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Abstract

Introduction: Cognitive composite scales constructed by combining existing neuropsychometric 

tests are seeing wide application as endpoints for clinical trials and cohort studies of Alzheimer’s 

disease (AD) predementia conditions. Preclinical Alzheimer’s Cognitive Composite (PACC) scales 

are composite scores calculated as the sum of the component test scores weighted by the 

reciprocal of their standard deviations at the baseline visit. Reciprocal standard deviation is an 

arbitrary weighting in this context, and may be an inefficient utilization of the data contained 

in the component measures. Mathematically derived optimal composite weighting is a promising 

alternative.

Methods: Sample size projections using standard power calculation formulas were used to 

describe the relative performance of component measures and their composites when used as 

endpoints for clinical trials. Power calculations were informed by (n=1,333) amnestic mild 

This is an open access article licensed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.
*Address correspondence to this author at the Div. of Biostatistics, School of Public Health, University of California, San Diego; Dept. 
of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr. M/C 0948, La Jolla, CA 92093-0948, 
USA; Tel: 858-401-0234; sedland@ucsd.edu. 

CONFLICT OF INTEREST
On behalf of all authors, the corresponding author states that there is no conflict of interest.
D.P.S. is a consultant for Aptinyx and Biogen; H.H.F. reports: grants to UCSD from Biohaven Pharmaceuticals, Annovis (QR 
Pharma), AC Immune, Vivoryon (Probiodrug), and LuMind Foundation; service agreements through UCSD for consulting with 
Biosplice (Samumed), Arrowhead Pharmaceuticals, Novo Nordisk (including travel expenses), and Axon Neurosciences; DMC and 
DSMB services for Roche/Genentech Pharmaceuticals and Janssen Research & Development LLC, as well as serving on the Scientific 
Advisory Board for the Tau Consortium. All related funds are directed to UCSD with none personally received. He also reports 
philanthropic support through the Epstein Family Alzheimer’s Disease Collaboration. He reports personal funds received for Detecting 
and Treating Dementia Serial Number 12/3–2691 U.S. Patent No. PCT/US2007/07008, Washington DC, U.S. Patent and Trademark 
Office.; and S.D.E. is a Data Safety Monitoring Board statistician for clinical trials performed by Janssen Research & Development 
LLC and Suven.

CONSENT STATEMENT
Written informed consent was obtained from all NACC participants and co-participants.

HHS Public Access
Author manuscript
Int J Stat Med Res. Author manuscript; available in PMC 2024 March 14.

Published in final edited form as:
Int J Stat Med Res. 2023 February 15; 12: 90–96. doi:10.6000/1929-6029.2023.12.12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


cognitive impaired participants in the National Alzheimer’s Coordinating Center (NACC) Uniform 

Data Set.

Results: A composite constructed using PACC reciprocal standard deviation weighting was both 

less sensitive to change than one of its component measures and less sensitive to change than 

its optimally weighted counterpart. In standard sample size calculations informed by NACC data, 

a clinical trial using the PACC weighting would require 38% more subjects than a composite 

calculated using optimal weighting.

Discussion: These findings illustrate how reciprocal standard deviation weighting can result 

in inefficient cognitive composites, and underscore the importance of component weights to 

the performance of composite scales. In the future, optimal weighting parameters informed by 

accumulating clinical trial data may improve the efficiency of clinical trials in AD.
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INTRODUCTION

The Alzheimer’s Disease Cooperative Study (ADCS) Preclinical Alzheimer Cognitive 

Composite (PACC) is a neuropsychometric assessment tool constructed by combining scores 

from four well-validated objective tests of global cognition and verbal memory performance 

[1]. The PACC was developed for and was the planned primary outcome measure of 

the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s study, a phase 3 randomized 

clinical trial of solanezumab to slow the progression of memory problems in those who 

are cognitively normal but have a PET scan indicating brain amyloid pathology [1]. As of 

March 2023, 28 clinical trials listed in clinicaltrials.gov report a version of the PACC as 

a primary or secondary cognitive outcome measure, making the PACC one of the favored 

outcome measures used in AD clinical trials in those at risk of but not yet diagnosed 

with dementia. While the PACC was calibrated to measure cognitive decline in normal 

participants with brain amyloidopathy, it has also been applied to cohort studies and clinical 

trials of older adults with other predementia conditions including amnestic mild cognitive 

impairment (aMCI) [2, 3]. There is now an evolving and active literature describing variants 

of the PACC, including PACCs with more than four component tests [4–7] and PACCs with 

different component tests than used in the original PACC [4–6, 8]. A five-item version of the 

PACC was the planned primary endpoint for the “SKYLINE” phase 3 trial of gantenerumab 

in cognitively normal persons with biomarker evidence of amyloid accumulation [9]. Hence 

there are now multiple derived versions of the PACC, and they are seeing broad application 

in both small and large cohort studies and clinical trials.

The originally described PACC [1] and all subsequently derived PACC instruments z-score 

norm the component scores on baseline data before summing the components to form their 

composite. This introduces two limitations to PACC weighted scores. First, dividing each 

component by its baseline standard deviation effectively re-weights the component scores in 

an arbitrary and often extremely inefficient way. A second limitation is that meta-analyses of 

accumulating trial data will not be possible with PACC weighted composites – the baseline 
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standard deviations of component measures vary from study to study, and consequently 

z-score normed PACCs are non-comparable (different) scales study to study.

We have shown using computer simulations informed by clinical trial data that required 

sample size using PACC weighting can be up to twice that required using the same 

component scales with optimal weighting [10]. Here we investigate the performance of 

PACC weighting empirically, using data from the National Alzheimer’s Coordinating Center 

(NACC) database. This exercise is intended to provide a more heuristic demonstration of 

PACC performance. Findings are that a PACC weighted composite is less efficient than the 

optimal composite, and that PACCs can even underperform relative to individual component 

instruments contained within the PACC. The latter observation, especially, highlights the 

arbitrary and potentially inefficient nature of composites weighted by baseline standard 

deviations.

METHODS

Study Material

Following Donohue, et al., [1] we investigated the performance of cognitive composites 

using an approximation of the PACC constructed from publicly available datasets. We 

examined longitudinal patterns of decline in participants in the NACC database [11], 

restricting to participants with a baseline visit diagnosis of aMCI. The NACC database 

contains cumulative longitudinal data from participants enrolled in cohort studies at 41 

NIH funded Alzheimer’s Disease Research Centers (ADRC). The NACC Uniform Data Set 

(UDS) was initiated in 2005 and contains annually collected clinical diagnostic data and 

psychometric test data from all ADRCs. NACC UDS data were accessed in January of 2021. 

The NACC baseline aMCI sample included 1,333 participants who were above 60 years 

old, with a diagnosis of aMCI at their initial UDS visit, and at least three complete annual 

follow-up evaluations after their first UDS visit.

Component Tests of the Cognitive Composites

The original PACC [1] includes the following four test scores: 1) total recall from the Free 

and Cued Selective Reminding Test (FCSRT) (score range = 0–48 points); 2) delayed recall 

on the Logical Memory IIA (LM-IIA) sub-test from the Wechsler Memory Scale (score 

range = 0–25 points); 3) total correct responses on the Digit Symbol Substitution Test 

(DSST) from the Wechsler Adult Intelligence Scale–Revised (score range = 0–93 points); 

and 4) the Mini-Mental Status Exam (MMSE) total (score range = 0–30 points).

The full set of component tests included in the PACC is not present in the NACC UDS 

cognitive test batteries. The NACC dataset includes the LM-IIA, DSST, and MMSE, but 

does not include the FCSRT or an equivalent. Thus, a “PACC3” was constructed as a 

three-item composite that including the three available tests (LM-IIA, DSST, MMSE), but 

no FCSRT or equivalent.
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Statistical Methods

This analysis evaluates the relative efficiency of outcome measures for clinical trials using 

the mixed model repeated measures (MMRM) analysis plan. MMRM is the most commonly 

used statistical analysis plan for phase 3 AD clinical trials, and compares the mean change 

from baseline to the last visit in the treatment arm versus the placebo arm [12]. To simplify 

presentation, we assumed no loss to follow-up and no covariates, so that the MMRM 

analysis reduces to a standard two sample t-test comparing change in treatment to change in 

placebo. This assumption is justified because our focus is the relative efficiency of different 

outcome measures rather than actually powering a future trial, and relative efficiency is 

only indirectly and modestly affected by missing value patterns and covariate terms. Power 

calculations further assumed equal allocation to arms, a type 1 error rate of 5%, and equal 

standard deviation of change in treatment and placebo arms. Effect size to be powered 

was set to a 50% reduction in the mean change from baseline to year three. The 50% 

effect size is an arbitrary percentage -- relative efficiency is independent of effect size when 

effect size is expressed as a percentage reduction in change [13], meaning any percentage 

effect size results in the same relative efficiency of outcome measures. Power calculations 

are summarized by reporting the sample size required to achieve 80% power. All analyses 

were conducted using R version 4.1.0. Power calculations were performed using the R base 

package power.t.test function.

PACC3 scores were calculated by dividing each component score by its standard deviation 

at the baseline visit and summing the resulting values [1]. That is, PACC3 scores are 

a weighted sum of reciprocal standard deviation weighted component scales. (Formal z-

score norming with subtraction of the means could also be performed but is redundant to 

the MMRM analysis. All Tables and results reported here are identical with or without 

subtracting out the mean at this stage.) We also calculated composite scores of the 

three component instruments using optimal weighting and simple sum weighting. Optimal 

weighting applies weights calculated from the covariance of change scores [10]. Simple sum 

weighting, also called the unweighted sum approach, weights each component test equally 

when calculating the composite score.

Optimal composite weighting was first proposed by Xiong et al. in the context of linear 

mixed effects models comparing fixed effect mean slope between groups [14]. Xiong et 
al. used least squares arguments to derive a candidate formula for optimal component 

weights that maximizes the sensitivity of the composite to longitudinal change. However, 

in computer simulations the Xiong et al. composite performed more poorly than the simple 

sum composite formed by adding unweighted component scores, and the authors concluded 

that further research is required [14]. In a formal derivation of optimal weights from the 

multivariate distribution of the component scores, Ard et al. [15] demonstrated that optimal 

weights are a function of both the parameters of the joint multivariate distribution of the 

component scores and the clinical trial design (i.e., the number and interval evaluations 

during the clinical trial). The optimal composite as defined by Ard et al. is the weighted 

sum of component measures that maximizes the mean to standard deviation ratio (MSDR) of 

the expected change in the outcome measure, thereby minimizing the sample size required 

to power a cohort study or clinical trial using the composite as an outcome measure. The 
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Ard et al. algorithm generalizes readily to the MMRM analysis preferred by clinical trialists 

[12]. The formula for optimal weights for the MMRM analysis can be expressed in matrix 

notation as

Optimal weights = c ∗ Σ−1μ′

given expected change μ and covariance of change Σ [13]. The c is an arbitrary constant 

– any non-zero value of c will produce equally optimal weights. We use the convention 

of standardizing c so that the weights sum in absolute value to 1. Optimal weights reflect 

the covariance of change of the component scales, and result in the linear combination of 

components that maximizes the expected change in the composite in units of the standard 

deviation of change of the composite within the placebo arm.

We also report the mean to standard deviation ratio (MSDR) of change scores for each 

component measure and each composite. Because the effect size in power calculation 

formulas is expressed in units of MSDR, the MSDR is a useful metric for comparing the 

performance of different outcome measures. The MSDR is also known as the signal-to-noise 

ratio of the outcome measure. Outcomes with larger MSDR have a higher power and require 

a smaller sample size, while outcomes with smaller MSDR have lower power and require a 

larger sample size.

Finally, we report descriptive summaries of the different weighting schemes expressed on 

a standard scaling. Optimal weights by design are standardized so that the weights sum in 

absolute value to one [10]. We likewise standardized the PACC and simple sum weights 

to sum to one to be able to more readily compare weighting schemes. This was done by 

multiplying the weights by a constant term equal to one over the sum of the component 

weights [10, 13]. Multiplying weights by a constant term in this manner shifts the mean and 

standard deviation of the outcome measure but has no effect on its performance in terms 

of statistical testing and power calculations [13, 15]. Standardizing the weights in this way 

serves to create weights that are on the same referent scale and comparable across weighting 

approaches.

RESULTS

Demographic characteristics of the NACC aMCI participants are summarized in Table 1. 

Mean age at enrollment was 74.8 years. Forty-six percent of the participants were women. 

Participants were predominantly non-Hispanic White (79.6%), and well educated (mean 

15.4 years), as is typical of volunteer registry cohorts [16]. Mean scores on the component 

neuropsychometric instruments are also summarized on Table 1. Graphical summaries of the 

mean scores at baseline and the three annual follow-up evaluations are presented in Figure 

1. Subjects declined on average on each of the PACC3 component measures, although there 

was a slight increase in mean score for the paragraph recall (LM-IIA) instrument from 

baseline to first follow-up visit (Figure 1). Mean change from first to last visit was highly 

statistically significant for the MMSE and DSST (p < 0.0001), and less so for the LM_IIA (p 

= 0.007).

Wang et al. Page 5

Int J Stat Med Res. Author manuscript; available in PMC 2024 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 2 shows the mean change and standard deviation of change from baseline to year 

three for each component test and for composite measures formed from the component 

tests. Table 2 also reports the MSDR and the sample size required to observe a statistically 

significant 50% reduction in mean change in treatment versus placebo with 80% power. 

Based on data from NACC aMCI participants, a clinical trial using the PACC3 would require 

246 participants per arm in this target population. The three-item PACC3 outperformed 

the three-item simple sum composite which would require 268 participants per arm, but 

not the optimally weighted three-item composite which would require 177 participants 

per arm (Table 2). Compared to the optimally weighted composite, the PACC3 would 

requires 38% more subjects for a comparably powered trial. We also observe that PACCs 

can underperform relative to individual component instruments contained within the PACC 

(Table 1, comparing MMSE alone (N=222/arm) to the PACC3 with PACC weighting 

(N=246/arm)). Stated another way, adding the LM-IIA and DSST to the MMSE using 

reciprocal standard deviation resulted in a loss of statistical power for the scale when used as 

an outcome for a clinical trial.

Weights for calculating the PACC3 scales are summarized in Table 3. Standardized weights 

for the PACC weighted and the simple sum and optimally weighted scales are also 

summarized in Table 3. The standardized weights (Table 3) in combination with the MSDRs 

(Table 2) help to explain the relative efficiency of the different scales. In general, component 

scales with small MSDR contribute little to the composite scale, and hence composite 

scales which give higher weight to component scales with small MSDR perform poorly. For 

example, the LM-IIA had the smallest MSDR, meaning it is a noisy instrument relative to 

the other component measures, but was substantially up weighted by the PACC3 relative to 

the optimal weighting.

DISCUSSION

This study presents analyses of reciprocal standard deviation weighted composites as 

outcome measures for clinical trials, and compares different weighting approaches to scoring 

a PACC. We found a number of results relevant to the construction of cognitive composites. 

We illustrated by counter example that adding additional components to a composite does 

not necessarily improve the performance of the composite.

Our summary also revealed that the LM-IIA improved from baseline to first follow-up in the 

NACC aMCI data (Figure 1, panel 3), consistent with practice effects on this measure in the 

aMCI population. Composites using component tests with practice effects may benefit from 

a run in period to improve the signal-to-noise of the outcome measure and increase statistical 

power [17]. We also note that the LM-IIA is not sensitive to change in the population of 

aMCI participants represented in the NACC cohort, and has little power to detect treatment 

effects as a stand-alone outcome measure (Table 2).

A limitation of all attempts to project the statistical power of a planned clinical trial is 

that there are typically no a priori data to inform the likely pattern of progression under 

treatment. This is especially true for Alzheimer’s disease prevention and treatment trials, 

which have experienced a significant history of negative findings and therefore little data 
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to inform the effect of treatment on trial outcome variables. The standard approach to 

powering trials in this circumstance is to use the covariance pattern of representative 

placebo arm data and assume this covariance pattern for both the placebo and treatment 

arms. This is the approach we have taken in this and previous [10, 15] papers. The equal 

covariance assumption may not hold in practice. For example, response to treatment under 

the alternative hypothesis will be variable, meaning the change from baseline to last visit 

in the treatment arm of a clinical trial will reflect both natural background variability in 

rate of progression and variability in response to treatment. Under this scenario the equal 

covariance assumption may lead to anticonservative sample size estimates. Conversely, an 

especially effective treatment may reduce the variance of change in the treatment arm. In 

the hypothetical extreme, a treatment that stopped progression would constrain the variance 

of change to be a function of only the measurement error variance of repeated measures. 

Under this scenario, the equal covariance assumption would lead to conservative sample 

size estimates. An alternative to the equal covariance assumption approach is to construct 

a comparator sample similar to what might be achieved under treatment [1]. This approach 

can lead to anticonservative power projections if the pattern of longitudinal change in 

the comparator group is not representative of what will be experienced in future clinical 

trials. We also note that the optimal weighting algorithm assumes that treatment effects 

expressed as a percentage slowing of decline are equivalent across the component measures 

[15]. Recent findings suggest that this may be a reasonable assumption. Published data 

on recently completed clinical trials of effective monoclonal antibody therapies for the 

treatment of early AD showed remarkably similar treatment effects by percentage change 

across the outcome measures used in the trials [18, 19]. For example, in the lecanemab 

monoclonal antibody trial, treatment slowed progression by comparable percentages over 

18 months on both the primary global assessment outcome measure (27%), and on the 

planned secondary cognitive and functional outcome measures (26–37%) [18]. Assessing 

the assumptions of the optimal composite approach is critical. As more trials with positive 

effects read out, we will be able to more thoroughly investigate the many assumptions 

implicit in sample size and statistical power calculations by this approach.

Finally, we note that a feature of the optimal composite approach is that prior study data 

from a representative completed clinical trial or instrument protocol study is required to 

estimate the parameters used to calculate optimal weights [15]. Optimal weights estimated 

from the data to which the composite are applied, as reported here, may overstate the power 

of the composite in a future clinical trial [15, 20]. We have found that optimal weights 

estimated from pilot samples as small as 200 participants are effective approximations of 

weights that achieve theoretical maximal power [10]. The NACC sample reported here 

well exceeds this threshold, but we emphasize that the relative performance of the optimal 

weights may be slightly overstated in this analysis. In application, optimal weights should be 

from prior independent sample data representative of the planned future trial.

CONCLUSIONS

We have demonstrated that composite scales with reciprocal standard deviation weighting 

can be an inefficient use of clinical trial data. A practical indication of this is that the 

single component MMSE measure was more efficient than the full PACC3. That is, adding 
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more information in the form of more tests to a reciprocal standard deviation weighted 

composite can actually decrease the efficiency of the scale as an outcome measure for 

clinical trials. These observations provide useful guidance to future investigators developing 

composite outcome measures for cohort studies and clinical trials. Considering weighting 

when constructing composite scales may improve the statistical efficiency of clinical trials 

moving forward.
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Figure 1: 
Mean (95% confidence intervals) for the component measures, by visit.

MMSE = Mini-Mental State Exam; LM-IIA = Logical Memory Paragraph Recall; DSST = 

Digit Symbol Substitution Test.
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Table 1:

Baseline and Year 3 Characteristics of NACC aMCI Participants

(n = 1,333) Baseline Year 3

Entry Age, mean (SD*) 74.8 (7.3)

Education, mean (SD) 15.4 (3.2)

Female Sex, n (%) 613 (46.0%)

Non-Hispanic White, n (%) 1061 (79.6%)

Non-Hispanic Black, n (%) 162 (12.2%)

Non-Hispanic Asian, n (%) 22 (1.7%)

Hispanic White, n (%) 57 (4.3%)

Other, n (%) 31 (2.3%)

PACC Components

MMSE, mean (SD) 27.3 (2.3) 25.5 (3.9)**

DSST, mean (SD) 38.9 (11.7) 34.9 (13.6)**

LM-IIA, mean (SD) 6.5 (4.6) 6.2 (5.5)***

*
SD = standard deviation

**
p<0.00001

***
p=0.007
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Table 3:

PACC3 Component Weights and Standardized Component Weights vis-à-vis Optimal and Simple Sum 

Weights

MMSE LM-IIA DSST

Baseline SD* 2.28 4.60 11.68

PACC weights (= 1/SD) 0.44 0.22 0.09

Standardized weights

PACC 0.59 0.29 0.12

Optimal composite 0.68 −0.16 0.16

Simple sum composite 0.33 0.33 0.33

*
SD = standard deviation.
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