
present in a cell and “1” where 1 or more endemic species were present.  

 
Endemic Species Presence ~ FRID 

Results 

FRID was a significant predictor in all of the fitted richness models. Species richness increases 
slightly with increased FRID within many of these models (especially in plants), which opposes 
our initial hypothesis. There is considerable variation in the distribution of data for each model. 
This along with low r-squared values across most models suggest that these models may not 
adequately explain the distribution of observed species data. 

 

 

Figure S1. Plotted coefficient values and standard error bars of the “FRID and Richness” linear regression models 
for each taxonomic group (from top to bottom – birds, reptiles, plants, mammals, and amphibians) and across 
ecosystem types (Conifer and Non-Conifer). 
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Figure S1. Output summary for each FRID and Richness model across all five taxonomic groups and across 
grouped ecosystem types (Conifer and Non-Conifer). Coefficients and standard errors are displayed for each 
covariate in the table. Taxonomic groups from left to right – birds, reptiles, plants, mammals, and amphibians.  
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FRID was a significant predictor of species endemism in each model except in the models for 
reptile and amphibian endemism in conifer ecosystems. The probability of endemic species 
being observed decreases as FRID increases across all taxonomic groups. As in the richness 
models, considerable variation and overdispersion within the data may suggest that these models 
do not adequately explain the distribution of the data.  
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Figure S2. Plotted coefficient values and standard error bars of the “FRID and Endemism” logistic regression 
models for each taxonomic group (from top to bottom – birds, reptiles, plants, mammals, and amphibians) and 
across ecosystem types (Conifer and Non-Conifer). 
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Figure S2. Output summary for each FRID and Endemism model across all five taxonomic groups and across 
grouped ecosystem types (Conifer and Non-Conifer). Coefficients and standard errors are displayed for each 
covariate in the table. Taxonomic groups from left to right – birds, reptiles, plants, mammals, and amphibians.  
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Discussion 

This analysis takes an important first step in examining how long-term changes in fire frequency 
and fire regimes may influence broad patterns of species endemism and richness. Our results 
suggest that changes in fire return intervals in different ecosystem types may have differential 
impacts on biodiversity. This appears most significantly in the endemism models where greater 
changes in FRID appears to result in a decrease in probability of endemic species being 
observed. Though our models suggest that changes in fire return intervals may play some role in 
influencing patterns of richness and endemism, more comprehensive models that consider 
several additional covariates are necessary to properly explain the large variation within the data. 
Additionally, both the independent and dependent variables within these models are spatially 
autocorrelated to a great extent, potentially skewing the estimates we are able to make from these 
models. Finally, data availability in the FRID dataset is biased towards conifer and hardwood 
ecosystems where historical fire records are more readily available. Future work should take all 
of these into consideration when designing more comprehensive models.   
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Chapter 2 
 
Mammalian resistance to megafire in in western U.S. woodland 
savannas 
 
This chapter has been previously published (Calhoun et al., 2023) and is included here with 
permission from the dissertation chair.  
 
Kendall L. Calhoun, Benjamin R. Goldstein, Kaitlyn M. Gaynor, Alex McInturff, Leonel 
Solorio, Justin S. Brashares 
 
Abstract 

Increasingly frequent megafires are dramatically altering landscapes and critical habitats around 
the world. Across the western U.S., megafires have become an almost annual occurrence, but the 
implication of these fires for the conservation of native wildlife remains relatively unknown. 
Woodland savannas are among the world’s most biodiverse ecosystems and provide important 
food and structural resources to a variety of wildlife, but they are threatened by megafires. 
Despite this, the great majority of fire impact studies have only been conducted in coniferous 
forests. Understanding the resistance and resilience of wildlife assemblages following these 
extreme perturbations can help inform future management interventions that limit biodiversity 
loss due to megafire. We assessed the resistance of a woodland savanna mammal community to 
the short-term impacts of megafire by using camera trap data collected before, during, and after 
the fire. Specifically, we utilized a 5-year camera trap data set (2016-2020) from the Hopland 
Research and Extension Center to examine the impacts of the 2018 Mendocino Complex Fire, 
California’s largest recorded wildfire at the time, on the distributions of 8 observed mammal 
species. We used a multi-species occupancy model to quantify the effects of megafire on 
species’ space use, assess the impact on species size and diet groups, and to create robust 
estimates of fire’s impacts on species diversity across space and time. Megafire had a negative 
effect on the detection of certain mammal species, but overall, most species showed high 
resistance to the disturbance and returned to detection and site use levels comparable to unburned 
sites by the end of the study period. Following megafire, species richness was higher in burned 
areas that retained higher canopy cover relative to unburned and burned sites with low canopy 
cover. Fire management that prevents large scale canopy loss is critical to providing refugia for 
vulnerable species immediately following fire in oak woodlands, and likely other mixed-forest 
landscapes.  

Introduction 

In an era of unprecedented global change, 21st century megafires present an intensifying threat 
to critical habitat and wildlife species in fire-prone ecosystems around the world (Nimmo et al. 
2021). Megafires, defined as wildfires that are larger than 10,000 hectares (Linley et al. 2022), 
drive dramatic and lasting changes to entire ecosystems (Stephens et al. 2014). These far-
reaching environmental shocks can quickly homogenize landscapes and present short- and long-
term challenges for wild animal species (Adams 2013; Zachary L. Steel et al. 2021). As 
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megafires continue to increase in frequency and scale, the gap in our understanding of how 
wildlife species respond and recover to megafire events becomes more glaring (Jolly et al. 2022). 
Such information is essential to the conservation of fire-prone landscapes and the formation of 
management strategies that bolster resilience to severe wildfire. Like other regions of the world 
(Bowman et al. 2020), California, and the western U.S. generally, have experienced its largest 
and most severe fires in the last 20 years (Li and Banerjee 2021). With a wide range of 
ecosystems (Burge et al. 2016; Harrison 2013), California presents an important opportunity to 
understand the impacts of megafire on diverse ecological communities and to observe how 
patterns of species vulnerability or resilience may interact with these perturbations.  

To address the challenges presented by megafire and other disturbances, contemporary 
conservation often emphasizes building resistance and resilience to better protect ecosystems 
from future change (C. Miller et al. 2021; Heller and Zavaleta 2009). Resilience, the long-term 
ability of a community or population to recover to baseline conditions following disturbance 
(Holling 1973), and resistance, the degree to which a population or community, changes directly 
following a disturbance (Pimm 1984), are key elements that interact to maintain ecological 
integrity following disturbances. Immediate resistance to disturbance is often conceptualized as 
an important component of longer-term resilience (Walker et al. 2004). Though resistance and 
resilience are useful theoretical concepts, they are often difficult to evaluate due to the challenges 
of characterizing and quantifying them (Standish et al. 2014; Ingrisch and Bahn 2018). 
Application is made more difficult by the rarity and dynamic nature of baseline ecological 
information to compare against recent change (Soga and Gaston 2018; Cammen, Rasher, and 
Steneck 2019). A deeper understanding of context-specific resilience and resistance to 
disturbance is needed at multiple ecological scales (species, community, and ecosystem) to 
predict, prevent, and combat the effects of global change.  

At the scale of species, resilience and resistance to wildfire will be governed, in large part, by 
species’ traits, e.g., home range size, diet, trophic level (Pocknee et al. 2023; Jager et al. 2021). 
For example, body mass is a key trait that determines how species interact with their 
environment by dictating how they interact with other species (e.g., diet and competition) and 
how they navigate space. Across Mammalia, species with larger home range sizes and body 
masses are able to move more readily across space (Reiss 1988). Therefore, home range size and 
body mass may directly impact the ability of populations to cope with expansive disturbances 
like megafire. Species with larger home ranges or without specific habitat requirements (e.g., 
generalists and opportunists) may be better equipped to adapt to the sudden shifts caused by 
megafire (Nimmo et al. 2019). Additionally, species whose diets depend directly on plant 
material (herbivores) may be disproportionately impacted by megafires that deplete these 
resources, at least in the immediate aftermath before vegetation regrows and could encourage 
improved foraging (Cherry et al. 2018). Conversely, predators, such as carnivores, may be able 
to take advantage of exposed areas following wildfire to catch prey more effectively (Geary et al. 
2020). Cursorial predators (like coyote) may be more successful at hunting postfire with less 
cover obstructing their vision of prey (Cherry, Warren, and Conner 2017), while ambush 
predators (like bobcat and mountain lion) may have less cover to utilize for ambushing potential 
prey (Abernathy et al. 2022). It is therefore critical to assess community-wide resilience to major 
disturbances such as megafire, as the responses of individual species may have cascading 
consequences across multiple species by reshaping species interactions, such as predation and 
herbivory.   
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Characteristics of a wildfire itself, such as severity, heterogeneity, burn patch size, and time since 
burning, may also interact with species traits to determine species-specific responses to wildfire. 
Fire severity, specifically the measure of change in above and below ground biomass as a result 
of fire, is thought to be an important characteristic of fire regimes that directly impacts wildlife 
(J. E. Keeley 2009). By altering available food resources, megafire may change the distribution 
of wildlife species in recently burned landscapes (Cherry et al. 2018; Allred et al. 2011). 
Changes to the structure of the physical landscape may also alter how species are able to 
navigate habitat (Kreling et al. 2021). These changes, in turn, may reshape species interactions, 
such as predation (Jennings et al. 2016). Both mechanisms – changes to resource availability and 
physical habitat – may influence the distribution of wildlife species following extreme fire 
events, but the context in which they do may be species and fire dependent (Geary et al. 2020). 
Additionally, the availability of resources on recently burned landscapes may be linked to the 
amount of time that has passed following fires to allow vegetation to regrow (Green et al. 2015). 

Taking both species and wildfire characteristics into account is vital towards shoring up the 
resistance and resilience of fire-prone ecosystems across the Western US. California’s fire-prone 
oak woodland rangelands provide an excellent model ecosystem to explore how these 
characteristics interact across a very biodiverse and sociocultural significant landscape. Oak 
woodlands are one California’s most biodiverse ecosystems (Hilty and Merenlender 2003), but 
changes in California’s historical fire regimes are creating new challenges for the resilience of 
oak woodland ecosystems and the wildlife species that reside within them. Historically, 
indigenous groups frequently burned oak woodlands with low severity, ground fires to create 
resources for food and other products (Anderson 2006). Today, fire suppression and climate 
change have increased the likelihood of severe fires burning within oak woodlands (Syphard and 
Keeley 2020). High severity fire in woodlands may burn the crown tops of trees, greatly 
transforming canopy cover in the burned areas. Mature oak trees and the acorns they produce are 
the primary food resource for several mammal species during the driest months of the year 
(William J. McShea 2000; Koenig et al. 2013), and their reduction due to high severity fire may 
impact population dynamics of herbivorous woodland species (Mcshea et al. 2007), as well as 
species at higher trophic levels (i.e. their predators) (Jorge et al. 2020).  

In this study, we explored the influence of fire occurrence and canopy cover on the distribution 
of oak woodland mammal species over time by taking advantage of an opportunistic natural 
experiment. We assessed the impacts of the Mendocino Complex Fire, one of the largest fires in 
recorded California history, on the occupancy of 8 medium- and large-bodied mammal species at 
the University of California Hopland Research and Extension Center (hereafter HREC) in 
northern California. We apply the conceptual framings of resilience theory to assess ecological 
resistance at the species, species group (e.g. body-size and diet-groups), and community scales 
and theorize how these initial responses may translate to longer-term resilience to megafire. By 
using camera trap data collected before, during, and after the fire, along with an occupancy 
modeling framework (MacKenzie et al. 2002), we had the opportunity to assess how species 
distributions and patterns of diversity changed immediately following wildfire (“resistance”). As 
established in previous work (Moss et al. 2021), we deemed species “resistant” to fire if our 
occupancy model estimated no negative effect of fire effects on species distributions.  

In terms of species-level responses, we predicted that the greatest decrease in species’ 
distributions would occur directly following megafire due to the immediate loss of food and 
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structural resources. Thus, by our own definition, most species would have low resistance to the 
immediate effects of megafire. We anticipated that species would slowly recover across the lag 
years following fire as vegetation recovered until eventually returning to pre-fire conditions. Due 
to resistance to disturbance being an important component of resilience, we predicted that 
species that were deemed “resistant” to megafire would likely be “resilient” to megafire 
following the study as well. In assessing group-level responses to megafire in this system, we 
predicted that larger species and carnivores would be more likely to be resistant to megafire due 
to their increased vagility and enhanced ability to locate prey in cover reduced habitats. We 
predicted that overall species richness would decrease in recently burned areas that had limited 
habitat resources and slowly return to pre-burned conditions over time in areas that maintained 
high canopy cover. Detailing the capacity of these species to recover is vital to inform better 
conservation decisions for woodland mammal communities by 1) identifying vulnerable species 
that may need to be prioritized in post-fire recovery management, and 2) identifying landscape 
features that may enhance the resilience and resistance of mammal communities to megafire. 

Methods 

Study Area and Fire History 

We conducted our study at the 21.54 km2 U.C. Hopland Research and Extension Center (HREC) 
in Mendocino County, northern California (39°00′ N, 123°04’ W). The HREC ecosystem is 
composed of a diverse range of habitat types including grassland, oak woodland, and chaparral 
shrubland. HREC is situated at an intersection of wildlands and ranchlands; it provides habitat 
for a diverse group of wildlife and serves as pastoral land for people and livestock. HREC 
consists of a combination of rolling valleys and peaks throughout with its lowest elevation being 
164 meters and its highest at 934 meters. The region is characterized by a Mediterranean climate, 
with mild seasons and rains in the winter. 

On July 27, 2018, the 2018 River Fire, part of the much larger 2018 Mendocino Complex Fire, 
burned over 13.76 km2 of the Hopland Research and Extension Center (Figure 1). At the time, 
the Mendocino Complex Fire was the largest fire in California’s recorded history, burning 1,858 
km2. This fire was the first wildfire that burned a significant portion of the center in over 60 
years. The scale and severity of this fire contrasted the historical fire regime in this region, which 
is characterized by frequent, cooler fires in woodlands (5-10 years) and infrequent, more severe 
burns in shrubland habitats (30-80+ years) (Syphard and Keeley 2020). To date, there have been 
minimal on-site post-fire management interventions, providing an opportunity to identify the 
baseline in how this ecosystem recovers. 
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Figure 1. Maps of the 2018 Mendocino Complex Fire and the study site, the University of California Hopland 
Research and Extension Center (HREC) (39°00′ N, 123°04’ W). Map “a” displays the total burn perimeter of the 
Mendocino Complex Fire, composed of the northern Ranch fire and the southern River Fire. This fire burned into 
HREC on July 27, 2018. The River Fire burned half of the property. Map “b” displays the change in canopy cover 
caused by the fire in addition to the deployed camera grid. Decreases in canopy cover are denoted in brown, no 
change in canopy cover is denoted in green and increases in canopy cover are denoted in blue. 
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Camera Survey and Study Species 

To survey mammal species diversity, we created a sampling grid across HREC composed of 
hexagonal grid cells measuring 750 meters across. We placed a motion-sensor camera trap at the 
most suitable location (e.g., pointed to look down and across game trails or other microsite 
attractants such as roads and water troughs) within 50 m of each grid cell’s centroid to maximize 
detection probability of species. Seasonal grass growth in this region often results in tall grass 
growing in front of camera traps, which obscures the detection of wildlife. We therefore 
deployed all cameras 1 meter above the ground and angled them slightly downward to avoid 
misfires. In total, we deployed a grid of 36 motion-sensor camera traps (Reconyx Hyperfire 
HC600) beginning March 2016. Cameras were visited approximately every three months to 
download the recorded pictures, check and change camera batteries, and to trim grass in front of 
cameras to maximize detection of species. For the purposes of this study, we have extracted 
photos taken from March 2016 to December 2020. We programmed cameras to take 3 photos per 
trigger, with a 0 second delay period between triggers. Of the 36 total cameras, 25 were within 
the fire perimeter of the 2018 Mendocino Complex Fire. Thirteen of these cameras were not 
operational following the fire and were replaced when conditions were safe to do so in August 
2018. For these reasons, and due to a natural increase in biodiversity detected in the fall months 
due to concurrent acorn masting, we restrict our sampling window for analyses to October 1st – 
November 30th for each year.  

The species in all collected images were classified by two independent observers who were 
members of the Brashares Lab at the University of California, Berkeley. When two observers 
disagreed on species classification, they either met separately to discuss and decide on a 
classification of the image, or a more senior, third member of the group (often a graduate 
student) would decide on the classification. We created species record tables for each year from 
these cataloged images using the ‘camtrapR’ package in R (v.2.2.0) (Niedballa et al. 2016; R 
Core Team 2021). To create independent detections for analyses, we aggregated images of the 
same species and site that were recorded within 15 minutes of each other. 

For this study, we modeled occupancy for all mammal species detected at 10 or more unique 
camera stations across the entire study period to ensure each species included in analyses had 
enough observations to be modeled appropriately. We also excluded black bear (Ursus 
americanus) which have home ranges much larger than the appropriate scope of our specific 
study. As a result, we included eight species in our final multi-species model: bobcat (Lynx 
rufus), coyote (Canis latrans), black-tailed deer (Odocoileus hemionus columbianus), gray fox 
(Urocyon cinereoargenteus), western gray squirrel (Sciurus griseus), black-tailed jackrabbit 
(Lepus californicus), raccoon (Procyon lotor), and striped skunk (Mephitis mephitis). 

Covariate Development 

We use an occupancy modeling framework to describe species distributions over time which 
predicts the probability of a species occurring at a given site ("occupancy”) while controlling for 
the detectability of a species at that same site (“detection probability”) (MacKenzie et al. 2002). 
Both occupancy and detection probability can be associated with environmental covariates, and 
we predicted fire effects would influence both across the 8 modeled species. 
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We predicted that canopy cover, time since burn, and elevation would be associated with the 
spatial distribution, or occupancy, of species throughout our study. Canopy cover is an important 
predictor of mammal habitat use (Allen et al. 2015; Bose et al. 2018) and canopy cover loss 
following fire serves as an important proxy for fire severity in the burned areas of our study site. 
We originally considered using quantified fire severity (the Normalized Burn-Difference Ratio) 
to assess the effect of fire on species occupancy and species richness at each site, but we found 
that these initial models fit the data poorly, likely due to our limited sample size of post-fire 
species occurrence data at burned sites. Finally, we included “time since burn” to account for 
certain species preferentially occupying or avoiding burned areas depending on how much time 
had passed since the area burned (González et al. 2022). To assess changes in local-scale site 
usage across species of varying body sizes, we extracted the mean value of all continuous 
covariates at a consistent 100-meter buffer around each camera station.  

We obtained elevation for each site using the ASTER Global Digital Elevation Model (NASA 
and METI 2011). Average values were extracted from a 100m buffer around each camera site. 
We estimated canopy cover using 20-meter resolution imagery from Sentinel Hub (Sentinel Hub 
2022) to create canopy rasters via object-based image analysis and supervised classification in 
ArcGIS Pro (Esri 2011) for each year (2016-2020). These rasters were visually verified using 
fine scale, 3-m resolution imagery via Planet Labs (Tilahun 2015; Planet Team 2017; Sunde et 
al. 2020). A full description of methods used to create and verify canopy rasters can be found 
within Supplement S1 (Supplement S1: Table S1; Supplement S1: Table S2). Canopy cover 
values were extracted from a 100m buffer around each camera site for each year to calculate 
percent canopy cover within the buffered radius. 

We created a “time since burn” categorical variable that varied by site and year to describe 
whether a site was unburned, recently burned, or burned in the past. We considered 5 different 
categorical parameterizations (Table 1) and used a model selection approach to choose its 
final parameterization (see Occupancy Modeling Framework section). 

We predicted that time since burning, the presence of microsite attractants (roads and water 
troughs), and changes in camera viewshed caused by fire would impact the detectability and 
intensity of use of species across sites and observation periods. Wildfire may directly affect the 
detection process by clearing vegetation that may otherwise obscure wildlife in the viewshed of 
the camera trap. To take this change into account, we created a viewshed variable that varied by 
camera station and year. We tested and recorded maximum detection distance of each camera 
station upon initial deployment, which we then used as an estimate of viewshed for each site pre-
fire. To estimate how viewshed changed post-fire, two independent observers visually estimated 
viewshed using misfire photographs collected during the study period at each camera station and 
for each post-fire year. Pre-fire misfire photographs with known maximum detection distances 
were used to calibrate estimates. In cases where the two independent observers disagreed on 
estimated viewshed, the two observers met separately to discuss and eventually come to a mutual 
agreement on the estimate. We predicted that cameras with greater viewshed, including cameras 
immediately following fire, would have a greater probability of detecting species. We also 
originally considered camera height as a covariate that may influence probability of detection but 
found in our initial modeling that camera height was not a significant predictor of detection, thus, 
we chose not to include this covariate in our final model.  
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Simultaneously, by dramatically changing the structure of the physical landscape, wildfire may 
also alter established game trails and movement behaviors of wildlife species, thus impacting 
their continued detectability at camera stations, but not necessarily their occupancy of the 
surrounding area. We represent these landscape-wide changes caused by fire using the time since 
burn categories to assess changes in intensity of use of burned sites by species. We predicted that 
species would be less likely to be detected by cameras immediately following fire due to these 
broader changes in movement, but that as vegetation recovered over time, original game trails 
and paths may be reutilized.  

Lastly, roads and artificial water catchments have been shown to strongly attract usage by 
various species (J. E. Hill, DeVault, and Belant 2021; Rich et al. 2019). These objects influence 
the way animals navigate across space as well as how often they visit certain areas within their 
given home range. To account for these features in our study, we created a site-specific 
“microsite attractant” binary categorical variable that indicated whether a camera was pointed 
towards the attractants present in our study, e.g. roads (n = 1 camera station) or water troughs (n 
= 2 camera stations). 

All continuous covariates were standardized to have a mean of 0 and standard deviation of 1. We 
visually inspected for collinearity between each continuous covariate to ensure multi-collinearity 
would not confound analyses (Supplement S2: Figure S1, Supplement S2: Table S1).  

Occupancy Modeling Framework 

We fit a community occupancy model (Devarajan, Morelli, and Tenan 2020; MacKenzie et al. 
2002; Royle and Dorazio 2008) to investigate the effects of megafire on species-specific 
distributions and patterns of species richness, while accounting for imperfect detection. 
Occupancy models consist of two linked submodels describing two processes: occupancy 
probability (𝛹), the probability that a given species occurs at a site, and detection probability (p), 
the probability that a given species is detected at a site, given that that site is occupied by the 
species. Several observed species in this study are wide-ranging, with home ranges that may 
contain more than one camera trap station and potentially violate the assumption of spatial 
closure between sites (Neilson et al. 2018). To avoid the possibility of modeling the distribution 
of a single individual animal, we removed species whose home ranges were likely larger than 
HREC (i.e. black bear). Coyote and bobcat have homeranges that encompass more than one 
camera station, but their density across the region makes it unlikely multiple stations are 
recording the same individual within each year’s study window. We, therefore, interpret site-
level occupancy probability, Ѱ, as “site use” as described in Kays et al., 2020 (Kays et al. 2020). 
We make this distinction to indicate that Ѱ does not represent true occupancy for all species in 
our modeling framework. We defined a binary latent true space use variable, zi,j,  where zi,j  = 1 
indicates that at least one individual of species (i) used the area covered by a camera station (j)  
in that year and 0 indicates that no individual of species (i) used a camera station (j) in that year. 
We assumed site use (zi,j) was drawn from a Bernoulli distribution with probability (Ѱi,j): 

zi,j ~ Bernoulli(ѱi,j)  

We treated each sampled week at a camera station as a sampling occasion (k), with each station 
containing 7-8 occasions. Previous work has shown that detection probability, p, can be 
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correlated with local species abundances (Royle 2004; Royle and Nichols 2003) and/or changes 
in behavior to avoid perceived risk (Suraci et al. 2021). We therefore represent detection as a 
combination of species-specific detectability and species’ intensity of use of occupied sites 
(hereafter referred to as intensity of use) to observe how wildfire may influence intensity of use 
at burned sites. We estimated the probability of observing a species, yi,j,k, as being conditional on 
that species’ detection probability at each site, pi,j, and the latent site use state of that species, 
(zi,j): 

yi,j,k ~ Bernoulli(pi,j * zi,j)  

We incorporated site-specific environmental covariates that were predicted to influence species-
specific site use (ѱi,j) and site- and species-specific detection probability (pi,j) via the following 
equations: 

logit(ѱi,j) = ⍺0i + ⍺1i * Elevationj + ⍺2i * Canopyj +⍺3i * TimeSinceBurnj + ⍺4i * Canopyj * 
TimeSinceBurnj + Site Random Effectj 

logit(pi,j) = β0i + β1i  * Attractantj + β2j * Viewshedj + 

β3i  * TimeSinceBurnj + Site Random Effectj 

In addition to site-specific covariates influencing site use (elevation and canopy cover) and site-
specific covariates influencing detection (presence of attractant and viewshed) we included the 
fixed effect of “time since burn” in both “site use” and “detection” sub-models. In the occupancy 
sub-model, we use an interaction term between canopy cover and “time since burn” (Canopyj * 
BurnCategoryj) as a proxy for fire severity. We predicted that most species would increase their 
use of burned sites with high canopy cover which represent a less comprehensive burn event at 
that site. We ran five different MSOMs for each of the burn category parameterizations (Table 
1).  

We treated each camera in each year as a unit of closure, assuming a shared underlying site use 
and intensity of use state. To account for pseudo-replication we included species-specific site 
random effects within the site use and detection submodels to account for non-independence 
between surveys at sites. We chose to use this method instead of fitting a dynamic occupancy 
model due to data limitations and because our primary question focused on understanding the 
effects of megafire on species site use (ѱ) and less so on colonization and extinction between 
sites. We considered including a random effect of “year” to account for annual differences 
between years, such as acorn masting and drought, but ultimately decided against including this 
as it could confound the temporal variation already represented by the “time since burn” 
covariate.  

Site Random Effecti,j ~ Normal(0, σ) 

We modeled the effect of each variable on the occupancy and detection of each observed species 
as a random effect from a normally distributed community-level hyperparameter with a shared 
hyperparameter mean μ⍺ and standard deviation σ ⍺ (Zipkin et al. 2010):  

⍺i ~ Normal(μ⍺, σ ⍺) 



 44 

This approach enables robust inference on community-level variables (Iknayan et al. 2014). We 
use these community-level hyperparameter estimates to assess the relationship between modeled 
covariates and species richness across sites. To understand how richness predicted by our model 
varied with burn condition and canopy cover, we used posterior predictive sampling. We 
provided hypothetical site data representing a site at each of four unburned levels crossed with a 
gradient of canopy cover, providing all mean values for all other occupancy covariates. For 
visualization purposes, we also computed derived occupancy probabilities for each species at 
these hypothetical sites, then calculated predicted richness as the sum of occupancy probabilities 
across species, thereby obtaining Bayesian credible intervals for richness (Zipkin et al. 2010). 
We chose not to employ data augmentation in the estimation of richness due to the data 
limitations created by our limited number of sites, and due to the fact that average site use 
probability (ѱ) across species was estimated to be low, which may lead to erroneous estimates of 
augmented species richness (Tingley, Nadeau, and Sandor 2020; Guillera‐Arroita, Kéry, and 
Lahoz‐Monfort 2019).   

We fit two additional MSOMs with identical model parameterizations as the community MSOM, 
this time assigning hyperparameters to groups of species as defined by traits (i.e. body size and 
diet), rather than the entire community, to assess how species traits may dictate how certain 
groups respond to megafire. Species-level coefficients for each model (body size model and diet 
model) were drawn from group-level (g) hyperparameters from a group-mean of μg and standard 
deviation of σg following the community modeling construction given above. 

First, to explore the influence of body size on species responses to fire, we grouped species into 
3 categorical body mass groups from which each had its own group-level hyperparameter: 
“Small” (< 5kg), Medium (5-15 kg), and Large (>15kg) (Wilman et al. 2014) (Wilman et al, 
2014). Second, to explore the influence of diet, we grouped species into 3 broad diet-group 
categories: “Herbivores” (diet does not contain animal material), “Omnivores” (diet contains < 
60% animal material) and “Carnivores” (> 60% of diet contains animal material) (Wilman et al, 
2014). Species groups classifications can be found in Supplement 1 (Supplement 2 – Table 
S1.2).  

Across all models, we used weakly informative priors. We set priors for the means and standard 
deviations ("hyperparameters") of the community's coefficients for each covariate. 
Hyperparameter mean coefficients for each covariate were given normal priors with mean 0 and 
standard deviation 2.5, and all random effect and hyperparameter standard deviation priors were 
half-Cauchy with scale parameter 2.5 (Northrup and Gerber 2018). To conceptualize our results 
in terms of species resistance to megafire, we deemed a species or species-group as being 
resistant to megafire if we estimated that fire effects (“time since burn” and its interaction terms) 
had no statistically significant negative effects on either site usage or intensity of use. We 
deemed species as being moderately resistant if site use and/or intensity of use decreased during 
the first year of the fire (i.e. time since burn = “Recently Burned”), but “recovered” during the 
“BurnLag” period. 

Model Selection and Model Fit 

To select a most parsimonious model parameterization for the “time since burn” covariate, we fit 
the community multi species occupancy model using each of the burn category parameterizations 
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and compared their Watanabe-Akaike information criterion (WAIC) values (Andrew Gelman, 
Hwang, and Vehtari 2014), using the WAIC function from the nimble package in R (v.0.11.1) 
(de Valpine et al. 2017). We considered five competing parameterizations of the time since burn 
variable for modeling: (1) no effect of fire, and therefore no parameters; (2) a single effect of 
“burn” associated with the burned sites following the fire; (3) two postfire levels: “recently 
burned” and “lag burn”, associated with burned sites immediately following the fire and in 
subsequent years, respectively; (4) three burned levels: “recently burned”, “burn lag 1” 
associated with the burned cameras the first year following fire, and “burn lag 2” associated with 
burned sites the second year following fire; and (5) the three aforementioned burn levels and an 
additional “Unburned Lag” category to describe the unburned cameras in the years following the 
fire (Table 1). These five parameterizations represented competing hypotheses about the effect of 
fire on site use during and after the fire. In all parameterizations, we assigned a reference level of 
“unburned” to all pre-burn sites as well as unburned sites following the fire (except in 
parameterization #5 where unburned sites following the fire received their own 
category). Example images of a single burned site across the entire study can be found in 
Supplement S3: Figure S2. 

Table 1. Schematic of five parameterizations of the “time since burn” categorical effect, ordered 
by increasing complexity. After the fire in the summer of 2018, we group sites affected by the 
fire into 1 of 4 categories: (1) “Burned” for burned sites during the year of the fire, (2) “Burn 
Lag” for burned sites during any of the years following fire, (3) “Burn Lag 1” for burn sites 1-
year post-fire, and (4) “Burn Lag 2” for burn sites 2 years post-fire. In parameterization #5, 
“Unburned Lag” represents unburned sites post-fire. We also consider a null parameterization, 
parameterization #1 (no fire effects). “Unburned” sites were used as the reference category in 
each parameterization. We selected between these five parameterizations with WAIC. DWAIC 
shows the difference in WAIC values between each parameterization and the selected model. * 
denotes selected parameterization based on WAIC. 

Parameteriza
tion 

Pre-fire 
sites 
(2016-
2017) 

Burned 
sites 
(2018) 

Burned 
sites 
(2019) 

Burned 
sites 
(2020) 

Unburne
d sites 
Post-fire 
(2018-
2020) 

WAIC 
Score 

DWAIC 

(1) None None None None None 6401.49 +46.43 

(2) Unburned Burned Burned Burned Unburned 6357.05 +1.99 

(3)* Unburned Recently 
Burned 

Burn Lag Burn Lag Unburned 6355.06 0 

(4) Unburned Recently 
Burned 

Burn Lag 
1 

Burn Lag 
2 

Unburned 6362.23 +7.17 

(5) Unburned Recently 
Burned 

Burn Lag 
1 

Burn Lag 
2 

Unburned 
Lag 

6368.50 +6.27 
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We implemented all MSOMs and estimated them with Markov chain Monte Carlo (MCMC) 
using the R packages NIMBLE and nimbleEcology (v.0.4.0) (de Valpine et al. 2017; Goldstein 
et al. 2021). We ran all three multi-species occupancy models for 30,000 iterations, with a 2,000 
iteration burn in across 5 chains and used NIMBLE custom samplers to increase the efficiency of 
MCMC mixing (Andrew Gelman, Hwang, and Vehtari 2014). All data and model code used to 
perform analyses are available within this project’s Dryad repository 
(https://doi.org/10.6078/D1W70R). 

We assessed model fit for the community MSOM using posterior predictive checks. We 
simulated a new dataset using the parameters in each MCMC sampling iteration. We calculated 
the deviance of each of these datasets, yielding a posterior distribution of deviances produced 
from data simulated under the true model. We compared observed model deviances to this 
posterior to check for evidence that the data do not correspond to the fit model (Andrew Gelman, 
Meng, and Stern 1996; MacKenzie et al. 2017). We assessed a covariate as being a “significant” 
predictor of occupancy or intensity of use if the 90% credible interval for that variable did not 
overlap zero. We use this threshold to describe significance under Bayesian inference in the 
following cases.  

Results 

Camera Trap Survey Results 

We collected > 500,000 photographs over the windows of interest (October-November) across 
the five years of the study period (2016-2020). We observed 12,270 independent detections 
across 13 mammal species over a total of 10,427 trap nights. Black-tailed deer were the most 
detected species (n = 9,479), while brush rabbits (Sylvilagus bachmani) were photographed least 
often (n = 1) (Supplement S2: Table S3). Species detected but ultimately not included in analyses 
due to too few independent detections included: California ground squirrel (Otospermophilus 
beecheyi), brush rabbit, wild boar (Sus scrofa), and mountain lion (Puma concolor). Example 
photographs of each detected species can be found in Supplement S3 (Supplement S3: Figure 
S1). Summarized detection rates of modeled species can be found in Figure 2.  
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Figure 2. Detection rate of modeled mammal species sampled at camera stations during the sampling period (Oct-
Nov) each year at the Hopland Research and Extension Center, CA, USA. The y-axis shows the detection rate 
(number of detections divided by the number of nights of operation). Each column corresponds to a year during the 
study period (2016 – 2020). The dashed line between 2017 and 2018 is representative of the date of the Mendocino 
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Complex Fire. The number of unique camera sites each species was detected at within each year is noted within 
each bar plot. *Note - scale of y-axis is different between species. 

Model Selection and Goodness of Fit Results 

Five multi-species occupancy model parameterizations of the effect of fire were compared by the 
Watanabe-Akaike information criterion (WAIC). The parameterized model with the lowest 
WAIC score was model (3), which included effects for “recently burned” and one combined 
“Burn Lag” effect. The next best fitting model was model (2) which included effects only for 
“burned” and “unburned” (ΔWAIC = 1.99). Models (4) and (5) were the next best fitting models, 
both of which included effects of “Burn Lag” that varied over time (“Burn Lag 1” and “Burn Lag 
2”) (ΔWAIC = 7.17 and 6.27, respectively). The worst fitting model parameterization was model 
(1), the null model (ΔWAIC = 46.43) (Table 1). Models (2) and (3) were within 2 WAIC points 
of each other, but we decided to proceed with analyzing model (3) in order to examine how fire 
effects may impact species’ site use and intensity of use over time. 

Posterior predictive checks indicated goodness of fit within acceptable bounds. The observed 
deviance in the top model did not differ from the posterior distribution of simulated deviances 
(Supplement S2: Figure S2).  

Species-level and Community-level Summaries 

We assessed the effects of megafire on community-level and species-specific resistance using the 
community MSOM (without group-structure). We found that 6 of 8 modeled species were 
resistant to the immediate effects of fire, showing no significant decrease in site use or intensity 
of use during the “recently burned” or “burn lag” time periods relative to unburned sites (Figures 
3 and 4). Western gray squirrel and black-tailed deer showed immediate vulnerability to 
megafire.  
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Figure 3. Estimated coefficients of all site-specific covariates on probability of site use (Y) from the community 
multi-species occupancy model (MSOM) fit from camera trap data collected from the Hopland Research and 
Extension Center, CA, USA before and after the 2018 Mendocino Complex Fire. Species-specific estimates are 
displayed along the y-axis. “Community” at the bottom of each column represents the community-level 
hyperparameter used in the MSOM. We deemed species resistant to megafire if the species-specific estimates from 
the multi-species occupancy model showed no effect of time since burn on intensity of use or site use relative to 
unburned sites, or if we estimated an increase in intensity of use or site use associated with fixed fire effects. 
Resistance to megafire was color-coded with species with high resistance colored in blue, species with moderate 
resistance in purple (non-resistant in recently burned sites but resistant during the BurnLag), and species with low 
resistance in red (non-resistant at both Recently Burned and BurnLag sites). All species except deer and gray 
squirrel showed strong resistance to the initial effects of megafire. 
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Figure 4. Estimated coefficients of all site-specific covariates on intensity of use (p) from the community multi-
species occupancy model (MSOM) fit from camera trap data collected at the Hopland Research and Extension 
Center, CA, USA before and after the 2018 Mendocino Complex Fire. Species names are displayed on the y-axis. 
“Community” at the bottom of each column corresponds to the community-level hyperparameter used in the 
MSOM. We deemed species resistant to megafire if the species-specific estimates from the multi-species occupancy 
model showed no effect of time since burn on intensity of use or site use relative to unburned sites, or if we 
estimated an increase in intensity of use or site use associated with fixed fire effects. Resistance to megafire was 
color-coded with species with high resistance colored in blue, species with moderate resistance in purple (non-
resistant in recently burned sites but resistant during the BurnLag), and species with low resistance in red (non-
resistant at both Recently Burned and BurnLag sites). 

Site use varied considerably across modeled species, with probability of site use highest for 
black-tailed deer with a mean ѱ across all sites of 0.98 (SD ± 0.03) and was lowest for black-
tailed jackrabbit (mean = 0.28, 90% SD ± 0.30) (Supplement S2: Table S4). Recently burned 
sites (i.e. time since burn = “Burned”) were associated with increased site use for 5 of the 8 
modeled species: coyote (Mean = 2.65, 90% CI [0.82, 4.51]), black-tailed jackrabbit (Mean = 
2.86 [0.76, 4.85]), gray fox (Mean = 2.34 [0.32, 4.23]), raccoon (Mean = 2.95 [0.39, 5.67]), and 
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striped skunk (Mean = 2.82 [0.19, 5.59]. Canopy cover at recently burned sites (i.e. Canopy * 
Burned) was positively related to site use for several species (5 of 8 – all species except 
jackrabbit, raccoon, and striped skunk). The positive effect of this interaction continued during 
the year following fire (i.e. Canopy * Burn Lag) for gray fox (Mean = 2.24 [0.44, 4.03]) and 
bobcat (Mean = 2.44 [0.58, 4.39]) specifically.   

Time since burning had a significant effect on the detection probability (including intensity of 
use) of 4 species: black-tailed jackrabbit, coyote, western gray squirrel, and black-tailed deer 
(90% CI did not overlap zero) (Figure 4, Supplement S2: Table S5). During the year of the fire 
(i.e. time since burning = “Burned”), detection probability increased for coyotes at burned sites 
(Mean = 0.69 [0.21, 1.18]), but decreased for black-tailed deer (Mean = -0.60 [-1.06, -0.16]) and 
western gray squirrel (Mean = -0.84 [-1.58, -0.08]). Detection at burned sites of gray squirrels 
continued to be lower relative to unburned sites in the years following fire as well (i.e. time since 
burning = “Burn Lag”) (Mean = -1.50 [-2.17, -0.84]). Black-tailed jackrabbit detection 
probability at burned sites significantly increased during the lag years following megafire (Mean 
= 1.40 [0.70, 2.09]).  

Species richness ranged from 3.76 to 7.71 across camera stations, with a mean of 5.26 species 
across all sites (SD ± 0.70). Mean probability of site use (ѱ) of the community was 0.66 (SD ± 
0.27). We found that probability of site-use at the community-level was higher in recently burned 
sites (i.e. “Burned”) relative to unburned sites (Mean = 2.24 [0.52, 3.91]). Recently burned sites 
that maintained high canopy cover (i.e. Burned * Canopy) were also associated with higher 
community-level site use (mean = 2.08 [0.60, 3.63]). We visualized this relationship using 
derived richness values predicted across sites in Figure 5. Community-level intensity of use was 
positively associated with microsite attractants (Mean = 1.10 [0.67, 1.55]) (Figure 4, Supplement 
S2: Table S5).  
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Figure 5. Predicted species richness estimates from the multi-species occupancy model (MSOM) across “time 
since burned” categories and canopy cover fit from camera trap data collected at the Hopland Research and 
Extension Center, CA, USA before and after the 2018 Mendocino Complex Fire. All other occupancy covariates 
were set to their mean values. Panel “a” represents all sites that were unburned by the fire. Panel “b” represents sites 
that were burned during the year of the fire (2018). Panel “c” represents burned sites in the years following fire. 

Group-level Summaries 

At the species group level, site use of small and medium-sized species was associated with 
burned sites immediately following the fire, though not significantly (90% CI overlaps zero) 
(Mean = 1.69 [-0.45, 3.96] and Mean = 1.78 [-0.71, 4.37], respectively) (Supplement S2: Figure 
S3; Supplement S1: Table S6). Intensity of use was not significantly associated with any burn 
effects (Supplement S2: Figure S4; Supplement S2: Table S7). 

We found no significant effects of burn effects on site use associated with diet-groups 
(Supplement S2: Figure S5; Supplement S2: Table S8). We did find, however, that Carnivores 
had a positive association, albeit non-significant, with burned sites that maintained higher canopy 
cover (i.e. Burned * Canopy) (Mean = 1.70 [-0.70, 4.17]. We also found no significant 
associations between fire effects and intensity of use across diet groups (Supplement S2: Figure 
S6; Supplement S2: Table S9).  
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Discussion 

Despite the widespread change to habitat caused by the 2018 Mendocino Complex Fire, we 
found compelling evidence of species resistance following this extreme wildfire event. We did 
find that patterns of wildlife site use, intensity of use, and species richness changed subtly 
following megafire in this northern California oak woodland, but to a much small degree than we 
initially hypothesized. Most species were resistant (6 of 8) to the immediate effects of megafire 
within the scope of this study. At the species group-level, we did not find any relationship 
between body size or diet with the likelihood of a species being resistant to megafire, contrary to 
our initial hypotheses. Site use of individual mesopredator species increased in recently burned 
areas relative to unburned areas, with these species potentially taking advantage of burned areas 
that may have a decreased presence of larger predators and increased exposure of prey species. 
Detection decreased for a few species; two species immediately following megafire (black-tailed 
deer and western gray squirrel) and one species during the “Burn Lag” period (western gray 
squirrel). Despite observed decreases in detection (potentially attributable to differences in 
intensity of use), site use across species did not decrease following megafire indicating that the 
overall distributions of most species remained resistant to the impacts of megafire.  We found 
that community-level site use increased at sites that maintained high canopy cover during the 
year of the fire. These sites of higher canopy cover may act as temporary refugia for several 
species amidst a severely burned landscape.  

We observed that most species examined in this study were resistant (6 of 8) to the impacts of 
megafire. This corroborates findings of mammal resistance to wildfire in other ecosystems types 
(Lewis et al. 2022) and across mammal species globally (Pocknee et al. 2023). We also found 
evidence to suggest that the degree of species resistance likely exists along a continuum and is 
not just a dichotomous distinction. For example, species like black-tailed deer were vulnerable to 
the effects fire immediately following the megafire, but resistant to the effects of fire in the years 
following (“Burn Lag”). This may indicate that among the two vulnerable species, deer are more 
resistant than western-gray squirrels, and likely more resilient to the longer-term effects 
(resistance translation to resilience). For these vulnerable species that were non-resistant to 
megafire (deer and western gray squirrel), megafire only impacted the intensity of use of burned 
sites, but not site use. Megafire at this scale may, therefore, specifically alter mechanisms that 
influence species’ intensity of use, such as demography and movement patterns, as opposed to 
presence at burned sites.  

For larger, more mobile species like black-tailed deer, changes in intensity of use may represent 
shifts in activity centers, alterations in movement paths, or avoidance of burned areas altogether 
following wildfire (Jager et al. 2021). As severe fire modifies the structure of vegetation, animals 
may adjust their navigation of landscapes to minimize risk (Kreling et al. 2021; Ganz et al. 2022) 
and maximize access to remaining resources (Nimmo et al. 2019). This behavioral response may 
grant these larger-bodied species some level of improved resistance and longer-term resilience to 
quickly leave areas that are recently burned and return when conditions are more favorable. The 
limited spatial scale of our study design, however, may make these patterns more difficult to 
decipher for more wide-ranging species in the study (such as coyote and bobcat) underlining the 
need for more post-fire studies performed at broader spatial scales. In our study, we assumed 
that each species' use of each site was independent from nearby that of nearby sites, 
conditional on modeled variables and site-level random effects. In practice the movement of a 
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few species with larger home ranges between nearby sites could lead to spatial autocorrelation 
in site use which might be misattributed to spatially correlated environmental variables such 
as burn history. However, due to our limited sampling window (2 months) of the study and 
density of these species at our study site, we think the rate of this occurring would be 
relatively rare.  

For smaller species that are less mobile (i.e. western gray squirrel) significant changes in 
detection may instead suggest local-scale changes in abundance and demography (Griffiths and 
Brook 2014). Our findings further corroborate other recent studies at our site that have found 
significant decreases in the detection rate of small-bodied mammals following this megafire, 
including gray squirrel and gray fox (Pascoe et al. 2023). This also mirrors general trends found 
in Pockene et al. 2023 which observed overall resilience across mammal species to fire in a 
global meta-analysis, but highlighted that species with relatively high reproductive rates (such as 
small-bodied mammals like squirrels) were more likely to be vulnerable to the effects of fire 
(Pocknee et al. 2023). In this study, we use species presence/absence to draw an understanding of 
species responses to megafire over time and are limited in our ability to tease out how long-term 
movement and demography patterns of vulnerable species are affected by fire. Future work 
examining the exact mechanisms that lead to these observed responses in non-resistant species 
could help better define the response capacities of these species and guide potential conservation 
interventions if deemed necessary.  

Despite these species-specific findings, we did not find evidence to support our hypotheses that 
certain species-groups would be more resistant to megafire than other groups. We predicted that 
carnivores would be more likely to use sites that burned recently relative to other diet groups, but 
found all diet groups were resistant to fire effects. Furthermore, all body-size groups were 
deemed resistant to fire effects in our study as well, contrary to our hypothesis that small-bodied 
species may be more vulnerable. However, we did observe that species-level site use of 
mesopredators, such as coyote, gray fox, striped skunk, and racoon, increased in recently burned 
areas. These results mirror the response of mesopredators to wildfire observed in similar studies 
across California (Schuette et al. 2014; Jennings et al. 2016; Furnas, Goldstein, and Figura 
2021). The realized responses of these species are likely a combination of different species-level 
characteristics (or functional traits) such as diet, body size, hunting mode, and trophic level. 
Building a more mechanistic understanding of how these traits interact to produce the observed 
responses could help guide the prioritization of post-fire conservation objectives. 

Given our relatively small sample sizes, we were unable to explicitly investigate the effects of 
megafire on species interactions. The limited spatial scale of our study also prevented us from 
explicitly examining how megafire impacted the distributions of larger predators whose 
individual home ranges encompass the entire research property. However, camera and anecdotal 
evidence that large predators (i.e. black bears and mountain lions) became much rarer in the 
study area following megafire may suggest that site use of mesopredator species, such as coyote, 
may also be an indirect response to the temporary removal or decreased presence of these larger 
predators, as observed in other studies (Estes et al. 2011). Previous work shows that a variety of 
global change pressures can trigger this “rewiring” of species composition and trophic webs 
(Bartley et al. 2019; Suraci et al. 2021). Megafire could, at least temporarily, intensify this effect, 
and exacerbate existing stressors on large carnivores, especially as the frequency, size, and 
severity of megafires continues to increase. More research is necessary to examine the impacts of 
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megafire on these larger predators over a broader spatial and temporal context to explicitly 
examine how and for how long these effects may alter species interactions, such as predation 
(Doherty et al. 2022) and interspecies competition (Gigliotti et al. 2022).  

The presence of fire and its effect over time played a significant role in shaping wildlife 
distributions. Model parameterizations that included fire and fire lag effects performed much 
better than the null model. At the community-scale, the overall wildlife community was resistant 
to the effects of megafire as well. Previous work has established that fire in several California 
ecosystems can enhance habitat for a variety of native wildlife species by increasing productivity 
and by creating a diversity of habitat types (Jones and Tingley 2021; Connor et al. 2022). Some 
of these established benefits, at the community-level, may have been reproduced within our own 
study, especially given that the study site has not been burned by wildfire in over 60 years. 
Translating these potential benefits into management guidelines, however, requires more specific 
knowledge of what burn severities and burn patch sizes create the desired benefits for wildlife at 
the community-scale without harming species resistance and resilience (Donaldson et al. 2019). 
These recommendations are plentiful for conifer ecosystems in California, but rarer in other fire-
prone ecosystems such as oak woodland landscapes (Calhoun et al. 2021). Future work that 
specifically examines how fire severity and size across a breadth of oak woodland wildfires 
impact wildlife will help steer guidelines for prescribed burning that best enhance wildlife 
habitat in these landscapes.  

Areas that recently burned but maintained high canopy cover had a significant increase in 
estimated species richness relative to unburned sites and sites post-fire (2019 and 2020), 
suggesting that these sites may provide refugia for additional species directly following fire. 
These canopied “islands” may provide important resources (forage and cover) that are lacking in 
other parts of the recently burned landscape. This positive effect was true for the two species 
deemed vulnerable to megafire (deer and gray squirrel), highlighting its potential importance in 
supporting these vulnerable species immediately following megafire. Simultaneously, however, 
this may intensify inter-species interactions, such as competition and predation, as inter- and 
intra-species spatial overlap increases in these limited, intact patches of habitat.  Using pre-
emptive prescribed burning and land modification tools that prevent large contiguous megafire 
burns could help ensure multiple patches of refugia remain following fire. This may be one of 
the best strategies to enhance the long-term resilience of these ecological communities from 
global change disturbances like megafire (McWethy et al. 2019; C. Miller et al. 2021). This 
attractant effect towards canopied areas post-megafire is apparent the year of the fire and 
decreases in the years following. Therefore, refugia following megafire may be most critical in 
the immediate months following wildfire to ensure species have access to resources before 
vegetation is able to recover naturally.  

Changes in historic fire regimes may pose a greater threat to woodland savanna ecosystems and 
their wildlife communities relative to other ecosystem types worldwide (Kelly et al. 2020; 
Calhoun et al. 2021). Due to the key services and habitat they provide around the world 
(Veldman et al. 2015; Eastburn et al. 2017), it is essential that we prioritize developing effective 
fire management tools for woodland savannas to protect their long-term ecological integrity 
against shifting fire regimes. Our study highlights the vulnerability and resistance of certain 
woodland savanna wildlife species to megafire in the short-term, but more work is needed to 
understand how these initial responses translate over longer time periods (“resilience”) and 
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across different land cover types. Additionally, the short and long-term effects of fire on habitat 
and wildlife are likely related to the composition of microhabitats within oak woodland savannas 
(i.e. woodlands, grasslands, and shrublands) due the different speeds at which they recover. For 
example, grassland ecosystems typically recover faster following fire relative to shrubland and 
woodland systems (Halofsky et al. 2011), which may lead species to preferentially choose to use 
these areas in the time following megafire. Though we were unable to account for these 
differences within our study, our analysis does incorporate an important proxy for resource 
availability as estimated through canopy cover. Most grassland savannas are far less productive 
during the late dry months in regions with Mediterranean climates, limiting viable food options 
for most wildlife species. During these months, shrubs and especially acorns from oak trees, are 
the primary means of acquiring food resources for most wildlife (Mazur, Klimley, and Folger 
2013; W. J. McShea and Healy 2002). Therefore, our study design effectively examines how 
these critical resources shape species distributions following megafire during arguably the most 
resource-depleted time of the year. Broader scale studies that include multiple microhabitat types 
in their scope could help confirm how different post-fire vegetation types influence the 
distribution of wildlife species during similar dry seasons. 

Conclusion 

Frequent megafires have the potential to alter wildlife communities in fire-prone ecosystems 
around the world. We found evidence of resistance to megafire in a woodland savanna mammal 
community, potentially made possible by the availability of refugia following megafire. These 
findings further corroborate the importance of spatial burn patchiness in mixed-severity fire 
regimes, specifically from the perspective of wildlife. In woodland ecosystems, management that 
can 1) prevent megafire or 2) facilitate the creation of more heterogeneous landscapes following 
megafire may be the best strategies to enhance the resistance and resilience of mammal 
communities to future megafires.  
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Supplement for Chapter 2 

Supplement S1 – Canopy Cover Estimation 

Data Description 

Sentiel-2 satellite imagery was downloaded from USGS EarthExplorer 
(https://earthexplorer.usgs.gov/). The Hopland Research and Extension Center Shapefile 
Boundary was uploaded to define the spatial area of interest. Cloud Cover Range was set to “0% 
- 10%”. “Sentinel-2” was selected under datasets and dates were restricted to October 1st – 
October 31st for each year for which imagery was acquired (2016-2020). Planet Labs satellite 
imagery was downloaded from Planet Labs (https://www.planet.com/explorer/). The Hopland 
Research and Extension Center Shapefile Boundary was uploaded to define the spatial area of 
interest. The “PlanetScope Scene” data product was selected from Imagery type. Cloud cover 
was changed to “0 – 10%”. Dates were restricted to October 1st – October 31st for each year for 
which imagery was acquired (2016 - 2020). 

Table S1. Canopy Cover Imagery Description Table  
 

Data Source Projected 
Coordinate System 

Description 

Planet Imagery Planet Labs WGS 1984 UTM 
Zone 10N 

3m resolution, 4 
bands, collected from 
the month of October 
from years 2016-2020 

Sentinel Imagery Sentinel Hub WGS 1984 UTM 
Zone 10N 

20m resolution, 3 
bands, collected from 
the month of October 
from years 2016-2020 

HREC Boundary Hopland Research 
and Extension Center 

WGS 1984 UTM 
Zone 10N 

Shapefile, used to clip 
imagery before 
classification 

 

Methodology 

We estimated canopy cover using 20-meter resolution imagery from Sentinel hub (Sentinel Hub, 
2021) to create canopy rasters via object-based and supervised classification in ArcGIS Pro 
(ESRI, 2011) for each year (2016-2020) (Tilahun 2015; Sunde et al. 2020). For this analysis, we 
categorized imagery d as either ‘Covered’, which included trees, shrubbery, and other similar 
vegetation, or ‘Uncovered’, which included grass, bare ground/soil, and burnt vegetation. We 
collected satellite imagery from the month of October from each respective year before the start 
of annual rainfall so grass and bare ground would not look similar to other vegetation. We 
verified the classified layers using higher resolution imagery obtained from Planet Labs (3m 
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resolution) (Planet Team, 2017) from which we could visually confirm canopy status. For each 
raster, fifty accuracy assessment points were created and were visually compared to the higher 
resolution Planet Labs Imagery. Confusion matrices were computed based on the accuracy 
assessment points to produce overall accuracies for each raster. This supervised classification 
process was repeated until each raster had an overall accuracy of 80% or higher. Canopy cover 
values were extracted from a 100m buffer around each camera site for each year to calculate 
percent canopy cover within the buffered radius. 
 
Table S2. Canopy cover classification accuracy table. We used object-based image analysis (OBIA) to classify 
Sentinel Hub Imagery (20m resolution) from Hopland into Canopy or No Canopy raster layers. Imagery was 
collected for each year of the study (2016-2020) during the month of October. We created a confusion matrix of 50 
randomly generated points across the annual canopy cover rasters and compared canopy classification with the finer 
scale resolution Planet Labs imagery (3m resolution). We used the finer scale Planet Labs imagery to visually assess 
the accuracy of each raster layer. Raster layers that had 80% or higher accuracy were accepted and used to calculate 
% canopy cover covariate for analyses.  
 
Year Accuracy 

2016 86% 

2017 88% 

2018 84% 

2019 80% 

2020 82% 

 
 

 

 

 

 

 

 

 

 

 

 



 60 

Supplement S2 – Additional Figures and Tables 

 

Figure S1. Covariate correlation plot matrix of continuous covariates extracted from sampled camera stations at 
the Hopland Research and Extension Center, CA, USA. Correlation plot compares values of all continuous 
covariates included in the site use (Y) sub-model of the multi-species occupancy model (elevation and canopy 
cover). We found no significant trends in covariance between remaining covariates.  

Table S1. Range, mean, and original resolution of continuous covariates used in the site use (Y) and intensity of 
use (p) multi-species occupancy sub-models run from camera trap data collected at the Hopland Research and 
Extension Center, CA, USA.  

Covariate Range Mean Original Resolution 

Canopy (%) 0 – 100 39 20 m 

Elevation (m) 226 – 897 495 .003 m 

Viewshed (m) 8 – 20 14 At Site 
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Table S2. Species grouping categories used in the group-level multi-species occupancy models for camera trap 
data collected at the Hopland Research and Extension Center, CA, USA. Species were grouped by (1) body size and 
(2) diet to investigate whether certain species groups were more or less resistant and resilient to megafire. We 
grouped species into 3 categorical body mass groups from which each had its own group-level hyperparameter: 
Small (< 5kg), Medium (5-15 kg), and Large (>15kg) (Wilman et al, 2014). We then grouped species into 3 broad 
diet-group categories: Herbivores (diet does not contain animal material), Omnivores (diet contains < 60% animal 
material) and Carnivores (> 60% of diet contains animal material) (Wilman et al, 2014). 

Scientific Name Common Name Size Group Diet Group 
L. rufus Bobcat Medium Carnivore 

C. latrans Coyote Medium Carnivore 

O. hemionus 
columbianus 

Black-tailed Deer Large Herbivore 

U. cinereoaregenteus Gray Fox Small Omnivore 

S. griseus Western Gray Squirrel Small Herbivore 

L. californicus Black-tailed Jackrabbit Small Herbivore 

P. lotor Raccoon Medium Omnivore 

M. mephitis Striped Skunk Small Omnivore 
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Table S3. Camera trap survey results from the duration of the study (Oct-Nov, 2016-2020) at the Hopland 
Research and Extension Center, CA, USA. Naïve psi (Y) was calculated by summing the number of sites each 
species was detected at and dividing by the total number of sites sampled (175 sites). Model estimates of mean psi 
(Y) and its standard deviation that correct for imperfect detection were calculated from the community multi-species 
occupancy model (MSOM). Total number of detections sums the number of independent detections (15-minute 
independence between detections) across the entire study. The number of unique sites each species was detected at 
(max = 36) is also displayed. 

Scientific Name Common Name Naïve Y Mean 
Psi (Y) 

St. Dev. 
Psi (Y)  

Detection 
# 

# Cams 

L. rufus Bobcat 0.31 0.57 ± 0.17 130 29 
C. latrans Coyote 0.59 0.68 ± 0.11 387 36 
O. hemionus 
columbianus 

Black-tailed Deer 0.98 0.98 ± 0.03 9479 36 

U. 
cinereoaregenteus 

Gray Fox 0.57 0.67 ± .19  496 32 

S. griseus Western Gray 
Squirrel 

0.38 0.51 ± .28 787 21 

L. californicus Black-tailed 
Jackrabbit 

0.23 0.28 ± 0.30 364 16 

P. lotor Raccoon 0.37 0.74 ± 0.16 231 26 
M. mephitis Striped Skunk 0.30 0.82 ± 0.07 88 28 
U. americanus Black Bear 0.14 NA NA NA NA 
S. bachmani Brush Rabbit .01 NA NA 1 1 
O. beecheyi California Ground 

Squirrel 
0.03 NA NA 34 3 

S. scrofa Wild Boar 0.05 NA NA 39 6 
P. concolor Mountain Lion 0.06 NA NA 16 7 
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Figure S2. Observed deviances of fit from the community multi-species occupancy model (MSOM) fit on camera 
trap data collected at the Hopland Research and Extension Center, CA, USA. The MSOM did not visibly differ from 
the posterior distributions of deviances generated from simulated datasets, meaning that we found no evidence of 
poor model fit. 

Table S4. Covariate coefficients for the site use sub-model of the community multi-species occupancy model fit 
from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after the 2018 
Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate. 

Species Parameter Estimate 
Bobcat Intercept 0.7 (-0.54, 1.89) 
Bobcat Elevation 0.18 (-0.53, 0.92) 
Bobcat Canopy 0.21 (-0.45, 0.83) 
Bobcat Burned 1.97 (-0.09, 4.15) 
Bobcat facBurnLag 0.83 (-1.03, 2.65) 
Bobcat Burned*Canopy 2.44 (0.58, 4.39) 
Bobcat facBurnLag*Canopy 2.31 (0.24, 4.53) 
Coyote Intercept 0.62 (-0.03, 1.26) 
Coyote Elevation -0.35 (-0.86, 0.16) 
Coyote Canopy -0.08 (-0.51, 0.35) 
Coyote Burned 2.65 (0.82, 4.51) 
Coyote facBurnLag 1.33 (-0.16, 2.9) 
Coyote Burned*Canopy 2.14 (0.58, 3.81) 
Coyote facBurnLag*Canopy 1.04 (-0.45, 2.59) 
Black-tailed Deer Intercept 4.81 (3.35, 6.23) 
Black-tailed Deer Elevation 0.32 (-0.64, 1.23) 
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Black-tailed Deer Canopy 0.26 (-0.52, 1.05) 
Black-tailed Deer Burned 1.41 (-1.11, 3.85) 
Black-tailed Deer facBurnLag 1.65 (-0.37, 3.61) 
Black-tailed Deer Burned*Canopy 2.96 (0.79, 5.2) 
Black-tailed Deer facBurnLag*Canopy 0.68 (-1.72, 3.18) 
Gray Fox Intercept 1.03 (0.29, 1.75) 
Gray Fox Elevation 0.08 (-0.48, 0.66) 
Gray Fox Canopy 0 (-0.47, 0.44) 
Gray Fox Burned 2.34 (0.32, 4.23) 
Gray Fox facBurnLag 1.1 (-0.47, 2.71) 
Gray Fox Burned*Canopy 2.24 (0.44, 4.03) 
Gray Fox facBurnLag*Canopy 2.44 (0.48, 4.42) 
Gray Squirrel Intercept 0.11 (-0.82, 1.06) 
Gray Squirrel Elevation -0.19 (-0.98, 0.6) 
Gray Squirrel Canopy 0.02 (-0.49, 0.52) 
Gray Squirrel Burned 1.87 (-0.54, 4.21) 
Gray Squirrel facBurnLag 0.72 (-1.29, 2.5) 
Gray Squirrel Burned*Canopy 2.22 (0.28, 4.15) 
Gray Squirrel facBurnLag*Canopy 1.43 (-0.39, 3.52) 
Black-tailed Jackrabbit Intercept -2.35 (-3.43, -1.24) 
Black-tailed Jackrabbit Elevation 1.68 (0.85, 2.55) 
Black-tailed Jackrabbit Canopy -0.26 (-0.93, 0.32) 
Black-tailed Jackrabbit Burned 2.86 (0.76, 4.85) 
Black-tailed Jackrabbit facBurnLag 1.8 (0.21, 3.38) 
Black-tailed Jackrabbit Burned*Canopy 1.78 (-0.04, 3.75) 
Black-tailed Jackrabbit facBurnLag*Canopy 0.83 (-0.76, 2.38) 
Raccoon Intercept 1.56 (-0.54, 3.73) 
Raccoon Elevation -0.55 (-1.81, 0.77) 
Raccoon Canopy -0.15 (-0.86, 0.5) 
Raccoon Burned 2.95 (0.39, 5.67) 
Raccoon facBurnLag 1.27 (-0.66, 3.31) 
Raccoon Burned*Canopy 1.72 (-0.35, 3.89) 
Raccoon facBurnLag*Canopy 0.62 (-2.15, 3.33) 
Striped Skunk Intercept 2.47 (-0.41, 5.2) 
Striped Skunk Elevation 0.12 (-1.49, 1.74) 
Striped Skunk Canopy -0.1 (-0.84, 0.62) 
Striped Skunk Burned 2.82 (0.19, 5.59) 
Striped Skunk facBurnLag 1.23 (-0.79, 3.33) 
Striped Skunk Burned*Canopy 1.69 (-0.6, 3.99) 
Striped Skunk facBurnLag*Canopy 1.17 (-1.1, 3.6) 
Community Intercept 0.96 (-0.48, 2.45) 
Community Elevation 0.16 (-0.57, 0.91) 
Community Canopy -0.01 (-0.46, 0.41) 
Community Burned 2.24 (0.52, 3.91) 
Community facBurnLag 1.2 (-0.14, 2.63) 
Community Burned*Canopy 2.08 (0.6, 3.63) 
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Community facBurnLag*Canopy 1.25 (-0.16, 2.72) 
 

Table S5. Covariate coefficients for the intensity of use sub-model of the community multi-species occupancy 
model fit from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after 
the 2018 Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate.  

Species Parameter Estimate 
Bobcat Intercept -2.41 (-2.96, -1.88) 
Bobcat Attractant 1.16 (0.61, 1.72) 
Bobcat Burned 0.23 (-0.4, 0.88) 
Bobcat facBurnLag -0.11 (-0.72, 0.51) 
Bobcat Viewshed 0 (-0.24, 0.25) 
Coyote Intercept -1.49 (-1.8, -1.16) 
Coyote Attractant 1.17 (0.69, 1.65) 
Coyote Burned 0.69 (0.21, 1.18) 
Coyote facBurnLag 0.13 (-0.3, 0.56) 
Coyote Viewshed 0.04 (-0.15, 0.24) 
Black-tailed Deer Intercept 2.14 (1.8, 2.47) 
Black-tailed Deer Attractant 1.1 (0.54, 1.71) 
Black-tailed Deer Burned -0.6 (-1.06, -0.16) 
Black-tailed Deer facBurnLag -0.18 (-0.54, 0.18) 
Black-tailed Deer Viewshed -0.08 (-0.29, 0.13) 
Gray Fox Intercept -1.42 (-1.81, -1.03) 
Gray Fox Attractant 0.95 (0.36, 1.56) 
Gray Fox Burned 0.21 (-0.22, 0.67) 
Gray Fox facBurnLag -0.22 (-0.63, 0.16) 
Gray Fox Viewshed -0.02 (-0.24, 0.24) 
Gray Squirrel Intercept -1.94 (-2.68, -1.22) 
Gray Squirrel Attractant 1.12 (0.48, 1.77) 
Gray Squirrel Burned -0.84 (-1.58, -0.08) 
Gray Squirrel facBurnLag -1.5 (-2.17, -0.84) 
Gray Squirrel Viewshed -0.43 (-0.88, 0.03) 
Black-tailed Jackrabbit Intercept -2.12 (-2.97, -1.21) 
Black-tailed Jackrabbit Attractant 1.12 (0.52, 1.74) 
Black-tailed Jackrabbit Burned 0.23 (-0.45, 0.94) 
Black-tailed Jackrabbit facBurnLag 1.4 (0.7, 2.09) 
Black-tailed Jackrabbit Viewshed 0.11 (-0.24, 0.52) 
Raccoon Intercept -2.56 (-3.22, -1.93) 
Raccoon Attractant 1.14 (0.54, 1.75) 
Raccoon Burned -0.43 (-1.12, 0.25) 
Raccoon facBurnLag -0.25 (-0.82, 0.34) 
Raccoon Viewshed -0.17 (-0.48, 0.12) 
Striped Skunk Intercept -3.19 (-3.76, -2.63) 
Striped Skunk Attractant 1.1 (0.52, 1.67) 
Striped Skunk Burned 0.19 (-0.46, 0.85) 
Striped Skunk facBurnLag 0.13 (-0.46, 0.69) 



 66 

Striped Skunk Viewshed -0.09 (-0.34, 0.18) 
Community Intercept -1.49 (-2.54, -0.37) 
Community Attractant 1.1 (0.67, 1.55) 
Community Burned -0.04 (-0.55, 0.47) 
Community facBurnLag -0.07 (-0.7, 0.55) 
Community Viewshed -0.08 (-0.29, 0.14) 

 

 

Figure S3. Estimated coefficients for site-specific covariates on probability of site use (Y) from the size group 
multi-species occupancy model (MSOM) fit from camera trap data collected at the Hopland Research and Extension 
Center, CA, USA before and after the 2018 Mendocino Complex Fire. Group-level estimates are displayed along the 
y-axis. Coefficient estimates that had 90% confidence intervals that did not overlap zero (Credibly Nonzero) are 
represented with filled circles.   
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Table S6. Covariate coefficients for the site use (Y) sub-model of the group-size multi-species occupancy model 
fit from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after the 
2018 Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate. 

Group Parameter Estimate 
Large Intercept 0.46 (-0.98, 1.95) 
Large Elevation 0.34 (-0.93, 1.59) 
Large Canopy 0.36 (-1.03, 1.79) 
Large Burned 0.88 (-1.16, 3.02) 
Large facBurnLag 0.38 (-1.56, 2.42) 
Large Burned*Canopy 1.01 (-1.2, 3.1) 
Large BurnLag*Canopy 1.55 (-0.53, 3.76) 
Medium Intercept 1.48 (-1.14, 4.16) 
Medium Elevation -0.03 (-1.18, 1.19) 
Medium Canopy 0.25 (-1.2, 1.92) 
Medium Burned 1.78 (-0.71, 4.37) 
Medium facBurnLag 0.98 (-0.97, 3.18) 
Medium Burned*Canopy 0.97 (-1.75, 3.62) 
Medium BurnLag*Canopy 0.33 (-1.69, 2.33) 
Small Intercept -1.48 (-3.43, 0.44) 
Small Elevation 0.25 (-1.95, 2.44) 
Small Canopy -0.2 (-1.59, 1.12) 
Small Burned 1.69 (-0.45, 3.96) 
Small facBurnLag 1 (-0.73, 2.68) 
Small Burned*Canopy 0.85 (-1.09, 2.92) 
Small BurnLag*Canopy 0.32 (-1.42, 2.06) 
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Figure S4. Estimated coefficients of site-specific covariates on intensity of use (p) from the size group multi-
species occupancy model (MSOM) fit from camera trap data collected at the Hopland Research and Extension 
Center, CA, USA before and after the 2018 Mendocino Complex Fire. Group-level estimates are displayed along the 
y-axis. Coefficient estimates that had 90% confidence intervals that did not overlap zero (Credibly Nonzero) are 
represented with filled circles.   

Table S7. Covariate coefficients for the intensity of use (p) sub-model of the group-size multi-species occupancy 
model fit from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after 
the 2018 Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate. 

Group Parameter Estimate 
Large Intercept -1.15 (-2.89, 0.69) 
Large Attractant 0.73 (-0.62, 2.05) 
Large Burned 0.3 (-0.86, 1.41) 
Large facBurnLag 0.01 (-1.1, 1.09) 
Large Viewshed 0.01 (-0.87, 0.85) 
Medium Intercept -0.43 (-2.47, 1.64) 
Medium Attractant 0.93 (0.12, 1.72) 
Medium Burned 0 (-1, 1.01) 
Medium facBurnLag 0.02 (-0.46, 0.49) 
Medium Viewshed 0.01 (-0.38, 0.4) 
Small Intercept -0.78 (-1.78, 0.24) 
Small Attractant 0.98 (0.14, 1.79) 
Small Burned -0.81 (-1.82, 0.2) 
Small facBurnLag -0.36 (-1.97, 1.26) 
Small Viewshed -0.08 (-0.79, 0.64) 
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Figure S5. Estimated coefficients of site-specific covariates on probability of site use (Y) from the diet group 
multi-species occupancy model (MSOM) fit from camera trap data collected at the Hopland Research and Extension 
Center, CA, USA before and after the 2018 Mendocino Complex Fire. Group-level estimates are displayed along the 
y-axis. Coefficient estimates that had 90% confidence intervals that did not overlap zero (Credibly Nonzero) are 
represented with filled circles.   
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Table S8. Covariate coefficients for the site use (Y) sub-model of the diet-group multi-species occupancy model 
fit from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after the 
2018 Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate. 

Group Parameter Estimate 
Carnivore Intercept 1.34 (-1.73, 4.47) 
Carnivore Elevation 0.07 (-1.45, 1.76) 
Carnivore Canopy 0.58 (-1.51, 2.8) 
Carnivore Burned 1.39 (-1.3, 3.96) 
Carnivore facBurnLag 1.12 (-1.31, 3.7) 
Carnivore Burned*Canopy 1.7 (-0.7, 4.17) 
Carnivore BurnLag*Canopy 0.06 (-2.52, 2.43) 
Herbivore Intercept -0.92 (-3.06, 1.19) 
Herbivore Elevation 0.61 (-1.38, 2.62) 
Herbivore Canopy -0.2 (-1.41, 0.95) 
Herbivore Burned 1.72 (-0.2, 3.73) 
Herbivore facBurnLag 1.09 (-0.47, 2.77) 
Herbivore Burned*Canopy 0.54 (-1.25, 2.32) 
Herbivore BurnLag*Canopy 0.52 (-1.2, 2.34) 
Omnivore Intercept -0.13 (-1.44, 1.18) 
Omnivore Elevation -0.2 (-1.38, 0.92) 
Omnivore Canopy 0.24 (-0.87, 1.34) 
Omnivore Burned 1.25 (-0.98, 3.61) 
Omnivore facBurnLag 0.11 (-1.54, 1.84) 
Omnivore Burned*Canopy 0.66 (-1.81, 3.05) 
Omnivore BurnLag*Canopy 1.16 (-0.6, 2.98) 

 



 71 

 

Figure S6. Estimated coefficients of site-specific covariates on intensity of use (p) from the diet group multi-
species occupancy model (MSOM) fit from camera trap data collected at the Hopland Research and Extension 
Center, CA, USA before and after the 2018 Mendocino Complex Fire. Group-level estimates are displayed along the 
y-axis. Coefficient estimates that had 90% confidence intervals that did not overlap zero (Credibly Nonzero) are 
represented with filled circles.   

Table S9. Covariate coefficients for the intensity of use (p) sub-model of the diet-group multi-species occupancy 
model fit from camera trap data collected at the Hopland Research and Extension Center, CA, USA before and after 
the 2018 Mendocino Complex Fire. Mean estimates and 90% confidence intervals are given for each estimate. 

Group Parameter Estimate 
Carnivore Intercept 0.19 (-2.09, 2.49) 
Carnivore Attractant 1.06 (-0.17, 2.28) 
Carnivore Burned 0.07 (-1.5, 1.72) 
Carnivore facBurnLag -0.02 (-1.01, 1.02) 
Carnivore Viewshed 0.01 (-1.02, 1.06) 
Herbivore Intercept -1.01 (-1.62, -0.48) 
Herbivore Attractant 0.88 (0.05, 1.77) 
Herbivore Burned -0.38 (-1.64, 0.87) 
Herbivore facBurnLag 0.03 (-1.38, 1.42) 
Herbivore Viewshed 0.03 (-0.45, 0.54) 
Omnivore Intercept -1.28 (-2.77, 0.24) 
Omnivore Attractant 0.73 (-0.07, 1.53) 
Omnivore Burned -0.31 (-1.37, 0.78) 
Omnivore facBurnLag -0.34 (-1.59, 0.9) 
Omnivore Viewshed -0.09 (-0.64, 0.49) 
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Supplement 3 – Example Images 
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Figure S1. Camera trap images of each detected species at the Hopland Research and Extension Center, CA, USA 
both before and after the 2018 Mendocino Complex Fire. Detected species included: (a) Bobcat (Lynx rufus), (b) 
Coyote (Canis latrans), (c) Black-tailed deer (Odocoilues hemionus columbianus), (d) Gray fox (Urocyon 
cinereoargenteus), (e) Western gray squirrel (Sciurus griseus), (f) Black-tailed jackrabbit (Lepus californicus), (g) 
Raccoon (Procyon lotor), (h) Striped skunk (Mephitis mephitis), (i) Black bear (Ursus americanus), (j) Mountain 
lion (Puma concolor), (k) Wild boar (Sus scrofa), (l) Brush rabbit (Sylvilagus bachmani), (m) California Ground 
Squirrel (Otospermophilus beecheyi). 
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Figure S2. Camera Trap images of a single site (D06) at before, during and after the 2018 Mendocino Complex 
Fire at the Hopland Research and Extension Center, CA, USA. Photo (a) represents the site before the fire 
(“Unburned”) and (b) illustrates the severity of the fire during the actual event. Post-fire images are representative of 
the fire parameterizations used within occupancy models: photo (c) shows the recently burned site (“Burned”), (d) 
shows one year post-fire ("Burn Lag1”), and (e) shows two years post-fire (“Burn Lag 2”).  
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Chapter 3 
 
Movement behavior in a dominant ungulate underlies successful adjustment to a 
rapidly changing landscape following megafire 
 
Kendall L. Calhoun, Thomas Connor, Kaitlyn M. Gaynor, Amy Van Scoyoc, Alex McInturff, 
Samantha Kreling, Justin S. Brashares 
 
Abstract 

Movement plays a key role in allowing animal species to adapt to sudden environmental shifts. 
Anthropogenic climate and land use change have accelerated the frequency of some of these 
extreme disturbances, including megafire. These megafires dramatically alter ecosystems and 
challenge the capacity of several species to adjust to a rapidly changing landscape. Ungulates 
and their movement behaviors play a central role in the ecosystem functions of fire-prone 
ecosystems around the world. Previous work has shown behavioral plasticity is an important 
mechanism underlying whether large ungulates are able to adjust to recent changes in their 
environments effectively. Ungulates may respond to the immediate effects of megafire by 
adjusting their movement and behavior, but how these responses persist or change over time 
following disturbance is poorly understood. We examined how an ecologically dominant 
ungulate with strong site fidelity, Columbian black-tailed deer (Odocoileus hemionus 
columbianus), adjusted its movement and behavior in response to an altered landscape following 
a megafire. To do so, we collected GPS data from 21 individual female deer over the course of a 
year and used resource selection functions (RSFs) and hidden Markov movement models 
(HMMs) to assess changes in behavior and habitat selection. We found compelling evidence of 
adaptive capacity across individual deer in response to megafire. Deer avoided exposed and 
severely burned areas that lack forage and could be riskier for predation immediately following 
megafire, but they later altered these behaviors to select for areas that burned at higher severities, 
potentially to take advantage of enhanced forage. These results suggest that despite their high 
site fidelity, deer can navigate altered landscapes to track rapid shifts in predation risk and 
resource availability. This successful adjustment of movement and behavior following extreme 
disturbance could help facilitate resilience at broader ecological scales.  

Introduction 

Movement is a key trait that allows animal species to adjust to dynamic landscapes (Abrahms et 
al. 2021). This ability has become increasingly critical in an age of constant anthropogenic global 
change and extreme environmental disturbances, such as increasingly frequent and severe 
megafires (Stott 2016). In fire-prone ecosystems, megafires, defined as wildfires larger than 100 
km2 that surpass the size and severity of historical fires, have become increasingly prevalent 
(Linley et al. 2022). Fire has served an important ecological and evolutionary role in many of 
these ecosystems (McLauchlan et al. 2020), but historical policy, climate change, and land use 
change are responsible for the increasing number of unprecedented megafires. Megafires can 
dramatically alter ecosystems by suddenly removing resources and triggering rapid conversions 
in habitat (Linley et al. 2022). Though many wild animal species in these fire-prone ecosystems 
have adaptations to coexist with their historic fire regimes (Jones et al. 2020; Pausas and Parr 
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2018), novel megafire regimes may challenge, and even overwhelm, the behaviors and adaptive 
capacity of individual animals. 

By quickly altering landscapes, megafire may impact how some animals are able to navigate and 
use habitat. Burn severity is a characteristic of fire that defines the loss of below and/or above 
ground organic matter (J. E. Keeley 2009).  High severity fires can remove important structural 
resources from landscapes (Zachary L. Steel et al. 2021) and even cause direct mortality to 
animals (Jolly et al. 2022). Changes in structural cover in these systems may alter interspecies 
interactions, such as predator-prey dynamics, by altering the success of predator hunting 
strategies and prey predator-avoidance strategies (Doherty et al. 2022).  High severity fires may 
also remove important vegetation food resources (i.e., forbs, grasses, seeds, etc.) and, in turn, 
populations of herbivorous species (Rickbeil et al. 2017), which may impact populations of 
species at higher trophic levels. Finally, the short and long-term effects of fire on habitat may be 
directly related to the dominant vegetation type of that habitat. For example, grassland 
ecosystems typically recover faster following fire relative to shrubland and woodland systems 
(Halofsky et al. 2011), which may lead animals to preferentially choose these areas in the time 
following megafire.  

Movement plays a critical role in defining an animal’s capacity to adapt and adjust to novel 
disturbance regimes. Recent work has documented the role movement and behavioral plasticity 
play in governing the adaptive capacity of species to other forms of global change (Hammond, 
Palme, and Lacey 2018; Riddell et al. 2018; Schell et al. 2018). For large-bodied animals, 
plasticity in movement and behavior allows individuals to adjust to changes in their local 
environments (Suraci et al. 2021; Gaynor et al. 2018). For fire specifically, larger-bodied animals 
may partition their space-use across recently burned landscapes to take advantage of new 
resources or avoid risky areas (Nimmo et al. 2019). 

Ungulates serve key ecological roles in many fire-prone ecosystems around the world through 
their herbivory and by serving as a link between different trophic levels. Changes in their 
movement and behaviors following fire may have important implications for ecosystem-level 
processes. Fire may influence patterns of ungulate herbivory across landscapes over space and 
time (Roerick, Cain, and Gedir 2019; Cherry et al. 2018). Past work has specifically documented 
a “magnet effect” across several ungulate species, where individuals select moderately burned 
areas that have improved forage post-fire (Allred et al. 2011; Archibald et al. 2005). Following 
more severe fire events, recent work suggests that ungulate behavioral plasticity may buffer the 
short-term impacts of megafire as ungulates select for covered, woodland habitat and expand 
their home ranges to compensate for a decrease in foraging resources (Kreling et al. 2021). 
Kreling et al. (2021) also ask whether these adjustments could become maladaptive to these 
populations as megafires become more frequent. The seasonality of fire events may also 
modulate short- and long-term responses of ungulates, with fires potentially increasing scarcity 
of rare vegetation resources during the dry seasons or limiting required resources during 
energetically costly periods of the year (i.e. spring breeding season) (Proffitt et al. 2019).  

Adaptive capacity mediated by movement may play an important role in influencing the 
resilience of ungulate populations to major wildfire events and changes to local fire regimes. 
Variation in behavior across space permits animals to respond accordingly to dynamic 
landscapes (Peters et al. 2022; Chimienti et al. 2021). Unlike other large ungulates, behavioral 
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plasticity of mule deer migratory movement specifically has been found to be non-plastic 
(Sawyer et al. 2018). Alternatively, previous work has also established that mule deer are 
capable of efficiently navigating burned landscapes to simultaneously minimize predation risk 
from a variety of predators whilst simultaneously identifying and using areas with forage (Ganz 
et al. 2022). Therefore, understanding the conditions and thresholds under which behavioral 
plasticity is adopted as an adaptive strategy may be key in tailoring management for this species 
following major environmental disturbances. Megafires may overwhelm this capacity and it may 
take much longer for species to recover to pre-fire conditions due to the dramatic changes 
imposed on the landscape. In addition, understanding how ungulates spatially compartmentalize 
specific behaviors across severely burned landscapes, as well as how the distribution of these 
behaviors changes across time, is essential in defining whether these species can remain resilient 
to future changes in global fire regimes and how management may best enhance this capacity.  

In this study, we examine the long-term consequences of megafire on an ecologically and 
economically important Californian ungulate, the black-tailed mule deer (Odocoileus hemionus 
columbianus). As a direct follow-up study to the Kreling et al., 2021 study, we investigate how 
the examined short-term movement responses of deer to megafire vary over the year following 
fire. We predicted that deer would preferentially use habitat that burned at low severity 
immediately following the fire to avoid exposure to predators and select for areas more likely to 
have forage remaining. In line with the magnet effect, we predicted black-tailed deer would 
select for areas that burned at moderate severities the following growing season due to the 
increased nutritional value of forage in these areas. We also take a deeper look at the spatial 
distribution of movement behavioral modes across the burned landscape to determine how 
behavioral decisions also contribute to adaptive capacity of deer following megafire. Due to the 
assumed long-lasting impacts of the megafire’s size and severity on habitat, we predicted that 
changes in habitat selection would persist throughout the year following fire. In terms of 
behavioral modes, we anticipated that black-tailed deer would be more likely to travel through 
severely burned areas to avoid exposure, and to rest in low severity burned areas where 
perceived risk may be lower. We predicted that these behavioral adjustments would be apparent 
throughout the study period. 

Methods  

Study Site and Fire History 

We conducted this study at the Hopland Research and Extension Center (HREC hereafter) in 
Mendocino County in northern California (39°00′ N, 123°04’ W) (Figure 1). HREC is composed 
of a diverse set of vegetation types including chaparral shrublands, oak woodland savannah, and 
open grassland. HREC is characterized by a Mediterranean climate with cool, wet winters and 
warm, dry summers. HREC also operates as a working rangeland landscape, containing a sheep 
farming facility and several agricultural plots throughout the property.  

On July 27, 2018, the River Fire (southern half of the Mendocino Complex Fire), swept through 
the northern half of HREC, burning approximately 13.76 km2 (65%) of the property. The 2018 
Mendocino complex fire burned 1,858 km2 total and is currently the third largest wildfire in 
California’s recorded history (CALFIRE-FRAP, 2022). Fires in this region typically burn 
frequently at relatively low severities in the more open woodland and grassland habitats and 
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more infrequently, but more severely in the dense shrubland chaparral habitats (Syphard and 
Keeley 2020; van Wagtendonk et al. 2018). The River Fire burned a much larger contiguous area 
and much more severely than recent fires within HREC. Atypical of fires in woodland fire 
regimes, several oak trees (Q. kelloggii, Q. douglassi, and Q. lobata), whose acorn masting 
normally provides a key food resource for local deer populations, were top-killed in certain high 
severity patches of the this fire.  
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Figure 1. Maps of the 2018 Mendocino Complex Fire and the study site, the U.C. Hopland Research and 
Extension Center (HREC) (39°00′ N, 123°04’ W). Map “a” displays the total burn perimeter of the Mendocino 
Complex Fire. This fire burned into HREC on July 27, 2018. Map “b” displays the severity of the fire across the 
HREC property boundary. Sentinel-2 satellite imagery was acquired via Google Earth Engine to calculate fire 
severity. Fire severity was quantified as the Differenced Normalized Burn Ratio (dNBR). For visualization purposes, 
dNBR values were binned into categorical values based on those established by USGS as follows (Unburned = 0-99, 
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Low = 99-269, Moderate-Low = 269-439, Moderate-High = 439-659, High = 659+). Map “c” displays the 
compositional makeup of dominant vegetation types across HREC. In this map, yellow denotes grassland, green 
denotes woodland, and brown denotes chaparral shrubland. 

Monitoring Black-tailed Deer Movement and Home Range Estimation 

We deployed GPS-collars (Vertex Plus and Lotek Iridum Track M) across 28 female deer 
between July 2017 and July 2019. These data provided the basis for a natural experiment to 
observe the effects of megafire on deer movement and behavior. We programmed all collars to 
record GPS locations once per hour. Deer were captured using Clover traps and were manually 
restrained to place collars on, without the use of chemical immobilizers in accordance to our 
permit (permit #P1680002). We monitored deer remotely post-capture for multiple days to 
ensure that each deer remained healthy following capture and collaring.  

To observe how deer movement and behavior changed over time following megafire, we subset 
the collected GPS data to only include deer that had GPS points that overlapped the fire 
perimeter of the Mendocino Complex Fire, excluding 4 individual deer. We then subset the 
collected GPS points temporally into three two-month-long time periods: just after the fire 
(August 1st – October 1st 2018), the first spring green up following the fire (March 1st – May 1st 

2019), and one year post-fire (August 1st – October 1st 2019) (Supplement S1 - Table S1). We 
included two additional pre-fire time periods to compare deer home range size before and after 
the fire and to examine any seasonal differences in home range size that may impact our results. 
These additional pre-fire time periods included: two separate spring seasons before the fire 
(March 1st – May 1st 2017 and March 1st – May 1st 2018) and just before the fire (May 25th – July 
25th 2018). Within each time period, we only included individual deer that had at least 500 
recorded GPS locations, excluding 4 individual deer and using the remaining 21 for analyses. We 
removed 10 erroneous, outlier GPS locations that were greater than 2km from their consecutive 
points for these deer between hour fixes. 

For each deer and within each study period, we used the two months of collected GPS data to 
estimate individual home range sizes. We used the local convex hull (LoCoH) method to obtain 
more conservative estimates of home range size (Getz et al. 2007). We calculated 95% isopleths 
for each individual within each study period using the “adehabitatHR” (v.0.4.19) and “tlocoh” 
(v.1.40.7) packages in R to create these home ranges (Calenge 2006; Lyons 2018; R Core Team 
2021). We used a k-nearest neighbor approach with k = 15 and did not consider temporal effects 
(s = 0) based on previously determined acceptable k-values for deer in this study area (Kreling et 
al. 2021; Dougherty, Seidel, and Getz 2018). Of the 21 unique individuals collared across these 
five time periods, 13 individuals maintained their collars across two or more study periods, 
resulting in 38 study period-specific home ranges (Supplement S1 – Table S1). To assess 
whether deer home range sizes continue to change following megafire, we used paired Welch’s 
unequal variance t-test to compare deer home range sizes 1) just after fire (“Recently Burned”), 
2) the first spring following fire (“First Spring”), 3) one full year post-fire (“1 Year Post-Fire”), 
4) the spring season before fire ("Pre-spring”), and 5) just before the fire burned ("Pre-fire”).  

Environmental Covariates 

We compiled fire and other environmental covariates alongside deer movement data to evaluate 
black-tailed deer movement responses to megafire over time. We expected that fire severity, 
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predation risk, vegetation type, and time since burning would be strong predictors of both deer 
habitat selection and deer movement during each post-fire time period. Originally, we planned to 
include NDVI as a measure of forage availability across the landscape, but measures of NDVI 
were highly correlated with measures of fire severity, our primary covariate of interest. 
Therefore, we included fire severity and excluded NDVI. To quantify fire severity on the 
landscape (Eidenshink et al. 2007), we calculated the differenced Normalized Burn Ratio (NBR) 
collected via Sentinel-2 (Sentinel Hub 2022) satellite imagery (10m resolution) and processed in 
Google Earth Engine (Gorelick et al. 2017) from both before (July 25th, 2018) and after (August 
25th, 2018) the fire. NBR was calculated using the following equations (J. E. Keeley 2009): 

∆NBR = NBRprefire - NBRpostfire 

NBR = Near-infrared (NIR) – shortwave infrared (SWIR) / Near-infrared (NIR) + shortwave 
infrared (SWIR) 

We also included a quadratic term for fire severity to examine whether deer may preferentially 
select for moderately burned areas that, according to the magnet effect, may eventually have 
more nutritious forage after vegetation regrowth.  

To account for predation risk across the landscape for this study, we included a high-resolution 
mountain lion habitat suitability map produced for the entire State by Dellinger et al. 2020 in our 
analyses (Dellinger et al. 2020). This habitat suitability modeling effort used a suite of biotic and 
abiotic variables, including terrain ruggedness, canopy cover, and a rough categorical estimate of 
deer density. Mountain lions are the primary predator of black-tailed deer in this system, and we 
used this habitat suitability map to serve as a proxy of landscape of fear effects (Gaynor et al. 
2019) for deer across our study site.  

We classified the study site into three broad land cover categories: woodland, shrubland 
(chaparral), and grassland. To do this, we hand digitized vegetation layers using high-resolution 
(<1 meter) aerial imagery from the National Agriculture Imagery Program (2014-2015). In 2015, 
we ground-truthed these digitizations by checking 50 randomly generated points across the study 
site to validate classifications (results were 98% accurate).  

We checked the VIF score of covariates to ensure there was no underlying collinearity between 
modeled covariates (VIF < 3) and qualitatively inspected plotted covariates as well (Supplement 
S1: Figure S1Supplement S1: Figure S2). 

Resource Selection Functions 

We used Resource Selection Functions (RSFs) to assess black-tailed deer habitat selection across 
each post-fire time period. For the RSFs specifically, we used 95% Kernel Utilization Densities 
(KUD) in the “adehabitatHR” package in R to home ranges for each deer (Calenge 2006; R Core 
Team 2021; Barker, Mitchell, and Proffitt 2019). We use KUDs to define homeranges for the 
RSF to provide better estimates of available space to use for individual animals for probabilistic 
analyses (Lichti and Swihart 2011). We modeled habitat selection for all time periods combined 
to improve interpretability of model results. We also included an interaction term between time 
period and severity (Severity*BurnLag). We included a random effect of “Deer ID” within our 
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RSF to account for individual differences in behavior and resource availability for each deer 
(individual deer retained their same “Deer ID” across time periods). For each deer’s time period-
specific estimated home range, we randomly generated four-times as many “non-use” points 
from within each deer’s estimated KUD home range (Kreling et al. 2021). Non-use points were 
stratified by time period so that the number of non-use points had the same ratio across time 
periods as the true use points. We compared the environmental characteristics of “used” and 
“available” GPS points using a logistic regression via the “lme4” (v.1.1.27.1) package in R (R 
Core Team 2021; Bates et al. 2014).  

We used an a priori hypothesis-driven approach to select a model to describe deer habitat 
selection, that included fire severity and its quadratic term (to account for nonlinear effects), 
predation risk, vegetation type (chaparral, woodland, or grassland), and time since burn as 
covariate predictors. We used woodland as the reference vegetation category within these RSFs. 
We randomly sampled “time since burn” for each non-use point as a randomly selected date 
from within its respective time period. Prior to modeling, we standardized each of the included 
covariates (mean = 0, standard deviation = 1).  

To assess goodness of fit of the RSF model, we used the “performance” (v.0.7.3) package in R 
(Lüdecke et al., 2021) to calculate marginal and conditional R2 values for the model and visually 
inspect overall model fitting. 

Hidden Markov Movement Models 

While examining habitat selection provides an important opportunity to uncover where animals 
tend to spend time across landscapes, it is equally important to understand how animals use the 
time they spend in the areas they are selecting for and/or against as mediated by behavior. 

By defining certain movement parameters (i.e. turning angle and step-length), hidden Markov 
models (HMMs herafter) allow us to predict behavioral states of animals at individual GPS-fixes 
and compare how the distribution of these states may change in response to environmental 
covariates across a landscape, such as fire (McClintock et al. 2020). These behavioral states 
represent types of responses to an animal’s environment such as “foraging”, “traveling”, or 
“resting” (Clontz et al. 2021). 

To assess how deer behavioral decisions were impacted by megafire, we fit a hidden Markov 
model (HMM) across the combined, three post-burn time periods within our study using the 
“moveHMM” (v.1.8) package within R (Michelot, Langrock, and Patterson 2016). To 
understand how deer navigate severely burned landscapes, we modeled an HMM with two 
behavioral states (state 1 = resting, state 2 = traveling) to increase interpretability and to 
specifically observe whether deer traveling behavior changes across landscape variables to 
potentially avoid perceived risks (exposure, predation risk, etc.). We used step length (via von 
Mises distributions) and turning angle (via gamma distribution) to characterize the two 
behavioral states. We randomly generated 25 different pairs of starting values from a determined 
range of plausible starting values for each movement parameter (turning angles and step lengths) 
(Supplement S1: Table S2). We ran each randomly generated pair on the null-HMM (without 
covariates) and compared the negative-log likelihood of each. We checked that each model had 
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similar/the same maximum log-likelihood values and we selected the best fitting pair of 
movement parameters based on maximum likelihood (Michelot et al. 2017).  

Using these starting values, we fit a single hidden Markov model with a set of a priori selected 
covariates (Severity + Predation Risk + Distance to Water + Time Since Burn + Vegetation 
Cover + Severity*Time Since Burn) to estimate how the probability of being in a certain 
behavioral state (i.e. resting vs. traveling) changed as a function of these environmental factors. 
We then used the “stationary” function of the “moveHMM” package to estimate the probability 
of each GPS point being in a given behavioral state and used these to create activity budgets by 
summing the estimated probabilities for being in each state at each recorded GPS point 
(Langrock et al. 2012). We used a Chi-squared test to assess whether the proportions of the two 
behavioral states were significantly different across time periods.  

We assessed goodness of fit for the HMM using pseudo-residuals drawn from the fit model. 
Pseudo-residuals of the step length parameter should be normally distributed given good model 
fit (Farhadinia et al. 2020; Patterson et al. 2009). Therefore, we visually inspected step length 
pseudo residuals and used a Shapiro-Wilk normality test using a random subset of pseudo 
residual values (n = 1000).  

Results 

Home Range Comparison Across Seasons 

The average deer home range size across all time periods was 0.33 km2 (sd ± 0.18). Deer home 
range sizes were largest in the two time periods directly following the fire (“Recently Burned” 
and “First Spring”) and were smallest in the two pre-fire time periods (“Prespring” and “Prefire”) 
as well as “1 Year Post Fire). The average home range size was 0.40 km2 (sd ± 0.15) during the 
“Recently Burned” period and 0.49 km2 (sd ± 0.15) during the “First Spring” period. During the 
“1 Year Post Fire” time period the average home range size was 0.19 km2 (sd ± 0.07). Finally, 
during the pre-fire time periods, the average deer home range size was 0.24 km2 (sd ± 0.10) for 
the “Prespring” time period and 0.18 km2 (sd ± 0.06) during the “Prefire” time period. 
(Supplement S1: Table S1; Figure 2). We found no significant difference between deer home 
range sizes during the “Recently Burned” and “First Spring Periods (t = -1.43, df = 16.87, p-
value = 0.17). We did find a significant difference in deer home range size between the 
“Recently Burned” and “1 Year Post Fire” periods (t = 3.523, df = 11.69, p-value < 0.01), as well 
as between the “First Spring” and “1 Year Post Fire” periods (t = 5.80, df = 14.79, p-value < 
0.01). We found no significant differences between the home range sizes of the two pre-fire time 
periods, “Prespring” and “Prefire” (t = 1.26, df = 6.11, p-value = 0.25). We also found no 
significant difference in home range size between the “1 Year Post Fire” and “Prespring” periods 
(t = -0.92, df = 6.95, p-value = 0.39), as well as between the “1 Year Post Fire” and “Prefire” 
periods (t = 0.41, df = 10.11, p-value = 0.69) (Table S3). 
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Figure 2. Home range size of black-tailed deer (O. hemionus columbianus) across five time periods both before 
and after the 2018 Mendocino Complex Fire in Hopland, California, USA. The Mendocino Complex Fire burned 
July 27th, 2018. These study periods include: 2017 Spring and 2018 Spring before the fire ("Prespring”), the summer 
season just before the fire burned ("Prefire”), directly following the fire ("Recently Burned”), the first spring 
following the fire ("First Spring”), and 1 full year post fire (“1 Year Post Fire”) (from left to right). 

Resource Selection Functions 

Overall, deer avoided areas that burned at high severity, but their selection against burn severity 
was nonlinear and probability of use was actually highest at intermediate severities (Table 1). 
However, deer habitat selection of fire burned areas changed over time as an interaction with 
time since burn. During the “Recently Burned” time period, deer were more likely to avoid high 
severity areas (Supplement S1: Figure S3). Conversely, fire severity had little effect on deer 
habitat selection during the “First Spring” time period, and deer selected for higher severity 
burned areas during the final “1 Year Post Fire” period (Figure 3).   
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Table 1. Listed output estimates for each covariate of the Resource Selection Function for black-tailed deer (O. 
hemionus columbianus) following the 2018 Mendocino Complex Fire at the Hopland Research and Extension 
Center in Mendocino County, CA, USA. Beta-coefficients, standard errors, and p-values are listed for each covariate 
included in the model. For categorical vegetation types, “woodland” was used as the categorical variable. * Indicates 
statistically significant predicter of habitat selection within the model. 

Covariate b-Coefficient 95% CI p-value 

Intercept -1.21 [-1.15, -1.26] <0.001* 
Severity -0.02 [-0.02, -0.03] 0.001* 
Severity Squared -0.04 [-0.03, -0.04] <0.001* 
Predation Risk -0.09 [-0.08, -0.10] <0.001* 
Chaparral -0.41 [-0.39, -0.42] <0.001* 
Grassland -0.16 [-0.15, -0.18] <0.001* 
Time Since Burn 0.02 [0.03, 0.01] 0.01* 
Distance to Water 0.01 [0.01, - 0.01] 0.90 
Severity * Time Since 
Burn 

0.16 [0.17, 0.15] <0.001* 
 

Observations  170708   
Conditional R2 0.030   
Marginal R2 0.018   

 

 

Figure 3. Plotted response curves of deer (O. Hemionus columbianus) habitat selection in response to fire severity 
and time since fire, as predicted from a resource selection function following the 2018 Mendocino Complex Fire at 
the Hopland Research and Extension Center, CA, USA. To visualize the interaction, we used the midpoint date of 
each time period to represent a categorical “Time Since Burn” variable in the plot.  
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Deer preferred woodland habitat over grassland and chaparral following the fire. These 
vegetation cover preferences persisted across burn severities (Supplement S1: Figure S4) and 
over time.  

Hidden Markov Movement Model Results 

We found that the 25 iterations of our null model converged on very similar scores of maximum 
likelihoods (mean = 266750.40; sd = 956.38). Our best fit hidden Markov model estimated two 
deer behavioral states: a “resting” state with shorter step-lengths and wider turn angles and a 
“traveling” behavioral state with longer step-lengths and near 0 turning angles (Supplement S1: 
Figure S5; Supplement S1: Figure S6). We found a significant difference in the composition of 
behavioral states between all time periods, with deer spending a greater proportion of time 
traveling than resting immediately following fire and during the first spring (c2	= 232.97, df = 2, 
p-value < 0.001) (Figure 4; Supplement S1: Table S4) compared to the proportion of time spent 
in each state during the “1 Year Post Fire” time period.    

 

Figure 4. Behavioral state proportions for black-tailed deer (O, hemionus columbianus) at the Hopland Research 
and Extension Center in Mendocino County, California. Behavioral states for deer tracks were estimated for each 
post-fire time period by the hidden Markov model. State frequencies represented the summed probabilities of each 
GPS point being in a specific behavioral state.   

Deer behavioral states changed as a function of fire severity. Deer were most likely to be in the 
“resting” behavioral state in unburned and moderately burned areas across all time periods 
(Figure 5a). At high severities, deer were more likely to be in the “traveling” behavioral state.  
The probability of deer being in the “traveling” behavioral state at high severities was 
significantly higher during the “Recently Burned” time period than the other two time periods 
(Figure 5b). The effect of fire severity on deer behavioral states remained constant across 
vegetation types as well (Supplement S1: Figure S7). 
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Figure 5. Behavioral state probabilities of black-tailed deer (O. hemionus columbianus) as a function of fire 
severity and time periods following the 2018 Mendocino Complex Fire at the Hopland Research and Extension 
Center in Mendocino County, California. Plot a) displays the probability of deer being in the “resting” behavioral 
state as a function of fire severity across the three time periods (“Recently Burned”, “First Spring” and “1 Year Post 
Fire”). Plot b) displays the probability of deer being in the traveling as a function of across the three same time 
periods. *Note that y-axis scaling of plots a and b are different. 

Pseudo residuals drawn from the HMM suggested good model fit for the deer track data. Overall, 
plotted pseudo-residuals of deer step-lengths appeared normally distributed (Supplement S1: 
Figure S8). We failed to reject the null hypothesis of the Shapiro-Wilks significance test (W = 
0.99, p-value = 0.61), suggesting pseudo-residuals were drawn from a normal distribution.  

Discussion 

We found evidence to suggest that deer are resilient to the impacts of megafire across a one-year 
time scale. By adapting their fine-scale behavioral movements, black-tailed deer were able to 
effectively adjust to a shifting landscape following megafire. We found that black-tailed deer 
habitat selection and the composition of movement-inferred behavioral states changed as a 
function of fire severity and time. As Kreling et al., 2021 outlined, ungulate home ranges were 
larger directly following megafire, but we found that this effect does not persist over time. Deer 
home range size was significantly higher during the first two time periods following megafire 
(“Recently Burned” and “First Spring”) compared to the pre-fire time periods (“Prespring” and 
“Prefire”) and “1 Year Post-Fire”. The scale of the change in home range size observed in this 
study exceeds what has previously been observed in other studies caused by normal inter-season 
variation (Ganz et al. 2022; Forrester, Casady, and Wittmer 2015), suggesting megafire had a 
significant effect on deer home range size and space usage. Directly following megafire, deer 
strongly avoided areas that burned at high severity, but this effect waned in the initial spring 
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months following fire and inverted by the “1-Year Post-Fire” time period, with deer instead 
selecting for habitat that burned at higher severities. Similarly, deer were more likely to move 
than to rest in high severity areas immediately following megafire, but this effect diminished 
over the course of the year. Though Kreling et al., 2021 previously theorized that megafire could 
negatively impact the short-term fitness of deer by decreasing the body condition of individuals 
in this region, our results suggest that the behavioral adjustments made by individuals are 
effective coping mechanisms for the potential consequences of megafire. This observed 
behavioral plasticity may also allow deer to eventually take advantage of the resulting resources 
that become available over time.  

Fire severity was a significant predictor of deer habitat selection, but we found that the direction 
of selection (against high severity areas vs towards high severity areas) changed as an interaction 
with the amount of time that had passed since the fire burned. As observed in previous studies 
(Kreling et al. 2021), black-tailed deer avoided high severity burned areas in the immediate 
aftermath following the fire, potentially to avoid exposure to predators in cover-less areas or to 
select for areas with higher forage availability. During the first spring green-up following 
megafire, however, we found that deer began to select for areas that burned at moderate 
severities. Finally, and contrary to our initial hypotheses, we found that deer actually selected for 
high severity burned areas during the final time period of the study (“1-Year Post-Fire”). We 
expected that the high severity burned areas would be depleted of resources for the duration of 
our study, but these results suggest that once the vegetation in these severely burned areas is able 
to recover, these areas may attract herbivorous species (Funk, Koenig, and Knops 2016). This is 
at least partially supported by a brief, qualitative look at the relationship between forage quality, 
as represented by EVI, and fire severity in the latter time periods of the study (Supplement S1: 
Figure S9) in which forage quality is higher at moderate severities during “First Spring” and 
increases at high severities during “1 Year Post Fire”. Both findings during the “First Spring” 
and “1 Year Post-Fire” time periods support the observed “magnet effect” seen in several other 
studies in which ungulate species preferentially chose to use recently burned areas that have 
enhanced forage (Raynor, Joern, and Briggs 2015; Gureja and Owen-Smith 2002), highlighting 
the important role fire continues to play in these ecosystems for ungulate species despite broader 
changing trends in fire regimes and climate change.  

The proportion of estimated deer behavioral states changed over the course of the study and the 
probability of being in certain behavioral states (traveling vs resting) varied significantly with 
fire severity. However, contrary to our initial hypotheses, we found the probability of deer being 
in a certain behavioral state as function of severity was not constant across time periods, but 
instead changed across time. Initially following megafire, we found that deer were more likely to 
travel through severely burned areas and spent more time resting in low severity areas. This 
strategy may allow deer to avoid spending too much time in riskier, exposed areas, and to spend 
more time in the limited areas that contain food and shelter (Nimmo et al. 2019). Immediately 
following megafire, deer moved across larger areas with a higher frequency of larger step-
lengths. This, as both a result of and in combination with an overall decrease in resource 
availability, may potentially result in the decreased body condition of ungulates following 
megafire observed in the study area (Kreling et al. 2021). However, the probability of deer being 
in the traveling state in severely burned areas decreased over time. Our results suggest that black-
tailed deer in this study area have great capacity for short-term behavioral plasticity to allow 
quick adjustments of their behavior patterns in response to disturbance and vegetation recovery. 
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This mirrors similar findings in nearby deer populations that were found to adjust to seasonal 
changes in food availability by adjusting their habitat selection in the summer and winter months 
(Bose et al. 2018) and may suggest a broader evolutionary adaptation to these types of extreme 
fire regimes (Romme et al. 2011). The initial drawbacks of high site fidelity following megafire 
may be offset by the eventual regrowth of increased vegetation resources in burned areas that 
deer can take advantage of as time passes, facilitating their choice to remain in these areas 
following fire (Morrison et al. 2021). While previous work has shown that species traits and fire 
characteristics play an important part in creating mammalian resilience to fire disturbances 
(Pocknee et al. 2023), this study highlights the key role of behavior underlying these observed 
effects.  

Changes in deer habitat selection and behavior over time may depend on how and when 
vegetation cover recovers. We found that deer strongly selected for woodland habitat and, as 
expected, strongly selected against chaparral habitat, which burns naturally at high severities and 
is very exposed following wildfire. Deer likely avoided these open areas to avoid conspicuous 
encounters with predators (Pierce, Bowyer, and Bleich 2004). We did not find a relaxation in the 
avoidance of high predation risk areas over time following wildfire as anticipated, but predator 
avoidance may instead be represented by the selection against fire severity and/or certain 
vegetation type parameters within the model. Future work that utilizes concurrent movement 
data from both ungulates and their predators could help fill this gap by explicitly examining how 
predator-prey interactions change following megafire and elucidate whether and for how long 
these events amplify or diminish the intensity of these interactions (Doherty et al. 2022). 

During this study, we observed a preference for burned areas by black-tailed deer in the latter 
time periods, potentially highlighting some of the benefits of returning wildfire to fire adapted 
ecosystems. Whereas megafire is a more extreme example of fire disturbance, more moderate 
disturbances such as prescribed fire and/or managed wildfire are known to perform important 
ecological work in maintaining key ecosystem functioning for local communities (Sangha et al. 
2021) and generating improved habitat and resources for wildlife (Connor et al. 2022), without 
the more deleterious impacts created initially by megafire. These managed wildfire approaches 
also serve an important function in reducing the incidence of megafires by promoting landscape 
heterogeneity and reducing continuous fuel loads (Coppoletta, Merriam, and Collins 2016; 
Stephens et al. 2014). Thus, utilizing fire management may simultaneously accomplish important 
wildlife conservation goals (habitat creation and maintenance) and wildfire management goals 
(megafire prevention) in similar fire-prone ecosystems. 

We found evidence to suggest that deer are resilient to the impacts of megafire on a 1-year time 
scale, but more work is necessary to understand whether these initial responses translate into 
longer term resilience. The lagged effects of megafire may present more challenges to species by 
altering longer cycles in resource availability (Abella and Fornwalt 2015) as well as interspecies 
interactions (Nimmo et al. 2021). For example, in oak woodland savannas where acorn masting 
is a primary food resource for many herbivorous species (Schnurr, Ostfeld, and Canham 2002; 
W. J. McShea and Schwede 1993), megafires that top-kill mature oak trees could dramatically 
alter the availability of these resources until oaks are able to regenerate and begin masting again. 
These indirect impacts could have powerful effects on future population dynamics through 
responses like individual fitness and reproduction across the previously burned landscape. Future 
work that examines how megafire influences the density and demographic trends of mule deer 
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across longer time periods could help assess the resilience of the species across broader temporal 
scales and help define the potential consequences of megafire on longer-term interspecies 
interactions such as herbivory and predation.   

Conclusion 

Despite having naturally high site fidelity in the region of our study, we found that this black-
tailed deer population had a great deal of adaptive capacity to change their movement and 
behavior to respond to the impacts and eventual resources following megafire. Climate change 
and climatic disturbances (such as megafire) may have a more severe impact on species that are 
unable to adjust their behavior to accommodate sudden changes in their environments. 
Resilience of dominant herbivores could help facilitate ecological resilience at broader trophic 
levels following disturbance. We can help facilitate and boost the natural resilience we observed 
of mule deer and other ungulates through land and fire management that promote the benefits of 
fire while simultaneously avoiding the immediate drawbacks of megafire. Identifying the 
mechanism by which these layers of resilience are produced would not be possible without 
uncovering the nuances of animal behavior that underly these observed responses.  
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Supplement for Chapter 3 

Supplement S1 – Additional Figures and Tables 

Table S1. Sample size and average home range size of deer (Odocoileus hemionus columbianus) collared at the 
Hopland Research and Extension Center, CA, USA before and after the Mendocino Complex Fire in 2018. The 
Mendocino Complex Fire burned on July 27th, 2018.   

Time Period Dates n (Number of 

Collared Deer) 

Average Home 

Range Size 

(km2) 

Home Range 

Size SD 

Prespring March 1, 2017 – 

May 1, 2018 

March 1, 2018 – 

May 1, 2018 

n = 5 0.24 ±0.10 

Prefire May 25, 2018 – 

July 25, 2018 

n = 7 0.18 ±0.06 

Recently Burned August 1, 2018 – 

October 1, 2019 

n = 9 0.40 ±0.15 

First Spring March 1, 2018 – 

May 1, 2018 

n = 11 0.49 ±0.15 

1 Year Post Fire August 1, 2019 – 

October 1, 2019 

n = 6 0.19 ±0.07 
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Figure S1. Pairwise plots of continuous covariates extracted at the Hopland Research and Extension Center CA, 
USA used for deer resource selection function models and hidden Markov models. Plots were visually inspected to 
ensure there was no underlying covariance within models. 
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Figure S2. Pairwise plots of continuous covariates extracted at the Hopland Research and Extension Center, CA, 
USA against categorical dominant vegetation types. These covariates were used for deer resource selection function 
models and hidden Markov models. Plots were visually inspected to ensure there was no underlying covariance 
within models. 
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Table S2. Starting parameter value ranges for deer behavioral state estimation at the Hopland Research and 
Extension Center, CA, USA via the two-state hidden-Markov model (HMM). We estimated two behavioral states 
using the HMM: 1) Resting and 2) Traveling. We randomly selected values from within these ranges for each state 
in 25 model iterations. We compared the Maximum Likelihood across models to ensure they converged similarly 
and selected the starting parameters from the model that had the best fit in terms of maximum likelihood.  

Parameter  Resting Traveling 

Step Length mean min 

max 

0 

100 

400 

500 

Step Length standard deviation min 

max 

50 

75 

100 

200 

Turning Angle mean  p 

 

0 

Turning Angle concentration min 

max 

0.1 

0.5 

0.5 

3 

Zero mass parameter  0.001040555 0.001040555 

 

Table S3. Welch’s t-test results of home range size comparisons across different time periods before and after the 
2018 Mendocino Complex Fire. The 2018 Mendocino Complex Fire burned through the Hopland Research 
Extension Center July 27, 2019. “Recently Burned” corresponds to deer home ranges estimated between August 1st, 
2018 – October 1st, 2018. “First Spring” corresponds to home ranges estimated between March 1st, 2019 – May 1st, 
2019. “1 Year Post Fire” corresponds to home ranges estimated between August 1st, 2019 – October 1st, 2019. 
“Prespring” corresponds to two combined springs seasons that occurred before the date of the fire: March 1st, 2017 – 
May 1st, 2017 and March 1st, 2018 – May 1st, 208. “Prefire” corresponds to deer home ranges estimated between 
May 25th, 2018 – July 25th, 2018. * denotes significant difference in home range estimates. 

Test t df p-value 

Recently Burned x 

First Spring 

-1.434 16.868 0.170 

Recently Burned x 1 

Year Post Fire 

3.523 11.689 0.004* 
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Recently Burned x 

Prespring 

2.355 11.645 0.037* 

Recently Burned x 

Prefire 

3.921 10.786 0.002* 

First Spring x 1 

Year Post Fire 

5.802 14.786 0.001* 

First Spring x 

Prespring 

4.122 11.652 0.002* 

First Spring x 

Prefire 

6.385 14.184 0.001* 

1 Year Post Fire x 

Prespring 

- 0.915 6.9523 0.391 

1 Year Post Fire x 

Prefire 

0.408 10.113 0.692 

Prespring x Prefire 1.258 6.112 0.254 
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Figure S3. Plotted beta coefficients of the Resource Selection Function model for black-tailed deer (O. hemionus 
columbianus) following the 2018 Mendocino Complex Fire at the Hopland Research and Extension Center, CA, 
USA. Associated standard error bars for each covariate are also plotted. All covariates to the left of the origin (0.0) 
are negatively associated with deer habitat selection all covariates to the right of the origin are associated with 
positive habitat selection. Covariates whose standard error ranges that do not overlap 0 were found to be statistically 
significant relationships.   
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Figure S4. Plotted effects of fire severity and vegetation type on black-tailed deer (O. hemionus 
columbianus) habitat selection, as predicted from a Resource Selection Function following the 
2018 Mendocino Complex Fire at the Hopland Research and Extension Center, CA, USA. To 
visualize the interaction, we used the midpoint date of each time period to represent a categorical 
“Time Since Burn” variable in the plot.  
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Figure S5. Histogram of step lengths and density of each predicted state from the best fitting hidden Markov 
model for deer behavior at the Hopland Research and Extension Center, CA, USA. State 1 corresponds to “resting” 
and State 2 corresponds to “traveling”. 
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Figure S6. Histogram of turning angles and density plots of each predicted state from the best fitting hidden 
Markov model for deer behavior at the Hopland Research and Extension Center, CA, USA. State 1 corresponds to 
“resting” and State 2 corresponds to “traveling”. 

Table S4. Contingency table of deer behavioral states as estimated from the hidden Markov model for deer 
behavior at the Hopland Research and Extension Center. Behavioral states for each GPS-point were estimated using 
the “stationary” function of the “moveHMM” (v.1.8) package in R where State 1 = resting and State 2 = traveling. 
State probabilities for each GPS-point were then summed across within each Time Period (Recently Burned, First 
Spring, or 1 Year Post Fire). 

State Recently Burned  First Spring 1 Year Post Fire 

1 (Resting) 4558.304 6304.815 3767.693 

2 (Traveling) 8553.696 9750.185 4562.307 
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Figure S7. Behavioral state probabilities of black-tailed deer (O. hemionus columbianus) as a function of fire 
severity and dominant vegetation type. Plot a) displays the probability of deer being in the “resting” behavioral state 
as a function of severity across the three dominant vegetation types (“Chaparral”, “Grassland”, and “Woodland”). 
Plot b) displays the probability of deer being in the traveling state as a function of severity and across the three 
dominant vegetation types. *Note that y-axis scaling of plots a and b are different. 
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Figure S8. Plotted histogram of step-length pseudo residuals from the fit hidden Markov model. The hidden 
Markov model was fit on deer GPS data following the 2018 Mendocino Complex Fire at the Hopland Research and 
Extension Center, CA, USA. We drew a random sample of pseudo-residuals from the fitted HMM to check 
goodness of fit of the model (n = 1000).  
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Figure S9. Plotted relationship of forage quality, as represented by EVI, and fire severity in the last two time 
periods of the study following the 2018 Mendocino Complex Fire at the Hopland Research and Extension Center, 
CA, USA. 1000 points were sampled across the study area and EVI and severity values were extracted at each point. 
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Chapter 4 
 
Severity and pyrodiversity shape avian and bat species distributions following an 
oak woodland megafire  
 
Kendall L. Calhoun, Phoebe Parker-Shames, Zachary Steel, Haylee Oyler, Justin S. Brashares 
 
Abstract 

Anthropogenic pressures have altered fire regimes across the western US. These altered fire 
regimes, and the megafires they often produce, threaten ecologically and economically critical 
ecosystems and biodiversity across this region. Oak woodland savannas, in particular, may be 
sensitive to altered fire regimes, but there remains a significant gap in our understanding of how 
different characteristics of wildfire impact these ecosystems and the wildlife species that reside 
within them. In this study, we use an occupancy modeling framework to investigate how fire 
severity and pyrodiversity of a major wildfire in northern California impact the distributions of 
bird and bat species assemblages. We use acoustic monitors deployed across the Hopland 
Research and Extension Center following the 2018 Mendocino Complex Fire to examine how 
patterns of fire severity and pyrodiversity influence habitat preferences across a diverse 
community of woodland bird and bat species. We find that both taxonomic groups were resilient 
to the impacts of this megafire over time. While local scale pyrodiversity had negligible effects 
on species distributions, we found that moderate severity fire increased occupancy of bats, 
insectivorous birds, and tree nesting birds, but high severity fire decreased occupancy of ground 
nesting birds and granivorous birds. Due to the variable effects of severity across different 
species groups, fire and land management that can produce a variety of fire severity patches 
(broader scale pyrodiversity) can help preserve landscape heterogeneity in woodland savannas 
and improve regional wildlife biodiversity.  
 
Introduction 

Fire plays a major role in shaping patterns of species distributions and diversity in many 
ecosystems across the world (McLauchlan et al. 2020; Viljur et al. 2022). The historical and 
contemporary anthropogenic use of fire in particular is an important tool for managing 
ecosystems in ways that benefit wildlife use and ecosystem services (Christianson et al. 2022). 
However, researchers continue to debate the exact mechanisms by which fire produces some of 
these observed effects (Jones and Tingley 2021). Simultaneously, land-use change and climate 
change have greatly increased the frequency of fires that exceed 100 km2, also known as 
megafires, that greatly exceed the severity and size of historical wildfires (Linley et al. 2022). 
These megafires threaten large landscapes, potentially altering resource availability for wildlife 
across both space and time.  
 
Fire severity and pyrodiversity are key mechanisms that shape biodiversity in many fire-prone 
landscapes. Fire severity, or the measured change in living vegetation in response to fire, may 
play a significant role in driving the distributions of wildlife species following fire. For example, 
high severity fires potentially remove food, nesting, and other habitat resources for certain 
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species (J. E. Keeley 2009), while low and moderate severity fires may serve as intermediate 
disturbances that enhance habitat as well (Novoa et al. 2021). The dynamics of fire severity also 
vary across time and space, which is measured by pyrodiversity, or the variation in fire regime 
characteristics across landscapes (Zachary L. Steel et al. 2021). Variation in fire severity across 
space (“spatial pyrodiversity”) and variation in the timing of burns (“temporal pyrodiversity”) 
across landscapes may encourage the production of a diverse mosaic of vegetation types and 
interact with fire severity to create more complex dynamics. For example, some species, such as 
the black-backed woodpecker, may depend on habitat types or resources, such as woodboring 
beetle, generated by fire (Tingley et al. 2023). Overall, however, greater habitat heterogeneity 
created by pyrodiversity is expected to support greater species diversity at a broad community-
scale (Beale et al. 2018; Ponisio et al. 2016) and may even enhance community resistance to 
future disturbances (Ponisio 2020). Theoretically, wildlife communities are adapted to the 
historic regimes of an area, and deviations from these historic patterns (e.g. uncharacteristically 
frequent or severe fire or reduced pyrodiversity) may have negative effects on wildlife 
communities (Jones and Tingley 2021). Understanding how severity and pyrodiversity shape 
wildlife communities in burned landscapes will be key to informing conservation actions that 
support wildlife species in our current era of global change. These insights are especially critical 
in non-forested fire-prone ecosystems, like woodland savannas and shrublands, where we have 
relatively limited research on the impacts of fire on ecological communities (Calhoun et al. 
2021). 
 
A better understanding of the role fire regimes play in non-forested ecosystems can help guide 
the implementation of prescribed burning in landscape and wildlife management in oak 
woodland landscapes. Amidst ongoing global change pressures, fire continues to play a key role 
in several ecosystem (McLauchlan et al. 2020), including ecologically diverse oak woodland 
savannas in the Western US. Oak woodlands often serve as important working landscapes by 
providing critical ecosystem services, such as agricultural production and pest control, to the 
human communities around them while simultaneously supporting key wildlife communities 
(Kremen and Merenlender 2018; Huntsinger and Oviedo 2014). Historically, Indigenous 
communities used fire in woodland-scrublands to burn the understory in order to facilitate 
hunting and resource acquisition (Anderson 2006). Shifting fire regimes caused by more recent 
fire suppression and other anthropogenic pressures such as climate change may cause significant 
damage to the short- and long-term composition and functioning of these landscapes by 
increasing tree mortality of mature oaks that are top-killed by excessively severe fires. 
Furthermore, changes in fire regimes are predicted to have greater consequences for biodiversity 
in savanna-type ecosystems, such as oak woodlands, than other fire prone-ecosystems (Kelly et 
al. 2020). 
 
Bird and bat communities provide key ecological functions that support broader ecosystem 
services in these oak woodland communities such as agricultural pest removal (López-Hoffman 
et al. 2010) and oak regeneration (Martínez‐Baroja et al. 2021), but the potential positive and 
negative effects of wildfire on these species’ distributions in these ecosystems remains poorly 
understood. Previous work in conifer forest ecosystems suggests that high severity fire may 
negatively influence the presence of tree and primary cavity nesting birds (Steel et al. 2021) and 
certain insectivorous and granivorous birds (Latif et al. 2016). In contrast, increased 
pyrodiversity in these same systems has been shown to increase diversity in bird and bat 
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communities (Tingley et al. 2016; Steel et al. 2019; Jorge et al. 2022). To date, these dynamics of 
pyrodiversity and severity have yet to be investigated in oak woodland ecosystems, which are 
both ecologically and economically critical in the Western US. This omission in our 
understanding leaves a profound gap in our collective approach to manage both wildlife and 
wildfire in these oak woodland systems as fire regimes continue to change, especially in the 
Wildland-Urban Interfaces where most of these woodland fires take place (Calhoun et al. 2021).  
  
In this study, we disentangled the roles fire severity and pyrodiversity play in shaping patterns of 
diversity in bird and bat communities following a major oak woodland megafire in Northern 
California. We use automatic recording units (ARUs) to survey the presence of bird and bat 
species across a large oak woodland-shrubland savanna in Mendocino County, USA following 
the historic 2018 Mendocino Complex Fire. We predicted that high severity would decrease the 
presence of certain nesting (tree) and diet groups (granivores) of birds. However, we also 
predicted that increased pyrodiversity, or variation in severity across space, would increase 
diversity in bird and bat communities. In teasing apart how each of these characteristics of fire 
(severity and pyrodiversity) influence bird and bat communities in this system, we help inform 
future management objectives in using fire to benefit wildlife and mitigate the impacts of future 
megafires.  
 
Methods 

Study Site 

We conducted our study at the 21.54 km2 U.C. Hopland Research and Extension Center (HREC) 
in Mendocino County, northern California (39°00′ N, 123°04’ W). HREC is composed of a 
diverse range of habitat types including open grassland, oak woodland, and chaparral shrubland, 
providing habitat to a diversity of bird and bat species. As is swiftly becoming more common 
across California, HREC is situated at an important intersection of wildlands and ranchlands; it 
provides habitat for a diverse group of wildlife and serves as pastoral land for people and 
livestock. HREC consists of a combination of rolling valleys and peaks with its lowest elevation 
being 164 meters and its highest at 934 meters. The region is characterized by a Mediterranean 
climate, with mild seasons and rains in the winter. 
  
On July 27, 2018, the 2018 River Fire, part of the much larger 2018 Mendocino Complex Fire, 
burned over 13.76 km2, or roughly half, of the Hopland Research and Extension Center (Figure 
1). At the time, the Mendocino Complex Fire was the largest fire in California’s recorded 
history, burning 1,858 km2. This megafire was the first wildfire that burned a significant portion 
of HREC in over 60 years. The scale and severity of this fire contrasted the historical fire regime 
in this region, which is characterized by frequent, cooler fires in woodlands (5-10 years) and 
infrequent, more severe burns in shrubland habitats (30-80+ years) (Syphard and Keeley 2020). 
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Figure 1. Map of study region and study site, the Hopland Research and Extension Center (HREC). Map 1a) 
displays the total coverage and severity of the Mendocino Complex Fire and where it overlapped with b) the 
Hopland Research and Extension Center HREC (outlined in blue). Grayed areas at the southern half of the map are 
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unburned areas of HREC. Map 1c) depicts the variation in burn severities surrounding a single site at the 100-meter 
buffer scale used to examine pyrodiversity in this study.  
 

Acoustic Monitoring and Data Management 

To sample bird diversity following the 2018 Mendocino Complex Fire, we developed a sampling 
grid across HREC composed of hexagonal grid cells measuring 750 m across. Starting two years 
after the Mendocino Complex Fire, we deployed and rotated a set of acoustic ARU’s 
(Audiomoths model v1.1.0) across 36 sites near the centroid of each hexagonal grid in 2020-
2022. We conducted acoustic monitoring surveys during the spring-early summer (March 15th-
July 6th) each year, which corresponded with the critical nesting season. ARUs were placed in a 
plastic Ziploc bag with a small desiccant pack and fastened to a tree or fence post at least 2-
meters off of the ground. To sample the dawn chorus when songbirds are most dependably 
active, we programmed ARUs to record three 5-minute recording clips: one 30-minutes before 
sunrise, one at sunrise, and one 30-minutes after sunrise (15-minutes per day total, sampling 
frequency = 32 khz) (Furnas and Callas 2015). We sampled each site for a minimum of 4 days 
(range = 4 – 62 days, median = 8 days). 
  
To classify species recorded at each sampling site, we used BirdNet (Kahl et al. 2021) to auto-
classify each detected bird vocalization within our recorded acoustic data. BirdNet detects and 
auto-classifies birdsong in 3-second segments to species-level identifications which can then be 
used as presence/absence data for modeling. To guide BirdNet auto-classification, we created a 
custom species list generated from eBird sightings of birds at HREC (Supplement S1: Table S1). 
Consistent point counts of birds are performed at HREC annually by researchers and community 
science activities that support these up-to-date species lists (Pascoe et al. 2023; Newman et al. 
2018). For initial classification purposes only, we set the confidence threshold for auto-
classifications at 0.01 to include as many detections as possible and left all other BirdNet settings 
as default.  
  
For analyses, we followed the established guidance of Toenies and Rich (2021) and Cole et al. 
(2022) to process the collected acoustic data using a set of validation and tiered filtering methods 
to remove probable false positive detections (Toenies and Rich 2021; Cole et al. 2022). Whereas 
in bat ultrasonic call validation (see Ultrasonic Monitoring and Data Management) we were able 
to conservatively validate the presence of species for each sampling night per site, we were 
unable to vet the presence of every detected bird species for each site and each occasion due to 
the much larger number of bird species and sampling occasions. Firstly, we removed all 
detections with confidence scores less than 0.50 across all detected bird species. We randomly 
selected 50 of the remaining 3-second calls annotated by BirdNet from each detected bird species 
and validated whether the detection was a true or false positive. At least two team members 
validated a subset of the 50 total detection calls for each species. For species with less than 50 
calls, all calls detected by BirdNet were validated (n = 25 species). We created a species-specific 
confidence threshold by selecting the false positive detection with the highest confidence score 
(as generated by BirdNet) and adding a buffer of 0.05, filtering out all detection calls with 
confidence scores lower than this threshold (Cole et al. 2022). For species with no false positives 
in their 50 validated calls, we set the threshold to be 0.05 greater than the lowest true positive 
score for that species. After validation-based filtering, we only included bird species detected at 
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5 or more sites for modeling to ensure each modeled species had enough detections to obtain 
accurate estimates from our models (n = 40 species). Once complete, we produced a record table 
of these bird detections for analyses in R (R Core Team 2021) using “camtrapR” (Niedballa et al. 
2016) (v.2.2.0). 
 

Ultrasonic Monitoring and Data Management 

To sample bat diversity across HREC following the Mendocino Complex Fire, we used a similar 
sampling method as the bird acoustic study design. We deployed ultrasonic ARU’s (Wildlife 
Acoustics Minibats, model #SMU01050) across the same sampling sites as the Audiomoths from 
2020-2022. Minibats were deployed from late May through early July each year, corresponding 
to the critical maternal season. Minibats were programmed to record triggered recordings of 
passing bat calls each night, as opposed to continuous recording. Each bat ARU was deployed at 
a site for a minimum of 3 consecutive nights (range = 3 – 10 nights, median = 4 nights). Minibats 
were fastened onto trees or fences 2-meters or more above the ground and positioned to face 
gaps in tree clutter to facilitate clearer recordings of ultrasonic calls.  
  
We used Sonobat West (v.19.9.27.0) and western regional library with reference calls for all 12 
detected bat species to classify, visualize, and vet recorded bat calls by species 
(www.sonobat.com). First, we used the “Sonobat Batch Scrubber” feature to filter out non-bat 
ultrasonic calls from the recorded data. Next, we used the “SonoBatch” classifier feature to 
classify detected calls as recorded bat species. We set the classifier region setting to “Western 
US” to guide these classifications. We set the acceptable quality threshold for bat calls to 0.80, 
sequence decision threshold to 0.90, and allowed a maximum of 8 calls to be considered per file. 
Sonobat automated classification is purposefully conservative to reduce the likelihood of false 
positive detections across species. Once classified by Sonobat, we vetted species classifications 
at each site, conservatively ensuring that at least one detected call for each species was a true 
positive for each monitoring night at each site. False positive species detections during specific 
monitoring nights were removed. Once complete, we produced a record table of all bat species 
detections across all sites and years. 
 

Fire Covariates 

We use an occupancy modeling framework to describe species distributions over time which 
predicts the probability of a species occurring at site (“occupancy”) given how detectable it is at 
a site (“detection probability”) (MacKenzie et al. 2002). Both occupancy and detection 
probability can be associated with environmental covariates, and we predicted fire effects and 
other environmental covariates would influence the detection and occupancy of bird and bat 
species during our study. 
  
To quantify fire severity on the landscape, we used the Composite Burn Index (CBI) layer of the 
2018 Mendocino Complex Fire generated using pre- and post- fire LandSat imagery following 
Parks et al. (2019) (Parks et al. 2019). CBI is a characterization of burn severity based on the 
impact of fire on above ground vegetation (litter, herbs, shrubs, and trees) and thus provides an 
ecologically relevant quantification of fire’s effects on wildlife habitat. From this raster, we 
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extracted the average severity value from within a 100m and 500m buffer surrounding each 
acoustic sampling site predicting that local scale fire severity would drive species occupancy. We 
predicted that species’ responses to fire severity may be non-linear, with some species potentially 
attracted to moderately burned sites, and therefore included a quadratic term for CBI in the 
occupancy sub-model.  To quantify pyrodiversity, or the variation in fire severity surrounding 
sites, we extracted the standard deviation of fire severity from a 100m and 500m buffer 
surrounding each acoustic sampling site. As a derivation of severity, pyrodiversity is often highly 
correlated with fire severity. We therefore follow the guidance of Steel et al. (2019) to calculate 
variation while correcting for mean severity and derive pyrodiversityi as the residual values from 
the equation Severity_StandardDeviationi = Severity_meani + Severity2i (Steel et al. 2019). To 
account for how the amount of time since burning may impact occupancy, we assigned the 
number of years that had passed since the fire occurred for each sampled site-year (3-5 years). 
 

Environmental Covariates 

In addition to fire severity and pyrodiversity, we also expected that pre-fire canopy cover, 
elevation, and time since burning would influence bird and bat species presence. Canopy cover 
and elevation has been found to influence bird and bat communities at broad regional scales by 
providing food, nesting, roosting, and microhabitats for species (Herrando and Brotons 2002; 
Fuentes-Montemayor et al. 2013; Mendelsohn et al. 2008). Furthermore, we expected that pre-
fire canopy cover was indicative of site-specific habitat types (open grassland vs. woodland or 
shrublands) and therefore predicted that pre-fire canopy cover would influence species presence 
following fire.  
 
We estimated canopy cover using 20-meter resolution imagery from Sentinel Hub (Sentinel Hub 
2022) to create canopy rasters via object-based image analysis and supervised classification in 
ArcGIS Pro (Esri 2011) for the years 2017 and 2020 to obtain pre- and post-fire canopy cover 
estimates (Calhoun et al. 2023).  These rasters were visually verified using fine scale, 3-m 
resolution imagery via Planet Labs (Tilahun 2015; Planet Team 2017; Sunde et al. 2020). We 
used pre-fire canopy cover as a predictor in the occupancy submodel and post-fire canopy cover 
as a predictor in the detection submodel (below). We extracted 2017 canopy cover values (1 = 
canopy, 0 = no canopy) from a 100m buffer around each sampling location and calculated 
percent canopy cover in the buffered radius to represent canopy cover for each site. We obtained 
elevation for each site using the ASTER Global Digital Elevation Model (NASA and METI 
2011). Average values were extracted from a 100m buffer around each camera site.  
  
We predicted calendar date, wind speed, temperature and canopy cover would affect the 
detectability of bird and bat species at recording stations. To account for certain birds and bats 
being more or less active during the beginning, middle, or end of the spring season (Furnas and 
McGrann 2018), we incorporated Julian day, and its quadratic term, for each detection in our 
occupancy models. Similarly, daily temperatures may impact the activity and call rate of both 
birds (Puswal, Jinjun, and Liu 2021) and bats (Jorge et al. 2021), so we extracted daily 
temperature data across HREC to account for this. Detections of bird song and bat calls may be 
further influenced by ambient noise caused by wind or the density of vegetation in the 
surrounding area (“canopy cover”). HREC contains six weather stations located across the 
property that record wind speed and temperature once per hour. We downloaded both logs to 
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calculate average daily temperatures (℉) and wind speeds (mph) across the property for each 
sampling day of our study. Finally, we used post-fire canopy cover estimates (year = 2020) 
described above to examine how canopy cover and openness influence detectability. All 
continuous covariates were checked for non-collinearity and standardized to have a mean of 0 
and standard deviation of 1. See Table 1 for mean, range, and resolution of all covariates.   
 
Table 1. Mean, range, and resolution of covariates included in detection and occupancy sub-models of the multi-
species occupancy model for acoustic data collected at the Hopland Research and Extension Center following the 
2018 Mendocino Complex Fire. 
 

Covariate Mean Range Resolution 

Detection Covariates 

Julian Date - 74 – 187 (March 15th 
– July 6th) 
 

- 

Wind Speed 2.98 mph 1.2 – 6.5 mph Daily average across 
HREC 

Temperature 59.81 F° 39.7 – 84.3 F° Daily average across 
HREC 

Post-Fire Canopy 
Cover (%) 

77.23 % 0 – 100 % 100 m buffer 

Sampling Effort 11.13 days (Birds) 
4.84 days (Bats) 

4 – 62 days (Birds) 
3 – 10 days (Bats) 

- 

Occupancy Covariates 

Elevation 489.54 m 213.07 – 898.45 m 100 m buffer 
Pre-Fire Canopy 
Cover (%) 

68.41 % 3.80 – 100 % 100 m buffer 

Composite Burn 
Index (CBI) 

0.89  0 – 2.46 100 m buffer 

Pyrodiversity 
(Variation in CBI) 

0.10 0 – 0.42 100 m buffer 

TimeSinceBurn 4 years 3-5 years - 
 

Occupancy Modeling Framework 

We fit two multi-species community occupancy models (Devarajan, Morelli, and Tenan 2020; 
MacKenzie et al. 2002; Royle and Dorazio 2008), one for each taxonomic group, to investigate 
the effects of fire severity and pyrodiversity on patterns of species’ distributions and community 
richness. Occupancy models consist of two, linked estimated parameters from two sub-models: 
occupancy probability (𝛹), the probability that a given species occurs at a site, and detection 
probability (p), the probability that a given species is detected at a site, given that that site is 
occupied by the species. Multi-species occupancy models contain an additional layer which links 
each individual species together under a common community-level hyperparameter. Our acoustic 
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sampling methodology was designed to sample across a diversity of bird and bat species to 
inform our assessment of community composition and richness, but there may be some 
limitations in interpreting species-specific results for each species. For example, our modeling 
framework relies on the assumption of non-independence between sites to obtain estimates of 
occupancy (𝛹), but one bird species, common raven (C. corax), may violate this assumption due 
to it having a home range size that may encompass more than one acoustic sampling location. 
Due to this potential for non-independence, we do not interpret occupancy estimates (𝛹) for this 
species as true-occupancy and instead use it as a measure of relative use between sites (Kays et 
al. 2020). Specifically, model estimates in this regard may be overly confident for ravens if a 
single individual is detected across multiple sites (pseudo-replication). We believe, however, that 
this occurrence would be relatively rare given our relatively short sampling windows and the 
relationship between site use and the examined covariates should be robust to these rare model 
violations (O’Connell et al. 2006). We defined a binary latent true occupancy variable, zi,j, where 
zi,j = 1 indicates that at least one individual of species (i) used the area covered by the acoustic 
sampling station in year (j) and zi,j = 0 indicates that no individual of species (i) used the area 
covered by the acoustic sampling station in year (j). We assumed that occupancy was drawn 
from a Bernoulli distribution with probability (𝛹I,j): 
 

Zi,j ~ Bernoulli(𝛹I,j) 
 
We treated each survey morning or night (depending on taxa) as a sampling occasion (k) within 
our occupancy model. We estimated the probability of detecting a species, yi,j,k, as being 
conditional on the species’ detection probability at each site, pi,j, and the latent occupancy state 
of that species, (zi,j):  
 

yi,j,k ~ Bernoulli(pi,j * zi,j) 
 

We incorporated site-specific fire and other environmental covariates that were predicted to 
influence species-specific occupancy (𝛹i,j) and site- and species-specific detection probability 
(pi,j) via the following equations:  
 
Logit(𝛹I,j) = ⍺0i + ⍺1i * Elevationj + ⍺2i * PreFireCanopyj + ⍺3i * Severityj + ⍺4i * Severity2j + 

⍺5i * Pyrodiversityj + ⍺6i * TimeSinceBurnj + Site Random Effectj 
 

Logit(pi,j) = β0i + β1i  * Datej,k + β2i  * Date2j,k + β3i * WindSpeedj,k + β4i * Temperature + β5i * 
PostFireCanopyj + Site Random Effectj 

 
We considered including an interaction between “pyrodiversity” and “Time Since Burning” to 
represent how the effects of pyrodiversity may be strengthened over time, but decided the 
temporal scale of our study was too short to capture this aspect (3-5 post-fire).  
 
We treated each site-year as a unique site, which, unaccounted for, would assume a shared 
underlying occupancy and detection state between years of sampling. To account for pseudo-
replication, we included species-specific site random effects within the occupancy and detection 
sub-models to account for non-independence between surveys at sites. Due to data limitations, 
we chose not to represent data collected across years as a dynamic occupancy model.  
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Site Random Effecti,j ~ Normal(0, σ) 

  
To gain community-level inferences on our data, we modeled the effects of each variable on the 
occupancy and detection of each observed species as a random effect from a normally distributed 
community-level hyperparameter with a shared mean of μ⍺	 and a standard deviation of σ⍺ (Zipkin 
et al. 2010): 
 

⍺i ~ Normal(μ⍺, σ ⍺) 
 

This multi-species modeling approach enables robust inference on community-level variables 
while simultaneously examining the effects of covariates on species-level occupancy and 
detection (Iknayan et al. 2014). We use the community-level hyperparameters to assess the 
relationship between modeled covariates and species richness across sites.  
 
We fit two additional multi-species occupancy models using the bird occurrence data and with 
identical model parameterizations as the community-level MSOM, this time assigning 
hyperparameters to groups of species as defined by nesting (tree, primary cavity, secondary 
cavity, ground, shrub) and diet (granivore, insectivore, omnivore, nectarivore) guilds, rather than 
the entire community. These guilds were assigned to modeled species according to their known 
life histories (Wilman et al. 2014). Birds whose diets were of greater than 60% of plant material 
were grouped as “granivores” and birds whose diets were composed of greater than 60% of 
invertebrates were grouped as “insectivores”. Bird species whose diets were composed of less 
than 60% of either plant-material or invertebrates were grouped as “omnivores”. Species-level 
coefficients for each model (nesting guild model and diet guild model) were drawn from group-
level (g) hyperparameters from a group-mean of μg and standard deviation of σg following the 
community model framework given above. See Supplement S1: Table S1 for groupings of 
individual species into nesting and diet groups.   
 
Across all multi-species models we used weakly regularizing priors to avoid overfitting. We set 
priors for the means and standard deviation hyperparameters of the community’s coefficients for 
each covariate. Hyperparameter mean coefficients for each covariate were given normal priors 
with a mean of 0 and standard deviation of 2.5. All random effects and hyperparameter priors 
were half-Cauchy with scale parameter 2.5 (Northrup and Gerber 2018).    
 

Model Implementation and Fit 

We implemented and estimated all multi-species occupancy models with Markov chain Monte 
Carlo (MCMC) using the R packages nimble (v.0.11.1) and nimbleEcology (v.0.4.0) (de Valpine 
et al. 2017; Goldstein et al. 2021). We also used a model selection approach to decide what 
spatial scale of severity and pyrodiversity (100m or 500m) best fit each of the taxonomic multi-
species occupancy models. We fit a model for each fire covariate at each spatial scale, 
independently of the other fire covariate (severity or pyrodiversity were included) to compare 4 
pairs of competing models (Table 1). We compared the Watanabe-Akaike information criterion 
(WAIC) values (Andrew Gelman, Hwang, and Vehtari 2014) of each parameterization using the 
WAIC function of the nimble package in R (v.0.11.1). We ran all 3 bird multi-species models for 
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30,000 iterations with a 2,000 iteration burn in across 3 chains and used nimble custom samplers 
to increase the efficiency of MCMC mixing (A Gelman et al. 2004). We found that the bat multi-
species model had not converged when using these settings. Therefore, we ran the bat model for 
30,000 iterations with a 2,000 iteration burn in across 4 chains and used nimble custom samplers 
to aid in MCMC mixing to allow it to converge. Parameter chains for all models were assessed 
visually for convergence (Supplement S2 – Figures S1-S4).  
 
We assessed model fit for both the bat and bird the community multi-species occupancy models 
using posterior predictive checks. We simulated a new dataset using the parameters in each 
MCMC sampling iteration. We calculated the deviance of each of these datasets to obtain a 
posterior distribution of deviances produced from data simulated under the true model. We 
compared observed model deviances to these posterior checks for evidence that the data do not 
correspond to the fit models (Andrew Gelman, Meng, and Stern 1996; MacKenzie et al. 2017). 
We assessed a covariate as being a “significant” predictor of occupancy or detection if the 90% 
credible interval for that variable did not overlap zero and use this definition to describe 
significance under Bayesian inference.  
 
Results 

Bird Acoustic Survey Results 

We collected 17,190 hours of avian acoustic recordings over the course of 1,146 sampled 
mornings and across 103 site-years at 36 locations (2020-2022). From these recordings, BirdNet 
annotated over 800,000 individual detections of bird song. We validated the presence of 67 
detected species (listed in Supplement S1: Table S1). Ultimately, 40 species had enough 
validated detections, post confidence-threshold filtering (see Acoustic Monitoring and Data 
Management section), to be included in the multi-species occupancy model. Across modeled 
species, Acorn Woodpecker (Melanerpes formicivorus) was the most detected species (n = 
8,422) and Brown-headed Cowbird (Molothrus ater) was the least commonly detected species (n 
= 10) (Supplement S1: Table S2). 
 
Bat Ultrasonic Survey Results 

We collected over 190,000 ultrasonic bat detections over 1,146 sampled nights and across 99 
site-years (2020-2022) at 36 individual sites/locations. Of these detections, we subset a total of 
14,916 bat detections that were vetted to the species-level which included 13 different bat 
species (Supplement S1: Table S3). Mexican free-tailed bat (Tadarida brasiliensis) were the 
most detected species (n = 5,645) and Townsend’s big-eared bat (Corynorhinus townsendii) were 
the least detected species (n = 3) (Supplement S1: Table S3). We ultimately did not include 
Townsend’s big-eared bat in multi-species occupancy models due to few detections but 
incorporated the remaining 12 species into the bat multi-species community model. 
 

Model Selection and Goodness-of-Fit Results 

We compared eight parameterizations (four for each taxonomic group) of the community multi-
species models and compared their WAIC values (Table 2). We found that WAIC was not 
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significantly different between the 100m and 500m spatial scales of the fire covariates across 
most models. The bat severity models were the only exception to this, with the 100m buffer 
severity model performing better (i.e. lower WAIC score) than the 500m buffer severity model 
(DWAIC = +7.39). For this reason, and to facilitate easier comparison of results across all 
community and group-level models, we chose to implement the 100m buffer for both severity 
and pyrodiversity in all multi-species occupancy models and interpret those results below (i.e. 
bird community model, best nesting group model, bird diet group model, and bat community 
model). 
 
Posterior predictive checks of the bird multi-species community model (Supplement S1: Figure 
S1) and bat multi-species occupancy model (Supplement S1: Figure S2) demonstrate goodness 
of fit within acceptable bounds. The observed deviance in the top model did not differ from the 
posterior distribution of simulated deviances.  
 
Table 2. Comparison of WAIC scores of competing multi-species occupancy models with different spatial buffers 
of fire covariates (100m or 500m). Only the community-level models for the bird and bat taxonomic groups were 
used for model selection (no group-level models). All paired models performed similarly except for the bat severity 
model where the 100m buffer performed significantly better. For this reason, we chose to implement the 100m 
buffer of fire covariates for all occupancy models. 
 

Covariate Taxonomic Group Resolution WAIC DWAIC 

Severity Bird 100m 14782.58 0 
 

Bird 500m 14782.75 + 0.17 
 

Bat 100m 4877.54 0 
 

Bat 500m 4884.92 + 7.38 

Pyrodiversity Bird 100m 14780.65 0 

 Bird 500m 14780.78 + 0.13 

 Bat 100m 4885.36 + 0.33 

 Bat 500m 4885.03 0 

 
Bird Multi-Species Occupancy Community- and Group-level Model Results 
 
We used the community-level multi-species bird occupancy model to examine the species-
specific effects of fire covariates on occupancy. Fire severity and pyrodiversity did not 
significantly influence species-specific occupancy (Y) of any modeled bird species across sites 
(90% CI overlapped zero) (Supplement S1: Table S4; Supplement S1: Table S5). Lag year, 
however, significantly influenced the occupancy of one species, lazuli bunting (Passerina 
amoena). Lazuli buntings were more likely to occupy sites in the years closer to the year of the 
fire (Mean = -1.08 [-1.85, -0.31]). Fire effects were not a significant predictor of community-
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level occupancy (Figure 2), but “LagYear” was positively associated with community-level 
(hyperparameter) occupancy (Mean = 0.19 [-0.08, 0.45]).  
 

 

 

Figure 2. Model coefficients from the bird community, diet-group, and nesting-group multi-species occupancy 
models. Acoustic and ultrasonic data used in models was collected across the Hopland Research and Extension 
Center following the 2018 Mendocino Complex Fire. Detection covariate coefficients are on the left (a) and 
occupancy coefficients are on the right (b).   
 
We found that fire severity and pyrodiversity did not significantly impact group-level occupancy 
(Y) for any of the bird nesting groups (90% CI overlaps zero) (Figure 2). However, fire severity 
had a strong, non-linear correlation with the occupancy of tree nesters and shrub nesters, with 
both groups being more likely to occupy sites that burned at moderate severities (Figure 3). Fire 
severity was negatively correlated (non-significantly) with the occupancy of ground nesters 
(Mean = -0.83[-2.45, 0.66]) (Supplement S1: Table S6, Supplement S1: Table S7). Occupancy 
was positively associated with lag time following fire for secondary cavity nesters (Mean = 0.82 
[0.04, 1.63]) and ground nesters (Mean = 0.69 [0.23, 1.12]).  
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Figure 3. Severity (a-e) and Pyrodiversity (f-j) response curves of occupancy across bird nesting guilds from the 
nest-group multi-species model. 
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In the bird diet-group occupancy model, we found a significant, non-linear relationship between 
insectivore occupancy (Y) and fire severity, with insectivorous birds also more likely to occupy 
sites that burned at moderate severities (Figure 4). Granivorous birds were more likely to use 
sites that were unburned or burned at lower severities (Mean = -1.09 [-2.81, 0.62]) (Supplement 
S1: Table S8, Supplement S1: Table S9). Lag time since burning was positively associated (non-
significantly) with granivorous birds (Mean = 0.38 [-0.17, 0.95]) and insectivorous birds (Mean 
= 0.28 [-0.04, 0.06]). 
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Figure 4. Severity (a-c) and pyrodiversity (d-f) response curves of occupancy across bird diet groups from the 
diet-group multi-species model. Nectarivores were removed due to the group only having one representative species 
in the group-level model (C. anna).  
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Bat Multi-Species Occupancy Community Model Results 
 
We used the bat multi-species occupancy model to examine species-specific effects of fire 
severity, pyrodiversity, and “LagYear” on bat occupancy. We found that fire severity and 
pyrodiversity were not significant predictors of bat species’ occurrence across sites. However, 
bat occupancy across most species (11 of 12) had a non-linear relationship with fire severity, 
with these species more likely to occur at sites that burned at moderate severities (Supplement 
S1: Table S10, Supplement S1: Table S11). “LagYear” was a significant, positive predictor of 
species-specific occupancy for pallid red bat (Antrozous pallidus) (Mean = 1.70 [0.06, 3.43]) and 
silver-haired bat (Lasionycteris noctivagans) (Mean = 0.78 [0.07, 1.48]). Fire covariates were not 
a significant predictor of community-level (hyperparameter) occupancy, but the community 
hyperparameter showed a strong, non-linear correlation with fire severity (Figure 2). 
 
Discussion 

Though severe, widespread fire has the potential to cause profound harm to afflicted wildlife 
communities, we found that both bird and bat communities in our study displayed relatively high 
resistance to its effects. At the community-levels, high severity fire did not have detrimental 
impacts to community occupancy (community-level hyperparameters) for either taxonomic 
group. At finer species-specific and group-specific scales, we found that severity did influence 
habitat preferences both positively (insectivorous birds, tree-nesters, and several bat species) and 
negatively (granivorous birds and ground nesting birds). Surprisingly, we found that 
pyrodiversity had a relatively weak influence on occupancy at the community, group, and 
species-specific scales. This may be influenced by the overall recentness of this study relative to 
the fire event, with the effects of pyrodiversity potentially becoming more pronounced as time 
goes on. Correspondingly, time since burning (“LagYear”) was an important predictor of 
community-, group-, and species-level occupancy. Our results underline how wildlife 
communities in oak woodlands remain resistant, and can even benefit, from wildfire and 
prescribed burning with characteristics that replicate the regimes of historical fire patterns.  
 
Fire severity was a strong, non-linear predictor of occupancy for several species. As found across 
a variety of other studies examining the impact of fire severity on wildlife habitat usage (Steel et 
al. 2019; Furnas, Goldstein, and Figura 2021; Albanesi, Dardanelli, and Bellis 2014), we found 
species across both taxonomic groups (bats and birds) were most likely to occupy sites that 
burned at moderate severities. In this way, moderately burned areas may emulate the 
intermediate disturbance hypothesis (Shea, Roxburgh, and Rauschert 2004) and create new 
habitat and environmental niches for species within both taxonomic communities. Though we 
did not find severity to be a key driver of community-level patterns of occupancy, severity was 
an important predictor of occupancy across several individual species and species-groups. Most 
bat species (11 of 12) in our study showed a very strong (albeit statistically non-significant) 
negative relationship with the quadratic-term of severity, signifying occupancy across these 
species was positively correlated with sites that burned at moderate severities. Steel et al. (2019) 
found similar findings in their own study examining the effects of fire severity on similar bat 
communities in conifer ecosystems in the Sierra Nevada suggesting this dynamic may be shared 
across bat communities within the broader region (Steel et al. 2019). Too few sampling sites 
within our own study limit our ability disentangle whether the effects of severity on bat 
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populations are just relatively weaker in oak woodlands than these conifer systems or if we 
simply lack the statistical power to estimate this relationship precisely. Future work that expands 
the scale of this work to consider additional burned oak woodland sites at a more regional scale 
could lend the needed statistical power to estimate this relationship more precisely.  
 
Fire severity had varied effects on bird occupancy dependent on species trait groupings. Both 
insectivorous bird and tree-nesting bird groupings were more likely to occupy sites that burned at 
moderate severities. As shown in previous work (Steel et al. 2019; Saab et al. 2022), moderate 
severity fires may benefit both insectivorous bats (all bat species in this study) and insectivorous 
birds that are able to take advantage of insects attracted to these areas following the initial burn. 
Moderate severity burning that does not top-kill oak trees may also open new nesting 
opportunities over time for tree-nesting birds. Conversely, and in support of our original 
hypothesis, granivorous birds were less likely to occupy severely burned areas, likely due to an 
immediate decrease in plant-based food following high severity burning. In addition, and 
opposite to what’s been observed in conifer systems (Steel et al. 2021), ground-nesting birds 
were most likely to occupy sites on either extreme of fire severity (unburned and high severity). 
This seemingly paradoxical relationship may be due to confounding elements unrepresented in 
our current model such as vegetation type. Characterized by very heterogenous landscapes and 
habitat patches (Eastburn et al. 2017) oak woodland fire regimes are often described as having 
mixed-severity fire regimes (Agee 2005), burning at a variety of severities across different sub-
habitat types. Ground-nesting birds may prefer sites in both grassland and shrubland dominated 
areas, which burn naturally at opposite ends of the severity spectrum (low and high respectively). 
In previous iterations of our model we’ve included percent land cover as a predictor covariate of 
occupancy, but found similar patterns in the relationship between occupancy and severity across 
trait groups. Instead, future work that can increase the number of sites sampled across the three 
dominant sub-habitat types (grassland, woodland, and chaparral) could help disentangle the 
impacts of severity from habitat preferences for species and species groups.  
 
Time since burning (represented by “LagYear”) was also a significant predictor of occupancy for 
several species and species-groups. At the community-scale, both bird and bat community 
hyperparameters were positively associated with “LagYear”, suggesting that community richness 
and composition likely changed overtime following the initial fire event. Similar to the findings 
of Pascoe et al. (2023), we found species and species-groups were more likely to occupy recently 
burned areas at different stages of the regeneration process (Pascoe et al. 2023). Some species, 
like lazuli bunting (P. amoena), are most likely to occupy sites in the years closer to the fire 
event, while other species (e.g. pallid bat and silver-haired bat) and species-groups (e.g. 
secondary cavity nesting birds and ground nesting birds) are more likely to occupy sites in the 
years further from the fire date, likely waiting for nesting and food resources to recover before 
returning. Similar to more forested systems (Latif et al. 2016; Latif, Saab, and Dudley 2021), 
fires in oak woodlands may hollow tress and provide new nesting opportunities that secondary 
cavity nesters are able to take advantage of once conditions regenerate to a certain threshold. 
Importantly, species that may be sensitive to high severity patches of fire (e.g. granivorous birds 
and ground-nesting birds) appear to be able to recolonize previously burned sites in the later lag 
years of the study. Similarly, these ground-nesting and granivorous birds likely wait to return to 
recently burned sites until vegetation recovers enough to supply food and/or cover (Ensbey et al. 
2023).  
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Contrary to our original hypotheses, pyrodiversity was not a strong predictor of occupancy in 
any of the multi-species occupancy models. Within the given timescale of our study and given 
the metric for pyrodiversity we used, severity appears to play a bigger role in influencing species 
distributions relative to pyrodiversity. However, the observed impacts of pyrodiversity may be 
dependent on the temporal scale and derivation of the term (Steel et al. 2021; Jones and Tingley 
2021). As observed in other work (Tingley et al. 2016; Stillman et al. 2023) the effects of 
pyrodiversity may become more pronounced as an interaction with time. The limited timescale 
of our own study (3-5 years post-fire) may prevent us from observing the realized effects 
pyrodiversity may have in shaping species distributions over time. Furthermore, we only 
consider a single dimension of pyrodiversity within our study (“spatial pyrodiversity”) when a 
combination of both “spatial” and “temporal” (variance in fire age classes across landscapes) 
pyrodiversity likely influence species diversity and distributions over time (Kelly, Brotons, and 
McCarthy 2017). HREC’s recent history of minimal fire activity and limited prescribed burning 
somewhat limit the diversity of fire age-classes found throughout the study site, but a broader, 
regional-based study could better represent the multi-dimensional aspects of pyrodiversity and 
how they influence oak woodland wildlife communities. 

 
Our findings in comparing the effects of severity and pyrodiversity in this study are also likely 
influenced by the tools we have available to define both terms. Most quantifications of fire 
severity, such as the Composite Burn Index, used in ecological modeling are based on metrics 
calibrated in forested ecosystems. The realized ecological effects of these metrics have been 
thoroughly studied in systems such as California’s mixed-conifer forests (Miller and Thode 
2007; Miller et al. 2009), but a large gap remains in our understanding of how these metrics 
translate to non-forested systems such as woodland savannas and shrublands. Though recent 
work has begun to interrogate what these differences may be (Stambaugh, Hammer, and Godfrey 
2015; Huang et al. 2020), the same severity metrics (low, medium, or high severity burning) may 
have variable realized effects across different ecosystem types. For example, green-up in many 
oak woodland systems occurs much more rapidly following fire than in many forested systems, 
even in high severity patches (Huerta et al. 2022). Developing improved tools to quantify both 
severity and pyrodiversity may help future studies better discern the effects of both fire 
characteristics on patterns of biodiversity in oak woodland savannas.  

 
Within the timeframe of our study, we found both bird and bat community assemblages to be 
very resistant to the short-term impacts of megafire. Our findings further demonstrate the natural 
resistance and resilience of a variety of bat (Loeb and Blakey 2021; Ancillotto et al. 2021) and 
bird (Lindenmayer et al. 2022) species to severe fire effects that has been established in past 
work. Species that were potentially vulnerable to the initial fire effects of severe fire (e.g. 
granivorous and ground-nesting birds) had returned to previously burned areas as time passed, 
showcasing some resilience. Because a variety of species seem to prefer different severities of 
burning, fire management that takes this into account to produce a diversity of burned effects 
would be critical for maximizing species diversity and a broader landscape scale (Prowse et al. 
2017). In this way, considering regional pyrodiversity (not just the spatial diversity of severities 
surrounding a site) would be key in producing these intended effects with prescribed burning in 
oak woodland systems. 
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Conclusion 

Oak woodlands are renowned for their natural resilience following wildfire. Likewise, our study 
shows that, overall, oak woodland bird and bat communities showed considerable resistance and 
resilience to the impacts of megafire in oak woodland systems. Species-specific and group-
specific distributions varied by fire severity and time since burning. Therefore, fire and land 
management that can produce pyrodiversity at broader scales via variation in fire severity and 
fire age-classes across landscapes could improve habitat for a variety of species. We believe 
there is significant opportunity to employ these findings in existing structures of fire and land 
management in California rangelands and woodland savannas. In this way, goals to improve 
wildlife management in these spaces can become better integrated into current objectives of fire 
management to reduce the risk of extreme fire on ecosystems, human safety and livelihoods. 
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Supplement for Chapter 4 

Supplement S1 – Additional Figures and Tables 

Table S1. List of bird species previously recorded at the Hopland Research and Extension Center in Mendocino 
County, CA, USA. This list of species was fed to BirdNet as a custom species list to guide autoclassification of 
recorded birdsong. Species that were included in modeling (detected at 5 or more site-years after tiered validation 
filtering) were given nesting group and diet group categories based on known life history traits.  
 

Species Scientific Name Nesting Diet Included in 
Model? 

Acorn Woodpecker Melanerpes formicivorus Cavity_Primary Insectivore Y 
American Crow Corvus brachyrhynchos   N 
American Goldfinch Spinus tristis   N 
American Robin Turdus migratorius Tree Insectivore Y 
Anna's Hummingbird Calypte anna Shrub Nectar Y 
Ash-throated Flycatcher Myiarchus cinerascens Cavity_Secondary Insectivore Y 
Band-tailed Pigeon Patagioenas fasciata   N 
Bell's Sparrow Artemisiospiza belli   N 
Bewick's Wren Thryomanes bewickii Cavity_Secondary Insectivore Y 
Black Phoebe Sayornis nigricans Cavity_Secondary Insectivore Y 
Black-headed Grosbeak Pheucticus meSilver-

haired Batcephalus 
Tree Insectivore Y 

Black-throated Gray 
Warbler 

Setophaga nigrescens Tree Insectivore Y 

Blue-gray Gnatcatcher Polioptila caerulea Shrub Insectivore Y 
Brewer's Blackbird Euphagus 

cyanocephalus 
  N 

Brown-headed Cowbird Molothrus ater Tree Granivore Y 
Bullock's Oriole Icterus bullockii Tree Insectivore Y 
Bushtit Psaltriparus minimus Shrub Insectivore Y 
California Quail Callipepla californica Ground Granivore Y 
California Scrub-Jay Aphelocoma californica Shrub Omnivore Y 
California Thrasher Toxostoma redivivum   N 
California Towhee Melozone crissalis Shrub Granivore Y 
Common Raven Corvus corax Tree Omnivore Y 
Dark-eyed Junco Junco hyemalis Ground Granivore Y 
European Starling Sturnus vulgaris   N 
Fox Sparrow Passerella iliaca   N 
Golden-crowned 
Sparrow 

Zonotrichia atricapilla 
 

Ground Granivore Y 

Hermit Thrush Catharus guttatus   N 
House Finch Haemorhous mexicanus Tree Granivore Y 
Hutton's Vireo Vireo huttoni   N 
Lark Sparrow Chondestes grammacus   N 
Lazuli Bunting Passerina amoena Shrub Omnivore Y 
Lesser Goldfinch Spinus psaltria Tree Granivore Y 
Lewis's Woodpecker Melanerpes lewis   N 
Lincoln's Sparrow Melospiza lincolnii   N 
Mountain Quail Oreortyx pictus Ground Granivore Y 
Mourning Dove Zenaida macroura Tree Granivore Y 
Northern Flicker Colaptes auratus Cavity_Primary Insectivore Y 
Northern Mockingbird Mimus polyglottos   N 
Nuttall's Woodpecker Picoides nuttallii Cavity_Primary Insectivore Y 
Oak Titmouse Baeolophus inornatus Cavity_Secondary Insectivore Y 
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Olive-sided Flycatcher Contopus cooperi   N 
Orange-crowned 
Warbler 

Leiothlypis celata Ground Insectivore Y 

Pacific-slope Flycatcher Empidonax difficilis Tree Insectivore Y 
Pileated Woodpecker Dryocopus pileatus Cavity_Primary Insectivore Y 
Pine Siskin Spinus pinus   N 
Purple Finch Haemorhous purpureus   N 
Red-winged Blackbird Agelaius phoeniceus   N 
Rock Wren Salpinctes obsoletus   N 
Ruby-crowned Kinglet Corthylio calendula   N 
Rufous-crowned 
Sparrow 

Aimophila ruficeps Ground Omnivore Y 

Savannah Sparrow Passerculus 
sandwichensis 

  N 

Say's Phoebe Sayornis saya   N 
Song Sparrow Melospiza melodia   N 
Spotted Towhee Pipilo maculatus Ground Omnivore Y 
Steller's Jay Cyanocitta stelleri Tree Omnivore Y 
Tree Swallow Tachycineta bicolor   N 
Vaux's Swift Chaetura vauxi   N 
Violet-green Swallow Tachycineta thalassina Cavity_Secondary Insectivore Y 
Warbling Vireo Vireo gilvus Tree Insectivore Y 
Western Bluebird Sialia mexicana Cavity_Secondary Insectivore Y 
Western Kingbird Tyrannus verticalis Tree Insectivore Y 
Western Meadowlark Sturnella neglecta Ground Omnivore Y 
Western Wood-Pewee Contopus sordidulus Tree Insectivore Y 
White-breasted 
Nuthatch 

Sitta carolinensis Cavity_Secondary Omnivore Y 

White-crowned Sparrow Zonotrichia leucophrys   N 
Wrentit Chamaea fasciata Shrub Omnivore Y 
Yellow Warbler Setophaga petechia   N 

 
Table S2. Bird detections summary table collected at the Hopland Research and Extension Center in Mendocino, 
California, USA following the 2018 Mendocino Complex Fire. 
 

Common Name Scientific Name Detections nSites 
Acorn Woodpecker Melanerpes formicivorus 8422 82 
American Robin Turdus migratorius 652 40 
Anna's Hummingbird Calypte anna 35 6 
Ash-throated Flycatcher Myiarchus cinerascens 443 33 
Bewick's Wren Thryomanes bewickii 420 21 
Black Phoebe Sayornis nigricans 639 12 
Black-headed Grosbeak Pheucticus meSilver-haired 

Batcephalus 
175 10 

Black-throated Gray Warbler Setophaga nigrescens 35 5 
Blue-gray Gnatcatcher Polioptila caerulea 529 20 
Brown-headed Cowbird Molothrus ater 10 7 
Bullock's Oriole Icterus bullockii 57 12 
Bushtit Psaltriparus minimus 283 17 
California Quail Callipepla californica 1208 59 
California Scrub-Jay Aphelocoma californica 853 53 
California Towhee Melozone crissalis 5702 74 
Common Raven Corvus corax 160 25 
Dark-eyed Junco Junco hyemalis 581 37 
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Golden-crowned Sparrow Zonotrichia atricapilla 22 7 
House Finch Haemorhous mexicanus 66 16 
Lazuli Bunting Passerina amoena 1438 30 
Lesser Goldfinch Spinus psaltria 332 25 
Mountain Quail Oreortyx pictus 1741 27 
Mourning Dove Zenaida macroura 1193 56 
Northern Flicker Colaptes auratus 361 46 
Nuttall's Woodpecker Picoides nuttallii 164 31 
Oak Titmouse Baeolophus inornatus 3273 81 
Orange-crowned Warbler Leiothlypis celata 1261 46 
Pacific-slope Flycatcher Empidonax difficilis 1169 22 
Pileated Woodpecker Dryocopus pileatus 36 9 
Rufous-crowned Sparrow Aimophila ruficeps 373 25 
Spotted Towhee Pipilo maculatus 420 26 
Steller's Jay Cyanocitta stelleri 344 41 
Violet-green Swallow Tachycineta thalassina 1460 60 
Warbling Vireo Vireo gilvus 150 12 
Western Bluebird Sialia mexicana 505 41 
Western Kingbird Tyrannus verticalis 115 7 
Western Meadowlark Sturnella neglecta 462 10 
Western Wood-Pewee Contopus sordidulus 78 6 
White-breasted Nuthatch Sitta carolinensis 561 49 
Wrentit Chamaea fasciata 186 18 

 
Table S3. Bat detections summary table collected at the Hopland Research and Extension Center in Mendocino, 
California, USA following the 2018 Mendocino Complex Fire. 
 

Common Name Scientific Name Detections nSites 
Big Brown Bat Eptesicus fuscus 1543 72 
California Myotis Myotis californicus 4057 89 
Canyon Bat Parastrellus hesperus 315 56 
Fringed Myotis Myotis thysanodes 9 6 
Hoary Bat Lasiurus cinereus 1135 73 
Little Brown Bat Myotis lucifugus 10 9 
Long-eared Myotis Myotis evotis 126 48 
Mexican Free-tailed Bat Tadarida brasiliensis 5645 95 
Pallid Bat Antrozous pallidus 86 28 
Silver-haired Bat Lasionycteris noctivagans 810 67 
Western Red Bat Lasiurus blossevillii 402 61 
Yuma Myotis Myotis yumanensis 775 86 
Townsend's Big-eared Bat Corynorhinus townsendii 3 2 
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Figure S1. Goodness-of-fit plot for bird community multi-species occupancy model. Posterior predictive checks 
demonstrate acceptable fit of multi-species occupancy mode to the collected bat data.   
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Figure S2. Goodness-of-fit plot for bat community multi-species occupancy model. Posterior predictive checks 
demonstrate acceptable fit of multi-species occupancy mode to the collected bat data.   
 
Table S4. Species-specific covariate coefficients from the detection submodel for the bird community-level multi-
species occupancy model. 
 

Species Parameter Estimate 
Acorn Woodpecker Intercept -0.19 (-0.65, 0.27) 
Acorn Woodpecker Julian Day 0.92 (0.51, 1.31) 
Acorn Woodpecker Julian Day^2 0.51 (0.27, 0.73) 
Acorn Woodpecker Wind (mph) 0.06 (-0.01, 0.15) 
Acorn Woodpecker Temperature (°C) 0.03 (-0.1, 0.14) 
Acorn Woodpecker PostFire Canopy 0.18 (-0.22, 0.6) 
American Robin Intercept -3.53 (-4.2, -2.83) 
American Robin Julian Day -0.31 (-0.92, 0.25) 
American Robin Julian Day^2 0.17 (-0.09, 0.45) 
American Robin Wind (mph) 0.05 (-0.03, 0.14) 
American Robin Temperature (°C) 0.03 (-0.11, 0.18) 
American Robin PostFire Canopy -0.02 (-0.39, 0.34) 
Anna's Hummingbird Intercept -3.88 (-6.04, -1.59) 
Anna's Hummingbird Julian Day -0.34 (-1.28, 0.58) 
Anna's Hummingbird Julian Day^2 0.16 (-0.24, 0.54) 
Anna's Hummingbird Wind (mph) 0.04 (-0.05, 0.14) 
Anna's Hummingbird Temperature (°C) 0.07 (-0.1, 0.23) 
Anna's Hummingbird PostFire Canopy 0.04 (-0.79, 0.89) 
Ash-throated Flycatcher Intercept -2.59 (-3.37, -1.75) 
Ash-throated Flycatcher Julian Day 0.83 (0.36, 1.34) 
Ash-throated Flycatcher Julian Day^2 -0.08 (-0.37, 0.22) 
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Ash-throated Flycatcher Wind (mph) 0.05 (-0.04, 0.14) 
Ash-throated Flycatcher Temperature (°C) 0.04 (-0.12, 0.18) 
Ash-throated Flycatcher PostFire Canopy 0.33 (-0.24, 0.9) 
Bewick's Wren Intercept -3.4 (-4.49, -2.21) 
Bewick's Wren Julian Day 0.54 (-0.03, 1.08) 
Bewick's Wren Julian Day^2 0.24 (-0.09, 0.55) 
Bewick's Wren Wind (mph) 0.05 (-0.04, 0.15) 
Bewick's Wren Temperature (°C) 0.06 (-0.08, 0.22) 
Bewick's Wren PostFire Canopy -0.02 (-0.74, 0.69) 
Black Phoebe Intercept -4.84 (-6.26, -3.41) 
Black Phoebe Julian Day 0.01 (-0.73, 0.7) 
Black Phoebe Julian Day^2 0.04 (-0.3, 0.39) 
Black Phoebe Wind (mph) 0.04 (-0.05, 0.14) 
Black Phoebe Temperature (°C) 0.08 (-0.07, 0.24) 
Black Phoebe PostFire Canopy 0.16 (-0.54, 0.91) 
Black-headed Grosbeak Intercept -4.17 (-5.72, -2.64) 
Black-headed Grosbeak Julian Day -0.59 (-1.42, 0.21) 
Black-headed Grosbeak Julian Day^2 0.09 (-0.28, 0.44) 
Black-headed Grosbeak Wind (mph) 0.05 (-0.04, 0.15) 
Black-headed Grosbeak Temperature (°C) 0.07 (-0.08, 0.22) 
Black-headed Grosbeak PostFire Canopy 0.42 (-0.24, 1.07) 
Black-throated Gray Warbler Intercept -4.84 (-6.46, -3.19) 
Black-throated Gray Warbler Julian Day 0.01 (-0.81, 0.92) 
Black-throated Gray Warbler Julian Day^2 0.04 (-0.34, 0.41) 
Black-throated Gray Warbler Wind (mph) 0.04 (-0.05, 0.14) 
Black-throated Gray Warbler Temperature (°C) 0.07 (-0.09, 0.24) 
Black-throated Gray Warbler PostFire Canopy -0.25 (-0.89, 0.38) 
Blue-gray Gnatcatcher Intercept -2.55 (-3.43, -1.69) 
Blue-gray Gnatcatcher Julian Day -0.38 (-1.2, 0.39) 
Blue-gray Gnatcatcher Julian Day^2 0.11 (-0.3, 0.52) 
Blue-gray Gnatcatcher Wind (mph) 0.04 (-0.05, 0.13) 
Blue-gray Gnatcatcher Temperature (°C) 0.05 (-0.1, 0.2) 
Blue-gray Gnatcatcher PostFire Canopy -0.14 (-0.7, 0.44) 
Brown-headed Cowbird Intercept -4.43 (-5.72, -3.15) 
Brown-headed Cowbird Julian Day 0.04 (-0.69, 0.8) 
Brown-headed Cowbird Julian Day^2 0.03 (-0.34, 0.38) 
Brown-headed Cowbird Wind (mph) 0.04 (-0.05, 0.14) 
Brown-headed Cowbird Temperature (°C) 0.05 (-0.11, 0.2) 
Brown-headed Cowbird PostFire Canopy -0.02 (-0.6, 0.59) 
Bullock's Oriole Intercept -1.76 (-3.25, -0.29) 
Bullock's Oriole Julian Day 0.58 (-0.35, 1.51) 
Bullock's Oriole Julian Day^2 -0.12 (-0.5, 0.25) 
Bullock's Oriole Wind (mph) 0.04 (-0.06, 0.13) 
Bullock's Oriole Temperature (°C) 0.09 (-0.06, 0.25) 
Bullock's Oriole PostFire Canopy 0.58 (-0.29, 1.43) 
Bushtit Intercept -3.46 (-4.49, -2.41) 
Bushtit Julian Day -0.24 (-0.96, 0.43) 
Bushtit Julian Day^2 0.14 (-0.21, 0.49) 
Bushtit Wind (mph) 0.05 (-0.04, 0.15) 
Bushtit Temperature (°C) 0.05 (-0.11, 0.2) 
Bushtit PostFire Canopy -0.13 (-0.75, 0.47) 
California Quail Intercept -1.49 (-1.99, -1) 
California Quail Julian Day -0.21 (-0.63, 0.23) 
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California Quail Julian Day^2 -0.16 (-0.39, 0.09) 
California Quail Wind (mph) 0.03 (-0.04, 0.11) 
California Quail Temperature (°C) 0.02 (-0.11, 0.15) 
California Quail PostFire Canopy 0.4 (-0.02, 0.85) 
California Scrub-Jay Intercept -2.13 (-2.65, -1.6) 
California Scrub-Jay Julian Day 0.29 (-0.18, 0.75) 
California Scrub-Jay Julian Day^2 0.08 (-0.17, 0.34) 
California Scrub-Jay Wind (mph) 0.04 (-0.04, 0.13) 
California Scrub-Jay Temperature (°C) 0.06 (-0.07, 0.2) 
California Scrub-Jay PostFire Canopy -0.24 (-0.66, 0.19) 
California Towhee Intercept -0.68 (-1.07, -0.28) 
California Towhee Julian Day 0.74 (0.34, 1.13) 
California Towhee Julian Day^2 0.14 (-0.07, 0.36) 
California Towhee Wind (mph) 0.06 (-0.02, 0.14) 
California Towhee Temperature (°C) 0.12 (-0.01, 0.26) 
California Towhee PostFire Canopy 0.45 (0.05, 0.83) 
Common Raven Intercept -3.92 (-4.76, -3.07) 
Common Raven Julian Day -0.31 (-0.96, 0.33) 
Common Raven Julian Day^2 0.17 (-0.11, 0.45) 
Common Raven Wind (mph) 0.05 (-0.04, 0.14) 
Common Raven Temperature (°C) 0.07 (-0.06, 0.23) 
Common Raven PostFire Canopy -0.38 (-0.73, -0.02) 
Dark-eyed Junco Intercept -2.68 (-3.24, -2.14) 
Dark-eyed Junco Julian Day -0.17 (-0.74, 0.38) 
Dark-eyed Junco Julian Day^2 -0.1 (-0.38, 0.18) 
Dark-eyed Junco Wind (mph) 0.04 (-0.05, 0.12) 
Dark-eyed Junco Temperature (°C) 0.03 (-0.12, 0.17) 
Dark-eyed Junco PostFire Canopy -0.66 (-0.94, -0.36) 
Golden-crowned Sparrow Intercept -5.15 (-7, -3.32) 
Golden-crowned Sparrow Julian Day 0 (-0.87, 0.84) 
Golden-crowned Sparrow Julian Day^2 0.07 (-0.29, 0.46) 
Golden-crowned Sparrow Wind (mph) 0.04 (-0.06, 0.14) 
Golden-crowned Sparrow Temperature (°C) 0.05 (-0.11, 0.21) 
Golden-crowned Sparrow PostFire Canopy 0.09 (-0.65, 0.83) 
House Finch Intercept -2.61 (-3.67, -1.5) 
House Finch Julian Day 0.74 (0.09, 1.37) 
House Finch Julian Day^2 0.22 (-0.11, 0.55) 
House Finch Wind (mph) 0.04 (-0.06, 0.13) 
House Finch Temperature (°C) 0.03 (-0.14, 0.18) 
House Finch PostFire Canopy 0.46 (-0.21, 1.13) 
Lazuli Bunting Intercept -2.53 (-3.48, -1.49) 
Lazuli Bunting Julian Day -0.59 (-1.37, 0.28) 
Lazuli Bunting Julian Day^2 -0.11 (-0.45, 0.26) 
Lazuli Bunting Wind (mph) 0.04 (-0.05, 0.13) 
Lazuli Bunting Temperature (°C) 0.04 (-0.1, 0.18) 
Lazuli Bunting PostFire Canopy 0.35 (-0.17, 0.84) 
Lesser Goldfinch Intercept -3.9 (-4.8, -3) 
Lesser Goldfinch Julian Day 0.07 (-0.5, 0.64) 
Lesser Goldfinch Julian Day^2 0.17 (-0.16, 0.47) 
Lesser Goldfinch Wind (mph) 0.02 (-0.07, 0.12) 
Lesser Goldfinch Temperature (°C) 0.04 (-0.11, 0.19) 
Lesser Goldfinch PostFire Canopy 0.47 (-0.09, 1.04) 
Mountain Quail Intercept -2.56 (-3.38, -1.75) 
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Mountain Quail Julian Day -1.13 (-1.84, -0.42) 
Mountain Quail Julian Day^2 0.23 (-0.08, 0.56) 
Mountain Quail Wind (mph) 0.04 (-0.04, 0.13) 
Mountain Quail Temperature (°C) 0.05 (-0.11, 0.19) 
Mountain Quail PostFire Canopy -0.37 (-0.72, -0.01) 
Mourning Dove Intercept -2.53 (-3.07, -1.96) 
Mourning Dove Julian Day -0.16 (-0.65, 0.29) 
Mourning Dove Julian Day^2 0.01 (-0.23, 0.23) 
Mourning Dove Wind (mph) 0.05 (-0.03, 0.13) 
Mourning Dove Temperature (°C) 0.07 (-0.06, 0.19) 
Mourning Dove PostFire Canopy 0.27 (-0.2, 0.7) 
Northern Flicker Intercept -3.27 (-3.81, -2.7) 
Northern Flicker Julian Day -0.26 (-0.79, 0.29) 
Northern Flicker Julian Day^2 0.15 (-0.12, 0.41) 
Northern Flicker Wind (mph) 0.05 (-0.04, 0.13) 
Northern Flicker Temperature (°C) 0.06 (-0.08, 0.2) 
Northern Flicker PostFire Canopy 0.28 (-0.13, 0.69) 
Nuttall's Woodpecker Intercept -3.02 (-3.92, -2.11) 
Nuttall's Woodpecker Julian Day 0.36 (-0.17, 0.86) 
Nuttall's Woodpecker Julian Day^2 0.01 (-0.3, 0.29) 
Nuttall's Woodpecker Wind (mph) 0.04 (-0.05, 0.13) 
Nuttall's Woodpecker Temperature (°C) 0.05 (-0.1, 0.2) 
Nuttall's Woodpecker PostFire Canopy 0.41 (-0.13, 0.94) 
Oak Titmouse Intercept -1.08 (-1.45, -0.71) 
Oak Titmouse Julian Day 0.07 (-0.31, 0.48) 
Oak Titmouse Julian Day^2 -0.02 (-0.21, 0.17) 
Oak Titmouse Wind (mph) 0.04 (-0.04, 0.11) 
Oak Titmouse Temperature (°C) 0.1 (-0.01, 0.23) 
Oak Titmouse PostFire Canopy 0.11 (-0.21, 0.42) 
Orange-crowned Warbler Intercept -2.53 (-3.08, -1.96) 
Orange-crowned Warbler Julian Day -0.57 (-1.11, -0.01) 
Orange-crowned Warbler Julian Day^2 0.08 (-0.16, 0.32) 
Orange-crowned Warbler Wind (mph) 0.04 (-0.05, 0.12) 
Orange-crowned Warbler Temperature (°C) 0.15 (-0.01, 0.31) 
Orange-crowned Warbler PostFire Canopy -0.21 (-0.55, 0.14) 
Pacific-slope Flycatcher Intercept -3.1 (-4.2, -2.04) 
Pacific-slope Flycatcher Julian Day 0.2 (-0.44, 0.78) 
Pacific-slope Flycatcher Julian Day^2 -0.09 (-0.38, 0.21) 
Pacific-slope Flycatcher Wind (mph) 0.01 (-0.08, 0.1) 
Pacific-slope Flycatcher Temperature (°C) 0.05 (-0.09, 0.2) 
Pacific-slope Flycatcher PostFire Canopy -0.44 (-1, 0.12) 
Pileated Woodpecker Intercept -4.79 (-5.71, -3.82) 
Pileated Woodpecker Julian Day -0.04 (-0.74, 0.68) 
Pileated Woodpecker Julian Day^2 0 (-0.34, 0.33) 
Pileated Woodpecker Wind (mph) 0.05 (-0.04, 0.14) 
Pileated Woodpecker Temperature (°C) 0.03 (-0.13, 0.19) 
Pileated Woodpecker PostFire Canopy -0.86 (-1.27, -0.4) 
Rufous-crowned Sparrow Intercept -4.06 (-5, -3.03) 
Rufous-crowned Sparrow Julian Day -0.17 (-0.74, 0.36) 
Rufous-crowned Sparrow Julian Day^2 -0.02 (-0.34, 0.29) 
Rufous-crowned Sparrow Wind (mph) 0.05 (-0.04, 0.15) 
Rufous-crowned Sparrow Temperature (°C) 0.06 (-0.07, 0.22) 
Rufous-crowned Sparrow PostFire Canopy 0.35 (-0.29, 0.94) 
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Spotted Towhee Intercept -1.75 (-2.51, -1) 
Spotted Towhee Julian Day 0.95 (0.39, 1.54) 
Spotted Towhee Julian Day^2 0.15 (-0.16, 0.46) 
Spotted Towhee Wind (mph) 0.06 (-0.03, 0.16) 
Spotted Towhee Temperature (°C) 0.1 (-0.04, 0.27) 
Spotted Towhee PostFire Canopy 0.01 (-0.4, 0.4) 
Steller's Jay Intercept -2.45 (-2.97, -1.89) 
Steller's Jay Julian Day 0.04 (-0.49, 0.56) 
Steller's Jay Julian Day^2 -0.05 (-0.32, 0.22) 
Steller's Jay Wind (mph) 0.06 (-0.03, 0.15) 
Steller's Jay Temperature (°C) 0.03 (-0.12, 0.16) 
Steller's Jay PostFire Canopy 0.04 (-0.3, 0.39) 
Violet-green Swallow Intercept -1.04 (-1.45, -0.61) 
Violet-green Swallow Julian Day -0.24 (-0.75, 0.26) 
Violet-green Swallow Julian Day^2 -0.22 (-0.46, 0.01) 
Violet-green Swallow Wind (mph) -0.01 (-0.11, 0.08) 
Violet-green Swallow Temperature (°C) 0.08 (-0.04, 0.2) 
Violet-green Swallow PostFire Canopy -0.56 (-0.81, -0.29) 
Warbling Vireo Intercept -4.37 (-5.49, -3.22) 
Warbling Vireo Julian Day -0.37 (-1.08, 0.37) 
Warbling Vireo Julian Day^2 -0.09 (-0.44, 0.25) 
Warbling Vireo Wind (mph) 0.05 (-0.04, 0.15) 
Warbling Vireo Temperature (°C) 0.05 (-0.1, 0.21) 
Warbling Vireo PostFire Canopy -0.64 (-1.14, -0.14) 
Western Bluebird Intercept -3.25 (-4.04, -2.41) 
Western Bluebird Julian Day -0.11 (-0.66, 0.39) 
Western Bluebird Julian Day^2 0.05 (-0.24, 0.34) 
Western Bluebird Wind (mph) 0.04 (-0.05, 0.13) 
Western Bluebird Temperature (°C) 0.1 (-0.04, 0.26) 
Western Bluebird PostFire Canopy 0.53 (0.04, 1.04) 
Western Kingbird Intercept -2.97 (-4.79, -1.15) 
Western Kingbird Julian Day 1.32 (0.4, 2.19) 
Western Kingbird Julian Day^2 -0.06 (-0.44, 0.34) 
Western Kingbird Wind (mph) 0.04 (-0.06, 0.14) 
Western Kingbird Temperature (°C) 0.07 (-0.08, 0.24) 
Western Kingbird PostFire Canopy 0.49 (-0.24, 1.2) 
Western Meadowlark Intercept -4.41 (-5.97, -2.63) 
Western Meadowlark Julian Day -0.19 (-0.93, 0.57) 
Western Meadowlark Julian Day^2 -0.08 (-0.41, 0.23) 
Western Meadowlark Wind (mph) 0.02 (-0.07, 0.11) 
Western Meadowlark Temperature (°C) 0.03 (-0.14, 0.17) 
Western Meadowlark PostFire Canopy -0.15 (-0.95, 0.65) 
Western Wood-Pewee Intercept -3.8 (-5.62, -2.01) 
Western Wood-Pewee Julian Day -0.03 (-0.94, 0.87) 
Western Wood-Pewee Julian Day^2 -0.04 (-0.41, 0.36) 
Western Wood-Pewee Wind (mph) 0.05 (-0.04, 0.15) 
Western Wood-Pewee Temperature (°C) 0.08 (-0.08, 0.23) 
Western Wood-Pewee PostFire Canopy 0.31 (-0.57, 1.17) 
White-breasted Nuthatch Intercept -2.15 (-2.74, -1.54) 
White-breasted Nuthatch Julian Day -0.18 (-0.73, 0.36) 
White-breasted Nuthatch Julian Day^2 -0.15 (-0.41, 0.12) 
White-breasted Nuthatch Wind (mph) 0.05 (-0.03, 0.13) 
White-breasted Nuthatch Temperature (°C) 0.07 (-0.06, 0.21) 
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White-breasted Nuthatch PostFire Canopy -0.04 (-0.44, 0.35) 
Wrentit Intercept -3.69 (-5.04, -2.43) 
Wrentit Julian Day 0.81 (0.23, 1.41) 
Wrentit Julian Day^2 0.19 (-0.16, 0.54) 
Wrentit Wind (mph) 0.04 (-0.06, 0.13) 
Wrentit Temperature (°C) 0.11 (-0.04, 0.28) 
Wrentit PostFire Canopy -0.32 (-0.96, 0.31) 
Community Mean Intercept -3.01 (-3.44, -2.58) 
Community Mean Julian Day 0.05 (-0.21, 0.3) 
Community Mean Julian Day^2 0.05 (-0.07, 0.16) 
Community Mean Wind (mph) 0.04 (0, 0.09) 
Community Mean Temperature (°C) 0.06 (0, 0.13) 
Community Mean PostFire Canopy 0.03 (-0.15, 0.22) 

 
Table S5. Species-specific covariate coefficients from the occupancy submodel for the bird community-level 
multi-species occupancy model. 
 

Species Parameter Estimate 
Acorn Woodpecker Intercept 2.37 (1.44, 3.29) 
Acorn Woodpecker Elevation -0.36 (-1.34, 0.56) 
Acorn Woodpecker PreFire Canopy -0.42 (-1.08, 0.22) 
Acorn Woodpecker Severity -0.46 (-1.61, 0.71) 
Acorn Woodpecker Severity Squared -0.33 (-1.37, 0.67) 
Acorn Woodpecker Pyrodiversity 0.23 (-0.35, 0.84) 
Acorn Woodpecker LagYear 0.29 (-0.26, 0.82) 
American Robin Intercept 1.56 (0.02, 3.23) 
American Robin Elevation -0.19 (-1.3, 0.96) 
American Robin PreFire Canopy -0.1 (-0.77, 0.69) 
American Robin Severity -0.32 (-1.46, 0.77) 
American Robin Severity Squared 0.24 (-0.84, 1.21) 
American Robin Pyrodiversity -0.07 (-0.7, 0.51) 
American Robin LagYear -0.04 (-0.87, 0.88) 
Anna's Hummingbird Intercept -3.33 (-5.26, -1.66) 
Anna's Hummingbird Elevation 0.16 (-0.84, 1.18) 
Anna's Hummingbird PreFire Canopy -0.19 (-0.92, 0.59) 
Anna's Hummingbird Severity 0.06 (-1.02, 1.19) 
Anna's Hummingbird Severity Squared 0.63 (-0.47, 1.68) 
Anna's Hummingbird Pyrodiversity 0.01 (-0.61, 0.61) 
Anna's Hummingbird LagYear 0.12 (-0.75, 0.94) 
Ash-throated Flycatcher Intercept 0.9 (-0.86, 2.75) 
Ash-throated Flycatcher Elevation 0.11 (-0.98, 1.21) 
Ash-throated Flycatcher PreFire Canopy -0.36 (-1.14, 0.36) 
Ash-throated Flycatcher Severity -0.09 (-1.16, 1.03) 
Ash-throated Flycatcher Severity Squared 0.47 (-0.62, 1.58) 
Ash-throated Flycatcher Pyrodiversity -0.11 (-0.82, 0.6) 
Ash-throated Flycatcher LagYear 0.7 (-0.11, 1.53) 
Bewick's Wren Intercept -0.37 (-2.01, 1.37) 
Bewick's Wren Elevation 0.47 (-0.58, 1.62) 
Bewick's Wren PreFire Canopy -0.38 (-1.18, 0.38) 
Bewick's Wren Severity 0.15 (-1.02, 1.35) 
Bewick's Wren Severity Squared 0.75 (-0.48, 1.93) 
Bewick's Wren Pyrodiversity 0.02 (-0.63, 0.65) 
Bewick's Wren LagYear 0.48 (-0.37, 1.32) 
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Black Phoebe Intercept -0.45 (-2.68, 2.01) 
Black Phoebe Elevation -0.06 (-1.22, 1.13) 
Black Phoebe PreFire Canopy -0.45 (-1.3, 0.3) 
Black Phoebe Severity -0.41 (-1.62, 0.85) 
Black Phoebe Severity Squared 0 (-1.28, 1.24) 
Black Phoebe Pyrodiversity 0.02 (-0.64, 0.66) 
Black Phoebe LagYear 0.43 (-0.52, 1.39) 
Black-headed Grosbeak Intercept -1.42 (-2.82, -0.1) 
Black-headed Grosbeak Elevation 0.31 (-0.65, 1.29) 
Black-headed Grosbeak PreFire Canopy -0.18 (-0.89, 0.56) 
Black-headed Grosbeak Severity -0.17 (-1.21, 0.95) 
Black-headed Grosbeak Severity Squared 0.14 (-0.87, 1.12) 
Black-headed Grosbeak Pyrodiversity 0.07 (-0.51, 0.66) 
Black-headed Grosbeak LagYear -0.1 (-0.88, 0.65) 
Black-throated Gray Warbler Intercept -0.75 (-3.33, 1.87) 
Black-throated Gray Warbler Elevation 0.68 (-0.46, 1.88) 
Black-throated Gray Warbler PreFire Canopy -0.16 (-0.94, 0.71) 
Black-throated Gray Warbler Severity 0 (-1.15, 1.24) 
Black-throated Gray Warbler Severity Squared 0.37 (-0.85, 1.59) 
Black-throated Gray Warbler Pyrodiversity 0.26 (-0.35, 0.92) 
Black-throated Gray Warbler LagYear -0.1 (-1.11, 0.85) 
Blue-gray Gnatcatcher Intercept -1.54 (-2.32, -0.77) 
Blue-gray Gnatcatcher Elevation 0.53 (-0.15, 1.25) 
Blue-gray Gnatcatcher PreFire Canopy -0.24 (-0.81, 0.37) 
Blue-gray Gnatcatcher Severity 0.13 (-0.93, 1.21) 
Blue-gray Gnatcatcher Severity Squared 0.63 (-0.41, 1.67) 
Blue-gray Gnatcatcher Pyrodiversity 0.14 (-0.34, 0.64) 
Blue-gray Gnatcatcher LagYear -0.37 (-0.98, 0.3) 
Brown-headed Cowbird Intercept 0.05 (-2.33, 2.45) 
Brown-headed Cowbird Elevation 0.29 (-0.85, 1.44) 
Brown-headed Cowbird PreFire Canopy -0.08 (-0.88, 0.8) 
Brown-headed Cowbird Severity 0.07 (-1.02, 1.3) 
Brown-headed Cowbird Severity Squared 0.53 (-0.55, 1.74) 
Brown-headed Cowbird Pyrodiversity 0.09 (-0.54, 0.74) 
Brown-headed Cowbird LagYear 0.22 (-0.71, 1.13) 
Bullock's Oriole Intercept -1.69 (-2.68, -0.73) 
Bullock's Oriole Elevation 0.03 (-0.69, 0.76) 
Bullock's Oriole PreFire Canopy -0.6 (-1.27, 0.06) 
Bullock's Oriole Severity -0.12 (-1.08, 1.02) 
Bullock's Oriole Severity Squared 0.13 (-0.86, 1.07) 
Bullock's Oriole Pyrodiversity 0.23 (-0.3, 0.8) 
Bullock's Oriole LagYear -0.5 (-1.1, 0.15) 
Bushtit Intercept -1.2 (-2.29, -0.14) 
Bushtit Elevation 0.46 (-0.43, 1.32) 
Bushtit PreFire Canopy -0.11 (-0.76, 0.61) 
Bushtit Severity -0.27 (-1.3, 0.8) 
Bushtit Severity Squared 0.23 (-0.76, 1.19) 
Bushtit Pyrodiversity -0.06 (-0.73, 0.51) 
Bushtit LagYear -0.26 (-0.89, 0.38) 
California Quail Intercept 1.04 (0.23, 1.81) 
California Quail Elevation 0.7 (-0.08, 1.45) 
California Quail PreFire Canopy -0.5 (-1.16, 0.13) 
California Quail Severity -0.27 (-1.32, 0.81) 
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California Quail Severity Squared 0.15 (-0.79, 1.05) 
California Quail Pyrodiversity 0.13 (-0.36, 0.6) 
California Quail LagYear 0.44 (-0.1, 0.99) 
California Scrub-Jay Intercept 1.61 (0.26, 2.96) 
California Scrub-Jay Elevation 0.29 (-0.69, 1.28) 
California Scrub-Jay PreFire Canopy -0.45 (-1.23, 0.31) 
California Scrub-Jay Severity -0.18 (-1.21, 0.91) 
California Scrub-Jay Severity Squared 0.33 (-0.75, 1.33) 
California Scrub-Jay Pyrodiversity -0.07 (-0.74, 0.5) 
California Scrub-Jay LagYear 0.5 (-0.23, 1.25) 
California Towhee Intercept 1.44 (0.62, 2.23) 
California Towhee Elevation 0.57 (-0.18, 1.33) 
California Towhee PreFire Canopy -0.35 (-0.86, 0.19) 
California Towhee Severity 0 (-0.96, 0.99) 
California Towhee Severity Squared 0.4 (-0.63, 1.3) 
California Towhee Pyrodiversity 0.08 (-0.42, 0.59) 
California Towhee LagYear 0.18 (-0.32, 0.66) 
Common Raven Intercept 0.75 (-0.98, 2.43) 
Common Raven Elevation -0.3 (-1.38, 0.85) 
Common Raven PreFire Canopy -0.28 (-1.02, 0.47) 
Common Raven Severity -0.53 (-1.69, 0.75) 
Common Raven Severity Squared -0.19 (-1.45, 0.98) 
Common Raven Pyrodiversity 0.11 (-0.42, 0.71) 
Common Raven LagYear 0.48 (-0.34, 1.27) 
Dark-eyed Junco Intercept 0.42 (-0.6, 1.4) 
Dark-eyed Junco Elevation 0.21 (-0.7, 1.13) 
Dark-eyed Junco PreFire Canopy -0.12 (-0.73, 0.53) 
Dark-eyed Junco Severity 0.14 (-0.93, 1.23) 
Dark-eyed Junco Severity Squared 0.79 (-0.3, 1.94) 
Dark-eyed Junco Pyrodiversity 0.04 (-0.52, 0.6) 
Dark-eyed Junco LagYear 0.75 (-0.04, 1.55) 
Golden-crowned Sparrow Intercept -0.87 (-3.58, 2.04) 
Golden-crowned Sparrow Elevation 0.05 (-1.14, 1.23) 
Golden-crowned Sparrow PreFire Canopy -0.34 (-1.16, 0.48) 
Golden-crowned Sparrow Severity -0.12 (-1.26, 1.12) 
Golden-crowned Sparrow Severity Squared 0.22 (-1, 1.4) 
Golden-crowned Sparrow Pyrodiversity 0.21 (-0.44, 0.89) 
Golden-crowned Sparrow LagYear 0.3 (-0.69, 1.26) 
House Finch Intercept -1.37 (-2.68, -0.26) 
House Finch Elevation -0.06 (-0.88, 0.8) 
House Finch PreFire Canopy -0.64 (-1.45, 0.07) 
House Finch Severity -0.7 (-1.97, 0.6) 
House Finch Severity Squared -0.27 (-1.58, 0.86) 
House Finch Pyrodiversity 0.06 (-0.53, 0.61) 
House Finch LagYear 0.26 (-0.45, 0.93) 
Lazuli Bunting Intercept -0.53 (-1.32, 0.29) 
Lazuli Bunting Elevation 0.44 (-0.37, 1.2) 
Lazuli Bunting PreFire Canopy -0.15 (-0.79, 0.53) 
Lazuli Bunting Severity -0.01 (-1, 1.05) 
Lazuli Bunting Severity Squared 0.27 (-0.65, 1.17) 
Lazuli Bunting Pyrodiversity 0.22 (-0.33, 0.81) 
Lazuli Bunting LagYear -1.08 (-1.85, -0.31) 
Lesser Goldfinch Intercept 1.03 (-0.83, 2.95) 
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Lesser Goldfinch Elevation -0.08 (-1.13, 0.92) 
Lesser Goldfinch PreFire Canopy -0.28 (-1.07, 0.52) 
Lesser Goldfinch Severity -0.01 (-1.11, 1.16) 
Lesser Goldfinch Severity Squared 0.55 (-0.53, 1.67) 
Lesser Goldfinch Pyrodiversity 0.04 (-0.63, 0.66) 
Lesser Goldfinch LagYear 0.41 (-0.72, 1.55) 
Mountain Quail Intercept -1.61 (-2.48, -0.79) 
Mountain Quail Elevation 1.69 (0.75, 2.58) 
Mountain Quail PreFire Canopy 0.03 (-0.65, 0.78) 
Mountain Quail Severity 0.22 (-0.89, 1.31) 
Mountain Quail Severity Squared 0.67 (-0.34, 1.69) 
Mountain Quail Pyrodiversity 0.33 (-0.22, 0.85) 
Mountain Quail LagYear -0.23 (-0.91, 0.44) 
Mourning Dove Intercept 2.21 (0.74, 3.7) 
Mourning Dove Elevation 0.23 (-0.77, 1.26) 
Mourning Dove PreFire Canopy -0.29 (-1.06, 0.5) 
Mourning Dove Severity -0.04 (-1.11, 1.12) 
Mourning Dove Severity Squared 0.29 (-0.84, 1.36) 
Mourning Dove Pyrodiversity 0.17 (-0.45, 0.8) 
Mourning Dove LagYear 0.21 (-0.63, 1.06) 
Northern Flicker Intercept 1.7 (0.14, 3.23) 
Northern Flicker Elevation 0.35 (-0.59, 1.28) 
Northern Flicker PreFire Canopy -0.39 (-1.23, 0.47) 
Northern Flicker Severity -0.16 (-1.24, 0.93) 
Northern Flicker Severity Squared 0.32 (-0.71, 1.3) 
Northern Flicker Pyrodiversity 0.01 (-0.66, 0.61) 
Northern Flicker LagYear 0.49 (-0.34, 1.35) 
Nuttall's Woodpecker Intercept 0.82 (-0.8, 2.43) 
Nuttall's Woodpecker Elevation -0.11 (-1.2, 1) 
Nuttall's Woodpecker PreFire Canopy -0.36 (-1.08, 0.35) 
Nuttall's Woodpecker Severity -0.14 (-1.18, 1.01) 
Nuttall's Woodpecker Severity Squared 0.36 (-0.67, 1.36) 
Nuttall's Woodpecker Pyrodiversity -0.04 (-0.71, 0.57) 
Nuttall's Woodpecker LagYear -0.09 (-0.9, 0.71) 
Oak Titmouse Intercept 2.3 (1.14, 3.45) 
Oak Titmouse Elevation -0.18 (-1.19, 0.86) 
Oak Titmouse PreFire Canopy -0.33 (-0.95, 0.27) 
Oak Titmouse Severity 0.1 (-0.94, 1.19) 
Oak Titmouse Severity Squared 0.55 (-0.54, 1.55) 
Oak Titmouse Pyrodiversity 0.15 (-0.42, 0.76) 
Oak Titmouse LagYear 0.28 (-0.38, 0.98) 
Orange-crowned Warbler Intercept 1.03 (0.05, 2.02) 
Orange-crowned Warbler Elevation -0.18 (-0.99, 0.66) 
Orange-crowned Warbler PreFire Canopy -0.43 (-1.12, 0.29) 
Orange-crowned Warbler Severity -0.19 (-1.17, 0.86) 
Orange-crowned Warbler Severity Squared 0.41 (-0.54, 1.33) 
Orange-crowned Warbler Pyrodiversity 0.12 (-0.41, 0.65) 
Orange-crowned Warbler LagYear 0.35 (-0.39, 1.1) 
Pacific-slope Flycatcher Intercept -0.36 (-2.01, 1.2) 
Pacific-slope Flycatcher Elevation -0.14 (-1.1, 0.84) 
Pacific-slope Flycatcher PreFire Canopy -0.28 (-1.04, 0.48) 
Pacific-slope Flycatcher Severity -0.37 (-1.45, 0.76) 
Pacific-slope Flycatcher Severity Squared 0.35 (-0.69, 1.28) 
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Pacific-slope Flycatcher Pyrodiversity -0.21 (-0.93, 0.47) 
Pacific-slope Flycatcher LagYear -0.48 (-1.27, 0.3) 
Pileated Woodpecker Intercept 1.67 (-0.51, 3.78) 
Pileated Woodpecker Elevation 0.15 (-1.01, 1.33) 
Pileated Woodpecker PreFire Canopy -0.21 (-0.99, 0.63) 
Pileated Woodpecker Severity -0.31 (-1.51, 0.94) 
Pileated Woodpecker Severity Squared 0.12 (-1.1, 1.4) 
Pileated Woodpecker Pyrodiversity 0.16 (-0.44, 0.76) 
Pileated Woodpecker LagYear 0.33 (-0.67, 1.33) 
Rufous-crowned Sparrow Intercept 1.03 (-0.97, 3) 
Rufous-crowned Sparrow Elevation 0.35 (-0.75, 1.52) 
Rufous-crowned Sparrow PreFire Canopy -0.3 (-1.14, 0.56) 
Rufous-crowned Sparrow Severity -0.17 (-1.25, 1.07) 
Rufous-crowned Sparrow Severity Squared 0.24 (-0.97, 1.43) 
Rufous-crowned Sparrow Pyrodiversity 0.03 (-0.62, 0.7) 
Rufous-crowned Sparrow LagYear 0.3 (-0.67, 1.26) 
Spotted Towhee Intercept -1.05 (-1.96, -0.15) 
Spotted Towhee Elevation 0.32 (-0.56, 1.21) 
Spotted Towhee PreFire Canopy 0.05 (-0.62, 0.74) 
Spotted Towhee Severity 0.26 (-0.86, 1.38) 
Spotted Towhee Severity Squared 0.8 (-0.33, 1.88) 
Spotted Towhee Pyrodiversity 0.11 (-0.41, 0.62) 
Spotted Towhee LagYear 0.49 (-0.08, 1.06) 
Steller's Jay Intercept 1.45 (-0.05, 2.95) 
Steller's Jay Elevation 0.03 (-0.96, 0.94) 
Steller's Jay PreFire Canopy 0.01 (-0.75, 0.86) 
Steller's Jay Severity -0.18 (-1.18, 0.97) 
Steller's Jay Severity Squared 0.38 (-0.64, 1.37) 
Steller's Jay Pyrodiversity -0.02 (-0.65, 0.5) 
Steller's Jay LagYear 0.59 (-0.32, 1.48) 
Violet-green Swallow Intercept 1.02 (0.32, 1.7) 
Violet-green Swallow Elevation -0.67 (-1.28, -0.06) 
Violet-green Swallow PreFire Canopy -0.58 (-1.19, 0.03) 
Violet-green Swallow Severity -0.38 (-1.33, 0.67) 
Violet-green Swallow Severity Squared 0.24 (-0.63, 1.09) 
Violet-green Swallow Pyrodiversity -0.31 (-0.83, 0.23) 
Violet-green Swallow LagYear 0.21 (-0.31, 0.76) 
Warbling Vireo Intercept 0.19 (-1.74, 2.04) 
Warbling Vireo Elevation -0.4 (-1.57, 0.82) 
Warbling Vireo PreFire Canopy -0.42 (-1.25, 0.37) 
Warbling Vireo Severity -0.47 (-1.68, 0.81) 
Warbling Vireo Severity Squared -0.05 (-1.29, 1.14) 
Warbling Vireo Pyrodiversity -0.06 (-0.74, 0.55) 
Warbling Vireo LagYear 0.19 (-0.73, 1.13) 
Western Bluebird Intercept 1.01 (-0.65, 2.66) 
Western Bluebird Elevation 0.61 (-0.41, 1.73) 
Western Bluebird PreFire Canopy -0.49 (-1.23, 0.25) 
Western Bluebird Severity -0.09 (-1.09, 1.1) 
Western Bluebird Severity Squared 0.28 (-0.82, 1.36) 
Western Bluebird Pyrodiversity 0.17 (-0.44, 0.79) 
Western Bluebird LagYear 0.37 (-0.31, 1.1) 
Western Kingbird Intercept -1.94 (-3.83, -0.07) 
Western Kingbird Elevation 0.03 (-0.95, 1) 
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Western Kingbird PreFire Canopy -0.4 (-1.15, 0.33) 
Western Kingbird Severity -0.44 (-1.63, 0.81) 
Western Kingbird Severity Squared -0.09 (-1.27, 1.11) 
Western Kingbird Pyrodiversity 0.01 (-0.62, 0.65) 
Western Kingbird LagYear 0.01 (-0.82, 0.84) 
Western Meadowlark Intercept -1.18 (-3.26, 1.08) 
Western Meadowlark Elevation 0.12 (-1.04, 1.25) 
Western Meadowlark PreFire Canopy -0.55 (-1.47, 0.3) 
Western Meadowlark Severity -0.25 (-1.37, 0.97) 
Western Meadowlark Severity Squared 0.12 (-1.11, 1.34) 
Western Meadowlark Pyrodiversity 0.1 (-0.56, 0.74) 
Western Meadowlark LagYear 0.39 (-0.6, 1.4) 
Western Wood-Pewee Intercept -3.22 (-5.14, -1.5) 
Western Wood-Pewee Elevation 0.1 (-0.89, 1.11) 
Western Wood-Pewee PreFire Canopy -0.51 (-1.31, 0.24) 
Western Wood-Pewee Severity -0.33 (-1.46, 0.79) 
Western Wood-Pewee Severity Squared 0.16 (-0.89, 1.16) 
Western Wood-Pewee Pyrodiversity -0.03 (-0.65, 0.62) 
Western Wood-Pewee LagYear 0.36 (-0.45, 1.17) 
White-breasted Nuthatch Intercept 1.05 (-0.15, 2.24) 
White-breasted Nuthatch Elevation -0.4 (-1.34, 0.57) 
White-breasted Nuthatch PreFire Canopy -0.36 (-1.06, 0.39) 
White-breasted Nuthatch Severity -0.58 (-1.84, 0.68) 
White-breasted Nuthatch Severity Squared -0.32 (-1.6, 0.76) 
White-breasted Nuthatch Pyrodiversity 0.02 (-0.57, 0.61) 
White-breasted Nuthatch LagYear 0.19 (-0.49, 0.84) 
Wrentit Intercept -0.71 (-2.61, 1.16) 
Wrentit Elevation 0.48 (-0.65, 1.56) 
Wrentit PreFire Canopy -0.39 (-1.21, 0.43) 
Wrentit Severity -0.33 (-1.5, 0.95) 
Wrentit Severity Squared -0.01 (-1.24, 1.17) 
Wrentit Pyrodiversity 0.19 (-0.4, 0.81) 
Wrentit LagYear 0.53 (-0.29, 1.37) 
Community Mean Intercept 0.07 (-0.53, 0.67) 
Community Mean Elevation 0.17 (-0.21, 0.54) 
Community Mean PreFire Canopy -0.31 (-0.63, -0.01) 
Community Mean Severity -0.17 (-0.93, 0.66) 
Community Mean Severity Squared 0.27 (-0.45, 0.93) 
Community Mean Pyrodiversity 0.06 (-0.21, 0.34) 
Community Mean LagYear 0.19 (-0.08, 0.45) 

 
Table S6. Group-specific covariate coefficients from the detection submodel for the bird nesting-group multi-
species occupancy model. 
 

Group Parameter Estimate 
Ground Intercept -1.78 (-2.48, -1.1) 
Ground Julian Day -0.14 (-0.71, 0.43) 
Ground Julian Day^2 -0.16 (-0.37, 0.04) 
Ground Wind (mph) -0.08 (-0.2, 0.03) 
Ground Temperature (°C) 0.01 (-0.2, 0.22) 
Ground PostFire Canopy 0.38 (-0.47, 1.22) 
Primary Cavity Intercept -2.41 (-3.29, -1.61) 
Primary Cavity Julian Day 0.21 (-1.24, 1.58) 
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Primary Cavity Julian Day^2 0.29 (-0.61, 1.16) 
Primary Cavity Wind (mph) 0.11 (-0.15, 0.38) 
Primary Cavity Temperature (°C) 0 (-0.39, 0.4) 
Primary Cavity PostFire Canopy 0.19 (-0.66, 1) 
Secondary Cavity Intercept -1.84 (-2.33, -1.34) 
Secondary Cavity Julian Day 0.61 (-0.03, 1.25) 
Secondary Cavity Julian Day^2 0.11 (-0.12, 0.36) 
Secondary Cavity Wind (mph) 0 (-0.13, 0.13) 
Secondary Cavity Temperature (°C) 0.05 (-0.12, 0.22) 
Secondary Cavity PostFire Canopy 0.37 (-0.02, 0.76) 
Shrub Intercept -2.45 (-3.98, -0.98) 
Shrub Julian Day -0.23 (-1.13, 0.67) 
Shrub Julian Day^2 -0.14 (-0.58, 0.29) 
Shrub Wind (mph) -0.04 (-0.24, 0.16) 
Shrub Temperature (°C) 0.04 (-0.28, 0.34) 
Shrub PostFire Canopy 0.02 (-0.53, 0.65) 
Tree Intercept -2.28 (-3.01, -1.55) 
Tree Julian Day -0.2 (-0.91, 0.48) 
Tree Julian Day^2 -0.03 (-0.38, 0.32) 
Tree Wind (mph) 0.09 (0.02, 0.16) 
Tree Temperature (°C) 0.07 (-0.05, 0.2) 
Tree PostFire Canopy -0.29 (-0.7, 0.13) 

 
Table S7. Species-specific covariate coefficients from the occupancy submodel for the bird group-level multi-
species occupancy model. 
 

Group Parameter Estimate 
Ground Intercept 0.04 (-1.34, 1.48) 
Ground Elevation 0.17 (-0.74, 1.06) 
Ground PreFire Canopy -0.71 (-1.36, -0.05) 
Ground Severity -0.83 (-2.45, 0.66) 
Ground Severity Squared 0.99 (-0.39, 2.36) 
Ground Pyrodiversity -0.04 (-0.66, 0.62) 
Ground LagYear 0.69 (0.23, 1.12) 
Primary Cavity Intercept -2.14 (-3.6, -0.78) 
Primary Cavity Elevation 0.45 (-0.82, 1.66) 
Primary Cavity PreFire Canopy 0.17 (-1.24, 1.51) 
Primary Cavity Severity 0.1 (-2.32, 2.5) 
Primary Cavity Severity Squared 0.86 (-1.5, 3.17) 
Primary Cavity Pyrodiversity -0.18 (-1.52, 1.04) 
Primary Cavity LagYear -0.73 (-2.22, 0.67) 
Secondary Cavity Intercept -0.64 (-2.2, 0.95) 
Secondary Cavity Elevation 1.36 (0.13, 2.58) 
Secondary Cavity PreFire Canopy -0.63 (-1.72, 0.39) 
Secondary Cavity Severity -0.12 (-2.31, 1.84) 
Secondary Cavity Severity Squared 0.58 (-1.41, 2.34) 
Secondary Cavity Pyrodiversity -0.42 (-1.41, 0.54) 
Secondary Cavity LagYear 0.82 (0.04, 1.63) 
Shrub Intercept -1.38 (-3.19, 0.42) 
Shrub Elevation -0.53 (-1.55, 0.4) 
Shrub PreFire Canopy 0.38 (-0.86, 1.57) 
Shrub Severity 0.97 (-1.2, 3.02) 
Shrub Severity Squared -0.88 (-2.77, 0.97) 
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Shrub Pyrodiversity 0.1 (-0.92, 1.18) 
Shrub LagYear -0.3 (-1.35, 0.71) 
Tree Intercept -0.12 (-1.46, 1.2) 
Tree Elevation -0.09 (-1.14, 1) 
Tree PreFire Canopy -0.41 (-1.19, 0.38) 
Tree Severity 1.74 (-0.09, 3.4) 
Tree Severity Squared -1.61 (-3.06, 0.01) 
Tree Pyrodiversity -0.1 (-0.68, 0.47) 
Tree LagYear 0.34 (-0.26, 0.95) 
 
Table S8. Species-specific covariate coefficients from the detection submodel for the bird diet-group multi-
species occupancy model. 
 

Group Parameter Estimate 
Granivore Intercept -2.38 (-3.38, -1.41) 
Granivore Julian Day 0.1 (-0.55, 0.73) 
Granivore Julian Day^2 0.1 (-0.24, 0.42) 
Granivore Wind (mph) 0.05 (-0.09, 0.19) 
Granivore Temperature (°C) 0.02 (-0.17, 0.22) 
Granivore PostFire Canopy 0.25 (-0.88, 1.4) 
Insectivore Intercept -1.82 (-2.16, -1.47) 
Insectivore Julian Day 0.05 (-0.45, 0.58) 
Insectivore Julian Day^2 0.02 (-0.22, 0.26) 
Insectivore Wind (mph) 0.04 (-0.02, 0.09) 
Insectivore Temperature (°C) 0.1 (0.01, 0.19) 
Insectivore PostFire Canopy 0.01 (-0.26, 0.28) 
Nectar Intercept -1.73 (-4.18, 1.23) 
Nectar Julian Day -0.07 (-2.34, 2.22) 
Nectar Julian Day^2 0.14 (-2.12, 2.3) 
Nectar Wind (mph) 0.03 (-2.2, 2.15) 
Nectar Temperature (°C) -0.1 (-2.25, 2.16) 
Nectar PostFire Canopy 0.04 (-2.17, 2.24) 
Omnivore Intercept -2.38 (-3.38, -1.44) 
Omnivore Julian Day 0.12 (-0.47, 0.69) 
Omnivore Julian Day^2 -0.12 (-0.34, 0.1) 
Omnivore Wind (mph) -0.1 (-0.22, 0.02) 
Omnivore Temperature (°C) -0.03 (-0.25, 0.19) 
Omnivore PostFire Canopy 0.09 (-0.43, 0.58) 

 
Table S9. Species-specific covariate coefficients from the occupancy submodel for the bird diet-group multi-
species occupancy model. 
 

Group Parameter Estimate 
Granivore Intercept -0.65 (-2.38, 1.16) 
Granivore Elevation -0.3 (-1.02, 0.41) 
Granivore PreFire Canopy -0.27 (-1.01, 0.46) 
Granivore Severity -1.09 (-2.81, 0.62) 
Granivore Severity Squared 0.32 (-1.26, 1.93) 
Granivore Pyrodiversity -0.2 (-0.85, 0.45) 
Granivore LagYear 0.38 (-0.17, 0.95) 
Insectivore Intercept -0.9 (-1.68, -0.11) 
Insectivore Elevation 0.32 (-0.18, 0.82) 
Insectivore PreFire Canopy -0.28 (-0.67, 0.12) 
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Insectivore Severity 1.53 (0.57, 2.78) 
Insectivore Severity Squared -0.96 (-1.92, 0.03) 
Insectivore Pyrodiversity -0.17 (-0.5, 0.16) 
Insectivore LagYear 0.28 (-0.04, 0.6) 
Nectar Intercept 1.17 (-2.26, 4.69) 
Nectar Elevation -1.01 (-4.44, 2.49) 
Nectar PreFire Canopy 0.6 (-2.7, 3.89) 
Nectar Severity -0.11 (-3.62, 3.27) 
Nectar Severity Squared 0.21 (-3.06, 3.6) 
Nectar Pyrodiversity -0.05 (-3.18, 3.2) 
Nectar LagYear -0.56 (-4.17, 3.12) 
Omnivore Intercept -0.17 (-1.42, 1.14) 
Omnivore Elevation 0.53 (-0.78, 1.79) 
Omnivore PreFire Canopy -0.49 (-1.55, 0.63) 
Omnivore Severity -0.35 (-2.09, 1.43) 
Omnivore Severity Squared 0.67 (-0.97, 2.23) 
Omnivore Pyrodiversity -0.03 (-0.97, 0.93) 
Omnivore LagYear 0.1 (-0.98, 1.21) 

 
Table S10. Species-specific covariate coefficients from the detection submodel for bat multi-species occupancy 
model. 
 

Species Parameter Estimate 
Pallid Bat Intercept -2.59 (-3.28, -1.88) 
Pallid Bat Calendar Date -0.03 (-0.32, 0.25) 
Pallid Bat Calendar Date^2 0.06 (-0.05, 0.17) 
Pallid Bat Wind (mph) -0.26 (-0.52, -0.02) 
Pallid Bat Temperature (°C) 0.38 (0.07, 0.7) 
Pallid Bat PostFire Canopy 0.04 (-0.14, 0.22) 
Big Brown Bat Intercept -1.01 (-1.29, -0.74) 
Big Brown Bat Calendar Date -0.2 (-0.38, 0) 
Big Brown Bat Calendar Date^2 0.04 (-0.07, 0.13) 
Big Brown Bat Wind (mph) -0.21 (-0.39, -0.04) 
Big Brown Bat Temperature (°C) 0.28 (0.07, 0.48) 
Big Brown Bat PostFire Canopy 0.09 (-0.06, 0.23) 
Western Red Bat Intercept -1.46 (-1.95, -0.98) 
Western Red Bat Calendar Date -0.09 (-0.3, 0.12) 
Western Red Bat Calendar Date^2 0.04 (-0.06, 0.14) 
Western Red Bat Wind (mph) -0.14 (-0.32, 0.03) 
Western Red Bat Temperature (°C) -0.46 (-0.71, -0.19) 
Western Red Bat PostFire Canopy 0.05 (-0.12, 0.22) 
Hoary Bat Intercept -0.86 (-1.19, -0.52) 
Hoary Bat Calendar Date -0.89 (-1.12, -0.66) 
Hoary Bat Calendar Date^2 0.06 (-0.04, 0.16) 
Hoary Bat Wind (mph) -0.03 (-0.21, 0.16) 
Hoary Bat Temperature (°C) 0.16 (-0.05, 0.37) 
Hoary Bat PostFire Canopy 0.02 (-0.15, 0.18) 
Silver-haired Bat Intercept -0.64 (-1, -0.3) 
Silver-haired Bat Calendar Date -0.37 (-0.57, -0.17) 
Silver-haired Bat Calendar Date^2 0.07 (-0.04, 0.16) 
Silver-haired Bat Wind (mph) -0.23 (-0.41, -0.04) 
Silver-haired Bat Temperature (°C) 0.53 (0.3, 0.77) 
Silver-haired Bat PostFire Canopy 0.03 (-0.13, 0.2) 
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California Myotis Intercept 1.26 (0.79, 1.73) 
California Myotis Calendar Date -0.11 (-0.32, 0.12) 
California Myotis Calendar Date^2 0.08 (-0.03, 0.19) 
California Myotis Wind (mph) -0.21 (-0.4, -0.03) 
California Myotis Temperature (°C) 0.52 (0.26, 0.77) 
California Myotis PostFire Canopy 0.08 (-0.11, 0.27) 
Long-eared Myotis Intercept -2 (-2.53, -1.48) 
Long-eared Myotis Calendar Date 0.08 (-0.18, 0.32) 
Long-eared Myotis Calendar Date^2 0.04 (-0.07, 0.14) 
Long-eared Myotis Wind (mph) -0.04 (-0.24, 0.16) 
Long-eared Myotis Temperature (°C) 0.19 (-0.06, 0.43) 
Long-eared Myotis PostFire Canopy 0.08 (-0.1, 0.26) 
Little Brown Bat Intercept -4.87 (-6.26, -3.66) 
Little Brown Bat Calendar Date -0.01 (-0.49, 0.45) 
Little Brown Bat Calendar Date^2 0.07 (-0.06, 0.19) 
Little Brown Bat Wind (mph) -0.18 (-0.45, 0.08) 
Little Brown Bat Temperature (°C) 0.09 (-0.37, 0.6) 
Little Brown Bat PostFire Canopy 0.04 (-0.16, 0.24) 
Fringed Myotis Intercept -5.06 (-7.23, -3.13) 
Fringed Myotis Calendar Date -0.32 (-0.83, 0.22) 
Fringed Myotis Calendar Date^2 0.05 (-0.08, 0.16) 
Fringed Myotis Wind (mph) -0.12 (-0.38, 0.16) 
Fringed Myotis Temperature (°C) -0.03 (-0.52, 0.49) 
Fringed Myotis PostFire Canopy 0.04 (-0.16, 0.24) 
Yuma Myotis Intercept -0.51 (-0.78, -0.24) 
Yuma Myotis Calendar Date 0.01 (-0.17, 0.18) 
Yuma Myotis Calendar Date^2 0.04 (-0.05, 0.13) 
Yuma Myotis Wind (mph) -0.12 (-0.27, 0.04) 
Yuma Myotis Temperature (°C) -0.03 (-0.21, 0.16) 
Yuma Myotis PostFire Canopy 0.07 (-0.08, 0.22) 
Canyon Bat Intercept -1.93 (-2.42, -1.44) 
Canyon Bat Calendar Date 0.24 (0, 0.47) 
Canyon Bat Calendar Date^2 0.05 (-0.06, 0.15) 
Canyon Bat Wind (mph) -0.15 (-0.33, 0.05) 
Canyon Bat Temperature (°C) 0.1 (-0.15, 0.35) 
Canyon Bat PostFire Canopy 0.05 (-0.13, 0.23) 
Mexican Free-tailed Bat Intercept 1.17 (0.87, 1.47) 
Mexican Free-tailed Bat Calendar Date -0.37 (-0.57, -0.18) 
Mexican Free-tailed Bat Calendar Date^2 0.06 (-0.04, 0.16) 
Mexican Free-tailed Bat Wind (mph) -0.07 (-0.25, 0.11) 
Mexican Free-tailed Bat Temperature (°C) -0.05 (-0.25, 0.17) 
Mexican Free-tailed Bat PostFire Canopy 0.01 (-0.15, 0.17) 
Community Mean Intercept -1.43 (-2.47, -0.42) 
Community Mean Calendar Date -0.17 (-0.38, 0.04) 
Community Mean Calendar Date^2 0.05 (-0.02, 0.13) 
Community Mean Wind (mph) -0.15 (-0.26, -0.03) 
Community Mean Temperature (°C) 0.14 (-0.06, 0.35) 
Community Mean PostFire Canopy 0.05 (-0.07, 0.17) 

 
Table S11. Species-specific covariate coefficients from the occupancy submodel for the bat multi-species 
occupancy model. 
 

Species Parameter Estimate 
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Pallid Bat Intercept 1.86 (-0.51, 4.4) 
Pallid Bat Elevation -0.11 (-1.15, 1) 
Pallid Bat PreFire Canopy -0.32 (-1.71, 0.97) 
Pallid Bat Severity -0.17 (-2.76, 3.1) 
Pallid Bat Severity Squared -2.03 (-4.52, 0.55) 
Pallid Bat Pyrodiversity 0.08 (-0.92, 1.12) 
Pallid Bat LagYear 1.7 (0.06, 3.43) 
Big Brown Bat Intercept 4.28 (1.35, 6.99) 
Big Brown Bat Elevation -0.06 (-1.19, 1.12) 
Big Brown Bat PreFire Canopy 0.23 (-0.67, 1.25) 
Big Brown Bat Severity 0.9 (-1.51, 3.27) 
Big Brown Bat Severity Squared -0.64 (-2.73, 1.33) 
Big Brown Bat Pyrodiversity 0.3 (-0.69, 1.31) 
Big Brown Bat LagYear -0.11 (-1.59, 1.26) 
Western Red Bat Intercept 4.02 (0.84, 6.98) 
Western Red Bat Elevation -0.02 (-1.07, 1.14) 
Western Red Bat PreFire Canopy 0.29 (-0.75, 1.47) 
Western Red Bat Severity 0.59 (-1.93, 3.22) 
Western Red Bat Severity Squared -0.75 (-2.89, 1.19) 
Western Red Bat Pyrodiversity 0.09 (-0.89, 1.05) 
Western Red Bat LagYear -0.35 (-1.98, 1.27) 
Hoary Bat Intercept 4.64 (2.16, 6.98) 
Hoary Bat Elevation 0.07 (-1.06, 1.24) 
Hoary Bat PreFire Canopy -0.05 (-1.31, 1.07) 
Hoary Bat Severity 0.47 (-1.91, 3.22) 
Hoary Bat Severity Squared -1.56 (-3.73, 0.61) 
Hoary Bat Pyrodiversity 0.13 (-0.75, 1.02) 
Hoary Bat LagYear 0.53 (-0.63, 1.7) 
Silver-haired Bat Intercept 2.59 (1.23, 4.04) 
Silver-haired Bat Elevation 0 (-0.87, 0.88) 
Silver-haired Bat PreFire Canopy 0.24 (-0.41, 0.88) 
Silver-haired Bat Severity 1.32 (-1.07, 3.5) 
Silver-haired Bat Severity Squared 0.12 (-2.44, 2.47) 
Silver-haired Bat Pyrodiversity 0.21 (-0.58, 0.99) 
Silver-haired Bat LagYear 0.78 (0.07, 1.48) 
California Myotis Intercept 4.57 (2.7, 6.24) 
California Myotis Elevation -0.21 (-1.19, 0.76) 
California Myotis PreFire Canopy 0.38 (-0.6, 1.47) 
California Myotis Severity 0.88 (-1.36, 3.15) 
California Myotis Severity Squared -0.75 (-2.71, 1.24) 
California Myotis Pyrodiversity 0.09 (-0.82, 0.92) 
California Myotis LagYear 0.63 (-0.5, 1.69) 
Long-eared Myotis Intercept 4.93 (1.68, 7.95) 
Long-eared Myotis Elevation -0.29 (-1.61, 1.23) 
Long-eared Myotis PreFire Canopy 0.08 (-1.13, 1.29) 
Long-eared Myotis Severity 0.6 (-1.77, 3.16) 
Long-eared Myotis Severity Squared -0.74 (-2.97, 1.44) 
Long-eared Myotis Pyrodiversity 0.18 (-0.8, 1.16) 
Long-eared Myotis LagYear 0.12 (-1.6, 1.72) 
Little Brown Bat Intercept 3.41 (-0.78, 7.5) 
Little Brown Bat Elevation -0.06 (-1.25, 1.26) 
Little Brown Bat PreFire Canopy 0.07 (-1.37, 1.43) 
Little Brown Bat Severity 0.45 (-2.25, 3.27) 
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Little Brown Bat Severity Squared -1.28 (-4.11, 1.3) 
Little Brown Bat Pyrodiversity 0.11 (-1.03, 1.19) 
Little Brown Bat LagYear 0.5 (-1.31, 2.28) 
Fringed Myotis Intercept 2.44 (-3.51, 6.33) 
Fringed Myotis Elevation 0 (-1.25, 1.31) 
Fringed Myotis PreFire Canopy 0.07 (-1.35, 1.4) 
Fringed Myotis Severity 0.67 (-2.22, 3.5) 
Fringed Myotis Severity Squared -1.03 (-4, 1.68) 
Fringed Myotis Pyrodiversity 0.14 (-0.94, 1.28) 
Fringed Myotis LagYear 0.67 (-1.29, 2.74) 
Yuma Myotis Intercept 4.84 (2.27, 7.45) 
Yuma Myotis Elevation -0.21 (-1.4, 1) 
Yuma Myotis PreFire Canopy -0.24 (-1.6, 0.87) 
Yuma Myotis Severity 0.76 (-1.59, 3.23) 
Yuma Myotis Severity Squared -0.81 (-2.99, 1.17) 
Yuma Myotis Pyrodiversity 0.1 (-0.92, 1.03) 
Yuma Myotis LagYear 0.3 (-1.07, 1.58) 
Canyon Bat Intercept 4.14 (1.36, 6.72) 
Canyon Bat Elevation 0.08 (-1.09, 1.26) 
Canyon Bat PreFire Canopy 0.05 (-1.3, 1.4) 
Canyon Bat Severity 0.3 (-2.39, 3.16) 
Canyon Bat Severity Squared -1.95 (-4.51, 0.65) 
Canyon Bat Pyrodiversity 0.19 (-0.89, 1.26) 
Canyon Bat LagYear 0.61 (-0.69, 2.03) 
Mexican Free-tailed Bat Intercept 5.2 (3.1, 7.29) 
Mexican Free-tailed Bat Elevation -0.07 (-1.1, 0.97) 
Mexican Free-tailed Bat PreFire Canopy -0.1 (-1.23, 0.96) 
Mexican Free-tailed Bat Severity 0.35 (-1.97, 2.84) 
Mexican Free-tailed Bat Severity Squared -1.33 (-3.12, 0.56) 
Mexican Free-tailed Bat Pyrodiversity 0.08 (-0.77, 0.89) 
Mexican Free-tailed Bat LagYear 0.67 (-0.4, 1.75) 
Community Mean Intercept 3.55 (1.91, 5.2) 
Community Mean Elevation -0.07 (-0.89, 0.77) 
Community Mean PreFire Canopy 0.06 (-0.66, 0.78) 
Community Mean Severity 0.59 (-1.4, 2.81) 
Community Mean Severity Squared -1.04 (-2.71, 0.63) 
Community Mean Pyrodiversity 0.14 (-0.58, 0.83) 
Community Mean LagYear 0.49 (-0.34, 1.3) 
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Conclusion 

As anthropogenic change continues to rapidly alter our planet, the need to restore and adapt 
degraded ecological communities has become increasingly clear. Many of the social, economic, 
and cultural systems that we’ve come to depend on are intimately tied to the biodiversity that 
supports them. Without these integral pieces, many of the services we’ve come to enjoy and take 
for granted may cease to exist. The escalation of various climate-related disturbances, such as 
extreme wildfire, threatens the sustainability of many of these species, processes, and 
ecosystems. In light of all of this, tapping into the natural ability of these systems to recover and 
adapt to these challenges has become a primary objective of conservation work worldwide. In 
many instances, we find that ecosystems have a natural propensity to regenerate if given the 
space, time, and resources to respond to disturbances.  

The need to find, create, and nurture ecological resilience for changing climate and fire 
dynamics, specifically, has become increasingly apparent as well. Fire has played a deep, 
integral role in shaping terrestrial ecosystems around the world. This history is intricately tied 
with deliberate land stewardship practices by indigenous communities around the globe. But in 
cruel twist of fate, this tool has increasingly become a devastatingly destructive force in the very 
landscapes it helped shape. However, just as humans used fire to mold these landscapes before, 
our decisions today continue to play a profound role in influencing how fire affects the 
landscapes around us. We need more deliberate action that can recreate and sustain the historical 
dynamics of fire regimes and find ways to adapt these for a new age of global change. 
Underpinning all of this is a need to develop a deeper understanding of the natural mechanisms 
of resistance and resilience existing in fire-prone ecosystems and how they may be enhanced.  

This dissertation highlights some of the potential mechanisms by which resistance and resilience 
to changes in fire dynamics may be produced in wildlife communities in oak woodland savannas. 
In Chapters 2 and 4, we show that a major megafire had no or limited impacts on the 
distributions of mammal and bird species assemblages. Species-specific effects of megafire did 
vary, with certain species showing some vulnerability to its initial effects. We found, however, 
that these vulnerabilities can be buffered by certain landscape features such as unburned refugia 
patches. Furthermore, Chapter 3 highlights that species-specific behaviors can interact with these 
landscape features to produce the examined effects of resilience, such as when black-tailed deer 
adjusted their movement behaviors to best take advantage of these existing patches of refugia. 
Chapters 2, 3, and 4 echo the key role fire clearly continues to play in these woodland 
ecosystems where a variety of species preferentially choose to use areas that have burned both 
recently or over time. Utilizing fire management to encourage positive feedbacks in creating 
landscape heterogeneity (especially in oak woodland savannas) is therefore critical in providing 
improved habitat for a variety of different species sustainably. Finally, and as opined in Chapter 
1, developing a deeper understanding of how fire and resilience play out across different contexts 
necessitates much more work in non-forested ecosystems before climate change and fire cause 
them irreparable harm.  

Building upon the findings of this dissertation, and in recognition of the gaps that continue to 
exist, I plan to expand on these topics within my future work by: 
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1. Continuing to develop our understanding of how novel disturbance regimes may 
rewire existing wildlife communities. Severe disturbance may elicit responses from 
certain species that may have reverberating effects throughout their community. These 
changes in community structure and composition could have crippling impacts on the 
functioning of ecological communities and the services they provide to people.  
 

2. Expanding and modernizing our sensors of biodiversity. Key to understanding how 
these ecological communities are being affected by disturbance is developing a strong set 
of tools to monitor wildlife biodiversity. Developing a standardized set of tools and 
procedures that can be used to facilitate broader scale studies on the impacts of these 
large scale disturbances will be critical towards informing successful wildlife 
management.  
 

3. Evaluating the impacts of megafire and climate change on human wildlife 
interactions. Findings from the dissertation highlight that movement away from fire is a 
key response for many large mammals. Many wide-ranging species in this work (such as 
mountain lion and black bear) were found to temporarily leave areas that recently burned 
to, theoretically, use unburned, intact habitat within their vast home ranges. While 
effective for avoiding the direct impacts of fire, these adjustments in movement may push 
these species into more human-dominated areas more often. Even more broadly, as fire 
and climate change continues to constrain available habitat for wildlife, humans and 
wildlife species may come to depend on increasingly shrinking pools of resources, 
potentially exacerbating human-wildlife conflict (Abrahms 2021). 
 

4. Highlighting and advocating indigenous management practices and knowledge in 
managing oak woodland landscapes with fire. Oak woodlands have been critical 
landscapes for indigenous groups across California. The vast biodiversity of California 
oak woodlands is due in large part to the practices used by these groups for thousands of 
years to maintain these landscapes. Continuing to incorporate these ways of knowing into 
oak woodland management today is integral in protecting them from the effects of 
climate change and altered fire regimes.  
 

5. Expanding our understanding of fire’s impacts on wildlife in other non-forested 
ecosystems. We know we have limited work exploring how fire outside of forests 
impacts wildlife communities. This dissertation and research like it are the first in a major 
step to help fill these existing gaps. Future work should continue to fill these gaps across 
the major understudied ecosystem types outlined in Chapter 1 (hardwood, shrubland, and 
grassland). 

Addressing the threats presented by altered fire dynamics in California to biodiversity follows a 
similar story as other complex environmental issues around the world. Just as the issues we face 
here are multi-faceted, our solutions must be equally nuanced and adaptable. For global 
conservation, we must continue to push towards a new paradigm that recognizes both fire and 
wildlife as integrated, necessary pieces within a much larger system that includes people too. In 
the case of climate disturbances like megafire, drought, and flood (harbingers of escalating 
climate change) we must also consider the impacts on vulnerable communities, necessitating the 
incorporation of new topics such as environmental justice. Both wildfire and several wildlife 
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species (particularly large predators) have long been vilified and labeled as enemies of the 
“greater good”. We urgently need a new framework that understands the intrinsic values of each 
of these elements and uses this understanding to rebuild a stronger world and environment for 
our future.  
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