
UC Irvine
UC Irvine Previously Published Works

Title
Learning in the machine: Random backpropagation and the deep learning channel

Permalink
https://escholarship.org/uc/item/2nh5375r

Authors
Baldi, Pierre
Sadowski, Peter
Lu, Zhiqin

Publication Date
2018-07-01

DOI
10.1016/j.artint.2018.03.003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2nh5375r
https://escholarship.org
http://www.cdlib.org/

Learning in the Machine: Random Backpropagation and the
Deep Learning Channel

Pierre Baldi1, Peter Sadowski1, and Zhiqin Lu2

1Department of Computer Science, University of California, Irvine

2Department of Mathematics, University of California, Irvine

Abstract

Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural

networks, where the transpose of the forward matrices are replaced by fixed random matrices in

the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of

using random matrices to communicate error information, and because it completely removes the

taxing requirement of maintaining symmetric weights in a physical neural system. To better

understand random backpropagation, we first connect it to the notions of local learning and

learning channels. Through this connection, we derive several alternatives to RBP, including

skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP)

and analyze their computational complexity. We then study their behavior through simulations

using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these

variants work robustly, almost as well as backpropagation, and that multiplication by the

derivatives of the activation functions is important. As a follow-up, we study also the low-end of

the number of bits required to communicate error information over the learning channel. We then

provide partial intuitive explanations for some of the remarkable properties of RBP and its

variations. Finally, we prove several mathematical results, including the convergence to fixed

points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders

with decorrelated data, the long-term existence of solutions for linear systems with a single hidden

layer and convergence in special cases, and the convergence to fixed points of non-linear chains,

when the derivative of the activation functions is included.

1 Introduction

Over the years, the question of biological plausibility of the backpropagation algorithm,

implementing stochastic gradient descent in neural networks, has been raised several times.

The question has gained further relevance due to the numerous successes achieved by

backpropagation in a variety of problems ranging from computer vision [21, 31, 30, 14] to

speech recognition [12] in engineering, and from high energy physics [7, 26] to biology [8,

Correspondence to: Pierre Baldi.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Artif Intell. Author manuscript; available in PMC 2019 July 01.

Published in final edited form as:
Artif Intell. 2018 July ; 260: 1–35. doi:10.1016/j.artint.2018.03.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

32, 1] in the natural sciences, as well to recent results on the optimality of backpropagation

[6]. There are however, several well known issues facing biological neural networks in

relation to backpropagation, these include: (1) the continuous real-valued nature of the

gradient information and its ability to change sign, violating Dale’s Law; (2) the need for

some kind of teacher’s signal to provide targets; (3) the need for implementing all the linear

operations involved in backpropagation; (4) the need for multiplying the backpropagated

signal by the derivatives of the forward activations each time a layer is traversed; (5) the

need for precise alternation between forward and backward passes; and (6) the complex

geometry of biological neurons and the problem of transmitting error signals with precision

down to individual synapses. However, perhaps the most formidable obstacle is that the

standard backpropagation algorithm requires propagating error signals backwards using

synaptic weights that are identical to the corresponding forward weights. Furthermore, a

related problem that has not been sufficiently recognized, is that this weight symmetry must

be maintained at all times during learning, and not just during early neural development. It is

hard to imagine mechanisms by which biological neurons could both create and maintain

such perfect symmetry. However, recent simulations [24] surprisingly indicate that such

symmetry may not be required after all, and that in fact backpropagation works more or less

as well when random weights are used to backpropagate the errors. Our general goal here is

to investigate backpropagation with random weights and better understand why it works.

The foundation for better understanding random backpropagation (RBP) is provided by the

concepts of local learning and deep learning channels introduced in [6]. Thus we begin by

introducing the notations and connecting RBP to these concepts. In turn, this leads to the

derivation of several alternatives to RBP, which we study through simulations on well known

benchmark datasets before proceeding with more formal analyses.

2 Setting, Notations, and the Learning Channel

Throughout this paper, we consider layered feedforward neural networks and supervised

learning tasks. We will denote such an architecture by

𝒜[N0, …, Nh, …, NL] (1)

where N0 is the size of the input layer, Nh is the size of hidden layer h, and NL is the size of

the output layer. We assume that the layers are fully connected and let wi j
h denote the weight

connecting neuron j in layer h − 1 to neuron i in layer h. The output Oi
h of neuron i in layer h

is computed by:

Oi
h = f i

h(Si
h) where Si

h = ∑
j

wi j
h O j

h − 1 (2)

Baldi et al. Page 2

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The transfer functions f i
h are usually the same for most neurons, with typical exceptions for

the output layer, and usually are monotonic increasing functions. The most typical functions

used in artificial neural networks are the: identity, logistic, hyperbolic tangent, rectified

linear, and softmax.

We assume that there is a training set of M examples consisting of input and output-target

pairs (I(t), T(t)), with t = 1, …, M. Ii(t) refers to the i-th component of the t-th input training

example, and similarly for the target Ti(t). In addition, there is an error function ℰ to be

minimized by the learning process. In general we will asssume standard error functions such

as the squared error in the case of regression and identity transfer functions in the output

layer, or relative entropy in the case of classification with logistic (single class) or softmax

(multi-class) units in the output layer, although this is not an essential point.

While we focus on supervised learning, it is worth noting that several “unsupervised”

learning algorithms for neural networks (e.g. autoencoders, neural autoregressive

distribution estimators, generative adversarial networks) come with output targets and thus

fall into the framework used here.

2.1 Standard Backpropagation (BP)

Standard backpropagation implements gradient descent on ℰ, and can be applied in a

stochastic fashion on-line (or in mini batches) or in batch form, by summing or averaging

over all training examples. For a single example, omitting the t index for simplicity, the

standard backpropagation learning rule is easily obtained by applying the chain rule and

given by:

Δwi j
h = − η ∂ℰ

∂wi j
h = ηBi

hO j
h − 1 (3)

where η is the learning rate, O j
h − 1 is the presynaptic activity, and Bi

h is the backpropagated

error. Using the chain rule, it is easy to see that the backpropagated error satisfies the

recurrence relation:

Bi
h = ∂ℰ

∂Si
h = (f i

h)′∑
k

Bk
h + 1wki

h + 1 (4)

with the boundary condition:

Bi
L =

∂ℰi

∂Si
L = T i − Oi

L (5)

Baldi et al. Page 3

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thus in short the errors are propagated backwards in an essentially linear fashion using the

transpose of the forward matrices, hence the symmetry of the weights, with a multiplication

by the derivative of the corresponding forward activations every time a layer is traversed.

2.2 Standard Random Backpropagation (RBP)

Standard random backpropagation operates exactly like backpropagation except that the

weights used in the backward pass are completely random and fixed. Thus the learning rule

becomes:

Δwi j
h = ηRi

hO j
h − 1 (6)

where the randomly back-propagated error satisfies the recurrence relation:

Ri
h = (f i

h)′∑
k

Rk
h + 1cki

h + 1 (7)

and the weights cki
h + 1 are random and fixed. The boundary condition at the top remains the

same:

Ri
L =

∂ℰi

∂Si
L = T i − Oi

L (8)

Thus in RBP the weights in the top layer of the architecture are updated by gradient descent,

identically to the BP case.

2.3 The Critical Equations

Within the supervised learning framework considered here, the goal is to find an optimal set

of weights wi j
h . The equations that the weights must satisfy at any critical point are simply:

∂ℰ
∂wi j

h = ∑
t

Bi
h(t)O j

h − 1(t) = 0 (9)

Thus in general the optimal weights must depend on both the input and the targets, as well

as the other weights in the network. And learning can be viewed as a lossy storage procedure

for transferring the information contained in the training set into the weights of the

architecture.

The critical Equation 9 shows that all the necessary forward information about the inputs

and the lower weights leading up to layer h − 1 is subsumed by the term O j
h − 1(t). Thus in

this framework a separate channel for communicating information about the inputs to the

Baldi et al. Page 4

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

deep weights is not necessary. Thus here we focus on the feedback information about the

targets, contained in the term Bi
h(t) which, in a physical neural system, must be transmitted

through a dedicated channel.

Note that Bi
h(t) depends on the output OL(t), the target T(t), as well as all the weights in the

layers above h in the fully connected case (otherwise just those weight which are on a path

from unit i in layer h to the output units), and in two ways: through OL(t) and through the

backpropagation process. In addition, Bi
h(t) depends also on all the upper derivatives, i.e. the

derivatives of the activations functions for all the neurons above unit i in layer h in the fully

connected case (otherwise just those derivatives which are on a path from unit i in layer h to

the output units). Thus in general, in a solution of the critical equations, the weights wi j
h must

depend on O j
h − 1, the outputs, the targets, the upper weights, and the upper derivatives.

Backpropagation shows that it is sufficient for the weights to depend on O j
h − 1, T − O, the

upper weights, and the upper derivatives.

2.4 Local Learning

Ultimately, for optimal learning, all the information required to reach a critical point of ℰ
must appear in the learning rule of the deep weights. In a physical neural system, learning

rules must also be local [6], in the sense that they can only involve variables that are

available locally in both space and time, although for simplicity here we will focus only on

locality in space. Thus typically, in the present formalism, a local learning rule for a deep

layer must be of the form

Δwi j
h = F(Oi

h, O j
h − 1, wi j

h) (10)

and

Δwi j
L = F(T i, Oi

L, O j
L − 1, wi j

L) (11)

assuming that the targets are local variables for the top layer. Among other things, this

allows one to organize and stratify learning rules, for instance by considering polynomial

learning rules of degree one, two, and so forth.

Deep local learning is the term we use to describe the use of local learning in all the adaptive

layers of a feedforward architecture. Note that Hebbian learning [15] is a form of local

learning, and deep local learning has been proposed for instance by Fukushima [10] to train

the neocognitron architecture, essentially a feed forward convolutional neural network

inspired by the earlier neurophysiological work of Hubel and Wiesel [18]. However, in deep

local learning, information about the targets is not propagated to the deep layers and

Baldi et al. Page 5

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

therefore in general deep local learning cannot find solutions of the critical equations, and

thus cannot succeed at learning complex functions [6].

2.5 The Deep Learning Channel

From the critical equations, any optimal neural network learning algorithm must be capable

of communicating some information about the outputs, the targets, and the upper weights to

the deep weights and, in a physical neural system, a communication channel [28, 27] must

exist to communicate this information. This is the deep learning channel, or learning channel
in short [6], which can be studied using tools from information and complexity theory. In

physical systems the learning channel must correspond to a physical channel and this leads

to important considerations regarding its nature, for instance whether it uses the forward

connections in the reverse direction or a different set of connections. Here, we focus

primarily on how information is coded and sent over this channel.

In general, the information about the outputs and the targets communicated through this

channel to wi j
h is denoted by Ii j

h (T , OL). Although backpropagation propagates this

information from the top layer to the deep layers in a staged way, this is not necessary and

Ii j
h (T , OL) could be sent directly to the deep layer h somehow skipping all the layers above.

This observation leads immediately to the skipped variant of RBP described in the next

section. It is also important to note that in principle this information should have the form

Ii j
h (T , OL, wrs

l for l > h, f ′(Sr
l) for l ≥ h). However standard backpropagation shows that it is

possible to send the same information to all the synapses impinging onto the same neuron,

and thus it is possible to learn with a simpler type of information of the form

Ii
h(T , OL, wrs

l for l > h, f ′(Sr
l) for l ≥ h) targeting the postsynaptic neuron i. This class of

algorithms or channels is what we call deep targets algorithms, as they are equivalent to

providing a target for each deep neuron. Furthermore, backpropagation shows that all the

necessary information about the outputs and the targets is contained in the term T − OL so

that we only need Ii
h(T − OL, wrs

l for l ≥ h, f ′(Sr
l) for l > h). Standard backpropagation uses

information about the upper weights in two ways: (1) through the output OL which appears

in the error terms T − OL; and through the backpropagation process itself. Random
backpropagation crucially shows that the information about the upper weights contained in
the backpropagation process is not necessary. Thus ultimately we can focus exclusively on

information which has the simple form: Ii
h(T − OL, rrs

l for l ≥ h, f ′(Sr
l) for l ≥ h), where r

denotes a set of fixed random weights.

Thus, using the learning channel, we are interested in local learning rules of the form:

Δwi j
h = F(Oi

h, O j
h − 1, wi j

h , Ii
h(T − OL, rrs

l for l ≥ h, f ′(Sr
l) for l ≥ h)) (12)

In fact, here we shall focus exclusively on learning rules with the multiplicative form:

Baldi et al. Page 6

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Δwi j
h = ηIi

h(T − OL, rrs
l for l ≥ h, f ′(Sr

l) for l ≥ h)O j
h − 1 (13)

corresponding to a product of the presynaptic activity with some kind of backpropagated

error information, with standard BP and RBP as a special cases. Obvious important

questions, for which we will seek full or partial answers, include: (1) what kinds of forms

can Ii
h(T − OL, rrs

l for l ≥ h, f ′(Sr
l) for l ≥ h) take (as we shall see there are multiple

possibilities)? (2) what are the corresponding tradeoffs among these forms, for instance in

terms of computational complexity or information transmission? and (3) are the upper

derivatives necessary and why?

3 Random Backpropagation Algorithms and Their Computational

Complexity

We are going to focus on algorithms where the information required for the deep weight

updates Ii
h(T − OL, f ′(Sr

l) for l ≥ h) is produced essentially through a linear process whereby

the vector T(t) − O(t), computed in the output layer, is processed through linear operations,

i.e. additions and multiplications by constants (which can include multiplication by the

upper derivatives). Standard backpropagation is such an algorithm, but there are many other

possible ones. We are interested in the case where the matrices are random. However, even

within this restricted setting, there are several possibilities, depending for instance on: (1)

whether the information is progressively propagated through the layers (as in the case of

BP), or broadcasted directly to the deep layers; (2) whether multiplication by the derivatives

of the forward activations is included or not; and (3) the properties of the matrices in the

learning channel (e.g. sparse vs dense). This leads to several new algorithms. Here we will

use the following notations:

• BP= (standard) backpropagation.

• RBP= random backpropagation, where the transpose of the feedforward matrices

are replaced by random matrices.

• SRBP = skipped random backpropagation, where the backpropagated signal

arriving onto layer h is given by Ch(T − O) with a random matrix Ch directly

connecting the output layer L to layer h, and this for each layer h.

• ARBP = adaptive random backpropagation, where the matrices in the learning

channel are initialized randomly, and then progressively adapted during learning

using the product of the corresponding forward and backward signals, so that

Δcrs
l = ηRs

l + 1Or
l , where R denotes the randomly backpropagated error. In this

case, the forward channel becomes the learning channel for the backward

weights.

• ASRBP = adaptive skipped random backpropagation, which combines adaptation

with skipped random backpropagation.

Baldi et al. Page 7

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• The default for each algorithm involves the multiplication at each layer by the

derivative of the forward activation functions. The variants where this

multiplication is omitted will be denoted by: “(no f′)”.

• The default for each algorithm involves dense random matrices, generated for

instance by sampling from a normalized Gaussian for each weight. But one can

consider also the case of random ±1 (or (0,1)) binary matrices, or other

distributions, including sparse versions of the above.

• As we shall see, using random weights that have the same sign as the forward

weights is not essential, but can lead to improvements in speed and stability.

Thus we will use the word “congruent weights” to describe this case. Note that

with fixed random matrices in the learning channel initialized congruently,

congruence can be lost during learning when the sign of a forward weight

changes.

SRBP is introduced both for information theoretic reasons– what happens if the error

information is communicated directly?–and because it may facilitate the mathematical

analyses since it avoids the backpropagation process. However, in one of the next sections,

we will also show empirically that SRBP is a viable learning algorithm, which in practice

can work even better than RBP. Importantly, these simulation results suggest that when

learning the synaptic weight wi j
h the information about all the upper derivatives (f ′(Sr

l) for l ≥

h)) is not needed. However the immediate (l = h) derivative f ′(Si
h) is needed.

Note this suggests yet another possible algorithm, skipped backropagation (SBP). In this

case, for each training example and at each epoch, the matrix used in the feedback channel is

the product of the corresponding transposed forward matrices, ignoring multiplication by the

derivative of the forward transfer functions in all the layers above the layer under

consideration. Multiplication by the derivative of the forward transfer functions is applied to

the layer under consideration. Another possibility is to have a combination of RBP and

SRBP in the learning channel, implemented by a combination of long-ranged connections

carrying SRBP signals with short-range connections carrying a backpropagation procedure,

when no long-range signals are available. This may be relevant for biology since

combinations of long-ranged and short-ranged feedback connections is common in

biological neural systems.

In general, in the case of linear networks, f′ = 1 and therefore including or excluding

derivative terms makes no difference. Furthermore, for any linear architecture [N, …, N,

…, N] where all the layers have the same size, then RBP is equivalent to SRBP. However, if

the layers do not have the same size, then the layer sizes introduce rank constraints on the

information that is backpropagated through RBP that may differ from the information

propagated through SRBP. In both the linear and non-linear cases, for any network of depth

3 (L = 3), RBP is equivalent to SRBP, since there is only one random matrix.

Additional variations can be obtained by using dropout, or multiple sets of random matrices,

in the learning channel, for instance for averaging purposes. Another variation in the skipped

case is cascading, i.e. allowing backward matrices in the learning channel between all pairs

Baldi et al. Page 8

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of layers. Note that the notion of cascading increases the number of weights and

computations, yet it is still interesting from an exploratory and robustness point of view.

3.1 Computational Complexity Considerations

The number of computations required to send error information over the learning channel is

a fundamental quantity which, however, depends on the computational model used and the

cost associated with various operations. Obviously, everything else being equal, the

computational cost of BP and RBP are basically the same since they differ only by the value

of the weights being used. However more subtle differences can appear with some of the

other algorithms, such as SRBP.

To illustrate this, consider an architecture [N0, …, Nh, …, NL], fully connected, and let W
be the total number of weights. In general, the primary cost of BP is the multiplication of

each synaptic weight by the corresponding signal in the backward pass. Thus it is easy to see

that the bulk of the operations required for BP to compute the backpropagated signals scale

like O(W) (in fact Θ(W)) with:

W = N0 × N1 + N1 × N2… + NL − 1 × NL = ∑
k = 0

L − 1
NkNk + 1 (14)

Note that whether biases are added separately or, equivalently, implemented by adding a unit

clamped to one to each layer, does not change the scaling. Likewise, adding the costs

associated with the sums computed by each neuron and the multiplications by the derivatives

of the activation functions does not change the scaling, as long as these operations have costs

that are within a constant multiplicative factor of the cost for multiplications of signals by

synaptic weights.

As already mentioned, the scaling for RBP is obviously the same, just using different

matrices. However the corresponding term for SRBP is given by

W′ = NL × N1 + NL × N2…NL × NL − 1 = NL ∑
k = 1

k = L − 1
Nk (15)

In this sense, the computational complexity of BP and SRBP is identical if all the layers

have the same size, but it can be significantly different otherwise, especially taking into

consideration the tapering off associated with most architectures used in practice. In a

classification problem, for instance, NL = 1 and all the random matrices in SRBP have rank

1, and W′ scales like the total number of neurons, rather than the total number of forward

connections. Thus, provided it leads to effective learning, SRBP could lead to computational

savings in a digital computer. However, in a physical neural system, in spite of these savings,

the scaling complexity of BP and SRBP could end up being the same. This is because in a

physical neural system, once the backpropagated signal has reached neuron i in layer h it

still has to be communicated to the synapse. A physical model would have to specify the

Baldi et al. Page 9

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

cost of such communication. Assuming one unit cost, both BP and SRBP would require

Θ(W) operations across the entire architecture. Finally, a full analysis in a physical system

would have to take into account also costs associated with wiring, and possibly differential

costs between long and short wires as, for instance, SRBP requires longer wires than

standard BP or RBP.

4 Algorithm Simulations

In this section, we simulate the various algorithms using standard benchmark datasets. The

primary focus is not on achieving state-of-the-art results, but rather on better understanding

these new algorithms and where they break down. The results are summarized in Table 1 at

the end.

4.1 MNIST

Several learning algorithms were first compared on the MNIST [22] classification task. The

neural network architecture consisted of 784 inputs, four fully-connected hidden layers of

100 tanh units, followed by 10 softmax output units. Weights were initialized by sampling

from a scaled normal distribution [11]. Training was performed for 100 epochs using mini-

batches of size 100 with an initial learning rate of 0.1, decaying by a factor of 10−6 after

each update, and no momentum. In Figure 1, the performance of each algorithm is shown on

both the training set (60,000 examples) and test set (10,000 examples). Results for the

adaptive versions of the random propagation algorithms are shown in Figure 2, and results

for the sparse versions are shown in Figure 3.

The main conclusion is that the general concept of RBP is very robust and works almost as

well as BP. Performance is unaffected or degrades gracefully when the the random

backwards weights are initialized from different distributions or even change during training.

The skipped versions of the algorithms seem to work slightly better than the non-skipped

versions. Finally, it can be used with different neuron activation functions, though

multiplying by the derivative of the activations seem to play an important role.

4.2 Additional MNIST Experiments

In addition to the experiments presented above, the following observations were made by

training on MNIST with other variations of these algorithms:

1. If the matrices of the learning channel in RBP are randomly changed at each

stochastic mini-batch update, sampled from a distribution with mean 0,

performance is poor and similar to training only the top layer.

2. If the matrices of the learning channel in RBP are randomly changed at each

stochastic mini-batch update, but each backwards weight is constrained to have

the same sign as the corresponding forward weight, then training error goes to

0%. This is the sign-concordance algorithm explored by Liao, et al. [23].

3. If the elements of the matrices of the learning channel in RBP or SRBP are

sampled from a uniform or normal distribution with non-zero mean, performance

Baldi et al. Page 10

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is unchanged. This is also consistent with the sparsity experiments above, where

the means of the sampling distributions are not zero.

4. Updates to a deep layer with RBP or SRBP appear to require updates in the

precedent layers in the learning channel. If we fix the weights in layer h, while

updating the rest of the layers with SRBP, performance is often worse than if we

fix layers l ≤ h.

5. If we remove the magnitude information from the SRBP updates, keeping only

the sign, performance is better than the Top Layer Only algorithm, but not as

good as SRBP. This is further explored in the next section.

6. If we remove the sign information from the SRBP updates, keeping only the

absolute value, things do not work at all.

7. If a different random backward weight is used to send an error signal to each

individual weight, rather than to a hidden neuron which then updates all it’s

incoming weights, things do not work at all.

8. The RBP learning rules work with different transfer functions as well, including

linear, logistic, and ReLU (rectified linear) units.

4.3 CIFAR-10

To further test the validity of these results, we performed similar simulations with a

convolutional architecture on the CIFAR-10 dataset [20]. The specific architecture was

based on previous work [16], and consisted of 3 sets of convolution and max-pooling layers,

followed by a densely-connected layer of 1024 tanh units, then a softmax output layer. The

input consists of 32-by-32 pixel 3-channel images; each convolution layer consists of 64

tanh channels with 5×5 kernel shape and 1×1 strides; max-pooling layers have 3×3 receptive

fields and 2×2 strides. All weights were initialized by sampling from a scaled normal

distribution [11], and updated using stochastic gradient descent on mini-batches of size 128

and a momentum of 0.9. The learning rate started at 0.01 and decreased by a factor of 10−5

after each update. During training, the training images are randomly translated up to 10% in

either direction, horizontally and vertically, and flipped horizontally with probability p = 0.5.

Examples of results obtained with these 2D convolutional architectures are shown in Figures

5 and 6. Overall they are very similar to those obtained on the MNIST dataset.

5 Bit Precision in the Learning Channel

5.1 Low-Precision Error Signals

In the following experiment, we investigate the nature of the learning channel by quantizing

the error signals in the BP, RBP, and SRBP algorithms. This is distinct from other work that

uses quantization to reduce computation [17] or memory [13] costs. Quantization is not

applied to the forward activations or weights; quantization is only applied to the

backpropagated signal received by each hidden neuron, Ji
h(T − OL), where each weight

update after quantization is given by

Baldi et al. Page 11

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Δwi j
h = Ii

h(T − OL) × O j
h − 1 (16)

= Quantize Ji
h(T − OL) × (f i

h)′ × O j
h − 1 (17)

where (f i
h)′ is the derivative of the activation function and

Ii
h(T − OL) = Ji

h(T − OL) × (f i
h)′ (18)

in the non-quantized update. We define the quantization formula used here as

Quantizeα, bits(x) = α × sign(x) × 2
round clip(log2 ∣ x

α ∣ , − bits + 1, 0)
(19)

where bits is the number of bits needed to represent 2bits possible values and α is a scale

factor such that the quantized values fall in the range [−α, α]. Note that this definition is

identical to the quantization function defined in Hubara, et al. [17], except that this definition

is more general in that α is not constrained to be a power of 2.

In BP and RBP, the quantization occurs before the error signal is backpropagated to previous

layers, so the quantization errors accumulate. In experiments, we used a fixed scale

parameter α = 2−3 and varied the bit width bits. Figure 7 shows that the performance

degrades gracefully as the precision of the error signal decreases to small values; for larger

values, e.g. bits = 10, the performance is indistinguishable from the unquantized updates

with 32-bit floats.

5.2 Low-Precision Weight Updates

The idea of using low-precision weight updates is not new [25], and Liao, et al. [23] recently

explored the use of low-precision updates with RBP. In the following experiment, we

investigate the robustness of both RBP and SRBP to low-precision weight updates by

controlling the degree of quantization. Equation 19 is again used for quantization, with the

scale factor reduced to α = 2−6 since weight updates need to be small. The quantization is

applied after the error signals have been backpropagated to all the hidden layers, but before

summing over the minibatch; as in the previous experiments, we use minibatch updates of

size 100, a non-decaying learning rate of 0.1, and no momentum term (Figure 8). The main

conclusion is that even very lowprecision updates to the weights can be used to train an

MNIST classifier to 90% accuracy, and that low-precision weight updates appear to degrade

the performance of BP, RBP, and SRBP in roughly the same way.

Baldi et al. Page 12

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6 Observations

In this section, we provide a number of simple observations that provide some intuition for

some of the previous simulation results and why RBP and some of its variations may work.

Some of these observations are focused on SRBP which in general is easier to study than

standard RBP.

Fact 1: In all these RBPs algorithms, the L-layer at the top with parameters wi j
L

follows the gradient, as it is trained just like BP, since there are no random feedback

weights used for learning in the top layer. In other words, BP=RBP=SRBP for the top

layer.

Fact 2: For a given input, if the sign of T − O is changed, all the weights updates are

changed in the opposite direction. This is true of all the algorithms considered here–

BP, RBP, and their variants–even when the derivatives of the activations are included.

Fact 3: In all RBP algorithms, if T − O = 0 (online or in batch mode) then for all the

weights Δwi j
h = 0 (on line or in batch mode).

Fact 4: Congruence of weights is not necessary. However it can be helpful sometimes

and speed up learning. This can easily be seen in simple cases. For instance, consider

a linear or non-linear [N0, N1, 1] architecture with coherent weights, and denote by

a the weights in the bottom layer, by b the weights in the top layer, and by c the

weights in the learning channel. Then, for all variants of RBP, all the weights updates

are in the same direction as the gradient. This is obvious for the top layer (Fact 1

above). For the first layer of weights, the changes are given by Δwi j
1 = η(T − O)ciI j,

which is very similar to the change produced by gradient descent Δi j
1 = η(T − O)biI j

since ci and bi are assumed to be coherent. So while the dynamics of the lower layer

is not exactly in the gradient direction, it is always in the same orthant as the gradient

and thus downhill with respect to the error function. Additional examples showing

the positive but not necessary effect of coherence are given in Section 7.

Fact 5: SRBP seems to perform well showing that the upper derivatives are not

needed. However the derivative of the corresponding layer seem to matter. In general,

for the activation functions considered here, these derivatives tend to be between 0

and 1. Thus learning is attenuated for neurons that are saturated. So an ingredient that

seems to matter is to let the synapses of neurons that are not saturated change more

than the synapses of neurons that are saturated (f′ close to 0).

Fact 6: Consider a multi-class classification problem, such as MNIST. All the

elements in the same class tend to receive the same backpropagated signal and tend to

move in unison. For instance, consider the the beginning of learning, with small

random weights in the forward network. Then all the images will tend to produce a

more or less uniform output vector similar to (0.1, 0.1, …, 0.1). Thus all the images

in the “0” class will tend to produce a more or less uniform error vector similar to

(0.9,− 0.1, …, − 0.1). All the images in the “1” class will tend to produce a more or

less uniform error vector similar to (− 0.1, 0.9, …, − 0.1), which is essentially

Baldi et al. Page 13

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

orthogonal to the previous error vector, and so forth. In other words, the 10 classes

can be associated with 10 roughly orthogonal error vectors. When these vectors are

multiplied by a fixed random matrix, as in SRBP, they will tend to produce 10

approximately orthogonal vectors in the corresponding hidden layer. Thus the

backpropagated error signals tend to be similar within one digit class, and orthogonal

across different digit classes. At the beginning of learning, we can expect roughly

half of them (5 digits out of 10 in the MNIST case) to be in the same direction as BP.

Thus, in conclusion, an intuitive picture of why RBP may work is that: (1) the random

weights introduce a fixed coupling between the learning dynamics of the forward weights

(see also mathematical analyses below); (2) the top layer of weights always follows gradient

descent and stirs the learning dynamic in the right direction; and (3) the learning dynamic

tends to cluster inputs associated with the same response and move them away from other

similar clusters. Next we discuss a possible connection to dropout.

6.1 Connections to Dropout

Dropout [16, 5] is a very different training algorithm which, however, is also based on using

some form of randomness. Here we explore some possible connections to RBP.

First observe that the BP equations can be viewed as a form of dropout averaging equations,

in the sense that, for a fixed example, they compute the ensemble average activity of all the

units in the learning channel. The ensemble average is taken over all the possible

backpropagation networks where each unit is dropped stochastically, unit i in layer h being

dropped with probability 1 − f ′(So
h)[assuming the derivatives of the transfer functions are

always between 0 and 1 inclusively, which is the case for the standard transfer functions,

such as the logistic or the rectified linear transfer functions–otherwise some rescaling is

necessary]. Note that in this way the dropout probabilities change with each example and

units that are more saturated are more likely to be dropped, consistently with the remark

above that saturated units should learn less.

In this view there are two kinds of noise: (1) choice of the dropout probabilities which vary

with each example; (2) the actual dropout procedure. Consider now adding a third type of

noise on all the symmetric weights in the backward pass in the form

wi j
h + ξi j

h (20)

and assume for now that E(ξi j
h) = 0. The distribution of the noise could be Gaussian for

instance, but this is not essential. The important point is that the noise on a weight is

independent of the noise on the other weights, as well as independent of the dropout noise

on the units. Under these assumptions, as shown in [5], the expected value of the activity of

each unit in the backward pass is exactly given by the standard BP equations and equal to Bi
h

for unit i in layer h. In other words, standard backpropagation can be viewed as computing
the exact average over all backpropagation processes implemented on all the stochastic

Baldi et al. Page 14

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

realizations of the backward network under the three forms of noise described above. Thus

we can reverse this argument and consider that RBP approximates this average or BP by

averaging over the first two kinds of noise, but not the third one where, instead of averaging,

a random realization of the weights is selected and then fixed at all epochs. This connection

suggests other intermediate RBP variants where several samples of the weights are used,

rather than a single one.

Finally, it is possible to use dropout in the backward pass. The forward pass is robust to

dropping out neurons, and in fact the dropout procedure can be beneficial [16, 5]. Here we

apply the dropout procedure to neurons in the learning channel during the backward pass.

The results of simulations are reported in Figure 9 and confirm that BP, RBP, SRBP, are

robust with respect to dropout.

7 Mathematical Analysis

7.1 General Considerations

The general strategy to try to derive more precise mathematical results is to proceed from

simple architectures to more complex architectures, and from the linear case to the non-

linear case. The linear case is more amenable to analysis and, in this case, RBP and SRBP

are equivalent when there is only one hidden layer, or when all the layers have the same size.

Thus we study the convergence of RBP to optimal solutions in linear architectures of

increasing complexity: [1, 1, 1], [1, 1, 1, 1], [1, 1, …, 1], [1, N, 1] [N, 1, N], and

then the general [N0, N1, N2] case with a single hidden layer. This is followed by the

study of a non-linear [1, 1, 1] case.

For each kind of linear network, under a set of standard assumptions, one ca derive a set of

non-linear–in fact polynomial–autonomous, ordinary differential equations (ODEs) for the

average (or batch) time evolution of the synaptic weights under the RBP or SRBP algorithm.

As soon as there is more than one variable and the system is non-linear, there is no general

theory to understand the corresponding behavior. In fact, even in two dimensions, the

problem of understanding the upper bound on the number and relative position of the limit

cycles of a system of the form dx/dt = P(x, y) and dy/dt = Q(x, y), where P and Q are

polynomials of degree n is open–in fact this is Hilbert’s 16-th problem in the field of

dynamical systems [29, 19].

When considering the specific systems arising from the RBP/SRBP learning equations, one

must first prove that these systems have a long-term solution. Note that polynomial ODEs

may not have long-term solutions (e.g. dx/dt = xα, with x(0) ≠ 0, does not have long-term

solutions for α > 1). If the trajectories are bounded, then long-term solutions exist. We are

particularly interested in long-term solutions that converge to a fixed point, as opposed to

limit cycles or other behaviors.

A number of interesting cases can be reduced to polynomial differential equations in one

dimension. These can be understood using the following theorem.

Baldi et al. Page 15

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 1—Let dx/dt = Q(x) = k0 + k1x + … + knxn be a first order polynomial

differential equation in one dimension of degree n > 1, and let r1 < r2 … < rk (k ≤ n) be the

ordered list of distinct real roots of Q (the fixed points). If x(0) = ri then x(t) = ri and the

solution is constant If ri < x(0) < ri+1 then x(t) → ri if Q < 0 in (ri, ri+1), and x(t) → ri+1 if Q
> 0 in (ri, ri+1). If x(0) < r1 and Q > 0 in the corresponding interval, then x(t) → r1.

Otherwise, if Q < 0 in the corresponding interval, there is no long time solution and x(t)
diverges to −∞ within a finite horizon. If x(0) > rk and Q < 0 in the corresponding interval,

then x(t) → rk. Otherwise, if Q > 0 in the corresponding interval, there is no long time

solution and x(t) diverges to +∞ within a finite horizon. A necessary and sufficient
condition for the dynamics to always converge to a fixed point is that the degree n be odd,
and the leading coefficient be negative.

Proof: The proof of this theorem is easy and can be visualized by plotting the function Q.

Finally, in general the matrices in the forward channel are denoted by A1, A2, …, and the

matrices in the learning channel are denoted by C1, C2, … Theorems are stated in concise

form and additional important facts are contained in the proofs.

7.2 The Simplest Linear Chain: [1, 1, 1]

Derivation of the System—The simplest case correspond to a linear [1, 1, 1]

architecture (Figure 10). Let us denote by a1 and a2 the weights in the first and second layer,

and by c1 the random weight of the learning channel. In this case, we have O(t) = a1a2I(t)
and the learning equations are given by:

Δa1 = ηc1(T − O)I = ηc1(T − a1a2I)I
Δa2 = η(T − O)a1I = η(T − a1a2I)a1I

(21)

When averaged over the training set:

E(Δa1) = ηc1E(IT) − ηc1a1a2E(I2) = ηc1α − ηc1a1a2β

E(Δa2) = ηα1E(IT) − ηa1
2a2E(I2) = ηa1α − ηa1

2a2β
(22)

where α = E(IT) and β = E(I2). With the proper scaling of the learning rate (η = Δt) this

leads to the non-linear system of coupled differential equations for the temporal evolution of

a1 and a2 during learning:

da1
dt = αc1 − βc1a1a2 = c1(α − βa1a2)

da2
dt = αa1 − βa1

2a2 = a1(α − βa1a2)
(23)

Note that the dynamic of P = a1a2 is given by:

Baldi et al. Page 16

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dP
dt = a1

da2
dt + a2

da1
dt = a1

2 + a2c1 α − βP (24)

The error is given by:

ℰ = 1
2E(T − PI)2 = 1

2E(T2) + 1
2P2β − Pα = 1

2E(T2) + 1
2β (α − βP)3 − α2

2β (25)

and:

dℰ
dP = − α + βP with ∂ℰ

∂ai
= (− α + βP) P

ai
(26)

the last equality requires ai ≠ 0.

Theorem 2—The system in Equation 23 always converges to a fixed point. Furthermore,

except for trivial cases associated with c1 = 0, starting from any initial conditions the system

converges to a fixed point corresponding to a global minimum of the quadratic error

function. All the fixed points are located on the hyperbolas given by α − βP = 0 and are

global minima of the error function. All the fixed points are attractors except those that are

interior to a certain parabola. For any starting point, the final fixed point can be calculated by

solving a cubic equation.

Proof: As this is the first example, we first deal with the trivial cases in detail. For

subsequent systems, we will skip the trivial cases entirely.

Trivial Cases

1. If β = 0 then we must have I = 0 and thus α = 0. As a result the activity of the

input, hidden, and output, neuron will always be 0. Therefore the weights a1 and

a2 will remain constant (da1/dt = da2/dt = 0) and equal to their initial values a1(0)

and a2(0). The error will also remain constant, and equal to 0 if and only if T = 0.

Thus from now on we can assume that β > 0.

2. If c1 = 0 then the lower weight a1 never changes and remains equal to its initial

value. If this initial value satisfies a1(0) = 0, then the activity of the hidden and

output unit remains equal to 0 at all times, and thus a2 remains constant and

equal to its initial value a2 = a2(0). The error remains constant and equal to 0 if

only if T is always 0. If a1(0) ≠ 0, then the error is a simple quadratic convex

function of a2 and since the rule for adjusting a2 is simply gradient descent, the

value of a2 will converge to its optimal value given by: a2 = α/βa1(0).

General Case: Thus from now on, we can assume that β > 0 and c1 ≠ 0. Furthermore, it is

easy to check that changing the sign of α corresponds to a reflection about the a2-axis.

Baldi et al. Page 17

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Likewise, changing the sign of c1 corresponds to a reflection about the origin (i.e. across

both the a1 and a2 axis). Thus in short, it is sufficient to focus on the case where: α > 0, β >

0, and c1 > 0. In this case, the critical points for a1 and a2 are given by:

P = a1a2 = α
3 = E(IT)

E(I2)
= 0 (27)

which corresponds to two hyperbolas in the two-dimensional (a1, a2) plane, in the first and

third quadrant for α = E(IT) > 0. Note that these critical points do not depend on the
feedback weight c1. All these critical points correspond to global minima of the error

function ℰ = 1
2E[(T − O)2]. Furthermore, the critical points of P include also the parabola:

a1
2 + a2c1 = 0 or a2 = − a1

2/c1 (28)

(Figure 11). These critical points are dependent on the weights in the learning channel. This

parabola intersects the hyperbola a1a2 = P = α/β at one point with coordinates: a1 = (−c1α/

β)1/3 and a2 = (− α2/3/(c1
1/3β2/3)).

In the upper half plane, where a2 and c1 are congruent and both positive, the dynamics is

simple to understand. For instance in the first quadrant where a1, a2, c1 > 0, if α − βP > 0

then da1/dt > 0, da2/dt > 0, and dP/dt > 0 everywhere and therefore the gradient vector flow

is directed towards the hyperbola of critical points. If started in this region, a1, a2, and P will

grow monotonically until a critical point is reached and the error will decrease

monotonically towards a global minimum. If α − βP < 0 then da1/dt < 0, da2/dt < 0, and

dP/dt < 0 everywhere and again the vector flow is directed towards the hyperbola of critical

points. If started in this region, a1, a2, and P will decrease monotonically until a critical point

is reached and the error will decrease monotonically towards a global minimum. A similar

situation is observed in the fourth quadrant where a1 < 0 and a2 > 0.

More generally, if a2 and c1 have the same sign, i.e. are congruent as in BP, then

a1
2 + a2c1 ≥ 0 and P will increase if α − βP > 0, and decrease if α − βP < 0. Note however

that this is also true in general when c1 is small regardless of its sign, relative to a1 and a2,

since in this case it is still true that a1
2 + a2c1 is positive. This remains true even if c1 varies,

as long as it is small. When c1 is small, the dynamics is dominated by the top layer. The

lower layer changes slowly and the top layer adapts rapidly so that the system again

converges to a global minimum. When a2 = c1 one recovers the convergent dynamic of BP,

as dP/dt always has the same sign as α − βP. However, in the lower half plane, the situation

is slightly more complicated (Figure 11).

To solve the dynamics in the general case, from Equation 23 we get:

Baldi et al. Page 18

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

da2
dt = a1

1
c1

dα1
dt (29)

which gives a2 = 1
2c1

a1
2 + C so that finally:

a2 = 1
2c1

a1
2 + b(0) − 1

2c1
a1

2(0) (30)

Given a starting point a1(0) and a2(0), the system will follow a trajectory given by the

parabola in Equation 30 until it converges to a critical point (global optimum) where da1/dt =

da2/dt = 0. To find the specific critical point to which it converges to, Equations 30 and 27

must be satisfied simultaneously which leads to the depressed cubic equation:

a1
3 + (2c1a2(0) − α1(02)α1 − 2

c1α
β = 0 (31)

which can be solved using the standard formula for the roots of cubic equations. Note that

the parabolic trajectories contained in the upper half plane intersect the critical hyperbola in

only one point and therefore the equation has a single real root. In the lower half plane, the

parabolas associated with the trajectories can intersect the hyperbolas in 1, 2, or 3 distinct

points corresponding to 1 real root, 2 real roots (1 being double), and 3 real roots. The

double root corresponds to the point −(c1α/β)1/3 associated with the intersection of the

parabola of Equation 30 with both the hyperbola of critical points a1a2 = α/β and the

parabola of additional critical points for P given by Equation 28.

When there are multiple roots, the convergence point of each trajectory is easily identified

by looking at the derivative vector flow (Figure 11). Note on the figure that all the points on

the critical hyperbolas are stable attractors, except for those in the lower half-plane that

satisfy both a1a2 = α/β and a2c1 + a1
2 < 0. This can be shown by linearizing the system

around its critical points.

Linearization Around Critical Points—If we consider a small deviation a1 + u and a2 +

v around a critical point a1, a2 (satisfying α − βa1a2 = 0) and linearize the corresponding

system, we get:

du
dt = − βc1(a2u + a1v)
dv
dt = − βa1(a2u + a1v)

(32)

with a1a2 = α/β. If we let w = a2u + a1v we have:

Baldi et al. Page 19

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dw
dt = − β(c1a2 + a1

2)w thus w = w(0)e
−β(c1a2 + a1

2)t
(33)

Thus if β(c1a2 + a1
2) > 0, w converges to zero and a1, a2 is an attractor. In particular, this is

always the case when c1 is very small, or c1 has the same sign as a2. If β(c1a2 + a1
2) < 0, w

diverges to +∞, and corresponds to unstable critical points as described above. If

β(c1a2 + a1
2) = 0, w is constant.

Finally, note that in many cases, for instance for trajectories in the upper half plane, the

value of P along the trajectories increases or decreases monotonically towards the global

optimum value. However this is not always the case and there are trajectories where dP/dt
changes sign, but this can happen only once.

7.3 Adding Depth: the Linear Chain [1, 1, 1, 1]

Derivation of the System—In the case of a linear [1, 1, 1, 1] architecture, for

notational simplicity, let us denote by a1, a2 and a3 the forward weights, and by c1 and c2 the

random weights of the learning channel (note the index is equal to the target layer). In this

case, we have O(t) = a1a2a3I(t) = PI(t). The learning equations are:

Δa1 = ηc1(T − O)I = ηc1(T − a1a2a3I)I
Δa2 = ηc2(T − O)a1I = ηc2(T − a1a2a3I)a1I

Δa3 = η(T − O)a1a2I = η(T − a1a2a3I)a1a2I
(34)

When averaged over the training set:

E(Δa1) = ηc1E(IT) − ηc1PE(I2) = ηc1α − ηc1Pβ

E(Δa2) = ηc2a1E(IT) − ηc2a1PE(I2) = ηc2a1α − ηc2a1Pβ

E(Δa3) = ηa1a2E(IT) − ηa1a2PE(I2) = ηa1a2β − ηa1a2Pβ

(35)

where P = a1a2a3. With the proper scaling of the learning rate (η = Δt) this leads to the non-

linear system of coupled differential equations for the temporal evolution of a1, a2 and a3

during learning:

Baldi et al. Page 20

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

da1
dt = c1(α − βP)

da2
dt = c2a1(α − βP)

da3
dt = a1a2(α − βP)

(36)

The dynamic of P = a1a2a3 is given by:

dP
dt = a1a2

da3
dt + a2a3

da1
dt + a1a3

da2
dt = (a1

2a2
2 + c1a2a3 + c2a1

2a3)(α − βP) (37)

Theorem 3—Except for trivial cases (associated with c1 = 0 or c2 = 0), starting from any

initial conditions the system in Equation 36 converges to a fixed point, corresponding to a

global minimum of the quadratic error function. All the fixed points are located on the

hypersurface given by α − βP = 0 and are global minima of the error function. Along any

trajectory, and for each i, ai+1 is a quadratic function of ai. For any starting point, the final

fixed point can be calculated by solving a polynomial equation of degree seven.

Proof: If c1 = 0, a1 remains constant and thus we are back to the linear case of a [1, 1, 1]

architecture where the inputs I are replaced by a1I. Likewise, if c2 = 0 a2 remains constant

and the problem can again be reduced to the [1, 1] case with the proper adjustments. Thus

for the rest of this section we can assume c1 ≠ 0 and c2 ≠ 0.

The critical points of the system correspond to α − βP = 0 and do not depend on the weights

in the learning channel. These critical points correspond to global minima of the error

function. These critical points are also critical points for the product P. Additional critical

points for P are provided by the hypersurface: a1
2a2

2 + c1a2a3 + c2a1
2a3 = 0 with (a1, a2, a3) in

ℝ3.

The dynamics of the system can be solved by noting that Equation 36 yields:

da2
dt =

a1c2
c1

da1
dt and

da3
dt =

a2
c2

da2
dt (38)

As a result:

a2 =
c2
2c1

a1
2 + C1 with C1 = a2(0) −

c2
2c1

a1(0)2 (39)

and:

Baldi et al. Page 21

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a3 = 1
2c2

a2
2 + C2 with C2 = a3(0) − 1

2c2
a2(0)2 (40)

Substituting these results in the first equation of the system gives:

da1
dt = c1[α − βa1(

c2
2c1

a1
2 + C1)(1

2c2
a2

2 + C2)] (41)

and hence:

da1
dt = c1[α − βa1(

c2
2c1

a1
2 + C1)(1

2c2
(

c2
2c1

a1
2 + C1)

2
+ C2)] (42)

In short da1/dt = Q(a1) where Q is a polynomial of degree 7 in a1. By expanding and

simplifying Equation 42, it is easy to see that the leading term of Q is negative and given by

βc2
2/(16c1

2). Therefore, using Theorem 1, for any initial conditions a1(0), a1(t) converges to a

finite fixed point. Since a2 is a quadratic function of a1 it also converges to a finite fixed

point, and similarly for a3. Thus in the general case the system always converges to a global

minimum of the error function satisfying α − βP = 0. The hypersurface

a1
2a2

2 + c1a2a3 + c2a1
2a3 = 0 depends on c1, c2 and provides additional critical points for the

product P. It can be shown again by linearization that this hypersurface separates stable from

unstable fixed points.

As in the previous case, small weights and congruent weights can help learning but are not

necessary. In particular, if c1 and c2 are small, or if c1 is small and c2 is congruent (with a3),

then a1
2a2

2 + c1a2a3 + c2a1
2a3 > 0 and dP/dt has the same sign as α − βP.

7.4 The General Linear Chain: [1, …, 1]

Derivation of the System—The analysis can be extended immediately to a linear chain

architecture [1, …, 1] of arbitrary length (Figure 12). In this case, let a1, a2, …, aL denote

the forward weights and c1, …, cL−1 denote the feedback weights. Using the same derivation

as in the previous cases and letting O = PI = a1a2 … aLI gives the system:

Δai = ηci(T − O)a1a2…ai − 1I (43)

for i = 1, …, L. Taking expectations as usual leads to the set of differential equations:

Baldi et al. Page 22

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

da1
dt = c1(α − βP)

da2
dt = c2a1(α − βP)

…
daL − 1

dt = cL − 1a1a2…aL − 2(α − βP)
daL
dt = a1…aL − 1(α − βP)

(44)

or, in more compact form:

dai
dt = ci ∏

k = 1

k = i − 1
ak(α − βP) for i = 1, …, L (45)

with cL = 1. As usual, P = ∏i = 1
L ai, α = E(TI), and β = E(I2). A simple calculation yields:

dP
dt = ∑

i = 1

L P
ai

dai
dt = (α − βP) ∑

i = 1

L
P

ci
ai

∏
k = 1

i − 1
ak (46)

the last equality requiring ai ≠ 0 for every i.

Theorem 4—Except for trivial cases, starting from any initial conditions the system in

Equation 44 converges to a fixed point, corresponding to a global minimum of the quadratic

error function. All the fixed points are located on the hypersurface given by α − βP = 0 and

are global minima of the error function. Along any trajectory, and for each i, ai+1 is a

quadratic function of ai. For any starting point, the final fixed point can be calculated by

solving a polynomial equation of degree 2L − 1.

Proof: Again, when all the weights in the learning channel are non zero, the critical points

correspond to the curve α − βP = 0. These critical points are independent of the weights in

the learning channel and correspond to global minima of the error function. Additional

critical points for the product P = a1 … aL are given by the surface ∑i = 1
L P

ci
ai

∏k = 1
i − 1 ak = 0.

These critical points are dependent on the weights in the learning channel. If the ci are small

or congruent with the respective feedforward weights, then

∑k = 1
L [∏i ≠ k ai][cL − k∏ j = 1

j = k − 1a j] > 0 and dP/dt has the same sign as α − βP. Thus small

or congruent weights can help the learning but they are not necessary.

To see the convergence, from Equation 45, we have:

Baldi et al. Page 23

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ci
dai + 1

dt = ci + 1ai
dai
dt (47)

Note that if one the derivatives dai/dt is zero, then they are all zero and thus there cannot be

any limit cycles. Since in the general case all the ci are non zero, we have:

ai + 1 =
ci + 1
2ci

ai
2 + C (48)

showing that there is a quadratic relationship between ai+1 and ai, with no linear term, for

every i. Thus every ai can be expressed as a polynomial function of a1 of degree 2i−1,

containing only even terms:

ai = k0 + k1a1
2 + … + ki − 1a1

2i − 1
(49)

and:

ki − 1 =
ci

2ci − 1
(

ci − 1
2ci − 2

)
2
(

ci − 2
2ci − 3

)
4
…(

c3
2c2

)
2i − 1

(50)

By substituting these relationships in the equation for the derivative of a1, we get da1/dt =

Q(a1) where Q is a polynomial with an odd degree n given by:

n = 1 + 2 + 4 + … + 2L − 1 = 2L − 1 (51)

Furthermore, from Equation 50 it can be seen that leading coefficient is negative therefore,

using Theorem 1, for any set of initial conditions the system must converge to a finite fixed

point. For a given initial condition, the point of convergence can be solved by looking at the

nearby roots of the polynomial Q of degree n.

Gradient Descent Equations—For comparison, the gradient descent equations are:

dai
dt = aL…ai + 1a1…ai − 1(α − βP) = P

ai
(α − βP) = − ∂ℰ

∂ai
(52)

(the equality in the middle requires that ai ≠ 0). In this case, the coupling between

neighboring terms is given by:

Baldi et al. Page 24

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ai
dai
dt = ai + 1

dai + 1
dt (53)

Solving this equation yields:

dai
2

dt =
dai + 1

2

dt or ai + 1
2 = ai

2 + C (54)

7.5 Adding Width (Expansive): [1,N, 1]

Derivation of the System—Consider a linear [1,N, 1] architecture (Figure 13). For

notational simplicity, we let a1, …, aN be the weights in the lower layer, b1, …, bN be the

weights in the upper layer, and c1, …, cN the random weights of the learning channel. In this

case, we have O(t) = Σi aibiI(t). We let P = Σi aibi. The learning equations are:

Δai = ηci(T − O)I = ηci(T − ∑iaibiI)I

Δbi = η(T − O)aiI = η(T − ∑iaibiI)aiI
(55)

When averaged over the training set:

E(Δai) = ηciE(IT) − ηciPE(I2) = ηciα − ηciPβ

E(Δbi) = ηaiE(IT) − ηaiPE(I2) = ηaiα − ηaiPβ
(56)

where α = E(IT) and β = E(I2). With the proper scaling of the learning rate (η = Δt) this

leads to the non-linear system of coupled differential equations for the temporal evolution of

ai and bi during learning:

dai
dt = αci − βciP = ci(α − βP)
dbi
dt = αai − βaiP = ai(α − βP)

(57)

The dynamic of P = Σi aibi is given by:

dP
dt = ∑

i
ai

dbi
dt + bi

dai
dt = (α − βP)∑

i
[bici + ai

2] (58)

Theorem 5—Except for trivial cases, starting from any initial conditions the system in

Equation 57 converges to a fixed point, corresponding to a global minimum of the quadratic

Baldi et al. Page 25

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

error function. All the fixed points are located on the hyersurface given by α − βP = 0 and

are global minima of the error function. Along any trajectory, each bi is a quadratic

polynomial function of ai. Each ai is an affine function of any other aj.For any starting point,

the final fixed point can be calculated by solving a polynomial differential equation of

degree 3.

Proof: Many of the features found in the linear chain are found again in this system using

similar analyses. In the general case where the weights in the learning channel are non zero,

the critical points are given by the surface α − βP = 0 and correspond to global optima.

These critical points are independent of the weights in the learning channel. Additional

critical points for the product P = Σi aibi are given by the surface ∑iai
2 + bici = 0 which

depends on the weights in the learning channel. If the ci’s are small, or congruent with the

respective bi’s, then ∑iai
2 + bici > 0 and dP/dt has the same sign as α − βP.

To address the convergence, Equations 57 leads to the vertical coupling between ai and bi:

ai
dai
dt = ci

dbi
dt or bi = 1

2ci
ai

2 + Ci (59)

for each i = 1, …, N. Thus the dynamics of the ai variables completely determines the

dynamics of the bi variables, and one only needs to understand the behavior of the ai

variables. In addition to the vertical coupling between ai and bi, there is an horizontal

coupling between the ai variables given again by Equation 57 resulting in:

dai + 1
dt =

ci + 1
ci

dai
dt or ai + 1 =

ci + 1
ci

ai + Ki + 1 (60)

Thus, iterating, all the variables ai can be expressed as affine functions of a1 in the form:

ai =
ci
c1

a1 + Ki′ i = 1, …, N (61)

Thus solving the entire system can be reduced to solving for a1. The differential equation for

a1 is of the form da1/dt = Q(a1) where Q is a polynomial of degree 3. Its leading term, is the

leading term of −c1βP. To find its leading term we have:

P = ∑
i

aibi = ∑
i

ai
3

2ci
+ ciai (62)

and thus the leading term of Q is given by Ka1
3 where:

Baldi et al. Page 26

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

K = − βc1[1
2c1

+ 1
2c2

c2
3

c1
3 + … 1

2cN

cN
3

c1
3] = − β

2
1
c1

2 [∑
1

N
ci

2] (63)

Thus the leading term of Q has a negative coefficient, and therefore a1 always converges to a

finite fixed point, and so do all the other variables.

7.6 Adding Width (Compressive): [N, 1,N]

Derivation of the System—Consider a linear [N, 1,N] architecture (Figure 13). The

on-line learning equations are given by:

Δai = η∑k = 1
N ck(Tk − Ok)Ii

Δbi = η(T i − Oi)∑k = 1
N akIk

(64)

for i = 1, …, N. As usual taking expectations, using matrix notation and a small learning

rate, leads to the system of differential equations:

dA
dt = C(∑TI − BA∑II)
dB
dt = (∑TI − BA∑II)At

(65)

Here A is an 1 × N matrix, B is an N × 1 matrix, and C is an 1 × N matrix, and Mt denotes

the transpose of the matrix M. ΣII = E(IIt) and ΣTI = E(TIt) are N × N matrices associated

with the data.

Lemma 1—Along the flow of the system defined by Equation 65, the solution satisfies:

CB = 1
2‖A‖2 + K (66)

where K is a constant depending only on the initial values.

Proof: The proof is immediate since:

C dB
dt = dA

dt At or ∑
i

ci
dbi
dt = ∑

i
ai

dai
dt or∑

i
ci

dbi
dt = 1

2
d‖A‖2

dt (67)

where ‖A‖2 = a1
2 + … + aN

2 . The theorem is obtained by integration.

Baldi et al. Page 27

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 6—In the case of an autoencoder with uncorrelated normalized data (Equation

68), the system converges to a fixed point satisfying A = βC, where β is a positive root of a

particular cubic equation. At the fixed point, B = Ct/(β||C||2) and the product P = BA
converges to CtC/||C||2.

Proof: For an autoencoder with uncorrelated and normalized data (ΣTI = ΣII = Id). In this

case the system can be written as:

dA
dt = C(Id − BA)
dB
dt = (Id − BA)At

(68)

We define

σ(t) = 1
2‖A‖2 + K (69)

and let A0 = A(0). Note that σ(t) ≥ K. We assume that C and A0 are linearly independent,

otherwise the proof is easier. Then we have:

dA
dt = C − σ(t)A (70)

Therefore the solution A(t) must have the form:

A(t) = f (t)C + g(t)A0 (71)

which yields:

f ′(t) = 1 − σ(t) f (t), f (0) = 0
g′(t) = − σ(t)g(t), g(0) = 1

(72)

or:

g(t) = e
−∫ 0

t σ(s)ds

f (t) = e
−∫ 0

t σ(s)ds∫
0

t
e

∫ 0
r σ(s)ds

dr

(73)

From the above expressions, we know that both f and g are nonnegative. We also have

Baldi et al. Page 28

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f (t) = g(t)∫
0

t 1
g(r)dr (74)

Since σ(t) ≥ K, g(t) is bounded, and thus

∫
0

∞ 1
g(r)dr = ∞ . (75)

By a more general theorem shown in the next section, we know also that ||A|| is bounded and

therefore f is also bounded. Using Equation 74, this implies that that g(t) → 0 as t→∞.

Now we consider again the equation:

f ′ = 1 − σ f (76)

Now consider the cubic equation:

1 − (1
2 t2‖C‖2 + K)t = 0 (77)

For t large enough, since g(t) → 0, we have:

σ(t) ≈ 1
2 f 2‖V‖2 + K (78)

Thus Equation 76 is close to the polynomial differential equation:

h′ = 1 − (1
2h2‖C‖2 + K)h (79)

By Theorem 1, this system is always convergent to a positive root of Equation 77, and by

comparison the system in Equation 76 must converge as well. This proves that f(t) → β as t
→ ∞, and in combination with g(t) → 0 as t → ∞, shows that A converges to βC. As A
converges to a fixed point, the error function converges to a convex function and B performs

gradient descent on this convex function and thus must also approach a fixed point. By the

results in [2, 3], the solution must satisfy BAAt = At. When A = βC this gives: B = Ct/

(βCCt) = Ct/(β||C||2). In this case, the product P = BA converges to the fixed point: CtC/||C||2.

The proof can easily be adapted to the slightly more general case where ΣII is a diagonal

matrix.

Baldi et al. Page 29

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.7 The General Linear Case: [N0,N1, …, NL]

Derivation of the System—Although we cannot yet provide a solution for this case, it is

still useful to derive its equations. We assume a general feedforward linear architecture

(Figure 14) [N0,N1, …, NL] with adjustable forward matrices A1, …, AL and fixed

feedback matrices C1, …, CL−1 (and CL = Id). Each matrix Ai is of size Ni ×Ni−1 and, in

SRBP, each matrix Ci is of size Ni × NL. As usual, O(t) = PI(t) = (∏i = 1
L Ai)I(t).

Assuming the same learning rate everywhere, using matrix notation we have:

ΔAi = ηCi(T − O)(Ai − 1…A1I)t = ηCi(T − O)ItA1
t …Ai − 1

t (80)

which, after taking averages, leads to the system of differential equations

dAi
dt = Ci(∑TI − P∑II)A1

t …Ai − 1
t (81)

with P = ALAL−1 …A1, ΣTI = E(TIt), and ΣII = E(IIt). ΣTI is a NL×N0 matrix and ΣII is a N0

× N0 matrix. In the case of an autoencoder, T = I and therefore ΣTI = ΣII. Equation 81 is true

also for i = 1 and i = L with CL = Id where Id is the identity matrix. These equations

establish a coupling between the layers so that:

dAi + 1
dt = Ci + 1(∑TI − P∑II)A1

t …Ai
t (82)

When the layers have the same sizes, the coupling can be written as:

Ci + 1
−1 dAi + 1

dt = Ci
−1dAi

dt Ai
t or

dAi + 1
dt = Ci + 1Ci

−1dAi
dt Ai

t (83)

where we can assume that the random matrices Ci are invertible square matrices.

Gradient Descent Equations—For comparison, the gradient descent equations are given

by:

dAi
dt = Ai + 1

t …AL
t (∑TI − P∑II)A1

t …Ai − 1
t (84)

resulting in the coupling:

Baldi et al. Page 30

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ai + 1
t Ai + 1

dt =
dAi
dt Ai

t (85)

and, by definition:

dAi
dt = − ∂ℰ

∂Ai
(86)

where ℰ = E(T − PI)2/2.

RBP Equations—Note that in the case of RBP with backward matrices C1, …, CL−1, as

opposed to SRBP, one has the system of differential equations:

dAi
dt = Ci…CL − 1(∑TI − P∑II)A1

t …Ai − 1
t (87)

By letting Bi = Ci … CL−1 one obtains the SRBP equations however the size of the layers

may impose contraints on the rank of the matrices Bi.

7.8 The General Three-Layer Linear Case [N0,N1,N2]

Derivation of the System—Here we let A1 be the N1 × N0 matrix of weights in the

lower layer, A2 be N2 × N1 matrix of weights in the upper layer, and C1 the N1 ×N2 random

matrix of weights in the learning channel. In this case, we have O(t) = A2A1I(t) = PI(t)) and

ΣII = E(IIt) (N0×N0), and ΣTI = E(TIt) (N2 × N1). The learning equations are given by:

dA2
dt = (∑TI − P∑II)A1

t

dA1
dt = C1(∑TI − P∑II)

(88)

resulting in the coupling:

C1
dA2
dt =

dA1
dt A1

t (89)

The corresponding gradient descent equations are obtained immediately by replacing C1

with A2
t .

Note that the two-layer linear case corresponds to the classical Least Square Method which

is well understood. The general theory of the three-layer linear case, however, is not well

understood. In this section, we take a significant step towards providing a complete

Baldi et al. Page 31

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

treatment of this case. One of the main results is that system defined by Equation 88 has

long-term existence, and C1P = C1A2A1 is convergent and thus, in short, the system is able

to learn. However this alone does not imply that the matrix valued functions A1(t), A2(t) are

individually convergent. We can prove the latter in special cases like [N, 1,N] and [1,N,

1] studied in the previous sections, as well as [2, 2, 2].

We begin with the following theorem.

Theorem 7—The general three layer linear system (Equation 88) always has long-term

solutions. Moreover ||A1|| is bounded.

Proof: As in Lemma 1, we have:

d(CA2)
dt = C(∑TI − A2A1∑II)A1

t =
dA1
dt A1

t (90)

Thus we have:

d((CA2) + (CA2)t)
dt =

dA1
dt A1

t + A1
dA1

t

dt = d
dt (A1A1

t) . (91)

It follows that:

(CA2) + (CA2)t = A1A1
t + C0 (92)

where C0 is a constant matrix. Let:

f = Tr(A1A1
t) . (93)

Using Lemma 2 below, we have:

d f
dt = 2Tr(

dA1
dt A1

t) = 2Tr(C∑TIA1
t − CA2A1∑IIA1

t) ≤ c3‖A1‖ − 2Tr(CA2A1∑IIA1
t) . (94)

Since:

2Tr(CA2A1∑IIA1
t) = Tr(CA2A1∑IIA1

t) + Tr(A1∑IIA1
t (CA2)t) (95)

or:

Baldi et al. Page 32

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2Tr(CA2A1∑IIA1
t) = Tr(CA2A1∑IIA1

t) + Tr((CA2)tA1∑IIA1
t) (96)

using Equation 92, we have:

2Tr(CA2A1∑IIA1
t) = Tr(A1A1

t A1∑IIA1
t) + Tr(C0A1∑IIA1

t) (97)

Using the second inequality in Lemma 2 below, we have:

d f
dt ≤ c3‖A1‖ + Tr(C0A1∑IIA1

t) − c1 f 2 ≤ c3 f + c4 f − c1 f 2 ≤ c5 − 1
2c1 f 2 (98)

for positive constants c1, …, c5. Since A1 has long-term existence, so does f. Note that it is

not possible for f to be increasing as t → ∞ because if we had f′(t) ≥ 0, then we would have

c5 − 1
2c1 f 2 ≥ 0 and thus f would be bounded (f ≤ 2c5/ c1). But if f is not always

increasing, at each local maximum point of f we have f ≤ 2c5/ c1, which implies

f ≤ 2c5/ c1 everywhere.

Lemma 2—There is a constant c1 > 0 such that

1. f ≥ c1||A1||2,

2. Tr(A1A1
t A1∑IIA1

t) ≥ c1 f 2.

Proof: The first statement is obvious. To prove the second one, we observe that:

Tr(A1A1
t A1∑IIA1

t) = Tr(A1
t A1∑IIA1

t A1) ≥ c2Tr(A1
t A1A1

t A1) ≥ c1 f 2 (99)

for some constants c1, c2 > 0.

To complete the proof of Theorem 7, we must estimate A2 to make sure it does not diverge

at a finite time. Let

h = 1
2Tr(A2A2

t) (100)

Then:

dh
dt = Tr((∑TI − A2A1∑II)A1

t A2
t) = Tr(∑TIA1

t A2
t) − Tr(A2A1∑IIA1

t A2
t) (101)

Baldi et al. Page 33

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and thus:

dh
dt ≤ Tr(∑TIA1

t A2
t) (102)

Since we have shown that ||A1|| is bounded:

dh
dt ≤ Tr(∑TIA1

t A2
t) ≤ K‖A2‖ ≤ K h (103)

for some constant K. As a result, h ≤ K1t2 + K2 or

‖A2‖ ≤ K1t2 + K2 ≤ K3t + K4 (104)

Since for every t, 1/||A2|| is bounded, the system has long-term solutions.

The main result of this section is as follows.

Theorem 8: [Partial Convergence Theorem]—Along the flow of the system in

Equation 88, A1 and C1A2 are uniformly bounded. Moreover, C1A2A1 C1∑TI∑II
−1 as

t→∞ and:

∫
0

∞
‖C1A2A1 − C1∑TI∑II

−1‖2dt < ∞ (105)

Proof: Let:

U = C1(∑TI − A2A1∑II)∑II
−1 (106)

Then:

dA1
dt = U∑II,

d(C1A2)
dt = U∑IIA1

T (107)

It follows that:

Baldi et al. Page 34

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

d(C1A2)
dt (C1A2)T = U∑IIA1

T(C1A2)T = U∑II(C1A2A1)T and

d(A1(C1∑TI∑II
−1)T)

dt = U∑II(C1∑TI∑II
−1)T = U(C1∑TI)T

Thus we have:

d(C1A2)
dt (C1A2)T −

d(A1(C1∑TI∑II
−1)T)

dt = − U∑IIU
T ≤ 0 (108)

Here, for two matrices X and Y, we write X ≤ Y if and only if Y − X is a semi-positive

matrix. Let:

V = (C1A2)(C1A2)T − A1(C1∑TI∑II
−1)T − (C1∑TI∑II

−1)A1
T

Then:

dV
dt ≤ 0

By Theorem 7, there is a lower bound on the matrix V

V ≥ − A1(C1∑TI∑II
−1)T − (C1∑TI∑II

−1)A1
T ≥ − C

for a constant matrix C. Thus as t → ∞, V = V (t) is convergent. Using the inequality

above, the expression

(C1A2)(C1A2)T − A1(C1∑TI∑II
−1)T − (C1∑TI∑II

−1)A1
T (109)

is monotonically decreasing. Since A1 is bounded by Theorem 7, and A2A2
T is nonnegative,

the expression is convergent. In particular, C1A2 is also bounded along the flow. By the

(108), both A1 and C1A2 are L2 integrable. Thus in fact we have pointwise convergence of

C1A2A1. Since C1 may not be full rank, we call it partial convergence. If C1 has full rank

(which in general is the case of interest), then as C1A2A1 is convergent, so is A2A1.

When does partial convergence imply the convergences of the solution (A1(t), A2(t))? The

following result gives a sufficient condition.

Theorem 9—If the set of matrices A1, A2 satisfying:

Baldi et al. Page 35

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C1A2A1 = C1∑TI∑II
−1

(C1A2) + (C1A2)T − A1A1
T = K

C1A2A2
TC1

T + A1(C1∑TI)
T + C1∑TIA1

T = L

(110)

is discrete, then A1(t) and C1A2(t) are convergent.

Proof: By the proof of Theorem 8, we know that A1(t), C1A2(t) are bounded, and the

limiting points of the pair (A1(t), C1A2(t)) satisfy the relationships in Equation 110. If the set

is discrete, then the limit must be be unique and A1(t) and C1A2(t) converge.

If C1 has full rank, then the system in Equation (88) is convergent, if the assumptions in

Theorem 9 are satisfied. Applying this result to the [1, N, 1] and [N, 1, N] cases,

provides alternative proofs for Theorem 3 and Theorem 6. The details are omitted. Beyond

these two cases, the algebraic set defined by Equation (110) is quite complicated to study.

The first non-trivial case that can be analyzed corresponds to the [2, 2, 2] architecture. In

this special case, we we can solve the convergence problem entirely as follows.

For the sake of simplicity, we assume that ΣII = ΣTI = C1 = I. Then the system associated

with Equation (88) can be simplified to:

dB
dt = (I − BA)At

dA
dt = (I − BA)

(111)

where A(t), B(t) are 2 × 2 matrix functions. By Theorem 7, we know that B(t)A(t) is

convergent. In order to prove that B(t) and A(t) are individually convergent, we prove the

following result.

Theorem 10—Let ℱ be the set of 2 × 2 matrices A, B satisfying the equations:

B + BT − AAT = K
A + AT − BBT = L
AB = I

(112)

where K, L are fixed matrices. Then ℱ is a discrete set and the system defined by Equation

111 is convergent.

Proof: The proof is somewhat long and technical and thus is given in the Appendix. It uses

basic tools from algebraic geometry.

Theorem 10 provides evidence that in general the algebraic set defined by Equation (110)

might be discrete. Although at this moment we are not able to prove discreteness in the

general case, this is a question of separate interest in mathematics (real algebraic geometry).

Baldi et al. Page 36

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The system defined by Equation (110) is an over-determined system of algebraic equations.

For example, if A(t), B(t) are n × n matrices, and if C is non-singular, then the system

contains n(n + 1) equations with n2 unknowns. One can define the Koszul complex [9]

associated with these equations Using the complex, given specific matrices C, ΣTI, ΣII, K, L,

there is a constructive algorithmic way to determine whether the set is discrete. If it is, then

the corresponding system of ODE is convergent.1

7.9 A Non-Linear Case

As can be expected, the case of non-linear networks is challenging to analyze

mathematically. In the linear case, the transfer functions are the identity and thus all the

derivatives of the transfer functions are equal to 1 and thus play no role. The simulations

reported above provide evidence that in the non-linear case the derivatives of the activation

functions play a role in both RBP and SRBP. Here we study a very simple non-linear case

which provides some further evidence.

We consider a simple [1, 1, 1] architecture, with a single power function non linearity

with power μ ≠ 1 in the hidden layer, so that O1(S) = (S1)μ. The final output neuron is linear

O2(S2) = S2 and thus the overall input-output relationship is: O = a2(a1I)μ. Setting μ to 1/3,

for instance, provides an S-shaped transfer function for the hidden layer, and setting μ = 1

corresponds to the linear case analyzed in a previous section. The weights are a1 and a2 in

the forward network, and c1 in the learning channel.

Derivation of the System Without Derivatives—When no derivatives are included,

one obtains:

da2
dt = a1

μ[E(TIμ) − a2a1
μE(μI2)] = a1

μ(α − βa2a1
μ)

da1
dt = c1[E(TI) − a2a1

μE(Iμ + 1)] = c1(γ − δa2a1
μ)

(113)

where here α = E(TIμ), β = E(I2μ), γ = E(TI), and δ = E(Iμ+1). Except for trivial cases, such

a system cannot have fixed points since in general one cannot have a2a1
μ = α/β and a2a1

μ = γ /δ

at the same time.

Derivation of the System With Derivatives—In contrast, when the derivative of the

forward activation is included the system becomes:

da2
dt = a1

μ[E(TIμ) − a2a1
μE(I2μ)] = a1

μ(α − βa2a1
μ)

da1
dt = c1μa1

μ − 1E(TIμ) − a2c1μa1
2μ − 1E(I2μ) = a1

μ − 1c1μ(α − βa2a1
μ)

(114)

1We thank Professor Vladimir Baranovsky for providing this information.

Baldi et al. Page 37

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This leads to the coupling:

a1
da1
dt = c1μ

da2
dt or a2 =

a1
2

2c1μ + K (115)

excluding as usual the trivial cases where c1 = 0 or μ = 0. Here K is a constant depending

only on a1(0) and a2(0). The coupling shows that if da1/dt = 0 then da2/dt = 0 and therefore

in general limit cycles are not possible. The critical points are given by the equation:

α − βa2a1
μ = 0 or a2 = α

βa1
μ (116)

and do not depend on the weight in the learning channel. Thus, in the non-trivial cases, a2 is

an hyperbolic function of a1
μ. It is easy to see, at least in some cases, that the system

converges to a fixed point. For instance, when α > 0, c1 > 0, μ > 1, and a1(0) and a2(0) are

small and positive, then da1/dt > 0 and da2/dt > 0 and both derivatives are monotonically

increasing and α − βa2a1
μ decreases monotonically until convergence to a critical point. Thus

in general the system including the derivatives of the forward activations is simpler and
better behaved. In fact, we have a more general theorem.

Theorem 12—Assume that α > 0, β > 0 c1 > 0, and μ ≥ 1. Then for any positive initial

values a1(0) ≥ 0 and a2(0) ≥ 0, the system described by Equation 114 is convergent to one of

the positive roots of the equation for t:

α − β(t2
2c1μ + K)tμ = 0 (117)

Proof: Using Equation 115, the differential equation for a1 can be rewritten as:

da1
dt = μa1

μ − 1c1(α − β(
a1

2

2c1μ + K)a1
μ) = Q(a1) (118)

When μ is an integer, Q(a1) is a polynomial of odd degree with a leading coefficient that is

negative and therefore, using Theorem 1, the system is convergent. If μ is not an integer, let

r1 < … < rk be the positive roots of the function Q. The proof then proceeds similarly to the

proof of Theorem 1. That is this differential equation (Equation 118) is convergent to one of

the (non-negative) roots of Q(t). However, since a1(0) > 0, a more careful analysis shows

that it is not for a1 to converge to zero. Thus a1 must converge to a positive root of Equation

117.

Baldi et al. Page 38

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gradient Descent Equations—Finally, for comparison, in the case of gradient descent,

the system is given by:

da2
dt = a1

μ[E(TIμ) − a2a1
μE(I2μ)] = a1

μ(α − βa2a1
μ)

da1
dt = a2μa1

μ − 1E(TIμ) − a2
2μa1

2μ − 1E(I2μ) = a1
μ − 1a2μ(α − βa2a1

μ)
(119)

Except for trivial cases, the critical points are again given by Equation 116, and the system

always converges to a critical point.

8 Conclusion

Training deep architectures with backpropagation on digital computers is useful for practical

applications, and it has become easier than ever, in part because of the creation of software

packages with automatic differentiation capabilities. This convenience, however, can be

misleading as it hampers thinking about the constraints of learning in physical neural

systems, which are merely being mimicked on digital computers. Thinking about learning in

physical systems is useful in many ways: it leads to the notion of local learning rules, which

in turn identifies two fundamental problems facing backpropagation in physical systems.

First backpropagation is not local, and thus a learning channel is required to communicate

error information from the output layer to the deep weights. Second, backpropagation

requires symmetric weights, a significant challenge for those physical systems that cannot

use the forward channel in the reverse direction, thus requiring a different pathway to

communicate errors to the deep weights.

RBP is one mode for communicating information over the learning channel, that completely

bypasses the need for symmetric weights, by using fixed random weights instead. However

RBP is only one possibility among many other ones for harnessing randomness in the

learning channel. Here we have derived several variants of RBP and studied them through

simulations and mathematical analyses. Additional variants are studied in a followup paper

[4] which considers additional symmetry issues such as having a learning channel with an

architecture that is not a symmetric version of the forward architecture, or having non-linear

units in the learning channel that are similar to the non-linear units of the forward

architecture.

In combination, the main emerging picture is that the general concept of RBP is remarkably

robust as most of the variants lead to robust learning. RBP and its many variants do not seem

to have a practical role in digital simulations as they often lead to slower learning, but they

should be useful in the future both to better understand biological neural systems, and to

implement new neural physical systems in silicon or other substrates.

In supervised learning, the critical equations show that in principle any deep weights must

depend on all the training examples and all the other weights of the network.

Backpropagation shows that it is possible to derive effective learning rules of the form

Δwi j
h = ηIi j

h O j
h − 1 where the role of the lower part of the network is subsumed by the

Baldi et al. Page 39

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

presynaptic activity term O j
h − 1 and Ii j

h is a signal communicated through the deep learning

channel that carries information about the outputs and the targets to the deep synapses. Here

we have studied what kind of information must be carried by the signal Ii j
h and how much it

can be simplified (Table 2). The main conclusion is that the postynaptic terms must: (1)

implement gradient descent for the top layer (i.e. random weights in the learning channel for

the top layer do not work at all); (2) for any other deep layer h it should be of the form f′F(T
− O), where f′ represents the derivatives of the activations of the units in layer h (the

derivatives above are not necessary) and F is some reasonable function of the error T −O. By

reasonable, we mean that the function F can be linear, or a composition of linear propagation

with non-linear activation functions, it can be fixed or slowly varying, and when matrices are

involved these can be random, sparse, etc. As can be expected, it is better if these matrices

are full rank although gracious degradation, as opposed to catastrophic failure, is observed

when these matrices deviate slightly from the full rank case.

The robustness and other properties of these algorithms cry for explanations and more

general principles. We have provided both intuitive and formal explanations for several of

these properties. On the mathematical side, polynomial learning rules in linear networks lead

to systems of polynomial differential equations. We have shown in several cases that the

corresponding ODEs converge to an optimal solution. However these polynomial systems of

ODEs rapidly become complex and, while the results provided are useful, they are not yet

complete, thus providing directions for future research.

Acknowledgments

Work supported in part by NSF grant IIS-1550705 and a Google Faculty Research Award to PB, and NSF grant
DMS-1547878 to ZL. We are also grateful for a hardware donation from NVDIA Corporation.

References

1. Agostinelli F, Ceglia N, Shahbaba B, Sassone-Corsi P, Baldi P. What time is it? deep learning
approaches for circadian rhythms. Bioinformatics. 2016; 32(12):i8–i17. [PubMed: 27307647]

2. Baldi P, Hornik K. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks. 1988; 2(1):53–58.

3. Baldi P, Lu Z. Complex-valued autoencoders. Neural Networks. 2012; 33:136–147. [PubMed:
22622264]

4. Baldi P, Lu Z, Sadowski P. Learning in the machine: the symmetries of the deep learning channel.
Neural Networks. 2017; 95:110–133. [PubMed: 28938130]

5. Baldi P, Sadowski P. The dropout learning algorithm. Artificial Intelligence. 2014; 210C:78–122.

6. Baldi P, Sadowski P. A theory of local learning, the learning channel, and the optimality of
backpropagation. Neural Networks. 2016; 83:61–74.

7. Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep
learning. Nature Communications. 2014; 5

8. Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map prediction. Bioinformatics.
2012; 28:2449–2457. First published online: July 30, 2012. DOI: 10.1093/bioinformatics/bts475
[PubMed: 22847931]

9. Eisenbud, D. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag;
New York: 1995. With a view toward algebraic geometry

Baldi et al. Page 40

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

10. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological cybernetics. 1980; 36(4):193–202.
[PubMed: 7370364]

11. Glorot, X., Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10);
Society for Artificial Intelligence and Statistics; 2010.

12. Graves, A., Mohamed, A-r, Hinton, G. Speech recognition with deep recurrent neural networks.
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on;
IEEE; 2013. p. 6645-6649.

13. Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural network with pruning,
trained quantization and huffman coding. CoRR. 2015 abs/1510.00149.

14. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2015 arXiv preprint
arXiv:1512.03385.

15. Hebb, D. The organization of behavior: A neurophychological study. Wiley Interscience; New
York: 1949.

16. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural
networks by preventing co-adaptation of feature detectors. Jul.2012 arXiv:1207.0580.

17. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Quantized neural networks: Training
neural networks with low precision weights and activations. CoRR. 2016 abs/1609.07061.

18. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex. The Journal of physiology. 1962; 160(1):106. [PubMed: 14449617]

19. Ilyashenko Y. Centennial history of hilbert’s 16th problem. Bulletin of the American Mathematical
Society. 2002; 39(3):301–354.

20. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009

21. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems. 2012:1097–1105.

22. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE. 1998; 86(11):2278–2324.

23. Liao, Q., Leibo, J., Poggio, T. How important is weight symmetry in backpropagation?.
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence; 2016. p. 1837-1844.

24. Lillicrap TP, Cownden D, Tweed DB, Akerman CJ. Random feedback weights support learning in
deep neural networks. 2014 arXiv preprint arXiv:1411.0247.

25. Riedmiller, M., Braun, H. A direct adaptive method for faster backpropagation learning: the rprop
algorithm. IEEE International Conference on Neural Networks; 1993. p. 586-591.

26. Sadowski P, Collado J, Whiteson D, Baldi P. Deep learning, dark knowledge, and dark matter.
Journal of Machine Learning Research, Workshop and Conference Proceedings. 2015; 42:81–97.

27. Shannon CE. A mathematical theory of communication (part III). Bell System Technical Journal.
1948; XXVII:623–656.

28. Shannon CE. A mathematical theory of communication (parts I and II). Bell System Technical
Journal. 1948; XXVII:379–423.

29. Smale S. Mathematical problems for the next century. The Mathematical Intelligencer. 1998; 20(2):
7–15.

30. Srivastava RK, Greff K, Schmidhuber J. Training very deep networks. Advances in Neural
Information Processing Systems. 2015:2368–2376.

31. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A. Going deeper with convolutions. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2015. p. 1-9.

32. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature methods. 2015; 12(10):931–934. [PubMed: 26301843]

Baldi et al. Page 41

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix: Proof of Theorem 10

Assume that (A, B) ∈ ℱ. If near (A, B), ℱ is not discrete, then there are real analytic

matrix-valued functions (A(t), B(t)) ∈ ℱ for small t > 0 such that (A(0), B(0)) = (A, B).

Moreover, if we write:

A(t) = A + tE + t2
2 F + t3

6 G + o(t3) (120)

then E ≠ 0. We use A′, A″, A‴, B′, B″, B‴ to denote A′(0), A″(0), A‴(0), B′(0), B″(0),
B‴ (0), respectively. The general strategy is to prove that E = 0 or, in the case E ≠ 0, to take

higher order derivatives to reach a contradiction.

It is easy to compute:

B′ = − A−1A′A−1 = − BEB (121)

By taking the derivative of the first two relations in Equation (112), we have:

−BEB − (BEB)T − EAT − AET = 0
E + ET + BEBBT + B(BEB)T = 0

(122)

Let:

X = EAT + BEB Y = E + BEBBT (123)

Then by the above equations, both X, Y are skew symmetric, and we have Y AT = X. If Y ≠

0, using an orthogonal transformation and scaling, we may assume that:

Y = 0 −1
1 0 (124)

Write:

A = a b
c d

(125)

Then:

Baldi et al. Page 42

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Y AT = −b −d
a c

(126)

Since X skew-symmetric also, we must have b = c = 0, and a = d. Thus A = aI for a real

number a ≠ 0. As a result, we have:

K = (2
a − a2)I L = (2a − 1

a2)I (127)

and (A, B) = (aI, a−1I). Let (Ã(t), B̃ (t)) be the upper triangular matrices obtained by

orthogonal transformation from (A(t), B(t)). Since both K, L are proportional to the identity,

(Ã(t), B̃(t)) ∈ ℱ. Now let us write:

A
∼(t) = a∼ b

∼

0 d
∼ (128)

Then the equation B+BT −AAT = K is equivalent to the following system:

2a∼−1 − (a∼2 + b
∼2) = 2a−1 − a2

2d
∼−1 − d

∼2 = 2a−1 − a2

−b
∼

a∼−1d
∼−1 − b

∼
d
∼ = 0

(129)

Since t is small, Ã(t) should be sufficiently close to aI. From the second equation of the

system above, we have d̃ = a. If b̃ = 0, then we conclude from the first equation of the same

system that ã = a, and hence Ã(t) = aI. This implies that (A(t), B(t)) = (A, B). So in this case

E = 0.

Things are more complicated when b̃ ≠ 0. We first assume that a ≠ −1. In this case, from the

third equation of the system above, we have ã−1 d̃−1 + d̃ = 0. Since we already have d̃ = a ≠

1, for sufficiently small t, ã = − d̃−2 = −a−2, which is distinct from a. Thus in this case b̃ must

be zero. If a = −1, then we have d̃ = −1 and ã = −1. Using the first equation of the system

above, we have b̃ = 0 and the again (A(t), B(t)) = (Ã(t), B̃(t)) = (A, B), and we conclude that

E = 0.

From the results above, we know that if Y ≠ 0 or if A is proportional to the identity, near (A,
B) ∈ ℱ, there are no other elements in ℱ and thus ℱ is discrete. When X = Y = 0, it is

possible to have E ≠ 0. However, we have the following Lemma:

Lemma 3

If X = Y = 0, and if A ≠ −I, then E is not an invertible matrix.

Baldi et al. Page 43

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proof

By contradiction, assume that E is invertible. Then from X = 0, we have:

−A = EBBTE−1 (130)

By taking determinant on both sides, we get:

det A = det (− A) = det (BBT) (131)

Thus we have:

det A = 1 (132)

Since A is similar to a negative definite matrix −BBT, the eigenvalues λ1, λ2 of A are all

negative. Since λ1λ2 = detA = 1, we have:

−λ1 − λ2 ≥ 2 (133)

Using the same matrix representation as in Equation (125), we have:

−a − d = − Tr A = Tr (BBT) = a2 + b2 + c2 + d2 (134)

However:

a2 + b2 + c2 + d2 = (a + d)2 + (b − c)2 − 2 ≥ (a + d)2 − 2 ≥ − a − d, (135)

and the equality is true if and only if b = c and a+d = −2. Since −λ1−λ2 = 2 and λ1λ2 = 1,

the eigenvalues of A must be −1,−1, which implies b = c = 0. Thus A = −I which is

impossible by our assumption.

Next we consider the remaining case: X = Y = 0, and E is not invertible (but not equal to

zero), and A is not proportional to the identity. In this case, we have to take up to third order

derivatives to reach the conclusion. By taking derivatives of the first two relations in

Equation (112), we get:

P + PT = Q + QT = R + RT = S + ST = 0 (136)

where:

Baldi et al. Page 44

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

P = − B″ + A″AT + A′(A′)T

Q = A″ − B″BT − B′(B′)T

R = − B‴ + A‴AT + 3A″(A′)T

S = A‴ − B‴BT − 3B″(B′)T

(137)

Similar to the relations between the matrices X, Y, we have:

QAT − P = − B′(B′)T AT − A′(A)T (138)

Since AB = I, we have:

(B′)T AT = − BT(A′)T (139)

Thus:

QAT − P = B′BTAT − EAT = − BEBBTAT − EAT = 0 (140)

because X = 0. Since A is not proportional to the identity, then we must have P = Q = 0 as in

the case for X and Y.

The relationship between R, S is more complicated, but can be computed using the same

idea. We first have:

SAT − R = − 3B″(B′)T AT − 3A″(A′)T (141)

Using Equation (139) and the fact that P = 0, we have:

SAT − R = − 3A′(A′)TBT(A′)T = 3EETBTET (142)

Since E is not invertible and we assume that E ≠ 0, we must have:

E = ξηT (143)

for some column vectors ξ, η. From the fact that Y = 0, we conclude that:

ξηT + BξηTBBT = 0 (144)

and:

Baldi et al. Page 45

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bξ = − ‖η‖2

‖BTη‖2ξ (145)

Thus we compute:

EETBTξT = − ‖η‖4 · 〈ξ, η〉
‖BTη‖2 ξξT (146)

and:

SAT − R = − 3‖η‖4 · 〈ξ, η〉
‖BTη‖2 ξξT (147)

If 〈ξ, η〉 ≠ 0, then S ≠ 0. Thus:

AT = S−1 − R − 3‖η‖4 · 〈ξ, η〉
‖BTη‖2 S−1ξξT (148)

For the matrix S−1ξξT, both the trace and determinant are zero. So the eigenvalues are zero.

On the other hand, since both S, R are skew-symmetric matrices, S−1R is proportional to the

identity. As a result, the matrix AT, hence A, has two identical eigenvalues. Let λ be an

eigenvalue of A, then:

Tr (A) = 2λ, det (A) = λ2 (149)

Taking the trace in the first two relations of Equation(112), we get:

4λ−1 − ‖A‖2 = Tr (K)
4λ − λ−2‖A‖2 = Tr (L)

(150)

Thus for fixed K, L, λ and ||A|| can only assume discrete values. Since t is small, A(t) =

Q(t)AQ(t)T for some orthogonal matrix Q(t). Let us write:

A = λ b
0 λ

, Q′(0) = 0 −1
−1 0 (151)

Then E = A′(0) is equal to:

Baldi et al. Page 46

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E = b 0
0 −b

(152)

By Lemma 3, E is not invertible. Thus b = 0. But if b = 0, then A is proportional to the

identity and this case has been discussed above.

We must still deal with the case 〈ξ, η〉 = 0. Without loss of generality, we may assume that:

ξ = 1
0 , η = 0

1 (153)

By checking the equation AE = −EBBT, we can conclude that:

A = −d2 0
0 d

. (154)

In fact, when t is small, the eigenvalues of A(t) must be −d−2 and d for some d ≠ 0. Again,

by taking the trace of the first two relations in Equation (112), we get:

−2d2 + 2d−1 − ‖A‖2 = Tr (K);
− 2d−2 + 2d − d2‖A‖2 = Tr (L) .

(155)

Therefore, d is locally uniquely determined by K, L. Finally, if we write A(t) = Q(t)AQ(t)T

and assume that:

Q′(0) = 0 −1
1 0 , (156)

we have:

E = 0 d + d−2

d + d−2 0
. (157)

Since E must be singular, we have d = −1 and hence A = −I. This case has been covered

above and thus the proof of Theorem 10 is complete.

Baldi et al. Page 47

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
MNIST training (upper) and test (lower) accuracy, as a function of epoch, for nine different

learning algorithms: backpropagation (BP), skip BP (SBP), random BP (RBP), skip random

BP (SRBP), the version of each algorithm in which the error signal is not multiplied by the

derivative of the post-synaptic transfer function (no-f′), and the case where only the top

layer is trained while the lower layer weights are fixed (Top Layer Only). Note that these

algorithms differ only in how they backpropagate error signals to the lower layers; the top

layer is always updated according to the typical gradient descent rule. Models are trained

five times with different weight initializations; the trajectory of the mean is shown here.

Baldi et al. Page 48

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
MNIST training (upper) and test (lower) accuracy, as a function of training epoch, for the

adaptive versions of the RBP algorithm (ARBP) and SRBP algorithm (ASRBP). In these

simulations, adaption slightly improves the performance of SRBP and speeds up training.

For the ARBP algorithm, the learning rate was reduced by a factor of 0.1 in these

experiments to keep the weights from growing too quickly. Models are trained five times

with different weight initializations; the trajectory of the mean is shown here.

Baldi et al. Page 49

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
MNIST training (upper) and test (lower) accuracy, as a function of training epoch, for the

sparse versions of the RBP and SRBP algorithms. Experiments are run with different levels

of sparsity by controlling the expected number n of non-zero connections sent from one

neuron to any other layer it is connected to in the backward learning channel. The random

back-propagation matrix connecting any two layers is created by sampling each entry using

a (0,1) Bernoulli distribution, where each element is 1 with probability p = n/(fan − in) and 0

otherwise. For example, in SRBP (Sparse-1), each of the 10 softmax outputs sends a non-

zero (hence with a weight equal to 1) connection to an average of one neuron in each of the

hidden layers. We compare to the (Normal) versions of RBP and SRBP, where the elements

of these matrices are initialized from a standard Normal distribution scaled in the same way

as the forward weight matrices [11]. Models are trained five times with different weight

initializations; the trajectory of the mean is shown here.

Baldi et al. Page 50

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
MNIST post-training accuracy for the sparse versions of the SRBP algorithm. For extreme

values of n, sparse SRBP fails: for n = 0, all the backward weights are set to zero and no

error signals are sent; for n = 100 all the backward weights are set to 1, and all the neurons

in a given layer receive the same error signal. The performance of the algorithm is

surprisingly robust in between these extremes. For sparse RBP (not shown), the backward

weights should be scaled by a factor of 1/ n to avoid an exponential growth in the error

signals of the lower layers.

Baldi et al. Page 51

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
CIFAR-10 training (upper) and test (lower) accuracy, as a function of training epoch, for

nine different learning algorithms: backpropagation (BP), skip BP (SBP), random BP (RBP),

skip random BP (SRBP), the version of each algorithm in which the error signal is not

multiplied by the derivative of the post-synaptic transfer function (no-f′), and the case where

only the top layer is trained while the lower layer weights are fixed (Top Layer Only).

Models are trained five times with different weight initializations; the trajectory of the mean

is shown here.

Baldi et al. Page 52

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
CIFAR-10 training (upper) and test (lower) accuracy for the sparse versions of the RBP and

SRBP algorithms. Experiments are run with different levels of sparsity by controlling the

expected number n of non-zero connections sent from one neuron to any other layer it is

connected to in the backward learning channel. The random backpropagation matrix

connecting any two layers is created by sampling each entry using a (0,1) Bernoulli

distribution, where each element is 1 with probability p = n/(fan − in) and 0 otherwise. We

compare to the (Normal) versions of RBP and SRBP, where the elements of these matrices

are initialized from a standard Normal distribution scaled in the same way as the forward

weight matrices [11]. Models are trained five times with different weight initializations; the

trajectory of the mean is shown here.

Baldi et al. Page 53

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
MNIST training (upper) and test (lower) accuracy, as a function of training epoch, for the

sparse versions of the RBP and SRBP algorithms. Experiments are run with different levels

of quantization of the error signal by controlling the bitwidth bits, according to the formula

given in the text (Equation 19).

Baldi et al. Page 54

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
MNIST training (upper) and test (lower) accuracy, as a function of training epoch, for the

sparse versions of the RBP and SRBP algorithms. Experiment are carried with different

levels of quantization of the weight updates by controlling the bitwidth bits, according to the

formula given in the text (Equation 19). Quantization is applied to each example-specific

update, before summing the updates within a minibatch.

Baldi et al. Page 55

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
MNIST training (upper) and test (lower) accuracy, as a function of training epoch, for BP,

RBP, and SRBP with different dropout probabilities in the learning channel: 0% (no

dropout), 10%, 20%, and 50%. For dropout probability p, the error signals that are not

dropped out are scaled by 1/(1− p). As with dropout in the forward propagation, large

dropout probabilities lead to slower training without hurting final performance.

Baldi et al. Page 56

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Left: [1, 1, 1] architecture. The weights a1 and a2 are adjustable, and the feedback weight

c1 is constant. Right: [1, 1, 1, 1] architecture. The weights a1, a2, and a3 are adjustable,

and the feedback weights c1 and c2 are constant.

Baldi et al. Page 57

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Vector field for the [1, 1, 1] linear case with c1 = 1, α = 1, and β = 1. a1 correspond to the

horizontal axis and a2 correspond to the vertical axis. The critical points correspond to the

two hyperbolas, and all critical points are fixed points and global minima of the error

functions. Arrows are colored according to the value of dP/dt, showing how the critical

points inside the parabola a2 = − a1
2/c1 are unstable. All other critical points are attractors.

Reversing the sign of α, leads to a reflection across the a2-axis; reversing the sign of c1,

leads to a reflection across both the a1 and a2 axes.

Baldi et al. Page 58

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
Left: [1, …, 1] architecture. The weights ai are adjustable, and the feedback weight ci are

fixed. The index of each parameter is associated with the corresponding target layer.

Baldi et al. Page 59

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Left: Expansive [1,N, 1] Architecture. Right: Compressive [N, 1N] Architecture. In

both cases, the parameters ai and bi are adjustable, and the parameters ci are fixed.

Baldi et al. Page 60

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14.
General linear case with an architecture [N0, …, NL]. Each forward matrix Ai is

adjustable and of size Ni×Ni−1. In SRBP, each feedback matrices Ci is fixed and of size Ni ×

NL.

Baldi et al. Page 61

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baldi et al. Page 62

Table 1

Summary of experimental results showing the final test accuracy (in percentages) for the RBP algorithms after

100 epochs of training on MNIST and CIFAR-10. For the experiments in this section, training was repeated

five times with different weight initializations; in these cases the mean is provided, with the sample standard

deviation in parentheses. Also included are the quantization results from Section 5, and the experiments

applying dropout to the learning channel from Section 6.

BP RBP SRBP Top layer only

MNIST Baseline 97.9 (0.1) 97.2 (0.1) 97.2 (0.2) 84.7 (0.7)

No-f′ 89.9 (0.3) 88.3 (1.1) 88.4 (0.7)

Adaptive 97.3 (0.1) 97.3 (0.1)

Sparse-8 96.0 (0.4) 96.9 (0.1)

Sparse-2 96.3 (0.5) 95.8 (0.2)

Sparse-1 90.3 (1.1) 94.6 (0.6)

Quantized error 5-bit 97.6 95.4 95.1

Quantized error 3-bit 96.5 92.5 93.2

Quantized error 1-bit 94.6 89.8 91.6

Quantized update 5-bit 95.2 94.0 93.3

Quantized update 3-bit 96.5 91.0 92.2

Quantized update 1-bit 92.5 9.6 90.7

LC Dropout 10% 97.7 96.5 97.1

LC Dropout 20% 97.8 96.7 97.2

LC Dropout 50% 97.7 96.7 97.1

CIFAR-10 Baseline 83.4 (0.2) 70.2 (1.1) 72.7 (0.8) 47.9 (0.4)

No-f′ 54.8 (3.6) 32.7 (6.2) 39.9 (3.9)

Sparse-8 46.3 (4.3) 70.9 (0.7)

Sparse-2 62.9 (0.9) 65.7 (1.9)

Sparse-1 56.7 (2.6) 62.6 (1.8)

Artif Intell. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baldi et al. Page 63

Table 2

Postsynaptic information required by deep synapses for optimal learning. Ii j
h represents the signal carried by

the deep learning channel and the postsynaptic term in the learning rules considered here. Different algorithms

reveal the essential ingredients of this signal and how it can be simplified. In the last row, the function F can be

implemented with sparse or adaptive matrices, carry low precision signals, or include non-linear

transformations in the learning channel (see also [4]).

Information Algorithm

Ii j
h = Ii j

h (T , O, wrs
l (l > h), f ′(l ≥ h))

General Form

Ii j
h = Ii

h(T , O, wrs
l (l > h), f ′(l ≥ h))

BP (symmetric weights)

Ii j
h = Ii

h(T − O, wrs
l (l > h), f ′(l ≥ h))

BP (symmetric weights)

Ii j
h = Ii

h(T − O, wrs
l (l > h + 1), wki

h + 1, f ′(l ≥ h))
BP (symmetric weights)

Ii j
h = Ii

h(T − O, rrs
l (l ≥ h + 1), rki

h , f ′(l ≥ h))
RBP (random weights)

Ii j
h = Ii

h(T − O, rki
h , f ′(l ≥ h))

SRBP (random skipped weights)

Ii j
h = Ii

h(T − O, rki
h , f ′(l = h))

SRBP (random skipped weights)

Ii j
h = Ii

h(F(T − O), f ′(l = h))
F sparse/low-prec./adaptive/non-lin.

Artif Intell. Author manuscript; available in PMC 2019 July 01.

	Abstract
	1 Introduction
	2 Setting, Notations, and the Learning Channel
	2.1 Standard Backpropagation (BP)
	2.2 Standard Random Backpropagation (RBP)
	2.3 The Critical Equations
	2.4 Local Learning
	2.5 The Deep Learning Channel

	3 Random Backpropagation Algorithms and Their Computational Complexity
	3.1 Computational Complexity Considerations

	4 Algorithm Simulations
	4.1 MNIST
	4.2 Additional MNIST Experiments
	4.3 CIFAR-10

	5 Bit Precision in the Learning Channel
	5.1 Low-Precision Error Signals
	5.2 Low-Precision Weight Updates

	6 Observations
	6.1 Connections to Dropout

	7 Mathematical Analysis
	7.1 General Considerations
	Theorem 1
	Proof

	7.2 The Simplest Linear Chain: 𝒜[1, 1, 1]
	Derivation of the System
	Theorem 2
	Proof
	Trivial Cases
	General Case

	Linearization Around Critical Points

	7.3 Adding Depth: the Linear Chain 𝒜[1, 1, 1, 1]
	Derivation of the System
	Theorem 3
	Proof

	7.4 The General Linear Chain: 𝒜[1, …, 1]
	Derivation of the System
	Theorem 4
	Proof

	Gradient Descent Equations

	7.5 Adding Width (Expansive): 𝒜[1,N, 1]
	Derivation of the System
	Theorem 5
	Proof

	7.6 Adding Width (Compressive): 𝒜[N, 1,N]
	Derivation of the System
	Lemma 1
	Proof

	Theorem 6
	Proof

	7.7 The General Linear Case: 𝒜[N0,N1, …, NL]
	Derivation of the System
	Gradient Descent Equations
	RBP Equations

	7.8 The General Three-Layer Linear Case 𝒜[N0,N1,N2]
	Derivation of the System
	Theorem 7
	Proof

	Lemma 2
	Proof

	Theorem 8: [Partial Convergence Theorem]
	Proof

	Theorem 9
	Proof

	Theorem 10
	Proof

	7.9 A Non-Linear Case
	Derivation of the System Without Derivatives
	Derivation of the System With Derivatives
	Theorem 12
	Proof

	Gradient Descent Equations

	8 Conclusion
	References
	Appendix: Proof of Theorem 10
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Table 1
	Table 2

