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Abstract

Efficient Field Theoretic Simulations of Branched and Network Polymers

by

Daniel L. Vigil

I demonstrate how to conduct efficient field theoretic simulations (FTS) and self-

consistent field theory (SCFT) calculations for a variety of polymer models, including

comb-like and bottlebrush diblock copolymers, binary blends of heterobonding telechelic

homopolymers, and end-linking star polymers in solution. I develop field theory models

in both the auxiliary field (AF) framework and coherent states (CS) framework, which

are well suited to unreactive and reversibly-bonding polymers, respectively. Numerical

methods for both types of models are developed and compared for SCFT calculations,

and also for FTS of AF models. I demonstrate that depending on whether the system is

on average disordered or inhomogeneous affects which choice of algorithm performs best.

Additionally, the CS representation can conduct simulations more efficiently than AF for

SCFT, but is disadvantaged for FTS.

I apply these numerical methods to study trends in phase behavior of both reactive

and unreactive polymers. I examine the effect of architecture, including side-chain length

and grafting density, on the stability of Frank-Kasper sphere phases for comb-like and

bottlebrush diblock copolymers. I show that the effect of architecture is related to con-

formational asymmetry in linear polymers, and a universal phase diagram that combines

all these effects into a single parameter.

I then shift my focus to reactive polymers, where I use the CS models and algorithms

to simultaneously compute phase stability and reaction equilibrium in self-assembled

blends of reactive homopolymers. Although these blends produce wide distributions of
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products, they can be well approximated with simple blends of unreactive block copoly-

mers and homopolymers. Exotic trends in phase behavior, such as reentrance are also

observed, but are explained via the temperature dependence of the reaction equilibrium

and phase segregation strength.

Finally, I apply the CS approach to polymer networks formed from star polymers.

The mean field analysis of this model is consistent with classical Flory-Stockmayer theory

and predicts that spinodal decomposition can only occur after the system has undergone

gelation. Including fluctuation effects accounts for loop and ring formation, which is not

accounted for in Flory-Stockmayer theory and creates strong corrections to the mean

field picture for dilute polymers.
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Chapter 1

Introduction

Polymers are present in a wide array of materials and industries, including in biology

via proteins and DNA, in formulated solutions for consumer products, and in melts

and blends as plastic components. Due to these varied applications and the multitude

of underlying chemistries, the ability to model and predict properties of polymers has

become crucial to quick and efficient investigation of polymeric materials. In particular,

theoretical models and numerical simulations can allow for much more rapid and cost

effective investigation of polymers than is possible experimentally and can also provide

mechanistic information not available in experiments. As such, modeling tools have

become critical to modern polymer physics.

One important class of models are field-based representations of polymers [1,2]. While

it is natural to think of a molecule based on the positions of various atoms, one must

then address the immense multi-body physics issue of all the possible interactions between

particles. This quickly becomes prohibitive for dense melts of long polymers composed

of many monomers. Field based representations take these particle based models and

decouple all the multi-body physics from different molecules and introduce auxiliary fields

defined over all of space to mediate these interactions [1]. One then only has to evaluate

1



Introduction Chapter 1

how an individual molecule interacts with the field. Such an approach may be familiar

from the study of electrostatics and magnetism, where a charge interacts with the electric

field created by all the other charges in the system.

Although these Auxiliary Field (AF) models have removed the many-body problem

associated with the different molecules in a system, they are typically still too com-

plicated to evaluate exactly. Historically they have been evaluated using approximate

analytical techniques to make predictions about the excluded volume effect [3] and critical

phenomenon [4]. In recent years these approximations, have been relaxed as numerical

interrogation of the theories is tractable. This has spawned an entire approach known

at Field Theoretic Simulation (FTS), wherein particle models are converted to a field

representation then subjected to numerical discretization schemes [1]. There are some

mathematically subtleties present that put restrictions on which particle models can be

transformed to the field representations, however. Nonetheless, these restrictions are

well documented and understood [5–7]. Within these restrictions, it has been shown

that FTS can be used to efficiently model a wide variety of polymer phenomenon, in-

cluding nematic ordering [8], phase separation and self assembly [9], and polyelectrolyte

complexation [10].

One strength of FTS is that the resolution of the calculation can be adjusted at

will based on the length scale of interest. One such area is self-assembly where many

molecules coordinate into patterns with length scales much greater than that of the

individual molecules. Another property of FTS, is that for very long polymers or very

concentrated systems, each polymer interacts with many other molecules, leading to each

molecule experiencing a highly averaged field over all possible states. In such systems a

mean field approximation becomes highly accurate. When such a mean field approxima-

tion is applied to FTS it is referred to as self-consistent field theory (SCFT) [11,12]. The

simulation is reduced to finding the mean-field state that is consistent with the distribu-

2



Introduction Chapter 1

tion of polymers where each molecule experiences the same average field. This approach

has found particular success for melts of block copolymers that self assemble into various

patterns.

For both FTS and SCFT, a wide array of numerical methods have been developed

to conduct efficient simulations [7, 13–26]. Notably, most SCFT and FTS approaches

make use of spectral approximations to the spatial domain to make accurate numerical

approximations to the full theory. In particular, the community has settled on a pseudo

spectral approximation with periodic boundary conditions to represent bulk phases [1].

The other important numerical decision for FTS and SCFT is how to iterate the sim-

ulation. For SCFT the task is to identify the mean field configuration as quickly and

cheaply as possible. The problem can be posed as either a root-finding task or an opti-

mization problem, which lead to different numerical algorithms [1,13,17,18]. While both

approaches have their own merits, they have not been compared quantitatively, leading

to some ambiguity on when to use which approach. In chapter 2 we help address this

uncertainty by comparing both approaches, as well as an array of individual algorithm

choices, when applied to a model system of a linear diblock melt. We are able to clearly

delineate the strength and weaknesses of each approach and demonstrate how to properly

calibrate each algorithm.

For FTS, the task is quite different. Rather than search for a single state, the object is

to importance sample a distribution of states, consistent with the probability associated

with each, then compute average properties about the system. Monte Carlo algorithms

are a conventional approach for this task and have been quite successful for particle

simulations [27]. Unfortunately, field based models are complex valued and suffer from

the sign problem when MC approaches are used [1]. An alternative approach is to use

Langevin dynamics to importance sample the system, either with approximations to yield

a real-valued model [28], or with fully complex valued Langevin dynamics (CL) [29,30]. In

3



Introduction Chapter 1

this work we will focus on the latter as it has been validated over a larger class of models

[26]. A number of different algorithms have been developed to perform CL simulations,

both in the context of polymers and other applications [21,31,32]. Often these algorithms

were tested on simple model systems that are homogeneous on average, however. In

chapter 2 we also evaluate an array of algorithms for CL simulations when applied to

an inhomogeneous three dimensional simulation of a diblock copolymer. We are able

to show that depending on the system of study and the availability of accurate linear

response information, different algorithms perform best. Another critical issue for FTS

simulations, especially in ordered systems is the limit of stability of the algorithms. We

introduce an adaptive time stepping algorithm to polymer simulations which dramatically

increases the stability of the method. Finally, we comment on some unresolved challenges

with FTS, including unphysical saddle points which can bias results.

The model considered in chapter 2 of a linear AB diblock has been an important plat-

form for theoretical investigation due to it’s simplicity, but has already been significantly

studied. There are a wide variety of other architectures, however, that are poorly stud-

ied by comparison that exhibit novel behavior [33–35]. Examples of novel architectures

include comb and bottlebrush polymers which consistent of a backbone with many side

chains grafted onto it. It has been shown that these polymers can form domains with

large size [36,37] compared to linear chains and also self assemble into exotic structures,

including Frank-Kasper sphere packings [38]. These exotic phases have also been found in

linear AB diblocks by carefully selecting the chemistry to create conformational asymme-

try [39], where one block wants to form a much tighter coil compared to the other. There

have been theoretical studies that attempt to map the idea of conformational asymmetry

to the architecture variations of branched polymers and are able to collapse the behavior

of the polymers using approximate analytical techniques [40, 41]. In chapter 3, we carry

these ideas forward and perform full numerical SCFT calculations using the algorithms
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from chapter 2 to study linear, comb-like, and bottlebrush self assembly and the effect of

architecture and conformational asymmetry. We show that the theoretical relations still

hold and a universal phase diagram can be plotted. Unfortunately, however, we show

that SCFT is not able to capture bottlebrush polymers due to computational limits on

polymer length.

Chapters 2 and 3 demonstrate how to efficiently apply SCFT and FTS to an AF

model to obtain physical insights. While this approach works well for polymers with

finite length and simple topology, it cannot be extended to another class of polymers:

reactive polymers. In the AF approach one must enumerate the interactions of each

type of molecule present in the system with the fields [1]. This makes it efficient for

dense systems with many identical models, but for wide distributions of molecules that

are produced in reactive polymers systems this task becomes intractable. Fortunately,

recent theoretical developments have enabled a theory that is mathematically equivalent

to AF models but is more tractable theoretically and numerically for reactive systems

where bonds can form reversibly [42, 43]. These Coherent States (CS) theories invoke

creation and annihilation operators to build up all the possible products in a polymer

assembly with reversible reactions, rather than trying to explicitly enumerate all the

products. While there has been some preliminary work to validate these models and

explore their applications [42], there has been little other work with them.

The remainder of this work is devoted to developing CS theories into full numerical

tools and using them to explore two model systems. In chapter 4 we develop numerical

methods for the CS theories at the SCFT level and benchmark them against the pre-

viously described approaches from chapter 2. We show that these new models can be

evaluated more much quickly and efficiently than the AF approach, in part due to more

efficient representation of polymer chains in the CS version. We again use the standard

linear AB diblock model to compare algorithms.
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In chapter 5 we then apply the algorithm to a binary blend of telechelic polymers.

This system is able to self-assemble, phase separate, and form arbitrarily long linear poly-

mers. This combination of phenomenon has previously been intractable to full numerical

simulation in the AF approach [44]. The telechelic model also serves as a simplified

model of thermoplastic polyurethanes (TPUs) which are a large industrially segment

with a variety of applications, from abrasion resistant coatings to medical devices [45].

TPUs are formed from diisocyanates and diol molecules which reflect the terminal bi-

functional motif of telechelics. They are also able to undergo reversible bond dissociation

analogous to the telechelic model considered here [46–48]. Using the CS telechelic model,

we are able to build full phase diagrams, examine the reaction equilibrium and distribu-

tion of products, and examine the structure of self assembled phases. We show strongly

varying behavior depending on the relative strength of bond formation and chemical in-

compatibility, and explain the underlying mechanism based on interplay between these

thermodynamic factors. Although this system showcases a wide variety of phenomena,

it can only form linear reaction products and is unable to percolate into a network and

undergo gelation.

As a final task we study a network-forming system in chapter 6. We consider star ho-

mopolymers in solution that are able to link at their ends and form networks. There are

numerous experimental examples of this system, frequently in hydrogels [49]. Although

a mean field picture of gelation due to Flory and Stockmayer has been well known for

decades [50, 51], this mean field picture has a number of unrealistic assumptions. Chief

among these is that loop and ring like structures are completely neglected, and only

hyper-branched molecules are possible. This is a quite unphysical picture of gels, how-

ever, as hyper-branched molecules cannot become macroscopic in size unlike real gels.

Additionally, gelation and phase separation can often occur simultaneously which leads

to confusion on whether they are related [52]. This problem is exacerbated with irre-
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versible reactions as equilibrium is often inaccessible. Our models on the other hand are

completely equilibrium and are not limited by transient phenomenon so we can exactly

determine the underlying equilibrium behavior. We use them to explore the relationship

between gelation and phase separation at both the mean field level and also with fluc-

tuations. We leave to future work the inclusion of dynamical phenomena to build upon

this equilibrium picture [53].
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Chapter 2

Field Update Algorithms for

Polymer SCFT and FTS

2.1 Introduction

Field theory has been a prominent tool in polymer physics for the last fifty years.

Pioneering work by Edwards, de Gennes, Leibler and many others used analytical approx-

imations to understand critical phenomena [54], phase separation [4], and more [3, 55].

In the last thirty years numerical treatment of field theories has become possible, which

has allowed the relaxation of approximations such as strong or weak segregation used in

earlier work. Numerical solutions of self-consistent field theory (SCFT), which is a mean-

field approximation to the full field theory, are now routine and have enabled simulation of

full phase diagrams for broad classes of block copolymers and polymer blends [1,56–58].

It is also possible to conduct simulations of the exact field theory without the mean-

field approximation in so-called ”Field Theoretic Simulations” (FTS) [1, 16, 59]. FTS

has enabled study of phenomena not accessible to SCFT, such as fluctuation-corrected

phase diagrams in neat and salt-doped diblock melts [9,60,61], polyelectrolyte complex-
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ation [10,62,63], nematic ordering [8], ternary microemulsions [64–66], and novel ”bricks

& mortar” emulsion phases [67].

There are multiple equivalent formalisms that can be used to construct a field theory

for an assembly of polymers, but the most mature and numerically tractable is the so-

called Auxiliary Field (AF) framework, which decouples pairwise non-bonded interactions

between chain segments via a set of fields. There are then two primary tasks in evaluating

an AF theory: 1) computing the single-molecule partition functions with fixed field

configurations; and 2) generating new realizations of the fields. For polymer models

the first task is non-trivial due to the correlations between different segments on the

backbone. Previous authors have written about how to evaluate single-polymer partition

functions accurately and efficiently, and we refer readers to those works [14,15,19,20,25].

In this work we focus on the task of generating new iterations of a field. In SCFT the goal

is to identify saddle-point field configurations that represent the most-probable state at

equilibrium. Mathematically, the saddle-point nature of this configuration can be stated

as:

δH[w]

δw(r)

∣∣∣∣
w=w∗

= 0 (2.1)

Here H is the effective Hamiltonian of the field theory, w is an auxiliary field, and w∗

is the saddle-point configuration. The task of generating new fields then reduces to

searching for the saddle-point most quickly from a given initial guess. There are multiple

approaches to solving the SCFT saddle-point equations (eq 2.1). The first treats the

task as a non-linear root-finding problem and historically used quasi-Newton approaches

to find the saddle-point [68]. More recently the task has been posed as a fixed-point

problem, which has led to Anderson mixing (AM) and other ”Jacobian-free” approaches

that require significantly less memory than quasi-Newton type methods [18,22,24,69].

An alternative approach involves a fictitious dynamics with the saddle-point configu-
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ration as a fixed point. The dynamical system is then evolved in fictitious time until the

fixed point is reached. Mathematically this can be expressed as

∂w(r, t)

∂t
= −δH[w]

δw(r)
(2.2)

where H and w(r) are generally complex, corresponding to a gradient descent towards

saddle points in the complex plane. This approach allows the use of a wide variety of

algorithms developed for solving differential equations, a number of which are described

in the Methods section. Our first goal in this paper is to compare the various algo-

rithms available for SCFT to determine which algorithms perform best and under what

conditions.

There is a significant amount of work in the literature comparing numerical methods

for SCFT, but these largely focus on algorithms for computing single-chain partition func-

tions and chain propagators. In particular, many debate the relative merits of spectral

and pseudospectral approximations [19, 22–25]. With few exceptions [70], the polymer

SCFT community has largely settled on using pseudospectral methods, which we adopt

in this work. There are few direct comparisons of different field-update methods, and

those that do only consider a small subset of algorithms [17,18]. In this work we consider

seven different algorithms for conducting SCFT field updates and provide the first direct

comparison of the AM algorithm with fictitious dynamics algorithms. Additionally, we

demonstrate how to calibrate each algorithm to obtain optimal performance and provide

some heuristics for choosing numerical parameters.

For a fully fluctuating FTS, the goal of generating new field iterations is quite differ-

ent. Instead of searching for saddle-point field configurations, the goal is to generate a

sequence of decorrelated field configurations that allow for importance sampling of aver-

age field operators that describe physical properties of the system. Examples of impor-
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tant operators are the chemical potential and pressure. Because field theories are usually

complex-valued, the averaging process can suffer from a ”sign-problem” where a phase

present in the complex statistical weight that is extensive with system size produces wild

oscillations and leads to difficult averaging when attempting to use conventional methods

such as Monte Carlo sampling.

One approach to overcome the sign-problem is a partial-saddle-point approximation

that renders the Hamiltonian purely real, enabling traditional Monte Carlo and real

Langevin simulations [64,71–74]. This approach has been successful for studying fluctu-

ations in AB-type polymer systems, including microemulsions of diblock-homopolymer

ternary blends and shifts in the order-disorder transition [61, 64–66]. It is not clear how

to extend the approach to multicomponent and multispecies systems, however.

A more general approach to overcome the sign-problem is the complex Langevin

(CL) method, which has been used in single-component systems, binary, ternary and

quarternary mixtures [8, 26]. Because of its broader applicability, we focus solely on the

CL method in this work. For CL simulations, the sampling scheme follows the dynamical

equation

∂w(r, t)

∂t
= −δH[w]

δw(r)
+ η(r, t) (2.3)

where η(r, t) is a real-valued Brownian random force. This equation is nearly identical

to eq 2.2, only differing by the addition of Brownian noise. However, eq 2.3 is not a

conventional ”real” Langevin dynamics since H[w] is complex, leading to field trajectories

w(r, t) that are not restricted to real values. Nonetheless, the similarities between eqns 2.2

and 2.3 imply that SCFT algorithms relying on fictitious-time relaxation can be readily

adapted to CL. The complex Langevin approach also permits use of various algorithms

from the stochastic differential equation literature. Our second goal in this paper is to

compare algorithms for CL simulations and determine which perform best in terms of
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stability and efficiency.

There are multiple previous works that compared different algorithms for CL sim-

ulations [7, 21, 25, 26]. Unfortunately, these works were limited to either a subset of

algorithms [21, 25], models with no microphase self-assembly [7], or small parameter

ranges [26]. In this work we consider eight different algorithms for CL simulations, includ-

ing adaptive time steppers that have not been used previously in polymer systems. We

show that these adaptive time steppers significantly improve stability in inhomogeneous

systems, especially at strong segregation and low polymer densities. These advances al-

low CL simulations at conditions that were intractable with previous algorithms. Finally,

we explain the mechanism by which algorithms become unstable in CL and how adaptive

time stepping avoids failure.

2.2 Theory

We use an AB diblock copolymer melt in the canonical ensemble as a test system

for this study. We treat the diblocks as continuous Gaussian chains with segment mass

distributed over a Gaussian packet [6] to regularize the field theory, and include both A-B

segmental interactions and a Helfand compressibility penalty in the model. The model
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equations for this system are [9]

Z(n, V, T ) = Z0

∫
Dw+

∫
Dw− exp(−H[w+, w−]) (2.4)

H[w+, w−] =
C

χN

∫
dr (w−(r))2 +

C

χN + 2ζN

∫
dr (w+(r))2

− 2iCζN

χN + 2ζN

∫
drw+(r)− CV̄ ln(Q[w+, w−])

(2.5)

Q[w+, w−] =
1

V̄

∫
dr q(r, 1) (2.6)

q(r, 0) = 1 (2.7)

∂sq(r, s) = ∇2q(r, s)− w(r, s)q(r, s) (2.8)

w(r, s) =


Γ ∗ (iw+(r)− w−(r)) s ∈ (0, f ]

Γ ∗ (iw+(r) + w−(r)) s ∈ (f, 1]

(2.9)

Γ ∗ w(r) =
1

(2πa2)3/2

∫
dr′ exp

(
− 1

2a2
|r − r′|2

)
w(r′) (2.10)

Here χ is the Flory interaction parameter, ζ is the Helfand compressibility parameter,

N is the polymer contour length, f is the volume fraction of species A, C = nR3
g/V

is the dimensionless chain density, with n the number of polymers and V the volume

of the box, and Z0 is a reference partition function containing ideal-gas contributions

and normalizing denominators. Q[w+, w−] represents the partition function for a single

polymer chain interacting with the fields w+ and w− and is computed from the propagator

q(r, s), which represents the field-based random walk statistics of the polymer starting

from a free end. For all calculations we set f = 0.34 unless otherwise specified. In this

model, the monomer density has been smeared with a Gaussian kernel, Γ, with a range

a. All lengths have been non-dimensionalized in units of the unperturbed polymer radius

of gyration Rg = b(N/6)1/2 and the contour variable s ∈ [0, 1] has been scaled by 1/N .

All spatial integrals are over the scaled volume V̄ = V/R3
g.
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For SCFT calculations we assume that the melt is incompressible, ζN → ∞, and

that the density is unsmeared a = 0. The incompressible, unsmeared version of the

model displays pathological ultraviolet divergences that make the model undefined when

conducting fully fluctuating CL simulations [5, 7]. These pathologies can be removed by

using finite values for both ζN and a in CL simulations. Unless otherwise specified, we

set ζN = 100 and a = 0.2Rg for CL calculations. All calculations are conducted in a

fixed-size cubic box with periodic boundary conditions.

For SCFT calculations, the free energy is equal to the effective Hamiltonian, H, and

must be purely real valued. This implies that w+(r) must be purely imaginary at the

saddle-point, despite the fact that the functional integral is over real-valued functions.

The argument of the functional integral is analytic, which allows the path of integration

to be deformed off the real axis to include the purely imaginary saddle-point [1]. For

fluctuating CL simulations this is accomplished automatically via the complexification

of the fields. Nevertheless, for SCFT calculations it is convenient to absorb a factor

of i into w+(r) and constrain the search path to purely imaginary fields to render the

effective Hamiltonian purely real throughout the search space. Such a change of variables

constitutes a so-called ”Wick rotation”.

2.3 Numerical methods

Pseudospectral numerical methods for computing the propagator, q(r, s), have been

explored elsewhere [14, 15, 19, 20, 25]. Based on these results, for SCFT calculations we

use the RQM4 algorithm with a contour step of ∆s = 0.01 [20]. For CL calculations

we use the RK2 algorithm with ∆s = 0.01 [14, 15]. The overall evaluation of the force

G(r; [w]) = −δH/δw(r) requires evaluating both the forward and reverse propagators,

and evaluating such objects has a computational cost that scales like O(NsM ln(M)),
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where Ns = 1/∆s is the number of contour samples along the polymer backbone, and

M is the number of sample points in space. A single field has M elements and typically

requires O(M) operations to update, so for each field configuration generated during the

simulation, evaluating the force is significantly more expensive than updating the fields

and usually represents the majority of computation time in SCFT and FTS. Minimizing

the number of field updates and force evaluations is thus critical to reducing computation

time. All SCFT calculations were conducted in a box of size Lx = Ly = Lz = 9Rg with

M = 643 sample points, while CL calculations used the same size box with M = 483,

unless otherwise specified.

For field-update schemes, we first briefly review the Anderson mixing algorithm.

Anderson mixing is typically used for fixed-point-iteration type problems of the form

w(r) = E(w(r)), where E is a nonlinear function. The deviation of a particular value

of w(r) is defined by d(r) = E(w(r))− w(r). If one has already iterated through a

number, nh, of fields wi(r), wi−1(r), . . . , wi−nh
(r) then one can compute an optimized

guess for the next iteration, wi+1(r), by finding coefficients αi, . . . , αi−nh
that minimize∫

dr
(∑i

j=i−nh
αjdj(r)

)2

subject to the constraint
∑i

j=i−nh
αj = 1. Determining these

coefficients is a linear optimization problem that requires at least O(n2
hM) operations.

Details on efficient implementation of the AM algorithm and initialization strategies can

be found elsewhere [18,22].

The fictitious dynamics algorithms attempt to solve the partial differential equation

∂tw(r, t) = − δH

δw(r)
+ η(r, t) = G(r; [w]) + η(r, t) (2.11)

where for SCFT η = 0, and for CL η is the Brownian force. From here on we refer to the

deterministic term G(r; [w]) = −δH/δw(r) as the ”force” on a field, w. The simplest
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approximation to solve eq 2.11 is the Euler-Maruyama (EM1) approximation

wj+1(r)− wj(r) = ∆tG(r; [wj]) +Rj(r) (2.12)

Here the superscript j represents a discrete-time index and Rj is a random variable

with zero mean and variance 〈Rj(r)Rk(r′)〉 = 2∆t δjkδ(r − r′). We continue to use this

definition for Rj(r) when describing other algorithms, unless otherwise specified. Any

noise distribution with these first two moments can be used, however we exclusively

use normally distributed noise in this work. Although simple to implement, the EM1

algorithm has poor stability and accuracy compared to other algorithms.

Another class of algorithms splits the force into a linear and a non-linear contribution

− δH

δw(r)
= G(r; [w]) = −c ∗ w(r) + F (r; [w]) (2.13)

where c ∗ w is a convolution that represents the linear contribution to δH/δw(r) and F

represents all non-linear contributions. For polymer models it is typically most convenient

to express the kernel function c in Fourier space where it is diagonal and positive definite

[17] and the linearized force convolution c∗w can be computed via simple multiplication.

The linearized force c ∗ w typically is derived from a linear response analysis about

the translationally invariant disordered phase of the system and thus constitutes an

approximation to the true linear force that is only accurate for weak perturbations about

the disordered state. The explicit kernel functions for the diblock model considered in

this work are given in Appendix A.

After splitting the force into linear and non-linear parts, semi-implicit algorithms

can be devised in order to stabilize the algorithm. One such algorithm is a first order
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semi-implicit scheme (SI1), which is defined by

wj+1(r)− wj(r) = ∆t
(
−c ∗ wj+1(r) + F (r; [wj])

)
+Rj(r) (2.14)

Another similar algorithm that uses linearized force information is the first-order ex-

ponential time differencing ETD1 method, [31, 75] which is derived by using c as an

integrating factor over the time interval t→ t+ ∆t.

ŵj+1(k)− ŵj(k) =
1− e−ĉ(k)∆t

ĉ(k)
Ĝ(k; [wj]) +

(
1− e−2ĉ(k)∆t

2ĉ(k)∆t

)1/2

R̂j(k) (2.15)

here the equation has been transformed from real space, r, to Fourier space, k, with hats

over symbols indicating Fourier transforms ŵ(k) = Fr→k(w(r)). Note that the linear

response kernel ĉ(k) is a function of the magnitude of the Fourier mode k = |k|.

All of the fictitious dynamics algorithms discussed so far have first-order accuracy with

respect to time step. In the stochastic case with R 6= 0, this is first-order accuracy in the

weak sense. To achieve higher-order accuracy we employ predictor-corrector algorithms.

These algorithms perform an initial ”predictor” time step, then use this predicted field to

more accurately evaluate the force over the time step interval for a subsequent improved

corrector step. These algorithms must evaluate the force two times per iteration, but

have second-order accuracy (in the weak sense) in fictitious time. The simplest of these

is the Euler-Maruyama predictor corrector (EMPEC2) method

w̄(r)− wj(r) = ∆tG(r; [wj]) +Rj(r) (2.16)

wj+1(r)− wj(r) =
∆t

2
(G(r; [wj]) +G(r; [w̄])) +Rj(r) (2.17)

It is important to use the same noise realization Rj(r) in both the predictor and corrector

steps in order to fully cancel the leading-order weak error of the algorithm. The noise
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statistics here are the same as for the EM1 method.

There are also variants of this algorithm that use linearized force information, such

as an algorithm due to Petersen and Öttinger (PO2) [21,76]. We also introduce here an

ETD type algorithm that is similar to the predictor corrector algorithms, but is instead

based on a Runge-Kutta approach [75]. This ETDRK2 algorithm is defined by

ˆ̄w(k)− ŵj(k) =
1− e−ĉ(k)∆t

ĉ(k)
Ĝ(k; [wj]) +

(
1− e−2ĉ(k)∆t

2ĉ(k)∆t

)1/2

R̂j(k) (2.18)

ŵj+1(k)− ˆ̄w(k) =
ĉ(k)∆t+ e−ĉ(k)∆t − 1

(ĉ(k))2∆t

(
F̂ (k; [w̄])− F̂ (k; [wj])

)
(2.19)

The predictor step is an ETD1 step as described above, while the corrector step is

based on a trapezoidal Runge-Kutta approximation. Note that this algorithm is slightly

different than a predictor corrector ETD method described elsewhere [31].

The final type of algorithm we consider is an adaptive time-stepping (ADT) method

for CL simulations. This approach was introduced by Aarts and coworkers in the con-

text of CL sampling of quantum chromodynamics models [32]. The first adaptive time-

stepping algorithm that we consider, EM1ADT, uses a simple Euler-Maruyama update

scheme with a time step that is updated between iterations according to

∆tj =
K

max(|G(r; [wj])|)
∆t (2.20)

wj+1(r) = wj(r) + ∆tj G(r; [wj]) +Rj(r) (2.21)

where ∆t is the nominal time step and K is an adjustable parameter. Typically K

is set to be close to the average modulus of the force so that if a large force value is

encountered, the time step is reduced to allow for more accurate time integration. In

contrast, if the forces are small, then ∆t is increased to allow for sampling more states.

In all ADT calculations in this work, the parameter K was computed by averaging the
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modulus of the force over the first 1000 iterations, unless otherwise specified. No adaptive

time-stepping is performed over these initial calibration steps and the iteration proceeds

with the nominal time step. One can determine if the ADT method is well calibrated

by plotting the time step to ensure it fluctuates around the nominal value ∆t. Operator

values must also be weighted by the adaptive time step when computing averages and

other statistics. The adaptive time-stepping approach can easily be generalized to any

other algorithm. A second ADT scheme that we consider here is the EMPEC2ADT

method, which layers adaptive time-stepping on top of EMPEC2 updates:

∆tj =
K

max(|G(r; [wj])|)
∆t (2.22)

w̄(r) = wj(r) + ∆tj G(r; [wj]) +Rj(r) (2.23)

wj+1(r) = wj(r) +
∆tj
2

(G(r; [w̄]) +G(r; [wj])) +Rj(r) (2.24)

It is important for both the EM1ADT and EMPEC2ADT schemes that the variance of

the noise is adjusted with the time step: 〈Rj(r)Rk(r′)〉 = 2∆tj δjkδ(r − r′).

As a final note, there are other small changes to each algorithm that can be made.

For both SCFT and CL fictitious dynamics simulations, we include a positive, constant

mobility λ as a coefficient to the force for each field and in the noise variance. These

mobilities affect the relative speed at which each field is updated. Additionally, when

performing SCFT calculations with first-order fictitious dynamics algorithms (EM1, SI1,

ETD1), the fields are not updated simultaneously but rather follow a staggered scheme

where only one field is updated per iteration and the stiffer w+ pressure mode is updated

first [17]. For the AB diblock model considered here, the staggered updates with the
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EM1 algorithm can be described mathematically as,

wj+1
+ (r) = wj+(r) + λ+∆tG+(r; [wj+, w

j
−]) (2.25)

wj+1
− (r) = wj−(r) + λ−∆tG−(r; [wj+1

+ , wj−]) (2.26)

For CL calculations, all fields are always updated simultaneously, i.e.

wj+1
+ (r) = wj+(r) + λ+∆tG+(r, [wj+, w

j
−]) +Rj

+(r) (2.27)

wj+1
− (r) = wj−(r) + λ−∆tG−(r, [wj+, w

j
−]) +Rj

−(r) (2.28)

Including a mobility λ± changes the variance of the noise to 〈Rj
±(r)Rk

±(r′)〉 = 2λ±∆t δjkδ(r−

r′).

2.3.1 Software

All calculations involving Anderson mixing were computed using the publicly available

PSCF code developed at the University of Minnesota [69]. Both the FORTRAN90 and

C++ versions of the code were tested, with quantitative agreement between the two. All

data presented in this work used the C++ version of the code. The FORTRAN90 version

of the code was pulled on February 2, 2020 (SHA1 67d107f3a6) and the C++ version was

pulled on July 1, 2020 (SHA1 3ed5f6caac). All calculations involving fictitious dynamics

or CL sampling were performed using a UCSB-developed custom C++ code.

All SCFT calculations were computed using a single thread on an Intel Xeon E5-2630

CPU. All CL simulations were executed on NVIDIA V100 GPUs [77].
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2.4 Results

2.4.1 Self-Consistent Field Theory

We first evaluate the various algorithms in the context of SCFT. For each algorithm

we examine the stability properties and the ways its performance can be adjusted via

numerical parameters.

There is one adjustable parameter for the AM method: the history length, nh. Al-

though keeping a longer history length typically leads to faster convergence of field up-

dates, it also increases the computational cost of the calculation. This is both due to

increased memory requirements of storing the field history as well as the arithmetic op-

erations required to update the fields, which scale like O(n2
hM). Recall that to evaluate

the force requires O(NsM ln(M)) operations, so if n2
h ∼ Ns ln(M) then field updates can

have comparable cost to that of evaluating the force. For typical parameter values of

Ns = 100 and M = 643 this crossover occurs at nh = 35. To combat this problem it

is common practice when performing field updates to map the fields from the original

grid in real space with M samples to a symmetry reduced space with Mr samples, where

Mr � M [22, 24]. This leads to a field update cost of n2
hMr. After conducting the field

update, the fields are then mapped back to the original grid to perform pseudospec-

tral evaluations of the force. In the case of the highly symmetric double gyroid phase,

which has the space group Ia3̄d, a full grid of size M = 643 is reduced to Mr = 2761,

corresponding to a factor of 95 reduction. In addition to reducing the computational

cost of a given field update step, using symmetry reduction also decreases the dimension

of the space that must be searched for the saddle-point, which typically leads to faster

convergence. A disadvantage to using symmetry reduction is that it limits the overall

set of structures that are possible to explore. Performing large-cell quenches to discover

phases [78–81], and to study defects, thin films, and other asymmetric structures is not
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possible using techniques that impose the symmetry elements of a space group on the

fields.

We compare the number of iterations and the time it takes to converge a calculation

to a force tolerance of 10−8 using the AM algorithm for a unit cell of the double gyroid

phase with and without symmetry reduction at f = 0.34 and χN = 30 in Figure 2.1. All

calculations were initialized from a converged SCFT calculation at χN = 20 and f = 0.37

and were run until a prescribed force cutoff of 10−8 was achieved. When constructing a

phase diagram, it is common to use one point in phase space with a converged structure

to initialize a nearby point in phase space to accelerate the saddle-point search. As

such, the change in both χN and f between the seed fields and the converged fields is a

representative test for the algorithms.

The top panel of Figure 2.1 illustrates that increasing history length reduces the

iterations required to converge, nearly monotonically. This is expected because a longer

history length leads to a more efficient search towards the saddle-point. Additionally,

the symmetrized calculations (Ia3̄d) converge with fewer iterations than the calculations

without symmetrization (P1). In the bottom panel, the CPU time required to complete

the calculation is plotted. For the symmetrized case, the run time nearly perfectly mirrors

the iterations in the top panel. This indicates that the increased computational cost of

larger nh is negligible in the total cost of an iteration. For the P1 calculations, the

conclusion is quite different. The CPU time required decreases as nh is increased from 5

to 20, but for nh ≥ 25 the CPU time increases with increasing nh despite the fact that

the total number of field update iterations is decreasing. This clearly indicates that the

cost of a field update is no longer negligible and is affecting the overall run time. The

transition occurs close to the prior scaling-based estimate of nh = 35. This procedure was

repeated at χN = 40 and χN = 60 with qualitatively the same conclusions. The only

major difference occurred at χN = 60, where the P1 calculations would not converge for
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Figure 2.1: Convergence rate for AM method with and without symmetrization at
χN = 30. P1 indicates that no symmetry reduction is used, whereas Ia3̄d uses the
symmetry of the double gyroid phase. The spatial discretization with no symmetry
reduction was M = 643. All calculations were performed using a single thread on an
Intel Xeon E5-2630 CPU.
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any value of nh attempted.

For the fictitious dynamics algorithms, the adjustable parameters are the time step

∆t and mobilities, λ+ and λ−, used to update each field. Each field mobility can be

set independently, but only two out of the three time step and mobility parameters are

independent because they appear in the combinations λ+∆t and λ−∆t in all algorithms.

For the SCFT studies we therefore arbitrarily set ∆t = 1 and vary the two mobilities.

Because fictitious dynamics algorithms have one more parameter compared to AM, the

parameter space for fictitious dynamics is larger and requires more work to optimize

the performance. Some heuristics can be constructed to help reduce the burden of this

search, however [26].

In analogy to the AM method, we evaluated the various time steppers over a range of

field mobility values. These data are presented in Figure 2.2. In all cases the calculations

were initialized from the same fields used in the AM studies and were run until the l2

norm of the forces on w+ and w− were both less than 10−8.

Unlike the AM method, changing the parameters does not affect the arithmetic cost of

a field update step, so we only consider the number of iterations required to reach the force

cutoff. Figure 2.2 shows that the EM1 method is by far the least stable and only converges

for λ+ = λ− = 1 out of the values attempted. The mobility values attempted here are

relatively aggressive and most algorithms will have larger stability windows at smaller

mobility values. The semi-implicit, first-order algorithms (SI1 and ETD1) perform much

better than EM1 and converge for nearly any λ+ > λ−. The fastest convergence from

the values considered occurs for λ+ = 50 and λ− = 20. Although not shown, increasing

either mobility above these values starts to destabilize the algorithm and leads to slower

convergence. Finally, the second order algorithms show an intermediate level of stability,

but converge quite quickly with optimal parameter selection. The EMPEC2 and PO2

algorithms perform best for λ+ = λ−, while the ETDRK2 algorithm performs best with
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Figure 2.2: Iterations to convergence for time steppers at χN = 30. λ+ is the time
step for the w+ field and λ− is the time step for the w− field. The number inside each
square indicates iterations to convergence. Black squares indicate that the calculation
did not converge.
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λ+ > λ−. These three algorithms require approximately half as many iterations as the

SI1 and ETD1 algorithms, but each iteration requires twice as many force evaluations,

so it is unclear which is faster from these data alone.

To further probe the question of which algorithm converges fastest, we examine the

absolute value of the error in the intensive Hamiltonian as a function of the number of

force evaluations. Comparing the different algorithms based on iterations to convergence

can be misleading because the second order algorithms require twice as many force eval-

uations per iteration. It is also not reliable to compare run times from different software

implementations that were used for different algorithms. Many software design decisions

such as single vs. double precision arithmetic, numerical library selection, and hardware

availability (CPU vs. GPU) can outweigh the effect of algorithm choice. As such we

use number of force evaluations as the computational effort metric because, apart from

the previously mentioned edge case of non-symmetrized AM with long history length,

evaluating the forces should typically be the dominant computational burden and the

number of times that this is required therefore determines the overall run time.

Figure 2.3 shows the error in the intensive Hamiltonian versus the number of force

evaluations conducted for the various algorithms at χN = 30. All calculations were run

until the change in the Hamiltonian between iterations was less than 10−10. The error

was then referenced to this final value of the Hamiltonian. For all algorithms we used the

parameter values that led to the lowest CPU time to convergence. For most applications

an error of 10−4 to 10−6 in the Hamiltonian is sufficient to accurately compute phase

boundaries. At χN = 30, the EMPEC2 time stepper and both AM algorithms are all

nearly equivalent. The ETDRK2 algorithm is slightly slower, and is then followed by

PO2, ETD1, and SI1. Finally EM1 is much slower to converge than any other algorithm.

Increasing χN to 40 or 60 leads to some slight variations in the relative performance

of the algorithms shown in Figure 4 and Figure 5. For very high accuracy (tighter
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Figure 2.3: Error in the per-chain intensive Hamiltonian in units of kBT after a given
number of force evaluations. All calculations were conducted at χN = 30.

than 10−7) and strong segregation strengths, the AM algorithm with symmetrization

shows faster convergence than any of the time steppers (Figure 2.5). The time steppers

demonstrate a long tail of slow convergence at very high accuracy for strong segregation.

AM without symmetrization is not stable at χN = 60, re-emphasizing the importance of

symmetrization to the efficacy of the AM algorithm.

For all conditions tested, the EMPEC2 algorithm was fastest of all the time steppers,

despite being one of the most simple. All of the semi-implicit algorithms rely on a linear

response derived in the disordered phase. This linear response information is not a good

match for the true linear force in the ordered double gyroid phase being tested here, which

may limit or eliminate the benefit from the implicit part. The EMPEC2 algorithm on the

other hand obtains all information about force variation over a time interval numerically

from the predictor-corrector scheme and does not rely on approximate linear response

information. Additionally, the second-order schemes nearly universally converge faster

than the first-order algorithms, despite having smaller stability windows. This may be

attributed to the lower time accuracy of the first-order schemes. Although in SCFT

we are concerned only with the effort to find the saddle point and not with accurately
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Figure 2.4: Same as Figure 2.3 but at χN = 40.
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Figure 2.5: Same as Figure 2.3 but at χN = 60.
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reproducing a dynamical trajectory, the time-step errors in the first-order methods can

make the trajectory divert from the fastest path to convergence. This can be seen in the

oscillatory change in the Hamiltonian in Figures 2.3–2.5.

2.4.2 Field Theoretic Simulations

We now consider full FTS that are not limited by the mean field approximation of

SCFT. As previously stated, the most efficient way to conduct such simulations without

approximation is with the complex Langevin method. Unfortunately, there is no easy

way to convert the AM algorithm into one that can correctly sample fluctuations in an

FTS, so we do not consider it for the remainder of this work. The time steppers on the

other hand can trivially be extended to include fluctuations by including an additional

noise term in the update. We begin by evaluating the performance of the different

algorithms in the disordered phase at f = 0.34, χN = 10 and C = 20 in a cubic box of

size V = 93R3
g with M = 483. The melt is also compressible with ζN = 100 and the

polymer density has been smeared with a range of a = 0.2Rg. The mobilities are fixed

at λ+ = 2 and λ− = 1. In FTS, the effective Hamiltonian is not a physically relevant

operator, so we instead consider the excess chemical potential relative to the ideal gas of

copolymer chains, the average of which is plotted in Figure 2.6 for a range of time step

sizes. The excess chemical potential operator is defined as µ̃ex = − lnQ[w+, w−] where

µ̃ex is in units of the thermal energy kBT . The physical observable, µex, is then computed

according to

µex = 〈µ̃ex〉 =

∫
Dw+

∫
Dw− µ̃ex exp(−H[w+, w−])∫

Dw+

∫
Dw− exp(−H[w+, w−])

(2.29)

where 〈. . .〉 indicates a thermodynamic ensemble average. Under the ergodic principle

with CL importance sampling, the ensemble average can be replaced with a CL time

average.
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Figure 2.6: Average value of the chemical potential for the disordered phase at
χN = 10, f = 0.34, and C = 20.

An ideal algorithm will be able to produce accurate values at large time steps in order

to reduce simulation times. At small ∆t all algorithms show good agreement, but as ∆t

is increased various algorithms start to show time-integration errors. For CL simulations

it is important to accurately reproduce the trajectory of the fictitious dynamics in order

to properly importance sample the system. The first-order methods (EM1, SI1, and

ETD1) have the worst accuracy scaling with ∆t and show the strongest divergence from

the true value of µex as ∆t increases. In particular the EM1 and SI1 algorithms perform

worst, while the ETD1 algorithm is nearly as accurate as the second order methods,

which weakly diverge from the true value of µex with increasing ∆t over the range of

time steps tested. Although perhaps less limiting than accuracy requirements for FTS,

another important aspect for an algorithm is its stability. The most stable algorithm will

be able to run at large ∆t, which enables sampling more CL time for a given amount of

CPU time. This leads to tighter confidence intervals for estimates (via reduced statistical

sampling error) for a given amount of resources.

In the disordered phase there is a clear maximum time step for each algorithm, above

which the simulation diverges in fewer than 100 iterations; these conditions are found
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where the lines of Figure 2.6 terminate for large ∆t. The most stable algorithms, i.e.

the ones with largest maximum ∆t, are the semi-implicit algorithms SI1, ETD1, and

ETDRK2 which have ∆tmax = 0.5. The PO2 algorithm uses semi-implicit information in

the corrector step but relies on a fully explicit Euler step in the predictor, which confers

it with worse stability (∆tmax = 0.1) compared to the other semi-implicit methods. Fi-

nally, the EM1 and EMPEC2 algorithms show the worst stability of the tested algorithms

(∆tmax = 0.05), which is unsurprising as they make no attempt to use semi-implicit infor-

mation. Notably in this disordered system, the linear response functions used to construct

the semi-implicit algorithms are accurate for weak fluctuations about the homogeneous

state, which likely leads to the much better performance of these algorithms compared

to SCFT of the double gyroid phase. When considering both stability and accuracy, the

ETD1 and ETDRK2 algorithms perform best and produce comparable levels of error.

The ETD1 algorithm requires half as many force evaluations as the ETDRK2 algorithm,

however, making it the most cost efficient algorithm. The high accuracy and stability

found for the ETD1 algorithm are in agreement with similar studies of the Edwards

homopolymer solution model [7] and three and four-species block polymer melts [26].

Repeating the same CL calculations at χN = 30 for the double gyroid phase yields

qualitatively similarly results, though the trends are not quite as clear. These data are

presented in Figure 2.7. At small ∆t all algorithms converge to the same value. As ∆t is

increased, the algorithms with first-order accuracy start to show significant errors while

second-order accurate algorithms remain close to the true value. Unlike in the disordered

phase, there is no clear maximum time step for each algorithm, however. Instead, as ∆t is

increased, the algorithms become statistically more likely to follow divergent trajectories.

This can be quantified via a mean time to divergence, defined as the harmonic mean of
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Figure 2.7: Average value of the chemical potential for the double gyroid phase at
χN = 30, f = 0.34, and C = 20.

the CL simulation time before a calculation diverges. Mathematically,

τ̄div =

(
1

ns

ns∑
j=1

1

τdiv,j

)−1

(2.30)

where τdiv,j is the divergence time for an individual trajectory and j indexes statistically

independent simulations of which there are ns. A simulation is terminated as divergent

when any individual field value is IEEE 754-defined +INF, -INF or NAN. The mean

divergence times were computed from ten independent trajectories and are plotted in

Figure 2.8.

All calculations were run for a maximum of two million iterations. The solid black line

in Figure 2.8 indicates the maximum CL time that could be achieved with two million

iterations at a given time step. For ∆t ≤ 0.005 all algorithms have a divergence time that

lies on top of the τmax curve, indicating that no calculations diverged for the entire CL

time window. At larger ∆t various algorithms have τdiv < τmax indicating that divergence

became limiting rather than the specified iteration cap. For ∆t = 0.05 all algorithms

except EM1ADT have τdiv � τmax. In contrast to the simulations for the disordered
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Figure 2.8: Harmonic mean divergence time for the double gyroid phase at χN = 30,
f = 0.34, and C = 20.

phase, simulations of a microphase separated system show no overall performance benefit

from algorithms using semi-implicit information over the Euler-based methods, which is

similar to the behavior for SCFT of the double gyroid phase. Again this is presumably

due to the fact that the linear response functions used in the semi-implicit algorithms are

not appropriate for the double gyroid phase. The algorithms that perform best are the

ones that use adaptive time stepping. The EM1ADT algorithm never diverged over the

range of time steps used in this study, while the EMPEC2ADT algorithm only diverged

for ∆t = 0.05.

In Appendix A we explore in further detail what actually causes a CL simulation to

diverge. We conclude that even though the saddle-point is a local fixed point of the CL

dynamics, it is possible to fluctuate to a nearby trajectory that is analytically divergent

(non-bound). These divergent trajectories are not attractive, but cause the force to

grow exponentially, which can lead to poor time-integration accuracy and the emergence

of extremely large field values. It is also possible for trajectories to leave the basin of

attraction for the desired microphase and enter an attractive basin for another microphase

(i.e. free-energy barrier crossing) or an unphysical state. This topic is explored further
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in Appendix A. If a very small time step is used on the periphery of the basin near a

divergent trajectory, then the algorithm can be significantly stabilized. The adaptive

time stepping algorithms do exactly this: when the force is large the time step is small.

The EMPEC2ADT algorithm is slightly less stable than the EM1ADT algorithm because

EMPEC2ADT chooses the time step based on the current value of the force, but updates

the fields based on the current and future forces. When near a divergent trajectory

this can lead to reduced suppression of instabilities. Nevertheless the EMPEC2ADT

algorithm has much better accuracy compared to EM1ADT (see Figure 2.7), and may be

a better choice if stability is not limiting. As noted previously, it is possible to construct

adaptive time-stepped versions of the other algorithms, but the fixed-time-step semi-

implicit algorithms do not perform better than the Euler-based algorithms in the double

gyroid phase, so we do not expect the ADT versions to perform better either.

As a final study, we examine how the adaptive time stepping algorithms can be used

to run simulations in regions of parameter space that were previously inaccessible. We

consider the same diblock copolymer system, but now at χN = 80 and ζN = 200 and

in a cubic box size V = 12R3
g with M = 643. The time step is fixed at ∆t = 0.01

and we examine algorithm performance as the chain number density, C, is varied. As C

decreases the relative strength of fluctuations increases, leading to increased probability

for divergence. The divergence time is plotted in Figure 2.9. All calculations were

initialized from the SCFT saddle-point fields of the same double gyroid phase. This

initialization choice causes a warm up period for every trajectory, during which the

fluctuations are slowly incorporated as the simulation evolves. The warm up time for

each algorithm is presented in Figure 2.10.

Figure 2.9 again shows that adaptive time-stepping is much more stable than fixed-

time-step approaches. Over all values of C considered, the EM1ADT algorithm never

diverged. Although not shown, the algorithm is also stable below C = 1, however the
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Figure 2.9: Harmonic mean divergence time for the double gyroid phase at χN = 80
and f = 0.34.
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Figure 2.10: Mean warm up time for the double gyroid phase at χN = 80 and f = 0.34.
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double gyroid phase starts to become unstable relative to the disordered phase because

of strong fluctuations at small C. In contrast, the fixed-time-step algorithms (EM1

and EMPEC2) have a decreasing divergence time with decreasing C. As fluctuations

become stronger at small C, the fixed-time-step algorithms become susceptible to an

instantaneous perturbation to the fields which pushes the fields far away from the saddle-

point, and can lead to a divergent trajectory. The adaptive time steppers on the other

hand can accurately integrate forward in time and prevent escape from the stable basin.

The problem of simulating small C with fixed-time-step algorithms is further accen-

tuated by examining the warm up time in Figure 2.10. For all algorithms the warm up

time increases as C decreases, indicating that fluctuations away from the saddle-point

become more important as C is decreased. For C < 2 the warm up time for the EM1

and EMPEC2 algorithms is approaching the divergence time for each algorithm. This

makes it difficult to collect any data because the simulation is likely to diverge by the

time the system has become thermalized. Such stability problems are not present with

adaptive time stepping, but the averaging time for the K parameter had to be increased

to 50,000 iterations for C ≤ 2.

2.5 Conclusion

We examined a wide array of field update algorithms to perform polymer SCFT cal-

culations and field theoretic simulations (FTS). These algorithms fall into two groups:

Anderson-mixing (AM) and fictitious dynamics. We show that AM and fictitious dy-

namics algorithms perform similarly under physically relevant conditions for SCFT, as

long as the numerical parameters have been tuned appropriately. The AM approach is

advantaged in that it has fewer numerical parameters compared to the fictitious dynamics

algorithms, but the latter methods are more robust when simulating systems with low
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spatial symmetry. We also find that fictitious dynamics algorithms with second-order

time accuracy can outperform first-order methods despite doubled cost per time step.

For complex Langevin field theoretic simulations we observed that the exponential

time-differencing type algorithms outperform all others in disordered phases because

of the availability of useful linear response information and their sophisticated use of

this information. In ordered mesophases, adaptive time stepping (ADT) is found to

dramatically stabilizes algorithms and is much more important than individual algorithm

choice. The ADT algorithms also allow access to parameter spaces characteristic of

strong fluctuations (e.g. low C) that were previously intractable. These insights should

aid future field theoretic simulations of a wide variety of polymer models.
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Chapter 3

Phase Behavior for Linear, Comb,

and Bottlebrush Diblock

Copolymers

3.1 Introduction

Block copolymers have been a topic of vigorous research for many decades due to

their ability to self-assemble into a wide variety of microstructures that impart an array

of different materials properties. In recent years a set of microstructures known as Frank-

Kasper sphere phases have been identified in block copolymer systems [82, 83]. These

sphere phases have long been known in metal alloys and typically have high coordination

number and low symmetry, containing numerous spheres in the primitive cells.

Recent studies have revealed that a critical factor in forming Frank-Kasper phases

is conformational asymmetry [39], which describes the tendency of one or more blocks

to form looser or tighter coils compared to other blocks. This conformational asymme-

try can allow a molecule with composition that would typically lead to formation of a
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cylinder phase to instead adopt a microphase consisting of spherical domains. Conforma-

tional asymmetry is typically defined as the ratio of length scales between two different

monomers. The length scales used include the Kuhn length, statistical segment length,

or packing length.

Conformational asymmetry is not the only mechanism that can facilitate Frank-

Kasper phase formation: it has previously been shown that comb-like and bottlebrush

block copolymers can form Frank-Kasper phases in the absence of contrasting statistical

segment lengths if there are sufficient differences in the architecture between blocks [38].

The fact that both architectural variations and conformational asymmetry can be used to

stabilize Frank-Kasper phases implies that the two factors may produce similar effects on

self assembly. A similar relationship between architecture and conformational asymme-

try was studied in the context of mikto-arm star block copolymers by Milner [40]. Using

strong segregation theory (SST), he showed that for an AnBm star block copolymer,

a combined architectural and conformational asymmetry parameter, ε, can be defined

that collapses the phase behavior of any combination of n and m to a single phase di-

agram. More recently, a similar SST study was conducted by Zhulina and coworkers

for comb-like and bottlebrush copolymers, which showed that conformational asymme-

try could be combined with architectural parameters such as grafting density and side

chain length [41] to produce a single asymmetry parameter. They also showed that the

dependence of ε on architectural parameters differs between the comb-like regime and

bottlebrush regime. The comb-like regime is characterized by short side chains with low

grafting density, where backbone properties dominate the conformational asymmetry,

while in the bottlebrush regime the side chains are long and densely grafted, leading

to different chain backbone behavior and increased importance of side chain properties.

The different regimes are also characterized by different scaling of microphase domain

size with polymer length [37, 84]. The boundary between these two regimes is discussed
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in detail elsewhere [85].

Although these SST studies have provided powerful insights, they are limited in both

accuracy and detail. For example, SST studies are typically based on describing chain

packing in a simple unit cell of planar, cylindrical, or spherical domains. This approxi-

mation prevents the comparison of low-symmetry microphases with a delicate free-energy

balance of competing domain orderings, such as the Frank-Kasper sphere phases consid-

ered here. It has also been shown that SST can lead to qualitatively incorrect predictions:

perhaps most notably, SST predicted that the double gyroid network morphology is not

stable compared to hexagonally packed cylinders or lamellae [86–88], but numerical self-

consistent field theory (SCFT) showed that double gyroid is in fact stable [19].

In this work, we use full numerical SCFT calculations to study Frank-Kasper phases in

linear, comb-like, and bottlebrush block copolymers. Numerical SCFT allows us to com-

pare the free energies of the Frank-Kasper phases to establish the most stable candidate,

and we show that a universal phase diagram for linear and comb-like block copolymers

can be generated with the introduction of an appropriate asymmetry parameter, ε. We do

not observe a transition from comb-like scaling to bottlebrush scaling, despite considering

polymers with grafting density as high as two and side chain degree of polymerization

greater than thirty. We attribute this absence of bottlebrush scaling to the mean-field

approximation that underlies SCFT.

3.2 Model and Methods

3.2.1 Field Theory Model of interacting AB diblocks

We consider incompressible melts of linear, comb-like, and bottlebrush diblock poly-

mers. Figures 3.1 qualitatively shows the difference between linear, comb-like, and bottle-
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Linear

Comb-like

Bottle-brush

zA=1/3

Nbb,A=8

Nsc,A=5

zB=1/2

Nbb,B=8

Nsc,B=4

bsc,B

bbb,Bbbb,A

bsc,A

Figure 3.1: Illustration of linear, comb-like, and bottlebrush polymers and the relevant
architectural parameters.

brush block copolymers and illustrates the molecular architecture parameters including

backbone degree of polymerization (Nbb), side-chain degrees of polymerization (Nsc), and

the grafting density (z), defined as the average number of grafts per backbone segment.

We define the total degree polymerization, N , of a block copolymer with m distinct

chemical blocks to be:

N =
m∑
i=1

(ziNsc,i + 1)Nbb,i (3.1)

The conventional field theory model for an incompressible melt of AB-type block and

graft copolymers is [1, 59]

Z(n, V, T ) = Z0

∫
Dw+

∫
Dw− exp(−H[w+, w−]) (3.2)

H[w+, w−] = C

(
1

χN

∫
dr (w−(r))2 − i

∫
drw+(r)− V̄ lnQ[wA, wB]

)
(3.3)

where Z(n, V, T ) is the partition function for a canonical ensemble of n copolymers in a

volume V at fixed temperature T . Z0 is a reference partition function for an ideal gas
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of copolymers, and H is an effective Hamiltonian for the interacting system. The A and

B segments interact through a Flory-Huggins interaction parameterized by χ. Polymer

segments are defined to have equal volume, v0, for all species. All spatial integrals are

over the scaled volume V̄ = V/R3
g and the spatial coordinate r has been scaled by a

reference polymer radius of gyration Rg. In all calculations in this work, we impose

periodic boundary conditions on the simulation cell.

The parameter C describes a dimensionless chain density and is related to the oc-

cupied and pervaded volume of a chain. Occupied volume is the volume in space filled

by the segments from a single chain due to excluded volume interactions Vocc = v0N ,

whereas pervaded volume is the minimum volume required to circumscribe a single poly-

mer coil in a sphere or cylinder. For a linear homopolymer chain in its own melt, a

measure of the pervaded volume is the unperturbed radius of gyration cubed,

Vperv,linear = R3
g,linear = b3N3/26−3/2 (3.4)

where b is the statistical segment length. The ratio of pervaded volume to occupied yields

the dimensionless chain concentration,

C =
Vperv

Vocc

(3.5)

which is a prefactor to every term in the effective Hamiltonian eq 6.2. Because occupied

and pervaded volumes have different scaling with the degree of polymerization N , the

dimensionless chain concentration C is proportional to the square root of N for a linear

chain. This is often expressed as an invariant degree of polymerization N̄ = 63C2.

For non-linear chains we must use alternative expressions for the pervaded volume

and chain concentration, C. For comb-like polymers it is assumed that pervaded volume
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is dominated by the backbone,

Vperv,comb = R3
g,bb =

b3
bbN

3/2
bb

63/2
(3.6)

which yields the dimensionless chain concentration

Ccomb =
b3
bb,AN

3/2
bb

63/2v0N
(3.7)

where we have used the A block backbone segment length as a reference segment length.

For a bottlebrush polymer, estimation of the pervaded volume is more difficult because

both side chains and the backbone contribute meaningfully. Blob scaling methods can

be used to estimate the mean square end-to-end vector of the chain [41,85]

〈R2
lb〉 =

v0z

bsc
N1/2
sc Nbb (3.8)

which can be used to estimate the pervaded volume. This yields

Clb =
v

1/2
0 z

3/2
A N

3/4
sc,AN

3/2
bb

b
3/2
sc,AN

(3.9)

These equations represent the ”loose brush” regime [85, 89] and are applicable for z <

(b2
bbbsc/v0)2. For higher grafting densities, the polymer enters the dense brush regime, for

which the appropriate expressions are

〈R2
db〉 = (zv0bbbNsc)

1/2Nbb (3.10)

and

Cdb =
z

3/4
A b

3/4
bb,AN

3/4
sc,AN

3/2
bb

v
1/4
0 N

(3.11)
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All bottlebrushes considered in this work have sufficiently low grafting density to remain

in the loose brush regime.

The single-chain partition function Q[wA, wB] describes the interactions of a single

chain with the auxiliary fields. The form of Q depends on the molecular architecture and

chain statistics and is explored in detail in the following section. Q also has a parametric

dependence on the chain composition that is described by the species A volume fraction

fA. The fields experienced by each monomer wA and wB are related to the auxiliary

fields by the following linear combination of the w± fields

wA ≡ iw+ − w− wB ≡ iw+ + w− (3.12)

3.2.2 Chain Statistics

There are a variety of models used to describe the chain statistics of flexible polymer

chains. Bead-linker models with either freely-rotating joints (FJC) or Gaussian springs

(DGC) are both popular choices [51,59,90]. Additionally, a continuous Gaussian thread

(CGC) model is also commonly used to describe long polymer strands [1,91]. For comb-

like and bottlebrush polymers, there are often short polymer segments between grafts

along the backbone. For this type of architecture it is thought that the CGC model is

inappropriate due to overstretching of the backbone [37]. In this work we consider linear

chains with CGC, DGC, and FJC chain statistics, as well as branched polymers with

DGC and FJC chain statistics. Crucially, a FJC backbone cannot overstretch beyond its

contour length.

We demonstrate how to compute the single-chain partition function Q[wA, wB] for a

linear AB diblock copolymer with the aforementioned chain statistics. Extending this

approach to branched molecules such as bottlebrush copolymers is discussed elsewhere
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[8, 84, 92]. For a linear chain, the single-chain partition function is computed from the

propagator q(r, s; [wA, wB]), which describes the random walk statistics of a chain starting

from a free end and ending at a contour position s.

Q[wA, wB] =
1

V̄

∫
dr q(r, 1; [wA, wB]) (3.13)

For a polymer block with continuous Gaussian chain statistics the single-chain propaga-

tor, q(r, s), satisfies the modified diffusion equation

∂

∂s
q(r, s) =

(
(b(s))2

b2
bb,A

∇2 − w(r, s)

)
q(r, s) (3.14)

where b(s) = bA and w(r, s) = wA(r) for s ∈ (0, fA] and b(s) = bB and w(r, s) = wB(r)

for s ∈ (fA, 1]. The propagator satisfies the initial condition q(r, 0) = 1. The chain

contour dimension s has been scaled by the chain length, N .

For a polymer block with discrete bead-linker chain statistics, the single-chain prop-

agator qj(r) no longer depends on a continuous contour position variable s but rather on

an integer bead index j. The single chain partition function is defined according to

Q[wA, wB] =
1

V̄

∫
dr qN(r; [wA, wB]) (3.15)

The propagator has an initial condition

q1(r) = exp(−w1(r)/N) (3.16)

and is iterated forward using the Chapman-Kolmogorov equation

qj+1(r) = exp(−wj+1(r)/N)

∫
dr′Φj(|r− r′|)qj(r′) (3.17)
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where Φj(r) is the normalized bond transition probability. As in the case of the contin-

uous Gaussian chain, both wj(r) and Φj(r) are piecewise functions of the contour index

j defined according to

wj(r) =


wA(r) 1 ≤ j ≤ fAN

wB(r) fAN + 1 ≤ j ≤ N

(3.18)

Φj(r) =


ΦA(r) 1 ≤ j ≤ fAN

ΦB(r) fAN + 1 ≤ j ≤ (N − 1)

(3.19)

where ΦA and ΦB are normalized bond transition probabilities that define the linker

statistics in the A and B blocks, respectively. The linker that connects the A block to

the B block is of type A.

In this work, we consider Gaussian springs and freely rotating joints as linkers. The

mathematical form of the bond transition probability ΦK(r) is most conveniently ex-

pressed in Fourier space and is defined according to

Φ̂K(k) =


exp

(
− b2K
Nb2bb,A

k2
)

Gaussian

j0

(
61/2bK

N1/2bbb,A
k
)

freely jointed

(3.20)

where K is either A or B and j0(x) = sin(x)/x is a spherical Bessel function of the first

kind.
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3.2.3 Numerical Self Consistent Field Theory

Self-consistent field theory (SCFT) is a mean-field approximation to the full theory

described previously, and is defined by the saddle point equations

δH[w+, w−]

δw+(r)

∣∣∣∣
w∗+,w

∗
−

=
δH[w+, w−]

δw−(r)

∣∣∣∣
w∗+,w

∗
−

= 0 (3.21)

After obtaining w∗± fields that satisfy the above equations, the corresponding free

energy is computed by approximating the functional integral over field configurations

with the mean-field values

F

kBT
= − ln Zc ≈ H[w∗A, w

∗
B] (3.22)

This mean-field approximation becomes asymptotically exact where the parameter C

goes to infinity.

To search for the saddle point fields, we use fictitious dynamics schemes [17]. For

all calculations involving bottlebrush copolymers Heun’s predictor-corrector method is

used, while all other linear and comb-like copolymers use an exponential time differencing

(ETD) scheme [31,75]. In addition to searching for the saddle point fields, we also allow

the simulation cell to relax its shape and size to attain a stress-free configuration [93].

The calculations are considered converged when the L2 norm of the forces and stresses

are below tolerances of 10−5 and 10−4, respectively.

The field update equations require evaluating the chain propagator described previ-

ously. For continuous Gaussian chains, the modified diffusion equations were solved by

a second-order pseudo-spectral method [14, 15] with a contour discretization of ∆s =

0.01. All discrete bead-linker polymers also used a pseudospectral approximation [1] to

efficiently compute the convolutions required in the iterative update scheme described
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by eq 3.17.

Phase diagrams are constructed by comparing candidate phases’ free energies, includ-

ing BCC spheres, FCC spheres, hexagonally packed cylinders (HEX), and tetrahedrally

close-packed sphere phases A15 and σ. Spatial discretization of all phases are summarized

in Appendix B.

3.2.4 Conformational Asymmetry, Chain Scaling, and the Bot-

tlebrush Transition

Conformational asymmetry is intimately tied to the concepts of occupied volume

and pervaded volume. As previously discussed, the ratio of these quantities yields a

dimensionless chain concentration, C, which is related to the invariant degree of poly-

merization, N̄ . An alternative quantity can be defined that is independent of the degree

of polymerization:

plinear =
v0

b2
(3.23)

where p is a length scale that is often referred to as the ”packing length” and is a

materials property of a given monomer [94]. It is also proportional to a modified ratio of

the occupied and pervaded volume:

p ∝ Vocc

V
2/3

perv

(3.24)

Conformational asymmetry then compares the relative size of the packing length for one

polymer species to another [95]. Because the segment volumes are defined to be equal,

for a linear chain, we obtain

εlinear =

√
pB
pA

=
bA
bB

(3.25)
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However, this definition of conformational asymmetry is not universal, and some authors

omit the square root leading to ε = b2
A/b

2
B [38, 95,96].

We can use eq 3.24 to estimate the packing length for comb and bottlebrush polymers

as well. Using the previously obtained estimates for pervaded volume, we estimate the

packing length of block i of a comb as

pi,comb =
v0(1 + ziNsc,i)

b2
bb,i

(3.26)

which yields an epsilon definition of

εcomb =
bbb,A
bbb,B

√
zBNsc,B + 1

zANsc,A + 1
(3.27)

Repeating the exercise for loose and dense bottlebrush polymers yields

εlb =
b

1/2
sc,BN

1/4
sc,B

b
1/2
sc,AN

1/4
sc,A

(3.28)

and

εdb =
(bbb,AzBNsc,B)1/4

(bbb,BzANsc,A)1/4
(3.29)

Both loose and dense brushes are characterized by ε ∝ N
1/4
sc and C ∝ N

1/2
bb N

−1/4
sc . Comb-

like polymers on the other hand have an asymmetry parameter that is predicted to

scale like N
1/2
sc . In addition, the loose bottlebrush asymmetry parameter depends on the

side chain segment lengths bsc, whereas the comb-like prediction depends on backbone

segment lengths bbb. As previously stated, the polymers in this work have sufficiently low

grafting density z that we do not expect to observe dense brush scaling.
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3.3 Results and Discussion

3.3.1 Universal Phase Diagram

We first compare the phase behavior of linear, comb-like, and bottlebrush copolymers

with continuous Gaussian (CGC), discrete Gaussian (DGC), and freely jointed (FJC)

chain statistics. In contrast to typical block-copolymer phase diagrams, which map the

space of the composition, fA, and segregation strength, χN , we instead fix χN = 60 and

examine the effect of conformational asymmetry, ε, and fA.

For linear polymers we vary bbb,B/bbb,A to sweep a range of εlinear values. For comb-like

and bottlebrush polymers we choose equal segment lengths bsc,A = bbb,A = bsc,B = bbb,B

and grafting density of unity zA = zB = 1. The length of side chains, Nsc,A and Nsc,B,

were then varied to change ε. For comb-like polymers we set Nsc,A = 0 and varied Nsc,B

from 0 to 8. For the bottlebrush polymer we require Nsc,A +Nsc,B = 40 for all molecules.

The bottlebrush polymers thus have significantly longer side chains than the comb-like

polymers. For each molecule we then computed the value of ε according to eqs 3.25,

3.27, or 3.28, and constructed stability boundaries in fA for each microphase at χN = 60

using linear interpolation of free energies. These data are presented in Figure 3.2.

The phase boundaries for different architecture and chain statistics all agree well, ex-

cept for the bottlebrush polymers. In Figure 3.3, we replot the bottlebrush polymer data,

instead using the comb-like εcomb prediction (eq 3.27). This figure shows near universal

phase boundaries between all architectures and chain statistics. The strongest deviations

are at the σ-A15 phase boundary. These deviations are not unexpected because the A15

and σ phases are very close in free energy (of order of 10−4 kT per chain) [39,96–98], and

small changes to polymer structure will have a much larger relative impact on the posi-

tion of the phase boundary compared to the boundaries between other pairs of phases.

There is also an appreciable difference in the phase boundary between BCC and HEX
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Figure 3.2: SCFT phase diagrams for linear, comb, and bottlebrush copolymers with
CGC, DGC, and FJC chain statistics at χN = 60. For linear chains, segment lengths
are varied to change ε, whereas for comb and bottlebrush polymers the side chain
lengths are varied. DIS-BCC boundaries are not shown for linear DGC, linear FJC,
and comb FJC polymers.

phases near ε = 1 when comparing bottlebrushes to other architectures. We attribute

this difference to the large shift in the order-disorder transition (ODT) when comparing

linear CGC polymers and brush DGC polymers. The ODT shift for bottlebrush block

copolymers is discussed in Appendix B. The ODTs for other discrete polymers are not

shown in Figure 3.3 due to the difficulty resolving the position of the phase boundary

with the coarse composition variations of discrete chains. To precisely locate the ODT

requires identifying a point in phase space where microphases are metastable compared

to the disordered phase. This is sometimes not possible with discrete chains due to the

discrete set of compositions available, whereas for continuous chains all compositions are

easily accessible. Nevertheless, the approximate ODTs for linear DGC, linear FJC, and

comb FJC have fA within ±0.01 of the linear CGC ODT.

Although applying the comb-like scaling of eq 3.27 to the bottlebrush data yields a

nearly universal phase diagram, it prompts the question of why polymers with a nominal

bottlebrush architecture are behaving like combs. To further pursue this question, we
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Figure 3.3: Same as Figure 3.2, but the bottlebrush ε was computed using eq 3.27
instead of eq 3.28.

Case bbb,B bsc,A bsc,B zA zB Nsc,A Nsc,B εcomb

1a) 1 1 1 1 1 2 11 2.0
1b) 1 1 3/2 1 1 2 11 2.0
1c) 2/3 1 1 1 1 2 11 3.0
1d) 1 1 1 1/6 1 2 11 3.0
2a) 1 1 1 1 1 8 32 1.9
2b) 1 1 3/2 1 1 8 32 1.9
2c) 2/3 1 1 1 1 8 32 2.9
2d) 1 1 1 1 2 8 32 2.7

Table 3.1: Case studies parameters for bottlebrush and comb-like polymers. All
segment lengths, b, are given relative to the reference segment length bbb,A

examined the effect of other architectural parameters such as segment lengths b and

grafting density z.

3.3.2 ε dependence on segment lengths and grafting density

Previous architecture variations allowed us to probe the dependence of ε only on

side-chain lengths. Other architectural parameters such as segment lengths and grafting

densities could further affect the conformational asymmetry. To examine these effects, we

systematically vary backbone segment lengths, side-chain segment lengths, and grafting
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Figure 3.4: Variations in phase stability with different architectural changes. 1a)
Reference molecule with identical segment lengths and grafting density. 1b) B block
side chain segment length increased to 3/2. 1c) B block backbone segment length
decreased to 2/3. 1d) A block grafting density decreased to 1/6. Full architectural
parameters are given in Table 3.1.

density and evaluate the phase stability windows. We investigate four cases for both

comb-like (1a-1d) and bottlebrush polymers (2a-2d), with parameters listed in Table 3.1.

In the same table we list the corresponding value of εcomb using the comb-like scaling law

eq 3.27.

Figure 3.4 shows the phase stability windows for the four comb architectures, Cases

1a-1d. Case 1a denotes a reference model where the A side chain has 2 beads, the B

side chain has 11 beads, and the bond lengths are all unity. These parameters combine

to give εcomb = 2. The stability windows for the BCC, σ and HEX phases shown in

Figure 3.4 are in agreement with the universal phase diagram, Figure 3.3 at ε = 2, as

expected. For Case 1b, the side-chain segment length of the B block is increased to

3/2. The corresponding phase diagram is nearly identical to the Case 1a, so that, in

agreement with eq 3.27, the comb’s side chain segment length should not contribute to

the asymmetry parameter ε. This result is expected from physical intuition because the

side chains of comb-like polymers are short relative to the backbone and do not contribute
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substantially to the pervaded volume. In Case 1c, the backbone segment length of the B

block was decreased to 2/3. By substituting this bbb,B into eq 3.27, εcomb = 3 is predicted,

and a stability window for the A15 phase appears in the phase diagram consistent with

ε = 3 in Figure 3.3. Finally, a decreased grafting density in the A block (zA = 1/6)

was considered in Case 1d, which from eq 3.27 is expected to provide another route to

εcomb = 3 and has the expected phase boundaries. These results show that the comb-like

prediction for ε has the correct dependence (or independence) on the model parameters

and is appropriate even for collapsing the boundaries between complex sphere phases.

0.10 0.15 0.20 0.25 0.30 0.35
fA

2a)

2b)

2c)

2d)

BCC HEX

DIS HEX

BCC A15

BCC A15 HEX

1.9

1.9 

2.9

2.7 

Figure 3.5: Variations in phase stability with different architectural changes. 2a)
Reference molecule with identical segment lengths and grafting density. 2b) B block
side chain segment increased to 3/2. 2c) B block backbone segment length decreased
to 2/3. 2d) B block grafting density increased to 2. Full architectural parameters are
given in Table 3.1.

For bottlebrush polymers, we also contrast four cases (2a-2d) to explore the effect of

segment length and grafting density. Case 2a is the reference case with all equivalent

segment lengths and grafting density of unity. We predict the conformational asymmetry

using the comb-like expression (eq 3.27) because it yielded a nearly universal phase

diagram in Figure 3.3. The predicted conformational asymmetry for Case 2a is εcomb =

1.9.
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In Case 2b, the side chain segment length of the B block is increased to 3/2. Eq 3.27

predicts that εcomb is independent of side chain segment length so the predicted value

remains the same as for Case 2a. In the corresponding phase diagram, we observe that

the complex sphere phase window does not expand, but we see a shifted order-disorder

phase boundary that removes the BCC window. More details concerning the BCC phase

can be found in the supplementary information and will be discussed in more detail

in future publications. Notably, the bottlebrush prediction for ε (eq 3.28) depends on

the side chain segment length which would demand a shift in phase boundaries between

Cases 2a and 2b. This further reinforces that the finding that the molecules termed

”bottlebrush” in this work obey comb-like scaling rather than bottlebrush scaling.

In Case 2c, the backbone segment length of the B block is decreased to 2/3. Using

eq 3.27 we find that ε = 2.9 and observe that the phase diagram has A15 and σ phase

boundaries commensurate with the universal phase diagram at the same ε value. The

bottlebrush prediction for ε is independent of backbone segment lengths, so if bottlebrush

scaling were obeyed, there would be no difference between Case 2a and Case 2c; this is

in contradiction with the SCFT results.

Finally, in Case 2d, we increase the grafting density to zB = 2. This increase cor-

responds to the highest grafting density and side chain length considered, placing the

molecules most deeply into the expected bottlebrush scaling regime [85,89]. The bottle-

brush scaling prediction for conformational asymmetry (eq 3.28) has no dependence on

grafting density, however. Case 2d in Figure 3.5 shows a clear stability window for the

A15 phase, indicating that Case 2d has more conformational asymmetry than Case 2a.

The relative position of phase boundaries is also commensurate with the universal phase

diagram when using comb-like ε predictions. This phase behavior further indicates that

the comb-like scaling is more appropriate than the bottlebrush relation. All bottlebrush

polymers have therefore shown comb-like (eq 3.27) dependence on segment length and

55



Phase Behavior for Linear, Comb, and Bottlebrush Diblock Copolymers Chapter 3

grafting density.

The most obvious explanation for these data is that the bottlebrush polymers used

in this work remain in the comb-like scaling regime despite relatively long side chains

and high grafting densities. In the next section, we explore what is required to reach the

bottlebrush regime in field-theoretic models.

3.3.3 Alternate models and fluctuation effects

We have established that both our comb-like and bottlebrush block copolymers follow

a form of ε given in eq 3.27, consistent with the comb scaling regime. However, we

expected the bottlebrush block copolymers to observe a different form of ε. Zhulina and

coworkers studied architectural asymmetry in comb and bottlebrush block copolymers

by combining strong segregation results with blob scaling methods [41, 85]. Our ε ∼

(Nsc,B/Nsc,A)1/2 is consistent with their predictions in the comb-like regime, but our

bottlebrush results fail to observe the ε ∼ (Nsc,B/Nsc,A)1/4 prediction expected for the

dense brush regime.

We believe that the mean-field approximation of SCFT is responsible for underes-

timating the side chain contribution to backbone stiffening for flexible chains. It is

postulated that side chains in the comb regime interpenetrate one another, but in the

bottlebrush regime side chains form impermeable blobs. One can determine the crossover

between these two regimes by comparing the pervaded and occupied volume of the side

chains which yields [99]

Θ =
(zNsc + 1)v0

N
1/2
sc bscb2

bb

(3.30)

This grouping is referred to as the crowding parameter, Θ. The comb region is found

for Θ < 1 whereas bottlebrush behavior is expected for Θ ≥ 1. In numerical SCFT

simulations, we can set the architectural parameters Nsc, z, and Nbb, but the quantity
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v0/b
3 does not appear because it multiplies all terms in the saddle point equations.

Instead, the quality of the mean-field approximation is controlled by the ratio v0/b
3 as

it enters the Ginzburg parameter C. As stated previously, the mean-field approximation

of SCFT becomes asymptotically exact for large C.

We can use eq 3.30 to estimate what regime the polymers from this study fall under.

For hydrocarbon polymers, v0/b
3 is typically of order 0.1 [94], so we use this value to

approximate the experimental values of Θ and C. The polymers with the longest side

chains and highest grafting density considered in this work had z = 2, Nsc ≈ 30, and

Nbb ≈ 100, which combine to yield Θ ≈ 1.1 and is in the bottlebrush regime, contrary

to our SCFT results. We next compute the dimensionless chain concentration, which

yields Clb ≈ 1.9. For SCFT to be accurate, we require C � 1, which is not true for the

polymers considered here.

In order to accurately capture bottlebrush behavior in SCFT we require Θ ≥ 1 and

C � 1. One approach to reach this regime is to increase the backbone degree of poly-

merization since C increases with Nbb, but Θ is unaffected. Unfortunately, the largest

accessible value is Nbb ≈ 2000 due to memory constraints of numerical SCFT simula-

tions on contemporary GPU hardware1. This relatively large value of Nbb combined

with the previous values of v0/b
3 = 0.1, z = 2, and Nsc = 30 yields Clb ≈ 8.4, which

is still far below the asymptotic limit of large C where SCFT is accurate. While fu-

ture computational developments may enable accurate numerical SCFT simulations of

the bottlebrush regime, it is currently an intractable task to simulate polymers with

sufficiently long backbones.

We have explained why our SCFT calculations cannot capture the bottlebrush regime,

1The memory required to store the propagator object q is proportional to the backbone length times
the number of spatial grid elements. For the σ phase, which requires approximately 220 spatial grid
points, a polymer with Nbb ≈ 2000 would require nearly 32 GB of memory to store the propagators in
double precision.
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but we still must explain why the nominally bottlebrush polymers instead behave like

combs. To reach a limit where the mean-field approximation is reasonable (C > 100)

using the previous parameter values of z = 2, Nsc ≈ 30 and Nbb ≈ 100, requires v0/b
3 ≈

1 × 10−4. This is an unphysically small value of v0/b
3 for hydrocarbon polymers, but

SCFT calculations are not restricted by v0/b
3. Inserting this value of v0/b

3 and the other

parameters into eq 3.30 yields Θ ≈ 1.1× 10−3, which is clearly deep in the comb regime.

Thus, the ”bottlebrush” polymers with short backbones considered in this work actually

behave like combs under conditions where the mean-field approximation of SCFT is

accurate.

The inability of SCFT to account for backbone stiffening induced by side chains has

been partially avoided by Dalsin and coworkers, who instead chose to model the bot-

tlebrush backbone using wormlike-chain statistics [37]. This choice of model manually

introduces the required stiffening, controlled by an extra persistence length parameter,

rather than observing its spontaneous emergence from excluded volume effects. Using

this model, they investigated lamellar domain sizes and found that explicitly introduced

chain stiffening led to agreement in domain sizes between experimental and SCFT bottle-

brushes. Unfortunately, the worm-like chain has a dramatically increased computational

cost compared to flexible-chain models due to resolving two additional dimensions re-

quired to account for chain segmental orientation. The computational cost has to date

limited the worm-like chain phase behavior studies for bottlebrushes to one-dimension

mean-field calculations, although it maybe to possible to explore other ordered phases

for bottlebrushes [100].

Recent work by Panagiotou and coauthors utilized fully fluctuating field-theoretic

simulations to investigate the melt behavior of bottlebrush homopolymers with flexible

backbone statistics [8]. These fully fluctuating simulations relax the mean field approx-

imation of SCFT and are accurate for small values of C. The authors found that at
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small values of C, spontaneous backbone stiffening emerges in intrinsically flexible bottle-

brushes. Recent algorithmic advances have also made it possible to simulate microphase-

separated polymers at the low values of C characteristic of the bottlebrush regime [101].

Unfortunately, constructing phase diagrams requires free energies, which are not trivial

to obtain in FTS, with the current state-of-the-art methods relying on costly thermody-

namic integration [9,21]. We defer fully fluctuating field-theoretic simulations for a future

study, but speculate that bottlebrush-like scaling will emerge spontaneously in diblock

bottlebrush polymers with flexible linker statistics when the mean-field approximation is

lifted.

3.4 Conclusions

We performed SCFT calculations on linear, comb-like, and bottlebrush diblock copoly-

mers. We show that a universal phase diagram can be defined for these varied architec-

tures by relating side chain length, segment lengths and grafting densities to conforma-

tional asymmetry. Other authors predict a change in chain scaling at high side chain

length and grafting density [41], which marks the transition between comb-like and bot-

tlebrush polymers, but we do not observe such a transition in SCFT.
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Chapter 4

Self-Consistent Field Theory for

Coherent States Models

Numerical auxiliary field (AF)-based self consistent field theory (SCFT) has become a

standard tool in modern polymer physics. It has been used to predict, interrogate, and

understand many phenomena in inhomogeneous polymer systems, such as self-assembly

and phase behavior [1]. The core of numerical AF SCFT is computing polymer density

fields, ψ̃(r), from propagators, q(r, s), which describe the random-walk statistics of poly-

mers in an auxiliary potential field, w(r), where s indexes the chain contour position

and r denotes position in a d-dimensional domain. The potential field is updated based

on the densities until a self-consistent solution is reached. The most computationally

expensive task is computing the chain propagator, which, for Gaussian chains, satisfies

the modified diffusion equation (MDE):

∂sq(r, s) =
(
∇2 − w(r, s)

)
q(r, s) (4.1)

Originally this equation was solved using a spectral method with a Galerkin approxi-
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mation and symmetry-adapted plane-wave basis functions [13]. This method has spectral

accuracy in space (r), and is analytical in contour (s), but suffers from high computa-

tional cost due to the need to diagonalize a matrix to find the Fourier coefficients. The

dimension of the matrix is the number of basis functions used, M , and the diagonaliza-

tion is an O(M3) operation. For three dimensional calculations with large cells or low

symmetry, the matrix diagonalization becomes unfeasible because of the large number of

basis functions needed and poor algorithm scaling.

There exist alternative, pseudo-spectral methods that have spectral accuracy in space

(r), polynomial accuracy in contour (s) and that can be solved with near-linear cost

O(NsM lnM), where Ns is the number of contour points [14]. Two of the most common

methods are those developed by Rasmussen and coworkers, [14, 15] and by Ranjan and

coworkers [20], which are O(N−2
s ) and O(N−4

s ) accurate and which we abbreviate as

RK2 and RQM4, respectively. Prior work has shown that although the RQM4 method is

more accurate, RK2 is more efficient for some problems because of lower computational

costs [25].

While these algorithms are representative of state-of-the-art methods, at strong seg-

regation they need O(103) contour points for sufficient accuracy [19]. This can become

intractable in very large cells or for systems with sharp interfaces where many spatial grid

points are also necessary to resolve interfaces accurately. Recently, there has been work to

obtain even higher accuracy in contour sampling by using a spectral deferred correction,

but these methods are still limited to polynomial-order accuracy in contour [102]. An

ideal algorithm would achieve spectral accuracy in the spatial and contour dimensions,

while preserving the near-linear cost scaling of the pseudospectral methods. One way

to achieve spectral accuracy in the contour domain is by using a Chebyshev polynomial

expansion in s in eq 4.1, but this yields a non-sparse system of equations that cannot be

solved efficiently.
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An alternative, ”coherent states” (CS) representation of polymer field theory has

recently emerged [2], which is formally equivalent to the AF theory [103], but allows for

different numerical methods that achieve spectral contour accuracy with linear scaling.

Here we consider a canonical ensemble of incompressible molten diblock copolymers to

illustrate the differences between the form of the two theories, then discuss numerical

methods to solve each model. The ensemble contains n diblock chains, with species ”A”

volume fraction f in a volume V at temperature T .

The AF theory for a linear diblock copolymer is well documented in the literature,

so we do not reproduce it here [1, 17]. We simply note that the theory consists of a

pressure and exchange field, w+ and w−, that modulate incompressibility and a Flory χ

interaction between dissimilar segments, respectively.

The details of how to convert an AF theory to a CS theory are given explicitly by

Man and coauthors [42], and following their procedure yields the partition function

Z =

∫
Dw+

∫
Dw−

∫
DφA

∫
Dφ∗A

∫
DφB

∫
Dφ∗B exp(−βHCS[w+, w−, φA, φ

∗
A, φB, φ

∗
B])

(4.2)

βHCS =
n

V

[∫
dr

(
w−(r)2

χN
+ w−(r)(1− 2f)− w+(r)

)
+

∫ f

0

ds

∫
dr φ∗A(r, s)

(
∂s −∇2 + w+(r) + w−(r)

)
φA(r, s)

+

∫ 1−f

0

ds

∫
dr φ∗B(r, s)

(
∂s −∇2 + w+(r)− w−(r)

)
φB(r, s)

− V ln

(
1

V

∫
dr φ∗A(r, 0)φ∗B(r, 0)

)
−
∫
dr φA(r, f)−

∫
dr φB(r, 1− f)

]
(4.3)

where β = 1/kBT is the inverse thermal energy. In eq 4.3, the contour dimension, s,
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has been scaled by the polymer length, N , and all positions, lengths, and volumes have

been scaled by the unperturbed radius of gyration. All spatial integrals are over the

system volume, V , and we choose periodic boundary conditions in the spatial dimension,

r. The coherent-states Hamiltonian, HCS, is similar to the AF model Hamiltonian, but

the single-chain partition function from the AF model has been replaced by explicit,

semi-local terms containing the (d+1)-dimensional propagator-like fields φA, φ∗A, φB and

φ∗B that generate the single chain statistics and architecture. Notably, the term involving

φ∗A(r, 0)φ∗B(r, 0) is a source to create A-B diblock junctions, while the final two terms

terminate A blocks after f monomers and B blocks after 1− f monomers. The w− field

appears quadratically in the Hamiltonian, and could be integrated out of the theory, but

we have found it advantageous to retain both w− and φ, φ∗ fields in developing our linear

scaling methods. It should be noted that the functional integration paths of the w+, φ∗A

and φ∗B fields have been Wick rotated to the imaginary axis, rendering the exact theory

deceivingly real.

To perform an SCFT calculation, we seek a saddle point with respect to the six fields

that are arguments of HCS. As is frequently done in the AF case, we perform a relaxation

in fictitious time to reach the steady state saddle point [1, 42]. This time relaxation can

in principle be augmented with appropriately distributed noise to perform a complex

Langevin field theoretic simulation of the exact field theory [16,42], but here we restrict

consideration to the mean field approximation of SCFT. The relaxation equations are

µ−1
1 ∂tw+(r, t) = −1 + ψ̃A(r, t) + ψ̃B(r, t) (4.4)

µ−1
2 ∂tw−(r, t) = −2w−

χN
− ψ̃A(r, t) + ψ̃B(r, t) + 2f − 1 (4.5)
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µ−1
3 ∂tφA(r, s, t) = −

(
∂s −∇2 + w+(r, t) + w−(r, t)

)
φA(r, s, t) +

V δ(s)φ∗B(r, 0, t)∫
dr φ∗A(r, 0, t)φ∗B(r, 0, t)

(4.6)

µ−1
3 ∂tφ

∗
A(r, s, t) = −

(
−∂s −∇2 + w+(r, t) + w−(r, t)

)
φ∗A(r, s, t) + δ(f − s) (4.7)

with analogous equations for φB and φ∗B. The mobility parameters µ1, µ2, and µ3 can be

chosen to give the fastest numerical convergence. The volume fraction operators in the

CS framework are

ψ̃A(r, t) =

∫ f

0

ds φA(r, s, t)φ∗A(r, s, t) (4.8)

ψ̃B(r, t) =

∫ 1−f

0

ds φB(r, s, t)φ∗B(r, s, t) (4.9)

At steady state the AF and CS models reduce to precisely the same equations; however

in AF theories we solve the MDE (eq 4.1) for the propagator at each time point, while

in CS theories we update the propagator-like fields, φA, φ∗A, φB, φ∗B, in fictitious time

according to eqs 4.6 and 4.7.

A successful alternative to the relaxation method is a fixed point iteration method

with Anderson mixing (AM) applied to the w fields [24,104]. Although we do not employ

(AM) in this work, it could be applied to both the CS and AF w-field saddle point

searches instead of the relaxation algorithm. We do not expect the choice of w-field

update algorithm to affect the relative performance of AF and CS methods, so long as

the same method is used for each.

To solve the mean-field relaxation equations, we must specify a time discretization

scheme. The simplest method uses an Euler discretization to update the potential fields,
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w:

wj+1
+ (r)− wj+(r)

µ1∆t
= −1 + ψ̃jA(r) + ψ̃jB(r) (4.10)

wj+1
− (r)− wj−(r)

µ2∆t
= −2wj+1

− (r)

χN
− ψ̃jA(r) + ψ̃jB(r) + 2f − 1 (4.11)

where the superscript j denotes the discrete time index.

We refer to eqs 4.10 and 4.11 as Euler time stepping. Previous work has shown that

a far improved time stepping uses a semi-implicit Seidel (SIS) method [17], which can

accelerate calculations by orders of magnitude. Unfortunately, existing SIS methods only

apply to AF methods and not to CS theories because the volume fraction operators have

a non-local time dependence on the potential fields in the latter case.

To complete the CS-SCFT method we require an algorithm to solve eqs 4.6 and

4.7. Previous authors reported a method with spectral accuracy in space and first order

accuracy in contour by using a combination of Fourier transforms and finite differences

(FD) [42]. We propose an alternative method that replaces the FD approximation with

a Chebyshev-tau approximation in the contour dimension to obtain a scheme that has

spectral accuracy in both space and contour [105]. Volume fraction operators can also be

computed with spectral accuracy using Clenshaw-Curtis quadrature [106]. Importantly,

this scheme has near-linear scaling in both the spatial and contour resolution via Fast

Fourier Transform (FFT) algorithms. We explain the method using the φA equation, but

it easily generalizes to the equations for all the propagator-like fields.

We first convert the source term to an effective boundary condition

φA(r, 0, t) =
V φ∗B(r, 0, t)∫

dr φ∗A(r, 0, t)φ∗B(r, 0, t)
(4.12)
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We next define a Chebyshev expansion for φA

φA(r, s, t) =
Ns∑
n=0

an(r, t)Tn

(
2s

f
− 1

)
(4.13)

Tn(cos(ν)) = cos(nν) (4.14)

If we discretize the contour along the Chebyshev nodes, sj = f(1 − cos(jπ/Ns))/2,

j = 0, 1, . . . , Ns, then φA can be computed from the Chebyshev coefficients, an, using the

Discrete Cosine Transform (DCT):

φA(r, sNs−j, t) =
Ns∑
n=0

an(r, t) cos(jnπ/Ns) (4.15)

Substituting the expansion into eq 4.6 and using the properties of Chebyshev polynomials

and Fourier transforms we obtain for 0 ≤ n ≤ Ns − 3

(
µ−1

3 ∂t + k2
)
cnân(k, t) +

4

f
(n+ 1)ân+1(k, t)−

(
µ−1

3 ∂t + k2
)
ân+2(k, t)

= −Fr{(w+(r, t) + w−(r, t))(cnan(r, t)− an+2(r, t))}
(4.16)

and for Ns − 2 ≤ n ≤ Ns − 1

(
µ−1

3 ∂t + k2
)
ân(k, t) +

4

f
(n+ 1)ân+1(k, t) = −Fr{(w+(r, t) + w−(r, t))an(r, t)} (4.17)

where Fr{an(r, t)} = ân(k, t) is the Fourier transform in space. The coefficient cn = 1

for n 6= 0 and c0 = 2. Time discretization with semi-implicit forward Euler and defining

µ3∆t = ∆t′ yields for 0 ≤ n ≤ Ns − 3

(
1 + k2∆t′

)
cnâ

j
n(k) +

4∆t′

f
(n+ 1)âjn+1(k)−

(
1 + k2∆t′

)
âjn+2(k)) = cnf

j
n(k)− f jn+2(k)

(4.18)
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and for Ns − 2 ≤ n ≤ Ns − 1

(
1 + k2∆t′

)
âjn(k) +

4∆t′

f
(n+ 1)âjn+1(k) = f jn(k) (4.19)

with

f jn(k) = Fr{[1−∆t′(wj+(r) + wj−(r))]aj−1
n (r)} (4.20)

combining eqs 4.18 - 4.20 with the boundary condition

Ns∑
n=0

âjn(k)(−1)n =
V Fr{φ∗j−1

B (r, 0)}∫
dr φ∗j−1

A (r, 0)φ∗j−1
B (r, 0)

(4.21)

yields a bordered tri-diagonal system for each Fourier mode, k. Each system can be solved

in O(Ns) operations, resulting in O(NsM) operations to solve the global system. The

original propagator can be obtained via a fast DCT in contour (O(NsM lnNs) operations)

followed by a FFT in space (O(NsM lnM) operations). After updating propagators and

converting from Fourier-Chebyshev space to real-contour space, volume fraction operators

are computed using Clenshaw-Curtis quadrature [106]. Finally, we update the interaction

fields according to the Euler potential update scheme (eqs 4.10 and 4.11).

To compare this new CS-Chebyshev method to AF methods (RK2 and RQM4) and

the previously reported FD method for CS theories, we computed the SCFT intensive

Hamiltonian, βH/n, of a symmetric (f = 0.5) diblock copolymer in a one-dimensional

cell with length 4 Rg at χN = 15 and χN = 80. In all cases, the relaxation was run until

the l2 norm of δH/δw+ and δH/δw− were both less than the tolerance, λf , but we omit

the k = 0 mode of δH/δw+ to which the theory is invariant. Numerical parameters such

as time step and mobilities were tuned to just below their stability thresholds. We use

a Chebyshev method calculation with Ns = 500 as the reference value for the intensive

Hamiltonian and run time.
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Figure 4.1: Comparison of intensive Hamiltonian error with number of contour sam-
ples for each contour method. Computed at χN = 15 and f = 0.5 with M = 32
spatial grid points. Horizontal dash line indicates force cutoff, λf = 10−13.

We first examine the error scaling with Ns for each method. Figure 4.1 shows that the

FD, RK2, and RQM4 methods have the expected asymptotic error scaling slopes of -1,

-2, and -4, respectively. Although the Chebyshev method was fit with a line to illustrate

the rapid convergence with Ns, the points are not linear on the log-log plot because of

the spectral accuracy.

The Chebyshev method has greatly improved accuracy and scaling compared to the

other methods, shown by the lower error and much steeper slope. The method is so

accurate that the error saturates to the force tolerance, λf , with only 51 contour points.

The high accuracy with few contour samples represents a potential huge memory savings

in large scale numerical computations.

We now discuss the computational speed of each method. We present results in terms

of efficiency: the computation time taken to reach a given level of accuracy in the in-

tensive Hamiltonian. The appropriate accuracy level will vary between applications, but

resolving phase boundaries can require O(10−6) accuracy in the SCFT intensive Hamil-

tonian [19, 39]. While the previous results did not differentiate between time stepping
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Figure 4.2: Comparison of relative run time with intensive Hamiltonian error for each
contour method. Computed at χN = 15 and f = 0.5 with M = 32 spatial grid points.
Open symbols use Euler time stepping. Solid symbols use SIS time stepping. Error
bars are within the symbol size.

methods, here we present results for both the Euler and SIS time stepping methods for

the AF theories. It is important to compare different contour methods using the same

w-field time stepping algorithm, which isolates the effect of contour accuracy, but it is

also useful to compare the new CS methods that use Euler time stepping versus the AF-

SIS methods, which represent the current standard in polymer SCFT. Figure 4.2 shows

efficiency curves for each method when applied to a symmetric diblock at χN = 15.

For calculations that use Euler time stepping (open symbols), the Chebyshev method

shows the best efficiency. For fixed small values of intensive Hamiltonian error, the

Chebyshev method is an order of magnitude faster than any other method. SIS time

stepping (solid symbols) speeds up the AF calculations by approximately an order of

magnitude, but this does not make them more efficient than the Chebyshev method

over the relevant ranges of intensive Hamiltonian error. For large values of the intensive

Hamiltonian error (> 10−5) where the Chebyshev method is not applicable because no

Ns returned such a large error, the AF-SIS methods are faster than the Chebyshev-Euler

method. There thus remains a niche for AF-SIS calculations where significant accuracy
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Figure 4.3: Comparison of relative run time with intensive Hamiltonian error for each
contour method. Computed at χN = 80 and f = 0.5 with M = 256 spatial grid
points. Open symbols use Euler time stepping. Solid symbols use SIS time stepping.
Error bars are within the symbol size.

can be sacrificed for speed.

We note, however, that there has been much more work to date on AF theories than

CS theories. Although the SIS time stepping method is not applicable to CS theories,

there are other techniques such as Anderson mixing that could be used to improve w-field

iteration [24]. Combining fictitious time relaxation of φ fields with AM on w fields could

potentially yield the most efficient algorithm for all ranges of accuracy.

We next consider a strongly segregated symmetric diblock with χN = 80. Previous

work has shown that high accuracy is essential to successfully converge SCFT calculations

under these conditions [19], so we expect the Chebyshev method to outperform the other

methods. Results are presented in Figure 4.3.

The Chebyshev method again is the most efficient method at a fixed level of intensive

Hamiltonian error, regardless of time stepping method. Contrary to the χN = 15 case,

the AF-SIS methods do not provide a fast, low accuracy alternative to the Chebyshev

method: low accuracy AF-SIS calculations take just as long as high accuracy Chebyshev

calculations. For applications where high accuracy is necessary, the Chebyshev method
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thus offers a large improvement over existing methods.

In this letter we have shown that CS field theories can offer numerical advantages over

traditional approaches to SCFT. Although they are formally equivalent, coherent states

theories allow for fully spectral, linear scaling numerical methods, which enable much

more accurate simulations at lower memory cost and faster speeds than AF methods.

Although not discussed in this work, CS theories can also be applied to a wide range of

polymer systems, such as systems with three or more components, arbitrary architecture,

and supramolecular chemistries that cannot be effectively treated with AF models [43].

We expect that the numerical and theoretical advantages of CS theories over AF theories

will allow for previously intractable problems to now be tackled.
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Chapter 5

Binary Blends of Telechelic

Homopolymers

5.1 Introduction

Block copolymers (BCPs) are a major industrially platform due to their highly tun-

able properties via self assembly and the ability to compatibilize dissimilar polymers. A

major triumph of polymer physics is the ability to predict when melts or solutions of

homopolymers and copolymers will mix into a single liquid, macroscopically phase sep-

arate into two liquids [107,108] or self assemble into a solid-like microstructure [4]. One

important tool for predicting this phase behavior is numerical self-consistent field theory

(SCFT) which is particularly effective at computing free energies of the self-assembled

microstructures [13]. Numerical advances over the last 30 years have enabled efficient

simulation of complex self-assembled structures, including aperiodic bricks-and-mortar

phases [109] and Frank-Kasper sphere phases [33,82]. The standard approach for numer-

ical SCFT uses an auxiliary field (AF) based model, which decouples chain interactions

via a set of local chemical potential fields [13]. This approach is well suited to polymer
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systems with a pre-defined distribution of components in the mixture, or ”quenched” sys-

tems [1]. In recent years, however, there has been significant interest in supramolecular in-

teractions, where polymers and small-molecules can form and dissociate bonds reversibly

and are in a dynamic equilibrium. These types of interactions appear in both synthetic

and biological polymers, including intrinsically disordered proteins [110] and polymers

functionalized with acid and base groups [111, 112], multiple hydrogen bonds [113], and

ligands that bind to metals [114]. Supramolecular interactions are also of industrially

interest, as thermoplastic polyurethanes are BCPs composed of urethane linkages that

can reversibly dissociate at elevated temperatures [46–48]. Supramolecular interactions

can also lead to exotic phase behavior, including re-entrant phase transitions [115], and

can also be leveraged to make thermally tunable [112] and self-healing materials [116].

There have been attempts to extend the AF-SCFT approach to supramolecular poly-

mers [44, 117–121]. For systems in which only a finite set of products can be formed,

the approach works well. One example is a supra-diblock system in which two dissimilar

homopolymers each have one functional group on a chain end that can link together to

form a diblock [118]. In many systems, however, there are an infinite number of possible

products. This includes telechelic and network forming polymers. For these systems with

infinite products, the AF-SCFT approach relies on closure approximations to account for

all the different products and neglects ring and loop formation [121]. Even with these

approximations, the approach is limited by computational expense and has not be used

to study the complex microphases discussed earlier [44].

Recent theoretical developments have produced an alternative to the AF approach

that instead represents polymers via coherent states (CS) fields [42]. These CS models

are particularly effective for supramolecular systems as they can represent all possible

reaction products with the proper weighting even when there is an infinite number of

products [43]. The models are finite order in the CS fields and do not rely on any closure
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approximations. Recent numerical advances have enabled efficient simulation of these

models as well [70], though these algorithms have not yet been applied to supramolecular

polymers. In this work we combine the theoretical and numerical advances to demon-

strate that CS-SCFT can be used to construct full phase diagrams and reaction equi-

librium for supramolecular polymers. As a model system we consider a binary blend of

telechelic homopolymers that can form AB type bonds in a heterobonding scheme. This

system can form arbitrarily long alternating AB type block copolymers, which makes it

intractable to AF-SCFT calculations. The full CS theory also accounts for ring polymers

that can be formed, but the mean field approximation invoked for SCFT does not account

for these products [122]. We compute full phase diagrams that include phase coexistence

between disordered phases and microphases, including the BCC sphere phase and double

gyroid network phase. These phases require three dimensional calculations, which have

not been performed for supramolecular block copolymers before.

With our approach we are able to demonstrate three different regimes of phase behav-

ior depending on the relative strength of the bond equilibrium and the phase segregation

strength. When bonds are weak, the system behaves similarly to a non-reactive poly-

mer blend. In the opposite limit, when bonds are strong the system behaves like a pure

block copolymer melt, or block copolymer-homopolymer blend depending on the stoi-

chiometry of the system. In the intermediate regime, we observe a complex interplay

between macroscopic phase separation and microphase segregation characteristic of the

region around a Lifshitz point. In addition to phase diagrams, we are able to predict

the reaction equilibrium in the system as well as microphase structure, including domain

spacing. These results demonstrate the range of possible phase behavior and will help

guide experimental polymer chemists who are using supramolecular chemistry in polymer

blends.
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5.2 Model and Methods

A CS model for a binary blend of heterobonding telechelic homopolymers in the

canonical ensemble is

Z = Z0

∫
Dw+

∫
Dw−

∫
D(φA, φ

∗
A)

∫
D(φB, φ

∗
B)e−H[w+,w−,φA,φ

∗
A,φB ,φ

∗
B ] (5.1)

H =
ρ0

χ

∫
dr (w−(r))2 − ρ0

∫
drw+(r)

−
∑

K∈{A,B}

nK ln

(
1

V

∫
dr (φ∗K(r, 0))2

)

+
∑

K∈{A,B}

∫
ds

∫
dr φ∗K(r, s)

(
∂s −

b2
K

6
∇2 + wK(s)

)
φK(r, s)

−
∑

K∈{A,B}

∫
dr φK(r, NK/2)− Kb

ρ0

∫
dr φA(r, NA/2)φB(r, NB/2)

(5.2)

Here Z is the partition function, Z0 is the ideal gas partition function, and H is the

effective Hamiltonian. Normalizing denominators for the functional integrals have been

absorbed into Z0. The Hamiltonian depends on four CS fields (φA,φ∗A,φB,φ∗B) and two

AF fields (w+,w−), so the model may be referred to as a hybrid AF-CS model. The

AF fields are defined over all of space r, whereas the CS fields depend on r as well

as the chain contour position, s. Each term in the Hamiltonian has a simple physical

interpretation. The logarithmic terms on the second line create the appropriate number

of homopolymer precursor chains, nA or nB, depending on species. The terms contain

factors of (φ∗(r, 0))2 which creates two polymer arms at the zero contour position. The

third line of the Hamiltonian is responsible for propagating these arms forward in s using

the appropriate chain statistics. In this work we consider flexible continuous Gaussian

chains, which leads to the diffusive-type operator ∂s−∇2 that appears in the Hamiltonian.

The statistical segment length can be set for each species via bK , but we only consider
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bA = bB = 1 in this work. While the chain is being propagated it experiences the relevant

potential field wA or wB, which are related to the w± auxiliary fields via a simple linear

transformation

wA = w+ − w− (5.3)

wB = w+ + w− (5.4)

After NK/2 segments the chain is terminated via the first term in the last line. Because

the polymer was initialized as a star with two arms, this creates a linear chain with

total length NK . Unless otherwise specified, we choose NA = NB. The final term in

the Hamiltonian enables an A and a B polymer to link together at their chain ends

and has an associated equilibrium constant Kb. In addition to creating the diblock, this

terms also creates all higher order products as well, including triblock, tetrablock and

so on. Finally, the first two terms in the model represent the non-bonded interactions

between polymer segments in the model. The first introduces a Flory-Huggins interaction

between A and B segments parameterized by χ and the second enforces incompressibility

at a segment number density ρ0 = (nANA + nBNB)/V , where V is the total volume of

the system. It is possible to remove the AF fields and replace the first two terms in

the model with fourth order terms in the CS fields, to create a ”pure” CS model [42,43],

however previous work has found the hybrid model more easily simulated numerically [70].

Although we have presented the model here based on physical arguments, it is possible

to derive it rigorously from an AF model which is demonstrated in the literature [42].

Correspondingly, it is possible to show that every product is accounted for correctly by

performing a perturbation expansion of the CS fields.

As a final note it is worth discussing the relationship between the model parameters

and experimentally controllable parameters. In the model, polymer segments are defined
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to have equal volume, so the volume fraction of a given segment type (A or B) is ψK =

nKNK/V . Two model parameters are related to temperature: χ and Kb. For polyolefins,

the chi parameter can typically be fit to an expression of the form

χ = C1 + C2/T (5.5)

where T is temperature and C1 and C2 are constants fit from scattering data.

The equilibrium constant follows the relation

Kb = exp

(
εb − sbkBT

kBT

)
(5.6)

where kB is Boltzmann’s constant, εb is the enthalpy of reaction, and sb is the entropy of

reaction. We assume for simplicity that both εb and sb are independent of temperature.

The model presented above can be applied to any experimental system for which there

is a known temperature dependence for χ and Kb. In this work, rather than specialize

to specific chemistries we instead make an approximation to examine general trends.

We assume that χ is inversely proportional to temperature (C1 = 0 in eq 5.5) and that

the entropy of reaction sb = 0. With these approximations, χ and h = ln(Kb) are both

inversely proportional to temperature and their ratio is independent of temperature. This

allows us to use χ as an inverse temperature scale and h/χ as a chemistry-dependent

property that controls how strong bonding is compared to phase segregation [118,119].

As a final note, it is convention in unreactive block copolymers to specify χN rather

than χ as it is the combined grouping that controls phase behavior for linear chains. This

is no longer true in the telechelic model considered here, as the reaction can only occur at

end groups. Changing NA or NB changes the concentration of these end groups, breaking

the universal phase behavior for fixed χN . Nevertheless, to match convention we will
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use the combined grouping χNA and h/χNA and fix NA = 100. Although this reduces

the generality of the results presented here, it is well understood how changing N affects

phase behavior and reaction equilibrium based on previous literature results [118].

We now turn to physical observables that can be computed via field operators. The

first of these is the segment density of the A or B species:

ρ̃K(r) =

∫
ds φ∗K(r, s)φK(r, s) (5.7)

a similar quantity that only considers the end segments of a chain can also be defined as

an end density

ρ̃K,e(r) = φK(r, NK/2) (5.8)

Finally an operator that shows the local density of bonds is defined via

ρ̃b(r) = φA(r, NA/2)φB(r, NB/2) (5.9)

These operators give important information about the spatial distribution of segments

in the system. We are also concerned with bulk properties as well, including the total

number of bonds

nb =

〈∫
dr φA(r, NA)φB(r, NB)

〉
(5.10)

and number of unreacted ends of a given species in the system

nK,e =

〈∫
dr φK(r, NK)

〉
(5.11)

A useful quantity to consider is the conversion of end groups, which is defined as

αK =
2nK − nK,e

2nK
=

nb
2nK

(5.12)
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The conversion of end groups for species A and B are related because only AB type bonds

can form:

αAψA
NA

=
αBψB
NB

(5.13)

The internal stress of a blend can also be computed via field operator. Such an

operator is familiar in AF representations, and has a similar form in the CS model. The

full derivation of such an operator can be found in the supporting information of a recent

publication by Fredrickson and Delaney [123], so we present the final result:

σ̃ =
∑

K∈{A,B}

∫
dr

∫
ds φK(r, s)∇∇φ∗K(r, s) (5.14)

A final important operator is the chemical potential, which is required to construct

phase coexistence regions. For a given species the excess chemical potential is

µK,ex = − ln

(
1

V

∫
dr (φ∗K(r, 0))2

)
(5.15)

This chemical potential is in excess of the ideal gas chemical potential.

The previously discussed operators give average information about the reaction equi-

librium, such as the conversion, but we would also like to know the distribution of prod-

ucts in the system, including how much of each type of block copolymer is formed. Unfor-

tunately, there is not a known operator using the CS fields that can be used to compute

the number of each type of reaction product. It is possible, however, to compute the

number of chains of a given species in an AF model of a grand canonical ensemble. The
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effective Hamiltonian for an AF model of the telechelic blend presented here is

HAF[w+, w−] =
ρ0

χ

∫
dr (w−(r))2 − ρ0

∫
drw+(r)−

∞∑
j=1

zAjBj
V QAjBj

[w+, w−]

−
∞∑
j=1

(
zAjBj−1

V QAjBj−1
[w+, w−] + zAj−1Bj

V QAj−1Bj
[w+, w−]

)
−
∞∑
j=1

(
zAjBj ,rV QAjBj ,r[w+, w−]

)
(5.16)

and the number of each product can be computed via

nAjBk
= 〈zAjBk

V QAjBk
[w+, w−]〉 (5.17)

The first two terms of the effective Hamiltonian are equivalent to the CS model and

represent Flory interactions and incompressibility. The remaining terms contain activities

z and single chain partition functions Q[w+, w−] for all the possible products that can be

formed. The activities and single chain partition functions are also used to compute the

number of each product. The products can be classified into three types: linear chains

that are composed of an equal number of A and B chains and are terminated by one A

chain and one B chain, linear chains with one excess A or B chain and that are doubly

A or B terminated, and ring polymers, which must have an equal number of A and B

chains. One can demonstrate that the activity of each type of chain can be related to

the activity of the A and B homopolymers, zA and zB, and the equilibrium constant Kb

via

zAiBj
=


(2zA)i(2zB)jKi+j−1

b i = j, linear

1
2
(2zA)i(2zB)jKi+j−1

b |i− j| = 1

1
2j

(2zA)i(2zB)jKi+j
b i = j, ring

(5.18)
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the cases of this equation represent the different types of products discussed previously.

The first two cases which represent different types of linear chains are nearly identical,

only differing by a factor of 2. The products that are doubly A terminated or doubly

B terminated are head-tail symmetric, so their activity carries a factor of 1
2

to account

for this degeneracy. Similarly for ring polymers there is a factor of 1
2j

that accounts for

the rotational symmetry of the molecule. There is also an additional factor of Kb that

accounts for the extra bond in a ring compared to a linear chain.

Although we have obtained the activities of each product, we still require the activities

of the homopolymers and also the values of the single chain partition functions to compute

the number of each product. The homopolymer activities can be computed from the

chemical potential determined from canonical ensemble simulations with the CS model

since zA = exp(µA). All that remains then is to compute the ensemble average single

chain partition function value for each chain. This would normally be prohibitively

expensive since there are an infinite number of chains. We circumvent this issue by only

considering products of up to 14 homopolymers. One can evaluate how much of the

mass is accounted for with this truncation by comparing the total number of polymers

from the original CS canonical simulation and comparing it to the number of products

computed from the AF approach. In all cases in this work, the error is less than half a

percent unless otherwise noted.

The distribution calculation in this work is further accelerated by the fact that we

limit ourselves to self-consistent field theory calculations and only must evaluate each Q

at the final saddle point value. We discuss details of the numerical SCFT method in the

following section. For the disordered phase, numerical simulations are not required and

the single chain partition function can be computed analytically under SCFT. Addition-

ally, in the disordered phase the activity of the A and B homopolymers can be related to

the system composition analytically. We can then analytically compute the distribution
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of products in the disordered phase, neglecting rings, which yields

αK =
1 + 1

2
Kb

(
ψA

NA
+ ψB

NB

)
−
√

1 +Kb

(
ψA

NA
+ ψB

NB

)
+ 1

4
K2
(
ψA

NA
− ψB

NB

)2

ψK

NK
Kb

(5.19)

ψAjBj−1
= (1− αA)2(αAαB)j−1ψA

(
jNA + (j − 1)NB

NA

)
(5.20)

ψAj−1Bj
= (1− αB)2(αAαB)j−1ψB

(
(j − 1)NA + jNB

NB

)
(5.21)

ψAjBj
= 2(1− αA)(1− αB)(αAαB)j−1αAψA

NA +NB

NA

(5.22)

eq 5.19 gives the conversion of species A or B in the disordered phase while eqs 5.20–5.22

give the volume fraction of the different types of products that can be formed. The

three types of products include A-terminated chains, B-terminated chains, and chains

terminated with one A and one B macromonomer. Note that SCFT does not account

for rings. One can show via an infinite summation that the volume fraction add to one

analytically, indicating that we have properly accounted for all products. The compo-

sitions are consistent with a probabilistic interpretation of the product distribution. In

the disordered state the system is well mixed, so the probability that an A chain end

is reacted is αA and the probability that it is unreacted is (1 − αA). The probability

that an A macromonomer has two unreacted ends is then (1 − αA)2, which is propor-

tional to the amount of unreacted homopolymer in the blend, consistent with eq 5.20.

To form an AB diblock requires an A macromonomer with one unreacted end and one

reacted end, generating the weight 2αA(1 − αA), where the factor of two accounts for

the indistinguishability of the two ends. The reacted end must be linked to a B block,

which then has its other end unreacted which is associated with a factor of (1−αB). The

volume fraction of an AB diblock should then be proportional to 2αA(1 − αA)(1 − αB)

which is also consistent with eq 5.22. One can extend this logic to higher order products

83



Binary Blends of Telechelic Homopolymers Chapter 5

such as an ABA triblock and find that the expected factor of (1− αA)2αAαB is properly

accounted for in eq 5.20.

5.2.1 Numerical Self Consistent Field Theory

Numerical self-consistent field theory is an approximation to the full model in which

we only consider a single saddle point configuration that satisfies the equations

δH

δw(r)
=

δH

δφ∗K(r)
=

δH

δφK(r)
= 0 (5.23)

The free energy of the system is equal to the value of the effective Hamiltonian evaluated

at these saddle point field configurations.

To obtain the saddle point fields, we use a previously developed algorithm [70]. The

simulations are conducted in orthorhombic unit cells with periodic boundary condi-

tions. The phases considered in this work are disordered liquid (DIS), lamellae (LAM),

hexagonally-packed cylinders (HEX), BCC spheres (BCC), and double gyroid network

(GYR). It is possible that other phases such as Frank-Kasper sphere packings may oc-

cur, but we do not consider them here. The three dimensional phases, BCC and GYR,

were spatially discretized using a 643 mesh while the two dimensional HEX phase was

discretized with a 64 by 108 grid and the one dimensional LAM phase used 64 grid

points. In all calculations the polymer contour was discretized with 11 sample points on

a Chebyshev grid along the range [0, NK/2] for each polymer. All calculations were run

until first variation of the Hamiltonian was less than 10−7 with respect to all fields. A

variable cell shape algorithm was employed to obtain stress free configurations [93], but

using the CS stress operator presented earlier. All calculations were run until the stress

was less than 10−6.
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5.2.2 Gibbs Ensemble

For the blend system considered here, it is possible to separate into multiple phases.

Using Gibbs phase rule it is possible to demonstrate that a maximum of two phases can be

formed, as there are two starting macromonomers and every other component is formed

via reaction from these. To determine binodals of phase coexistence we use the Gibbs

ensemble approach pioneered by Panagiotopoulos in the context of particle simulations

[124,125]. The Gibbs ensemble approach was later adapted to field theoretic simulations

by Riggleman and coworkers [126], and eventually specialized to SCFT of incompressible

blends by Mester and coauthors [127, 128]. We employ the Gibbs ensemble method of

Mester in this work. In a Gibbs ensemble, the system is divided into two subsystems

with each containing a different phase. The temperature, number of polymers, and

the total volume of the system are fixed. We adjust the composition and volume of

each subsystem to equalize the osmotic pressure and chemical potential between the

two subsystems, subject to the mass and volume conservation constraints of the total

system. This approach only requires one calculation per temperature along each binodal,

in contrast to other approaches such as common tangent or grand canonical ensemble

that require many calculations [129].

5.3 Results and Discussion

5.3.1 Weak bonding

We first examine a case where bonding is weak compared to phase separation and

set h/χNA = 0.5. Figure 5.1 shows the phase in the space of χNA, which is proportional

to inverse temperature, and volume fraction of A segments ψA. The phase diagram is

dominated by a region of phase coexistence between an A-rich disordered liquid and a
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Figure 5.1: Phase diagram for a binary blend of heterobonding telechelic homopoly-
mers at h/χN = 0.5. Shaded regions indicated two phase coexistence, while white
areas indicate a single phase. Critical points are indicated with solid dots.

B-rich disordered liquid. This is very reminiscent of an unreactive homopolymer binary

blend, and the critical point in the reactive system is quite close to that of the unreactive

system (χN = 2.0, ψA = 0.5). At sufficiently high χN a region emerges where the

lamellar phase is stable, which is flanked by regions of coexistence with disordered phases.

Because the ratio of h/χN is fixed, increasing χN also increases the equilibrium constant,

favoring block copolymer product formation.

To better understand the phase behavior, it is useful to examine the reaction equi-

librium in the blend. Figure 5.2 shows the conversion of species A as χN is varied at

fixed total composition ψA = 0.5. Because the system is symmetric, at this composi-

tion αA = αB, so we only plot one. The figure shows that below the critical point near

χN = 2 the conversion is quite low (O(10−3)), but increases with increasing χN . This

trend reverses at the critical point, however, and increasing χN decreases the conversion

in the system up until χN = 16.9. We attribute this to the increasing strength of phase

segregation in this region. The conversion decreases because as χN increases there are

fewer and fewer B chains present in the A-rich domain with which A chains can react.

Finally, at χN = 16.9 the lamellar phase forms and there is a sudden increase in the con-
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Figure 5.2: Conversion of species A, αA, at h/χN = 0.5 and ψA = 0.5. The shading
and text labels indicate the stable phase(s).

version. The equilibrium constant Kb has increased enough that it is now energetically

favorable to remix the two liquids so that they can form block copolymers which then self

assemble into a lamellar structure. There is still a significant amount of homopolymer in

the mixture, but it can segregate to the interior of the A and B domains while the block

copolymers act like surfactants at the interface.

Just past the critical point, domain spacing of the lamellar phase is quite large (8Rg)

compared to a lamellar domain formed from pure AB diblocks (3.9Rg), as shown in Figure

5.3. For volume fraction of A less than 0.35 or greater than 0.65 the system undergoes

phase separation between the lamellar phase and a disordered phase. The disordered

phase is composed almost entirely of the majority component of the system, and contains

almost purely homopolymers and almost no block copolymer. Rather than swell the

lamellar domain with all the excess homopolymer that exists because of stoichiometry, it

is instead favorable to eject it into a separate phase and maintain a less swollen lamellar

phase. Because our calculations invoke a mean field approximation, there are no Helfrich

repulsions that would allow unbinding for highly swollen lamellae [130,131].

Further increasing χN above 17 leads to further increased conversion and depletion
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Figure 5.3: Domain spacing of the lamellar phase as a function of χN at h/χN = 0.5
and ψA = 0.5.

of the remaining homopolymer in the system. This causes the domain size to decrease,

as there is less homopolymer to swell the system. We truncate this phase diagram at

χN = 20, but it is possible that other phases can form at even higher values of χN . The

conversion provides a simple scalar description of the reaction equilibrium, but does not

provide information on what types of block copolymers are present in the system. In

Figure 5.4 we plot the distribution of products at ψ = 0.5 and χN = 17 and χN = 20.

At χN = 17 the distribution is dominated by AB diblock and the individual ho-

mopolymers, with triblocks and the tetrablock also making meaningful contributions to

the total volume of the system. Higher order block copolymers quickly become irrelevant,

however. At χN = 20 the distribution is significantly broadened and the amount of ho-

mopolymer is reduced by 80% from χN = 17. The average length product is also shifted

to longer block copolymers as well. Note that the products considered in Figure 5.4 only

account for 93% of the mass, the remainder of which is composed of longer BCPs.
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Figure 5.4: Distribution of products in the lamellar phase at h/χN = 0.5 and ψA = 0.5
and χN = 17 or χN = 20.
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5.3.2 Strong bonding

We now consider a case where the equilibrium constant is large compared to seg-

regation strength and set h/χN = 2, where phase boundaries are plotted in Figure

5.5. Contrary to the weak bonding case, there is no large co-existence region between

disordered phases. Instead, the phase diagram is dominated by regions of microphases,

separated by narrow channels of coexistence. At the edges of the phase diagram there are

significant regions of coexistence between microphases and a disordered phase. Similar to

the weak bonding case, it is favorable to eject excess homopolymer to avoid significantly

swelling the domain. It is also possible that other sphere phases such as FCC, HCP, or

Frank-Kasper phases could be present in this area, but we do not consider them in this

work. While the relative position of the stable region for each microphase is similar to

that of unreactive block copolymers, there are some notable differences, including the

fact the BCC phase becomes unstable above χN = 10.5 and is replaced with a two phase

window between DIS and HEX. The shape of the order-disorder transition is also quite

different from unreactive block copolymers and has a cusp in the center of the phase dia-

gram, indicating that at ψA = 0.5 the mixture has a higher (χNODT) than at ψA = 0.33 or

ψA = 0.66. Before addressing the shape of the ODT, it is useful to examine the reaction

equilibrium again.

Figure 5.6 shows the conversion of species A with varying χN at ψA = 0.5, analogous

to Figure 5.2 for weak bonding. For strong bonding, the conversion of species A increases

quite quickly with increasing χN so that at χN = 2 (the unreactive homopolymer blend

critical point), αA = 0.1. At this level of conversion there is enough BCP present to

compatibilize the A and B homopolymers and maintain a single disordered phase. Further

increasing χN continues to increase the conversion until it reaches near completion. Near

the order disorder transition at χN = 7.45 the conversion in the disordered phase has
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Figure 5.5: Phase diagram for a binary blend of heterobonding telechelic homopoly-
mers at h/χN = 2.0. Shaded regions indicate two phase coexistence while white
regions indicate a single phase is present.

reached nearly 100%. Crossing into the lamellar phase continues this trajectory and the

conversion stays near unity. One can repeat this exercise at other values of ψA to find

that the minority species is near 100% conversion at the ODT for all compositions.

Based on this information, we might approximate the system as being composed of all

BCP or BCP plus a single excess homopolymer component depending on stoichiometry.

Using this assumption, we can rationalize the shape of the ODT based on the stoichiom-

etry of the system. For ψA = 0.5, stoichiometry allows for α = 1 for both species, so

that extremely long AB repeating block copolymers can be formed. At ψA = 2/3, the

stoichiometry would allow for formation of all ABA triblocks as there are two A chains

present for each B chain. At ψA = 1/3, the inverse is true, allowing formation of all

BAB triblocks. Finally, at ψA = 0 and ψA = 1 the system is composed entirely of B

or A homopolymer, respectively. We can then approximate various parts of the ODT

using mixtures of these different components. In Figure 5.7 we use the random phase

approximation [4] (RPA) to plot the approximate ODT for the fully reactive telechelic

blend, as well as for binary blends of homopolymers, triblocks, and the AB repeating

polymer.
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Figure 5.6: Conversion of species A, αA, at h/χN = 2.0 and ψA = 0.5. The text
labels and dashed line indicate the stable phase.

0.0 0.2 0.4 0.6 0.8 1.0
A

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
A

DIS

Microphases

Telechelic blend
ABA+A

[AB] +ABA

[ ]∞

Figure 5.7: Order-disorder transitions computed via RPA for the telechelic blend
system at h/χN = 2 (black), an unreactive binary blend of ABA triblock and A ho-
mopolymer (green), and an unreactive blend of ABA triblock with infinitely repeating
(AB) multiblock (magenta).
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Figure 5.8: Distribution of products found in the disordered phase of the telechelic
blend at ψA = 2/3 and αB = 0.99.

The unreactive binary blends match reasonably closely to the fully reactive telechelic

system. This is somewhat surprising because the telechelic system is composed of a wide

array of different block copolymer products. In Figure 5.8 we plot the full distribution of

products at ψA = 0.68 and χN = 6.6, 6.9, or 10.0. At χN = 6.6 the system is still in the

disordered phase whereas at the two higher χN values the HEX phase is stable. In all

cases, triblock polymers make up less than 30% of the volume despite the stoichiometry

allowing for near complete formation of triblocks. Homopolymers remain a significant

contribution at ≈ 19% of the volume and higher order block copolymers that are B-

terminated make up the remainder. Although the crude model of a triblock mixed with

homopolymer matches the ODT for the telechelic blend closely, it does not represent the

actual distribution of products.

We are also able to evaluate the distribution of products at ψA = 0.5 and χN = 7,

which is just below the ODT. Considering products with a length of up to 50 macromonomers

accounts for only 25% of the mass in the system, revealing that the system is dominated

by very long block copolymers.

As a final comparison to the weak bonding case, we plot the domain spacing of the
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Figure 5.9: Domain spacing of the lamellar phase as a function of χN at h/χN = 2.0
and ψA = 0.5.

lamellar phase at ψA = 0.5, shown in Figure 5.9. For high bond strength the domain

spacing increases with increasing χN , which is the opposite trend of what occurs at

weak bonding. Additionally, the magnitude of change in the domain spacing is much

smaller at strong bonding compared to weak bonding. We can attribute the difference

between the two regimes to the mechanisms that cause the domain spacing to change. At

weak bonding the domain size was largely affected by the conversion in the system and

the amount of unreacted homopolymer that was present to swell the system. At strong

bonding, the conversion is nearly unity in the lamellar phase as shown in Figure 5.6. This

means there is little to no homopolymer present to swell the system and the previous

mechanism is no longer relevant. Instead the brush physics at the lamellar interface

dominates and as χN increases, the chains want to stretch away from the interface,

leading to increased domain spacing.

5.3.3 Intermediate bonding

Thus far we have considered two opposite limits of relative strength of bonding com-

pared to segregation strength. We now consider the transition between the two and
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Figure 5.10: Phase diagram for a binary blend of heterobonding telechelic homopoly-
mers at h/χN = 1.5. Shaded regions indicate two phase coexistence while white
regions indicate a single phase is present.

examine an intermediate bond strength of h/χN = 1.5, for which the phase diagram is

illustrated in Figure 5.10. The phase diagram shows features from both the weak bonding

and strong bonding phase diagrams. For 2 < χN < 4 it is possible to phase separate into

two disordered liquids similar to the weak bonding case. This region has both UCST and

LCST character, and closes for χN > 4, and a single disordered liquid becomes stable.

As χN is further increased the system undergoes another transition, but this time into

microphases. We do not perform full numerical SCFT investigation of this region, but

the random phase approximation reveals that the disordered phase has instabilities at

non-zero k vector, indicating formation of microphases. Furthermore, the shape of the

phase boundary is high reminiscent of that from h/χN = 2 and we expect very similar

stability windows.

To understand this complex phase portrait, we again turn to the reaction equilibrium.

Figure 5.11 shows the conversion of species A at ψA = 0.5 for varying χN . As in previous

cases, conversion increases with increasing χN . At χN ≈ 2.25 the conversion of species A

is αA ≈ 0.07, corresponding to approximately 10% volume fraction of copolymer. This is

insufficient quantity of homopolymer to prevent phase separation, but is enough to delay
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Figure 5.11: Conversion of species A, αA, at h/χN = 1.5 and ψA = 0.5. The text
labels and dashed line indicate the stable phase(s).

phase separation from the unreactive critical point of χN = 2. As χN is further increased

above 2.25, the conversion continues to increase, in contrast to the weak bonding case

where conversion started to decrease upon phase separation. In this intermediate bonding

case the phase segregation near the critical point is not very strong and the A rich phase

is composed of at least 20% component B. The equilibrium constant is also sufficiently

large so that forming BCP products is still favored, and conversion continues to increase.

Careful examination of the conversion reveals that the phase separation does slightly

depress conversion compared to a hypothetical scenario of a well mixed single phase, but

this effect is rather weak.

As χN is increased through the two phase window, eventually enough copolymer is

formed to recompatibilize the two phases at χN ≈ 3.6. The conversion at this point is

αA ≈ 0.27, which corresponds to a combined homopolymer volume fraction of 52%. This

is consistent with previous theoretical studies of A homopolymer + B homopolymer +

AB diblock that found that approximately 45% volume fraction of diblock copolymer

was sufficient to compatibilize homopolymers [132], when the homopolymer had half the

length of the diblock as in this study. For χN > 3.6 the conversion plot strongly resembles
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that of the strong bonding case, and eventually the blend microphase separates into a

lamellar phase. The trends in lamellar domain spacing also mimic that of the strong

bonding case, and domain spacing increases monotonically with increasing χN .

The phase behavior at this intermediate value of h/χN is indicative of being near

a Lifshitz point, where microphase separation, macrophase separation, and a single dis-

ordered phase meet at a single point. It is known from unreactive polymer blends that

SCFT fails dramatically near the Lifshitz point and fluctuations stabilize bicontinuous

microemulsions [64, 65]. We expect such fluctuations effects to also be present in this

system, but do not speculate further on their effect. In principle it is possible to include

fluctuation effects in our model via a field theoretic simulation, but we leave such efforts

for future work.

5.3.4 Unequal macromonomer lengths

Up to this point we have only considered blends where the two homopolymers are

of equal length. We next consider the case where the B polymer is half as long as the

A homopolymer, NB/NA = 0.5. Upon breaking the symmetry of the two polymers, the

symmetry of the phase diagram is correspondingly broken. Figure 5.12 shows the RPA

spinodal curves for NB/NA = 0.5 and h/χN = 2. Analogous to the strong bonding case

for symmetric polymers, the phase diagram has a two lobe structure with a cusp in the

middle. The cusp occurs at φA = 2/3 which is the proper composition to form repeating

AB block copolymers. Numerical SCFT calculations reveal that for φA < 0.5 the lamellar

phase is stable, with a coexistence region with a disordered phase also present. This is

to be expected, as the analogous unreactive system consists of a BAB triblock that has

an equal number of total A and B segments, blended with a homopolymer. A similar

system of a symmetric AB diblock blended with B homopolymer also produced a region
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Figure 5.12: Order-disorder transitions computed via RPA for the telechelic blend
system with NB/NA = 0.5 (black), and multiple unreactive binary blends, including:
ABA triblock and A homopolymer (green), ABA triblock with infinitely repeating
(AB) multiblock (cyan), BAB triblock with infinitely repeating (AB) multiblock (yel-
low), and BAB triblock with B homopolymer (magenta).

of LAM stability as well as LAM and DIS coexistence [129,133].

5.4 Comparison with experiments

One of the earliest experimental investigations of the phase behavior of telechelic

blends is due to Russell and coworkers [111]. They used small-angle x-ray scatter-

ing (SAXS) to study blends of telechelic polyisoprene and polystyrene that were end-

functionalized with amino and acid groups, respectively. The acid groups considered were

carboxylic acid and sulfonic acid. Supramolecular bonds can form when an acid proto-

nates an amino group, which induces an ionic bond. Bulk polyisoprene and polystyrene

have dielectric constants near 3, so it is very unfavorable for unpaired ions to exist. For

the bonds to dissociate, the reverse proton transfer must occur so that the neutral amine

and acid can separate from one another. Evidence for the partial conversion of acid and

base to paired ions was found by FT-IR in later work by Iwasaki and coworkers [134].

The scattering data from amino-terminated polyisoprene blended with carboxylic-
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acid-terminated polystyrene is consistent with the weak bonding picture presented in

this work. The authors observed microphase formation at low temperature (high χ) and

that upon heating the blend would undergo spinodal decomposition and macroscopically

phase separate, analogous to decreasing χN in Figure 5.1. Additionally, the domain

size of the microphase was found to significantly increase with increasing temperature

(decreasing χN) consistent with weak-bonding domain size trends in Figure 5.3. The

authors showed that the change in domain size was too large to be attributed to thermal

expansion, so the change in domain size due to homopolymer swelling demonstrated in

this work may play a role.

When the carboxylic acid groups were replaced with sulfonic acid groups, Russell and

coworkers found qualitatively different behavior. The blend again formed a microphase at

low temperature, but upon heating became disordered rather than undergoing spinodal

decomposition. This is consistent with the strong-bonding phase behavior presented

in Figure 5.5. Additionally, the domain spacing of the microphase had a much weaker

dependence on temperature compared to the blend with carboxylic acid. The domain size

slightly decreased with increasing temperature, consistent with the trends in domain size

at strong bonding in Figure 5.9. The blend with sulfonic acid-functionalized polystyrene

thus behaves like the strong bonding regime predicted in this work. Furthermore, sulfonic

acid is a stronger acid than carboxylic acid, so effective equilibrium constant should be

larger for the sulfonic acid-amine pairing. Finally, Russell and coauthors showed that

if the length of the polystyrene polymers was increased, then the system would again

macrophase separate at high temperature consistent with the intermediate-bonding phase

diagram in Figure 5.10. This is consistent with previous theoretical investigations that

showed that increased polymer length dilutes the concentration of end groups and leads

to an effectively weaker equilibrium constant [118].

There have been multiple subsequent reports that utilize the same acid-amine chem-
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istry as Russell and coworkers, but swap the isoprene monomer with a different chemical

species, including ethylene oxide, isobutylene, and PDMS [134–136]. In addition to

SAXS, these authors have performed FT-IR, proton NMR, TEM, and rheological mea-

surements on their samples to provide further evidence for block copolymer formation

from the starting homopolymers and the presence of an order-disorder transition. One

group of authors was also able to estimate the approximate values of χN for which the

ODT occurs which matches closely to the value we predict at equal composition in Figure

5.5 [135]. In all of the referenced papers, only equimolar blends of telechelic polymers

were considered, so much of the phase space remains unexplored.

In addition to the acid base supramolecular interactions, there have been investiga-

tions of telechelic polymers that interact through hydrogen bonding [137, 138]. These

investigations are not as extensive as the previously discussed work, but were able to

show evidence of microphase formation via SAXS and TEM. Unfortunately there is not

enough temperature dependent data to compare these works with the bonding strength

cases considered here.

5.5 Conclusions

We have demonstrated that a wide variety of phase behavior can be achieved with

binary blends of heterobonding telechelic homopolymers. By properly tuning the relative

strength of the bonding equilibrium constant to the segregation strength it is possible

to make the system behave like an unreactive homopolymer blend or block copolymer

melts. Although some of the microphase stability windows have unconventional shapes,

these stability windows can be rationalized by considering the stoichiometry of the sys-

tem. Additionally, the microphases that are formed from the telechelic blend can have

highly variable domain sizes and differing dependence on temperature depending on the
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relative strength of bonding and phase separation. The models presented here are able

to quantitatively predict all these phenomena and are consistent with previous experi-

ments. We hope CS-SCFT will be used to further guide experimental investigation of

supramolecular blends.
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Chapter 6

Reversible Star Polymer Networks

in Solution

6.1 Introduction

Polymer networks are fundamental platform for many important modern materials,

including rubber tires, artificial tissues, and adsorbents. In recent years, polymer net-

works that are formed from reversible bonds have become a topic of interest. This is in

part due to novel materials properties, such as self-healing [116], as well as biologically-

motivated observations of such phenomenon [110]. Much of our understanding of polymer

networks is due to initial theories by Flory [51] and Stockmayer [50], who performed pi-

oneering work with simple mathematical models. They were able to show that at a

particular extent of reaction, the average size of a polymer cluster diverges, indicating

the onset of gelation and the formation of a macroscopic sized molecule. Notably, there

are a number of deficiencies with Flory theory, mainly that it neglects the formation of

loop and ring structures, and does not account for excluded volume or other interactions

between polymer segments. Finally, it is fundamentally a mean-field theory that neglects
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the role of composition fluctuations that are important in polymer solutions. There have

been a number of efforts to correct for these phenomena in permanent networks, which

often invoke field-based methods. One example is work by Lubensky and Isaacson who

used an n-vector model and applied the n→ 0 formalism of de Gennes [139, 140]. They

were able to use analytical approximations to study dilute gels and compute correlation

lengths, but could not evaluate phase separation or the concentrated regime. Another

example by Panyukov and Rabin used replica field theory to predict structure factors

and elastic properties in a permanent gel [141]. They were also limited to approximate

analytical techniques, however.

Theoretical studies of reversible gels are less common, however, one notable example

is work by Edwards and Freed who developed field based models of polymer vulcaniza-

tion using coherent states (CS) [103]. This work has largely gone unnoticed, however,

especially compared to other field models introduced by Edwards [3]. In this work we

return to the CS models developed by Edwards to study reversible polymer networks

in solution and examine both gelation and phase separation. These two phenomena of-

ten occur simultaneous in polymer and colloid solutions, leading to confusion on their

relationship. With the models considered here we are able to interrogate the equilib-

rium behavior without kinetic limitations, and also include effects of excluded volume,

rings, and fluctuations. We start at the mean field level and show that a reduced set

of parameters can be defined from the fundamental parameters of reaction equilibrium

constant, polymer concentration, and solvent quality to yield a universal phase diagram.

We then pursue approximate analytical calculations to include fluctuations and show

that the universal phase diagram is disrupted. Finally we turn to numerical simulations

that relax the previous approximations to fully understand the effect of rings and loops

and the relationship between percolation and phase separation.
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6.2 Model and Methods

A hybrid AF-CS model for a canonical ensemble of reversibly end bonding star ho-

mopolymers in implicit solvent is

Z(n, V, T ) =
Z0

DwDφ

∫
Dw

∫
D(φ, φ∗)e−H[w,φ,φ∗] (6.1)

H[w, φ, φ∗] =
1

2βu0

∫
dr (w(r))2 − n ln

(
1

V

∫
dr (φ∗0(r))f e−iΓ∗w(r)

)
+

Narm∑
j=0

∫
dr φ∗j(r)φj(r)−

Narm∑
j=1

∫
dr φ∗j(r)e−iΓ∗w(r)

∫
dr′Φ(r − r′)φj−1(r)

−
∫
dr φNarm(r)− λb

2

∫
dr

∫
dr′φNarm(r)Φb(r − r′)φNarm(r′)

(6.2)

Dw =

∫
Dw exp

(
1

2βu0

∫
dr (w(r))2

)
(6.3)

Dφ =

∫
D(φ, φ∗) exp

(
Narm∑
j=0

∫
dr φ∗j(r)φj(r)

−
Narm∑
j=1

∫
dr φ∗j(r)e−iΓ∗w(r)

∫
dr′Φ(r − r′)φj−1(r)

)
(6.4)

where Z is the partition function, with Z0 an ideal gas partition function, n the number of

homopolymer chains, V the system volume and T temperature. In this model, polymer

segments interact via a Gaussian potential of mean force

u(r) = u0Γ(r) =
u0

(2πa2)3/2
exp

(
−|r|

2

2a2

)
(6.5)

This is equivalent to a contact interaction between segments, but with the segment

density smeared over a Gaussian packet. This smearing is required to make the model

104



Reversible Star Polymer Networks in Solution Chapter 6

UV convergent and appears via the expression

Γ ∗ w(r) =

∫
dr′ Γ(r − r′)w(r′) (6.6)

The interacting system is captured via the effective Hamiltonian H which is a functional

of the field w(r) that varies over space, r, as well as a set of CS fields φj(r) and φ∗j(r) that

also vary over space, but have an additional index that indicates a contour position along

a polymer arm. Each polymer is composed of f arms that each have Narm beads that

are linked together with Hookian springs. The entire polymer then has Ntot = fNarm + 1

total beads. For the φj and φ∗j fields, j = 0 corresponds to the central bead, while

1 ≤ j ≤ Narm indicate beads in the arms. Because all arms are identical, we do not need

separate CS fields for each arm.

Each term in the effective Hamiltonian has a simple physical interpretation. The first

term that is quadratic in w represents the pairwise interaction between beads via the

potential of mean force. It is associated with the thermal energy β = 1/kBT as well as

the interaction strength u0, which can be interpreted as the solvent quality. The second

term creates n beads that will be the center of the star polymers. It has f factors of φ∗0

which each generate an arm that will grow out from the center bead. Finally exp(−iΓ∗w)

allows the bead to interact with other beads through the potential of mean force. Here

we have invoked the smearing function Γ which is a normalized Gaussian function, as well

as i the complex unit. The second line of the Hamiltonian is responsible for propagating

polymer arms. The second term creates a bond between the j − 1 and j beads via the

normalized bond transition probability Φ, then creates the j bead via the bead weight

term exp(−iΓ ∗ w). The arms are terminated as free ends via the first term on the

third line of eq 6.2, which terminates the arms after Narm beads. The final term in the

Hamiltonian creates reversible bonds between chain ends. These bonds carry an activity

105



Reversible Star Polymer Networks in Solution Chapter 6

λb and are associated with the bond transition probability Φb. Notably, these bonds

can be either intra-molecular or inter-molecular allowing the creation of both networks

and molecules with loops. One can show through perturbation theory that this model

correctly generates all possible reaction products with proper weighting. As written,

the supramolecular linkages can have a different linker type than the covalent bonds,

however, for the remainder of this work we assume they are identical Hookian springs

Φ(r) = Φb(r) =

(
3

2πb2

)3/2

exp

(
−3|r|2

2b2

)
(6.7)

where b is the root mean square mean bond length in the non-interacting system.

Before advancing further, it is convenient re-scale some parameters to define dimen-

sionless groups. We make the substitution w = W/Ntot and re-scale r by a factor of

Rg =
√
b2Ntot/6. The fields are invariant to scalings of r and the scaling to w is exactly

canceled by the Jacobian factor from Dw. These scalings yield three dimensionless groups

that will define the behavior of the system. The first is a dimensionless chain concentra-

tion C = nR3
g/V , the second a dimensionless interaction strength B = βu0N

2
tot/R

3
g and

thirdly a dimensionless equilibrium constant K = λb/R
3
g. A factor of R3

g has also been

absorbed into φj. In these new parameters, the model Hamiltonian is

H[W,φ, φ∗] =
1

2B

∫
dr (W (r))2 − CV ln

(
1

V

∫
dr (φ∗0(r))f e−iΓ∗W (r)/Ntot

)
+

Narm∑
j=0

∫
dr φ∗j(r)φj(r)−

Narm∑
j=1

∫
dr φ∗j(r)e−iΓ∗W (r)/Ntot

∫
dr′Φ(r − r′)φj−1(r)

−
∫
dr φNarm(r)− K

2

∫
dr

∫
dr′φNarm(r)Φb(r − r′)φNarm(r′)

(6.8)

With the model defined we now present field operators that can be used to interrogate
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physical properties of the system. The local density of segments in the system can be

computed according to

ρ̃(r) = C
(φ∗0(r))f e−iΓ∗W (r)/Ntot∫
dr (φ∗0(r))f e−iΓ∗W (r)/Ntot

+
Narm∑
j=1

∫
dr φ∗j(r)e−iΓ∗W (r)/Ntot

∫
dr′Φ(r−r′)φj−1(r)

(6.9)

The local density of unreacted chain ends is

ρ̃e(r) = φNarm(r) (6.10)

and the local density of bonds is

ρ̃b(r) =
K

2

∫
dr′φNarm(r)Φb(r − r′)φNarm(r′) (6.11)

Each of these local densities can be averaged over space to obtain bulk values for the

density of segments, bonds, and unreacted chain ends. One convenient observable to

track is the conversion of end groups η which is defined as

η =
fn− ne
fn

=
2nb
fn

(6.12)

where ne and nb are the total number of unreacted ends and bonds, respectively. These

quantities can be determined by integrating the appropriate local density operator over

all of space.

Other important operators are the chemical potential µ and pressure Π, which have
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the operators

βµ̃ex = − ln

(∫
dr (φ∗0(r))f e−iΓ∗W (r)/Ntot

)
(6.13)

βR3
gΠ̃ex =

i

Ntot

∫
dr

∫
dr′ ρ̃(r)Γ(r − r′)

(
1

2
− a2

3
∇2

)
W (r′)

+
Narm∑
j=1

∫
dr

∫
dr′ φ∗j(r)e−iΓ∗W (r)/NtotΦ(r − r′)

(
b2

6
∇2

)
φj−1(r′)

−
∫
dr

∫
dr′ φNarm(r)Φb(r − r′)

(
b2

6
∇2

)
φNarm(r′)

(6.14)

These operators are given in excess to the ideal gas contribution.

6.3 Results and Discussion

6.3.1 Mean Field

We first analyze the model at a mean field level where we invoke a saddle point

approximation. It is assumed that there exist a set of field configurations that completely

dominate the functional integrals in eq 6.1. The saddle point fields must satisfy the

equations

δH

δW

∣∣∣∣
Ws,φj,s,φ∗j,s

=
δH

δφ

∣∣∣∣
Ws,φj,s,φ∗j,s

=
δH

δφ∗

∣∣∣∣
Ws,φj,s,φ∗j,s

= 0 (6.15)

We can trivially evaluate the free energy under the saddle point approximation as

βF = − ln(Z) ≈ − ln(Z0)− ln(exp(−H[Ws, φs, φ
∗
s])) (6.16)
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for the model considered here this yields

βR3
gFMF

V
= C ln(C)− C +

1

2
BC2 + fC ln(1− ηMF) +

1

2
ηMFfC (6.17)

where we have used Sterling’s approximation to evaluate the ideal gas partition function.

We have also invoked the mean field conversion ηMF which can be computed as

ηMF =
2fCK + 1−

√
1 + 4fCK

2fCK
(6.18)

With the free energy in hand we can compute other important physical quantities

including the pressure Π and chemical potential µ

βR3
gΠMF = βR3

g

(
∂F

∂V

)
n,T

= C +
1

2
BC2 − 1

2
ηMFfC (6.19)

βµMF = β

(
∂F

∂n

)
V,T

= ln(C) +BC + f ln(1− ηMF) (6.20)

Using the chemical potential and pressure we can identify if phase separation is possible

as well as the equilibrium concentrations of the phase separated system. The phase

diagram would seemingly depend on four parameters: f , C, B, and K as each of these

appears in the expressions for Π and µ either directly or indirectly via η. A careful

examination of the pressure and chemical potential reveals, however, that the parameter

space can be reduced by appropriately grouping variables. The pressure can be multiplied

by B without affecting the thermodynamics, which reveals that BβR3
gΠ only depends

on f , BC, and η via eq 6.19. Similarly, the chemical potential can be shifted by a

constant ln(B) without affecting the thermodynamics. Eq 6.20 reveals that βµ + ln(B)

only depends on f , BC, and η as well. Finally we must consider η, which depends on the

combined grouping fCK. We can rewrite this group as f(BC)(K/B), which shows that
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η depends on two of the same parameters, f and BC as well as a third quantity K/B.

These three groups can be used to define the phase diagram in the smallest number of

parameters.

In Figure 6.1 we present one such phase diagram for f = 3. The grey curve denotes

the binodal in the system, whereas the white region is the interior of the spinodal. We

will discuss derivation of the spinodal later. The background of the figure is colored

according to the conversion at each point in phase space. Finally, the dotted black line

indicates the Flory gel point which is computed according to:

αgel =
1

f − 1
(6.21)

Here α represents the probability that an arm is reacted to another polymer that will

propagate to create a larger molecule. In the mean-field limit of SCFT, loops cannot be

formed and η = α, however for fluctuating systems, the presence of loops will disrupt this

equality as loops do not help form a larger molecule. The figure shows that at small values

of K/B the system will not undergo phase separation for any concentration of polymer.

The system can still undergo gelation for sufficiently concentrated solutions, however.

As K/B is increased above 10, a two phase region occurs. Notably, the spinodal for this

region lies entirely in the gel regime. This has important implications for experimental

polymers, as the system will first try to percolate before undergoing phase separation.

This may significantly hamper the dynamics of phase separation if a network has already

formed. Because the bonds are reversible, at infinite time scales the system will be

able to fully phase separate, but short time scales may be significantly impacted. The

physical interpretation for this region is that the equilibrium constant is sufficiently large

such that the system wants to form a gel, however, the concentration is low enough

that the polymers would have to stretch excessively to reach one another to maintain a
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Figure 6.1: Universal mean-field phase diagram for end-linking star polymers with
f = 3 arms. The binodal is indicated with the grey curve whereas the spinodal region
is indicated with white. The black line is the gel transition. The background of the
plot is colored according to the conversion of end groups η.

homogeneous solution. Instead, the system phase separates into a concentrated polymer

phase that can easily form a gel and a phase where polymers are sufficiently diluted that

they do not try to form a network.

The previous explanation invokes the equilibrium constant K and chain concentration

C, but did not address the dimensionless interaction strength B. The parameter B can

also be interpreted as the solvent quality as it contains the potential of mean force

strength u0. In this model the bead-bead interactions are purely repulsive and B must

be non-negative, so we only consider theta solvents and good solvents. As the the solvent

quality increases, the polymer chains will undergo coil expansion and the arms of the star

will stretch out. This increases the pervaded volume of each molecule and the number

of molecules that each polymer can interact with will increase. The grouping BC thus

represents this effective concentration that is increased by solvent quality. On the other

hand, when solvent quality is high, the polymer would rather be surrounded by solvent

molecules than other polymer segments. This means that forming a supramolecular bond

will be energetically disadvantageous for large B. As such, the effective bond strength in
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Figure 6.2: Mean-field phase diagram for end-linking star polymers for a variety of
number of arms. The binodal is indicated with solid lines while dotted lines indicate
the gel transition.

the phase diagram is K/B, as large B will decrease the favorability of bond formation.

Finally, we address the effect of the number of arms, as Figure 6.1 is valid only for

f = 3. In Figure 6.2 we plot the binodals and gel transition curves for a variety of

number of arms. As the number of arms is increased, the binodal shifts to lower values

of K/B as do the gel transition curves. For larger number of arms it easier to undergo

gelation as a smaller conversion is required to percolate the system, so smaller values of

K (or C) are required for gelation. Similarly, increased f expands the regime in which

gelation is favorable, but not possible due to insufficient polymer concentration, so the

binodal regions shift to lower K as well. Although not shown on the in Figure 6.2, the

spinodal for each value of f lies completely in the gel region.

While this mean field analysis provides a neat picture of phase separation and gelation,

there are a number of problems with it. Firstly, it neglects the presence of any rings or

loops in the system and assumes that only tree-like products are possible [122]. Such a

picture of gelation is unphysical as it requires diverging concentrations of polymers for

macroscopic sized gels. Additionally, the mean field predictions neglects all concentration

fluctuations in the system which will certainly affect both the reaction equilibrium and
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phase separation. In the next section we pursue an approximate analytical approach to

investigate the effect of fluctuations.

6.3.2 Random Phase Approximation

The random phase approximation (RPA) assumes that the system fluctuates around

the saddle point and that the magnitude of these fluctuations are small. This allows

expansion of the Hamiltonian around the saddle point state and truncation at Gaussian

order, yielding a set of functional integrals that can be performed analytically. Execution

of this approach yields the RPA approximation to the free energy

FRPA = FMF +
V

2(2π)d

∫
dk ln

(
∆̂(k)

(
1 +BCΓ̂(k)Γ̂(−k)Ĵ(k)

))
(6.22)

Ĵ(k) =
1

Ntot

+ fĝD(k)

+ f
(f − 1)ĥD(k)2 + ηMFΦ̂b(k)

(
1

Ntot
+ ĥD(k)

)(
1

Ntot
+
(

1 + 2(f − 1)Φ̂(k)Narm

)
ĥD(k)

)
∆̂(k)

(6.23)

∆̂(k) = 1− ηMF(f − 1)Φ̂b(k)
(

Φ̂(k)
)2Narm

(6.24)

ĝD(k) =
2

N2
tot

Narm∑
j=1

(Narm + 1− j)
(

Φ̂(k)
)j

(6.25)

ĥD(k) =
1

Ntot

Narm∑
j=1

(
Φ̂(k)

)j
(6.26)

Notably, in the case of no reactions ηMF = 0, eq 6.22 recovers the RPA free energy

for a solution of homopolymer stars, as expected. For reactive systems, there are two

additional terms that make important contributions to the free energy. The first is

associated with the term ∆ which acts as a normalization term based on proximity to

the mean field gel point. At the mean field gel point ∆(0) = 1 and the RPA correction
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to the free energy would seemingly diverge as eq 6.22 contains ln(∆). There is another

term in the free energy correction J that accounts for correlations between chains that

is proportional to ∆−1 and keeps the free energy finite at and beyond the gel point. In

particular J includes correlations between arms of the star both on the same molecule

as well as from supramolecular interactions with different molecules, both of which are

characterized by hD(k). The final contribution to J is from interactions between beads

on the same arm, which are associated with gD(k).

The free energy expression is predicated on expansion around a single homogeneous

phase, and one can use the free energy to determine the stability limits of the phase to

obtain the spinodal. This analysis yields the same results as computing the structure

factor with Gaussian fluctuations. One can show that any instability in the free energy

will start at k = 0, indicating macroscopic phase separation. The condition for such an

instability to occur is

1− ηMF(f − 1) +BC(ηMF + 1) ≤ 0 (6.27)

which corresponds to the spinodal region in Figure 6.1. We can also use the free energy

to obtain other operators of interest, including the reaction conversion, pressure, and

chemical potential

ηRPA = ηMF

+
ηMF(1− ηMF)

fC(1 + ηMF)(2π)d

(∫
dk

(f − 1)Φ̂b(k)Φ̂(k)2Narm(1 +BCΓ̂(k)2(N−1
tot + fĝD(k)))

∆̂(1 +BCΓ̂(k)2Ĵ(k))

−
∫
dk

fBCΓ̂(k)2Φ̂b(k)( 1
Ntot

+ ĥD(k))( 1
Ntot

+ (1 + 2(f − 1)Φ̂(k)Narm)ĥD(k))

∆̂(1 +BCΓ̂(k)2Ĵ(k))

)
(6.28)
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βR3
gΠRPA = βR3

gΠMF −
1

2
(ηRPA − ηMF)fC

− 1

2(2π)d

∫
dk

(
ln
(

∆̂(1 +BCΓ̂(k)2Ĵ(k))
)
− BCΓ̂(k)2Ĵ(k)

1 +BCΓ̂(k)2Ĵ(k)

)
(6.29)

βµRPA = βµMF −
f

2
(η − ηMF) +

1

2(2π)d

∫
dk

BΓ̂(k)2Ĵ(k)

1 +BCΓ̂(k)2Ĵ(k)
(6.30)

There are two contributions to the fluctuation correction to η that are of opposite sign.

The first increases η and accounts for the possible formation of intramolecular bonds,

which is associated with Φ̂bΦ̂
2Narm . Intramolecular bonds must form rings, and are thus

not accounted for in mean field theory. The other fluctuation correction is responsible

for excluded volume interactions between arms, which disfavors product formation as

reacting stars together will increase unfavorable interactions due to proximity. It is im-

portant to note that ηRPA no longer depends only on the groupings BC and K/B as there

is a bare C that appears in the coefficient to the fluctuation correction. This indicates

that the universal mean field phase diagram will be disrupted by fluctuations. Finally,

we note that the fluctuation corrections are both proportional to ηMF(1 − ηMF). When

the mean field conversion is near unity, the fluctuation corrections will be significantly

smaller than ηMF, however when ηMF is small the corrections will be of similar order. We

can take this logic to the extreme and examine C → 0 where ηMF is very small. This

yields

lim
C→0

ηRPA =
K(f − 1)

(2π)d

∫
dk Φ̂b(k)

(
Φ̂(k)

)2Narm

(6.31)

Eq 6.31 shows that at small C the conversion saturates to a finite value. This is in

contrast to the mean field case where η goes to zero for small C. The k integral in eq 6.31

is associated with the probability of two arms from the same molecule linking together

due to the 2Narm factors of Φ and the single factor of Φb. This is to be expected as at very

dilute concentrations the only type of bond formation should be intramolecular. The k
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integral is further multiplied by f−1 and K which makes sense as increasing the number

of arms or equilibrium constant should further favor bond formation. Unfortunately we

also see the first failure of the RPA method here. In the small C limit, ηRPA is not bounded

from above and can reach arbitrarily large values for large K despite the conversion η by

definition being limited to the range [0, 1]. Unfortunately, this issue limits the utility of

the RPA approach around the dilute branch of the binodal. Nevertheless, we continue

with our discussion of RPA corrections to other physical quantities before moving to

alternative analysis modes.

The RPA corrections to the pressure and chemical potential follow forms similar to an

unreactive solution of star polymers, but with the reaction corrected correlation function

replacing the unreactive version. There are also corrections due to the conversion as seen

in the terms proportional to ηRPA−ηMF. As previously discussed, RPA makes unphysical

predictions for the conversion at large K and small C, which will propagate to the RPA

corrected pressure and chemical potential. While in principle we could use the RPA

chemical potential and pressure to compute corrections to the binodal, we do not do so

due to the unphysical values of conversion that can appear.

As discussed previously, RPA only considers fluctuations to Gaussian order. One ex-

planation for the unphysical predictions of RPA is that higher order fluctuations would

partially cancel the contributions from Gaussian fluctuations and maintain physical val-

ues of the conversion. In principle one could perform one-loop calculations [122, 142] to

evaluate this hypothesis. Rather than further pursue this analytical approach, we instead

turn to numerical approaches.
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6.4 Field Theoretic Simulations

The standard numerical approach for simulation of complex-valued field theories such

as the one presented in eq 6.2 is to use the complex Langevin (CL) method [16, 29, 30].

This approach exactly samples the probability distribution consistent with Hamiltonian

and includes fluctuations at all orders. Previous authors have presented algorithms to

conduct CL-based FTS for AF theories [16] and pure CS theories of continuous Gaussian

polymers [42]. We extend these algorithms to the hybrid AF-CS theory with discrete

bead-spring polymers used here. The fields are evolved in fictitious time according to the

stochastic differential equations

∂tW (r, t) = −λw
δH

δW (r, t)
+ ηw(r, t) (6.32)

∂tφj(r, t) = −λφj
δH

δφ∗j(r, t)
+ ηj,1(r, t) + iηj,2(r, t) (6.33)

∂tφ
∗
j(r, t) = −λφj

δH

δφj(r, t)
+ ηj,1(r, t)− iηj,2(r, t) (6.34)

The first term on the right hand side of each equation is referred to as the force as it

is a deterministic term based on the variation of the Hamiltonian. It carries a positive

constant mobility λw or λφ. Each equation also carries a noise term that obey

〈ηw(r, t)〉 = 0 (6.35)

〈ηj,p(r, t)〉 = 0 (6.36)

〈ηw(r, t)ηw(r′, t′)〉 = 2λwδ(r − r′)δ(t− t′) (6.37)

〈ηw(r, t)ηj,p(r
′, t′)〉 = 0 (6.38)

〈ηj,p(r, t)ηk,q(r′, t′)〉 = λφδj,kδp,qδ(r − r′)δ(t− t′) (6.39)
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while any noise that has these means and variances can be used, we exclusively use

Gaussian white noise in this work.

To conduct a numerical simulation, the time variable must be discretized. Based

on previous work, we use a semi-implicit scheme [21, 26, 42, 101] where the linear part

of the force is treated implicitly while all non-linear contributions are treated explicitly.

Substituting in the proper expressions for the force yields the scheme

W l+1(r)−W l(r) = −λw∆t

(
W l+1(r)

B
− iC + iC

∫
dr′ Γ(r − r′)ρ̃l(r′)

)
+Rl

w(r)

(6.40)

φl+1
0 (r)− φl0(r) = −λφ∆t

(
φl+1

0 (r)− fC (φ∗l0 (r))f−1e−iΓ∗W
l+1(r)

R3
g

V

∫
dr (φ∗l0 (r))fe−iΓ∗W l+1(r)

)

+Rl
0,1(r) + iRl

0,2(r)

(6.41)

φl+1
j (r)− φlj(r) = −λφ∆t

(
φl+1
j (r)− e−iΓ∗W l+1(r)

∫
dr′Φ(r − r′)φl+1

j−1(r′)

)
+Rl

j,1(r) + iRl
j,2(r)

(6.42)

φ∗l+1
Narm

(r)− φ∗lNarm
(r) = −λφ∆t

(
φ∗l+1
Narm

(r)− 1
)

+Rl
Narm,1(r)− iRl

Narm,2(r) (6.43)

φ∗l+1
j (r)− φ∗lj (r) = −λφ∆t

(
φ∗l+1
j (r)−

∫
dr′Φ(r − r′)φ∗l+1

j+1 (r′)e−iΓ∗W
l+1(r′)

)
+Rl

j,1(r)− iRl
j,2(r)

(6.44)

here superscript l indicates a discrete time index and ∆t is the time step. The continuous-

time noise terms η have been replaced with discrete-time noise R which follow similar
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statistics

〈Rl
w(r)〉 = 0 (6.45)

〈Rl
j,p(r)〉 = 0 (6.46)

〈Rl
w(r)Rm

w (r′′)〉 = 2λw∆tδ(r − r′)δl,m (6.47)

〈Rl
w(r)Rm

j,p(r
′′)〉 = 0 (6.48)

〈Rl
j,p(r)Rm

k,q(r
′′)〉 = λφ∆tδj,kδp,qδ(r − r′)δl,m (6.49)

With the numerical scheme fully defined, we first apply it to an unreactive solution

of star polymers. This model can be represented with both AF and CS models and

serves as a validation to the CS approach. Unfortunately, initial results show that the

CS model does not reproduce the AF result, indicating a problem with the sampling

scheme. Figure 6.3 shows one example of this mismatch. CL-FTS were conducted in a

three dimensional cubic box with side length 3.2Rg. Space was discretized with 163 grid

points and periodic boundary conditions were employed. The polymers had f = 3 and

Narm = 9 and dimensionless concentration C = 10. The mobility parameters were set to

λw = 1 and λφj = 0.1 for all j. The time step was ∆t = 0.01 and simulations were run

for two million iterations.

In principle the simulations should produce identical results as they utilize the same

numerical discretizations and the models are analytically equivalent. For small values of

B the agreement is reasonably good and the averages computed with each method are

within the error bar of each other. As B is increased above 1, however, the CS averages

begin to diverge from AF for both the pressure and the chemical potential. There is

likely a problem in the sampling of the CS fields φ and φ∗ or an error in implementation

of the method. Further investigation is necessary to conduct meaningful FTS. Because
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Figure 6.3: Fluctuation correction to pressure (top) and chemical potential (bottom)
for a solution of three arm homopolymer stars over a range of interaction strengths B.
Blue points indicate results from AF simulations while orange points were obtained
from CS simulations.

of this sampling error, we do not conduct FTS for reactive star polymers.

6.5 Conclusions

We have constructed a coherent states models of reactive homopolymer stars in solu-

tion and applied approximate analytical analysis techniques to interrogate phase behavior

and gelation. At the mean-field level this model reproduces the Flory-Stockmayer result

for gelation. In this particular bonding scheme, the system can phase separate into a

polymer-lean supernatant and a polymer rich gel, but spinodal decomposition can only

occur after gelation. RPA calculations were used to examine fluctuations about the mean

field state, which revealed competing corrections to the reaction equilibrium. RPA was

shown to produce unphysical results for dilute concentrations and large equilibrium con-

stant, likely due to missing higher order corrections. Attempts at exactly evaluating

fluctuation corrections with numerical simulations have thus far been unsuccessful.
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Conclusions and Outlook

I have demonstrated here how to efficiently conduct field theoretic simulations (FTS)

and self-consistent field theory (SCFT) calculations for both auxiliary field (AF) and

coherent states (CS) field theory models. In the case of SCFT, linear response kernels

can be used to create semi-implicit algorithms that stabilize fictitious dynamics search

algorithms so that they converge under a broad range of numerical parameter values [17].

This stability does not translate to speed, however. When tune correctly, predictor-

corrector algorithms can converge significantly faster than first order methods that use

linearly response information, even though the predictor-corrector methods are far less

stable. Finally, for calculations of highly symmetric systems, and Anderson mixing [18]

approach can be used that is as efficient as predictor-corrector algorithms.

For FTS, semi-implicit algorithms perform well in disordered phases, where an ac-

curate linear response kernel can be computed. Predictor-corrector algorithms that use

linear response information are both the most stable and most accurate in disordered

phases. For ordered systems such as polymer microphases, adaptive time stepping is cru-

cial to achieving a stable algorithm, and can allow access to physical parameter ranges

that have been considered intractable. These insights are already being employed in the
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Fredrickson group to more efficiently conduct FTS of polymers. Unfortunately, there

remain unresolved issues, including the unphysical saddle point problem outlined here.

These unphysical saddle points appear to be a property of extending field theory models

into the complex plane. Although not discussed here, there is also a known issue in FTS

termed the ”core repulsion” problem where at strong interaction strengths, CL sampling

produces incorrect results. The unphysical saddle point problem is also exacerbated at

strong interaction strengths, but it is unclear if the two problems are related. Neverthe-

less, it is still possible to obtain physically meaningful insights from FTS and SCFT as

long as one is aware of these issues.

We first applied the SCFT approach to linear, comb-like, and bottlebrush diblock

copolymers. We were able to construct a universal phase diagram for these architectures

using the idea of conformational symmetry and relating it to architectural parameters.

This phase diagram includes the Frank-Kasper A15 and σ tetrahedrally close-packed

sphere phases, which had not been previously demonstrated for all the architectures

considered here. We also performed calculations using very large polymers with side

chains as long as thirty beads and grafting densities as high as two. These molecules

behaved like combs rather than bottle brushes, despite experimental analogs displaying

strong bottlebrush behavior [37]. We rationalize this discrepancy via the mean-field

approximation of SCFT and comment on the current limitations preventing observation

of bottlebrush behavior in SCFT.

We then shifted our focus to supramolecular polymers that undergo reversible re-

actions. The power of CS models was demonstrated via the ability to compute phase

diagrams that include three dimensional microphases and simultaneously examine the

reaction equilibrium. We showed that exotic phase behavior can be obtained with binary

blends of heterobonding telechelic homopolymers, but we were also able to rationalize

these trends via the stoichiometry and reaction equilibrium. As a final task we attempted
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to study network formation and phase separation in solutions of end-linking star poly-

mers. At the mean-field level the models considered here are consistent with classical

Flory-Stockmayer theory and analytical approximations to the fluctuations indicate that

the model also captures effects from loops. Unfortunately, numerical simulations have

thus far produced results that are inconsistent with known results from unreactive poly-

mer models, so the fully fluctuating network picture could not be examined. We hope that

future work may overcome these obstacles and conduct FTS for these network systems.
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Appendix A

FTS Algorithm Details

A.1 Forces for diblock copolymer melt

To conduct SCFT or FTS calculations one must evaluate the forces, δH[w]/δw(r).

For the diblock model considered here the forces are

δH[w+, w−]

δw+(r)
=

2C

2ζN + χN
w+(r) + iCΓ ∗ (ρ̃A(r) + ρ̃B(r))− 2iCζN

2ζN + χN
(A.1)

δH[w+, w−]

δw−(r)
=

2C

χN
w−(r) + CΓ ∗ (ρ̃B(r)− ρ̃A(r)) (A.2)

The density operators ρ̃A(r) and ρ̃B(r) both have implicit functional dependence on the

fields w+ and w−. They are computed from the propagator according to

ρ̃A(r) =
1

Q[w+, w−]

∫ f

0

ds qc(r, 1− s)q(r, s) (A.3)

ρ̃B(r) =
1

Q[w+, w−]

∫ 1

f

ds qc(r, 1− s)q(r, s) (A.4)

where qc(r, s) is the conjugate propagator to q(r, s) and represents the field-based ran-

dom walk statistics of the polymer starting from the opposite end as q. The conjugate
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propagator is computed according to the equations

qc(r, 0) = 1 (A.5)

∂sqc(r, s) = ∇2qc(r, s)− w(r, 1− s)qc(r, s) (A.6)

Note that these equations are nearly identical to the equations for q from the main text,

but the contour dependence of w has changed from s to 1 − s. The definition for w is

given in the main text.

The semi-implicit algorithms such as SI1 and ETD1 considered in this work rely on

a linearization of the forces

δH[w+, w−]

δw+(r)
=c+ ∗ w+(r) +O(w2

+)

δH[w+, w−]

δw+(r)
=c− ∗ w−(r) +O(w2

−)

For the diblock copolymer considered here the correlation functions are

ĉ+(k) =
2C

2ζN + χN
+ CΓ(k)2

(
ĝD(k2f) + 2ĥD(k2f)ĥD(k2(1− f)) + ĝD(k2(1− f))

)
ĉ−(k) =

2C

χN
− CΓ(k)2

(
ĝD(k2f)− 2ĥD(k2f)ĥD(k2(1− f)) + ĝD(k2(1− f))

)

with the Debye-like functions defined as

ĝD(x) =
2

x2

(
x+ e−x − 1

)
ĥD(x) =

1

x

(
1− e−x

)
Using these correlation functions semi-implicitly is only stabilizing if they are positive
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definite. The function c+ satisfies this, but c− does not, so we make the truncation

ĉ−(k) =
2C

χN
(A.7)

A.2 Complex Langevin algorithm error scaling

We show numerically that the algorithms considered in this work have the expected

error scaling. We use the data from Figure 2.6 and compute the error relative to a

reference ”exact” solution. Unfortunately no analytical exact solution is available, so we

instead use the average of the chemical potential values computed from the EMPEC2,

PO2 and ETDRK2 algorithms at ∆t = 10−3. We denote this approximate ”exact” value

as µ̄ex. The EMPEC2, PO2 and ETDRK2 algorithms should have the best error scaling

and ∆t = 10−3 is the smallest time step considered, so the errors relative to the exact

value should be smallest for the values used to compute µ̄ex. The deviation between the

estimated value of chemical potential and µ̄ex are shown in Figure A.1. The original

estimates for the chemical potential all have uncertainty due to the stochastic nature

of the simulation. This uncertainty is quantified by the standard error of the mean,

which for all data points is less than 5.1 ∗ 10−5. This uncertainty level is indicated via

a horizontal gray dashed line in Figure A.1. Below this line the calculated error is not

significant compared to the uncertainty in the chemical potential.

For the EM1 and SI1 algorithms the error relative to µ̄ex is always above the un-

certainty line and the data shows a clear first order relation between the error and the

time step ∆t as expected. For the ETD1 method there is also evidence of first order

scaling for data points with ∆t ≥ 10−2, but for smaller ∆t values the error falls below

the uncertainty line and the trend breaks. For the second order methods it is much more

difficult to discern trends because most of the data lies under the uncertainty line where
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Figure A.1: Error in CL estimate for chemical potential µex versus time step for
a disordered melt at χN = 10. The reference value for µex is the average of the
EMPEC2, PO2 and ETDRK2 values at ∆t = 10−3. The horizontal dashed gray line
indicates the approximate standard error of the mean for µex.

it is not significant. For the EMPEC2 data the three points in 10−2 ≤ ∆t ≤ 5∗10−2 fit a

second order error scaling law, but only there are only three data points in the trend. We

expect that decreasing the uncertainty of µex should lead to clear second order scaling

trends, but the computational cost increases by orders of magnitude to achieve this, so

we do not further pursue it.

A.3 Divergent trajectories

A complex Langevin simulation can become divergent when the fields attain values of

IEEE 754-defined +INF, -INF or NAN. To better understand these events, we monitored

the instantaneous value of the fields over time. The w+ field was Wick rotated so that

it is purely real at the saddle point, and we refer to it as iw+ to be consistent with

the model presented in the main text. Figure A.2 shows the largest magnitude of any

element over the spatial grid for each field. The real and imaginary part of each field has

a typical value it fluctuates around until the end of the simulation where the real part of
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Figure A.2: Maximum absolute value of each component of the fields over a single
trajectory. The simulation was conducted at χN = 30, ζN = 100, C = 20 in a
cubic box of size V = 93R3

g with M = 483. The ETDRK2 algorithm was used with
∆t = 0.1.

the iw+ field and the imaginary part of the w− field both have a maximum value that

grows exponentially quickly. We further probe what occurs here by visualizing the fields

near the end of the trajectory. A two dimensional slice of each field from iteration 3992

(indicated with a red star in Figure A.2) is shown in Figure A.3. The real parts of each

field show patterns typical of the double gyroid phase. The imaginary part of iw+ and

the real part of w− both also show local noise, which is to be expected because noise is

applied to these two parts of the field during a CL step. Finally, the real part of iw+

and the imaginary part of w− both show large negative values in the upper left corner

of the image. The color scale is set in order to have some detail in other parts of the

image, but there is large negative spike of values in the upper left corner for these two

parts of the fields. Further investigation reveals that these two field components are also

experiencing local forces in the upper left corner that are pushing the fields to further

negative values. Apparently the trajectory is on a path of exponential growth of a local

negative value in Re(iw+) and Im(w−). As a final note, this local spike in the field seems

to be located on the interface between the A domain and the B domain.
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Figure A.3: Two dimensional slice of each of the fields from iteration 3992 in Figure
A.2 (indicated with a red star).
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A.4 Basin escape and unphysical, non-ergodic tra-

jectories

A second failure mode for CL trajectories is also possible. Rather than diverging,

it is possible for the fields to leave the basin of attraction for the local saddle point of

interest (in our case the double gyroid structure) and enter a basin of attraction for a

different saddle point because there are numerous saddle points present. One possible

occurrence of this phenomena observed in these studies is a transition from the double

gyroid phase to the hexagonally perforated lamellar phase. Such transitions between two

different microphases are usually rare and are quite obvious when visualizing densities

or examining the trajectory of operators. Simulations where a transition between phases

occurs should typically be disregarded. It is also possible, however, for the fields to tran-

sition into a basin of attraction for an unphysical saddle point. Such saddle points are

characterized by non-zero imaginary components for field operators, such as the density

or Hamiltonian. These saddle points are termed ”unphysical” because operators must

average to purely real values in physical systems. Figure A.4 shows the Hamiltonian and

excess chemical potential operators in a CL simulation where multiple unphysical basins

are sampled. The imaginary part of the Hamiltonian initially fluctuates around zero,

but after approximately 1000 units of CL time, there is a sharp transition and Im(H)

begins to fluctuate around a negative value. Three more transitions occur throughout

the simulation. For all data presented in the main text, trajectories that sampled un-

physical basins were ignored. The unphysical basin phenomenon was not observed in the

disordered phase at χN = 10.

Visualizing the fields again provides useful information. Figure A.5 shows a two

dimensional slice of each component of the fields from the end of the simulation. In

Re(iw+) there are two ”defects” on the interface between the A and B domains. These
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Figure A.4: Hamiltonian, H, and chemical potential, µex, operator values over a
single trajectory. This trajectory samples a number of unphysical states where the
Hamiltonian does not have average zero imaginary component. The simulation was
conducted at χN = 30, ζN = 100, C = 20 in a cubic box of size V = 93R3

g with
M = 483. The EM1ADT algorithm was used with ∆t = 0.005.
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defects are characterized by a large positive spike surrounded by a shell of large negative

values. There are also signs of the defects in Im(iw+), however one of them is a large

spike of negative values while the other is a large spike of positive values. There are

additional defects in the fields that are not shown in the slice, but examining all of them

reveals that there are three defects with a positive spike in Im(iw+), while there are two

with a negative spike in Im(iw+). Examining other trajectories that sample unphysical

trajectories allows one to correlate the shift in the mean value of Im(H) with the number

and sign of the defects present. Thus one can infer that each of the transitions present

in Figure A.4 indicates a formation (or relaxation) of one of these defects. Notably it is

possible for two defects with opposite sign to form and for there to be no shift in Im(H),

however visualizing the density should always allow one to identify defects and realize

that one is in an unphysical state. The imaginary part of the excess chemical potential

continues to fluctuate around zero and is seemingly far less sensitive to these defects

as compared to the Hamiltonian as seen in Figure A.4. The real part of the chemical

potential drifts over the simulation, possibly due to the defects.

A final question remains of whether these defects represent actual saddle points with

attractive basins or if they are simply a fluctuation induced state that relaxes back to

the physical saddle point when noise is turned off. Figure A.6 shows the converged

fields obtained from applying an SCFT relaxation starting from the fields in Figure A.5.

Although SCFT typically is conducted with the restriction of purely real fields, in this

case we start from complex fields and retain the real and imaginary parts through the

entire calculation. As Figure A.6 shows, the defect structure is preserved, indicating

that the defects represent an alternative unphysical saddle point to the double gyroid

structure. If the same relaxation is performed, but setting the imaginary component

of both fields to zero, then the fields instead relax to the physical saddle point with no

defects. This indicates that these unphysical saddle points can only be encountered when
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Figure A.5: Two dimensional slice of all the fields at the end of the trajectory in Figure A.4.
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the fields are complexified. In SCFT we typically only consider real-valued fields (with

appropriate Wick rotations for those that are purely imaginary at the saddle point) so it

is impossible to encounter these unphysical saddle points.

A.5 A toy model for CL

To better understand the two failure modes previously presented, we construct a

simple toy model. Furthermore, since the iw+ field showed stronger signatures of the

problems, we focus on it. The dynamics governing the iw+ field in the full diblock model

are

∂tiw+(r, t) =
−2C

2ζN + χN
iw+(r, t) +CΓ ∗ (ρ̃A(r) + ρ̃B(r))− 2CζN

2ζN + χN
+ iη(r, t) (A.8)

where the noise term iη(r, t) is purely imaginary if the field is Wick rotated, as in eq

A.8. The density operators, ρ̃A and ρ̃B, both have functional dependence on both the

iw+ and w− fields. The simplified dynamics we consider is instead:

∂tw(t) = −1

a
w(t) + e−w(t) − 1 + iη(t) (A.9)

The field w now no longer has any spatial dependence, but the force retains a similar

form to the full diblock polymer model. There is a term that is linear in w with parameter

a that plays a role similar to the compressibility parameter ζN in the diblock model.

The density operators have been replaced with a simple exponential function that is

analogous to a density operator for a point particle rather than a polymer. Finally there

is a constant, field independent term and a purely imaginary noise. We next extend

w to complex values w = x + iy, which yields a two dimensional system of first order

differential equations:
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Figure A.6: Fields from Figure A.5 after being relaxed to the SCFT saddle point
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Figure A.7: Force field for the toy model at a → ∞. The X marks indicate fixed
points for the dynamics.

∂tx(t) = −1

a
x(t) + e−x(t) cos(y)− 1 (A.10)

∂ty(t) = −1

a
y(t)− e−x(t) sin(y) + η(t) (A.11)

The force profile for this system when the noise is turned off is shown in Figure A.7

(a→∞) and Figure A.8 (a = 10).

Figure A.7 shows that there are multiple fixed points present: a real, physical fixed

point at (0, 0), and imaginary, unphysical fixed points at (0, n2π), where n is any non-

zero integer. These points are marked with an X. These unphysical fixed points can have

either positive or negative imaginary component, in analogy with the complex saddle

points seen in the full diblock model. They also have their own basins of attraction.

There are trajectories present that have the real part of w diverge to negative infinity.

These trajectories are located at y = kπ, where k is any odd integer, and divide the basins

of attraction between saddle points. These trajectories are analogous to the divergent

trajectories seen in the diblock model, so the toy model seemingly captures the two failure
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modes diagnosed with full CL simulations. One can understand why the failures occur.

A CL calculation is typically initialized from a physical SCFT saddle point, in this case

(0, 0). The noise present in the system will move the current phase space position to

y 6= 0, which then creates a force on x that pushes it to negative values. A large enough

noise fluctuation can lead to y ≈ ±π, which creates an exponentially diverging force on

x to negative infinity. The divergent trajectories have zero width and any fluctuation to

either side places the system on a trajectory that is bounded but with very large force,

which requires an extremely small time step to integrate accurately and avoid disaster.

This reveals why the adaptive time stepping method is so effective. Most of the time the

forces are of similar size, but occasionally a strong fluctuation places the system close

to the divergent trajectory. Fixed time step algorithms will diverge in a few iterations

because the forces are so large. The adaptive time steppers, however, will dramatically

decrease the time step when these large forces occur, leading to accurate integration and

sufficient time for fluctuations to occur to remove the fields from the divergent trajectory

and return to close to the saddle point.

Another possible trajectory is a fluctuation that crosses the divergent trajectory into

one of the non-physical basins. There is nothing in the adaptive time stepper to prevent

this, and the ADT algorithms also suffer this problem.

As a final consideration we examine the force profile, but for a = 10. This is anal-

ogous to moving from an incompressible system to a system with finite compressibility.

As can be seen from the equations, decreasing a leads to a stronger attractive force to

the physical saddle point at (0, 0). The force field has been disrupted and positions of the

unphysical saddle points have shifted. The divergent trajectories are also disrupted and

instead of going to negative infinity will eventually return to the physical saddle point. In

the process, they can still sample very large negative values, however. These factors indi-

cate that more-compressible systems may be easier to simulate than the incompressible
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Figure A.8: Force field for the toy model at a = 10

variants.
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A.6 Literature Summary

Table A.1: Summary of publications that compare different algorithms for SCFT
simulations. MDE solver is the algorithm used to solve the modified diffusion equation
for the chain propagator. A summary of these algorithms can be found elsewhere
[24,25,70].

First author Year Field updater MDE solver

Ceniceros [17] 2004
EM1 RK2
SI1 RK2

Thompson [18] 2004
AM RK2

simple mixing RK2
Cochran [19] 2006 SI1 CGF4
Matsen [22] 2009 AM spectral

Jiang [23] 2010
SI1 spectral
SI1 SMEP

Stasiak [24] 2011

AM RK2
AM CGF4
AM RQM4
AM spectral

Audus [25] 2013
ETD1 RK2
ETD1 CGF4
ETD1 RQM4
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Table A.2: Summary of publications that compare different algorithms for CL simu-
lations. MDE solver is the algorithm used to solve the modified diffusion equation for
the chain propagator. A summary of these algorithms can be found elsewhere [25].

First author Year Field updater MDE solver

Lennon [21] 2008
EM1 CGF4
SI1 CGF4
PO2 CGF4

Audus [25] 2013
ETD1/EMPEC2 RK2
ETD1/EMPEC2 CGF4
ETD1/EMPEC2 RQM4

Villet [7] 2014

EM1 RQM4
SI1 RQM4
PO2 RQM4

ETD1 RQM4

Düchs [26] 2014

EM1 RK2
SI1 RK2

ETD1 RK2
EMPEC2 RK2

PO2 RK2
ETDPEC2 RK2
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Appendix B

Bottlebrush SCFT Computational

Details

B.1 Phase Diagram Details

We compute phase diagrams by calculating the free energy of candidate phases for

different model parameters such as the Flory-Huggins interaction (χ), architecture, and

volume fraction parameters. For discrete comb-like and bottlebrush copolymers, a lim-

ited set of points in the fA and ε phase space were available. From these points we

constructed a Delaunay triangulation to create a mesh over the entire phase space. Lin-

ear interpolation was then used to estimate the free energy over each triangle. Phase

boundaries were computed by finding the intersection of the free energy surfaces.

While performing these calculations, we found that finer spatial resolutions were

necessary to accurately resolve the free energies at high χN because both the domain

spacing and segregation strength increase considerably. We utilize the primitive cell for

some phases, which allows us to use fewer plane waves without accuracy loss. We show the

resolutions and cell types used for different phases in Table B.1. Lequieu et al. previously
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Phase Resolution Cell Type
Comb FCC 64× 64× 64 Cubic
Comb BCC 64× 64× 64 Cubic
Comb HEX 64× 64 Primitive
Comb A15 64× 64× 64 Cubic
Comb σ 128× 128× 64 Orthorhombic
Linear FCC 64× 64× 64 Cubic
Linear BCC 64× 64× 64 Cubic
Linear HEX 64× 64 Primitive
Linear A15 64× 64× 64 Cubic
Linear σ 128× 128× 64 Orthorhombic

Bottlebrush FCC 32× 32× 32 Primitive
Bottlebrush BCC 32× 32× 32 Primitive
Bottlebrush HEX 64× 64 Primitive
Bottlebrush A15 64× 64× 64 Cubic
Bottlebrush σ 192× 192× 96 Orthorhombic

Table B.1: Resolutions and cell type used in study

showed that the primitive cell results produced identical results to conventional unit cells

with smaller numbers of plane waves [92].

We used a higher number of plane waves for the bottlebrush polymer σ phases due to

the increased size of the cells. We investigated higher resolutions for A15 (963) and BCC

(643) and found negligible differences in both the free energies and phase boundaries.

B.2 Shifting order-disorder phase transition

We notice in Figure 3.5 that Case Study 2b) exhibits a shifting order-disorder phase

transition in the phase diagram. Here we have taken an asymmetric bottlebrush at

fA ≈ 0.141 with the same architecture as Figure 3.5. We keep all parameters other than

bsc,B fixed, and we observe the order-disorder phase transition shifts as the statistical seg-

ment of the chain length increases. This shows that increasing conformation asymmetry

between the side chains shifts the order-disorder transition boundary.
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