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The models of CMOS RF inductors are reviewed and improved for design. A compact

frequency-independent equivalent circuit is developed for symmetric inductors used in

VCOs. The equivalent circuit captures three basic parasitic effects, current crowding,

substrate loss, and distributed capacity. All values of LCRM originate from the inductor

geometry with a minimum number of fitting parameters.

Simple optimizations are attempted for maximum Q at the operating frequency.

Three representative inductors are analyzed using the equivalent circuit. Good agree-

ments have been obtained between the measurement result and the model. The opti-

mization processes prove the optimality of the three sample inductors.
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CHAPTER 1

Introduction

1.1 Background

Although researchers have been searching for inductorless RF solutions recently, on-

chip spiral inductors are still widely used in matured RF designs, such as VCOs and

LNAs. Aside from the RF domain, more stringent bit-error-rate requirement due to

the increasing wireline data rates results in the necessity of using inductors in wireline

transceivers. However, compared to other on-chip devices, inductors usually occupy

the most area. The high cost of chip area in modern processes urges the optimization

of inductors in two aspects. Given a limited area, Can we design an inductor with

the highest Q-factor? Alternatively, without sacrificing Q-factor too much, can we

minimize the area of an inductor with a fixed inductance. Like all other engineering

problems, optimization starts from good models.

1.2 Literature Review

The modeling of on-chip inductors has been studied intensively since 1990s, when

Meyer realized the first integrated inductor [4]. There are generally three types of mod-

els, distributed models, frequency dependent models, and compact frequency indepen-

dent models. Distributed models, such as [5], are very accurate but unnecessarily com-

plicated. Frequency dependent models [6, 7, 8, 9, 1] are unphysical and can only be ap-

plied at one frequency. Compact frequency independent models [10, 11, 12, 13, 14, 15]

combine simplicity and accuracy, which offer the most insight and are thus widely
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adopted by designers. The frequency independent model is developed via either pa-

rameter fitting based on electromagnetic simulations (EMS) or direct calculation from

physical geometries. Although parameter fitting provides better agreement with the

inductor which is treated as a black box, the process is very sensitive to small errors.

Some fitted values of the circuit elements could depart far from reality merely to min-

imize the mean-square error. The lack of linkage between the fitted equivalent circuit

and actual physics turns this modeling method useless for designers. On the other hand,

the latter method calculates each circuit element based on physics of the inductor, turn-

ing the circuit model useful for design. In this work, we hence focus on physics-based

frequency independent model.

The optimization of inductors was first studied in [16] using geometric program-

ming. Later works used other optimization algorithms, such as discrete variable search

[17] and sequential quadratic programming [18]. There were two common problems

in these works. Firstly, most attention was put onto the optimization algorithms, which

could not explain why an inductor was optimal. In reality, the optimization problem re-

lated to inductors only has 3∼ 4 variables if defined properly, so complicated searching

algorithms may not be needed. Secondly, the equivalent circuits used in those works

were either complicated or inaccurate. This work will apply the idea of optimization

using the improved physical frequency independent equivalent circuit.

1.3 Structure of This Work

Ch. 2 lists all the relevant equations for inductances and magnetics. Ch. 3 introduces

the construction of the physics-based equivalent circuit, in terms of the series loss, the

substrate parasitics, and the inter-winding capacitance. Ch. 4 clarifies and compares

the definitions of the Q factor. Three example inductors are studied using the model in

Ch. 5.
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CHAPTER 2

Formulas for Inductances and Magnetics

2.1 Inductances of Filaments

Figure 2.1: Two Coupled Straight Conductors

The mutual inductance of two straight conductors of length l ( l
d � 1) with square

cross section can be calculated according to the definition of the geometric distance

[19] and the formula in [20] (Fig. 2.1).

M ≈ µ0

2π
l
[
ln

2l
d
−1
]
≈ µ0

2π
l · ln2l

d
. (2.1)

The self-inductance of a single straight rectangular conductor of width a and thick-

ness b can be calculated by

L =
µ0

2π
l
[
ln

2l
0.2235(a+b)

−1+
0.2235(a+b)

l

]
≈ µ0

2π
l · ln 2l

0.2235(a+b)
. (2.2)

(2.1) and (2.2) will be useful for the modeling of distributed effects such as the skin

effect and the proximity effect.
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2.2 Mechanism of the Spiral inductor

Figure 2.2: Conceptual Equivalent Cir-

cuit of a Two-turn Spiral

Figure 2.3: T-π Transformed Equiva-

lent Circuit of Fig. 2.2

A multi-turn inductor takes advantage of the positive mutual coupling between

turns. Fig. 2.2 illustrate the principle of positive mutual coupling. For a two turn in-

ductor, the first turn and the second turn are modeled by L1 and L2 respectively, and

the mutual inductance between them can be modeled by M. Since the L1 and L2 are in

series, the equivalent circuit can be transformed into a T-network shown in Fig. 2.3. As

a result, an extra inductance of 2M is added onto L1 +L2, which means that a shorter

length of metal is necessary for a given total inductance. If the mutual coupling coeffi-

cient between any pair of turns in a multi-turn inductor were 1, the inductance could be

theoretically proportional to N2. However, the finite width and spacing of an inductor

limit the coupling coefficient between adjacent turns to some value under 0.75. The

coupling coefficients between non-adjacent turns are even smaller. Thus, the induc-

tance increase sub-quadratically as a function of N.

2.3 The formula for DC inductance

The most accurate way to calculate the inductance is the Greenhouse’s Method[21],

which essentially uses the idea summarized in Ch. 2.2. However, Greenhouse’s Method

is tedious and cannot be programed into the optimization algorithm easily. Numerous

works have presented compact formulas of the DC inductance with measurable vari-

4



ables such as diameter(din, dout), trace width w, number of turns N, and spacing s. In

this work, the formulas from [22] are used:

L =
µ0N2davg

2

(
ln

2.46
ρ

+0.2ρ
2
)
, (2.3)

where

davg =
〈

din,dout

〉
(2.4)

ρ =
dout−din

dout +din
. (2.5)

Note that (2.3) uses the fill ratio ρ as a discrepancy factor to capture the sub-

quadratic dependence of the inductance on N.

2.4 Off-axis Fields Arising from a Loop of Current

Figure 2.4: A Loop of Current

The general expression of the vertical H fields on the plane where a loop of current

lays can be written in the following way, whose the variables are shown in Fig. 2.4 [23]:

Hz =
2I√
Q

[
F(k)+

a2− r2

Q
E(k)

1− k2

]
, (2.6)

where

Q = a2 + r2, (2.7)

k =

√
4ar

(a+ r)2 . (2.8)

F and E are elliptic integral of the first and the second kind, respectively. These equa-

tions will be useful in modeling the proximity effect.
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CHAPTER 3

Construction of the Equivalent Circuit

3.1 Revisiting Skin and Proximity Effects

At high frequency, the current in a conductor does not distribute evenly. This current

crowding effect is a well-known distributed effect that cannot be modeled fully with

finite number of frequency-independent circuit elements. The mechanism of current

crowding is the same as that of the current division in a parallel RC network. If a

sinusoidal-steady-state current stimulus is forced to an impedance, the current is going

to divide between R and C such that the driving point impedance |(R|| 1
jωC)| is mini-

mized.

Consider a loop of conductor excited by a sinusoidal-steady-state current source

(Fig. 3.1). The current can flow through any part of the conductor. According to

Ampere-Faraday’s Law, the back emf created by the changing magnetic flux encir-

cled by the conductor can be modeled as an inductor L. The finite resistivity of the

conductor can be modeled as a series resistor R. At low frequency, R dominates, and

the current will flow uniformly such that R ≈ |Zin| is minimized. When the frequency

increases, ωL starts to dominate R, so the current will tend to flow around the inner

loop to minimize the enclosed flux and thus ωL. This comes at a price of increasing R,

because the current flows through less cross-section area than it does at low frequency.

However, the increase in R is still desensitized by ωL, even if L is decreased (Fig. 3.2).

Hence, the overall impedance |R+ jωL| is minimized.

There are two kinds of current crowding effects, the skin effect and the proximity

6



Figure 3.1: Loop Conductor and

Equivalent Circuit

Figure 3.2: Illustration of the

Impedance

Figure 3.3: A Single Conductor Figure 3.4: Bundled Conductors

effect. The following definitions for these two effects are summarized and generalized

based on the definition given in [24].

The skin effect is the redistribution of currents in a straight single conductor or a

group of bundled conductors. The magnetic field distribution, before or after the onset

of skin effect, is always spatially odd. The distribution of currents is always spatially

even. The return path of the straight conductors is the whole space at infinity. Fig. 3.3

shows a simple example of a straight circular conductor with its odd magnetic fields.

Fig. 3.4 presents an extended example of straight conductors.

The proximity effect is the emergence of eddy currents in a non-current-carrying

straight conductor or a group of bundled conductors due to an externally applied field.

7



Figure 3.5: External Magnetic

Field Caused by Winding
Figure 3.6: A Numerical Example of Fig. 3.5

The externally applied field is an imaginary term for the ease of modeling. In reality,

the external field is effectively caused by winding up a straight conductor (Fig. 3.5). In

general, the external field due to winding is not uniform. Fig. 3.6 shows the vertical H

fields normalized to I of a 10µm wide conductor when left straight or wound up to a

loop of radius 80µm. The difference between the H fields under these two conditions

is the external field due to winding.

The concept of the AC resistance Rac is essential in understanding the current

crowding effect. Consider a rectangular conductor carrying a non-uniform sinusoidal-

steady-state current. The distribution of the current can be described by current density

J = J0e jωt as a function of position. The total average power per unit length can be

expressed as

Pav =
〈∫

A
Re(J0e jωt) ·Re(J0e jωt) ·ρ dA

〉
=

ρ

2

∫
A
·J0 · J0 dA =

1
2
|I|2 ·Rac, (3.1)

where

I =
∫

A
J0 dA. (3.2)

Hence, Rac is defined as an effective resistance which carries the same total current as

the original conductor does and consumes the same amount of power. In light of this

definition, the overall current distribution can be classified into a spatially odd part and

8



Figure 3.7: Even Mode Proximity Effect (left) and Odd Mode Proximity Effect (right)

a spatially even part [25]:

Pav =
ρ

2

∫
A
(Jeven + Jodd)(Jeven + Jodd) dA =

ρ

2

∫
A
|Jeven|2 dA+

ρ

2

∫
A
|Jodd|2 dA (3.3)

∫
A

Jodd · Jeven dA = 0, (3.4)

because Jodd · Jeven is an odd function across the area of integration.

As discussed previously, the skin effect only causes even mode loss, since the cur-

rent distribution is always even, but the proximity effect is somewhat complicated.

Fig. 3.7 illustrates the difference between an even mode proximity effect and an odd

mode proximity effect. The odd proximity effect induces an even mode loss in the

conductor, which is no longer orthogonal to the even skin effect loss. If the externally

applied field is vertical to the conductor, there is a Taylor expansion of the magnitude

of the field as a function of the horizontal position. The even terms will cause odd

mode loss, while the odd terms will cause even mode loss. If the higher order terms

in that Taylor series can be neglected, and only zeroth-order term remains, the proxim-

ity effect loss is orthogonal to the skin effect loss and can be modeled separately. In

typical on-chip inductor windings with multiple turns, it is good enough to assume that

the there is a uniform magnetic field applied vertically to each turn, which is caused

by the winding. The magnitude of that uniform field is the average value of the total

magnetic field across the width of each turn. Note that if a single conductor is straight

and isolated, the average of the vertical magnetic field will be zero, which goes back to

9



the pure skin effect case. Numerous publications have separated the skin effect and the

proximity effect, but the explanation and justification of their approximations are given

here.

Figure 3.8: Conceptual Equivalent

Circuit for a Conductor
Figure 3.9: Nomenclatures for

Calculation

Besides the change in the real part of the impedance at high frequency, conductors

also have slightly lower effective inductance at high frequency. This effect will directly

guide the construction of the equivalent circuit for the skin effect and the proximity

effect. To begin with, the distinction between the internal inductance and the external

inductance should be clarified. The internal inductance Lint models the magnetic energy

stored by the magnetic field within the conductor. The external inductance Lext simply

captures all the magnetic energy stored outside of the conductor, as if all the currents

are flowing on the surface of the conductor. (Fig. 3.8)

Fig. 3.9 shows a long circular straight wire carrying a uniformly distributed current.

The H field in the conductor can be found by Ampere’s Law to be

H(x) =
1

2π
· x

r2 I. (3.5)

The total magnetic energy in the conductor per unit length is then

Em =
1
2

µ0

∫ 2π

0

∫ r

0

( 1
2π
· x

r2 I
)2

dxdθ (3.6)

=
1
2

µ0

8π
× I2 (3.7)

=
1
2

LintI2 (3.8)

10



Then, Lint = 50nH/m at DC.

Figure 3.10: A Semi-infinite Slab

Consider the same long straight wire under full skin effect. Since all currents flow

on the surface of the wire, the wire can be seen as a semi-infinite slab with all the

currents clinging on the top (Fig. 3.10). Solving EM equations with proper boundary

conditions reveals the current distribution:

J(z) = J0e(−(1+ j) z
δ
), (3.9)

where δ is the skin depth of the material. The total current can be integrated as

I = w
∫

∞

0
J dz =

J0wδ

1+ j
(3.10)

Rac can be calculated by (3.1) as ρ

wδ
. The H field within the slab will be

H(z) =
∫

∞

z
J0e(−(1+ j z′

δ
)) dz′ (3.11)

= J0 ·
δ

1+ j
· e(−(1+ j) z

δ
). (3.12)

The total stored magnetic energy per unit length can then be calculated:

µ0

∫
A
|H|2 dA = µ0w

∫
∞

0
J2

0
δ 2

2
e−

2z
δ dz (3.13)

= µ0wJ2
0 ·

δ 2

2
· δ

2
(3.14)

= Lint ·
J2

0 w2δ 2

2
(3.15)
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Then,

Lint =
µ0

w
δ

2
=

Rac

ω
(3.16)

ωLint = Rac. (3.17)

Hence, when the skin effect is felt fully in a circular wire, the internal impedance

Zint = Rac + jωLint has a phase of 45◦ and a magnitude proportional to
√

f . In [26],

Wheeler reached the same conclusion using the Transmission Line Theory and general-

ized this result for any conductor with a smooth surface. Nevertheless, when the shape

of the conductor is rectangular, no simple method can be applied to find the DC inter-

nal inductance or the relationship between Rac and ωLint at high frequency. [27] used

numerical methods based on the magnetic Green’s Function to find the total magnetic

energy within the rectangular conductor and thus the DC internal inductance per unit

length as a function of the aspect ratio tm
w (Fig. 3.11). (3.18) provides a fitted polynomial

to the curve.

Lint

l
= 0.045+200

tm
w
−443

tm
w

2
+724

tm
w

3
−824

tm
w

4
+537

tm
w

5
−147

tm
w

6 (nH
m

)
(3.18)
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Figure 3.11: Lint of Rectangular Conductors at DC

[28] used similar numerical methods to find the relationship between Rac and ωLint

at high frequency. The results show that the phase angle is always beteen 30◦ and 45◦

for all aspect ratios, and |Zint | at high frequency is still proportional to
√

f .
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Although [28] did not give a closed-form solution of the phase of Zint at high fre-

quency, it is actually unnecessary to do so. Fig. 3.11 shows that the DC Lint of a rectan-

gular conductor never exceeds 50nH/m, which is much smaller the total DC inductance

(Lext +Lint) of almost any conductor. This indicates that Lac ≈ Lext even at infinite fre-

quency, when Lint is lost completely due to the skin effect. Hence, it is only necessary

to model Rac accurately in the subcircuit for the skin effect. The phase of the impedance

of the subcircuit can be chosen to be anywhere between 30◦ and 45◦.

Figure 3.12: Filaments of A con-

ductor
Figure 3.13: Modal Network

Figure 3.14: Transformation of the Modal Network so that All Elements ∝ Length

Since Rac is more important than Lint in describing the skin effect, an accurate way

of estimating the resistance ratio Rac
Rdc

is needed for the development of the subcircuit.

In [29], Silvester proposed the Modal Network Theory to calculate Rac for rectangular

conductors. Briefly, a long conductor is divided into small parallel filaments in which

the currents are uniform (Fig. 3.12). The self and mutual inductances of those filaments

13



can be calculated using (2.2) and (2.1), and the modal network is shown in Fig. 3.13.

Since a common inductance of any value can be subtracted from all the L′s and M′s

in the parallel network and added in series, all L′s, M′s and R′s in the new parallel

network are proportional to length l (Fig. 3.14). The common inductance in series can

be discarded, because only the parallel branches with resistors can contribute to the

real part of the total impedance. Rac per unit length can then be found by solving

the network matrix. The Modal Network Theory is completely general for any aspect

ratios of the rectangular conductors. However, it is computationally too expensive to

divide the rectangular conductors into filaments every time and solve large matrices. In

dealing with skin-effect problems, it is often convenient to make use of the principle

of similitude [30]. The principle states that Rac
Rdc

is only a function of a normalized

variable
√

A
δ

. In this work, a scaling factor
√

2
π

is added to match the results presented

in [30]. Then, the universal curves can be plotted as a function of the normalized

variable x =
√

2
π
×
√

A
δ

for different aspect ratios w
tm

.

Since the dimensions of on-chip interconnects are on the order of µm, it is custom-

ary to pick the filament dimension to be 0.1µm×0.1µm. To apply the Model Network

Theory, the skin depth should be greater than 0.2µm, such that the current within the

filament is roughly uniform. The upper limit of x for on-chip inductors is picked ac-

cording to the worst case geometry. The thickness of top metal in modern RF CMOS

processes are smaller than 4µm, and the width of inductor traces rarely exceeds 40µm.

The skin depth at 10GHz for copper is 0.662µm. Then,

xmax =

√
2
π
×
√

40×4
0.662

≈ 15 (3.19)

Back to the filament model, √
2
π
×
√

w× tm
0.2

≥ 15 (3.20)

√
w× tm ≥ 4µm (3.21)

A MATLAB program is written to calculate Rac
Rdc

for all the cases listed in Table 3.1.

The results are plotted in Fig. 3.15. Note that at very high frequency, the currents in

14



a rectangular conductor will concentrate more on the edges, so Rac will be larger than
ρ

2·δ (w+tm)
, which is captured by a scaling factor k on the order of 1.3∼ 1.8 [30].

Table 3.1: Test Cases for the Universal Curves of Skin Effect

w
tm

w tm k Asymptote at Very High Frequency

1 5 5 1.32 0.414x

2 7 3.5 1.3 0.384x

4 10 2.5 1.35 0.338x

8 16 2 1.5 0.295x

16 24 1.5 1.7 0.243x

25 25 1 1.75 0.211x

0 2 4 6 8 10 12 14
1

2

3

4

5

6

Rac

Rdc

Figure 3.15: Universal Curves of Rac
Rdc

for Different Aspect Ratios

The universal curves in Fig. 3.15 guide the design of the equivalent subcircuit for

the skin effect. Zint ∝
√

f after the onset of skin effect, but no circuit element can give

an impedance with a
√

f dependency.

In [31], a RC ladder circuit was synthesized to expand the tuning range of a relax-

ation oscillator (Fig. 3.16). The input impedance Z of the RC ladder has alternating

poles and zeros, so the asymptote of |Z| is a segmented line whose slope is alternating

between 0 and -1 (Fig. 3.17). Specifically, If the horizontal segments extent half of the
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range as that of the tilted segments, the net curve will have a slope of −2/3 approxi-

mately [31]. At very high frequency, the resistors at all ladders are in parallel, and |Z|

converges to R0||R1||R2||R3. The phase of Z is 0o at DC or very high frequency. At

intermediate frequencies, the phase angle stays at a constant value depending on the

relative spacings of poles and zeros.

Figure 3.16: RC Ladder
f 10f 100f

Figure 3.17: Impedance of RC

Ladder

Figure 3.18: Cauer Type LR Ladder

As discussed previously, the internal impedance of a conductor Zint has a magnitude

proportional to
√

f and a constant phase angle < 45o. The concept of synthesizing a

ladder network to give a non-integer-frequency-dependent impedance can be used to

model Zint of a conductor. Fig. 3.18 shows the counterpart of the RC ladder network

in, an LR ladder [32]. Once the positions of the three poles and three zeros of the

input admittance are known, all L′s and R′s in the ladder can be calculated by the Cauer

Type Synthesis method. Previous calculations show that Im(Zint) is less important than
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Re(Zint). As long as the phase of Zint is less than 45o, Im(Zint) is always dominated

by ωLext . Hence, only Re(ZRL) needs to be fitted to Rac. Curve fitting tools shall be

used to calculate the most suitable positions of poles and zeros. Nevertheless, in this

work, example positions of poles and zeros as a function of conductor’s geometry are

empirically proposed to fit the universal curves in Fig. 3.15. (3.22) - (3.25) lists all the

related estimation of poles and zeros for different aspect ratios. Future work might be

necessary to give a more accurate prediction of the positions of poles and zeros as a

function of the conductor’s geometry, but this work still demonstrates a theoretically

correct approach to model the skin effect.

ωz1 = 2π

√
w
tm
· 22ρ

2wtm ·µ
, (3.22)

ωp3 = 2π
152ρ

2wtm ·µ
, (3.23)

χ =
(

ωp3

ωz1

) 1
5
, (3.24)

ωp1 = χωz1, ωz2 = χ
2
ωz1, ωp2 = χ

3
ωz1, ωz3 = χ

4
ωz1, (3.25)

Zint ≈ ZLR = Rdc
(1+ s

ωz1
)(1+ s

ωz2
)(1+ s

ωz3
)

(1+ s
ωp1

)(1+ s
ωp2

)(1+ s
ωp3

)
. (3.26)

Lext can then be added in series with the LR ladder to model the conductor completely.

Figure 3.19: Setup for Proximity Effect Calculations

The proximity effect can also be modeled by the equivalent circuit. Since the mag-

netic field applied on each turn of the inductor can be model as uniform, the dependence

of the odd mode loss on frequency can be determined, and the corresponding equiva-
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lent circuit can be constructed. Based on Dowell’s Method [33], consider a rectangular

conductor subject to a vertical uniform H field, as shown in Fig. 3.19. Although the

induced odd mode eddy current density is not necessarily only a function of the hori-

zontal position x, neglecting its dependency on y significantly reduces the complexity

of calculation and reveals important insights. Due to geometric symmetry, only the

current distribution within half of the conductor needs to be modeled. The current dis-

tribution in the other half will simply be the anti-symmetric version. At x, the total flux

to the left of x due to the current to the right of x is defined as φ(x). At x+∆x, the flux

will increase by an incremental amount

∆φ =−µ0 ·H ·∆x · ltt , (3.27)

where lt is the total length of the conductor. The voltage across every incremental layer

in Fig. 3.19 is

V = Jρltt + jωφ(x). (3.28)

Since all the incremental layers are in parallel, (3.28) should not depend on x, so

dV
dx

= 0 = ρltt
dJ
dx

+ jω
dφ

dx
. (3.29)

The H field at x can be calculated by

H =
∫ x

0
J(x′)dx′ =−∆φ

∆x
· 1

µ0ltt
. (3.30)

(3.30) and (3.29) implies that
d2J
dx2 =

( jωµ0

ρ

)
J (3.31)

(3.31) is the classic 1-D Helmholt Equation. [33] and [34] contain the detailed process

of solving this equation using proper boundary conditions and general solutions. [35]

conclude the results by introducing a proximity loss factor such that

Pprox = G|H|2ρ (3.32)

where Pprox is the power loss due to proximity effect per unit length. The externally
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Figure 3.20: Proximity Factor

applied field H and ρ are both constant, and G is a function of another similitude

variable ξ =
√

π

4 ·
w
δ

(Fig. 3.20). Note that the slope of G is 4 when ξ � 2 and is 1 when

ξ � 2. Since ξ ∝
√

f , it can be concluded that the proximity effect loss is proportional

to f 2 when the δ � w and is proportional to
√

f when δ � w. In [34], plots of current

density as a function of x show that the eddy current due to proximity effect tends to

cling to the two sides of the conductor. At low frequency, the eddy current density

decreases linearly from the sides to the center. At high frequency, the eddy current

density decays exponentially from the sides to the center and can be approximated as a

uniform current of thickness δ . [36] also reached this result using basic electromagnetic

equations.

In [13], a coupled LR circuit was introduced to model the frequency dependence of

proximity effect loss (Fig. 3.21). The mutual inductance Meddy captures the magnetic

flux enclosed by the eddy currents, and Leddy corresponds to the self-inductance of

the eddy currents. The value of Leddy can be approximately calculated using (2.1) by

assuming that the eddy currents are two current filaments of width w
α

with a separation

of
(
1− 1

α

)
w (Fig. 3.22):

Leddy =
µ0

π
l · ln(α−1). (3.33)

α can be assumed to be 5 for practical modeling. Reddy then models the loss due to the

eddy current. The weakness of such couple LR circuit is that magnitude of the trans-
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Figure 3.21: Coupled LR Circuit
Figure 3.22: Illustration of

Eddy Current in a Conductor

Figure 3.23: Equivalent Circuit to Calculate Leddy

formed impedance |Zin| is not proportional to
√

f at high frequency. In [15], the resistor

Reddy is changed to the same LR ladder in Fig. 3.18 to generate a
√

f dependence on

the proximity effect loss. At low frequency, the LR ladder on the load side behaves

like a single resistor, so |Zin| is still proportional to f 2 as predicted by electromagnetic

analysis.

The most accurate way to pick the L′s and R′s in the coupled LR ladder circuit is

still curve fitting, but [15] proposed a simplified solution (Fig. 3.24). The eddy current

within the conductor can be treated as a current loop circulating two halves of the

conductor. If the LR ladder in Fig. 3.18 models the loss of the whole conductor, it can

be divided into two parallel parts with all L′s and R′s multiplied by 2. Leddy/2 is in

series with two LR ladders, so that the circulating eddy current sees a self-inductance

of Leddy. Leddy/4 is subtracted from Lext of the original equivalent circuit so that the
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Figure 3.24: The Complete Circuit Modeling the Skin and the Proximity Effect

original LR ladder is intact in absence of the proximity effect. The emf induced by the

flux enclosed by the conductor is modeled by a differential mutual inductance Meddy/2

coupling L0 and L′eddys, because the proximity effect is an odd mode loss. The results of

case studies in Ch. 5 show that this approximation is good enough for practical designs.

3.2 A simplified substrate model

The equivalent shunt sub-circuit for the silicon substrate is developed using simple

reasoning (Fig. 3.25). The capacitor Cox models the displacement current in the oxide

layer between the top metal and the silicon substrate. Since the silicon substrate is semi-

conducting, the E field will produce real current in the substrate, which is modeled by

Rsi. In addition, Csi is inserted in parallel with Rsi to model the relaxation behavior of

silicon. The relaxation time constant, which is should be equal to RsiCsi, is

τsi = ρsiεsiε0 = 0.1×11.9× ε0 ≈ 10 ps⇐⇒ 15 GHz. (3.34)

(3.34) means that the silicon substrate behaves more like a resistor in typical CMOS

RF frequency (0.1 GHz∼ 10 GHz). Beyond RF, the relaxation capacitance shunts the

resistance, and Cox in series with Csi allows a quasi-TEM mode transmission. In [6],

Yue proposed the expressions for Cox, Rsi and Csi in terms of the inductor geometry
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Figure 3.25: Cross Section of the Inductor
Figure 3.26: Aspect Ratios

based on the uniform parallel plate field model as follow

Cox = εoxε0 ·
Ametal

tox
, (3.35)

Csi = εsiε0 ·
Ametal

tsi
, (3.36)

and

Rsi = ρsi ·
tsi

Ametal
, (3.37)

where Ametal is the total area of the metal traces. This model can easily be used by

designers. However, a prerequisite of this model is that the lateral dimension of the

metal area is much larger than the thickness of the substrate (Fig. 3.26). Such aspect

ratio was probably prevalent in old designs 20 years ago, but as the operating frequency

increases, L shrinks. In today’s design, small single-turn or two-turn inductors are

commonly seen, and the electric fields under those inductors are predominantly fringing

fields .

To take the fringing fields into consideration, many researchers embrace the model

of microstrip transmission line on Si-SiO2 system, where the complete electrical fields

in the substrate are captured [37]. Maxwell’s equations are solved to obtain three ba-

sic modes of propagation and their corresponding per-unit-length equivalent circuit

(Fig. 3.27). In simple words, dielectric quasi-TEM mode happens on highly resistive
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Figure 3.27: Three Modes of Operation and Equivalent Circuits [3]

silicon at very high frequency (> 10 GHz). Skin effect mode corresponds to the ef-

fect of substrate eddy currents that was qualitatively described in papers on inductor

modeling [38]. The per-unit-length equivalent circuit of the skin effect mode includes

a frequency-dependent resistance and a frequency-dependent inductance, which model

the loss and the image effect due to the lateral currents in the highly conductive sub-

strate. This approach is equivalent to modeling the substrate eddy current under the

inductor with a coupled RL loop (Fig. 3.21).

According to Fig. 3.27, typical RF circuits (0.1 GHz ∼ 10 GHz) built on modern

lightly doped silicon substrate (10Ω · cm) operate in the transition region between slow

wave mode and quasi-TEM mode. Hence, it is no longer necessary to model the sub-

strate eddy currents, which correspond to the skin effect mode. The per-unit-length

equivalent circuits for slow wave mode and quasi-TEM mode prove our initial reason-

ing, as in the silicon substrate can be modeled as a RC network. Based on the analysis

in [37], the per-unit-length circuit parameters are

Cox =
ε0εe f f (εox, tox)

F(tox,w)
(3.38)

Csi =
ε0εe f f (εsi, tsi)

F(tsi,w)
(3.39)

Rsi =
2F(tsi,w)ρsi

1+
[
1+
(10tsi

w

)−1/2
] (3.40)
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where F and εe f f are

F(t,w) =


1

2π
ln
(8t

w
+

w
4t

)
if

t
w
> 1,

[w
t
+2.42− 0.44t

w
+
(

1− t
w

)6]−1
if

t
w
< 1,

(3.41)

εe f f (ε, t) =
ε +1

2
+

ε−1
2
√

1+10t/w
, (3.42)

which are widely used in existing inductor models. However, the model in [37] is for

a single straight transmission line on silicon, which is no longer a valid situation for

spirals. As shown in Fig. 3.28, the E fields that come from the sandwiched turns are

more confined than those from a single transmission line. If one calculated the circuit

parameters assuming the inductor were a straight trace of the same length, he would

have overestimated the actual substrate conductance. This error does not appear as

an obvious one, because shunt loss and capacitance are typically overwhelmed by the

series loss and inter-winding capacitance on lightly doped silicon.

Figure 3.28: E Fields of Multiple Conductors over Silicon

To resolve the aforementioned problem, [15] added another fitting parameter de-

pending on the coupling coefficient between adjacent segments. Specifically, the ef-

fective depth and permittivity of the substrate under the sandwiched turns are adjusted

back to the values in absence of the fringing fields. The method is creative and accurate,

but it is still too complicated for a simple design-oriented analysis.

As shown in Fig. 3.29, the concept of spreading resistance is borrowed from the

design of point-contact rectifiers [39]. When a circular point contact with a radius r
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Figure 3.29: Large Contact (left) and Point Contact (right)

is placed on a semi-infinite substrate whose thickness tsi � 2r, the total resistance to

ground is

R =
ρsi

4r
, (3.43)

Notice that the resistance increases inversely as the radius of the contact, not inversely

as the area, and the spreading resistance effect is felt in full [39]. But when tsi �

2r, resistance to ground is inversely proportional to the area, and the parallel-plate

resistance is predominant. In [40], field equations were solved for a universal equation

of resistance from a contact to ground for all aspect ratios of r to tsi as follow

R =
ρsi

2πr
tan−1

(k(tsi)tsi

r

)
, (3.44)

where

k(tsi) = 1+
1

1+ tsi/r
. (3.45)

A square contact can simply be approximated as a disk contact with the same area.

Now, what if the contact is a ring, like the shape of an inductor, instead of a solid

disk? This problem has been studied by measurements in [41, 42] to predict the thermal

spreading resistance of a ring-geometry diode. Due to the well-known analogy between

thermal laws and electrical laws, the results of the study can be direcly used. Consider

a disk of radius r, which feels spreading resistance fully. The total resistance of this

contact will increase if a hole of radius b was cut in it. Fig. 3.30 shows the measured

change in resistance with respect to the relative size of the hole. Interestingly, the
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Figure 3.30: Spreading Resistance of a

Ring Normalized to that of a Disk

Figure 3.31: Generalization of Fig. 3.30

resistance is only increased by less than 20% if the radius of the hole is less than 90%

of the radius of the disk.

Can this expriment be generalized to cover the situation where the dimension of

the original disk is already comparable or much larger than the substrate thickness? A

simple simulation is setup in ADS Momentum to measure the total impedance from a

ring of metal to ground with customized substrate thickness. The simulated changes in

the total resistance to ground for 2r ≈ tsi and 2r� tsi are shown in Fig. 3.31

Figure 3.32: E Fields of Closely Coupled Conductors

The above three curves in Fig. 3.30 and Fig. 3.31 imply that the total spreading

resistance of a ring will not be drastically different from that of a disk with the same

outer dimension. Note that this ratio is typical for normal spiral inductors, if rin/rout <
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0.8. Also since the inter-turn spacing is usually smaller than the trace width, the E

field lines originating from the traces will converge in the substrate, as if the inter-turn

space is not present (Fig. 3.32). Then, the total substrate resistance Rsi can be estimated

simply from the outer and the inner radius of the inductor. Once Rsi is determined, Csi

will just be τsi/Rsi.

3.3 A Summary of the Distributed Capacitance Model

The distributed capacitance captures the electric energy stored between the windings,

which is critical in determining the self-resonant frequency of an inductor. The circuit

theories related to Q and self-resonant frequency will be discussed later in Ch. 4. The

existing methods of calculating the distributed capacitance are proven to be effective

by numerous case studies during the research, some of which will be shown in Ch. 5.

This section covers the process of lumping the distributed capacitances, the models of

the physical capacitances, and the distributed effects of the substrate network.

The analysis of the stored electric energy between windings starts from determining

the voltage profile of an inductor. If all the spiral is stretched out to a single straight

metal bar, the voltage distribution across bar will always be linear, when it is driven

from both ends. However, winding the bar into a spiral introduces varying mutual cou-

pling inductances between non-adjacent turns, so the voltage drop across the spiral is

not necessarily linear. In [43], the author analyzed the voltage profiles of typical unsym-

metrical inductors. The results show that as long as the traces are compactly wound,

voltage distribution across the spiral will be very close to linear. This approximation

can be generalized to model the voltage distribution of symmetrical inductors, since

the coupling coefficients between turns in symmetrical inductors are similar to those in

unsymmetrical ones.

In light of the linear voltage profile, an N-turn symmetrical spiral can be segmented

into 2N half arcs Fig. 3.33. The total voltage drop across each segment in proportional
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to the length of that segment. For more simplification, the voltage of each half arc Vk

can be equalized to the average of the voltages on its two ends:

Vk begin =V0

[
1−

k−1

∑
i=1

li
ltt

]
(3.46)

Vk end =V0

[
1−

k

∑
i=1

li
ltt

]
(3.47)

Vk =
1
2

[
Vk begin +Vk end

]
= (−1)k−1 · 1

2
V0

[
2−

k−1

∑
i=1

li
ltt
−

k

∑
i=1

li
ltt

]
, (3.48)

where ltt is the total length of the half arcs on one side, and li is the length of the ith arc

[44].

Figure 3.33: Segments

of a Symmetrical In-

ductor
Figure 3.34: Voltage Profile

The voltage profile of the inductor, driven differentially, is shown in Fig. 3.34 where

Ck,k+1 is the physical inter-wire capacitance between each adjacent segments and can

be calculated using

Ck,k+1 =Ccouple ·
1
2
(
lk + lk+1

)
. (3.49)

Ccouple is the per-unit-length inter-wire capacitance to be introduced later. The capacitor

C′s needs to store the same amount of energy as all the capacitors on the voltage profile

do:
N−1

∑
k=1

1
2

Ck,k+1 ·
(
Vk−Vk+1

)2
=

1
2

C′sV
2
0 . (3.50)
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Once, C′s is determined, Cs will then be 1/2 C′s.

The modeling of Ccouple is a well-studied topic in digital integrated circuits. Some

classical models include [45, 46], nearly all of which used curving fitting based on

measurements. In this work, a newly-published physics-based analytical model of

inter-wire capacitance is adopted [47]. The model includes the effects of shielding

and sharing of electric field lines in multi-electrode cases. Details of the derivation are

well explained in [47], so a brief summary of the model relevant to on-chip inductors

is presented here.

Figure 3.35: Inter-wire Capacitances
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Figure 3.36: Ccouple vs w
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Figure 3.37: Ccouple vs s

Fig. 3.35 concludes the models of the three types of inter-wire capacitances, par-

allel plate capacitance (Cplate), terminal capacitance (Cterm), and fringing capacitance

(C f rin). Their values are adjusted from the three canonical cases described in [47] to
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address the shielding effects and multi-electrode effects. Each capacitance can be cal-

culated using (10), (12), (14) and Table II in [47]. Ccouple is the sum of all the individual

capacitances listed in Fig. 3.35.

Fig. 3.36 demonstrates the dependence of Ccouple on w, when tm and s are fixed.

Note that Ccouple stays relatively constant with varying metal width, and it is nearly

twice as large as the capacitance calculated from pure parallel plate capacitance equa-

tion εtm/s. Although that ratio will increase with increasing s and tox, a ratio of 2 can

still be used to guess the inter-winding capacitance, because well-designed inductors in

modern CMOS processes are typically compactly wound and have similar t ′ms and t ′oxs

as those listed in Fig. 3.36.

Fig. 3.37 indicates that Ccouple depends heavily on the spacing between turns. Hence,

a design implication is that single turn inductors or loosely-wound multi-turn inductors

are usually designed in applications where the self-resonant frequency must be high.

For example[30], discrete RF chokes employ spaced windings to limit the distributed

capacitance.

Besides the effect of the distributed inter-winding capacitance, the modeling of the

substrate parasitics also needs to include the distributed effect. Previously in Ch. 3.2,

Cox is calculated as the parallel-plate capacitance between a solid ring and the substrate,

as if all the spacings are filled by metal. The validity of this assumption can be tested

using the model of Cbottom in [47]. Fig. 3.38 shows the cross sectional diagram of the

bottom capacitances, which can be calculated by (19), (20), (21) and Table III in [47].

Figure 3.38: Oxide Capacitances

Figure 3.39: Unshielded Outermost

Turn
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Figure 3.40: Comparison between Oxide Capacitances

Cbottom can then be calculated by

Cbottom−in =Cplate +2Clow−term. (3.51)

For a spiral inductor, the outermost sides have larger Cbottom, because the field lines

there are not shielded by adjacent turns (Fig. 3.39). Hence, C f rin and Cterm should return

to the canonical cases introduced in [47]:

Cbottom−out =Cplate +Clow−term + ε
6
π
+ ε

4
π

ln
(

1+
tm
tox

)
. (3.52)

Fig. 3.40 compares Cbottom−out , Cbottom−in, and the approximated parallel plate ca-

pacitance with the spacings filled (C f ill). Note that Cbottom−in is well approximated by

C f ill , which proves the validity of the assumption made in Ch. 3.2 about Cox. From a

designer’s perspective, the analytical models of Cbottom−out and Cbottom−in can be used

with the help of a computer, but an approximated C f ill (or Cox) is still applicable for

initial estimation.

Figure 3.41: Metal Bar on a Ground Plane
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The process of modeling the distributed substrate parasitics with circuits is similar

to that used to model the inter-wire capacitance. Consider a solid metal bar placed on

a ground plane, with one port driven to V0 and the other port grounded (Fig. 3.41). Cpu

is the capacitance to ground per unit length. Since the voltage distribution is linear, the

total energy stored is

1
2

∫ ltt

0
CpuV0

x
ltt

dx =
1
2
· 1

3
Cpu · lttV 2

0 , (3.53)

which means that the effective capacitance is 1/3 Cpultt . When both ports are driven by

the same voltage, the total capacitance is simply Cpultt . If the equivalent model is a 1-π

model (Fig. 3.42), only one of the two situations can be modeled correctly. However, a

2-π model satisfies both conditions simultaneously (Fig. 3.43).


1
2

C1V 2
0 +

1
2

C2
1
4

V 2
0 =

1
2
· 1

3
·CtotalV 2

0

C1 +C2 =Ctotal

(3.54)

=⇒


C1 =

1
6

Ctotal

C2 =
2
3

Ctotal

(3.55)

Figure 3.42: 1-π Circuit Figure 3.43: 2-π Circuit

As discussed before, in real inductors, Cpu of the outermost turn is different from

that of the other turns, so the distribution factor in (3.55) is just an approximation to the

reality. In Ch. 5, examples will prove that the approximated distribution factor can be

used for all practical purposes.
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3.4 The Complete Equivalent Circuit

Figure 3.44: 2-π Equivalent Circuit

Figure 3.45: Complete 1-port Equiva-

lent Circuit

Fig. 3.44 shows the 2-π equivalent circuit of the inductor. When driven differen-

tially, the branch enclosed in the dashed box is nulled, because the center-tap node is

ac grounded. The equivalent circuit can then be re-drawn into a 1-port circuit shown

in Fig. 3.45. All the R′s and L′s in the ladder can be calculated using the methods

described in Ch. 3.1. Leddy is calculated using (3.33). Ldc comes from (2.3). Then,

L0 = Ldc−
Leddy

4
−Lint , (3.56)

where Lint is calculated by (3.18). Meddy models the total enclosed even mode flux by

all turns of the inductor.

Meddy

1A
= Meddy = ∑

i
µ0Hi×w× li, (3.57)

where li is the length of each turn, Hi is the even mode external field in each turn

calculated based on (2.6).

Cs, Cox, Csi, and Rsi are calculated using the methods introduced in Ch. 3.2 and

Ch. 3.3.
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CHAPTER 4

Definitions of the Quality Factor

4.1 Why Discussing Q?

The quality factor (Q) is a key figure of merit judging the performance of an inductor

and is also the objective in the optimization process. A correct definition of Q properly

connects the equivalent circuit with the optimization process. A low-entropy expression

of Q in terms of circuit parameters provides insights to circuit engineers during the ini-

tial design estimation. The vagueness of and the conflicts among different definitions of

Q have already been recognized by previous works, such as [48, 49]. However, the ma-

jority of the literature on inductor modeling put their complete efforts on the equivalent

circuits and assumed that the definition of Q was well-understood. The lack of discus-

sion on Q causes confusions when engineers use the equivalent models. We believe

that a useful inductor model should contain a clear discussion on different definitions

of Q and corresponding explanations of their usages. This chapter summarizes some

insightful studies on the definitions of Q and resonant frequency. Some design-oriented

expressions for different definitions of Q are also proposed.

4.2 Connection between Impedance and Stored Energy

Before the discussion of Q, it is necessary to revise the connection between the driving

point impedance and the stored energy of a network. Given an arbitrary LTI network

with two terminals driven by a current source I, one can prove using the Uniqueness
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Theorem [50] that

Zin = R+ jX =
2P
|I|2

+
4 jω(Wm−We)

|I|2
, (4.1)

where We is the mean electric energy stored, and Wm is the mean magnetic energy

stored. P is the total power dissipation at the driving point. Since the total stored

energy is constant and is oscillating between electric energy and magnetic energy. The

total energy in the system is W =We +Wm.

4.3 Origination of Q from the 2nd-Order Circuit

Figure 4.1: Series LCR Circuit

Figure 4.2: Voltage Stimulus Inserted

into Series LCR Circuit

In basic circuit theory, Q is used to characterize the series (or parallel) LCR circuit

(Fig. 4.1). Excited without changing the circuit topology, the series (or parallel) LCR

circuit has two poles in its network functions. Writing the denominator of the network

function into the canonical form

D(s) = 1+
s

ω0Q
+

s2

ω02 = 1+ s
L
R
+ s2LC (4.2)

reveals the quality factor Q = 1/R√
C/L

and the natural frequency ω0 = 1√
LC

of the 2nd-

order system. This Q can written as ω0L
R and is only defined at the natural frequency.

Since the natural frequency of the series LCR circuit can be tuned to any frequency by

varying C, Q can be defined as a function of frequency. Then,

Q =
ωL
R

. (4.3)

The definition of Q is consistent with the fundamental definition of Q in physics, which
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is

Q f und =
total energy stored

energy dissipated/rad
. (4.4)

Q f und can only be determined using (4.4) if all the energies stored and dissipation in the

network can be calculated. This may not be easy for a complicated black box circuit.

[50] proves that for a one port network, the driving point reactance and susceptance

have properties as follow:

dX
dω

=
4W
|I|2

(4.5)

dB
dω

=
4W
|V |2

, (4.6)

where I and V are the driving point current and voltage stimuli. Using (4.4),

Q f und = 2π f
1
4 |I|

2 dX
dω

mean power dissipated
(4.7)

= 2π f
1
4 |V |

2 dB
dω

mean power dissipated
. (4.8)

Since the average power dissipation P= 1
2 |V |

2G= 1
2 |I|

2R, (4.7) and (4.8) can be written

as

Q f und =
ω

2R
dX
dω

(4.9)

=
ω

2G
dB
dω

. (4.10)

(4.9) and (4.10) simplify the calculation of the Q f und of a complex network, because

the specific energies stored in L′s and C′s within the network are no longer needed. If

the driving point impedance of a complex network is known, the stored energy can be

derived by taking the derivative of the reactance or susceptance numerically.

It must be emphasized that Q f und is defined at the resonant frequency. Otherwise,

the value of Q f und will be meaningless. For example, for a series LCR circuit (Fig. 4.2),

Q f und = ωL
2R + 1

2ωRC , which is infinite at DC or infinite frequency. Only at ω = 1√
LC

,

Q f und = 1/R√
C/L

, which is consistent with the Q defined for the second order system.
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4.4 Resonant Frequency

Since Q f und is defined at the resonant frequency, it is necessary to clarify the definition

of the resonant frequency (ω0). According to [30], there are three definitions of ω0

1. ω01: The natural frequency of 2nd-order circuit with all stimuli suppressed

2. ω02: The frequency where the magnitude of the input impedance is maximum

3. ω03: The frequency where the input impedance is purely real

The theoretical values of ω ′0s defined by the three methods are not the same. However,

for a high Q 2nd-order circuit, when Q f und > 10 at ω01, these three frequencies can be

treated as identical for all practical purposes [30].

This approximation of the resonant frequency can be generalized to higher order

networks. For circuits of order larger than 2, ω01 fails, because one cannot put the

denominator of the network function into the canonical form, like (4.2) and extract ω0.

However, if the Q of the system is assumed to be high (> 10), then ω03 can be measured

simply from the input impedance of the network. With ω03, one can calculate Q f und

using (4.9). If the calculated Q f und agrees with the assumption (> 10), this Q can be

used as a figure of merit for the network. On modern RF CMOS processes, resonators

built for low-phase-noise oscillators typically have Q larger than 10, which allows the

use of this method.

Figure 4.3: DUT at Low Frequency Figure 4.4: DUT at High Frequency

37



When the definition of ω0 is known, Q f und can be found as a function of frequency

by tuning an unknown circuit to resonance at any frequency [51]. For an inductor, at

low frequency when Q is low, all capacitive parasitics are not present, and the equivalent

circuit with the tuning capacitor is shown in Fig. 4.3. Q f und for this simple 2nd-order

circuit is simply ωL
R . At higher frequency, the amount of the extra capacitance needed

to tune the inductor to resonance is less than 1
ω2L (Fig. 4.4). The input impedance

needs to be tuned to purely real, because the circuit is no longer 2nd-order. At the self-

resonant frequency, no extra capacitance is needed to tune the input impedance to real.

Thus, the fundamental definition of Q for inductors is only meaningful from DC to the

self-resonant frequency, and there is inconsistency between tuning to resonance at low

frequency and doing so at high frequency.

4.5 Why do people use Im(Z)/Re(Z)?

The definition of Qind = Im(Z)
Re(Z) originates from popular measurement instruments. For

example, HP4323 [52] treats an inductor under test as a black box with a frequency de-

pendent Le f f and a frequency dependent Rac. The equipment contains a self-regulating

voltage injection that forces the voltage of the series tuning capacitor to be proportional

to Qind . Other advanced measurements instruments like an LCR meter also measures

the effective inductance Im(Z)
ω

and effective resistance Re(Z) of the inductor. Accord-

ing to the universal curve of high-Q parallel resonator in [30], when an inductor is

approaching self-resonance, its effective inductance rises significantly and then decay

rapidly to 0. When the inductor is used in parallel resonance, the change in the effective

inductance does not affect the performance of the circuit, since a parallel capacitor can

always be tuned accordingly such that the external capacitor and the distributed capac-

itor of the inductor form a resonator at the frequency of interest. However, when the

inductor is used in series LCR circuit or ladder filters, the change in the effective in-

ductance of the inductor will affect the circuit design, because Le f f is no longer its DC
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value at high frequency. Four reasons explain why most people use Qind at a particular

frequency of interest as the objective function for optimization.

1. Unlike Q f und , Qind has consistent definition from DC up to the self resonant

frequency.

2. Calculating Qind directly from the impedance without tuning or taking derivative

is very simple, which minimizes computation complexity.

3. Qind clearly indicates the self-resonant frequency where the inductor no longer

looks like an inductor from the input port.

4. In most cases, maximum Qind occurs at 1/3 ∼ 1/2 the self-resonant frequency

where the effective inductance has not risen significantly.

Note that Qind is meaningless for the calculation of Q f und for specific applications,

because (4.1) implies that

Qind =
2× (Wm−We)

energy dissipated/rad
, (4.11)

which is completely different from Q f und . Once an inductor is put into the circuit, Q f und

of the resulting circuit needs to be calculated properly using the methods described in

Ch. 4.3 and Ch. 4.4.

In order to illustrate the difference between Qind and Q f und , a simple equivalent

circuit for an inductor (Fig. 4.5) is taken from [53]. Due to the inconsistency of the

resonant frequency discussed in Ch. 4.4, Q f und is calculated from 600MHz instead of

DC. Fig. 4.6 shows the comparison between Q f und and Qind .

4.6 Design-Oriented Expression of Qind

A design-oriented expression of Qind for the equivalent circuit in Fig. 4.7 is improved

from the expression proposed in [53] to account for the effect of self-resonance. In
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Figure 4.5: A Simple Equivalent Cir-

cuit
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Figure 4.6: Q f und and Qind of the Cir-

cuit in Fig. 4.5

Figure 4.7: Simplified Equivalent Circuit

Fig. 4.7 Csi is ignored for simplicity.

Q≈ ωL

R( f )︸︷︷︸
series loss

+
(ω2LCox)

2Rsi

1+(ωRsiCox)2︸ ︷︷ ︸
substrate loss

(
1− ω2L(Cox +Cs)

1+(ωRsiCox)2

)
︸ ︷︷ ︸

sel f resonance

(4.12)

4.7 Design-Oriented Expression of Q f und in High Q Case

If ωL
R( f ) in Fig. 4.7 is large (≥ 10), (4.13) can be used to approximate Q f und .

Q f und ≈
[ 1

ωL
·
(

1+
1

(ωRsiCox)2

)
·Rsi

] ∣∣∣∣∣∣ ωL
R( f )

. (4.13)
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CHAPTER 5

Case Studies and Optimization

5.1 Case I: A Commercial Inductor Supplied by A Company

Figure 5.1: Case I Inductor Geometry

Figure 5.2: Case I Extracted Narrow

Band Equivalent Circuit
Figure 5.3: Case I Physical Equivalent

Circuit

41



Fig. 5.1 shows an 8-turn symmetrical inductor designed recently in TSMC 65nm

Process. The inductor is designed to operate at 5.5GHz. The supplier also provides the

simulated 3-port S-parameters and an extracted equivalent circuit at the frequency of

operation (Fig. 5.2). Table 5.1 includes the estimated technology parameters.

Table 5.1: Estimated TSMC 65nm Technology Parameters

Name Symbol Value

M8 Sheet Resistance R� 0.005Ω

M8 Thickness tm 3.3µm

Oxide Relative Permittivity εox 3.9

Oxide Thickness tox 5µm

Substrate Relative Permittivity εsi 11.9

Substrate Thickness tsi 200µm

Substrate Resistivity ρsi 10Ω · cm

Fig. 5.3 shows the physical equivalent circuit, whose components are all calculated

based on the methods described in Ch. 3. ADS simulations are performed on the pro-

vided S-parameters, the extract equivalent circuit, and the physical equivalent circuit.

All simulations assume that the inductor is operating in differential mode, so the input

port is defined by the two signal terminals of the two ends of the inductor. The center

tap port is left open during simulation.

Fig. 5.4 shows the calculated Qind = Im(Zin)
Re(Zin)

of the S-parameter black box, the ex-

tracted equivalent circuit, and the proposed physical equivalent circuit. It can be shown

that Qind of the extracted equivalent circuit only agrees with that of the S-parameter

black box at the frequency of operation (5.5GHz). It can be guessed that minimizing

the error on Qind at 5.5GHz is one of the targets of the extraction process. In contrast,

Qind predicted by the physical equivalent circuit agrees with the measurement from DC

up to the self-resonant frequency of the inductor.
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Figure 5.5: Zin of the Three Experi-
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Figure 5.6: Le f f of the Three Experiments

Fig. 5.5 shows the input impedance of the inductor in differential mode. The physi-

cal equivalent circuit still gives a better prediction of the input impedance of the induc-

tor. Note that at self resonance, the interpolation based on the S-parameters may not be

accurate, so errors in magnitude and phase are tolerable.

Fig. 5.6 shows Le f f of the inductor over frequency. Despite the sensitive region near

self resonance, both the extracted equivalent circuit and the physical equivalent circuit

give good predictions on Le f f .

Since the proposed physical equivalent circuit models the skin effect loss and the

proximity effect loss separately. It is possible to compare the effective series resis-

tance under skin effect only and the one under both effects. Cs is also removed from

the equivalent circuit to null the effect of resonance (Fig. 5.7). Fig. 5.8 shows that the
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Figure 5.7: Subcircuits for Comparison
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Figure 5.8: The Comparison between Losses with and without the Proximity Effect

proximity effect nearly doubles the series loss due to the skin effect only.

The physical equivalent circuit can be conveniently used to test whether an inductor

is optimal at one frequency. In terms of optimization, the physical equivalent circuit

substitutes the electromagnetic simulator in the optimization loop. The geometry of a

inductor has only four variables,

1. Number of turns N,

2. Turn spacing s,

3. Turn Width w,

4. Inner diameter din.

Thus, if N is fixed, din can be calculated from the rest two variables w and s, for a given

target LDC. A surface of Qind at the frequency of operation can be calculated and plotted
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Figure 5.9: Contours of Qind at 5.5GHz

as a function of w and s. Here, w is forced to be greater than s, which guarantees the

accuracy of (2.3). Fig. 5.9 shows the contours of Qind at 5.5GHz for 8-turn inductors

with different w′s and s′s but the same LDC of 4.4nH. The provided design is marked on

the plot, and it is very close to the optimum. Small errors may be due to inaccuracy of

the physical equivalent circuit. Following arrow 1 means increasing the turn spacing

and the turn width. Longer traces are needed to achieve the same LDC, which means that

RDC is increased. Qind is then decreased. Following arrow 2 leads to a more compact

design, but the distributed capcacitance of the inductor is significantly increased, so that

the self-resonant frequency and thus Qind are lower.

5.2 Case II: A Square Inductor from [1]

Case I demonstrates that the physical equivalent circuit can be used to predict whether

an inductor is optimal at a frequency. However, the shape of the inductor in Case I is not

regular, so it is hard to layout a sub-optimal inductor in the electromagnetic simulator

with the same shape and verify the generality of the physical equivalent circuit. In

other words, another test is needed to prove that the physical equivalent circuit can

also model sub-optimal inductors. [1] presents a 5-turn square inductor with an LDC
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Figure 5.10: Optimal 5-turn Inductor at

2.5GHz

Figure 5.11: Sub-optimal 5-turn

Inductor at 2.5GHz

of 8nH fabricated in SiGe BiCMOS process (Fig. 5.10). The technology parameters of

the process are listed in Table 5.2.

Table 5.2: SiGe BiCMOS Technology Parameters

Name Symbol Value

Metal Resistivity ρm 3.1×10−8Ω ·m

Metal Thickness tm 2.07µm

Oxide Relative Permittivity εox 3.9

Oxide Thickness tox 5.75µm

Substrate Relative Permittivity εsi 11.7

Substrate Thickness tsi 200µm

Substrate Resistivity ρsi 15Ω · cm

The provided inductor is optimized at 2.5GHz. Based on the equivalent circuit,

contours of Qind at 2.5GHz for different w′s and s′s are plotted in Fig. 5.12. The pro-

vided design is marked on the plot and falls inside the optimal contour of 10. Note

that the optimum is quite flat, and choosing a tighter design with smaller w and s may

save the chip area. In order to demonstrate the generality of the physical equivalent cir-

cuit, another sub-optimal inductor is synthesized to have the same s and a doubled w as
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Figure 5.14: Qind of the two Inductors

the provided one. Fig. 5.11 shows geometry of the sub-optimal inductor. Electromag-

netic simulation in ADS Momentum compares the performance of these two inductors.

Fig. 5.13 proves that the two inductors have the same LDC, so the comparison is fair.

Fig. 5.14 shows that Qind of the sub-optimal inductor peaks at a lower frequency and

rolls off to 9 at 2.5GHz, which is also predicted by the contour of Qind based on the

physical equivalent circuit.

The physical equivalent circuit is capable of explaining why the sub-optimal induc-

tor has a lower Qind at 2.5GHz. Firstly, the sub-optimal inductor has wider traces and

thus longer total length of metal. As a result, the distributed capacitance and the sub-
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strate parasitics are larger, which lowers the self-resonant frequency of the sub-optimal

inductor. Also, wider traces enclose more common mode magnetic flux and leads to

more serious proximity effects.

5.3 Case III: A Single Turn Inductor from [2]

Figure 5.15: Case III Inductor Geome-

try

Figure 5.16: Case III Equivalent Cir-

cuit
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Figure 5.17: Qind of the Two Experi-

ments
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Figure 5.18: Rac Calculated from the

Ladder

Fig. 5.15 shows the geometry of a single-turn inductor used in [2] for a low-phase-

noise oscillator. The inductor is built in TSMC 65nm process, so all relevant parameters
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listed in Ch. 5.1 apply. The physical equivalent circuit in Fig. 5.16 does not include Cs,

since the inductor has only one turn. Fig. 5.17 indicates that the equivalent circuit

correctly predict Qind from DC to 6GHz. At higher frequency, the lack of model for the

small capacitance between two input terminals causes some discrepancies. According

to Fig. 5.18, at 4GHz, Rac = 0.24Ω and Q f und can be calculated using (4.13) as 22.8.

At 5GHz, Rac = 0.27Ω, and Q f und = 24.8. These two results match the provided values

of 22.5 and 25.5 at 4GHz and 5GHz respectively [2].
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