UC Irvine

UC Irvine Previously Published Works

Title

Measurement of the charged-particle multiplicity inside jets from $\mathrm{s}=8 \mathrm{TeV} \mathrm{pp}$ collisions with the ATLAS detector

Permalink
https://escholarship.org/uc/item/2nd8z765
Journal
European Physical Journal C, 76(6)

ISSN
1434-6044

Authors
Atlas Collaboration
Aad, G
Abbott, B
et al.

Publication Date
2016-06-01

DOI
10.1140/epjc/s10052-016-4126-5

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Measurement of the charged-particle multiplicity inside jets from $\sqrt{s}=8 \mathrm{TeV} p p$ collisions with the ATLAS detector

ATLAS Collaboration ${ }^{\star}$
CERN, 1211 Geneva 23, Switzerland
Received: 3 February 2016 / Accepted: 4 May 2016 / Published online: 13 June 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract

The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with $p_{\mathrm{T}}>500 \mathrm{MeV}$ inside high-momentum jets in dijet events using $20.3 \mathrm{fb}^{-1}$ of data recorded with the ATLAS detector in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV . The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Furthermore, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.

1 Introduction

Quarks and gluons produced in high-energy particle collisions hadronize before they can be observed directly. However, the properties of the resulting collimated sprays of hadrons, known as jets, depend on the type of parton which initiated them. One jet observable sensitive to the quark or gluon nature is the number of charged particles inside the jet. Due to their larger colour-charge under the strong force, gluon-initiated jets contain on average more particles than quark-initiated jets. The average (charged) particle multiplicity inside jets increases with jet energy, but increases faster for gluon-initiated jets than for quark-initiated jets [1]. These properties were used recently at the Large Hadron Collider (LHC) to differentiate between jets originating from a quark or a gluon [2-6]. These studies have found significant differences in the charged-particle multiplicity between the available simulations and data. Improved modelling based

[^0]on measurements of the number of charged particles inside jets is thus crucial for future studies.

This paper presents a measurement of the average chargedparticle multiplicity inside jets as a function of the jet transverse momentum in dijet events in $p p$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector. The measurement of the charged-particle multiplicity inside jets has a long history from the SPS [7-9], PETRA [10,11], PEP [12-15], TRISTAN [16], CESR [17], LEP [18-29], and the Tevatron [30]. At the LHC, both ATLAS [31,32] and CMS [33] have measured the charged-particle multiplicity inside jets at $\sqrt{s}=7$ TeV . One ATLAS result [31] used jets that are reconstructed using tracks and have transverse momentum less than 40 GeV . A second ATLAS analysis [32] has measured charged particles inside jets with transverse momenta spanning the range from 50 to 500 GeV with approximately constant $3-4 \%$ uncertainties. The CMS measurement [33] spans jet transverse momenta between 50 and 800 GeV with $5-10 \%$ uncertainties in the bins of highest transverse momentum. The analysis presented here uses the full $\sqrt{s}=8$ TeVATLAS dataset, which allows for a significant improvement in the precision at high transverse momentum up to and beyond 1.5 TeV .

This paper is organized as follows. After a description of the ATLAS detector and object and event selection in Sect. 2, simulated samples are described in Sect. 3. In order for the measured charged-particle multiplicity to be compared with particle-level models, the data are unfolded to remove distortions from detector effects, as described in Sect. 4. Systematic uncertainties in the measured charged-particle multiplicity are discussed in Sect. 5 and the results are presented in Sect. 6.

2 Object and event selection

ATLAS is a general-purpose detector designed to measure the properties of particles produced in high-energy $p p$ collisions with nearly a full 4π coverage in solid angle. Charged-
particle momenta are measured by a series of tracking detectors covering a range ${ }^{1}$ of $|\eta|<2.5$ and immersed in a 2 T axial magnetic field, providing measurements of the transverse momentum, p_{T}, with a resolution $\sigma_{p_{\mathrm{T}}} / p_{\mathrm{T}} \sim$ $0.05 \% \times p_{\mathrm{T}} / \mathrm{GeV} \oplus 1 \%$. Electromagnetic and hadronic calorimeters surround the tracking detector, with forward calorimeters allowing electromagnetic and hadronic energy measurements up to $|\eta|=4.5$. A detailed description of the ATLAS detector can be found in Ref. [34].

This measurement uses the dataset of $p p$ collisions recorded by the ATLAS detector in 2012, corresponding to an integrated luminosity of $20.3 \mathrm{fb}^{-1}$ at a center-of-mass energy of $\sqrt{s}=8 \mathrm{TeV}$. The data acquisition and object/event selection are described in detail in Ref. [35] and highlighted here for completeness. Jets are clustered using the anti- k_{t} jet algorithm [36] with radius parameter $R=0.4$ implemented in FastJet [37] using as inputs topological calorimeter-cell clusters [38], calibrated using the local cluster weighting (LCW) algorithm [39,40]. An overall jet energy calibration accounts for residual detector effects as well as contributions from multiple proton-proton collisions in the same bunch crossing (pileup) [41] in order to make the reconstructed jet energy correspond to an unbiased measurement of the particle-level jet energy. Jets are required to be central $(|\eta|<2.1)$ so that their charged particles are within the $|\eta|<2.5$ coverage of the tracking detector. Events are further required to have at least two jets with $p_{\mathrm{T}}>50 \mathrm{GeV}$ and only the leading two jets are considered for the charged-particle multiplicity measurement. To select dijet topologies where the jets are balanced in p_{T}, the two leading jets must have $p_{\mathrm{T}}^{\text {lead }} / p_{\mathrm{T}}^{\text {sublead }}<1.5$, where $p_{\mathrm{T}}^{\text {lead }}$ and $p_{\mathrm{T}}^{\text {sublead }}$ are the transverse momenta of the jets with the highest and second-highest p_{T}, respectively. The jet with the smaller (larger) absolute pseudorapidity $|\eta|$ is classified as the more central (more forward) jet. A measurement of the more forward and more central average chargedparticle multiplicities can exploit the rapidity dependence of the jet type to extract information about the multiplicity for quark- and gluon-initiated jets as is described in Sect. 6. The more forward jet tends to be correlated with the parton with higher longitudinal momentum fraction x, and is less likely to be a gluon-initiated jet.

Tracks are required to have $p_{\mathrm{T}} \geq 500 \mathrm{MeV},|\eta|<2.5$, and a χ^{2} per degree of freedom (resulting from the track fit) less than 3.0. Additional quality criteria are applied to select tracks originating from the collision vertex and reject fake

[^1]

Fig. 1 The distribution of the number of reconstructed tracks associated with a jet (not unfolded) in three example jet p_{T} ranges: 50 $\mathrm{GeV}<p_{\mathrm{T}}<100 \mathrm{GeV}, 100 \mathrm{GeV}<p_{\mathrm{T}}<200 \mathrm{GeV}$, and $1 \mathrm{TeV}<p_{\mathrm{T}}<$ 1.2 TeV for data and for PYTHIA 8 and HERWIG++ predictions. The simulated samples are described in Sect. 3. The data points have statistical uncertainties which in all bins are smaller than the marker size. There is one entry per jet
tracks reconstructed from random hits in the detector. In particular, tracks are matched to the hard-scatter vertex by requiring $\left|z_{0} \sin (\theta)\right|<1.5 \mathrm{~mm}$ and $\left|d_{0}\right|<1 \mathrm{~mm}$, where z_{0} and d_{0} are the track longitudinal and transverse impact parameters, respectively, calculated with respect to the primary vertex. Tracks must furthermore have at least one hit in the silicon pixel detector and at least six hits in the semiconductor microstrip detector. The matching of tracks with the calorimeter-based jets is performed via the ghost-association technique [42]: the jet clustering process is repeated with the addition of 'ghost' versions of measured tracks that have the same direction but infinitesimally small p_{T}, so that they do not change the properties of the calorimeter-based jets. A track is associated with a jet if its ghost version is contained in the jet after reclustering. The distribution of the number of tracks in three representative jet p_{T} ranges is shown in Fig. 1. The number of tracks increases with jet p_{T} and the data fall mostly between the distributions predicted by Pythia and Herwig++ Monte Carlo simulations.

3 Event simulation

Monte Carlo (MC) samples are used in order to determine how the detector response affects the charged-particle multiplicity and to make comparisons with the corrected data. The details of the samples used are shown in Table 1. The sample generated with PYTHIA 8.175 [43] using the AU2 [44] set of tuned parameters (tune) and the HERWIG++ 2.6.3 [45]

Table 1 Monte Carlo samples used in this analysis. The abbreviations ME, PDF, and UE respectively stand for matrix element, parton distribution function, and underlying event. 'Tune' refers to the set of tunable MC parameters used

ME generator	PDF	Tune
PYTHIA 8.175 [43]	CT10 [50]	AU2 [44]
PYTHIA 8.186	NNPDF2.3 [51]	Monash [52]
PYTHIA 8.186	NNPDF2.3	A14 [53]
HERWIG++ 2.6.3 [45,54]	CTEQ6L1 [55]	UE-EE3 [46]
HERWIG++ 2.7.1 [56]	CTEQ6L1	UE-EE5 [57]
PYTHIA 6.428 [58]	CTEQ6L1	P2012 [59]
PYTHIA 6.428	CTEQ6L1	P2012RadLo [59]
PYTHIA 6.428	CTEQ6L1	P2012RadHi [59]

sample with the UE-EE3 [46] tune are further processed with the ATLAS detector simulation [47] based on GEANT4 [48]. The effects of pileup are modelled by adding to the generated hard-scatter events (before the detector simulation) multiple minimum-bias events generated with PYTHIA 8.160, the A2 tune [44], and the MSTW2008LO [49] Parton distribution function (PDF) set. The distribution of the number of interactions is then weighted to reflect the pileup distribution in the data.

4 Unfolding

The measurement is carried out within a fiducial volume matching the experimental selection to avoid extrapolation into unmeasured kinematic regions that have additional model dependence and related uncertainties. Particle-level definitions of the reconstructed objects are chosen to be as close as possible to those described in Sect. 2. Particle-level jets are clustered from generated stable particles with a mean lifetime $\tau>30 \mathrm{ps}$, excluding muons and neutrinos. As with the detector-level jets, particle-level jets are clustered with the anti- $k_{t} R=0.4$ algorithm. Any charged particle clustered in a particle-level jet is considered for the charged-particle multiplicity calculation if it has $p_{\mathrm{T}}>500 \mathrm{MeV}$. Events are required to have at least two jets with $|\eta|<2.1$ and $p_{\mathrm{T}}>50 \mathrm{GeV}$ and the two highest- p_{T} jets must satisfy the same p_{T}-balance requirement between the leading and subleading jet as at detector level ($p_{\mathrm{T}}^{\text {lead }} / p_{\mathrm{T}}^{\text {sublead }}<1.5$). The p_{T} symmetry requirement enriches the sample in a back-toback topology and suppresses non-isolated jets. In more than 70% of events, the nearest jet in ΔR with $p_{\mathrm{T}}>25 \mathrm{GeV}$ is the other selected jet and in less than 7% of events, there is a jet with $p_{\mathrm{T}}>25 \mathrm{GeV}$ within $\Delta R=0.8$ from one of the two selected jets. Due to the high-energy and well-separated nature of the selected jets, the hard-scatter quarks and gluons can be cleanly matched to the outgoing jets. In this analysis,

Fig. 2 The simulated fraction of jets originating from gluons as a function of jet p_{T} for the more forward jet (down triangle), the more central jet (up triangle), and the difference between these two fractions (circle). The fractions are derived from PYTHIA 8 with the CT10 PDF set and the error bars represent the PDF and matrix element uncertainties, further discussed in Sect. 6. The uncertainties on the fraction difference are computed from propagating the uncertainties on the more forward and more central fractions, treating as fully correlated
the type of a jet is defined as that of the highest-energy parton in simulation within a $\Delta R=0.4$ cone around the particlejet's axis. ${ }^{2}$ Figure 2 shows the fraction of gluon-initiated jets as a function of jet $p_{\text {T }}$ for the more forward and more central jet within the event. The fraction of gluon-initiated jets decreases with p_{T}, but the difference between the more forward and more central jets peaks around $p_{\mathrm{T}} \sim 350 \mathrm{GeV}$. This difference is exploited in Sect. 6 to extract separately the average quark- and gluon-initiated jet charged-particle multiplicity.

The average charged-particle multiplicity in particlelevel jets is determined as a function of jet p_{T}. An iterative Bayesian (IB) technique [61] as implemented in the RooUnfold framework [62] is used to unfold the twodimensional charged-particle multiplicity and jet $p_{\text {T }}$ distribution. In the IB unfolding technique, the number of iterations and the prior distribution are the input parameters. The raw data are corrected using the simulation to account for events that pass the fiducial selection at detector level, but not the corresponding selection at particle level; this correction is the fake factor. Then, the IB method iteratively applies Bayes' theorem using the response matrix to con-

[^2]

Fig. 3 The jet $p_{\text {T }}$ dependence of a the average reconstructed track multiplicity for uncorrected data and detector-level simulation, \mathbf{b} the average reconstructed track multiplicity for the detector-level simulation and the average charged-particle multiplicity for the particle-level simulation, \mathbf{c} the average charged-particle multiplicity for the unfolded data and the particle-level simulation, and dhe average charged-particle

multiplicity divided by the average reconstructed track multiplicity in simulation. Three charged-particle and track $p_{\text {T }}$ thresholds are used in each case: $0.5,2$, and 5 GeV . PYthia 8 with the CT10 PDF and the AU2 tune are used for the simulation. For the data, only statistical uncertainties are included in the error bars (which are smaller than the markers for most bins)
as a test of the methodology. Lastly, unfolding applies another correction from simulation to the unfolded data to account for events passing the particle-level selection but not the detector-level selection; this correction is the inefficiency factor.

Figure 3 displays the p_{T} dependence of the average charged-particle multiplicity for uncorrected data and detector-level simulation and for particle-level simulation as well as the unfolded data. The prediction from PYTHIA 8 with the AU2 tune has too many tracks compared with the uncorrected data, and the size of the data/MC difference increases with decreasing track p_{T} threshold (Fig. 3a). The difference between the detector-level and particle-level simulation in

Fig. 3b (for which the ratio is given in Fig. 3d) gives an indication of the corrections required to account for detector acceptance and resolution effects in the unfolding procedure. Particle-level distributions in Fig. 3c show similar trends to the detector-level ones in Fig. 3a.

5 Systematic uncertainties

All stages of the charged-particle multiplicity measurement are sensitive to sources of potential bias. The three stages of the measurement are listed below, with an overview of the systematic uncertainties that impact the results at each stage:

Response matrix For events that pass both the detector-level and particle-level fiducial selections, the response matrix describes migrations between bins when moving between the detector level and the particle level. The response matrix is taken from simulation and various experimental uncertainties in the charged-particle multiplicity and jet p_{T} spectra result in uncertainties in the matrix. These uncertainties can be divided into two classes: those impacting the calorimeter-based jet p_{T} and those impacting track reconstruction inside jets. The dominant uncertainty at high jet p_{T} is due to the loss of charged-particle tracks in the jet core due to track merging. This charged energy loss uncertainty is estimated using the data/MC differences in the ratio of the track-based jet $p_{\text {T }}$ to the calorimeter-based jet p_{T} [35]. More charged energy is lost in the data than in the MC and thus this uncertainty is one-sided. There are other tracking uncertainties in the track momentum scale and resolution, the track reconstruction efficiency, and the rate of tracks formed from random combinations of hits (fake tracks). The prescription for these sub-dominant tracking uncertainties is identical to Ref. [35]. The uncertainties related to the calorimeter-based jet are sub-dominant (except in the lowest p_{T} bins) and are due to the uncertainty in the jet energy scale and the jet energy resolution.
Correction factors Fake and inefficiency factors are derived from simulation to account for the fraction of events that pass either the detector-level or particle-level fiducial selection $\left(p_{\mathrm{T}}>50 \mathrm{GeV}|\eta|<2.1\right.$, and $p_{\mathrm{T}}^{\text {lead }} / p_{\mathrm{T}}^{\text {sublead }}<$ 1.5), but not both. These factors are derived in bins of jet p_{T} and charged particle multiplicity, separately for the more forward and more central jets. They are generally between 0.9 and 1.0 except in the first jet- p_{T} interval ($50<p_{\mathrm{T}}<100 \mathrm{GeV}$), where threshold effects cause the correction factors to take values down to 0.8 . Experimental uncertainties correlated with the detector-level selection acceptance, such as the jet energy scale uncertainty, result in uncertainties in these correction factors. Another source of uncertainty in the correction factors is
the explicit dependence on the particle-level multiplicity and jet p_{T} spectrum. A comparison of particle-level models (Pythia and Herwig++) is used to estimate the impact on the correction factors.
Unfolding procedure A data-driven technique is used to estimate the potential bias from a given choice of a prior distribution and number of iterations in the IB method [63]. The particle-level spectrum is reweighted so that the simulated detector-level spectrum, from propagating the reweighted particle-level spectrum through the response matrix, has significantly improved agreement with the uncorrected data. The modified detector-level distribution is unfolded with the nominal response matrix and the difference between this and the reweighted particle-level spectrum is an indication of the bias due to the unfolding method (in particular, the choice of a prior distribution).

A summary of the systematic uncertainties can be found in Table 2 and more detail about the evaluation of each uncertainty can be found in Ref. [35]. The response matrix uncertainty shown in Table 2 is decomposed into four categories, as described above.

6 Results

The unfolded average charged-particle multiplicity combining both the more forward and the more central jets is shown in Fig. 4, compared with various model predictions. As was already observed for the reconstructed data in Fig. 1, the average charged-particle multiplicity in data falls between the predictions of PYTHIA 8 and HERWIG++, independently of the underlying-event tunes. The PYTHIA 8 predictions are generally higher than the data and this is more pronounced at higher jet p_{T}. The default ATLAS tune in Run 1 (AU2) performs similarly to the Monash tune, but the prediction with A14 (the ATLAS default for the analysis of Run 2 data) is significantly closer to the data. A previous ATLAS measurement [31] of charged-particle multiplicity inside jets was included in the tuning of A14, but the jets in that measurement have $p_{\mathrm{T}} \lesssim 50 \mathrm{GeV}$. One important difference between A14 and Monash is that the value of α_{s} governing the amount of final-state radiation is about 10% lower in A14 than in Monash. This parameter has a large impact on the average charged-particle multiplicity, which is shown by the PYTHIA 6 lines in Fig. 4 where the Perugia radHi and radLo tunes are significantly separated from the central P2012 tune. The α_{s} value that regulates final-state radiation is changed by factors of one half and two for these tunes with respect to the nominal Perugia 2012 tune. The recent (and Run 2 default) EE5 underlying-event tune for HERWIG++ improves the modelling of the average charged-particle multiplicity with respect to the EE3 tune (Run 1 default).
Table 2 A summary of all the systematic uncertainties and their impact on the $n_{\text {track }}$ mean for $p_{\mathrm{T}}^{\text {track }}>0.5 \mathrm{GeV}$ and the more central jet. Uncertainties are given in percent. A value of 0.0 is quoted if the uncertainty is below 0.05%

Average $n_{\text {charged }}$ Systematic uncertainty (\%)	Jet p_{T} range [100 GeV]										
	[0.5, 1]	$[1,2]$	[2, 3]	[3, 4]	[4, 5]	$[5,6]$	$[6,8]$	[8, 10]	[10, 12]	[12, 15]	[15, 18]
Response matrix											
Total jet energy scale	+1.9 -1.9	+0.7 -0.9	${ }^{+0.6}$	${ }_{-0.7}^{+0.8}$	+0.7 -0.7	${ }_{-0.7}^{+0.6}$	${ }_{-0.7}^{+0.6}$	${ }_{-0.5}^{+0.6}$	+0.4 -0.4	+0.3 -0.3	$\begin{gathered} +0.8 \\ { }_{-0.7}^{+0} \end{gathered}$
Jet energy resolution	${ }_{-0.6}^{+0.6}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.2}^{+0.2}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	$\begin{gathered} +0.2 \\ -0.2 \end{gathered}$
Charged energy loss	+0.0 -0.0	+0.0 -0.0	+0.0 -0.0	${ }_{-0.0}^{+0.0}$	+1.2 -0.0	${ }_{-0.0}^{+1.1}$	${ }_{-0.0}^{+1.1}$	${ }_{+0.0}^{+1.1}$	+1.0 -0.0	$\begin{aligned} & +3.6 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +3.3 \\ & -0.0 \end{aligned}$
Other tracking	+1.2 -0.0	+1.0 -0.0	+0.9 -0.0	+0.8 -0.0	$\begin{aligned} & +0.8 \\ & { }_{-0.0} \end{aligned}$	+0.7 -0.0	$\begin{aligned} & +0.7 \\ & { }_{-0.0} \end{aligned}$	+0.7 -0.0	+0.7 -0.0	$\begin{aligned} & +0.7 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.8 \\ & { }_{-0.0} \end{aligned}$
Correction factors	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	${ }_{-0.1}^{+0.1}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1}^{+0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+0.0} \end{aligned}$	${ }_{-0.0}^{+0.0}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+0} \end{aligned}$
Unfolding procedure	$\begin{aligned} & +6.4 \\ & { }_{-6.4} \end{aligned}$	$\begin{array}{r} +3.4 \\ -3.4 \end{array}$	$\begin{aligned} & +0.6 \\ & { }_{-0.6} \end{aligned}$	$\begin{gathered} +0.8 \\ -0.8 \end{gathered}$	$\begin{aligned} & +0.6 \\ & { }_{-0.6} \end{aligned}$	$\begin{aligned} & +0.4 \\ & { }_{-0.4} \end{aligned}$	$\begin{aligned} & +0.4 \\ & { }_{-0.4} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	${ }_{-0.2}^{+0.2}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$
Total systematic	$\begin{aligned} & +6.8 \\ & { }_{-6.7} \end{aligned}$	$\begin{aligned} & +3.6 \\ & -3.5 \end{aligned}$	$\begin{array}{r} +1.2 \\ -1.0 \end{array}$	$\begin{array}{r} +1.4 \\ -1.1 \end{array}$	$\begin{aligned} & +0.7 \\ & { }_{-0.9} \end{aligned}$	$\begin{aligned} & +1.5 \\ & -0.8 \end{aligned}$	$\begin{aligned} & +1.5 \\ & -0.8 \end{aligned}$	$\begin{aligned} & +1.4 \\ & -0.6 \end{aligned}$	$\begin{aligned} & +1.3 \\ & -0.5 \end{aligned}$	$\begin{aligned} & +3.7 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +3.4 \\ & -0.7 \end{aligned}$
Data statistics	0.5	0.2	0.1	0.1	0.0	0.1	0.1	0.3	0.6	1.2	3.9
Total uncertainty	${ }_{-6.7}^{+6.8}$	$\begin{array}{r} +3.6 \\ { }_{-3.6} \end{array}$	$\begin{array}{r} +1.2 \\ -1.0 \end{array}$	$\begin{aligned} & +1.4 \\ & { }_{-1.1} \end{aligned}$	$\begin{array}{r} +1.7 \\ -0.9 \end{array}$	$\begin{aligned} & +1.5 \\ & { }_{-0.8} \end{aligned}$	$\begin{aligned} & +1.5 \\ & -0.8 \end{aligned}$	$\begin{aligned} & +1.4 \\ & -0.6 \end{aligned}$	$\begin{aligned} & +1.5 \\ & -0.8 \end{aligned}$	$\begin{array}{r} +3.9 \\ -1.3 \end{array}$	$\begin{array}{r} +5.2 \\ { }_{-4.0} \end{array}$
Measured value	7.87	9.87	12.19	13.54	14.59	15.41	16.28	17.41	18.25	18.71	20.78

The difference in the average charged-particle multiplicity between the more forward and the more central jet is sensitive to the difference between quark and gluon constituent multiplicities. Figure 5a shows that the difference is significant for $p_{\mathrm{T}} \lesssim 1.1 \mathrm{TeV}$. The shape is governed by the difference in the gluon fraction between the more forward and the more central jet, which was shown in Fig. 2 to peak around $p_{\mathrm{T}} \sim 350 \mathrm{GeV}$. The average difference, combined with the gluon fraction, can be used to extract the average charged-particle multiplicity for quark- and gluon-initiated jets separately. Given the quark and gluon fractions $f_{q, g}^{f, c}$ with $f=$ more forward, $c=$ more central, $q=$ quark, $g=$ gluon and $f_{q}+f_{g}=1$, the average charged-particle multiplicity for quark- and gluon-initiated jets is extracted by solving the system of equations in Eq. (1);

$$
\begin{align*}
& \left\langle n_{\text {charged }}^{f}\right\rangle=f_{q}^{f}\left\langle n_{\text {charged }}^{q}\right\rangle+f_{g}^{f}\left\langle n_{\text {charged }}^{g}\right\rangle \\
& \left\langle n_{\text {charged }}^{c}\right\rangle=f_{q}^{c}\left\langle n_{\text {charged }}^{q}\right\rangle+f_{g}^{c}\left\langle n_{\text {charged }}^{g}\right\rangle . \tag{1}
\end{align*}
$$

Given the jet p_{T}, the charged particle multiplicity inside jets does not vary significantly with η. This is confirmed by checking that the solution to Eq. 1 reproduces the quark and gluon jet charged particle multiplicities for both PYTHIA 8 and Herwig++ to better than 1% across most of the p_{T} range. The extracted p_{T} dependence of the average chargedparticle multiplicities for quark- and gluon-initiated jets is shown in Fig. 5b. PyTHIA 8 with the CT10 PDF set is used to determine the gluon fractions. The experimental uncertainties are propagated through Eq. (1) by recomputing the quark and gluon average charged-particle multiplicities for each variation accounting for a systematic uncertainty; the more forward and more central jet uncertainties are treated as being fully correlated. In addition to the experimental uncertainties, the error bands in Fig. 5b include uncertainties in the gluon fractions from both the PDF and matrix element (ME) uncertainties. The PDF uncertainty is determined using the CT10 eigenvector PDF sets and validated by comparing CT10 and NNPDF. The ME uncertainty is estimated by comparing the fractions $f_{q, g}^{f, c}$ from PyTHIA 8 and HERWIG++ after reweighting the PYTHIA 8 sample with CT10 to CTEQ6L1 to match the PDF used for HERWIG++. All PDF re-weighting is performed using LHAPDF6 [64]. The PDF and ME uncertainties are comparable in size to the total experimental uncertainty. As expected, the average multiplicity increases with jet p_{T} for both the quarkinitiated jets and gluon-initiated jets, but increases faster for gluon-initiated jets. Furthermore, the multiplicity is significantly higher for gluon-initiated jets than for quark-initiated jets. The average charged-particle multiplicity in PYTHIA 8 with the AU2 tune is higher than in the data for both the quark- and gluon-initiated jets. In addition to predictions from leading-logarithm parton shower simulations, calcu-

(a)

(c)

Fig. 4 The measured average charged-particle multiplicity as a function of the jet p_{T}, combining the more forward and the more central jets for $\mathbf{a} p_{\mathrm{T}}^{\text {track }}>0.5 \mathrm{GeV}, \mathbf{b} p_{\mathrm{T}}^{\text {track }}>2 \mathrm{GeV}$, and $\mathbf{c} p_{\mathrm{T}}^{\text {track }}>5 \mathrm{GeV}$. The band around the data is the sum in quadrature of the statistical
and systematic uncertainties. Error bars on the data points represent the statistical uncertainty (which are smaller than the markers for most bins)
lations of the scale dependence for the parton multiplicity inside jets have been performed in perturbative quantum chromodynamics (pQCD). Up to a non-perturbative factor that is constant for the jet p_{T} range considered in this analysis, ${ }^{3}$ these calculations can be interpreted as a prediction for the scale dependence of $\left\langle n_{\text {charged }}\right\rangle$ for quark- and gluon-

[^3]initiated jets. There are further caveats to the predictability of such a calculation since $n_{\text {charged }}$ is not infrared safe or even Sudakov safe [65]. Therefore, the formal accuracy of the series expansion in $\sqrt{\alpha_{\mathrm{s}}}$ is unknown. Given these caveats, the next-to-next-to-next-to-leading-order $\left(\mathrm{N}^{3} \mathrm{LO}\right)$ pQCD calculation $[66,67]$ is overlaid in Fig. 5 with renormalization scale $\mu=R p_{\mathrm{T}}$ in the five-flavour scheme and $R=0.4$. The theoretical error band is calculated by varying μ by a factor of two. The prediction cannot give the absolute scale,

(a)

Fig. 5 The jet $p_{\text {T }}$ dependence of a the difference in the average charged-particle multiplicity ($p_{\mathrm{T}}^{\text {track }}>0.5 \mathrm{GeV}$) between the more forward and the more central jet. The band for the data is the sum in quadrature of the systematic and statistical uncertainties and the error bars on the data points represent the statistical uncertainty. Bands on the simulation include MC statistical uncertainty. The jet p_{T} dependence of \mathbf{b} the average charged-particle multiplicity ($p_{\mathrm{T}}^{\text {track }}>0.5 \mathrm{GeV}$) for quark- and gluon-initiated jets, extracted with the gluon fractions from PYTHIA 8.175 with the CT10 PDF. In addition to the experimental uncer-
and therefore the curve is normalized in the second p_{T} bin ($100 \mathrm{GeV}<p_{\mathrm{T}}<200 \mathrm{GeV}$) where the statistical uncertainty is small. The predicted scale dependence for gluon-initiated jets is consistent with the data within the uncertainty bands while the curve for quark-initiated jets is higher than the data by about one standard deviation.

7 Summary

This paper presents a measurement of the p_{T} dependence of the average jet charged-particle multiplicity in dijet events from $20.3 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV} p p$ collision data recorded by the ATLAS detector at the LHC. The measured chargedparticle multiplicity distribution is unfolded to correct for the detector acceptance and resolution to facilitate direct comparison to particle-level models. Comparisons are made at particle level between the measured average charged-particle multiplicity and various models of jet formation. Significant differences are observed between the simulations using Run 1 tunes and the data, but the Run 2 tunes for both Pythia 8 and HERWIG++ significantly improve the modelling of the average $n_{\text {charge }}$. Furthermore, quark- and gluoninitiated jet constituent charged-particle multiplicities are extracted and compared with simulations and calculations. As expected, the extracted gluon-initiated jet constituent charged-particle multiplicity is higher than the corresponding quantity for quark-initiated jets and a calculation of the $p_{\mathrm{T}^{-}}$ dependence accurately models the trend observed in the data.

(b)
tainties, the error bands include uncertainties in the gluon fractions from both the PDF and ME uncertainties. The MC statistical uncertainties on the open markers are smaller than the markers. The uncertainty band for the $\mathrm{N}^{3} \mathrm{LO} \mathrm{pQCD}$ prediction is determined by varying the scale μ by a factor of two up and down. The markers are truncated at the penultimate p_{T} bin in the right because within statistical uncertainty, the more forward and more central jet constituent charged-particle multiplicities are consistent with each other in the last bin

The particle-level spectra are available [68] for further interpretation and can serve as a benchmark for future measurements of the evolution of non-perturbative jet observables to validate MC predictions and tune their model parameters.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk?odowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Ger-
many), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funded by SCOAP ${ }^{3}$.

References

1. R. Ellis, W. Stirling, B. Webber, QCD and Collider Physics (Cambridge University Press, Cambridge, 2003). ISBN 0521545897
2. ATLAS Collaboration, Light-quark and gluon jet discrimination in pp collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector. Eur. Phys. J. C 74, 3023 (2014). arXiv:1405.6583 [hep-ex]
3. ATLAS Collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector. JHEP 12, 055 (2015). arXiv:1506.00962 [hep-ex]
4. ATLAS Collaboration, Jet energy measurement and its systematic uncertainty in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector. Eur. Phys. J. C 75, 17 (2015). arXiv:1406.0076 [hep-ex]
5. CMS Collaboration, Search for the standard model Higgs boson produced through vector boson fusion and decaying to $b \bar{b}$. Phys. Rev. D 92, 032008 (2015). arXiv:1506.01010 [hep-ex]
6. CMS Collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton-proton collisions at $\sqrt{s}=8$ TeV. Eur. Phys. J. C 75, 66 (2015). arXiv:1410.3153 [hep-ex]
7. UA1 Collaboration, G. Arnison et al., Analysis of the fragmentation properties of quark and gluon jets at the CERN SPS $p \bar{p}$ collider. Nucl. Phys. B 276, 253 (1986)
8. UA2 Collaboration, P. Bagnaia et al., Measurement of jet fragmentation properties at the CERN $p \bar{p}$ collider. Phys. Lett. B 144, 291 (1984)
9. UA2 Collaboration, P. Bagnaia et al., Measurement of production and properties of jets at the CERN $p \bar{p}$ collider. Z. Phys. B 20, 117 (1983)
10. JADE Collabortion, W. Bartel et al., Experimental evidence for differences in $\left\langle p_{\perp}\right\rangle$ between quark jets and gluon jets. Phys. Lett. B 123, 460 (1983)
11. TASSO Collaboration, W. Braunschweig et al., Charged multiplicity distributions and correlations in $e^{+} e^{-}$. Annihilation at PETRA energies. Z. Phys. C 45, 193-208 (1989)
12. H.R.S. Collaboration, M. Derrick et al., Comparison of charged particle multiplicities in quark and gluon jets produced in $e^{+} e^{-}$ annihilation at 29 GeV . Phys. Lett. B 165, 449 (1985)
13. Mark I.I. Collaboration, A., Petersen et al., Inclusive chargedparticle distribution in nearly threefold-symmetric three-jet events at $E_{\text {c.m. }}=29 \mathrm{GeV}$. Phys. Rev. Lett. 55, 1954 (1985)
14. SLD Collaboration, K. Abe et al., Measurement of the charged multiplicity of $Z^{0} \rightarrow b \bar{b}$ events. Phys. Rev. Lett. 72, 3145 (1994). arXiv:hep-ex/9405004 [hep-ex]
15. SLD Collaboration, K. Abe et al., Measurement of the charged multiplicities in b, c and light quark events from Z^{0} decays. Phys. Lett. B 386, 475 (1996). arXiv:hep-ex/9608008
16. A.M.Y. Collaboration, Y.K. Kim et al., Comparison of quark and gluon jets produced in high-energy $e^{+} e^{-}$annihilations. Phys. Rev. Lett. 63, 1772 (1989)
17. CLEO Collaboration, S. Alam et al., Study of gluon versus quark fragmentation in $\Upsilon \rightarrow \operatorname{gg} \gamma$ and $e^{+} e^{-} \rightarrow q \bar{q} \gamma$ events at $\sqrt{s}=$ 10 GeV . Phys. Rev. D 56, 17 (1997). arXiv:hep-ex/9701006 [hepex]
18. OPAL Collaboration, G. Alexander et al., A Direct observation of quark-gluon jet differences at LEP. Phys. Lett. B 265, 462-474 (1991)
19. OPAL Collaboration, G. Alexander et al., A study of differences between quark and gluon jets using vertex tagging of quark jets. Z . Phys. C 58, 387 (1993)
20. OPAL Collaboration, R. Akers et al., A model independent measurement of quark and gluon jet properties and differences. Z. Phys. V 68, 179 (1995)
21. ALEPH Collaboration, D. Buskulic et al., Study of the subjet structure of quark and gluon jets. Phys. Lett. B 346, 389 (1995)
22. OPAL Collaboration, G. Alexander et al., Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets. Phys. Lett. B 388, 659 (1996)
23. ALEPH Collaboration, D. Buskulic et al., Quark and gluon jet properties in symmetric three-jet events. Phys. Lett. B 384, 353 (1996)
24. DELPHI Collaboration, P. Abreu et al., Energy dependence of the differences between the quark and gluon jet fragmentation. Z. Phys. B 70, 179 (1996)
25. OPAL Collaboration, K. Ackerstaff et al., Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions. Eur. Phys. J. C 1, 479 (1998). arXiv:hep-ex/9708029 [hep-ex]
26. DELPHI Collaboration, P. Abreu et al., The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C_{A} / C_{F}. Phys. Lett. B 449, 383 (1999). arXiv:hep-ex/9903073 [hep-ex]
27. OPAL Collaboration, G. Abbiendi et al., Experimental properties of gluon and quark jets from a point source. Eur. Phys. J. C 11, 217 (1999). arXiv:hep-ex/9903027 [hep-ex]
28. OPAL Collaboration, M.Z. Akrawy et al., A study of coherence of soft gluons in hadron jets. Phys. Lett. B 247, 617 (1990)
29. OPAL Collaboration, G. Abbiendi et al., Scaling violations of quark and gluon jet fragmentation functions in $e^{+} e^{-}$annihilations at $\sqrt{s}=91.2$ and 183.209 GeV. Eur. Phys. J. C 37, 25 (2004). arXiv:hep-ex/0404026 [hep-ex]
30. CDF Collaboration, T. Affolder et al., Charged particle multiplicity in jets in $P \bar{p}$ collisions at $\sqrt{s}=1.8 \mathrm{TeV}$. Phys. Rev. Lett. 87, 211804 (2001)
31. ATLAS Collaboration, Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy $\sqrt{s}=7$ TeV with the ATLAS detector. Phys. Rev. D 84, 054001 (2011). arXiv:1107.3311 [hep-ex]
32. ATLAS Collaboration, Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector. Eur. Phys. J. C 71, 1795 (2011). arXiv: 1109.5816 [hep-ex]
33. CMS Collaboration, Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV. JHEP 06, 160 (2012). arXiv:1204.3170 [hep-ex]
34. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008)
35. ATLAS Collaboration, Measurement of jet charge in dijet events from $\sqrt{s}=8 \mathrm{TeV}$ pp collisions with the ATLAS detector (2015). arXiv: 1509.05190 [hep-ex]
36. M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. JHEP 04, 063 (2008). arXiv:0802.1189 [hep-ph]
37. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]
38. W. Lampl et al., Calorimeter clustering algorithms: description and performance (2008). https://cds.cern.ch/record/1099735
39. C. Cojocaru et al., Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region $1.6<|\eta|<1.8$ in beam tests. Nucl. Instrum. Meth. A 531, 481 (2004). arXiv:0407009
40. ATLAS Collaboration, Local hadronic calibration (2009). https:// cds.cern.ch/record/1112035
41. ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS detector (2015). arXiv:1510.03823 [hep-ex]
42. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. JHEP 04, 005 (2008)
43. T. Sjöstrand, S. Mrenna, P.Z. Skands, A. Brief, Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]
44. ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes (2012). https://cds.cern.ch/record/1474107
45. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639-707 (2008). arXiv:0803.0883 [hep-ph]
46. S. Gieseke, C. Röhr, A. Siodmok, Colour reconnections in Herwig++. Eur. Phys. J. C 72, 2225 (2012). arXiv:1206.0041 [hep-ph]
47. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]
48. S. Agostinelli et al., (GEANT4 Collaboration), GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003)
49. A.D. Martin et al., Parton distributions for the LHC. Eur. Phys. J. C 63, 189-285 (2009). arXiv:0901.0002 [hep-ph]
50. J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D 89, 033009 (2014). arXiv: 1302.6246 [hep-ph]
51. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). arXiv:1207.1303 [hep-ph]
52. P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune. Eur. Phys. J. C 74, 3024 (2014). arXiv:1404.5630 [hep$\mathrm{ph}]$
53. ATLAS Collaboration, ATLAS Run 1 Pythia 8 tunes (2014). https://cds.cern.ch/record/1966419
54. K. Arnold et al., Herwig++ 2.6 release note (2012). arXiv:1205.4902 [hep-ph]
55. D. Stump et al., Inclusive jet production, parton distributions, and the search for new physics. JHEP 10, 046 (2003). arXiv:hep-ph/0303013 [hep-ph]
56. J. Bellm et al., Herwig++ 2.7 release note (2013). arXiv: 1310.6877 [hep-ph]
57. M.H. Seymour, A. Siodmok, Constraining MPI models using $\sigma_{e f f}$ and recent tevatron and LHC underlying event data. JHEP 10, 113 (2013). arXiv:1307.5015 [hep-ph]
58. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
59. P.Z. Skands, Tuning monte carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010). arXiv: 1005.3457 [hep-ph]
60. A. Banfi, G.P. Salam, G. Zanderighi, Infrared safe definition of jet flavor. Eur. Phys. J. C 47, 113 (2006). arXiv:hep-ph/0601139 [hep-ph]
61. G. D'Agostini, A multidimensional unfolding method based on Bayes' theorem. Nucl. Instrum. Meth. A362, 487 (1995)
62. T. Adye, Unfolding algorithms and tests using RooUnfold (2011). arXiv:1105.1160 [physics.data-an]
63. B. Malaescu, An iterative, dynamically stabilized method of data unfolding (2009). arXiv:0907.3791 [physics.data-an]
64. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). arXiv:1412.7420 [hep-ph]
65. A.J. Larkoski, S. Marzani, J. Thaler, Sudakov safety in perturbative QCD. Phys. Rev. D 91, 111501 (2015). arXiv:1502.01719 [hep-ph]
66. A. Capella et al., Evolution of average multiplicities of quark and gluon jets. Phys. Rev. D 61, 074009 (2000). arXiv:hep-ph/9910226 [hep-ph]
67. I.M. Dremin, J.W. Gary, Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to leading order. Phys. Lett. B 459, 341 (1999). arXiv:hep-ph/9905477 [hep-ph]
68. http://hepdata.cedar.ac.uk/view/ins1419070

ATLAS Collaboration

G. Aad ${ }^{87}$, B. Abbott ${ }^{114}$, J. Abdallah ${ }^{152}$, O. Abdinov ${ }^{11}$, B. Abeloos ${ }^{118}$, R. Aben ${ }^{108}$, M. Abolins ${ }^{92}$, O. S. AbouZeid ${ }^{138}$, N. L. Abraham ${ }^{150}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{117}$, Y. Abulaiti ${ }^{147 a, 147 b}$, B. S. Acharya ${ }^{163 a, 163 b, a}$, L. Adamczyk ${ }^{39 \mathrm{a}}$, D. L. Adams ${ }^{26}$, J. Adelman ${ }^{109}$, S. Adomeit ${ }^{101}$, T. Adye ${ }^{132}$, A. A. Affolder ${ }^{76}$, T. Agatonovic-Jovin ${ }^{13}$, J. Agricola ${ }^{55}$, J. A. Aguilar-Saavedra ${ }^{127 a, 127 f}$, S. P. Ahlen ${ }^{23}$, F. Ahmadov ${ }^{67, b}$, G. Aielli ${ }^{134 a, 134 b}$, H. Akerstedt ${ }^{147 a, 147 b}$, T. P. A. Åkesson ${ }^{83}$, A. V. Akimov ${ }^{97}$, G. L. Alberghi ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, J. Albert ${ }^{168}$, S. Albrand ${ }^{56}$, M. J. Alconada Verzini ${ }^{73}$, M. Aleksa ${ }^{31}$, I. N. Aleksandrov ${ }^{67}$, C. Alexa ${ }^{27 \mathrm{~b}}$, G. Alexander ${ }^{154}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{114}$, G. Alimonti ${ }^{93 \mathrm{a}}$, J. Alison ${ }^{32}$, S. P. Alkire ${ }^{36}$, B. M. M. Allbrooke ${ }^{150}$, B. W. Allen ${ }^{117}$, P. P. Allport ${ }^{18}$, A. Aloisio ${ }^{105 a, 105 b}$, A. Alonso ${ }^{37}$, F. Alonso ${ }^{73}$, C. Alpigiani ${ }^{139}$, B. Alvarez Gonzalez ${ }^{31}$, D. Álvarez Piqueras ${ }^{166}$, M. G. Alviggi ${ }^{105 a}$, 105b, B. T. Amadio ${ }^{15}$,
 S. Amoroso ${ }^{31}$, N. Amram ${ }^{154}$, G. Amundsen ${ }^{24}$, C. Anastopoulos ${ }^{140}$, L. S. Ancu ${ }^{50}$, N. Andari ${ }^{109}$, T. Andeen ${ }^{32}$, C. F. Anders ${ }^{59 b}$, G. Anders ${ }^{31}$, J. K. Anders ${ }^{76}$, K. J. Anderson ${ }^{32}$, A. Andreazza ${ }^{93 a, 93 b}$, V. Andrei ${ }^{59 \mathrm{a}}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{108}$, P. Anger ${ }^{45}$, A. Angerami ${ }^{36}$, F. Anghinolfi ${ }^{31}$, A. V. Anisenkov ${ }^{110, \mathrm{c}}$, N. Anjos ${ }^{12}$, A. Annovi ${ }^{125 a, 125 b}$, M. Antonelli ${ }^{48}$, A. Antonov ${ }^{99}$, J. Antos ${ }^{145 b}$, F. Anulli ${ }^{133 \mathrm{a}}$, M. Aoki ${ }^{68}$, L. Aperio Bella ${ }^{18}$, G. Arabidze ${ }^{92}$, Y. Arai ${ }^{68}$, J. P. Araque ${ }^{127 \mathrm{a}}$, A. T. H. Arce ${ }^{46}$, F. A. Arduh ${ }^{73}$, J-F. Arguin ${ }^{96}$, S. Argyropoulos ${ }^{64}$, M. Arik ${ }^{19 a}$, A. J. Armbruster ${ }^{31}$, L. J. Armitage ${ }^{78}$, O. Arnaez ${ }^{31}$, H. Arnold ${ }^{49}$, M. Arratia ${ }^{29}$, O. Arslan ${ }^{22}$, A. Artamonov ${ }^{98}$, G. Artoni ${ }^{121}$, S. Artz ${ }^{85}$,
 M. Atkinson ${ }^{165}$, N. B. Atlay ${ }^{142}$, K. Augsten ${ }^{129}$, G. Avolio ${ }^{31}$, B. Axen ${ }^{15}$, M. K. Ayoub ${ }^{118}$, G. Azuelos ${ }^{96, \text { d }}$, M. A. Baak ${ }^{31}$, A. E. Baas ${ }^{59 \mathrm{a}}$, M. J. Baca ${ }^{18}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$, M. Backes ${ }^{31}$, M. Backhaus ${ }^{31}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 a, 133 b}$, Y. Bai ${ }^{34 \mathrm{a}}$, J. T. Baines ${ }^{132}$, O. K. Baker ${ }^{175}$, E. M. Baldin ${ }^{110, \mathrm{c}}$, P. Balek ${ }^{130}$, T. Balestri ${ }^{149}$, F. Balli ${ }^{137}$, W. K. Balunas ${ }^{123}$, E. Banas ${ }^{40}$, Sw. Banerjee ${ }^{172, e}$, A. A. E. Bannoura ${ }^{174}$, L. Barak 31, E. L. Barberio ${ }^{90}$, D. Barberis ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$,
M. Barbero ${ }^{87}$, T. Barillari ${ }^{102}$, M. Barisonzi ${ }^{163 a, 163 b}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{29}$, S. L. Barnes ${ }^{86}$, B. M. Barnett ${ }^{132}$, R. M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 a}$, G. Barone ${ }^{24}$, A. J. Barr ${ }^{121}$, L. Barranco Navarro ${ }^{166}$, F. Barreiro ${ }^{84}$, J. Barreiro Guimarães da Costa ${ }^{34 \mathrm{a}}$, R. Bartoldus ${ }^{144}$, A. E. Barton ${ }^{74}$, P. Bartos ${ }^{145 a}$, A. Basalaev ${ }^{124}$, A. Bassalat ${ }^{118}$, A. Basye ${ }^{165}$, R. L. Bates ${ }^{54}$, S. J. Batista ${ }^{159}$, J. R. Batley ${ }^{29}$, M. Battaglia ${ }^{138}$, M. Bauce ${ }^{133 a, 133 b}$, F. Bauer ${ }^{137}$, H. S. Bawa ${ }^{144, f}$, J. B. Beacham ${ }^{112}$, M. D. Beattie ${ }^{74}$, T. Beau ${ }^{82}$, P. H. Beauchemin ${ }^{162}$, P. Bechtle ${ }^{22}$, H. P. Beck ${ }^{17, g}$, K. Becker ${ }^{121}$, M. Becker ${ }^{85}$, M. Beckingham ${ }^{169}$, C. Becot ${ }^{111}$, A. J. Beddall ${ }^{19 \mathrm{~d}}$, A. Beddall ${ }^{19 \mathrm{~b}}$, V. A. Bednyakov ${ }^{67}$, M. Bedognetti ${ }^{108}$, C. P. Bee ${ }^{149}$, L. J. Beemster ${ }^{108}$, T. A. Beermann ${ }^{31}$, M. Begel ${ }^{26}$, J. K. Behr ${ }^{43}$, C. Belanger-Champagne ${ }^{89}$, A. S. Bell ${ }^{80}$, W. H. Bell ${ }^{50}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{21 \mathrm{a}}$, A. Bellerive ${ }^{30}$, M. Bellomo ${ }^{88}$, K. Belotskiy ${ }^{99}$, O. Beltramello ${ }^{31}$, N. L. Belyaev ${ }^{99}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 a}$, M. Bender ${ }^{101}$, K. Bendtz ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Benekos ${ }^{10}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli ${ }^{175}$, J. Benitez ${ }^{64}$, J. A. Benitez Garcia ${ }^{160 \mathrm{~b}}$, D. P. Benjamin ${ }^{46}$, J. R. Bensinger ${ }^{24}$, S. Bentvelsen ${ }^{108}$,
 S. Berlendis ${ }^{56}$, N. R. Bernard ${ }^{88}$, C. Bernius ${ }^{111}$,F. U. Bernlochner ${ }^{22}$, T. Berry ${ }^{79}$, P. Berta ${ }^{130}$, C. Bertella ${ }^{85}$, G. Bertoli ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{125 a, 125 b}$, I. A. Bertram ${ }^{74}$, C. Bertsche ${ }^{114}$, D. Bertsche ${ }^{114}$, G. J. Besjes ${ }^{37}$, O. Bessidskaia Bylund ${ }^{147 a, 147 b}$, M. Bessner ${ }^{43}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{49}$, S. Bethke ${ }^{102}$, A. J. Bevan ${ }^{78}$, W. Bhimji ${ }^{15}$, R. M. Bianchi ${ }^{126}$, L. Bianchini ${ }^{24}$, M. Bianco ${ }^{31}$, O. Biebel ${ }^{101}$, D. Biedermann ${ }^{16}$, R. Bielski ${ }^{86}$, N. V. Biesuz ${ }^{125 a, 125 b}$, M. Biglietti ${ }^{135 a}$, J. Bilbao De Mendizabal ${ }^{50}$, H. Bilokon ${ }^{48}$, M. Bindi ${ }^{55}$, S. Binet ${ }^{118}$, A. Bingul ${ }^{19 b}$, C. Bini ${ }^{133 a, 133 b}$, S. Biondi ${ }^{21 a, 21 b}$, D. M. Bjergaard ${ }^{46}$, C. W. Black ${ }^{151}$, J. E. Black ${ }^{144}$, K. M. Black ${ }^{23}$, D. Blackburn ${ }^{139}$, R. E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, J. E. Blanco ${ }^{79}$, T. Blazek ${ }^{145 \mathrm{a}}$, I. Bloch ${ }^{43}$, C. Blocker 24, W. Blum ${ }^{85, *}$, U. Blumenschein ${ }^{55}$, S. Blunier ${ }^{33 \mathrm{a}}$, G. J. Bobbink ${ }^{108}$, V. S. Bobrovnikov ${ }^{110, \mathrm{c}}$, S. S. Bocchetta ${ }^{83}$, A. Bocci ${ }^{46}$, C. Bock ${ }^{101}$, M. Boehler ${ }^{49}$, D. Boerner ${ }^{174}$, J. A. Bogaerts ${ }^{31}$, D. Bogavac ${ }^{13}$, A. G. Bogdanchikov ${ }^{110}$, C. Bohm ${ }^{147 \mathrm{a}}$, V. Boisvert ${ }^{79}$, T. Bold ${ }^{39 \mathrm{a}}$, V. Boldea ${ }^{27 \mathrm{~b}}$, A. S. Boldyrev ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, M. Bomben ${ }^{82}$, M. Bona ${ }^{78}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{131}$, G. Borissov ${ }^{74}$, J. Bortfeldt ${ }^{101}$, D. Bortoletto ${ }^{121}$, V. Bortolotto ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, 61 \mathrm{c}}$, K. Bos ${ }^{108}$, D. Boscherini ${ }^{21 \mathrm{a}}$, M. Bosman ${ }^{12}$, J. D. Bossio Sola ${ }^{28}$, J. Boudreau ${ }^{126}$, J. Bouffard ${ }^{2}$, E. V. Bouhova-Thacker ${ }^{74}$, D. Boumediene ${ }^{35}$, C. Bourdarios ${ }^{118}$, S. K. Boutle ${ }^{54}$, A. Boveia ${ }^{31}$, J. Boyd ${ }^{31}$, I. R. Boyko ${ }^{67}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{55}$, O. Brandt ${ }^{59 \mathrm{a}}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{88}$, J. E. Brau ${ }^{117}$, H. M. Braun ${ }^{174, *}$, W. D. Breaden Madden ${ }^{54}$, K. Brendlinger ${ }^{123}$, A. J. Brennan ${ }^{90}$, L. Brenner ${ }^{108}$, R. Brenner ${ }^{164}$, S. Bressler ${ }^{171}$, T. M. Bristow ${ }^{47}$, D. Britton ${ }^{54}$, D. Britzger ${ }^{43}$, F. M. Brochu ${ }^{29}$, I. Brock ${ }^{22}$, R. Brock ${ }^{92}$, G. Brooijmans ${ }^{36}$, T. Brooks ${ }^{79}$, W. K. Brooks ${ }^{33 b}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{117}$, J. H. Broughton ${ }^{18}$, P. A. Bruckman de Renstrom ${ }^{40}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{49}$, A. Bruni ${ }^{21 a}$, G. Bruni ${ }^{21 a}$, B. H. Brunt ${ }^{29}$, M. Bruschi ${ }^{21 a}$, N. Bruscino ${ }^{22}$, P. Bryant ${ }^{32}$, L. Bryngemark ${ }^{83}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{143}$, P. Buchholz ${ }^{142}$, A. G. Buckley ${ }^{54}$, I. A. Budagov ${ }^{67}$, F. Buehrer ${ }^{49}$, M. K. Bugge ${ }^{120}$, O. Bulekov ${ }^{99}$, D. Bullock ${ }^{8}$, H. Burckhart ${ }^{31}$, S. Burdin ${ }^{76}$, C. D. Burgard ${ }^{49}$, B. Burghgrave ${ }^{109}$, K. Burka ${ }^{40}$, S. Burke ${ }^{132}$, I. Burmeister ${ }^{44}$, E. Busato ${ }^{35}$, D. Büscher ${ }^{49}$, V. Büscher ${ }^{85}$, P. Bussey ${ }^{54}$, J. M. Butler ${ }^{23}$, A. I. Butt ${ }^{3}$, C. M. Buttar ${ }^{54}$, J. M. Butterworth ${ }^{80}$, P. Butti ${ }^{108}$, W. Buttinger ${ }^{26}$, A. Buzatu ${ }^{54}$, A. R. Buzykaev ${ }^{110, \mathrm{c}}$, S. Cabrera Urbán ${ }^{166}$, D. Caforio ${ }^{129}$, V. M. Cairo ${ }^{38 a, 38 \mathrm{~b}}$, O. Cakir ${ }^{4 \mathrm{aa}}$, N. Calace ${ }^{50}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{87}$, G. Calderini ${ }^{82}$, P. Calfayan ${ }^{101}$, L. P. Caloba ${ }^{25 a}$, D. Calvet ${ }^{35}$, S. Calvet ${ }^{35}$, T. P. Calvet ${ }^{87}$, R. Camacho Toro ${ }^{32}$, S. Camarda ${ }^{31}$, P. Camarri ${ }^{134 a, 134 b}$, D. Cameron ${ }^{120}$, R. Caminal Armadans ${ }^{165}$, C. Camincher ${ }^{56}$, S. Campana ${ }^{31}$, M. Campanelli ${ }^{80}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, A. Canepa ${ }^{160 \mathrm{a}}$, M. Cano Bret ${ }^{34 \mathrm{e}}$, J. Cantero ${ }^{84}$, R. Cantrill ${ }^{127 \mathrm{a}}$, T. Cao^{41}, M. D. M. Capeans Garrido ${ }^{31}$, I. Caprini ${ }^{27 \mathrm{~b}}$, M. Caprini ${ }^{27 \mathrm{~b}}$, M. Capua ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, R. Caputo ${ }^{85}$, R. M. Carbone ${ }^{36}, \quad$ R. Cardarelli ${ }^{134 a}$, F. Cardillo ${ }^{49}$, T. Carli ${ }^{31}$, G. Carlino ${ }^{105 a}$, L. Carminati ${ }^{93 a, 93 b}$, S. Caron ${ }^{107}$, E. Carquin ${ }^{33 b}$, G. D. Carrillo-Montoya ${ }^{31}$, J. R. Carter ${ }^{29}$, J. Carvalho ${ }^{127 a, 127 c}$, D. Casadei ${ }^{80}$, M. P. Casado ${ }^{12, h}$, M. Casolino ${ }^{12}$, D. W. Casper ${ }^{66}$, E. Castaneda-Miranda ${ }^{146 a}$, A. Castelli ${ }^{108}$, V. Castillo Gimenez ${ }^{166}$, N. F. Castro ${ }^{127 a, i}$, A. Catinaccio ${ }^{31}$, J. R. Catmore ${ }^{120}$, A. Cattai ${ }^{31}$, J. Caudron ${ }^{85}$, V. Cavaliere ${ }^{165}$, E. Cavallaro ${ }^{12}$, D. Cavalli ${ }^{93 a}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{125 a, 125 b}$, F. Ceradini ${ }^{135 a, 135 b}$, L. Cerda Alberich ${ }^{166}$, B. C. Cerio ${ }^{46}$, A. S. Cerqueira ${ }^{25 b}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{78}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{31}$, A. Cervelli ${ }^{17}$, S. A. Cetin ${ }^{19 \mathrm{c}}$, A. Chafaq ${ }^{136 a}$, D. Chakraborty ${ }^{109}$, I. Chalupkova ${ }^{130}$, S. K. Chan ${ }^{58}$, Y. L. Chan ${ }^{61 a}$, P. Chang ${ }^{165}$, J. D. Chapman ${ }^{29}$, D. G. Charlton ${ }^{18}$, A. Chatterjee ${ }^{50}$, C. C. Chau ${ }^{159}$, C. A. Chavez Barajas ${ }^{150}$, S. Che ${ }^{112}$, S. Cheatham ${ }^{74}$, A. Chegwidden ${ }^{92}$, S. Chekanov ${ }^{6}$, S. V. Chekulaev ${ }^{160 a}$, G. A. Chelkov ${ }^{67, j}$, M. A. Chelstowska ${ }^{91}$, C. Chen ${ }^{65}$, H. Chen ${ }^{26}$, K. Chen ${ }^{149}$, S. Chen ${ }^{34 \mathrm{c}}$, S. Chen ${ }^{156}$, X. Chen ${ }^{34 \mathrm{f}}$, Y. Chen ${ }^{69}$, H. C. Cheng ${ }^{91}$, H. J Cheng ${ }^{34 a}$, Y. Cheng ${ }^{32}$, A. Cheplakov ${ }^{67}$, E. Cheremushkina ${ }^{131}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{26, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{48}$, G. Chiarelli ${ }^{125 a, 125 b}$, G. Chiodini ${ }^{75 a}$, A. S. Chisholm ${ }^{18}$, A. Chitan ${ }^{27 b}$, M. V. Chizhov ${ }^{67}$, K. Choi ${ }^{62}$, A. R. Chomont ${ }^{35}$, S. Chouridou ${ }^{9}$, B. K. B. Chow ${ }^{101}$, V. Christodoulou ${ }^{80}$, D. Chromek-Burckhart ${ }^{31}$, J. Chudoba ${ }^{128}$, A. J. Chuinard ${ }^{89}$, J. J. Chwastowski ${ }^{40}$, L. Chytka ${ }^{116}$, G. Ciapetti ${ }^{133 a, 133 b}$, A. K. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca ${ }^{54}$, V. Cindro ${ }^{77}$, I. A. Cioara ${ }^{22}$, A. Ciocio ${ }^{15}$, F. Cirotto ${ }^{105 a}$, 105b, Z. H. Citron ${ }^{171}$, M. Ciubancan ${ }^{27 b}$, A. Clark ${ }^{50}$, B. L. Clark ${ }^{58}$, M. R. Clark ${ }^{36}$, P. J. Clark ${ }^{47}$, R. N. Clarke ${ }^{15}$, C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, Y. Coadou ${ }^{87}$, M. Cobal ${ }^{163 \mathrm{a}, 163 \mathrm{c}}$, A. Coccaro ${ }^{50}$, J. Cochran ${ }^{65}$, L. Coffey ${ }^{24}$, L. Colasurdo ${ }^{107}$, B. Cole ${ }^{36}$, S. Cole ${ }^{109}$, A. P. Colijn ${ }^{108}$, J. Collot ${ }^{56}$, T. Colombo ${ }^{31}$, G. Compostella ${ }^{102}$, P. Conde Muiño ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, \quad E. Coniavitis ${ }^{49}$, S. H. Connell ${ }^{146 \mathrm{~b}}$, I. A. Connelly ${ }^{79}$,
V. Consorti ${ }^{49}$, S. Constantinescu ${ }^{27 b}$, C. Conta ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, G. Conti ${ }^{31}$, F. Conventi ${ }^{105 \mathrm{a}, \mathrm{k}}$, M. Cooke ${ }^{15}$, B. D. Cooper ${ }^{80}$, A. M. Cooper-Sarkar ${ }^{121}$, T. Cornelissen ${ }^{174}$, M. Corradi ${ }^{133 a, 133 b}$, F. Corriveau ${ }^{89,1}$, A. Corso-Radu ${ }^{66}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{102}$, G. Costa ${ }^{93 a}$, M. J. Costa ${ }^{166}$, D. Costanzo ${ }^{140}$, G. Cottin ${ }^{29}$, G. Cowan ${ }^{79}$, B. E. Cox ${ }^{86}$, K. Cranmer ${ }^{111}$, S. J. Crawley ${ }^{54}$, G. Cree ${ }^{30}$, S. Crépé-Renaudin ${ }^{56}$, F. Crescioli ${ }^{82}$, W. A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{121}$, M. Cristinziani ${ }^{22}$, V. Croft ${ }^{107}$, G. Crosetti ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{175}$, M. Curatolo ${ }^{48}$, J. Cúth ${ }^{85}$, C. Cuthbert ${ }^{151}$, H. Czirr ${ }^{142}$, P. Czodrowski ${ }^{3}$, S. D'Auria ${ }^{54}$, M. D’Onofrio ${ }^{76}$, M. J. Da Cunha Sargedas De Sousa ${ }^{127 a, 127 b}$, C. Da Via ${ }^{86}$, W. Dabrowski ${ }^{39 \mathrm{a}}$, T. Dai ${ }^{91}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{96}$, C. Dallapiccola ${ }^{88}$, M. Dam ${ }^{37}$, J. R. Dandoy ${ }^{32}$, N. P. Dang ${ }^{49}$, A. C. Daniells ${ }^{18}$, N. S. Dann ${ }^{86}$, M. Danninger ${ }^{167}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{49}$, G. Darbo ${ }^{51 \mathrm{a}}$, S. Darmora ${ }^{8}$, J. Dassoulas ${ }^{3}$, A. Dattagupta ${ }^{62}$, W. Davey ${ }^{22}$, C. David ${ }^{168}$, T. Davidek ${ }^{130}$, M. Davies ${ }^{154}$, P. Davison ${ }^{80}$, Y. Davygora ${ }^{59 \mathrm{a}}$, E. Dawe ${ }^{90}$, I. Dawson ${ }^{140}$, R. K. Daya-Ishmukhametova ${ }^{88}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{105 a}$, A. De Benedetti ${ }^{114}$, S. De Castro ${ }^{21 a, 21 b}$, S. De Cecco ${ }^{82}$, N. De Groot ${ }^{107}$, P. de Jong ${ }^{108}$, H. De la Torre ${ }^{84}$, F. De Lorenzi ${ }^{65}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{150}$, A. De Santo ${ }^{150}$, J. B. De Vivie De Regie ${ }^{118}$, W. J. Dearnaley ${ }^{74}$, R. Debbe ${ }^{26}$, C. Debenedetti ${ }^{138}$, D. V. Dedovich ${ }^{67}$, I. Deigaard ${ }^{108}$, J. Del Peso ${ }^{84}$, T. Del Prete ${ }^{125 a, 125 b}$, D. Delgove ${ }^{118}$, F. Deliot ${ }^{137}$, C. M. Delitzsch ${ }^{50}$, M. Deliyergiyev ${ }^{77}$, A. Dell'Acqua ${ }^{31}$, L. Dell'Asta ${ }^{23}$, M. Dell'Orso ${ }^{125 a, 125 b}$, M. Della Pietra ${ }^{105 a, k}$, D. della Volpe ${ }^{50}$, M. Delmastro ${ }^{5}$, P. A. Delsart ${ }^{56}$, C. Deluca ${ }^{108}$, D. A. DeMarco ${ }^{159}$, S. Demers ${ }^{175}$, M. Demichev ${ }^{67}$, A. Demilly ${ }^{82}$, S. P. Denisov ${ }^{131}$, D. Denysiuk ${ }^{137}$, D. Derendarz ${ }^{40}$, J. E. Derkaoui ${ }^{136 d}$, F. Derue ${ }^{82}$, P. Dervan ${ }^{76}$, K. Desch ${ }^{22}$, C. Deterre ${ }^{43}$, K. Dette ${ }^{44}$, P. O. Deviveiros ${ }^{31}$, A. Dewhurst ${ }^{132}$, S. Dhaliwal ${ }^{24}$, A. Di Ciaccio ${ }^{134 a, 134 b}$, L. Di Ciaccio ${ }^{5}$, W. K. Di Clemente ${ }^{123}$, A. Di Domenico ${ }^{133 a, 133 b}$, C. Di Donato ${ }^{133 a, 133 b}$, A. Di Girolamo ${ }^{31}$, B. Di Girolamo ${ }^{31}$, A. Di Mattia ${ }^{153}$, B. Di Micco ${ }^{135 a, 135 b}$, R. Di Nardo ${ }^{48}$, A. Di Simone ${ }^{49}$, R. Di Sipio ${ }^{159}$, D. Di Valentino ${ }^{30}$, C. Diaconu ${ }^{87}$, M. Diamond ${ }^{159}$, F. A. Dias ${ }^{47}$, M. A. Diaz ${ }^{33 a}$, E. B. Diehl ${ }^{91}$, J. Dietrich ${ }^{16}$, S. Diglio ${ }^{87}$, A. Dimitrievska ${ }^{13}$, J. Dingfelder ${ }^{22}$, P. Dita ${ }^{27 \mathrm{~b}}$, S. Dita ${ }^{27 \mathrm{~b}}$, F. Dittus ${ }^{31}$, F. Djama ${ }^{87}$, T. Djobava ${ }^{52 \mathrm{~b}}$, J. I. Djuvsland ${ }^{59 \mathrm{a}}$, M. A. B. do Vale ${ }^{25 \mathrm{c}}$, D. Dobos ${ }^{31}$, M. Dobre ${ }^{27 \mathrm{~b}}$, C. Doglioni ${ }^{83}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{130}$, Z. Dolezal ${ }^{130}$, B. A. Dolgoshein ${ }^{99, *}$, M. Donadelli ${ }^{25 d}$, S. Donati ${ }^{125 a, 125 b}$, P. Dondero ${ }^{122 a, 122 b}$, J. Donini ${ }^{35}$, J. Dopke ${ }^{132}$, A. Doria ${ }^{105 a}$, M. T. Dova ${ }^{73}$, A. T. Doyle ${ }^{54}$, E. Drechsler ${ }^{55}$, M. Dris ${ }^{10}$, Y. Du ${ }^{34 \mathrm{~d}}$, J. Duarte-Campderros ${ }^{154}$, E. Duchovni ${ }^{171}$, G. Duckeck ${ }^{101}$, O. A. Ducu ${ }^{27 b}$, D. Duda ${ }^{108}$, A. Dudarev ${ }^{31}$, L. Duflot ${ }^{118}$, L. Duguid ${ }^{79}$, M. Dührssen ${ }^{31}$, M. Dunford ${ }^{59 \mathrm{a}}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{53}$, A. Durglishvili ${ }^{52 \mathrm{~b}}$, D. Duschinger ${ }^{45}$, B. Dutta ${ }^{43}$, M. Dyndal ${ }^{39 a}$, C. Eckardt ${ }^{43}$, K. M. Ecker ${ }^{102}$, R. C. Edgar ${ }^{91}$, W. Edson ${ }^{2}$, N. C. Edwards ${ }^{47}$, T. Eifert ${ }^{31}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{164}$, M. El Kacimi ${ }^{136 c}$, V. Ellajosyula ${ }^{87}$, M. Ellert ${ }^{164}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{174}$, A. A. Elliot ${ }^{168}$, N. Ellis ${ }^{31}$, J. Elmsheuser ${ }^{26}$, M. Elsing ${ }^{31}$, D. Emeliyanov ${ }^{132}$, Y. Enari ${ }^{156}$, O. C. Endner ${ }^{85}$, M. Endo ${ }^{119}$, J. S. Ennis ${ }^{169}$, J. Erdmann ${ }^{44}$, A. Ereditato ${ }^{17}$, G. Ernis ${ }^{174}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{26}$, S. Errede ${ }^{165}$, E. Ertel ${ }^{85}$, M. Escalier ${ }^{118}$, H. Esch ${ }^{44}$, C. Escobar ${ }^{126}$, B. Esposito ${ }^{48}$, A. I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{62}$, A. Ezhilov ${ }^{124}$, F. Fabbri ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, L. Fabbri ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, G. Facini ${ }^{32}$, R. M. Fakhrutdinov ${ }^{131}$, S. Falciano ${ }^{133 \mathrm{a}}$, R. J. Falla ${ }^{80}$, J. Faltova ${ }^{130}$, Y. Fang ${ }^{34 \mathrm{a}}$, M. Fanti ${ }^{93 a}$, 93 b , A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 a}$, C. Farina ${ }^{126}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{15}$, S. M. Farrington ${ }^{169}$, P. Farthouat ${ }^{31}$, F. Fassi ${ }^{136 e}$, P. Fassnacht ${ }^{31}$, D. Fassouliotis ${ }^{9}$, M. Faucci Giannelli ${ }^{79}$, A. Favareto ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, W. J. Fawcett ${ }^{121}$, L. Fayard ${ }^{118}$, O. L. Fedin ${ }^{124, m}$, W. Fedorko ${ }^{167}$, S. Feig1 ${ }^{120}$, L. Feligioni ${ }^{87}$, C. Feng ${ }^{34 \mathrm{~d}}$, E. J. Feng ${ }^{31}$, H. Feng ${ }^{91}$, A. B. Fenyuk ${ }^{131}$, L. Feremenga ${ }^{8}$, P. Fernandez Martinez ${ }^{166}$, S. Fernandez Perez ${ }^{12}$, J. Ferrando ${ }^{54}$, A. Ferrari ${ }^{164}$, P. Ferrari ${ }^{108}$, R. Ferrari ${ }^{122 a}$, D. E. Ferreira de Lima ${ }^{54}$, A. Ferrer ${ }^{166}$, D. Ferrere ${ }^{50}$, C. Ferretti ${ }^{91}$, A. Ferretto Parodi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, F. Fiedler ${ }^{85}$, A. Filipčič ${ }^{77}$, M. Filipuzzi ${ }^{43}$, F. Filthaut ${ }^{107}$, M. Fincke-Keeler ${ }^{168}$, K. D. Finelli ${ }^{151}$, M. C. N. Fiolhais ${ }^{127 a}$, 127 c , L. Fiorini ${ }^{166}$, A. Firan ${ }^{41}$, A. Fischer ${ }^{2}$, C. Fischer ${ }^{12}$, J. Fischer ${ }^{174}$, W. C. Fisher ${ }^{92}$, N. Flaschel ${ }^{43}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{91}$, G. T. Fletcher ${ }^{140}$, G. Fletcher ${ }^{78}$, R. R. M. Fletcher ${ }^{123}$, T. Flick ${ }^{174}$, A. Floderus ${ }^{83}$, L. R. Flores Castillo ${ }^{61 a}$, M. J. Flowerdew ${ }^{102}$, G. T. Forcolin ${ }^{86}$, A. Formica ${ }^{137}$, A. Forti ${ }^{86}$, A. G. Foster ${ }^{18}$, D. Fournier ${ }^{118}$, H. Fox ${ }^{74}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{82}$, M. Franchini ${ }^{21 a, 21 b}$, D. Francis ${ }^{31}$, L. Franconi ${ }^{120}$, M. Franklin ${ }^{58}$, M. Frate ${ }^{66}$, M. Fraternali ${ }^{122 a, 122 b}$, D. Freeborn ${ }^{80}$, S. M. Fressard-Batraneanu ${ }^{31}$, F. Friedrich ${ }^{45}$, D. Froidevaux ${ }^{31}$, J. A. Frost ${ }^{121}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{85}$, T. Fusayasu ${ }^{103}$, J. Fuster ${ }^{166}$, C. Gabaldon ${ }^{56}$, O. Gabizon ${ }^{174}$, A. Gabrielli ${ }^{21 a, 21 b}$, A. Gabrielli ${ }^{15}$, G. P. Gach ${ }^{39 a}$, S. Gadatsch ${ }^{31}$, S. Gadomski ${ }^{50}$, G. Gagliardi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, L. G. Gagnon ${ }^{96}$, P. Gagnon ${ }^{62}$, C. Galea ${ }^{107}$, B. Galhardo ${ }^{127 a, 127 c}$, E. J. Gallas ${ }^{121}$, B. J. Gallop ${ }^{132}$, P. Gallus ${ }^{129}$, G. Galster ${ }^{37}$, K. K. Gan ${ }^{112}$, J. Gao ${ }^{34 \mathrm{~b}, 87}$, Y. Gao ${ }^{47}$, Y. S. Gao ${ }^{144, f}$, F. M. Garay Walls ${ }^{47}$, C. García ${ }^{166}$, J. E. García Navarro ${ }^{166}$, M. Garcia-Sciveres ${ }^{15}, \quad$ R. W. Gardner ${ }^{32}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{120}$, A. Gascon Bravo ${ }^{43}$, C. Gatti ${ }^{48}$, A. Gaudiello ${ }^{51 a, 51 b}$, G. Gaudio ${ }^{122 \mathrm{a}}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{96}$, I. L. Gavrilenko ${ }^{97}$, C. Gay ${ }^{167}$, G. Gaycken ${ }^{22}$, E. N. Gazis ${ }^{10}$, Z. Gecse ${ }^{167}$, C. N. P. Gee ${ }^{132}$, Ch. Geich-Gimbel ${ }^{22}$, M. P. Geisler ${ }^{59 \mathrm{a}}$, C. Gemme ${ }^{51 \mathrm{a}}$, M. H. Genest ${ }^{56}$, C. Geng ${ }^{34 b, n}$, S. Gentile ${ }^{133 a, 133 b}$, S. George ${ }^{79}$, D. Gerbaudo ${ }^{66}$, A. Gershon ${ }^{154}$, S. Ghasemi ${ }^{142}$, H. Ghazlane ${ }^{136 \mathrm{~b}}$, M. Ghneimat ${ }^{22}$, B. Giacobbe ${ }^{21 \mathrm{a}}$, S. Giagu ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Giannetti ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, B. Gibbard ${ }^{26}$, S. M. Gibson ${ }^{79}$, M. Gignac ${ }^{167}$, M. Gilchriese ${ }^{15}$, T. P. S. Gillam ${ }^{29}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{174}$, D. M. Gingrich ${ }^{3, \mathrm{~d}}$, N. Giokaris ${ }^{9}$, M. P. Giordani ${ }^{163 a, 163 c}$, F. M. Giorgi ${ }^{21 a}$, F. M. Giorgi ${ }^{16}$, P. F. Giraud ${ }^{137}$, P. Giromini ${ }^{58}$, D. Giugni ${ }^{93 a}$, F. Giuli ${ }^{121}$, C. Giuliani ${ }^{102}$, M. Giulini ${ }^{59 b}$, B. K. Gjelsten ${ }^{120}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155}$, E. L. Gkougkousis ${ }^{118}$, L. K. Gladilin ${ }^{100}$,
C. Glasman ${ }^{84}$, J. Glatzer ${ }^{31}$, P. C. F. Glaysher ${ }^{47}$, A. Glazov ${ }^{43}$, M. Goblirsch-Kolb ${ }^{102}$, J. Godlewski ${ }^{40}$, S. Goldfarb ${ }^{91}$, T. Golling ${ }^{50}$, D. Golubkov ${ }^{131}$, A. Gomes ${ }^{127 a, 127 b, 127 d}$, R. Gonçalo ${ }^{127 a}$, J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, L. Gonella ${ }^{18}$, A. Gongadze ${ }^{67}$, S. González de la Hoz^{166}, G. Gonzalez Parra ${ }^{12}$, S. Gonzalez-Sevilla ${ }^{50}$, L. Goossens ${ }^{31}$, P. A. Gorbounov ${ }^{98}$, H. A. Gordon ${ }^{26}$, I. Gorelov ${ }^{106}$, B. Gorini ${ }^{31}$, E. Gorini ${ }^{75 a}, 75 b$, A. Gorišek ${ }^{77}$, E. Gornicki ${ }^{40}$, A. T. Goshaw ${ }^{46}$, C. Gössling ${ }^{44}$, M. I. Gostkin ${ }^{67}$, C. R. Goudet ${ }^{118}$, D. Goujdami ${ }^{136 \mathrm{c}}$, A. G. Goussiou ${ }^{139}$, N. Govender ${ }^{146 \mathrm{~b}}$, E. Gozani ${ }^{153}$, L. Graber ${ }^{55}$, I. Grabowska-Bold ${ }^{39 \mathrm{a}}$, P. O. J. Gradin ${ }^{164}$, P. Grafström ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, J. Gramling ${ }^{50}$, E. Gramstad ${ }^{120}$, S. Grancagnolo ${ }^{16}$, V. Gratchev ${ }^{124}$, H. M. Gray ${ }^{31}$, E. Graziani ${ }^{135 a}$, Z. D. Greenwood ${ }^{81, \mathrm{o}}$, C. Grefe ${ }^{22}$, K. Gregersen ${ }^{80}$, I. M. Gregor ${ }^{43}$, P. Grenier ${ }^{144}$, K. Grevtsov ${ }^{5}$, J. Griffiths ${ }^{8}$, A. A. Grillo ${ }^{138}$, K. Grimm ${ }^{74}$, S. Grinstein ${ }^{12, p}$, Ph. Gris ${ }^{35}$, J.-F. Grivaz ${ }^{118}$, S. Groh ${ }^{85}$, J. P. Grohs ${ }^{45}$, E. Gross ${ }^{171}$, J. Grosse-Knetter ${ }^{55}$, G. C. Grossi ${ }^{81}$, Z. J. Grout ${ }^{150}$, L. Guan ${ }^{91}$, W. Guan ${ }^{172}$, J. Guenther ${ }^{129}$, F. Guescini ${ }^{50}$, D. Guest ${ }^{66}$, O. Gueta ${ }^{154}$, E. Guido ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, T. Guillemin ${ }^{5}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{54}$, C. Gumpert ${ }^{31}$, J. Guo ${ }^{34 \mathrm{e}}$, Y. Guo ${ }^{34 \mathrm{~b}, \mathrm{n}}$, S. Gupta ${ }^{121}$, G. Gustavino ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, P. Gutierrez ${ }^{114}$, N. G. Gutierrez Ortiz ${ }^{80}$, C. Gutschow ${ }^{45}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{121}$, C. B. Gwilliam ${ }^{76}$, A. Haas ${ }^{111}$, C. Haber ${ }^{15}$, H. K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, A. Hadef 87, P. Haefner ${ }^{22}$, S. Hageböck ${ }^{22}$, Z. Hajduk ${ }^{40}$, H. Hakobyan ${ }^{176, *}$, M. Haleem ${ }^{43}$, J. Haley ${ }^{115}$, D. Hall ${ }^{121}$, G. Halladjian ${ }^{92}$, G. D. Hallewell ${ }^{87}$, K. Hamacher ${ }^{174}$, P. Hamal ${ }^{116}$, K. Hamano ${ }^{168}$, A. Hamilton ${ }^{146 a}$, G. N. Hamity ${ }^{140}$, P. G. Hamnett ${ }^{43}$, L. Han ${ }^{34 b}$, K. Hanagaki ${ }^{68, q}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{138}$, B. Haney ${ }^{123}$, P. Hanke ${ }^{59 \mathrm{a}}$, R. Hanna ${ }^{137}$, J. B. Hansen ${ }^{37}$, J. D. Hansen ${ }^{37}, \quad$ M. C. Hansen ${ }^{22}, \quad$ P. H. Hansen ${ }^{37}, \quad$ K. Hara ${ }^{161}$, A. S. Hard ${ }^{172}$, T. Harenberg ${ }^{174}$, F. Hariri ${ }^{118}$, S. Harkusha ${ }^{94}$, R. D. Harrington ${ }^{47}$, P. F. Harrison ${ }^{169}$, F. Hartjes ${ }^{108}$, M. Hasegawa ${ }^{69}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{114}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{17}$, R. Hauser ${ }^{92}$, L. Hauswald ${ }^{45}$, M. Havranek ${ }^{128}$, C. M. Hawkes ${ }^{18}$, R. J. Hawkings ${ }^{31}$, A. D. Hawkins ${ }^{83}$, D. Hayden ${ }^{92}$, C. P. Hays ${ }^{121}$, J. M. Hays ${ }^{78}$, H. S. Hayward ${ }^{76}$, S. J. Haywood ${ }^{132}$, S. J. Head ${ }^{18}$, T. Heck ${ }^{85}$, V. Hedberg ${ }^{83}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{123}$, T. Heim ${ }^{15}$, B. Heinemann ${ }^{15}$, J. J. Heinrich ${ }^{101}$, L. Heinrich ${ }^{111}$, C. Heinz ${ }^{53}$, J. Hejbal ${ }^{128}$, L. Helary ${ }^{23}$, S. Hellman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Helsens ${ }^{31}$, J. Henderson ${ }^{121}$, R. C. W. Henderson ${ }^{74}$, Y. Heng ${ }^{172}$, S. Henkelmann ${ }^{167}$, A. M. Henriques Correia ${ }^{31}$, S. Henrot-Versille ${ }^{118}$, G. H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{166}$,
 E. Higón-Rodriguez ${ }^{166}$, E. Hill ${ }^{168}$, J. C. Hill ${ }^{29}$, K. H. Hiller ${ }^{43}$, S. J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{123}$, R. R. Hinman ${ }^{15}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{174}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{108}$, M. C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{31}$, M. R. Hoeferkamp ${ }^{106}$, F. Hoenig ${ }^{101}$, M. Hohlfeld ${ }^{85}$, D. Hohn ${ }^{22}$, T. R. Holmes ${ }^{15}$, M. Homann ${ }^{44}$, T. M. Hong ${ }^{126}$, B. H. Hooberman ${ }^{165}$, W. H. Hopkins ${ }^{117}$, Y. Horii ${ }^{104}$, A. J. Horton ${ }^{143}$, J-Y. Hostachy ${ }^{56}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 \mathrm{a}}$, J. Howard ${ }^{121}$, J. Howarth ${ }^{43}$, M. Hrabovsky ${ }^{116}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{118}$, T. Hryn'ova ${ }^{5}$, A. Hrynevich ${ }^{95}$, C. Hsu ${ }^{146 c}$, P. J. Hsu ${ }^{152, r}$, S.-C. Hsu ${ }^{139}$, D. Hu ${ }^{36}$, Q. Hu ${ }^{34 b}$, Y. Huang ${ }^{43}$, Z. Hubacek ${ }^{129}$, F. Hubaut ${ }^{87}$, F. Huegging ${ }^{22}$, T. B. Huffman ${ }^{121}$, E. W. Hughes ${ }^{36}$, G. Hughes ${ }^{74}$, M. Huhtinen ${ }^{31}$, T. A. Hülsing ${ }^{85}$, N. Huseynov ${ }^{67, b}$, J. Huston ${ }^{92}$, J. Huth ${ }^{58}$, G. Iacobucci ${ }^{50}$, G. Iakovidis ${ }^{26}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{118}, \quad$ E. Ideal ${ }^{175}, \quad$ Z. Idrissi ${ }^{136 e}, \quad$ P. Iengo ${ }^{31}$, O. Igonkina ${ }^{108}$, T. Iizawa ${ }^{170}$, Y. Ikegami ${ }^{68}$, M. Ikeno ${ }^{68}$, Y. Ilchenko ${ }^{32, s}$, D. Iliadis ${ }^{155}$, N. Ilic ${ }^{144}$, T. Ince ${ }^{102}$, G. Introzzi ${ }^{122 a, 122 b}$, P. Ioannou ${ }^{9, *}$, M. Iodice ${ }^{135 a}$, K. Iordanidou ${ }^{36}$, V. Ippolito ${ }^{58}$, A. Irles Quiles ${ }^{166}$, C. Isaksson ${ }^{164}$, M. Ishino ${ }^{70}$, M. Ishitsuka ${ }^{158}$, R. Ishmukhametov ${ }^{112}$, C. Issever ${ }^{121}$, S. Istin ${ }^{19 \mathrm{a}}, \quad$ F. Ito ${ }^{161}$, J. M. Iturbe Ponce ${ }^{86}$, R. Iuppa ${ }^{134 a, ~ 134 b}$, J. Ivarsson ${ }^{83}$, W. Iwanski ${ }^{40}$, H. Iwasaki ${ }^{68}$, J. M. Izen ${ }^{42}$, V. Izzo $^{105 a}$, S. Jabbar ${ }^{3}$, B. Jackson ${ }^{123}$, M. Jackson ${ }^{76}$, P. Jackson ${ }^{1}$, V. Jain ${ }^{2}$, K. B. Jakobi ${ }^{85}$, K. Jakobs ${ }^{49}$, S. Jakobsen ${ }^{31}$, T. Jakoubek ${ }^{128}$, D. O. Jamin ${ }^{115}$, D. K. Jana ${ }^{81}$, E. Jansen ${ }^{80}$, R. Jansky ${ }^{63}$, J. Janssen ${ }^{22}$, M. Janus ${ }^{55}$, G. Jarlskog ${ }^{83}$, N. Javadov ${ }^{67, b}$, T. Javůrek ${ }^{49}$, F. Jeanneau ${ }^{137}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{52 a, t}$, G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{90}$, P. Jenni ${ }^{49, \text { u }}$, J. Jentzsch ${ }^{44}$, C. Jeske ${ }^{169}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{172}$, J. Jia ${ }^{149}$, H. Jiang ${ }^{65}$, Y. Jiang ${ }^{34 b}$, S. Jiggins ${ }^{80}$, J. Jimenez Pena ${ }^{166}$, S. Jin ${ }^{34 \mathrm{a}}$, A. Jinaru ${ }^{27 \mathrm{~b}}$, O. Jinnouchi ${ }^{158}$, P. Johansson ${ }^{140}$, K. A. Johns ${ }^{7}$, W. J. Johnson ${ }^{139}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{169}$, R. W. L. Jones ${ }^{74}$, S. Jones ${ }^{7}$, T. J. Jones ${ }^{76}$, J. Jongmanns ${ }^{59 \mathrm{a}}$, P. M. Jorge ${ }^{\text {127a, 127b }}$, J. Jovicevic ${ }^{160 a}$, X. Ju ${ }^{172}$, A. Juste Rozas ${ }^{12, p}$, M. K. Köhler ${ }^{171}$, A. Kaczmarska ${ }^{40}$, M. Kado ${ }^{118}$, H. Kagan ${ }^{112}$, M. Kagan ${ }^{144}$, S. J. Kahn ${ }^{87}$, E. Kajomovitz ${ }^{46}$, C. W. Kalderon ${ }^{121}$, A. Kaluza ${ }^{85}$, S. Kama ${ }^{41}$, A. Kamenshchikov ${ }^{131}$, N. Kanaya ${ }^{156}$, S. Kaneti ${ }^{29}$, V. A. Kantserov ${ }^{99}$, J. Kanzaki ${ }^{68}$, B. Kaplan ${ }^{111}$, L. S. Kaplan ${ }^{172}$, A. Kapliy ${ }^{32}$, D. Kar ${ }^{146 c}$, K. Karakostas ${ }^{10}$, A. Karamaoun ${ }^{3}$, N. Karastathis ${ }^{10,108}$, M. J. Kareem ${ }^{55}$, E. Karentzos ${ }^{10}$, M. Karnevskiy ${ }^{85}$, S. N. Karpov ${ }^{67}$, Z. M. Karpova ${ }^{67}$, K. Karthik ${ }^{111}$, V. Kartvelishvili ${ }^{74}$, A. N. Karyukhin ${ }^{131}$, K. Kasahara ${ }^{161}$, L. Kashif ${ }^{172}$, R. D. Kass ${ }^{112}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$, C. Kato ${ }^{156}$, A. Katre ${ }^{50}$, J. Katzy ${ }^{43}$, K. Kawade ${ }^{104}$, K. Kawagoe ${ }^{72}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{55}$, S. Kazama ${ }^{156}$, V. F. Kazanin ${ }^{110, \mathrm{c}}$, R. Keeler ${ }^{168}$, R. Kehoe ${ }^{41}$, J. S. Keller ${ }^{43}$, J. J. Kempster ${ }^{79}$, H. Keoshkerian ${ }^{86}$, O. Kepka ${ }^{128}$, B. P. Kerševan ${ }^{77}$, S. Kersten ${ }^{174}$, R. A. Keyes ${ }^{89}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{147 a, 147 b}$, A. Khanov ${ }^{115}$, A. G. Kharlamov ${ }^{110, \mathrm{c}}$, T. J. Khoo ${ }^{29}$, V. Khovanskiy ${ }^{98}$, \quad E. Khramov 67, J. Khubua ${ }^{52 b, v}$, S. Kido ${ }^{69}$, H. Y. Kim ${ }^{8}$, S. H. Kim ${ }^{161}$, Y. K. Kim ${ }^{32}$, N. Kimura ${ }^{155}$, O. M. Kind ${ }^{16}$, B. T. King ${ }^{76}$, M. King ${ }^{166, ~} \quad$ S. B. King ${ }^{167}$, J. Kirk ${ }^{132}$, A. E. Kiryunin ${ }^{102}$, T. Kishimoto ${ }^{69}$, D. Kisielewska ${ }^{39 a}$, F. Kiss ${ }^{49}$, K. Kiuchi ${ }^{161}$, O. Kivernyk ${ }^{137}$, E. Kladiva ${ }^{145 b}$,
 J. A. Klinger ${ }^{140}$, T. Klioutchnikova ${ }^{31}$, E.-E. Kluge ${ }^{59 a}$, P. Kluit ${ }^{108}$, S. Kluth ${ }^{102}$, J. Knapik ${ }^{40}$, E. Kneringer ${ }^{63}$,
E. B. F. G. Knoops ${ }^{87}$, A. Knue ${ }^{54}$, A. Kobayashi ${ }^{156}$, D. Kobayashi ${ }^{158}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{45}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{130}$, T. Koffas ${ }^{30}$, E. Koffeman ${ }^{108}$, L. A. Kogan ${ }^{121}$, T. Kohriki ${ }^{68}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{16}$, M. Kolb ${ }^{59 b}$, I. Koletsou ${ }^{5}$, A. A. Komar ${ }^{97, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{68}$, N. Kondrashova ${ }^{43}$, K. Köneke ${ }^{49}$, A. C. König ${ }^{107}$, T. Kono ${ }^{68, w}$, R. Konoplich ${ }^{111, \mathrm{x}}$, N. Konstantinidis ${ }^{80}$, R. Kopeliansky ${ }^{62}$, S. Koperny ${ }^{39 \mathrm{a}}$, L. Köpke ${ }^{85}$, A. K. Kopp ${ }^{49}$, K. Korcyl ${ }^{40}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{80}$, A. A. Korol ${ }^{110, \mathrm{c}}$, I. Korolkov ${ }^{12}$, E. V. Korolkova ${ }^{140}$, O. Kortner ${ }^{102}$, S. Kortner ${ }^{102}$, T. Kosek ${ }^{130}$, V. V. Kostyukhin ${ }^{22}$, V. M. Kotov ${ }^{67}$, A. Kotwal ${ }^{46}$, A. Kourkoumeli-Charalampidi ${ }^{155}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{26}$, A. Koutsman ${ }^{160 \mathrm{a}}$, A. B. Kowalewska ${ }^{40}$, R. Kowalewski ${ }^{168}$, T. Z. Kowalski ${ }^{39 a}$, W. Kozanecki ${ }^{137}$, A. S. Kozhin ${ }^{131}$, V. A. Kramarenko ${ }^{100}$, G. Kramberger ${ }^{77}$, D. Krasnopevtsev ${ }^{99}$, M. W. Krasny ${ }^{82}$, A. Krasznahorkay ${ }^{31}$, J. K. Kraus ${ }^{22}$, A. Kravchenko ${ }^{26}$, M. Kretz ${ }^{59 \mathrm{c}}$, J. Kretzschmar ${ }^{76}$, K. Kreutzfeldt ${ }^{53}$, P. Krieger ${ }^{159}$, K. Krizka ${ }^{32}$, K. Kroeninger ${ }^{44}$, H. Kroha ${ }^{102}$, J. Kroll ${ }^{123}$, J. Kroseberg ${ }^{22}$, J. Krstic ${ }^{13}$, U. Kruchonak ${ }^{67}$, H. Krüger ${ }^{22}$, N. Krumnack ${ }^{65}$, A. Kruse ${ }^{172}$, M. C. Kruse 46, M. Kruskal ${ }^{23}$, T. Kubota ${ }^{90}$, H. Kucuk ${ }^{80}$, S. Kuday ${ }^{4 b}$, J. T. Kuechler ${ }^{174}$, S. Kuehn ${ }^{49}$, A. Kugel ${ }^{59 \mathrm{c}}$, F. Kuger ${ }^{173}$, A. Kuhl ${ }^{138}$, T. Kuhl l^{43}, V. Kukhtin ${ }^{67}$, R. Kukla ${ }^{137}$, Y. Kulchitsky ${ }^{94}$, S. Kuleshov ${ }^{33 b}$, M. Kuna ${ }^{133 a, 133 b}$, T. Kunigo ${ }^{70}$, A. Kupco ${ }^{128}$, H. Kurashige ${ }^{69}$, Y. A. Kurochkin ${ }^{94}$, V. Kus ${ }^{128}$, E. S. Kuwertz ${ }^{168}$, M. Kuze ${ }^{158}$, J. Kvita ${ }^{116}$,
 F. Lacava ${ }^{133 a, 133 b}$, J. Lacey ${ }^{30}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{82}$, V. R. Lacuesta ${ }^{166}$, E. Ladygin ${ }^{67}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{82}$, T. Lagouri ${ }^{175}$, S. Lai ${ }^{55}$, S. Lammers ${ }^{62}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{49}$, M. P. J. Landon ${ }^{78}$, V. S. Lang ${ }^{59 a}$, J. C. Lange ${ }^{12}$, A. J. Lankford ${ }^{66}$, F. Lanni ${ }^{26}$, K. Lantzsch ${ }^{22}$, A. Lanza ${ }^{122 \mathrm{a}}$, S. Laplace ${ }^{82}$, C. Lapoire ${ }^{31}$, J. F. Laporte ${ }^{137}$, T. Lari ${ }^{93 \mathrm{a}}$, F. Lasagni Manghi ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, M. Lassnig ${ }^{31}$, P. Laurelli ${ }^{48}$, W. Lavrijsen ${ }^{15}$, A. T. Law ${ }^{138}$, P. Laycock ${ }^{76}$, T. Lazovich ${ }^{58}$, M. Lazzaroni ${ }^{93 a, 93 b}$, O. Le Dortz ${ }^{82}$, E. Le Guirriec ${ }^{87}$, E. Le Menedeu ${ }^{12}$, E. P. Le Quilleuc ${ }^{137}$, M. LeBlanc ${ }^{168}$, T. LeCompte ${ }^{6}$,
 A. Lehan ${ }^{76}$, G. Lehmann Miotto ${ }^{31}$, X. Lei ${ }^{7}$, W. A. Leight ${ }^{30}$, A. Leisos ${ }^{155, y}$, A. G. Leister ${ }^{175}$, M. A. L. Leite ${ }^{25 d}$, R. Leitner ${ }^{130}$, D. Lellouch ${ }^{171}$, B. Lemmer ${ }^{55}$, K. J. C. Leney ${ }^{80}$, T. Lenz ${ }^{22}$, B. Lenzi ${ }^{31}$, R. Leone ${ }^{7}$, S. Leone ${ }^{125 a, 125 b}$, C. Leonidopoulos ${ }^{47}$, S. Leontsinis ${ }^{10}$, G. Lerner ${ }^{150}$, C. Leroy ${ }^{96}$, A. A. J. Lesage ${ }^{137}$, C. G. Lester ${ }^{29}$, M. Levchenko ${ }^{124}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{91}$, L. J. Levinson ${ }^{171}$, M. Levy ${ }^{18}$, A. M. Leyko ${ }^{22}$, M. Leyton ${ }^{42}$, B. Li ${ }^{34 b, z}$, H. Li ${ }^{149}$, H. L. Li ${ }^{32}$, L. Li 46, L. $\mathrm{Li}^{34 \mathrm{e}}, \mathrm{Q} . \mathrm{Li}^{34 \mathrm{a}}, \mathrm{S}_{\mathrm{Li}} \mathrm{Li}^{46}, \mathrm{X} . \mathrm{Li}^{86}, \mathrm{Y}^{2} \mathrm{Li}^{142}$, Z. Liang ${ }^{138}$, H. Liao ${ }^{35}$, B. Liberti ${ }^{134 \mathrm{a}}$, A. Liblong ${ }^{159}$, P. Lichard ${ }^{31}$, K. Lie ${ }^{165}$, J. Liebal ${ }^{22}$, W. Liebig ${ }^{14}$, C. Limbach ${ }^{22}$, A. Limosani ${ }^{151}$, S. C. Lin ${ }^{152, a a}$, T. H. Lin ${ }^{85}$, B. E. Lindquist ${ }^{149}$, E. Lipeles ${ }^{123}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{59 b}$, T. M. Liss ${ }^{165}$, D. Lissauer ${ }^{26}$, A. Lister ${ }^{167}$, A. M. Litke ${ }^{138}$, B. Liu ${ }^{152, a b}$, D. Liu ${ }^{152}$, H. Liu ${ }^{91}$, H. Liu ${ }^{26}$, J. Liu ${ }^{87}$, J. B. Liu ${ }^{34 b}$, K. Liu ${ }^{87}$, L. Liu ${ }^{165}$, M. Liu ${ }^{46}$, M. Liu ${ }^{34 b}$, Y. L. Liu ${ }^{34 b}$, Y. Liu ${ }^{34 b}$, M. Livan ${ }^{122 \mathrm{a}, 122 \mathrm{~b}}$, A. Lleres ${ }^{56}$, J. Llorente Merino ${ }^{84}$, S. L. Lloyd ${ }^{78}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{43}$, P. Loch ${ }^{7}$, W. S. Lockman ${ }^{138}$, F. K. Loebinger ${ }^{86}$, A. E. Loevschall-Jensen ${ }^{37}$, K. M. Loew ${ }^{24}$, A. Loginov ${ }^{175}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{43}$, M. Lokajicek ${ }^{128}$, B. A. Long ${ }^{23}$, J. D. Long ${ }^{165}$, R. E. Long ${ }^{74}$, L. Longo ${ }^{75 a, 75 b}$, K. A. Looper ${ }^{112}$, L. Lopes ${ }^{127 a}$, D. Lopez Mateos ${ }^{58}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{12}$, A. Lopez Solis ${ }^{82}$, J. Lorenz ${ }^{101}$, N. Lorenzo Martinez ${ }^{62}$, M. Losada ${ }^{20}$, P. J. Lösel ${ }^{101}$, X. Lou ${ }^{34 a}$, A. Lounis ${ }^{118}$, J. Love ${ }^{6}$, P. A. Love ${ }^{74}$, H. Lu ${ }^{61 a}$, N. Lu ${ }^{91}$, H. J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 a, 133 b}$, A. Lucotte ${ }^{56}$, C. Luedtke ${ }^{49}$, F. Luehring ${ }^{62}$, \quad W. Lukas ${ }^{63}$, L. Luminari ${ }^{133 a}$, O. Lundberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, B. Lund-Jensen ${ }^{148}$, D. Lynn ${ }^{26}$, R. Lysak ${ }^{128}$, E. Lytken ${ }^{83}$, V. Lyubushkin ${ }^{67}$, H. Ma ${ }^{26}$, L. L. Ma ${ }^{34 \mathrm{~d}}$, Y. Ma ${ }^{34 \mathrm{~d}}$, G. Maccarrone ${ }^{48}$, A. Macchiolo ${ }^{102}$, C. M. Macdonald ${ }^{140}$, \quad B. Maček ${ }^{77}$, J. Machado Miguens ${ }^{123,127 \mathrm{~b}}$, D. Madaffari ${ }^{87}$, R. Madar ${ }^{35}$, H. J. Maddocks ${ }^{164}$, W. F. Mader ${ }^{45}$, A. Madsen ${ }^{43}$, J. Maeda ${ }^{69}$, S. Maeland ${ }^{14}$, T. Maeno ${ }^{26}$, A. Maevskiy ${ }^{100}$, E. Magradze ${ }^{55}$, J. Mahlstedt ${ }^{108}$, C. Maiani ${ }^{118}$, C. Maidantchik ${ }^{25 a}$, A. A. Maier ${ }^{102}$, T. Maier ${ }^{101}$, A. Maio ${ }^{127 a, 127 b, 127 d}$, S. Majewski ${ }^{117}$, Y. Makida ${ }^{68}$, N. Makovec ${ }^{118}$, B. Malaescu ${ }^{82}$, Pa. Malecki ${ }^{40}$, V. P. Maleev ${ }^{124}$, F. Malek ${ }^{56}$, U. Mallik ${ }^{64}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, V. M. Malyshev ${ }^{110}$, S. Malyukov ${ }^{31}$, J. Mamuzic ${ }^{43}$, G. Mancini ${ }^{48}$, B. Mandelli ${ }^{31}$, L. Mandelli ${ }^{93 a}$, I. Mandić ${ }^{77}$, J. Maneira ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, L. Manhaes de Andrade Filho ${ }^{25 b}$, J. Manjarres Ramos ${ }^{160 \mathrm{~b}}$, A. Mann ${ }^{101}$, B. Mansoulie ${ }^{137}$, R. Mantifel ${ }^{89}$, M. Mantoani ${ }^{55}$, S. Manzoni ${ }^{93 a, 93 b}$, L. Mapelli ${ }^{31}$, G. Marceca ${ }^{28}$, L. March ${ }^{50}$, G. Marchiori ${ }^{82}$, M. Marcisovsky ${ }^{128}$, M. Marjanovic ${ }^{13}$, D. E. Marley ${ }^{91}$, F. Marroquim ${ }^{25 a}$, S. P. Marsden ${ }^{86}$, Z. Marshall ${ }^{15}$, L. F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{166}$, B. Martin ${ }^{92}$, T. A. Martin ${ }^{169}$, V. J. Martin ${ }^{47}$, B. Martin dit Latour ${ }^{14}$, M. Martinez ${ }^{12, p}$, S. Martin-Haugh ${ }^{132}$, V. S. Martoiu ${ }^{27 b}$, A. C. Martyniuk ${ }^{80}$, M. Marx ${ }^{139}$, F. Marzano ${ }^{133 a}$, A. Marzin ${ }^{31}$, L. Masetti ${ }^{85}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{97}$, J. Masik ${ }^{86}$, A. L. Maslennikov ${ }^{110, \mathrm{c}}$, I. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, L. Massa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, P. Mastrandrea ${ }^{5}$, A. Mastroberardino ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, P. Mättig ${ }^{174}$, J. Mattmann ${ }^{85}$, J. Maurer ${ }^{27 b}$, S. J. Maxfield ${ }^{76}$, D. A. Maximov ${ }^{110, c}$, R. Mazini ${ }^{152}$, S. M. Mazza ${ }^{93 a}, 93 \mathrm{~b}$, N. C. Mc Fadden ${ }^{106}$, G. Mc Goldrick ${ }^{159}$, S. P. Mc Kee ${ }^{91}$, A. McCarn ${ }^{91}$, R. L. McCarthy ${ }^{149}$, T. G. McCarthy ${ }^{30}$, L. I. McClymont ${ }^{80}$, K. W. McFarlane ${ }^{57, *}$, J. A. Mcfayden ${ }^{80}$, G. Mchedlidze ${ }^{55}$, S. J. McMahon ${ }^{132}$, R. A. McPherson ${ }^{168,1}$, M. Medinnis ${ }^{43}$, S. Meehan ${ }^{139}$, S. Mehlhase ${ }^{101}$, A. Mehta ${ }^{76}$, K. Meier ${ }^{59 \mathrm{a}}$, C. Meineck ${ }^{101}$, B. Meirose ${ }^{42}$, B. R. Mellado Garcia ${ }^{146 \mathrm{c}}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S. Menke ${ }^{102}$, E. Meoni ${ }^{162}$, K. M. Mercurio ${ }^{58}$, S. Mergelmeyer ${ }^{16}$, P. Mermod ${ }^{50}$, L. Merola ${ }^{105 a, 105 b}$, C. Meroni ${ }^{93 a}$, F. S. Merritt ${ }^{32}$, A. Messina ${ }^{133 a, 133 b}$, J. Metcalfe ${ }^{6}$, A. S. Mete ${ }^{66}$, C. Meyer ${ }^{85}$, C. Meyer ${ }^{123}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{108}$, H. Meyer Zu Theenhausen ${ }^{59 \mathrm{a}}$, R. P. Middleton ${ }^{132}$,
S. Miglioranzi ${ }^{163 a, 163 c}$, L. Mijović ${ }^{22}$, G. Mikenberg ${ }^{171}$, M. Mikestikova ${ }^{128}$, M. Mikuž ${ }^{77}$, M. Milesi ${ }^{90}$, A. Milic ${ }^{31}$, D. W. Miller ${ }^{32}$, C. Mills ${ }^{47}$, A. Milov ${ }^{171}$, D. A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. A. Minaenko ${ }^{131}$, Y. Minami ${ }^{156}$, I. A. Minashvili ${ }^{67}$, A. I. Mincer ${ }^{111}$, B. Mindur ${ }^{39 \mathrm{a}}$, M. Mineev ${ }^{67}$, Y. Ming ${ }^{172}$, L. M. Mir ${ }^{12}$, K. P. Mistry ${ }^{123}$, T. Mitani ${ }^{170}$, J. Mitrevski ${ }^{101}$, V. A. Mitsou ${ }^{166}$, A. Miucci ${ }^{50}$, P. S. Miyagawa ${ }^{140}$, J. U. Mjörnmark ${ }^{83}$, T. Moa ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, K. Mochizuki ${ }^{87}$, S. Mohapatra ${ }^{36}$, W. Mohr ${ }^{49}$, S. Molander ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, R. Moles-Valls ${ }^{22}$, R. Monden ${ }^{70}$, M. C. Mondragon ${ }^{92}$, K. Mönig ${ }^{43}$, J. Monk ${ }^{37}$, E. Monnier ${ }^{87}$, A. Montalbano ${ }^{149}$, J. Montejo Berlingen ${ }^{31}$, F. Monticelli ${ }^{73}$, S. Monzani ${ }^{93 a}, 93 \mathrm{~b}$, R. W. Moore ${ }^{3}$, N. Morange ${ }^{118}$, D. Moreno ${ }^{20}$, M. Moreno Llácer ${ }^{55}$, P. Morettini ${ }^{51 a}$, D. Mori ${ }^{143}$, T. Mori ${ }^{156}$, M. Morii ${ }^{58}$, M. Morinaga ${ }^{156}$, V. Morisbak ${ }^{120}$, S. Moritz ${ }^{85}$, A. K. Morley ${ }^{151}$, G. Mornacchi ${ }^{31}$, J. D. Morris ${ }^{78}$, S. S. Mortensen ${ }^{37}$, L. Morvaj ${ }^{149}$, M. Mosidze ${ }^{52 b}$, J. Moss ${ }^{144}$, K. Motohashi ${ }^{158}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{26}$, S. V. Mouraviev ${ }^{97, *}$, E. J. W. Moyse ${ }^{88}$, S. Muanza ${ }^{87}$, R. D. Mudd ${ }^{18, ~ F . ~ M u e l l e r ~}{ }^{102}$, J. Mueller ${ }^{126}$, \quad R. S. P. Mueller ${ }^{101}$, T. Mueller ${ }^{29}$, D. Muenstermann ${ }^{74}$, P. Mullen ${ }^{54}$, G. A. Mullier ${ }^{17}$, F. J. Munoz Sanchez ${ }^{86}$, J. A. Murillo Quijada ${ }^{18}$, W. J. Murray ${ }^{169,132}$, H. Musheghyan ${ }^{55}$, M. Muskinja ${ }^{77}$, A. G. Myagkov ${ }^{131, \mathrm{ac}}$, M. Myska ${ }^{129}$, B. P. Nachman ${ }^{144}$, O. Nackenhorst ${ }^{50}$, J. Nadal ${ }^{55}$, K. Nagai ${ }^{121}$, R. Nagai ${ }^{68, w}$, K. Nagano ${ }^{68}$, Y. Nagasaka ${ }^{60}$, K. Nagata ${ }^{161}$, M. Nagel ${ }^{102}$, E. Nagy ${ }^{87}$, A. M. Nairz ${ }^{31}$, Y. Nakahama ${ }^{31}$, K. Nakamura ${ }^{68}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{113}, \quad$ H. Namasivayam ${ }^{42}$, R. F. Naranjo Garcia ${ }^{43}$, R. Narayan ${ }^{32}$, D. I. Narrias Villar ${ }^{59 a}$, I. Naryshkin ${ }^{124}$, T. Naumann ${ }^{43}$, G. Navarro ${ }^{20}$, R. Nayyar ${ }^{7}$, H. A. Neal ${ }^{91}$, P. Yu. Nechaeva ${ }^{97}$, T. J. Neep ${ }^{86}$, P. D. Nef ${ }^{144}$, A. Negri ${ }^{122 a, 122 b}$, M. Negrini ${ }^{21 \mathrm{a}}$, S. Nektarijevic ${ }^{107}$, C. Nellist ${ }^{118}$, A. Nelson ${ }^{66}$, S. Nemecek ${ }^{128}$, P. Nemethy ${ }^{111}$, A. A. Nepomuceno ${ }^{25 a}$, M. Nessi ${ }^{31, \text { ad }}$, M. S. Neubauer ${ }^{165}$, M. Neumann ${ }^{174}$, R. M. Neves ${ }^{111}$, P. Nevski ${ }^{26}$, P. R. Newman ${ }^{18}$, D. H. Nguyen ${ }^{6}$, R. B. Nickerson ${ }^{121}$, R. Nicolaidou ${ }^{137}$, B. Nicquevert ${ }^{31}$, J. Nielsen ${ }^{138}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{131, a c}$, I. Nikolic-Audit ${ }^{82}$, K. Nikolopoulos ${ }^{18}$, J. K. Nilsen ${ }^{120}$, P. Nilsson ${ }^{26}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 a}$, R. Nisius ${ }^{102}$, T. Nobe ${ }^{156}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{119}$, I. Nomidis ${ }^{30}$, T. Nooney ${ }^{78}$, S. Norberg ${ }^{114}$, M. Nordberg ${ }^{31}$, N. Norjoharuddeen ${ }^{121}$, O. Novgorodova ${ }^{45}$, S. Nowak ${ }^{102}$, M. Nozaki ${ }^{68}$, L. Nozka ${ }^{116}$, K. Ntekas ${ }^{10}$, E. Nurse ${ }^{80}$, F. Nuti ${ }^{90}$, F. O'grady ${ }^{7}$, D. C. O'Neil ${ }^{143}$, A. A. O’Rourke ${ }^{43}$, V. O’Shea ${ }^{54}$, F. G. Oakham ${ }^{30, \mathrm{~d}}$, H. Oberlack ${ }^{102}$, T. Obermann ${ }^{22}$, J. Ocariz ${ }^{82}$, A. Ochi ${ }^{69}$, I. Ochoa ${ }^{36}$, J. P. Ochoa-Ricoux ${ }^{33 \mathrm{a}}$, S. Oda ${ }^{72}$, S. Odaka ${ }^{68}$, H. Ogren ${ }^{62}$, A. Oh ${ }^{86}$, S. H. Oh ${ }^{46}$, C. C. Ohm ${ }^{15}$, H. Ohman ${ }^{164}, \quad$ H. Oide ${ }^{31}, \quad$ H. Okawa ${ }^{161}, \quad$ Y. Okumura ${ }^{32}, \quad$ T. Okuyama ${ }^{68}, \quad$ A. Olariu ${ }^{27 b}, \quad$ L. F. Oleiro Seabra ${ }^{127 a}$, S. A. Olivares Pino ${ }^{47}$, D. Oliveira Damazio ${ }^{26}$, A. Olszewski ${ }^{40}$, J. Olszowska ${ }^{40}$, A. Onofre ${ }^{127 a, 127 e}$, K. Onogi ${ }^{104}$, P. U. E. Onyisi ${ }^{32, s}$, C. J. Oram ${ }^{160 \mathrm{a}}$, M. J. Oreglia ${ }^{32}$, Y. Oren ${ }^{154}$, D. Orestano ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, N. Orlando ${ }^{61 \mathrm{~b}}$, R. S. Orr ${ }^{159}$, B. Osculati ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, R. Ospanov ${ }^{86}$, G. Otero y Garzon ${ }^{28}$, H. Otono ${ }^{72}$, M. Ouchrif ${ }^{136 d}$, F. Ould-Saada ${ }^{120}$, A. Ouraou ${ }^{137}$, K. P. Oussoren ${ }^{108}$, Q. Ouyang ${ }^{34 \mathrm{a}}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{54}$, R. E. Owen ${ }^{18}$, V. E. Ozcan ${ }^{19 \mathrm{a}}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{143}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{49}$, \quad S. Pagan Griso ${ }^{15}$, F. Paige ${ }^{26}$, P. Pais ${ }^{88}$, K. Pajchel ${ }^{120}$, G. Palacino ${ }^{160 \mathrm{~b}}$, S. Palestini ${ }^{31}$, M. Palka ${ }^{39 b}$, D. Pallin ${ }^{35}$, A. Palma ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, E. St. Panagiotopoulou ${ }^{10}$, C. E. Pandini ${ }^{82}$, J. G. Panduro Vazquez ${ }^{79}$, P. Pani ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, \quad S. Panitkin ${ }^{26}$, \quad D. Pantea ${ }^{27 \mathrm{~b}}, \quad$ L. Paolozzi ${ }^{50}$, Th. D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155}$, A. Paramonov ${ }^{6}$, D. Paredes Hernandez ${ }^{175}$, A. J. Parker ${ }^{74}$, M. A. Parker ${ }^{29}$, K. A. Parker ${ }^{140}$, F. Parodi ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, J. A. Parsons ${ }^{36}$, U. Parzefall ${ }^{49}$, V. Pascuzzi ${ }^{159}$, E. Pasqualucci ${ }^{133 \mathrm{a}}$, S. Passaggio ${ }^{51 \mathrm{a}}$, F. Pastore ${ }^{135 \mathrm{a}, 135 \mathrm{~b}, *}$, Fr. Pastore ${ }^{79}$, G. Pásztor ${ }^{30}$, S. Pataraia ${ }^{174}$, N. D. Patel ${ }^{151}$, J. R. Pater ${ }^{86}$, T. Pauly ${ }^{31}$, J. Pearce ${ }^{168}$, B. Pearson ${ }^{114}$, L. E. Pedersen ${ }^{37}$, M. Pedersen ${ }^{120}$, S. Pedraza Lopez ${ }^{166}$, R. Pedro ${ }^{127 a, 127 b}$, S. V. Peleganchuk ${ }^{110, \mathrm{c}}$, D. Pelikan ${ }^{164}$, O. Penc ${ }^{128}$, C. Peng ${ }^{34 \mathrm{a}}$, H. Peng ${ }^{34 \mathrm{~b}}$, J. Penwell ${ }^{62}$, B. S. Peralva ${ }^{25 b}$, M. M. Perego ${ }^{137}$, D. V. Perepelitsa ${ }^{26}$, E. Perez Codina ${ }^{160 \mathrm{a}}$, L. Perini ${ }^{93 a, 93 b}$, H. Pernegger ${ }^{31}$, S. Perrella ${ }^{105 a, 105 b}$, R. Peschke ${ }^{43}$, V. D. Peshekhonov ${ }^{67}$, K. Peters ${ }^{31}$, R. F. Y. Peters ${ }^{86}$, B. A. Petersen ${ }^{31}$, T. C. Petersen ${ }^{37}$, E. Petit ${ }^{56}$, A. Petridis ${ }^{1}$, C. Petridou ${ }^{155}$, P. Petroff ${ }^{118}$, E. Petrolo ${ }^{133 a}$, M. Petrov ${ }^{121}$, F. Petrucci ${ }^{135 a, 135 b}$, N. E. Pettersson ${ }^{158}$, A. Peyaud ${ }^{137}$, R. Pezoa ${ }^{33 b}$, P. W. Phillips ${ }^{132}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{169}$, A. Picazio ${ }^{88}$, E. Piccaro ${ }^{78}$, M. Piccinini ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, M. A. Pickering ${ }^{121}$, R. Piegaia ${ }^{28}$, J. E. Pilcher ${ }^{32}$, A. D. Pilkington ${ }^{86}$, A. W. J. Pin ${ }^{86}$, J. Pina ${ }^{127 a, 127 b, 127 d}$, M. Pinamonti ${ }^{163 a, 163 c, a e, ~ J . ~ L . ~ P i n f o l d ~}{ }^{3}$, A. Pingel ${ }^{37}$, S. Pires ${ }^{82}$, H. Pirumov ${ }^{43}$, M. Pitt ${ }^{171}$, L. Plazak ${ }^{145 \mathrm{a}}$, M.-A. Pleier ${ }^{26}$, V. Pleskot ${ }^{85}$, E. Plotnikova ${ }^{67}$, P. Plucinski ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Pluth ${ }^{65}$, R. Poettgen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, L. Poggioli ${ }^{118}$, D. Pohl ${ }^{22}$, G. Polesello ${ }^{122 \mathrm{a}}$, A. Poley ${ }^{43}$, A. Policicchio ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{21 a}$, C. S. Pollard ${ }^{54}$, V. Polychronakos ${ }^{26}$, K. Pommès ${ }^{31}$, L. Pontecorvo ${ }^{133 a}$, B. G. Pope ${ }^{92}$, G. A. Popeneciu ${ }^{27 c}$, D. S. Popovic ${ }^{13}$, A. Poppleton ${ }^{31}$, S. Pospisil ${ }^{129}$, K. Potamianos ${ }^{15}$, I. N. Potrap ${ }^{67}$, C. J. Potter ${ }^{29}$, C. T. Potter ${ }^{117}$, G. Poulard ${ }^{31}$, J. Poveda ${ }^{31}$, V. Pozdnyakov ${ }^{67}$, M. E. Pozo Astigarraga ${ }^{31}$, P. Pralavorio ${ }^{87}$, A. Pranko ${ }^{15}$, S. Prell ${ }^{65}$, D. Price ${ }^{86}$, L. E. Price ${ }^{6}$, M. Primavera ${ }^{75 a}$, S. Prince ${ }^{89}$, M. Proissl ${ }^{47}$, K. Prokofiev ${ }^{61 c}$, F. Prokoshin ${ }^{33 b}$, S. Protopopescu ${ }^{26}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{39 a}$, D. Puddu ${ }^{135 a, 135 b}$, D. Puldon ${ }^{149}$, M. Purohit ${ }^{26, a f}$, P. Puzo ${ }^{118}$, J. Qian ${ }^{91}$, G. Qin ${ }^{54}$, Y. Qin 86, A. Quadt ${ }^{55}$, W. B. Quayle ${ }^{163 a, 163 b}$, M. Queitsch-Maitland ${ }^{86}$, D. Quilty ${ }^{54}$, S. Raddum ${ }^{120}$, V. Radeka ${ }^{26}$, V. Radescu ${ }^{59 b}$, S. K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{117}$, P. Rados ${ }^{90}$, F. Ragusa ${ }^{93 a, 93 b}$, G. Rahal ${ }^{177}$, J. A. Raine ${ }^{86}$, S. Rajagopalan ${ }^{26}$, M. Rammensee ${ }^{31}$, C. Rangel-Smith ${ }^{164}$, M. G. Ratti ${ }^{93 \mathrm{a}, 93 \mathrm{~b}}$, F. Rauscher ${ }^{101}$, S. Rave ${ }^{85}$, T. Ravenscroft ${ }^{54}$, M. Raymond ${ }^{31}$, A. L. Read ${ }^{120}$, N. P. Readioff ${ }^{76}$, D. M. Rebuzzi ${ }^{122 a, 122 b}$, A. Redelbach ${ }^{173}$, G. Redlinger ${ }^{26}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{42}$, L. Rehnisch ${ }^{16}$, J. Reichert ${ }^{123}$, H. Reisin ${ }^{28}$, C. Rembser ${ }^{31}$, H. Ren ${ }^{34 a}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{93 a}$, O. L. Rezanova ${ }^{110, \mathrm{c}}$, P. Reznicek ${ }^{130}$, R. Rezvani ${ }^{96}$,
R. Richter ${ }^{102}$, S. Richter ${ }^{80}$, E. Richter-Was ${ }^{39 b}$, O. Ricken ${ }^{22}$, M. Ridel ${ }^{82}$, P. Rieck ${ }^{16}$, C. J. Riegel ${ }^{174}$, J. Rieger ${ }^{55}$, O. Rifki ${ }^{114}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{122 a, 122 b}$, L. Rinaldi ${ }^{21 a}$, B. Ristic ${ }^{50}$, E. Ritsch ${ }^{31}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{115}$, E. Rizvi ${ }^{78}$, C. Rizzi ${ }^{12}$, S. H. Robertson ${ }^{89,1}$, A. Robichaud-Veronneau ${ }^{89}$, D. Robinson ${ }^{29}$, J. E. M. Robinson ${ }^{43}$, A. Robson ${ }^{54}$, C. Roda ${ }^{125 a}, 125 \mathrm{~b}$, Y. Rodina ${ }^{87}$, A. Rodriguez Perez ${ }^{12}$, D. Rodriguez Rodriguez ${ }^{166}$, S. Roe ${ }^{31}$, C. S. Rogan ${ }^{58}$, O. Røhne ${ }^{120}$, A. Romaniouk ${ }^{99}$, M. Romano ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, S. M. Romano Saez ${ }^{35}$, E. Romero Adam ${ }^{166}$, N. Rompotis ${ }^{139}$, M. Ronzani ${ }^{49}$, L. Roos ${ }^{82}$, E. Ros ${ }^{166}$, S. Rosati ${ }^{133 a}$, K. Rosbach ${ }^{49}$, P. Rose ${ }^{138}$, O. Rosenthal ${ }^{142}$, V. Rossetti ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, E. Rossi ${ }^{105 \mathrm{a}, 105 \mathrm{~b}}$, L. P. Rossi ${ }^{51 \mathrm{a}}$, J. H. N. Rosten ${ }^{29}$, R. Rosten ${ }^{139}$, M. Rotaru ${ }^{27 b}$, I. Roth ${ }^{171}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{118}$, C. R. Royon ${ }^{137}$, A. Rozanov ${ }^{87}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{144}$, I. Rubinskiy ${ }^{43}$, V. I. Rud ${ }^{100}$, M. S. Rudolph ${ }^{159}$, F. Rühr ${ }^{49}$, A. Ruiz-Martinez ${ }^{31}$, Z. Rurikova ${ }^{49}$, N. A. Rusakovich ${ }^{67}$, A. Ruschke ${ }^{101}$, H. L. Russell ${ }^{139}$, J. P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{31}$, Y. F. Ryabov ${ }^{124}$, M. Rybar ${ }^{165}$, G. Rybkin ${ }^{118}$, S. Ryu ${ }^{6}$, A. Ryzhov ${ }^{131}$, A. F. Saavedra ${ }^{151}$, G. Sabato ${ }^{108}$, S. Sacerdoti ${ }^{28}$, H. F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{67}$, F. Safai Tehrani ${ }^{133 a}$, P. Saha ${ }^{109}$, M. Sahinsoy ${ }^{59 a}$, M. Saimpert ${ }^{137}$, T. Saito ${ }^{156}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{170}$, G. Salamanna ${ }^{135 a, 135 b}$, A. Salamon ${ }^{134 a, 134 b}$, J. E. Salazar Loyola ${ }^{33 b}$, D. Salek ${ }^{108}$, P. H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{102}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{166}$, D. Salvatore ${ }^{38 a, 38 b}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{61 a}$, A. Salzburger ${ }^{31}$, D. Sammel ${ }^{49}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{105 a, 105 b, ~ J . ~ S a ́ n c h e z ~}{ }^{166}$, V. Sanchez Martinez ${ }^{166}$, H. Sandaker ${ }^{120}$, R. L. Sandbach ${ }^{78}$, H. G. Sander ${ }^{85}$, M. P. Sanders ${ }^{101}$, M. Sandhoff ${ }^{174}$, C. Sandoval ${ }^{20}$, R. Sandstroem ${ }^{102}$, D. P. C. Sankey ${ }^{132}$, M. Sannino ${ }^{51 \mathrm{a}, 51 \mathrm{~b}}$, A. Sansoni ${ }^{48}$, C. Santoni ${ }^{35}$, R. Santonico ${ }^{134 a, 134 \mathrm{~b}}$, H. Santos ${ }^{127 a}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{126}$, A. Sapronov ${ }^{67}$, J. G. Saraiva ${ }^{127 a, 127 d}$, B. Sarrazin ${ }^{22}$, O. Sasaki ${ }^{68}$, Y. Sasaki ${ }^{156}$, K. Sato ${ }^{161}$, G. Sauvage ${ }^{5}$,* E. Sauvan ${ }^{5}$, G. Savage ${ }^{79}$, P. Savard ${ }^{159, d}$, C. Sawyer ${ }^{132}$, L. Sawyer ${ }^{81, o}$, J. Saxon ${ }^{32}$, C. Sbarra ${ }^{21 a}$, A. Sbrizzi ${ }^{21 a, 21 b, ~ T . ~ S c a n l o n ~}{ }^{80}$, D. A. Scannicchio ${ }^{66}$, M. Scarcella ${ }^{151}$, V. Scarfone ${ }^{38 a, 38 b}$, J. Schaarschmidt ${ }^{171}$, P. Schacht ${ }^{102}$, D. Schaefer ${ }^{31}$, R. Schaefer ${ }^{43}$,
 V. Scharf ${ }^{59 a}$, V. A. Schegelsky ${ }^{124}$, D. Scheirich ${ }^{130}$, M. Schernau ${ }^{66}$, C. Schiavi ${ }^{51 a, 51 b}$, C. Schillo ${ }^{49}$, M. Schioppa ${ }^{38 a, 38 b}$, S. Schlenker ${ }^{31}$, K. Schmieden ${ }^{31}$, C. Schmitt ${ }^{85}$, S. Schmitt ${ }^{43}$, S. Schmitz ${ }^{85}$, B. Schneider ${ }^{160 a}$, Y. J. Schnellbach ${ }^{76}$, U. Schnoor ${ }^{49}$, L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{59 b}$, B. D. Schoenrock ${ }^{92}$, E. Schopf ${ }^{22}$, A. L. S. Schorlemmer ${ }^{44}$, M. Schott ${ }^{85}$, J. Schovancova ${ }^{8}$, S. Schramm 50, M. Schreyer ${ }^{173}$, N. Schuh ${ }^{85}$, M. J. Schultens ${ }^{22}$, H.-C. Schultz-Coulon ${ }^{59 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{49}$, B. A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{86}$, A. Schwartzman ${ }^{144}$, T. A. Schwarz ${ }^{91}$, Ph. Schwegler ${ }^{102}$, H. Schweiger ${ }^{86}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{92}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{22}$, G. Sciolla ${ }^{24}$, F. Scuri ${ }^{125 a, 125 b}$, F. Scutti ${ }^{90}$, J. Searcy ${ }^{91}$, P. Seema ${ }^{22}$, S. C. Seidel ${ }^{106}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{129}$, J. M. Seixas ${ }^{25 a}$, G. Sekhniaidze ${ }^{105 a}$, K. Sekhon ${ }^{91}$, S. J. Sekula ${ }^{41}$, D. M. Seliverstov ${ }^{124,{ }^{*}}$, N. Semprini-Cesari ${ }^{21 a, 21 b}$, C. Serfon ${ }^{31}$, L. Serin ${ }^{118}$, L. Serkin ${ }^{163 a, 163 b}$, M. Sessa ${ }^{135 a, 135 b}$, R. Seuster ${ }^{160 a}$, H. Severini ${ }^{114}$, T. Sfiligoj ${ }^{77}$, F. Sforza ${ }^{31}$, A. Sfyrla ${ }^{50}$, E. Shabalina ${ }^{55}$, N. W. Shaikh ${ }^{147 a, 147 b}$, L. Y. Shan ${ }^{34 a}$, R. Shang ${ }^{165}$, J. T. Shank ${ }^{23}$, M. Shapiro ${ }^{15}$, P. B. Shatalov ${ }^{98}$,
 C. O. Shimmin ${ }^{66}$, M. Shimojima ${ }^{103}$, M. Shiyakova ${ }^{67, \text { ah }}$, A. Shmeleva ${ }^{97}$, D. Shoaleh Saadi ${ }^{96}$, M. J. Shochet ${ }^{32}$, S. Shojaii ${ }^{93 a}$, 93 b , S. Shrestha ${ }^{112}$, E. Shulga ${ }^{99}$, M. A. Shupe ${ }^{7}$, P. Sicho ${ }^{128}$, P. E. Sidebo ${ }^{148}$, O. Sidiropoulou ${ }^{173}$, D. Sidorov ${ }^{115}$, A. Sidoti ${ }^{21 a, 21 b}$, F. Siegert ${ }^{45}$, Dj. Sijacki ${ }^{13}$, J. Silva ${ }^{127 a, 127 d}$, S. B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{129}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13}$, S. Simion ${ }^{118}$, E. Simioni ${ }^{85}$, B. Simmons ${ }^{80}$, D. Simon 35, M. Simon ${ }^{85}$, P. Sinervo ${ }^{159, ~ N . ~ B . ~ S i n e v ~}{ }^{117}$, M. Sioli ${ }^{21 a, 21 b}$, G. Siragusa ${ }^{173}$, S. Yu. Sivoklokov ${ }^{100}$, J. Sjölin ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T. B. Sjursen ${ }^{14}$, M. B. Skinner ${ }^{74}$, H. P. Skottowe ${ }^{58}$, P. Skubic ${ }^{114}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{129}$, M. Slawinska ${ }^{108}$, K. Sliwa ${ }^{162}$, R. Slovak ${ }^{130}$, V. Smakhtin ${ }^{171}$, B. H. Smart ${ }^{5}$, L. Smestad ${ }^{14}$, S. Yu. Smirnov ${ }^{99}$, Y. Smirnov ${ }^{99}$, L. N. Smirnova ${ }^{100, \text { ai }}$, O. Smirnova ${ }^{83}$, M. N. K. Smith ${ }^{36}$, R. W. Smith ${ }^{36}$, M. Smizanska ${ }^{74}$,
 G. Sokhrannyi ${ }^{77}$, C. A. Solans Sanchez ${ }^{31}$, M. Solar ${ }^{129}$, \quad E. Yu. Soldatov ${ }^{99}$, U. Soldevila ${ }^{166}$, A. A. Solodkov ${ }^{131}$, A. Soloshenko ${ }^{67}$, O. V. Solovyanov ${ }^{131}$, V. Solovyev ${ }^{124}$, P. Sommer ${ }^{49}$, H. Son ${ }^{162}$, H. Y. Song ${ }^{34 b, z}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{129}$, V. Sopko ${ }^{129}$, V. Sorin ${ }^{12}$, D. Sosa ${ }^{59 b}$, C. L. Sotiropoulou ${ }^{125 a}$, 125b, R. Soualah ${ }^{163 a, 163 c}$, A. M. Soukharev ${ }^{110, c}$, D. South ${ }^{43}$, B. C. Sowden ${ }^{79}$, S. Spagnolo ${ }^{75 a, 75 b}$, M. Spalla ${ }^{125 a, 125 b}$, M. Spangenberg ${ }^{169}$, F. Spanò ${ }^{79}$, D. Sperlich ${ }^{16}$, F. Spettel ${ }^{102}$, R. Spighi ${ }^{21 a}$, G. Spigo ${ }^{31}$, L. A. Spiller ${ }^{90}$, M. Spousta ${ }^{130}$, R. D. St. Denis ${ }^{54, *}$, A. Stabile ${ }^{93 a}$, S. Staerz ${ }^{31}$, J. Stahlman ${ }^{123}$, R. Stamen ${ }^{59 a}$, S. Stamm ${ }^{16}$, E. Stanecka ${ }^{40}$, R. W. Stanek ${ }^{6}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{43}$, M. M. Stanitzki ${ }^{43}$, S. Stapnes ${ }^{120}$, E. A. Starchenko ${ }^{131}$, G. H. Stark ${ }^{32}$, J. Stark ${ }^{56}$, P. Staroba ${ }^{128}$, P. Starovoitov ${ }^{59 a}$, R. Staszewski ${ }^{40}$, P. Steinberg ${ }^{26}$, B. Stelzer ${ }^{143}$, H. J. Stelzer ${ }^{31}$, O. Stelzer-Chilton ${ }^{160 a}$, H. Stenzel ${ }^{53}$, G. A. Stewart ${ }^{54}$, J. A. Stillings ${ }^{22}$, M. C. Stockton ${ }^{89}$, M. Stoebe ${ }^{89}$, G. Stoicea ${ }^{27 b}$, P. Stolte ${ }^{55}$, S. Stonjek ${ }^{102}$, A. R. Stradling ${ }^{8}$, A. Straessner ${ }^{45}$, M. E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 a, 147 b}$, A. Strandlie ${ }^{120}$, M. Strauss ${ }^{114}$, P. Strizenec ${ }^{145 b}$, R. Ströhmer ${ }^{173}$, D. M. Strom ${ }^{117}$, R. Stroynowski ${ }^{41}$, A. Strubig ${ }^{107}$, S. A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N. A. Styles ${ }^{43}$, D. Su 144, J. Su ${ }^{126}$, R. Subramaniam ${ }^{81}$, S. Suchek ${ }^{59 \text { a }}$, Y. Sugaya ${ }^{119}$, M. Suk ${ }^{129}$, V. V. Sulin ${ }^{97}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{70}$, S. Sun ${ }^{58}$, X. Sun ${ }^{34 a}$, J. E. Sundermann ${ }^{49}$, K. Suruliz ${ }^{150}$, G. Susinno ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, M. R. Sutton ${ }^{150}$, S. Suzuki ${ }^{68}$, M. Svatos ${ }^{128}$, M. Swiatlowski ${ }^{32}$, I. Sykora ${ }^{145 a}$, T. Sykora ${ }^{130}$, D. Ta ${ }^{49}$, C. Taccini ${ }^{135 a, 135 b}$, K. Tackmann ${ }^{43}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{66}$, R. Tafirout ${ }^{160 \mathrm{a}}$, N. Taiblum ${ }^{154}$, H. Takai ${ }^{26}$, R. Takashima ${ }^{71}$,
H. Takeda ${ }^{69}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{68}$, M. Talby ${ }^{87}$, A. A. Talyshev ${ }^{110, \mathrm{c}}$, J. Y. C. Tam ${ }^{173}$, K. G. Tan ${ }^{90}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{118}$, S. Tanaka ${ }^{68}$, B. B. Tannenwald ${ }^{112}$, S. Tapia Araya ${ }^{33 b}$, S. Tapprogge ${ }^{85}$, S. Tarem ${ }^{153}$, G. F. Tartarelli ${ }^{93 a}$, P. Tas ${ }^{130}$, M. Tasevsky ${ }^{128}$, T. Tashiro ${ }^{70}$, E. Tassi ${ }^{38 \mathrm{a}, 38 \mathrm{~b}}$, A. Tavares Delgado ${ }^{127 \mathrm{a}, 127 \mathrm{~b}}$, Y. Tayalati ${ }^{136 \mathrm{~d}}$, A. C. Taylor ${ }^{106}$, G. N. Taylor ${ }^{90}$, P. T. E. Taylor ${ }^{90}$, W. Taylor ${ }^{160 \mathrm{~b}}$, F. A. Teischinger ${ }^{31}$, P. Teixeira-Dias ${ }^{79}$, K. K. Temming ${ }^{49}$, D. Temple ${ }^{143}$, H. Ten Kate ${ }^{31}$, P. K. Teng ${ }^{152}$, J. J. Teoh ${ }^{119}$, F. Tepel ${ }^{174}$, S. Terada ${ }^{68}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{84}$, S. Terzo ${ }^{102}$, M. Testa ${ }^{48}$, R. J. Teuscher ${ }^{159,1}$, T. Theveneaux-Pelzer ${ }^{87}$, J. P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{79}$, E. N. Thompson ${ }^{36}$, P. D. Thompson ${ }^{18}$, R. J. Thompson ${ }^{86}$, A. S. Thompson ${ }^{54}$, L. A. Thomsen ${ }^{175}$, E. Thomson ${ }^{123}$, M. Thomson ${ }^{29}$, M. J. Tibbetts ${ }^{15}$, R. E. Ticse Torres ${ }^{87}$, V. O. Tikhomirov ${ }^{97, a j}$, Yu. A. Tikhonov ${ }^{110, \mathrm{c}}$, S. Timoshenko ${ }^{99}$, \quad P. Tipton ${ }^{175}$, S. Tisserant ${ }^{87}$, K. Todome ${ }^{158}$, T. Todorov ${ }^{5, *}$, S. Todorova-Nova ${ }^{130}$, J. Tojo ${ }^{72}$, S. Tokár ${ }^{145 a}$, K. Tokushuku ${ }^{68}$, E. Tolley ${ }^{58}$, L. Tomlinson ${ }^{86}$, M. Tomoto ${ }^{104}$, L. Tompkins ${ }^{144, a k}$, K. Toms ${ }^{106}$, B. Tong ${ }^{58}$, E. Torrence ${ }^{117}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{139}$, J. Toth ${ }^{87, a l}$, F. Touchard ${ }^{87}$, D. R. Tovey ${ }^{140}$, T. Trefzger ${ }^{173}$, L. Tremblet ${ }^{31}$, A. Tricoli ${ }^{31}$, I. M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{82}$, M. F. Tripiana ${ }^{12}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{56}$, A. Trofymov ${ }^{43}$, C. Troncon ${ }^{93 a}$, M. Trottier-McDonald ${ }^{15}$, M. Trovatelli ${ }^{168}$, L. Truong ${ }^{163 \mathrm{a}, 163 \mathrm{~b}}$, M. Trzebinski ${ }^{40}$, A. Trzupek ${ }^{40}$, J. C-L. Tseng ${ }^{121}$, P. V. Tsiareshka ${ }^{94}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{49}$, E. G. Tskhadadze ${ }^{52 \mathrm{a}}$, K. M. Tsui ${ }^{61 \mathrm{a}}$, I. I. Tsukerman ${ }^{98}$, V. Tsulaia ${ }^{15}$, S. Tsuno ${ }^{68}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{27 b}$, V. Tudorache ${ }^{27 b}, \quad$ A. N. Tuna ${ }^{58}, \quad$ S. A. Tupputi ${ }^{21 a, 21 b}$, \quad S. Turchikhin ${ }^{100, a i}$, D. Turecek ${ }^{129}$, D. Turgeman ${ }^{171}$, R. Turra ${ }^{93 a, 93 b}$, A. J. Turvey ${ }^{41}$, P. M. Tuts ${ }^{36}$, M. Tyndel ${ }^{132}$, G. Ucchielli ${ }^{21 a}$, 21b, I. Ueda ${ }^{156}$, R. Ueno ${ }^{30}$, M. Ughetto ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{31}$, A. Undrus ${ }^{26}$, G. Unel ${ }^{66}$, F. C. Ungaro ${ }^{90}$, Y. Unno ${ }^{68}$, C. Unverdorben ${ }^{101}$, J. Urban ${ }^{145 b}$, P. Urquijo ${ }^{90}$, P. Urrejola ${ }^{85}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{63}$, L. Vacavant ${ }^{87}$, V. Vacek ${ }^{129}$, B. Vachon ${ }^{89}$, C. Valderanis ${ }^{101}$, E. Valdes Santurio ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Valencic ${ }^{108}$, S. Valentinetti ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, A. Valero ${ }^{166}$, L. Valery ${ }^{12}$, S. Valkar ${ }^{130}$, S. Vallecorsa ${ }^{50}$, J. A. Valls Ferrer ${ }^{166}$, W. Van Den Wollenberg ${ }^{108}$, P. C. Van Der Deij1 ${ }^{108}$, R. van der Geer ${ }^{108}$, H. van der Graaf ${ }^{108}$, N. van Eldik ${ }^{153}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{108}$, M. C. van Woerden ${ }^{31}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{31}$, R. Vanguri ${ }^{123}$, A. Vaniachine ${ }^{6}$, P. Vankov ${ }^{108}$, G. Vardanyan ${ }^{176}$, R. Vari ${ }^{133 a}$, E. W. Varnes ${ }^{7}$, T. Varol ${ }^{41}$, D. Varouchas ${ }^{82}$, A. Vartapetian ${ }^{8}$, K. E. Varvell ${ }^{151}$, J. G. Vasquez ${ }^{175}$, F. Vazeille ${ }^{35}$, T. Vazquez Schroeder ${ }^{89}$, J. Veatch ${ }^{7}$, L. M. Veloce ${ }^{159}$, F. Veloso ${ }^{127 a, 127 \mathrm{c}}$, S. Veneziano ${ }^{133 a}$, A. Ventura ${ }^{75 a}$, 75 b , M. Venturi ${ }^{168}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{24}$, V. Vercesi ${ }^{122 \mathrm{a}}$, M. Verducci ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, W. Verkerke ${ }^{108}$, J. C. Vermeulen ${ }^{108}$, A. Vest ${ }^{45, \mathrm{am} \text {, }}$ M. C. Vetterli ${ }^{143, \mathrm{~d}}$, O. Viazlo ${ }^{83}$, I. Vichou ${ }^{165}$, T. Vickey ${ }^{140}$, O. E. Vickey Boeriu ${ }^{140}$, G. H. A. Viehhauser ${ }^{121}$, S. Viel ${ }^{15}$, L. Vigani ${ }^{121}$, R. Vigne ${ }^{63}$, M. Villa ${ }^{21 \mathrm{a}, 21 \mathrm{~b}}$, M. Villaplana Perez ${ }^{93 \mathrm{a}, 93 \mathrm{~b}}$, E. Vilucchi ${ }^{48}$, M. G. Vincter ${ }^{30}$, V. B. Vinogradov ${ }^{67}$, C. Vittori ${ }^{21 a, 21 b}$, I. Vivarelli ${ }^{150}$, S. Vlachos ${ }^{10}$, M. Vlasak ${ }^{129}$, M. Vogel ${ }^{174}$, P. Vokac ${ }^{129}$, G. Volpi ${ }^{125 a, 125 b}$, M. Volpi ${ }^{90}$, H. von der Schmitt ${ }^{102}$, E. von Toerne ${ }^{22}$, V. Vorobel ${ }^{130}$, K. Vorobev ${ }^{99}$, M. Vos ${ }^{166}$, R. Voss ${ }^{31}$, J. H. Vossebeld ${ }^{76}$, N. Vranjes ${ }^{13}$, M. Vranjes Milosavljevic ${ }^{13}$, V. Vrba ${ }^{128}$, M. Vreeswijk ${ }^{108}$, R. Vuillermet ${ }^{31}$, I. Vukotic ${ }^{32}$, Z. Vykydal ${ }^{129}$, P. Wagner ${ }^{22}$, W. Wagner ${ }^{174}$, H. Wahlberg ${ }^{73}$, S. Wahrmund ${ }^{45}$, J. Wakabayashi ${ }^{104}$, J. Walder ${ }^{74}$, R. Walker ${ }^{101}$, W. Walkowiak ${ }^{142}$, V. Wallangen ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Wang ${ }^{152}$, C. Wang ${ }^{34 \mathrm{~d}, 87}$, F. Wang ${ }^{172}$, H. Wang ${ }^{15}$, H. Wang ${ }^{41}$, J. Wang ${ }^{43}$, J. Wang ${ }^{151}$, K. Wang ${ }^{89}$, R. Wang ${ }^{6}$, S. M. Wang ${ }^{152}$, T. Wang ${ }^{22}$, T. Wang ${ }^{36}$, X. Wang ${ }^{175}$, C. Wanotayaroj ${ }^{117}$, A. Warburton ${ }^{89}$, C. P. Ward ${ }^{29}$, D. R. Wardrope ${ }^{80}$, A. Washbrook ${ }^{47}$, P. M. Watkins ${ }^{18}$, A. T. Watson ${ }^{18}$, I. J. Watson ${ }^{151}$, M. F. Watson ${ }^{18}$, G. Watts ${ }^{139}$, S. Watts ${ }^{86}$, B. M. Waugh ${ }^{80}$, S. Webb ${ }^{85}$, M. S. Weber ${ }^{17}$, S. W. Weber ${ }^{173}$, J. S. Webster ${ }^{6}$, A. R. Weidberg ${ }^{121}$, B. Weinert ${ }^{62}$, J. Weingarten ${ }^{55}$, C. Weiser ${ }^{49}$, H. Weits ${ }^{108}$, P. S. Wells ${ }^{31}$, T. Wenaus ${ }^{26}$, T. Wengler ${ }^{31}$, S. Wenig ${ }^{31}$, N. Wermes ${ }^{22}$, M. Werner ${ }^{49}$, P. Werner ${ }^{31}$, M. Wessels ${ }^{59 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{117}$, N. L. Whallon ${ }^{139}$, A. M. Wharton ${ }^{74}$, A. White ${ }^{8}$, M. J. White ${ }^{1}$, R. White ${ }^{33 b}$, S. White ${ }^{125 a, 125 b}$, D. Whiteson ${ }^{66}$, F. J. Wickens ${ }^{132}$, W. Wiedenmann ${ }^{172}$, M. Wielers ${ }^{132}$, P. Wienemann ${ }^{22}$, C. Wiglesworth ${ }^{37}$, L. A. M. Wiik-Fuchs ${ }^{22}$, A. Wildauer ${ }^{102}$, F. Wilk ${ }^{86}$, H. G. Wilkens ${ }^{31}$, H. H. Williams ${ }^{123}$, S. Williams ${ }^{108}$, C. Willis ${ }^{92}$, S. Willocq ${ }^{88}$, J. A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{117}$, O. J. Winston ${ }^{150}$, B. T. Winter ${ }^{22}$, M. Wittgen ${ }^{144}$, J. Wittkowski ${ }^{101}$, S. J. Wollstadt ${ }^{85}$, M. W. Wolter ${ }^{40}$, H. Wolters ${ }^{127 a}$, 127c , B. K. Wosiek ${ }^{40}$, J. Wotschack ${ }^{31}$, M. J. Woudstra ${ }^{86}$, K. W. Wozniak ${ }^{40}$, M. Wu ${ }^{56}$, M. Wu ${ }^{32}$, S. L. Wu ${ }^{172}$, X. Wu ${ }^{50}$, Y. Wu ${ }^{91}$, T. R. Wyatt ${ }^{86}$, B. M. Wynne ${ }^{47}$, S. Xella ${ }^{37}$, D. Xu ${ }^{34 a}$, \quad L. Xu ${ }^{26}$, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 a}$, R. Yakabe ${ }^{69}$, D. Yamaguchi ${ }^{158}$, Y. Yamaguchi ${ }^{119}$, A. Yamamoto ${ }^{68}$, S. Yamamoto ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{104}$, Y. Yamazaki ${ }^{69}$, Z. Yan ${ }^{23}$, H. Yang ${ }^{34 \mathrm{e}}$, H. Yang ${ }^{172}$, Y. Yang ${ }^{152}$, Z. Yang ${ }^{14}$, W-M. Yao ${ }^{15}$, Y. C. Yap ${ }^{82}$, Y. Yasu ${ }^{68}$, E. Yatsenko ${ }^{5}$, K. H. Yau Wong ${ }^{22}$, J. Ye ${ }^{41}$, S. Ye ${ }^{26}$, I. Yeletskikh ${ }^{67}$, A. L. Yen ${ }^{58}$, E. Yildirim ${ }^{43}$, K. Yorita ${ }^{170}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{123}$, C. Young ${ }^{144}$, C. J. S. Young ${ }^{31}$, S. Youssef ${ }^{23}$, D. R. Yu ${ }^{15}$, J. Yu ${ }^{8}$, J. M. Yu ${ }^{91}$, J. Yu ${ }^{65}$, L. Yuan ${ }^{69}$, S. P. Y. Yuen ${ }^{22}$, I. Yusuff ${ }^{29}$,an , B. Zabinski ${ }^{40}$, R. Zaidan ${ }^{34 d}$, A. M. Zaitsev ${ }^{131, \mathrm{ac}}, \quad$ N. Zakharchuk ${ }^{43}$, J. Zalieckas ${ }^{14}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{58}$, L. Zanello ${ }^{133 a, 133 b}$, D. Zanzi ${ }^{90}$, C. Zeitnitz ${ }^{174}$, M. Zeman ${ }^{129}$, A. Zemla ${ }^{39 \mathrm{a}}$, J. C. Zeng ${ }^{165}$, Q. Zeng ${ }^{144}$, K. Zengel ${ }^{24}$, O. Zenin ${ }^{131}$, T. Ženiš ${ }^{145 a}$, D. Zerwas ${ }^{118}$, D. Zhang ${ }^{91}$, F. Zhang ${ }^{172}$, G. Zhang ${ }^{34 b, z}$, H. Zhang ${ }^{34 \mathrm{c}}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{49}$, R. Zhang ${ }^{22}$, R. Zhang ${ }^{34 \mathrm{~b}, \text { ao }}$, X. Zhang ${ }^{\text {34d }}$, Z. Zhang ${ }^{118}$, X. Zhao ${ }^{41}$, Y. Zhao ${ }^{34 d, 118}$, Z. Zhao ${ }^{34 b}$, A. Zhemchugov ${ }^{67}$, J. Zhong ${ }^{121}$, B. Zhou ${ }^{91}$, C. Zhou ${ }^{46}$, L. Zhou ${ }^{36}$, L. Zhou ${ }^{41}$, M. Zhou ${ }^{149}$, N. Zhou ${ }^{34 f}$, C. G. Zhu ${ }^{34 d}$, H. Zhu ${ }^{34 \mathrm{a}}$, J. Zhu ${ }^{91}$, Y. Zhu ${ }^{34 \mathrm{~b}}$, X. Zhuang ${ }^{34 \mathrm{a}}$, K. Zhukov ${ }^{97}$, A. Zibell ${ }^{173}$,
D. Zieminska ${ }^{62}$, N. I. Zimine ${ }^{67}$, C. Zimmermann ${ }^{85}$, S. Zimmermann ${ }^{49}$, Z. Zinonos ${ }^{55}$, M. Zinser ${ }^{85}$, M. Ziolkowski ${ }^{142}$, L. Živković ${ }^{13}$, G. Zobernig ${ }^{172}$, A. Zoccoli ${ }^{21 a, 21 b}$, M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{105 a}{ }^{105 b}$, L. Zwalinski ${ }^{31}$
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany, NY, USA
${ }^{3}$ Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara, Turkey; ${ }^{(b)}$ Istanbul Aydin University, Istanbul, Turkey; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
${ }^{7}$ Department of Physics, University of Arizona, Tucson, AZ, USA
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
${ }^{13}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, UK
19 (a) Department of Physics, Bogazici University, Istanbul, Turkey; ${ }^{(b)}$ Department of Physics Engineering, Gaziantep
University, Gaziantep, Turkey; ${ }^{(c)}$ Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul,
Turkey; ${ }^{(d)}$ Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
${ }^{20}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
21 (a) INFN Sezione di Bologna, Bologna, Italy; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{22}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{23}$ Department of Physics, Boston University, Boston, MA, USA
${ }^{24}$ Department of Physics, Brandeis University, Waltham, MA, USA
25 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; ${ }^{\text {(d) }}$ Instituto de Fisica, Universidade de Sao Paulo, São Paulo, Brazil
${ }^{26}$ Physics Department, Brookhaven National Laboratory, Upton, NY, USA
27 (a) Transilvania University of Brasov, Brasov, Romania; ${ }^{(b)}$ National Institute of Physics and Nuclear Engineering, Bucharest, Romania; ${ }^{\left({ }^{(c)} \text { Physics Department, National Institute for Research and Development of Isotopic and Molecular }\right.}$ Technologies, Cluj Napoca, Romania; ${ }^{(d)}$ University Politehnica Bucharest, Bucharest, Romania; ${ }^{(e)}$ West University in Timisoara, Timisoara, Romania
${ }^{28}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{29}$ Cavendish Laboratory, University of Cambridge, Cambridge, UK
${ }^{30}$ Department of Physics, Carleton University, Ottawa, ON, Canada
${ }^{31}$ CERN, Geneva, Switzerland
${ }^{32}$ Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
33 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; ${ }^{(c)}$ Department of Physics, Nanjing University, Nanjing, Jiangsu, China; ${ }^{(d)}$ School of Physics, Shandong University, Jinan, Shandong, China; ${ }^{\left({ }^{(e)} \text { Shanghai Key }\right.}$ Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University, also affiliated with PKU-CHEP, Shanghai, China; ${ }^{(f)}$ Physics Department, Tsinghua University, Beijing 100084, China
${ }^{35}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{36}$ Nevis Laboratory, Columbia University, Irvington, NY, USA
${ }^{37}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
38 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
$39{ }^{(a)}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
${ }^{40}$ Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
${ }^{41}$ Physics Department, Southern Methodist University, Dallas, TX, USA
${ }^{42}$ Physics Department, University of Texas at Dallas, Richardson, TX, USA
${ }^{43}$ DESY, Hamburg and Zeuthen, Germany
${ }^{44}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{45}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{46}$ Department of Physics, Duke University, Durham, NC, USA
${ }^{47}$ SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
${ }^{48}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{49}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{50}$ Section de Physique, Université de Genève, Geneva, Switzerland
51 (a) INFN Sezione di Genova, Genoa, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genoa, Italy
$52\left({ }^{(a)}\right.$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{53}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{54}$ SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
55 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{56}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{57}$ Department of Physics, Hampton University, Hampton, VA, USA
${ }^{58}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ${ }^{\text {b) }}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{60}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ${ }^{(b)}$ Department of Physics, The University of Hong Kong, Hong Kong, China; ${ }^{(c)}$ Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
${ }^{62}$ Department of Physics, Indiana University, Bloomington, IN, USA
${ }^{63}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{64}$ University of Iowa, Iowa City, IA, USA
${ }^{65}$ Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
${ }^{66}$ Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
${ }^{67}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{68}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{69}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{70}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{71}$ Kyoto University of Education, Kyoto, Japan
${ }^{72}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{73}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{74}$ Physics Department, Lancaster University, Lancaster, UK
75 (a) INFN Sezione di Lecce, Lecce, Italy; ${ }^{\text {(b) }}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{76}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
${ }^{77}$ Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
${ }^{78}$ School of Physics and Astronomy, Queen Mary University of London, London, UK
${ }^{79}$ Department of Physics, Royal Holloway University of London, Surrey, UK
${ }^{80}$ Department of Physics and Astronomy, University College London, London, UK
${ }^{81}$ Louisiana Tech University, Ruston, LA, USA
${ }^{82}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{83}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{84}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{85}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{86}$ School of Physics and Astronomy, University of Manchester, Manchester, UK
${ }^{87}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{88}$ Department of Physics, University of Massachusetts, Amherst, MA, USA
${ }^{89}$ Department of Physics, McGill University, Montreal, QC, Canada
${ }^{90}$ School of Physics, University of Melbourne, Melbourne, VIC, Australia
${ }^{91}$ Department of Physics, The University of Michigan, Ann Arbor, MI, USA
${ }^{92}$ Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
93 (a) INFN Sezione di Milano, Milan, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milan, Italy
94 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{95}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{96}$ Group of Particle Physics, University of Montreal, Montreal, QC, Canada
${ }^{97}$ P.N. Lebedev Physical Institute of the Russian, Academy of Sciences, Moscow, Russia
${ }^{98}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{99}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{100}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{101}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
${ }^{102}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
${ }^{103}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{104}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
105 (a) INFN Sezione di Napoli, Naples, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Naples, Italy
${ }^{106}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
${ }^{107}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
${ }^{108}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
${ }^{109}$ Department of Physics, Northern Illinois University, DeKalb, IL, USA
${ }^{110}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{111}$ Department of Physics, New York University, New York, NY, USA
112 Ohio State University, Columbus, OH, USA
${ }^{113}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{114}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
${ }^{115}$ Department of Physics, Oklahoma State University, Stillwater, OK, USA
${ }^{116}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{117}$ Center for High Energy Physics, University of Oregon, Eugene, OR, USA
${ }^{118}$ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris Saclay, Orsay, France
${ }^{119}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{120}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{121}$ Department of Physics, Oxford University, Oxford, UK
122 (a) INFN Sezione di Pavia, Pavia, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{123}$ Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
${ }^{124}$ National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
$125{ }^{(a)}$ INFN Sezione di Pisa, Pisa, Italy; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{126}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
127 (a) Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra, Portugal; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho,

Braga, Portugal; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
${ }^{(\mathrm{g})}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{128}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{129}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{130}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{131}$ State Research Center Institute for High Energy Physics, (Protvino), NRC KI, Protvino, Russia
${ }^{132}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
133 (a) INFN Sezione di Roma, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
$136{ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II,
Casablanca, Morocco; ${ }^{(b)}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; ${ }^{(e)}$ Faculté des Sciences, Université Mohammed V, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{138}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
${ }^{139}$ Department of Physics, University of Washington, Seattle, WA, USA
${ }^{140}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
${ }^{141}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby, BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg, South Africa; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University, Stockholm, Sweden; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{149}$ Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, UK
${ }^{151}$ School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloníki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{159}$ Department of Physics, University of Toronto, Toronto, ON, Canada
$160{ }^{(a)}$ TRIUMF, Vancouver, BC, Canada; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto, ON, Canada
${ }^{161}$ Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
${ }^{162}$ Department of Physics and Astronomy, Tufts University, Medford, MA, USA
$163{ }^{(a)}$ INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ${ }^{(b)}$ ICTP, Trieste, Italy; ${ }^{(c)}$ Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{164}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{165}$ Department of Physics, University of Illinois, Urbana, IL, USA
${ }^{166}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{167}$ Department of Physics, University of British Columbia, Vancouver, BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
${ }^{169}$ Department of Physics, University of Warwick, Coventry, UK
${ }^{170}$ Waseda University, Tokyo, Japan
${ }^{171}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
172 Department of Physics, University of Wisconsin, Madison, WI, USA
${ }^{173}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{174}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{175}$ Department of Physics, Yale University, New Haven, CT, USA
${ }^{176}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{177}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{\text {a }}$ Also at Department of Physics, King's College London, London, UK
${ }^{\mathrm{b}}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{c}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{\mathrm{d}}$ Also at TRIUMF, Vancouver, BC, Canada
${ }^{\mathrm{e}}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
${ }^{\mathrm{f}}$ Also at Department of Physics, California State University, Fresno, CA, USA
${ }^{\mathrm{g}}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
${ }^{h}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
${ }^{i}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
${ }^{j}$ Also at Tomsk State University, Tomsk, Russia
${ }^{k}$ Also at Universita di Napoli Parthenope, Naples, Italy
${ }^{1}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{m}$ Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{n}$ Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
${ }^{o}$ Also at Louisiana Tech University, Ruston, LA, USA
p Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{q}$ Also at Graduate School of Science, Osaka University, Osaka, Japan
${ }^{r}$ Also at Department of Physics, National Tsing Hua University, Hsinchu City, Taiwan
${ }^{\text {s }}$ Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
${ }^{t}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{u}$ Also at CERN, Geneva, Switzerland
${ }^{v}$ Also at Georgian Technical University (GTU), Tbilisi, Georgia
${ }^{w}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
${ }^{\mathrm{x}}$ Also at Manhattan College, New York, NY, USA
${ }^{\text {y }}$ Also at Hellenic Open University, Patras, Greece
${ }^{\mathrm{z}}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\text {aa }}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{a b}$ Also at School of Physics, Shandong University, Shandong, China
${ }^{\text {ac }}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{\text {ad }}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{\text {ae }}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
${ }^{\text {af }}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
${ }^{\text {ag }}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{\text {ah }}$ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{\text {ai }}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{\text {aj }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia
${ }^{\text {ak }}$ Also at Department of Physics, Stanford University, Stanford, CA, USA
${ }^{\text {al }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a m}$ Also at Flensburg University of Applied Sciences, Flensburg, Germany
${ }^{\text {an }}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
${ }^{\text {ao }}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

* Deceased

[^0]: *e-mail: atlas.publications@cern.ch

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. The variable $\Delta R=\sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}$ is a measure of how close two objects are in the (η, ϕ) plane.

[^2]: ${ }^{2}$ While it is possible to classify jets as quark- or gluon-initiated beyond leading order in $m_{\mathrm{jet}} / E_{\mathrm{jet}}$ [60], the classification is jet algorithmdependent and unnecessary for the present considerations. For the results presented in Sect. 6 that rely on jet-type labelling, alternative definitions were considered and found to have a negligible impact compared to other sources of theoretical and experimental uncertainty.

[^3]: ${ }^{3}$ This factor is found to be about 0.19 for gluon jets and 0.25 for quarkinitiated jets.

