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R E V I E W A R T I C L E

An emerging role for epigenetic regulation of Pgc-1a

expression in environmentally stimulated brown

adipose thermogenesis
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Group, University of California, Davis, CA, USA

*Correspondence address. Department of Environmental Toxicology and Genome Center, University of California, 4245 Meyer Hall, One Shields Avenue, Davis, CA
95616, USA. Tel: þ1-530-754-7254; Fax: 530-752-3394; E-mail: mlamerrill@ucdavis.edu

Abstract

Metabolic disease is a leading cause of death worldwide, and obesity, a central risk factor, is reaching epidemic proportions.
Energy expenditure and brown adipose tissue (BAT) thermogenesis are implicated in metabolic disease, and it is becoming
evident that impaired BAT activity is regulated by gene/environment interactions. Peroxisome proliferator-activated recep-
tor c coactivator 1a (Pgc-1a) is a critical regulator of BAT thermogenesis, which is highly inducible by environmental stimuli
such as cold and diet. This review focuses on the environmentally mediated epigenetic and transcriptional regulation of
Pgc-1a gene expression during BAT thermogenesis. We illustrate interactions between histone modifications and transcrip-
tion factors at the Pgc-1a promoter that cause BAT Pgc-1a transcription in response to cold. Histone modifications also mod-
ulate BAT Pgc-1a transcription in response to nutrients though diet has been less characterized than cold with respect to
regulation of Pgc-1a transcription. Pgc-1a DNA methylation and RNA expression were also correlated to indicators of adipos-
ity and glucose homeostasis across numerous human tissues. Although post-translational modification of Pgc-1a protein
has been well-characterized across diverse tissues and environments, comparatively little is known of the epigenetic mech-
anisms regulating Pgc-1a transcription, particularly in BAT thermogenesis.

Key words: brown adipose tissue; epigenetics; gene regulation; peroxisome proliferator-activated receptor c coactivator 1a;
thermogenesis

Introduction

The prevalence of metabolic disease is rising rapidly across so-
cieties. Brown adipose tissue (BAT) is an important contributor
to metabolism and its impaired activity is implicated in meta-
bolic disease. Proliferator-activated receptor c coactivator 1a

(Pgc-1a) is a critical regulator of BAT activity in response to envi-
ronmental stimuli such as cold temperature and diet. In this

review we explore whether epigenetic modification of the Pgc-
1a gene by covalent histone or DNA modifications could play a
role in its regulation of environmentally stimulated-BAT
activity.

This review examines the environmentally mediated epige-
netic and transcriptional regulation of Pgc-1a gene expression
involved in BAT thermogenesis. First we briefly summarizing
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the importance of BAT in thermogenesis and metabolic dis-
eases. Then we introduce Pgc-1a, which acts as a critical regula-
tor of thermogenesis through its integration of environmental
signals with gene expression changes that result in thermo-
genic physiological responses. We next highlight some tran-
scriptional co-activation events facilitated by Pgc-1a with a
focus on those involving chromatin structural consequences.
Last we survey two environments- cold and diet- that modulate
BAT thermogenesis through epigenetic regulation of Pgc-1a ex-
pression. As a corollary we also provide human evidence that
connects Pgc-1a DNA methylation to indicators of metabolism
that are commonly associated with dietary factors. This review
highlights opportunities to improve the mechanistic evidence
for the role of environment in BAT thermogenesis mediated by
epigenetic regulation of Pgc-1a expression.

What Is BAT

BAT is present in most mammals where it primarily functions
in adaptive, non-shivering thermogenesis, and thus regulates
energy expenditure in the form of heat dissipation. The exo-
thermic capacity of this small tissue (<100 g) is remarkable
given it has been estimated that BAT thermogenesis may ac-
count for 5% of basal metabolic rate in adult humans [1].

The characteristic brownish color of BAT cells is a result of
intense vascularization and high concentrations of densely
packed mitochondria, an organelle that converts nutrients to
water, carbon dioxide and ATP [2]. BAT mitochondria are capa-
ble of converting much of their energy production from ATP to
heat through a proton leak catalyzed by uncoupling protein-1
(UCP1) that uncouples ATP synthesis from oxidative phosphory-
lation [3–5]. BAT vascularization aids in heat dissipation, while
its jacketing of major arteries and veins insulates the blood-
stream [6, 7]. BAT thermogenic response to cold exposure, its
primary stimulant, is regulated by the innervation of BAT from
the sympathetic nervous system (SNS; further detailed in
Section ‘Cold-induced thermogenesis) [8, 9]. In altricial animals
(e.g. mice, humans) BAT is derived from mesodermal tissue and
activated immediately after birth to maintain heat in response
to low ambient temperature [10]. Recently discovered in adult
humans through functional and structural visualization (posi-
tron-emission tomography of glucose analog radiotracer uptake
combined with computed tomography), the prevalence of de-
tectable BAT in healthy adults during cold exposure ranges
from 50 to 95% [11, 12]. However, these indirect estimates of
prevalence based on glucose tracer uptake are likely underesti-
mating true BAT prevalence in adult humans because BAT may
be present but not active or may be taking up lipids, the favored
substrate for BAT thermogenesis [13–15]. Indeed BAT not acti-
vated by cold is associated with lower prevalence estimates.
Since the discovery of thermogenic AT in adult humans, there
has been extensive discussion of whether this tissue is innate
(BAT) or inducible white AT (brite or beige AT). As the clinical
importance of this distinction is not yet clear, for the purpose of
this review we refer to BAT as all thermogenic AT.

Given the prominent role of external temperature in stimu-
lating BAT, it is intuitive that BAT activity is inversely associ-
ated with both outdoor temperature and the experimental
manipulation of indoor temperature among studies of adult hu-
mans [12, 16, 17]. When one considers the importance of fatty
acids and glucose as substrates for BAT thermogenesis, it is not
surprising that human BAT activity has also been inversely as-
sociated with fasting glucose levels and body mass index (BMI)
[13, 18]. Indeed glucose uptake by BAT can be stimulated by

insulin in addition to cold-induced SNS signaling in humans
[19]. BAT activity is also decreased in the pathological states as-
sociated with fasting glucose and BMI, namely type 2 diabetes
(T2D) and obesity, respectively [20]. For example, BAT preva-
lence has been negatively associated with obesity in humans
from the USA, Netherlands, Finland, Germany, Australia,
Canada and Japan [11, 13, 21–25]. Furthermore, independent of
measures of adiposity or obesity, BAT prevalence has also been
negatively associated with T2D in Canadians [23].

BAT transplants in rodents support this human evidence for
a role of BAT activity in pathologies related to obesity and T2D.
BAT transplants from metabolically healthy mice to obese mice
increased body temperature and whole body oxygen consump-
tion, while improving glucose- and insulin-tolerance and reduc-
ing body- and liver- fat mass [26–28]. Remarkably, glucose
tolerance and BAT glucose uptake are improved in direct pro-
portion to the mass of transplanted BAT [29]. Complete cover-
age of the role of BAT in obesity and T2D is out of the scope of
this review; readers are directed to recent reviews of this vast
animal literature for further perspective [30, 31].

Pgc-1a: Critical Regulator of Thermogenesis

The function of Pgc-1a as a cold-inducible transcriptional coac-
tivator of thermogenesis was discovered through its interaction
with the nuclear receptor peroxisome proliferator activated
receptor gamma (PPARc) in BAT from mice [32]. Pgc-1a is consid-
ered the master regulator of mitochondrial biogenesis because
it has a critical role in regulating mitochondrial content and res-
piration [32, 33]. Pgc-1a is also a critical regulator of BAT ther-
mogenesis, and its absence in brown adipocytes is associated
with a gross inability to activate the program of gene expression
that generates thermogenesis in response to cold [33, 34].

Pgc-1a shares high (93%) sequence homology between hu-
mans and rodents (Fig. 1). Knockout mouse models reinforce
the central role of Pgc-1a in thermogenesis. Mice lacking global
Pgc-1a activity have reduced mitochondrial gene expression in
mitochondrial dense tissue, including BAT, heart and skeletal
muscle, and increased cold sensitivity [35, 36]. Although we
know of no BAT specific Pgc-1a mutant mammal models, mice
with a fat-specific knock-out of Pgc-1a have increased cold sen-
sitivity, and decreased RNA expression of Ucp-1, mitochondrial
genes, and substrate utilization genes [37]. Further, in vitro
knock out of Pgc-1a in brown adipocytes in rodents demon-
strates its central role in activating gene expression in response
to sympathetic stimulation under both basal and uncoupled
conditions [38]. Indeed, altered Pgc-1a expression appears to be
a universal response to the environmental factors that alter
BAT thermogenesis, namely cold and diet.

Pgc-1a as a Transcriptional Coactivator

At the molecular level, Pgc-1a is a critical regulator of BAT ther-
mogenesis and is important in the differentiation of brown adi-
pocytes in large part due to its function as a coactivator of
transcription. Transcriptional coactivators do not bind to DNA
directly. Instead, coactivators activate transcription by altering
chromatin structure via histone-acetyltransferase (HAT), deace-
tylase (HDAC), methyltransferase and demethylase, or by alter-
ing pre-initiation complex formation through the mediation of
DNA binding proteins and RNA polymerase II interactions. Pgc-
1a utilizes both mechanisms to facilitate expression of its target
genes and we focus on the former mechanism briefly here.
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Although exhibiting little evidence of HAT domains along its
sequence, Pgc-1a interacts with other HAT-specific coactivators,
including steroid receptor coactivator 1 (SRC-1), the pleotropic
coactivator cyclic adenosine monophosphate (cAMP) response
element (CRE)-binding protein (CBP) and p300; all of these HAT-
specific coactivators increase the ability of Pgc-1a to induce
mRNAs of target genes in mouse fibroblasts [39]. The canonical
nuclear receptor coactivator SRC-3 regulates the expression of
lysine acetyltransferase 2A (Kat2a also known as GCN5), a Pgc-
1a acetyltransferase, to inhibit target gene expression in mouse
liver [40]. SRC-3 �/�mutant mice have increased fatty acid oxi-
dation, oxidative phosphorylation, and energy expenditure phe-
notypes, with a notable upregulation of Pgc-1a in BAT [41]. The
authors also observed increased body temperature in these mu-
tants during cold exposure, suggesting enhanced adaptive
thermogenesis.

The methylation state of histones is regulated by methyltrans-
ferases and demethylases. H3K9 lysine-specific demethylase 3A
(Kdm3a commonly known as Jhdm2a) activates Ucp-1 by binding
to its 5 prime enhancer (PPAR response element) to recruit tran-
scription factors (e.g. Pparc) and coactivators (e.g. Pgc-1a) while re-
ducing H3K9me2 levels in human BAT. Loss of the Jhdm2a
demethylase disrupts beta-adrenergic-stimulated lipolysis and ox-
ygen consumption in the BAT of mice and leads to their obesity
and hyperlipidemia [42].

Pgc-1a also contains activating domains in its carboxyl
terminus, including a PPARc-dependent thyroid hormone
receptor-associated protein/vitamin D receptor-interacting pro-
tein (Mediator) domain, which facilitates DNA bound activator
and transcriptional machinery cross-talk in mouse embryonic
fibroblasts. In addition to transcriptional coactivation, several

domains for mRNA splicing factors (i.e. RNA recognition motifs)
also reside along the carboxyl terminus of Pgc-1a. See Finck and
Kelly [43] for a thorough overview of Pgc-1a coactivators, and for
a review of post-translation modifications mediating Pgc-1a ac-
tivity [44].

Numerous repressors of Pgc-1a co-activation have also been
described (recently reviewed in [45]). For example, Twist-1 di-
rectly binds Pgc-1a protein while recruiting HDAC5 to the UCP1
promoter to suppress histone H3 acetylation which is typically
facilitated by Pgc-1a to induce Ucp1 transcription in mouse
brown adipose tissue [46]. As testament to the importance of
Twist-1 in regulating thermogenesis via Pgc-1a, overexpression
of rodent adipose Twist-1 caused decreased body temperature
and oxidative respiration of brown adipocytes while promoting
diet-induced obesity, and reduced oxidative respiration while
its knock down caused the opposite.

Pgc-1a is a molecular nexus for the transcriptional control of
metabolic activity in BAT. These studies highlight that the ef-
fects of post-translational histone modifications on Pgc-1a pro-
tein activity are coming into focus but their role in BAT in
response to environment remains an outstanding research
need.

Cold-Induced Thermogenesis

Cold exposure is the primary and best characterized environ-
mental stimulus of BAT thermogenesis [47–50]. Seminal work
established that BAT undergoes hyperplasia and hypertrophy in
rats exposed to cold chronically over days to weeks [51–54]. This
adaptive thermogenic phenotype of chronically cold-exposed

Figure 1: signaling factors influencing the Pgc-1a promoter activity and Pgc-1a gene structural comparison, representing 93% amino acid sequence identity between hu-

man and mouse. Promoters, green; exons, orange. The expanded inset is a graphical representation of the human Pgc-1a proximal promoter upstream of the transcrip-

tion start site (TSS). Environmentally induced signaling pathways modulate transcription factors (purple diamonds) with binding sites (yellow) on the human Pgc-1a

promoter. All transcription factor binding consensus sequences here are conserved between human and mouse. Signaling pathways include diet-induced protein ki-

nase B (Akt) activity, which modulates cytoplasmic levels of FoxO1; diet may also regulate Pgc-1a activity through the transcription factor PBX1; and cold stimulates

the b3-adrenergic receptors, leading to PKA regulation of CREB, PPARc, and p38MAPK; cold activates SIRT3, stimulating CREB phosphorylation; cold induced SNS stimu-

lation also transcriptionally activates Pgc-1a through PRDM16 by interacting with the transcription factor ZFP516. ATF2, activating transcription factor 2; IRS, insulin re-

sponse sequence; CRE, cAMP response element; MEF2, myocyte enhancer factor 2; SREBF1, sterol regulatory element binding transcription factor 1.
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mice also includes increased mitochondrial biogenesis and vas-
cularization of BAT [55, 56].

The route from environmental cold signal to physiological
response is relatively well-elucidated in mammals. Cutaneous
cold receptors (e.g. TRPM8, transient receptor potential cation
channel M8) relay sensory information to the hypothalamus,
which excites SNS pre-ganglionic neurons projecting from the
spinal cord to the stellate ganglion and subsequently excites
post-ganglionic SNS neurons extending to interscapular BAT
[57]. Upon this stimulation, norepinephrine is released by sym-
pathetic nerve efferent fibers to activate BAT beta-adrenergic
receptors [32]. These receptors induce transcription of Pgc-1a

and its transcriptional coactivation of Ucp-1, which uncouples
oxidative phosphorylation from ATP production to convert
chemical energy to heat [32]. Much of what is known about the
regulation of Pgc-1a expression has been elucidated from beta-
adrenergic stimuli, and is detailed further below.

Cold-induced beta-adrenergic stimulation activates BAT
thermogenesis by recruiting a number of transcription factors
that induce Ucp-1 and/or Pgc-1a expression. For example, beta-
adrenergic stimulation recruits the binding of sterol regulatory
element binding transcription factor 1 (SREBF1) to a conserved
proximal promoter region of Pgc-1a, driving Pgc-1a expression
in BAT (Fig. 1 [58]). Pgc-1a and Ucp-1 are also transcriptionally
activated by Zfp516 in conjunction with PRDM16 following SNS
stimulation (Fig. 1 [59]).

During cold exposure, beta-adrenergic activation increases
intracellular cAMP which in turn leads to phosphorylation of
activating transcription factor 2 (ATF2) and CREB [60]. Shi et al.
[61] demonstrated that cold (and fasting) exposure induces sir-
tuin 3 (SIRT3), a class III HDAC in mouse BAT, while enforced
SIRT3 expression in human BAT cells contributes to Pgc-1a

upregulation by stimulating CREB phosphorylation (Fig. 1).
Phosphorylation of ATF2 by p38 MAPK and of CREB by protein
kinase A (PKA) facilitates their binding to the Pgc-1a promoter
to activate Pgc-1a transcription (Fig. 1 [60]).

When brown adipocytes are activated by beta-adrenergic
signaling, HDAC1 dissociates from the CRE region of the Pgc-1a

promoter which increases activating H3K27 acetylation at the
CRE region [62]. HDAC1 dissociation from the Pgc-1a promoter
also leads to the recruitment of the H3K27 lysine (K)-specific
demethylase 6A (UTX) and of CBP to the CRE, which decreases
the repressive H3K27 trimethylation of Pgc-1a (Fig. 1 [62, 63]).
These UTX-mediated events increase lipolysis and decrease mi-
tochondrial membrane potential, consistent with thermogeni-
cally uncoupled oxidative respiration [63]. These data
demonstrate that sympathetic activation of brown adipocytes
leads to activating histone modifications that permit transcrip-
tion factor binding to a Pgc-1a response element which induces
Pgc-1a transcription and the thermogenic program.

Diet-Induced Thermogenesis

Early dietary studies in rodents expanded the known function
of BAT thermogenesis beyond protecting against cold to pro-
tecting against obesity and insulin resistance [64]. Delicately
tuned metabolic control of energy intake, utilization, and stor-
age involve glucose and insulin as well as AMP-activated pro-
tein kinase (AMPK) and SIRT1 pathways [65]. Although rodents
with diet-induced obesity generally exhibit decreased SNS activ-
ity and BAT thermogenesis [66], whether a thermogenic mecha-
nism is responsible for whole body energy expenditure is
questioned [67]. However, a study of healthy men at thermo-
neutral temperature demonstrated that those men with

metabolically active BAT had significantly increased diet-
induced thermogenesis and lipid utilization (fat burning) com-
pared with individuals with metabolically inactive BAT, sup-
porting a physiological role of BAT thermogenesis in diet-
induced thermogenesis and overall energy metabolism [68].
Indeed, diet-induced thermogenesis has been shown in mice
maintained at thermal neutrality to be completely contingent
on Ucp-1 activity [69], indirectly suggestive of a regulatory role
for Pgc-1a in diet-induced thermogenesis. This is further sup-
ported in mice engineered to express a mutant transcription
factor forkhead box-containing protein O subfamily 1 (FoxO1,
Fig. 1) in their BAT. These mice were protected from the adverse
effects of high fat diet feeding on diet-induced thermogenesis,
and instead exhibited improved glucose tolerance and insulin
sensitivity, increased body temperature and oxygen consump-
tion, and upregulation of Pgc-1a protein [70].

Several dietary studies implicate a role of dietary fat in mod-
ulating Pgc-1a DNA methylation and mRNA expression. Among
men of low-birth weight, acute (3 days) high fat diet consump-
tion was associated with increased DNA methylation of Pgc-1a

in AT compared with those on a normal diet. Insulin stimula-
tion of these men of low-birth weight who were fed a high fat
diet resulted in increased Pgc-1a mRNA expression in their AT
[71]. These results may reflect modulation of inducible thermo-
genic AT in humans. Similar hypermethylation of the Pgc-1a

promoter occurred in primary human skeletal myocytes in re-
sponse to exposure to excess saturated fatty acids such as pal-
mitate, but not glucose or insulin [72]. This study also indicated
a link between dietary fatty acids and epigenetic modification
by showing that palmitate also reduced Pgc-1a mRNA expres-
sion and mitochondrial DNA abundance dependent on the ac-
tivity of the DNA methyltransferase Dnmt3b in human skeletal
muscle. The functional relevance of these changes was evi-
denced by decreased mitochondrial numbers, area, and respira-
tory chain proteins in the skeletal muscle of these T2DM
patients. As further proof of concept that changes in Pgc-1a

DNA methylation could be functionally relevant, palmitate ex-
posure also increased Pgc-1a promoter methylation, decreased
Pgc-1a mRNA expression, and reduced mitochondrial numbers
in various mouse central nervous system cell types in vitro and
in the brains of humanized mice [73]. These data suggest that
nutrients can lead to signals that modulate Pgc-1a DNA methyl-
ation to influence Pgc-1a expression in several human tissues.
Whether this can modulate the activity of thermogenic AT
should be further evaluated in human subscapular BAT and ro-
dent models.

There are several examples of nutrient-driven epigenetic regu-
lation of Pgc-1a. For instance, flavin adenosine dinucleotide (FAD)
is an essential co-factor in fatty acid oxidation and the respiratory
chain. When FAD synthesis drops, lysine-specific demethylase-1
(LSD1) decreases while H3 acetylation, H3K4 dimethylation and
trimethylation all increase at the Pgc-1a promoter, and both Pgc-
1a expression and oxidative respiration increases in adipocytes
[74]. LSD1 depletion in high fat diet fed mice also increases Pgc-1a

expression [74]. These data support a role of the dietary environ-
ment in modulating adipose Pgc-1a expression and energy expen-
diture via activating histone modifications.

Pgc-1a DNA Methylation Related to Metabolic
Indicators

We know of no human or experimental studies evaluating Pgc-
1a DNA methylation in BAT, but a number of human studies
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have described associations of Pgc-1a DNA methylation in
numerous other tissues with glucose, insulin, and adiposity pa-
rameters. We include those studies in this section as a follow-
up to Section “Diet-induced thermogenesis” given these glu-
cose, insulin and adiposity parameters are commonly modu-
lated by dietary factors.

Maternal fasting glucose and insulin levels during preg-
nancy were correlated with placental Pgc-1a DNA methylation
at two of its cytosine guanine (CpG) dinucleotide sites, and
cord blood glucose was also correlated with high Pgc-1a DNA
methylation in humans [75]. This is consistent with a prior
study demonstrating that maternal glucose levels during preg-
nancy were correlated with the DNA methylation of the Pgc-1a

promoter of placenta and cord blood in humans [76]. The link
between Pgc-1a methylation and metabolic disease risk factors
are also in agreement with earlier findings of a correlation be-
tween DNA methylation of the Pgc-1a promoter and reduced
insulin secretion in pancreatic islet cells from patients with
T2D [77]. Three of these CpG sites on the Pgc-1a promoter had
stable blood methylation status across childhood that was pre-
dictive of later adiposity [78]. One of these CpG sites resides
within a predicted binding site of the transcription factor pre B
cell leukemia homeobox 1 (PBX1) (Fig. 1), and its methylation
strengthened the binding of a putative PBX1 complex there
[78]. Further, in another human study, Pgc-1a promoter meth-
ylation in liver biopsies was positively associated with fasting
insulin and insulin resistance while inversely associated with
Pgc-1a mRNA and mitochondrial DNA levels in those biopsies
[79]. Similarly the promoter of Pgc-1a has been shown to be
hypermethylated in the skeletal muscle of type 2 diabetics
compared to healthy people, and among those T2D patients,
these methylation levels were inversely correlated with Pgc-1a

mRNA and mitochondrial DNA abundance [72]. However, glu-
cose tolerance of first degree relatives of T2D patients was not
correlated to Pgc-1a promoter methylation in skeletal muscle
[80]. This may reflect a larger role for environment over genet-
ics in modulating observed relationships between Pgc-1a pro-
moter methylation and metabolic indicators observed in other
studies.

Excess Pgc-1a DNA methylation is consistent with a closed
chromatin state and a silencing of the Pgc-1a thermogenic pro-
gram however whether Pgc-1a DNA methylation causes a
closed chromatin state that quiets the Pgc-1a thermogenic pro-
gram in humans remains to be demonstrated empirically.
Linking BAT phenotypes to DNA methylation of Pgc-1a in re-
sponse to the environment is technically challenging but re-
mains vital for establishing a causal role for epigenetic
mediation of environmental influences on BAT thermogenesis.

Conclusion

Pgc-1a is a critical regulator of BAT thermogenesis that inte-
grates environmental signals with physiological responses by
regulating gene expression. Most research into Pgc-1a activity in
BAT has focused on its expression in relation to downstream
signaling via transcriptional coactivation and resulting physio-
logical effects. The environmental signals responsible for Pgc-
1a-dependent BAT thermogenesis act through discrete signal-
ing pathways (Fig. 1). Most of these pathways, such as PKA, Akt,
p38MAPK, are redundant in that they also regulate Pgc-1a pro-
tein levels.

In contrast, relatively little is known of the epigenetic mech-
anisms regulating Pgc-1a expression in BAT. Indeed, there is a
paucity of data on how environment signals may induce

epigenetic and other regulatory events to influence Pgc-1a ex-
pression and thermogenesis in BAT. The evidence indicates
that modulation of Pgc-1a expression by the environment is reg-
ulated by integrated histone modifications and transcription
factor activity. Most of this evidence arises from the cold envi-
ronment. Whether the same interactions of histone modifica-
tions and transcription factor activity are also involved in diet-
induced Pgc-1a expression in BAT remain to be seen. Human
studies across pancreas, skeletal muscle, liver, placenta, and
both cord- and adult-blood indicate Pgc-1a DNA methylation
and RNA expression are inversely associated with each other in
the context of thermogenic substrates and metabolic diseases.
Future studies should evaluate these associations in thermo-
genic AT to determine if the surprising consistency across hu-
man tissues extends to BAT. There are a number of
transcriptional regulatory features that have not been attrib-
uted to Pgc-1a activity in BAT yet, including noncoding RNAs
and DNA methylation. The highly inducible nature of Pgc-1a

suggests alternative mechanisms await discovery.
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